#### TREATABILITY MANUAL

VOLUME II. Industrial Descriptions

OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

Region V, Lineary
Red Mouth Reservorn Street

Caralya Plinois 60004

July 1980

#### PREFACE

In January, 1979, EPA's Office of Enforcement and Office of Water and Waste Management requested help from the Office of Research and Development in compiling wastwater treatment performance data into a "Treatability Manual". This Manual was to be used in developing NPDES permit limitations for facilities which, at the time of permit issuance, were not fully covered by promulgated, industry-specific effluent guidelines authorized under Sections 301, 304, 306, 307, and 501 of the CWA.

A planning group was set up to manage the treatability program under the chairmanship of William Cawley, Deputy Director, Industrial Environmental Research Laboratory - Cincinnati. The group includes participants from: 1) the Industrial Environmental Research Laboratory - Cincinnati, 2) Effluent Guidelines Division, Office of Water and Waste Management; 3) Permits Division, Office of Enforcement; 4) Municipal Environmental Research Laboratory - Cincinnati; 5) R. S. Kerr, Environmental Research Laboratory - Ada; 6) Industrial Environmental Research Laboratory - Research Triangle Park; 7) Monsanto Research Corporation; and 8) Aerospace Corporation.

The objectives of the treatability program are:

- To provide readily accessible data and information on treatability of industrial and municipal waste streams for use by NPDES permit writers, enforcement personnel, and by industrial or municipal permit holders;
- To provide a basis for research planning by identifying gaps in knowledge of the treatability of certain pollutants and wastestreams;
- To set up a system allowing rapid response to program office requirements for generation of treatability data.

The primary output from this program is a five-volume Treatability Manual. The individual volumes are named as follows:

Volume I - Treatability Data

Volume II - Industrial Descriptions

Volume III - Technologies

Volume IV - Cost Estimating

Volume V - Summary

ENVIRONMENTAL DESCRIPTION ASSIST

6/23/80

#### ACKNOWLEDGEMENT

The sheer size and comprehensiveness of this document should make it obvious that this had to be the effort of a large number of people. It is the collection of contributions from throughout the Environmental Protection Agency, particularly from the Office of Enforcement, Office of Water and Hazardous Materials and the Office of Research and Development. Equally important to its success were the efforts of the employees of the Aerospace Corporation, MATHTECH, INC., and the Monsanto Research Corporation who participated in this operation.

No list of the names of everyone who took part in the effort would in any way adequately acknowledge the effort which those involved in preparing this Manual made toward its development. Equally difficult would be an attempt to name the people who have made the most significant contributions both because there have been too many and because it would be impossible to adequately define the term "significant." This document exists because of major contributions by the contractor's staff and by members of the following:

Effluent Guidelines Division
Office of Water and Waste Management

Permits Division
Office of Water Enforcement

National Enforcement Investigation Center Office of Enforcement

Center for Environmental Research Information

Municipal Environmental Research Laboratory

Robert S. Kerr Environmental Research Laboratory

Industrial Environmental Research Laboratory Research Triangle Park, NC

Industrial Environmental Research Laboratory Cincinnati, OH Office of Research and Development

The purpose of this acknowledgement is to express my thanks as Committee Chairman and the thanks of the Agency to the Committee Members and others who contributed to the success of this effort.

William A. Cawley, Deputy Director, IERL-Ci Chairman, Treatability Coordination Committee

iii

## TABLE OF CONTENTS

|      |                                   | Page                                                                     |
|------|-----------------------------------|--------------------------------------------------------------------------|
| 11.1 | Introduction                      | II.1-1                                                                   |
| II.2 | Auto and Other Laundries          | II.2-1                                                                   |
| ·    | II.2.l Industry Description       | II.2-4<br>II.2-8                                                         |
| 11.3 | Coal Mining                       |                                                                          |
|      | II.3.l Industry Description       | II.3-1<br>II.3-3<br>II.3-6                                               |
| II.4 | Electroplating                    | II.4-1                                                                   |
|      | II.4.1 Industry Description       |                                                                          |
| 11.5 | Inorganic Chemicals Manufacturing | II.5.1 <b>-</b> 1                                                        |
|      | II.5.1 Industry Description       | II.5.1-1<br>II.5.2-1<br>II.5.3-1                                         |
| II.6 | Iron and Steel Manufacturing      | II.6.1 <b>-</b> 1                                                        |
|      | II.6.1 Industry Description       | II.6.1-1<br>II.6.1-1<br>II.6.1-2<br>II.6.1-18<br>II.6.1-62<br>II.6.1-106 |

|                                                                                                                                                                                                           | Page ·                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| II.7 Leather Tanning and Finishing                                                                                                                                                                        | II.7-1                                                                  |
| II.7.l Industry Description                                                                                                                                                                               | II.7-1<br>II.7-2<br>II.7-8<br>II.7-17                                   |
| II.8 Machinery and Mechanical Products                                                                                                                                                                    |                                                                         |
| II.8.1 Aluminum Forming                                                                                                                                                                                   |                                                                         |
| II.8.1.1 Industry Description II.8.1.1.1 General Description II.8.1.1.2 Subcategory Descriptions II.8.1.2 Wastewater Characterization II.8.1.3 Plant Specific Description II.8.1.4 Pollutant Removability |                                                                         |
| II.8.2 Battery Manufacturing                                                                                                                                                                              |                                                                         |
| II.8.2.1 Industry Description II.8.2.1.1 General Description II.8.2.1.2 Subcategory Descriptions II.8.2.2 Wastewater Characterization II.8.2.3 Plant Specific Description II.8.2.4 Pollutant Removability |                                                                         |
| II.8.3 Coil Coating                                                                                                                                                                                       | II.8.3 <b>-</b> 1                                                       |
| II.8.3.1 Industry Description                                                                                                                                                                             | II.8.3-1<br>II.8.3-1<br>II.8.3-8<br>II.8.3-10<br>II.8.3-20<br>II.8.3-20 |
| II.8.4 Copper Forming                                                                                                                                                                                     |                                                                         |
| II.8.4.1 Industry Description II.8.4.1.1 General Description II.8.4.1.2 Subcategory Descriptions II.8.4.2 Wastewater Characterization II.8.4.3 Plant Specific Description II.8.4.4 Pollutant Removability |                                                                         |
| II.8.5 Electrical and Electronic Components                                                                                                                                                               |                                                                         |
| II.8.5.l Industry Description II.8.5.l.l General Description II.8.5.l.2 Subcategory Descriptions II.8.5.2 Wastewater Characterization II.8.5.3 Plant Specific Description II.8.5.4 Pollutant Removability |                                                                         |

|      | II         | Foundries                                                                                                                                                                                         |
|------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | II.8.7     | Mechanical Products                                                                                                                                                                               |
|      | II<br>II   | .8.7.1 Industry Description II.8.7.1.1 General Description II.8.7.1.2 Subcategory Descriptions .8.7.2 Wastewater Characterization .8.7.3 Plant Specific Description .8.7.4 Pollutant Removability |
|      | 8.8.11     | Photographic Equipment and Supplies                                                                                                                                                               |
|      | II.<br>II. | .8.8.1 Industry Description II.8.8.1.1 General Description II.8.8.1.2 Subcategory Descriptions .8.8.2 Wastewater Characterization .8.8.3 Plant Specific Description .8.8.4 Pollutant Removability |
|      | II.8.9     | Plastics Processing                                                                                                                                                                               |
|      | II.<br>II. | .8.9.1 Industry Description II.8.9.1.1 General Description II.8.9.1.2 Subcategory Descriptions .8.9.2 Wastewater Characterization .8.9.3 Plant Specific Description .8.9.4 Pollutant Removability |
|      | 11.8.10    | Porcelain Enameling II.8.10-1                                                                                                                                                                     |
|      | II.<br>II. | 8.10.1 Industry Description                                                                                                                                                                       |
| 11.9 | Miscell    | aneous                                                                                                                                                                                            |
|      | II.9.1     | Adhesives and Sealants                                                                                                                                                                            |
|      | II.        | 9.1.1 Industry Description II.9.1.1.1 General Description II.9.1.1.2 Subcategory Descriptions 9.1.2 Wastewater Characterization 9.1.3 Plant Specific Description                                  |
|      | II.        | 9.1.4 Pollutant Removability                                                                                                                                                                      |

Page

|                                                                                                                                                                                                           | Page                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| II.9.2 Explosives Manufacture                                                                                                                                                                             | II.9.2 <b>-</b> 1                             |
| II.9.2.l Industry Description                                                                                                                                                                             | II.9.2-1<br>II.9.2-3<br>II.9.2-8<br>II.9.2-11 |
| II.9.3 Gum and Wood Chemicals                                                                                                                                                                             |                                               |
| II.9.3.1 Industry Description II.9.3.1.1 General Description II.9.3.1.2 Subcategory Descriptions II.9.3.2 Wastewater Characterization II.9.3.3 Plant Specific Description II.9.3.4 Pollutant Removability |                                               |
| II.9.4 Pesticide Manufacturing                                                                                                                                                                            |                                               |
| II.9.4.1 Industry Description II.9.4.1.1 General Description II.9.4.1.2 Subcategory Descriptions II.9.4.2 Wastewater Characterization II.9.4.3 Plant Specific Description II.9.4.4 Pollutant Removability |                                               |
| II.9.5 Pharmaceutical Manufacturing                                                                                                                                                                       | II.9.5 <del>-</del> 1                         |
| II.9.5.1 Industry Description                                                                                                                                                                             | II.9.5 <b>-</b> 1                             |
| II.10 Nonferrous Metals Manufacturing                                                                                                                                                                     | II.10-1                                       |
| II.10.1 Industry Description                                                                                                                                                                              | II.10-2<br>II.10-7<br>II.10-24                |
| II.ll Ore Mining and Dressing                                                                                                                                                                             | II.11 <b>-</b> 1                              |
| II.ll.l Industry Description                                                                                                                                                                              | II.11-1<br>II.11-1<br>II.11-6                 |
| <pre>II.ll.2 Wastewater Characterization</pre>                                                                                                                                                            | II.11-13                                      |

|                               |                                                                                              | Page                          |
|-------------------------------|----------------------------------------------------------------------------------------------|-------------------------------|
| II.12 Organi                  | c Chemicals Manufacturing                                                                    |                               |
|                               | II.12.1.1 General Description II.12.1.2 Subcategory Descriptions Wastewater Characterization |                               |
|                               | Plant Specific Description<br>Pollutant Removability                                         |                               |
| II.13 Paint                   | and Ink Formulation                                                                          | II.13 <b>-</b> 1              |
| 11.13.1                       | <pre>II.13.1.1 General Description II.13.1.2 Subcategory Descriptions</pre>                  | II.13-1<br>II.13-4            |
| II.13.2<br>II.13.3<br>II.13.4 | Wastewater Characterization                                                                  | II.13-15                      |
| II.l4 Petrol                  | eum Refining                                                                                 | II.14-1                       |
| II.14.1                       | II 14 1 1 General Description                                                                | TT.14-1                       |
| II.14.2                       | II.14.1.2 Subcategory Descriptions                                                           | II.14-4                       |
| II.14.3<br>II.14.4            | Pollutant Removability                                                                       | II.14 <b>-</b> 15             |
| II.15 Plasti                  | c and Synthetic Materials Manufacturing                                                      |                               |
| II.15.1                       | <pre>II.15.1.1 General Description II.15.1.2 Subcategory Descriptions</pre>                  |                               |
| II.15.3                       | Wastewater Characterization Plant Specific Description Pollutant Removability                |                               |
| II.16 Pulp a                  | and Paperboard Mills and Converted                                                           | II.16 <b>-</b> 1              |
| II.16.1<br>II.16.2            | Industry Description                                                                         | II.16-1<br>II.16-1<br>II.16-2 |
| II.16.3<br>II.16.4            | Plant Specific Description                                                                   | II.16-13                      |
| II.17 Rubber                  | Processing                                                                                   | II.17 <b>-</b> 1              |
| II.17.1                       | Industry Description                                                                         | II.17 <b>-</b> 1              |
| II.17.2<br>II.17.3            | Wastewater Characterization                                                                  |                               |
| 11.17.4                       | Pollutant Removability                                                                       |                               |

|                                                                                         |                         |   |     | Page                                       |
|-----------------------------------------------------------------------------------------|-------------------------|---|-----|--------------------------------------------|
| II.18 Soap and Detergent Manu                                                           | facturing               |   |     | II.18-1                                    |
| II.18.1.1 Gene<br>II.18.1.2 Subc<br>II.18.2 Wastewater Char<br>II.18.3 Plant Specific D | tion                    | • | • • | II.18-1<br>II.18-2<br>II.18-11<br>II.18-16 |
| II.19 Steam Electric Power Pl                                                           | ants                    | • |     | II.19 <b>-</b> 1                           |
| II.19.1.1 Gene<br>II.19.1.2 Subc<br>II.19.2 Wastewater Char<br>II.19.3 Plant Specific D | tion                    | • | • • | II.19-1<br>II.19-2<br>II.19-7<br>II.19-26  |
| II.20 Textile Mills                                                                     |                         | • |     | II.20 <b>-</b> 1                           |
| II.20.1.1 Gene<br>II.20.1.2 Subc<br>II.20.2 Wastewater Char<br>II.20.3 Plant Specific D | tion                    | • | • • | II.20-1<br>II.20-2<br>II.20-10<br>II.20-12 |
| II.21 Timber Products Process                                                           | ing                     | • |     | II.21-1                                    |
| II.21.1.1 Gene<br>II.21.1.2 Subc<br>II.21.2 Wastewater Char<br>II.21.3 Plant Specific D | tion                    | • | · · | II.21-1<br>II.21-1<br>II.21-7<br>II.21-13  |
| II.22 Publicly Owned Treatmen                                                           | t Works (POTW'S)        |   |     | II.22-1                                    |
| II.22.1.1 Gene<br>II.22.1.2 Subc                                                        | tion                    |   |     | II.22-1<br>II.22-1<br>II.22-1              |
| <pre>II.22.3 Plant-Specific D</pre>                                                     | cterization escriptions | • |     | II.22-1<br>II.22-2<br>II.22-9              |

#### **GLOSSARY**

AAP: Army Ammunitions Plant.

AN: Ammonium Nitrate.

ANFO: Ammonium Nitrate/Fuel Oil.

BATEA: Best Available Technology Economically Achievable.

BAT: Best Applicable Technology.

BDL: Below Detection Limit.

BEJ: Best Engineering Judgement.

BOD: Biochemical Oxygen Demand.

clarification: Process by which a suspension is clarified to give a "clear" supernatant.

cryolite: A mineral consisting of sodium-aluminum fluoride.

CWA: Clean Water Act.

cyanidation process: Gold and/or silver are extracted from finely crushed ores, concentrates, tailings, and low-grade mine-run rock in dilute, weakly alkaline solutions of potassium or sodium cyanide.

comminutor: Mechanical devices that cut up material normally removed in the screening process.

effluent: A waste product discharged from a process.

EGD: Effluent Guidelines Division.

elutriation: The process of washing and separating suspended particles by decantation.

extraction: The process of separating the active constituents of drugs by suitable methods.

fermentation: A chemical change of organic matter brought about by the action of an enzyme or ferment.

6/23/80

flocculation: The coalescence of a finely-divided precipitate.

fumigant: A gaseous or readily volatilizable chemical used as a
 disinfectant or pesticide.

GAC: Granular Activated Carbon.

gravity concentration: A process which uses the differences in density to separate ore minerals from gangue.

gravity separation/settling: A process which removes suspended solids by natural gravitational forces.

grit removal: Preliminary treatment that removes large objects, in order to prevent damage to subsequent treatment and process equipment.

influent: A process stream entering the treatment system.

intake: Water, such as tap or well water, that is used as makeup water in the process.

lagoon: A shallow artificial pond for the natural oxidation of sewage or ultimate drying of the sludge.

LAP: Loading Assembly and Packing operations.

MGD: Million Gallons per Day.

MHF: Multiple Hearth Furnace.

NA: Not Analyzed.

ND: Not Detected.

neutralization: The process of adjusting either an acidic or a basic wastestream to a pH near seven.

NPDES: National Pollutant Discharge Elimination System.

NRDC: National Resources Defense Council.

NSPS: New Source Performance Standards.

photolysis: Chemical decomposition or dissociation by the action of radiant energy.

PCB: PolyChlorinated Biphenyl.

POTW: Publicly Owned Treatment Works.

PSES: Pretreatment Standards for Existing Sources.

purged: Removed by a process of cleaning; take off or out.

screening process: A process used to remove coarse and/or gross solids from untreated wastewater before subsequent treatment.

SIC: Standard Industrial Classification.

SS: Suspended Solids.

SRT: Solids Retention Time.

starved air combustion: Used for the volumetric and organic reduction of sludge solids.

terpene: Any of a class of isomeric hydrocarbons.

thermal drying: Process in which the moisture in sludge is reduced by evaporation using hot air, without the solids being combusted.

TKN: Total Kjeldahl Nitrogen.

TOC: Total Organic Carbon.

trickling filter: Process in which wastes are sprayed through the air to absorb oxygen and allowed to trickle through a bed of rock or synthetic media coated with a slime of microbial growth to removed dissolved and collodial biodegradable organics.

TSS: Total Suspended Solids.

vacuum filtration: Process employed to dewater sludges so that a is produced having the physical handling characteristics and contents required for processing.

VSS: Volatile Suspended Solids.

WQC: Water Quality Criterion.

#### TT.1 INTRODUCTION

Volume II of the Treatability Manual provides generic process descriptions for the industrial categories listed in Table 1-1. This table also presents those categories currently included and those categories with additional data added. The categories not currently included will be added as sufficient information becomes available.

The objective of this volume is to characterize the wastewaters discharged from the above categories on a facility by facility basis, prior to treatment and after treatment. The pollution control methods used with the treated final effluent pollutant concentrations are also provided.

Each industrial category is defined according to the Standard Industrial Classification (SIC) Codes of the U.S. Department of Commerce and by the general industrial descriptions found in current contractor draft development documents and published development documents on each industry. The categories are generally divided into subcategories which are described when sufficient data are available. The total number of facilities in each category discharging an aqueous effluent either directly to a receiving stream or indirectly to a publicly owned treatment works (POTW) is given in an industrial summary table.

Wastewater characteristics are provided for each category/ subcategory when sufficient information is available. Subcategory wastewater characteristics are broken into separate processes when sufficient data are available. These descriptions include the complete pollutant analyses available in the references. These analyses generally consist of conventional pollutants, the 129 toxic pollutants, and other miscellaneous pollutants found in the wastewater. The data presented should be assumed screening quality unless specifically labeled verification quality.

Plant specific descriptions are also presented in this volume. These descriptions generally include a treatment system description, plant production, and wastewater flow. Conventional and toxic pollutant concentration data, as well as treatment system removal efficiency are presented in site-specific tables.

II.1-1

TABLE 1-1. INDUSTRY CATEGORIES FOUND IN VOLUME II

| II.3 (II.4 II | Auto and Other Laundries<br>Coal Mining<br>Electroplating<br>Inorganic Chemicals<br>Manufacturing | X<br>X<br>X | X<br>X |
|---------------|---------------------------------------------------------------------------------------------------|-------------|--------|
| II.3 (II.4 II | Coal Mining<br>Electroplating<br>Inorganic Chemicals                                              | X           |        |
| II.4          | Electroplating<br>Inorganic Chemicals                                                             |             | Х      |
|               | Inorganic Chemicals                                                                               | Х           |        |
| 11.5          |                                                                                                   |             |        |
|               | Manufacturing                                                                                     |             |        |
|               |                                                                                                   | X           | X      |
|               | Iron and Steel Manufacturing                                                                      | X           | X      |
|               | Leather Tanning and Finishing                                                                     | X           | X      |
| II.8          | Machinery and Mechanical Products                                                                 |             |        |
| II.8.1 Z      | Aluminum Forming                                                                                  |             |        |
| II.8.2 H      | Battery Manufacturing                                                                             |             |        |
|               | Coil Coating                                                                                      | X           | X      |
|               | Copper Forming                                                                                    |             |        |
|               | Electrical and Electronic                                                                         |             |        |
|               | Components                                                                                        |             |        |
| II.8.6 1      | Foundries                                                                                         | X           | Х      |
|               | Mechanical Products                                                                               |             |        |
|               | Photographic Equipment                                                                            |             |        |
|               | and Supplies                                                                                      |             |        |
| II.8.9 I      | Plastics Processing                                                                               |             |        |
|               | Porcelain Enameling                                                                               |             |        |
|               | Miscellaneous                                                                                     | X           | X      |
|               | Adhesives and Selants                                                                             |             |        |
|               | Explosives Manufacture                                                                            | X           | X      |
|               | Gum and Wood Chemicals                                                                            | X           | X      |
|               | Pesticide Manufacturing                                                                           |             |        |
|               | Pharmaceutical Manufacturing                                                                      | X           | X      |
|               | Nonferrous Metals Manufacturing                                                                   | X           | X      |
|               | Ore Mining and Dressing                                                                           | X           | X      |
|               | Organic Chemicals Manufacturing                                                                   |             |        |
|               | Paint and Ink Formulation                                                                         | X           | X      |
|               | Petroleum Refining                                                                                | X           | X      |
|               | Plastic and Synthetic Materials                                                                   |             |        |
| 11110         | Manufacturing                                                                                     | X           |        |
| II.16         | Pulp and Paperboard Mills and                                                                     |             |        |
| 11.10         | Converted Products                                                                                | X           | X      |
| II.17         | Rubber Processing                                                                                 | X           | X      |
|               | Soap and Detergent Manufacturing                                                                  | X           |        |
|               | Steam Electric Power Plants                                                                       | X           | Х      |
|               | Textile Mills                                                                                     | X           | X      |
|               | Timber Products Processing                                                                        | X           | X      |
|               | Publicly Owned Treatment Works                                                                    | 41          | 41     |
| 11.22         | (POTW)                                                                                            | X           | Х      |

Pollutant removability achievable by currently used treatment systems is presented in the final section of each category. Currently used treatment methods are described and the removal efficiencies are reported. Potential treatment technologies suggested in the reference documents are also presented. Complete wastewater treatment alternative descriptions are given in Volume III of this manual.

This volume is a general reference to be used in the decision making process for NPDES permit applications. It should be noted that no industrial description provided here takes into account every plant within that industry; rather this volume presents a general overview. Plant specific descriptions are not exemplary plants within an industry but have been selected based on the completeness of the available data. Treatment technologies presented may not be the only control methods currently in use.

References are located on the final page of each report. Data from these references are reported unchanged except reduced to reasonable significant figures. Average pollutant removability has often been calculated to provide a complete efficiency table. If it is necessary to review these documents contact IERL-Cincinnati which is retaining copies of each document.

#### II.2 AUTO AND OTHER LAUNDRIES

#### II.2.1 INDUSTRY DESCRIPTION [1, 2]

#### II.2.1.1 General Description

The Auto and Other Laundries Industry in the United States is a nonhomogeneous industrial group whose members are linked by the fact that they provide cleaning services for their clients. Some portions of the industry additionally provide the garments, rags, rugs, or other products they clean to their customers instead of cleaning customer-owned items. Because of this heterogeneity the industry is covered by the standard industrial classification (SIC) codes found in Table 2-1.

TABLE 2-1. SIC CATEGORIES OF THE LAUNDRY INDUSTRY [1, 2]

| Category title                                         | SIC<br>code number | Approximate number of establishments |
|--------------------------------------------------------|--------------------|--------------------------------------|
| Power laundries, family                                |                    |                                      |
| and commercial                                         | 7211               | 3,100                                |
| Linen supply                                           | 7213               | 1,300                                |
| Diaper service                                         | 7214               | 300                                  |
| Coin-operated laundries and dry cleaning               | 7215               | 32,000                               |
| Dry cleaning plants, except rug cleaning               | 7216               | 28,400                               |
| Carpet and upholstery cleaning                         | 7217               | 2,700                                |
| Industrial laundries                                   | 7218               | 1,000                                |
| Laundry and garment services, not elsewhere classified | 7219               | 2,700                                |
| Car wash establishments                                | 7542               | 40,000                               |

There are four basic process divisions in this industry: water wash (laundering), dry cleaning, dual-phase processing, and carpet-upholstery cleaning. Brief descriptions of these

processes and the car wash variation of the water wash process are provided below.

#### Water Wash

In this portion of the industry, the primary cleaning is accomplished by a water wash. Soiled materials are first sorted according to the processing required. If necessary, stains which may set during washing must be removed. This can involve a simple cold water soak or the use of acids, bleaches, and/or multiple organic solvents. Once laundry is loaded into a machine it undergoes a series of cleaning steps. These steps vary according to the different types of desired final product and range from wetting, sudsing, and rinsing the fabric, to souring (reducing pH to about 5 to remove yellowing sodium bicarbonate), blueing, bleaching, and finishing.

#### Dry Cleaning

In this group of processes the primary cleaning is accomplished by an organic-based solvent rather than an aqueous-based detergent solution. There are three different processes in the dry cleaning industry. The first uses a controlled amount of water and detergent throughout the cleaning cycle, in addition to the solvent, to dissolve the water-soluble solids. The second is similar but adds detergent only at the beginning of the cycle. The third uses only solvent. This process requires prespotting to remove water-soluble spots.

Solvents are generally filtered and recovered for further use. Distillation purifies the solvent and removes odor-causing contaminants. Less expensive solvents are vented to the atmosphere in some cases.

#### Dual-Phase Processing

In dual-phase or dual-stage processing the water/detergent wash is preceded or followed by a separate solvent wash. This is used almost exclusively by industrial laundries to clean items that contain large amounts of both water-soluble soils and oil and grease, such as work shirts and wiping rags.

#### Carpet and Upholstery Cleaning

Carpet and upholstery cleaning may be done on location or in a plant. On-location cleaning is done by the powder, dry foam, rotary brush, or hot water extraction method. In all of these on-location methods, the carpet or upholstered item is vacuumed and prespotted to remove stains before any other cleaning is attempted.

These on-location methods are similar processes that involve working a medium into the soiled item, followed by vacuum extraction. They each use a different amount of water. The hot water extraction process differs in that hot detergent solution is injected and immediately wet vacuumed out.

In-plant carpet cleaning is done on a rug cleaning machine or on a special cleaning floor, depending on carpet size. The rug is mechanically beaten or vacuumed to remove loose soil, and stains are removed by prespotting with various solvents. This is followed by a prewash in which a detergent solution is worked into the pile. The carpet is then scrubbed, rinsed, and moved to a drying room.

In a few plants dry cleaning machines are used for very delicate and dye-sensitive rugs and tapestries. In these the only wastewaters are cooling water from the solvent distillation unit and the moisture removed from the carpet with the solvent.

## Car Washes

Car washes are considered a variation of the water wash process. The variation comprises facilities designed for the automatic or self-service washing of vehicles. There are three main types of car washes: tunnels, rollovers, and wands. The tunnel wash, the largest of the three, is usually housed in a long building. The vehicle is pulled by conveyor or driven through the length of the building, passing through the separate washing, waxing, rinsing, and drying areas. A trench, usually running the length of the building, collects the wastewaters. Installation of a dam in the trench permits separation of rinse wastewaters, facilitating their treatment and reuse.

At a rollover wash, the vehicle remains stationary while the equipment passes over it. Similar in design are the exterior pressure washes which utilize high-pressure streams of water in lieu of brushes. At both types, all the wastewater is collected in a single trench, usually situated beneath the car.

The car also remains stationary at a wand wash, but here the customer washes his own car with a high-pressure stream of water from a hand-held wand. As at a rollover, both the wash and rinse waters are collected in a single trench or sump. Because many self-service washes are unmanned, the customer is able to wash both vehicles and other objects. These can include engines and undercarriages, motorcycles, farm equipment, animals; anything that can be brought into the bay. Furthermore, it is possible to change oil in the bay and to pour the used oil into the sump. The waste load at such a facility can therefore vary tremendously.

Since the laundry and dry cleaning industries are almost exclusively confined to the urban and suburban areas where their

customers are located, more than 99% of all plants discharge to publicly owned treatment works (POTW's). Table 2-2 lists the number of subcategories and the type and number of dischargers found in the Auto and Other Laundries Industry.

#### TABLE 2-2. INDUSTRY SUMMARY [3]

Industry: Auto and Other Laundries
Total Number of Subcategories: 9
Number of Subcategories Studied: 8

Number of Dischargers in Industry:

· Direct: 350

· Indirect: 90,000

· Zero: 20,000

#### II.2.1.2 Subcategory Descriptions

The modern Auto and Other Laundries Industry is grouped into the following subcategories:

- (1) Power Laundries, Family and Commercial
- (2) Linen Supply
- (3) Diaper Service
- (4) Coin-Op Laundries and Dry Cleaning
- (5) Dry Cleaning Plants Except Rug Cleaning
- (6) Carpet and Upholstery Cleaning
- (7) Industrial Laundries
- (8) Car Washes
- (9) Laundry and Garment Services, Not Elsewhere Classified

Seven of the nine subcategories have been submitted for exclusion under Paragraph 8 of the NRDC Consent Decree. These subcategories are Power Laundries, Diaper Service, Coin-Op Laundries and Dry Cleaning, Dry Cleaning Plants, Carpet and Upholstery Cleaning, Car Washes, and Laundry and Garment Services, not elsewhere classified.

## II.2.1.2.1 Power Laundries, Family and Commercial [1]

Power laundries are defined as establishments primarily engaged in operating mechanical laundries with steam or other power. Excluded are laundries using small power equipment of the household type as well as establishments that have power laundries but are primarily engaged in specialty work such as diaper services, linen supplies, or industrial laundries.

Currently, 75% of power laundry receipts are from traditional family and bachelor-type work, but almost 18% is derived from dry cleaning.

## II.2.1.2.2 Linen Supply [1]

Linen suppliers are defined as establishments engaged primarily in supplying, on a rental basis, laundered items such as bed linens, towels, table covers, napkins, aprons, and uniforms. These establishments may operate their own power laundry facilities or they may contract the actual laundering of the items they own.

Because linen supply laundries are more efficient in water, chemical, and energy usage than are on-premise laundries, sales in the linen supply business have been increasing at a moderate (14.6%) rate over the 1963-1974 period. One avenue of growth being tapped by the linen supply subcategory is the light-to-medium industrial laundry market. Currently, 80% of the dollar value of the work done fits in the linen supply category, while 12% of the work is of the type usually handled by industrial laundries.

This subcategory is being considered for possible exclusion under Paragraph 8 of the NRDC Consent Decree.

## II.2.1.2.3 Diaper Service [1]

Diaper service establishments are those primarily engaged in supplying diapers (including disposables) and other baby linens to homes, usually on a rental basis. Diaper services may or may not operate their own power laundry facilities. There are approximately 300 such firms in the United States, which account for about 0.6% of total laundry receipts.

The diaper service industry has not diversified as have many of the other laundry categories. Traditionally, diaper services have rented diapers and other baby linens to household users. This role has remained essentially unchanged except that disposable diapers are now also supplied to customers. Approximately 95% of the receipts are derived from the traditional sources. The number of establishments and receipts for this industry have been declining due to the falling birth rate and the increasing popularity of disposable diapers.

This subcategory is being considered for possible exclusion under Paragraph 8 of the NRDC Consent Decree.

#### II.2.1.2.4 Coin-Operated Laundries and Dry Cleaning [1]

The coin-op category is made up of establishments primarily engaged in providing coin-operated laundry and/or dry cleaning

equipment on their own premises. Included are establishments that install and operate coin-operated laundry machines in apartment houses, motels, etc.

In 1967 this subcategory encompassed 28% of all laundry establishments and accounted for almost 9% of total laundry revenues. Over the past decade coin-op receipts have increased by 10% per year, and it is expected that future growth will continue at a moderate rate.

This subcategory is being considered for possible exclusion under Paragraph 8 of the NRDC Consent Decree.

#### II.2.1.2.5 Dry Cleaning Plants Except Rug Cleaning [1]

Establishments belonging to this subcategory are those primarily engaged in dry cleaning or dyeing apparel and household fabrics, other than rugs, for the general public. There are about 28,000 such establishments, most of them relatively small. Dry cleaning plants accounted for 54% of all laundry establishments and about 41% of all laundry receipts in 1967.

The number of dry cleaning establishments and real receipts in this segment of the industry have both declined by 29% from 1963 to 1974. This is largely due to the new clothing fabrics developed over the past 20 years. Many of these fabrics do not require dry cleaning, or they shed soil more easily and hence require it less often than the old fabrics. Dry cleaners have diversified into related fields such as shirt cleaning and laundering in order to provide customers with one-stop cleaning services. Relatively recent developments are drapery, rug, and furniture cleaning and the sale and/or rental of working apparel.

This subcategory is being considered for possible exclusion under Paragraph 8 of the NRDC Consent Decree.

#### II.2.1.2.6 Carpet and Upholstery Cleaning [1]

Carpet and upholstery cleaners are defined as establishments primarily engaged in cleaning carpets and upholstered furniture at a plant or on a customer's premises. It is estimated that 25% of these businesses operate in-plant cleaning facilities. The number of in-plant operations has declined significantly over the last 10 years with a corresponding growth in the on-location type cleaners. This is a result of the increase in the use of wall-to-wall carpeting.

Firms in this category are not very diversified. Their basic services include carpet and rug cleaning, repairing, and dyeing, and upholstered furniture cleaning. Approximately 85% of the receipts are from these activities. A small number of these

firms offer in-plant dry cleaning services for specialty items such as Orientals, Aubussons, Savonneries, and tapestries.

This subcategory is being considered for possible exclusion under Paragraph 8 of the NRDC Consent Decree.

#### II.2.1.2.7 Industrial Laundries [1]

Industrial laundries are establishments primarily engaged in supplying laundered or dry cleaned work uniforms; wiping towels; safety equipment (gloves, flame-resistant clothing, etc.); dust control items such as treated mats or rugs, mops, tool dust covers and cloths; and similar items to industrial or commercial users. These items may belong to the industrial launderers and be supplied to users on a rental basis, or they may be the customers' own goods. Establishments included in this SIC category may or may not operate their own laundry and dry cleaning services.

Most industrial launderers offer their customers a variety of textile maintenance services, but approximately 88% of the receipts are derived from the activities defined above. Although there is some overlap in the work done by industrial launderers and linen suppliers, industrial launderers can generally be distinguished because they rent personalized garments fitted and labeled for the individual, while linen suppliers provide rental garments by size.

#### II.2.1.2.8 Car Washes [1, 2]

Car wash trade associations have estimated that the total number of car washes is about 40,000. Approximately 40% of these are rollovers, 40% are wands, and 20% are tunnels. The industry continues to grow at a rate of 3% to 4% a year, although the different types are growing at different rates. The number of new tunnel facilities built each year is fairly constant. Rollovers are primarily found at service stations where oil companies have often used them as promotional devices. Sales are therefore dependent on such things as the availability of gas.

The largest increases in sales have been for the self-service wand-type car washes. The resurgence in sales is partly due to a general upgrading of merchandise and facilities. Furthermore, wand washes offer the best return for the least investment. The number of bays sold for a location is generally tuned to what the market requires, and the tendency is to begin with four bays.

This subcategory is listed for possible consideration for exclusion under Paragraph 8 of the NRDC Consent Decree.

# II.2.1.2.9 <u>Laundry and Garment Services Not</u> Elsewhere Classified [1]

This subcategory, Laundry and Garment Services NEC, is defined as those establishments primarily engaged in furnishing other laundry services, including both repairing, altering, and storing clothes for individuals and the operation of hand laundries. Additional services provided by these firms include fur garment cleaning, repairing, and storage; glove mending; hosiery repair; pillow cleaning and renovating; and tailoring. There are approximately 2,700 establishments in this category, most of which are very small.

This subcategory is being considered for a Paragraph 8 exclusion. No data on discharges are available because this subcategory was not studied, and it will not be considered further.

## II.2.1.3 Wastewater Flow Characterization [1, 2]

The volume of wastewater produced by plants in this industry range from 0.9 to 1,400 m³/d (240 to 360,000 gpd). This excludes two subcategories: (1) Carpet and Upholstery Cleaning, for which figures are not available, and (2) Dry Cleaning, which uses a negligible amount of water (20 to 200 cm³ [0.023 to 1.0 gal] of water per pound cleaned). Table 2-3 indicates water discharge rates of those subcategories for which data are available.

TABLE 2-3. PROCESS WASTEWATER DISCHARGE RATES, BY SUBCATEGORY

|                         | m <sup>3</sup>       | /kg (gal/lb       | )                |              | m <sup>3</sup> /day (gpd |           |
|-------------------------|----------------------|-------------------|------------------|--------------|--------------------------|-----------|
| Subcategory             | Minimum <sup>a</sup> | Maximuma          | Average          | Minimuma     | Maximuma                 | Average   |
| Industrial laundries    | 0.008                | 0.080             | 0.038            | 32           | 1,100                    | 260       |
|                         | (0.9)                | (9.6)             | (4.6)            | (8,600)      | (290,000)                | (68,000)  |
| Linen supplies          | 0.014                | 0.086             | 0.030            | 14           | 1,400                    | 410       |
|                         | (1.7)                | (10.3)            | (3.6)            | (3,600)      | (360,000)                | (110,000) |
| Power laundries         | 0.018                | 0.043             | 0.029            | 6.8          | 1,100                    | 230       |
|                         | (2.2)                | (5.1)             | (3.5)            | (1,800)      | (290,000)                | (61,000)  |
| Diaper services         | 0.006                | 0.045             | 0.029            | 12           | 680                      | 160       |
|                         | (0.7)                | (5.4)             | (3.4)            | (3,100)      | (180,000)                | (41,000)  |
| Coin-operated laundries | 0.007                | 0.093             | 0.032            | 0.9          | 77                       | 14        |
|                         | (0.8)                | (11.2)            | (3.8)            | (240)        | (20,000)                 | (3,600)   |
| Car washes              | (35) <sup>b</sup>    | (80) <sup>b</sup> | (-) <sup>b</sup> | 1.2<br>(300) | 185<br>(48,000)          |           |

<sup>&</sup>lt;sup>a</sup>Minimum and maximum values apply only to the laundries surveyed and do not necessarily reflect absolute minima and maxima for the industry as a whole.

Note: Blanks indicate data not available.

#### II.2.2 WASTEWATER CHARACTERIZATION

The physical and chemical characteristics of laundry wastewaters are influenced by three primary factors: the general type of cleansing process employed (i.e., water versus solvent wash), the

<sup>&</sup>lt;sup>b</sup>Gallons per car ( ).

types and quantity of soil present on the textiles being laundered, and the composition of the various chemical additives used in the process. Water wash effluents contain all of the soil and lint removed from the textiles, as well as the laundry chemicals employed in the process. On the other hand, wastewaters from dry cleaning processes tend to contain water-soluble materials; lint, grit, and insoluble organic and inorganic compounds are largely removed by the solvent filter or confined to the still bottoms. However, dry cleaning effluents also contain appreciable quantities of solvent, which are not normally present in water-wash effluents.

Tables 2-4 and 2-5 present subcategory wastewater descriptions for conventional and toxic pollutants found in this industry.

#### II.2.2.1 Industrial Laundries

In comparison to domestic sewage, industrial laundry wastewaters typically contain high loadings of  $BOD_5$ , COD, TOC, suspended solids, and oil and grease.  $BOD_5$  concentrations as low as 91 mg/L and as high as 7,800 mg/L were observed, which attests to the extreme variability in industrial laundry wastewater strength. The median TSS concentration in 69 wastewater effluents was 700 mg/L. Suspended solids loadings were also quite variable, however, ranging from 68 mg/L to 6,100 mg/L. Oil and grease concentrations ranged from 17 mg/L to 7,900 mg/L in 66 industrial laundry effluents, with a median value of 730 mg/L.

The high concentrations of oil and grease, suspended solids, and biodegradable organics in industrial laundry wastewaters are primarily attributable to the nature of the workload handled by industrial laundries. Heavily soiled uniforms, shop towels, and gloves used in the chemical and manufacturing industries often comprise a substantial portion of the business handled by these establishments. Pollutant loadings vary extremely from plant to plant because of differences in equipment and in customers served. This variability is at least partially attributable to the soil loading on the articles being water washed. The highest pollutant loadings are found in wastewaters from plants processing a high percentage of wiping towels used in print shops, machine shops, automotive repair shops, chemical plants, and other heavy industrial operations. Much lower pollutant concentrations are found in the wastewaters from plants handling a high percentage of uniforms and dust control items used in light manufacturing concerns.

Factors such as water usage per pound of material washed and the application of dual-phase or dry cleaning processes also affect the concentrations at which various pollutants are found in industrial laundry wastewaters. For example, oil, grease, and many other organic substances are more soluble in organic solvents than in water, and, thus, they are not present to a large extent

TABLE 2-4. WASTEWATER CHARACTERIZATION OF AUTO AND OTHER LAUNDRIES [1, 2]

| Pollutant               | Number<br>analyzed | Maximum    | Median     | Mean   | Number<br>analyzed | Maximum    | Median    | Mean   |
|-------------------------|--------------------|------------|------------|--------|--------------------|------------|-----------|--------|
|                         | I                  | ndustrial  | laundries  |        |                    | Linen la   | undries   |        |
| BOD <sub>5</sub> , mg/L | 51                 | 7,800      | 920        | 1,300  | 50                 | 1,500      | 610       | 620    |
| COD, mg/L               | 60                 | 7,000      | 3,800      | 5,000  | 26                 | 4,000      | 1,500     | 1,600  |
| TOC, mg/L               | 24                 | 6,800      | 1,200      | 1,400  | 28                 | 1,200      | 300       | 400    |
| TSS, mg/L               | 69                 | 6,100      | 700        | 1,000  | 59                 | 1,200      | 360       | 400    |
| Total phosphorus, mg/L  | 12                 | 41.6       | 9.1        | 12.2   | 5                  | 48.5       | 14.5      | 18.7   |
| Total phenols, mg/L     | 19                 | 1.5        | 0.18       | 0.32   | 7                  | 0.26       | 0.12      | 0.12   |
| Oil and grease, mg/L    | 66                 | 7,900      | 730        | 1,100  | 52                 | 910        | 300       | 330    |
| pH, pH units            | 62                 | 11.9       | 10.5       | 10.4   | 58                 | 12.3       | 10.2      | 10.1   |
|                         |                    | Power la   | undries    |        |                    | Diaper la  | undries   |        |
| BODs, mg/L              | 8                  | 940        | 210        | 340    | 5                  | 560        | 240       | 320    |
| COD, mg/L               | 11                 | 1,400      | 580        | 660    | 8                  | 1,100      | 520       | 580    |
| TOC, mg/L               | 4                  | 240        | 160        | 150    | 2                  | 400        | 390       | 390    |
| TSS, mg/L               | 11                 | 410        | 230        | 220    | 8                  | 280        | 130       | 150    |
| Total phosphorus, mg/L  | 6                  | 23.5       | 4.0        | 7.3    | 2                  | 30.0       | 22.8      | 22.8   |
| Total phenols, mg/L     | 5                  | 0.97       | 0.073      | 0.31   | 3                  | 0.080      | 0.036     | 0.040  |
| Oil and grease, mg/L    | 9                  | 370        | 52         | 110    | 7                  | 330        | 85        | 120    |
| pH, pH units            | 14                 | 11.1       | 9.6        | 9.4    | 9                  | 11.0       | 10.4      | 9.9    |
|                         | Co                 | in-operate | d laundrie | s      | С                  | arpet clea | ning plan | ŧ .    |
| $BOD_5$ , $mg/L$        | 31                 | 500        | 120        | 140    | 1                  | 99         | -         | -      |
| COD, mg/L               | 18                 | 930        | 270        | 340    | 1                  | 280        | -         | -      |
| TOC, mg/L               | 1                  | 68         | -          | -      | 1                  | 46         | -         | -      |
| TSS, mg/L               | 28                 | 630        | 85         | 140    | 1                  | 100        | -         | -      |
| Total phosphorus, mg/L  | 2                  | 18.0       | 9.8        | 9.8    | 1                  | 29.0       | -         | -      |
| Total phenols, mg/L     | 3                  | 0.30       | <0.002     | 0.10   |                    |            |           |        |
| Oil and grease, mg/L    | 13                 | 74         | 23         | 26     | 1                  | 19         | -         | -      |
| pH, pH units            | 29                 | 9.2        | 8.0        | 7.9    | 1                  | 7.1        | -         | -      |
| W-144-10-1              |                    | Dry clean  | ng plants  |        |                    | Car wa     | shes      |        |
| $BOD_5$ , $mg/L$        | 1                  | <2         | -          | -      | 45                 | 220        | 42        | 58     |
| COD, mg/L               | 1                  | 8          | -          | -      | NA                 | -          | -         | -      |
| TOC, mg/L               | 1                  | 2          | -          | -      | NA                 | -          | -         | -      |
| TSS, mg/L               | 1                  | 3          | -          | -      | 45                 | 2,970      | 121       | 270    |
| Total phosphorus, mg/L  | 1                  | 0.2        | -          | -      | NA                 | -          | -         | -      |
| Total phenols, mg/L     | 2                  | <0.005     | <0.003     | <0.003 | 6                  | 0.024      | <0.002    | <0.00€ |
| Oil and grease, mg/L    | 1                  | <2         | -          | -      | 45                 | 655        | 68        | 26     |
| pH, pH units            | 1                  | 7.2        | -          | -      | 7                  | 8.4        | 7.2       | 7.1    |

TABLE 2-5. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTEWATER FROM AUTO AND OTHER LAUNDRIES [1, 2]  $(\mu g/L)$ 

|                                                    |               | Laundry fe         | edwater    |             |                | Industria       | al laundry   |              |  |
|----------------------------------------------------|---------------|--------------------|------------|-------------|----------------|-----------------|--------------|--------------|--|
| Toxic pollutant                                    | Numbera       | Maximum            | Median     | Mean        | Numbera        | Maximum         | Median       | Mean         |  |
| etals and inorganics                               |               |                    |            |             |                |                 |              |              |  |
| Antimony                                           | 7/29          | 27                 | <10        | <10         | 20/22          | 1,800           | 140          | 240          |  |
| Arsenic                                            | 4/29          | 11                 | <1         | <1          | 14/24          | 1,600           | 17           | 77           |  |
| Beryllium                                          |               |                    |            |             | 1/14           | 5               | <1           | <1           |  |
| Cadmium                                            | 9/31          | 20                 | <2         | <2          | 32/36          | 520             | 66           | 88           |  |
| Chromium                                           | 18/31         | 80<br>300          | 10<br>30   | 16<br>48    | 32/35          | 8,800<br>11,000 | 440<br>1,200 | 880<br>1,700 |  |
| Copper<br>Cyanide                                  | 23/31         | 300                | 30         | 40          | 36/36<br>19/28 | 1,000           | 26           | 140          |  |
| Lead                                               | 12/31         | 100                | <20        | <20         | 35/36          | 22,000          | 3,200        | 4,500        |  |
| Mercury                                            | 10/31         | 8                  | <0.7       | <0.4        | 22/24          | 19              | 1            | 2            |  |
| Nickel                                             | 6/31          | 60                 | < 5        | < 6         | 31/36          | 2,400           | 160          | 290          |  |
| Selenium                                           | 2/28          | 4                  | <1         | <1          | 2/16           | 120             | <1           | 8            |  |
| Silver                                             | 3/31          | 30                 | < 5        | <5          | 11/26          | 130             | 5            | 26           |  |
| Thallium                                           | 2/28          | 6                  | < 5        | < 5         |                |                 |              |              |  |
| Zinc                                               | 22/31         | 300                | 94         | 72          | 36/36          | 9,000           | 2,400        | 3,000        |  |
| hthalates                                          | 05 (06        |                    |            | <b></b>     | 36 (30         | 12 500          | 5.00         | 2 100        |  |
| Bis(2-ethylhexyl) phthalate                        | 25/36         | 1,200              | <b>≦10</b> | <b>≦</b> 50 | 16/19          | 17,500          | 560          | 3,100<br>96  |  |
| Butyl benzyl phthalate                             | 3/36<br>20/36 | ≨10<br>14          | BDL<br>≨10 | ≨8<br>≨5    | 3/19           | 1,500<br>820    | BDL<br>BDL   | 100          |  |
| Di-n-butyl phthalate Diethyl phthalate             | 7/36          | 14<br>≤10          | ⊉10<br>BDL | ≦3<br>≦2    | 8/19<br>1/19   | \$20<br>≨10     | BDL          | ≦0.5         |  |
| Dimethyl phthalate                                 | 3/36          | ≨10<br>≨10         | BDL        | ≨0.8        | 1/19           | 310             | DDL          | =0           |  |
| Di-n-octyl phthalate                               | 3/36          | ≨10                | BDL        | BDL         | 4/19           | 410             | BDL          | 35           |  |
| litrogen compounds                                 | •             |                    |            |             |                |                 |              |              |  |
| N-nitrosodiphenylamine                             |               |                    |            |             | 1/19           | 1,800           | BDL          | 95           |  |
| henols<br>2-Chlorophenol                           | 1/36          | ≦10                | BDL        | ≦0.3        |                |                 |              |              |  |
| 2,4-Dichlorophenol                                 | 2/36          | <u>=</u> 10<br>≤10 | BDL        | ≨0.6        |                |                 |              |              |  |
| 2,4-Dinitrophenol                                  | _,            |                    |            | 2010        |                |                 |              |              |  |
| 2,4-Dimethylphenol                                 |               |                    |            |             | 2/19           | 460             | BDL          | 25           |  |
| 4-Nitrophenol                                      |               |                    |            |             |                |                 |              |              |  |
| Pentachlorophenol                                  |               |                    |            |             |                |                 |              |              |  |
| Phenol                                             | 5/36          | ≦10                | BDL        | ≦1          | 6/19           | 840             | BDL          | 89           |  |
| 2,4,6-Trichlorophenol                              | 1/36          | ≦10                | BDL        | ≨0.3        | 1 /10          | <10             | BDI          | ≨0.5         |  |
| p-Chloro-m-cresol                                  |               |                    |            |             | 1/19           | ≦10             | BDL          | ≥0.:         |  |
| romatics                                           |               |                    |            |             |                |                 |              |              |  |
| Benzene                                            | 4/33          | 40                 | BDL        | <u>≨</u> 2  | 11/18          | 23,400          | 12           | 2,500        |  |
| Chlorobenzene<br>Dichlorobenzenes <sup>b</sup>     | 1/33<br>2/36  | 2<br>≨10           | BDL<br>BDL | BDL<br>≦0.6 | 1/19           | 1,100           | BDL          | 58           |  |
| Ethylbenzene                                       | 2/33          | 5                  | BDL        | 0.3         | 8/18           | 17,500          | BDL          | 1,100        |  |
| Toluene                                            | 13/33         | 140                | BDL        | ≨8          | 17/18          | 50,900          | 1,000        | 5,200        |  |
| olycyclic aromatic hydrogarbons                    | ,             |                    |            |             | ,              | ·               |              |              |  |
| Anthracene/phenanthrene                            | 1/36          | ≨10                | BDL        | ≨0.3        | 4/19           | 470             | BDL          | 47           |  |
| Benzanthracene                                     | -,            |                    |            |             | -,             |                 |              |              |  |
| Renzonvrene <sup>D</sup>                           |               |                    |            |             |                |                 |              |              |  |
| Benzofluoranthene <sup>b</sup>                     |               |                    |            |             |                |                 |              |              |  |
| 2-Chloronaphthalene                                |               |                    |            |             | 1/19           | 17              | BDL          | 0.           |  |
| Fluoranthene                                       | 2 (2 (        | <b>~10</b>         |            |             | 10/10          | 4 000           | 22           | 700          |  |
| Naphthalene<br>Pyrene                              | 2/36          | ≦10                | BDL        | ≨0.6        | 10/19          | 4,800           | 23           | 790          |  |
| Malogenated aliphatics                             |               |                    |            |             |                |                 |              |              |  |
| Carbon tetrachloride                               |               |                    |            |             | 2/18           | 1,700           | BDL          | 95           |  |
| Chlorodibromomethane                               | 8/33          | 20                 | BDL        | ≨2          |                |                 |              |              |  |
| Chloroform                                         | 22/33         | 140                | 12         | ≨25         | 14/18          | 34,600          | 15           | 3,300        |  |
| Dichlorobromomethane                               | 15/33         | 88                 | BDL        | 9           | 2/18           | 20              | BDL          | 0.           |  |
| 1,2-Dichloroethane                                 | 4/33          | <b>~10</b>         | PD.        | DD.         |                |                 |              |              |  |
| 1,1-Dichloroethylene<br>1,2-Trans-dichloroethylene | 4/33<br>1/33  | ≦10<br><b>4</b> 9  | BDL<br>BDL | BDL<br>BDL  |                |                 |              |              |  |
| Methylene chloride                                 | 16/33         | 14,700             | BDL        | ≨600        | 7/18           | 540             | BDL          | 46           |  |
| Tetrachloroethylene                                | 15/33         | 420                | BDL        | <b>≦16</b>  | 13/18          | 93,200          | 84           | 9,100        |  |
| 1,1,1-Trichloroethane                              | 5/33          | 140                | BDL        | <b>≨</b> 5  | 5/18           | 6,600           | BDL          | 370          |  |
| 1,1,2-Trichloroethane                              | _             |                    |            |             |                |                 |              |              |  |
| Trichloroethylene                                  | 4/33          | ≦10                | BDL        | ≦0.7        | 8/18           | 800             | BDL          | 120          |  |
| Trichlorofluoromethane                             | 2/33          | 130                | BDL        | 5           | 1/18           | 3               | BDL          | BDL          |  |
| Pesticides and metabolities                        |               |                    |            |             |                |                 |              |              |  |
| Chlordane                                          |               |                    |            |             |                |                 |              |              |  |
| 4,4'-DDE                                           |               |                    |            |             |                |                 |              |              |  |
| 4,4'-DDT<br>Heptachlor                             |               |                    |            |             |                |                 |              |              |  |
| Isophorone                                         | 1/36          | ≦10                | BDL        | ≦0.3        | 1/19           | 190             | BDL          | 10           |  |
| •                                                  | _,            |                    |            | 20.3        | -, -,          |                 |              |              |  |
|                                                    |               |                    |            |             |                |                 |              | CONTINUE     |  |

TABLE 2-5 (continued)

|                                                                                                  |                   | Power la       | undries    |            |                     | Linen la     | undries    |                  |
|--------------------------------------------------------------------------------------------------|-------------------|----------------|------------|------------|---------------------|--------------|------------|------------------|
| Toxic pollutant                                                                                  | Numbera           | Maximum        | Median     | Mean       | Number <sup>a</sup> | Maximum      | Median     | Mean             |
| Metals and inorganics                                                                            |                   |                |            |            |                     |              |            |                  |
| Antimony                                                                                         | 5/6               | 570            | 16         | 160        | 5/7                 | 37           | 7          | 10               |
| Arsenic                                                                                          | 2/6               | 20             | <15        | <15        | 4/7                 | 26           | 6          | 7                |
| Beryllium<br>Cadmıum                                                                             | 2 /5              | 46             | •          | 11         | E /26               | 120          | <2         | 9                |
| Chromium                                                                                         | 3/5<br>6/7        | 360            | 3<br>25    | 11<br>76   | 5/36<br>24/36       | 980          | 46         | 100              |
| Copper                                                                                           | 7/7               | 370            | 110        | 160        | 15/15               | 3,300        | 210        | 520              |
| Cyanide                                                                                          | 1/5               | 28             | <28        | <28        | 5/7                 | 77           | 35         | 33               |
| Lead                                                                                             | 6/7               | 430            | 60         | 110        | 27/36               | 3,000        | 240        | 460              |
| Mercury                                                                                          | 5/8               | 3              | 0.6        | 0.7        | 12/36               | 51           | 0.2        | 3                |
| Nickel                                                                                           | 4/7               | 50             | 19         | 14         | 19/36               | 500          | 28         | 61               |
| Selenium<br>Silver                                                                               | 2 /7              | 8              | . 7        | . 7        | 1/7                 | 3            | 2          | 2                |
| Thallium                                                                                         | 2/7               | •              | <7         | <7         | 4/7<br>1/7          | 47<br>6      | 2<br>5     | 3                |
| Zinc                                                                                             | 6/6               | 540            | 430        | 430        | 36/37               | 2,800        | 700        | 900              |
| Phthalates                                                                                       | -, -              |                | 100        |            | 30,0,               | 2,000        | , 00       | ,,,,             |
| Bis(2-ethylhexyl) phthalate                                                                      | 4/4               | 300            | 100        | 150        | A /E                | 0.000        | 160        | 1 000            |
| Butyl benzyl phthalate                                                                           | 4/4               | 78             | 16         | 150<br>28  | 4/5<br>2/5          | 9,000<br>≨10 | 160<br>BDL | 1,900<br>≨3      |
| Di-n-butyl phthalate                                                                             | 4/4               | 22             | 18         | 15         | 3/5                 | 26           | ≦10        | <u> </u>         |
| Diethyl phthalate                                                                                | 1/4               | ≨5             | BDL        | <b>£</b> 1 | 1/5                 | <b>≨</b> 5   | BDL        | ≤ ]              |
| Dimethyl phthalate                                                                               | -, -              |                |            |            | 1/5                 | <b>≨</b> 5   | BDL        | ≦]               |
| Di-n-octyl phthalate                                                                             | 3/4               | 75             | 46         | 42         | 1/5                 | <b>\$</b> 5  | BDL        | ≦ 1              |
| Nitrogen compounds                                                                               |                   |                |            |            |                     |              |            |                  |
| N-nitrosodiphenylamine                                                                           |                   |                |            |            |                     |              |            |                  |
| Phenols                                                                                          |                   |                |            |            |                     |              |            |                  |
| 2-Chlorophenol                                                                                   | 2/4               | 1              | BDL        | 0.7        |                     |              |            |                  |
| 2,4-Dichlorophenol                                                                               | 1/4               | i              | BDL        | 0.7        | 2/5                 | <b>≤10</b>   | BDL        | ≤3               |
| 2,4-Dinitrophenol                                                                                | 1/4               | •              | DDL        | 0.2        | 2/3                 | 210          | BDL        | = -              |
| 2,4-Dimethylphenol                                                                               | 2/4               | 55             | BDL        | 14         |                     |              |            |                  |
| 4-Nitrophenol                                                                                    | -,                |                |            |            |                     |              |            |                  |
| Pentachloropheno1                                                                                | 2/4               | 9              | BDL        | 3          |                     |              |            |                  |
| Phenol                                                                                           | 3/4               | 2              | 1          | 1          | 4/5                 | 30           | ≨10        | ≦15              |
| 2,4,6-Trichlorophenol                                                                            |                   |                |            |            |                     |              |            |                  |
| p-Chloro-m-cresol                                                                                |                   |                |            |            |                     |              |            |                  |
| Aromatics                                                                                        |                   |                |            |            |                     |              |            |                  |
| Benzene                                                                                          |                   |                |            |            |                     |              |            |                  |
| Chlorobenzene<br>Dichlorobenzenes <sup>b</sup>                                                   | 1.44              |                |            |            |                     |              |            |                  |
| Ethylbenzene                                                                                     | 1/4               | ≨5             | BDL        | ≨1         | 1 /5                | .,           | DD1        |                  |
| Toluene                                                                                          | 1/4               | 3              | BDL        | 0.8        | 1/5<br>4/5          | 11<br>99     | BDL<br>25  | 2<br><b>≙4</b> 3 |
|                                                                                                  | ±/ •              |                | DUL        | 0.6        | 4/3                 | ,,,          | 23         | 343              |
| Polycyclic aromatic hydrocarbons                                                                 | 2 /4              | <10            | 201        |            | 2.45                |              | -110       |                  |
| Anthracene/phenanthrene Benzanthracene                                                           | 2/4               | ≦10            | BDL        | ≨3         | 3/5                 | 16           | ≦10        | ≨7               |
| Benzonvrene <sup>D</sup> .                                                                       |                   |                |            |            |                     |              |            |                  |
| Benzofluoranthene <sup>b</sup>                                                                   |                   |                |            |            |                     |              |            |                  |
| 2-Chloronaphthalene                                                                              |                   |                |            |            |                     |              |            |                  |
| Fluoranthene                                                                                     | 1/4               | 0.3            | BDL        | 0.08       |                     |              |            |                  |
| Naphthalene                                                                                      | 2/4               | ≨10            | BDL        | ≦3         | 1/5                 | 1,200        | BDL        | 240              |
| Pyrene                                                                                           | 1/4               | 0.3            | BDL        | 0.08       |                     |              |            |                  |
| Halogenated aliphatics                                                                           |                   |                |            |            |                     |              |            |                  |
| Carbon tetrachloride                                                                             |                   |                |            |            |                     |              |            |                  |
| Chlorodibromomethane                                                                             |                   |                |            |            |                     |              |            |                  |
| Chloroform                                                                                       | 3/4               | 41             | 27         | 24         | 4/5                 | 180          | 20         | 63               |
| Dichlorobromomethane                                                                             |                   |                |            |            |                     |              |            |                  |
| 1,2-Dichloroethane                                                                               |                   |                |            |            |                     |              |            |                  |
| 1,1-Dichloroethylene<br>1,2-Trans-dichloroethylene                                               |                   |                |            |            |                     |              |            |                  |
| Methylene chloride                                                                               | 1/4               | 72             | BDL        | 18         | 2/5                 | 92           | BDL        | 25               |
| Tetrachloroethylene                                                                              | 3/4               | 310            | 15         | 85         | 2/5                 | 92<br>≤10    | BDL        | 25<br>≨3         |
| 1,1,1-Trichloroethane                                                                            | 1/4               | 2              | BDL        | BDL        | 1/5                 | ≨10<br>≨10   | BDL        | ≥3<br>≤2         |
|                                                                                                  | -, <del>-</del>   | _              | <b>-</b>   |            | -/ 5                | 210          | 220        | = Z              |
| 1,1,2-Trichloroethane                                                                            |                   | 1.0            | BDL        | 4          |                     |              |            |                  |
| Trichloroethylene                                                                                | 2/4               | 12             |            |            |                     |              |            |                  |
| 1,1,2-Trichloroethane<br>Trichloroethylene<br>Trichlorofluoromethane                             | 2/4               | 12             |            |            |                     |              |            |                  |
| Trichloroethylene<br>Trichlorofluoromethane                                                      | 2/4               | 12             |            |            |                     |              |            |                  |
| Trichloroethylene<br>Trichlorofluoromethane                                                      | ·                 |                |            | BDL        |                     |              |            |                  |
| Trichloroethylene Trichlorofluoromethane Pesticides and metabolities Chlordane 4,4'-DDE          | 2/4<br>1/4<br>1/4 | 12<br>≦3<br>≦3 | BDL<br>BDL | BDL<br>BDL |                     |              |            |                  |
| Trichloroethylene Trichlorofluoromethane Pesticides and metabolities Chlordane 4,4'-DDE 4,4'-DDT | 1/4<br>1/4<br>1/4 | ≦3             | BDL        |            |                     |              |            |                  |
| Trichloroethylene Trichlorofluoromethane Pesticides and metabolities Chlordane 4,4'-DDE          | 1/4<br>1/4        | ≦3<br>≤3       | BDL<br>BDL | BDL        |                     |              |            |                  |

(CONTINUED)

TABLE 2-5 (continued)

|                                                       | Coin-operated laundries |          |            |            | Dry cleaning plants |                 |                 |                 |
|-------------------------------------------------------|-------------------------|----------|------------|------------|---------------------|-----------------|-----------------|-----------------|
| Toxic pollutant                                       | Numbera                 | Maximum  | Median     | Mean       | Numbera             | Maximum         | Median          | Mean            |
| Metals and inorganics                                 | 0.70                    |          |            | 1.0        |                     |                 |                 |                 |
| Antimony<br>Arsenic                                   | 2/3<br>1/3              | 16<br>11 | 13<br><10  | 10<br><10  |                     |                 |                 |                 |
| Beryllıum                                             | •                       |          |            |            |                     |                 |                 |                 |
| Cadmıum<br>Chromıum                                   | 1/3<br>1/3              | 23<br>5  | <2<br><5   | 8<br><5    |                     |                 |                 |                 |
| Copper                                                | 3/3                     | 70       | 70         | 67         | 1/2                 | 50              | 25              | 25              |
| Cyanıde<br>Lead                                       | 2/3                     | 72       | 36         | 36         | 1/2                 | 40              | 20              | 20              |
| Mercury                                               | 2/3                     | 2        | 2          | 1          | 1/2                 | 40              | 20              | 20              |
| Nickel                                                |                         |          |            |            |                     |                 |                 |                 |
| Selenium<br>Sılver                                    |                         |          |            |            |                     |                 |                 |                 |
| Thallium                                              | 2 (2                    | 670      | 160        | 210        |                     |                 |                 |                 |
| Zinc                                                  | 3/3                     | 670      | 160        | 310        |                     |                 |                 |                 |
| Phthalates<br>Bis(2-ethylhexyl) phthalate             | 2/2                     | 840      | 800        | 800        | 1/2                 | ≦10             | ≦5              | ≨5              |
| Butyl benzyl phthalate                                |                         |          |            |            |                     |                 |                 |                 |
| Di-n-butyl phthalate                                  | 1/2<br>1/2              | 55<br>25 | 28<br>12   | 28<br>12   | 1/2<br>1/2          | ≦10<br>≨10      | ≨5<br>≨5        | ≨ 5<br>≦ 5      |
| Diethyl phthalate<br>Dimethyl phthalate               | 1/2                     | 23       | 12         | 12         | 1/2                 | ₽10             | # J             | = 3             |
| Di-n-octyl phthalate                                  |                         |          |            |            |                     |                 |                 |                 |
| Nitrogen compounds                                    |                         |          |            |            |                     |                 |                 |                 |
| N-nitrosodiphenylamine                                |                         |          |            |            |                     |                 |                 |                 |
| Phenols<br>2-Chlorophenol                             |                         |          |            |            |                     |                 |                 |                 |
| 2,4-Dichlorophenol                                    |                         |          |            |            |                     |                 |                 |                 |
| 2,4-Dinitrophenol                                     |                         |          |            |            |                     |                 |                 |                 |
| 2,4-Dimethylphenol 4-Nitrophenol                      |                         |          |            |            |                     |                 |                 |                 |
| Pentachlorophenol                                     |                         |          |            |            |                     |                 |                 |                 |
| Phenol 2,4,6-Trichlorophenol                          |                         |          |            |            | 1/2                 | ≦10             | ≦ 5             | ≦ 5             |
| p-Chloro-m-cresol                                     |                         |          |            |            |                     |                 |                 |                 |
| Aromatics                                             |                         |          |            |            |                     |                 |                 |                 |
| Benzene                                               | 1/3                     | 14       | BDL        | 5          | 1/2                 | 25              | 12              | 12              |
| Chlorobenzene<br>Dichlorobenzenes                     |                         |          |            |            | 1/2                 | 12              | 6               | 6               |
| Ethylbenzene                                          |                         |          |            |            |                     |                 |                 |                 |
| Toluene                                               | 1/3                     | 1        | BDL        | 0.3        |                     |                 |                 |                 |
| Polycyclic aromatic hydrogarbons                      |                         |          |            |            |                     |                 |                 |                 |
| Anthracene/phepanthrene Benzanthracene                |                         |          |            |            |                     |                 |                 |                 |
| Benzonvrene                                           |                         |          |            |            |                     |                 |                 |                 |
| Benzofluoranthene <sup>b</sup><br>2-Chloronaphthalene |                         |          |            |            |                     |                 |                 |                 |
| Fluoranthene                                          |                         |          |            |            |                     |                 |                 |                 |
| Naphthalene<br>Pyrene                                 |                         |          |            |            | 1/2                 | ≨10             | ≨5              | ≦ 5             |
| Halogenated aliphatics                                |                         |          |            |            |                     |                 |                 |                 |
| Carbon tetrachloride                                  |                         |          |            |            |                     |                 |                 |                 |
| Chlorodibromomethane<br>Chloroform                    | 1/3                     | 12<br>70 | BDL        | 4          | 1/2                 | 2 300           | 2<br>1,200      | 2<br>1,200      |
| Dichlorobromomethane                                  | 2/3<br>1/3              | 19       | 20<br>BDL  | 30<br>6    | 1/2<br>1/2          | 2,300<br>3      | 1,200           | 1,200           |
| 1,2-Dichloroethane                                    |                         |          |            |            | 1/2                 | 500             | 250             | 250             |
| 1,1-Dichloroethylene<br>1,2-Trans-dichloroethylene    | 1/3<br>1/3              | 3<br>5   | BDL<br>BDL | BDL<br>BDL | 1/2<br>1/2          | 23<br>460       | 12<br>230       | 12<br>230       |
| Methylene chloride                                    | 1/3                     | 6        | BDL        | 2          | 1/2                 | 30              | 15              | 15              |
| Tetrachloroethylene 1,1,1-Trichloroethane             | 1/3                     | 25       | BDL        | 8          | 2/2<br>1/2          | 58,600<br>2,500 | 29,400<br>1,200 | 29,400<br>1,200 |
| 1,1,2-Trichloroethane                                 |                         |          |            |            | 1/2                 | 3,000           | 1,500           | 1,500           |
| Trichloroethylene Trichlorofluoromethane              |                         |          |            |            | 1/2                 | 440             | 220             | 220             |
| Pesticides and metabolities                           |                         |          |            |            |                     |                 |                 |                 |
| Chlordane Chlordane                                   |                         |          |            |            |                     |                 |                 |                 |
| 4,4'-DDE                                              |                         |          |            |            |                     |                 |                 |                 |
| 4,4'-DDT<br>Heptachlor                                |                         |          |            |            |                     |                 |                 |                 |
| Isophorone                                            |                         |          |            |            |                     |                 |                 |                 |

(CONTINUED)

II.2-13 Date: 6/23/80

TABLE 2-5 (continued)

|                                                       | Diaper laundries    |            |                      |             | Car washes      |             |            |                    |
|-------------------------------------------------------|---------------------|------------|----------------------|-------------|-----------------|-------------|------------|--------------------|
| Toxic pollutant                                       | Number <sup>a</sup> | Maximum    | Median               | Mean        | Number a        | Maximum     | Median     | Mean               |
| Metals and inorganics                                 |                     |            |                      |             |                 |             |            |                    |
| Antimony                                              |                     |            |                      |             | 7/7<br>7/7      | 17<br>1,560 | 5.2<br><10 | 7.9<br><b>23</b> 0 |
| Arsenic<br>Beryllıum                                  |                     |            |                      |             | 7/7             | <15         | <5         | <b>230</b>         |
| Cadmium                                               | 2/4                 | 40         | < 6                  | 11          | 7/7             | 26          | 20         | 17                 |
| Chromium                                              | 1/5                 | 22         | <10                  | <10         | 7/7             | 64          | 30         | 34                 |
| Copper                                                | 4/4                 | 100        | 80                   | 79          | 7/7             | 860         | 140        | 340                |
| Cyanide                                               | 1/2                 | 60         | <50                  | <50         | C               |             |            |                    |
| Lead                                                  | 2/4                 | 35         | < 24                 | < 24        | 45 <sup>C</sup> | 4,200       | 510        | B90                |
| Mercury<br>Nickel                                     | 1/3<br>2/4          | 0.9<br>100 | <0.9<br>< <b>3</b> 5 | <0.9<br><35 | 7/7<br>7/7      | 26<br>690   | 4<br>120   | <1<br>260          |
| Selenium                                              | 2/4                 | 100        | \33                  | \33         | 7/7             | <5          | <5         | <5                 |
| Silver                                                |                     |            |                      |             | 7/7             | <10         | < 5        | < 5                |
| Thallium                                              |                     |            |                      |             | 7/7<br>45°      | <5          | <1         | ` <2               |
| Zinc                                                  | 5/5                 | 10,000     | 4,000                | 5,700       | 45              | 2,420       | 590        | 750                |
| Phthalates                                            |                     |            |                      |             | 4.75            |             | • •        | 200                |
| Bis(2-ethylhexyl) phthalate<br>Butyl benzyl phthalate |                     |            |                      |             | 4/5             | 1,000       | 56<br>22   | 280<br>22          |
| Di-n-butyl phthalate                                  |                     |            |                      |             | 2/5<br>1/5      | 31<br>15    | 15         | 15                 |
| Diethyl phthalate                                     |                     |            |                      |             | 1/3             | 13          | 13         | 13                 |
| Dimethyl phthalate                                    |                     |            |                      |             |                 |             |            |                    |
| Di-n-octyl phthalate                                  |                     |            |                      |             | 2/5             | 16          | 16         | 16                 |
| Nitrogen compounds                                    |                     |            |                      |             | ·               |             |            |                    |
| N-nitrosodiphenylamine                                |                     |            |                      |             |                 |             |            |                    |
| Phenols                                               |                     |            |                      |             |                 |             |            |                    |
| 2-Chlorophenol                                        |                     |            |                      |             |                 |             |            |                    |
| 2,4-Dichlorophenol                                    |                     |            |                      |             |                 |             |            |                    |
| 2,4-Dinitrophenol                                     |                     |            |                      |             | 1/5             | 19          | 19         | 19                 |
| 2,4-Dimethylphenol                                    |                     |            |                      |             | 2 /5            |             |            |                    |
| 4-Nitrophenol Pentachlorophenol                       |                     |            |                      |             | 3/5             | 15          | 14         | 13                 |
| Phenol                                                | 1/1                 | 38         | NA                   | NA          |                 |             |            |                    |
| 2,4,6-Trichlorophenol                                 | -/-                 | 30         | MA                   | MA          |                 |             |            |                    |
| p-Chloro-m-cresol                                     |                     |            |                      |             |                 |             |            |                    |
| Aromatics                                             |                     |            |                      |             |                 |             |            |                    |
| Benzene                                               |                     |            |                      |             |                 |             |            |                    |
| Chlorobenzene ,                                       |                     |            |                      |             |                 |             |            |                    |
| Dichlorobenzenesb                                     |                     |            |                      |             |                 |             |            |                    |
| Ethylbenzene                                          |                     |            |                      |             |                 |             |            |                    |
| Toluene                                               |                     |            |                      |             |                 |             |            |                    |
| Polycyclic aromatic hydrogarbons                      |                     |            |                      |             |                 |             |            |                    |
| Anthracene/phenanthrene                               |                     |            |                      |             | 1/5             | 34          | 34         | 34                 |
| Benzanthracene"                                       |                     |            |                      |             | 1/5             | 12          | 12         | 12                 |
| Benzopyrene<br>Benzofluoranthene <sup>b</sup>         |                     |            |                      |             | 1/5             | 12          | 12         | 12                 |
| 2-Chloronaphthalene                                   |                     |            |                      |             | 1/5             | 12          | 12         | 12                 |
| Fluoranthene                                          |                     |            |                      |             | 1/5             | 14          | 14         | 14                 |
| Naphthalene                                           |                     |            |                      |             | 1/5             | 170         | 170        | 170                |
| Pyrene                                                |                     |            |                      |             | 1/5             | 11          | 11         | 11                 |
| Halogenated aliphatics                                |                     |            |                      |             |                 |             |            |                    |
| Carbon tetrachloride                                  |                     |            |                      |             |                 |             |            |                    |
| Chlorodibromomethane                                  |                     |            |                      |             | 1/5             | 12          | 12         | 12                 |
| Chloroform                                            | 1/1                 | 72         | NA                   | NA          | 3/5             | 83          | 37         | 47                 |
| Dichlorobromomethane                                  |                     |            |                      |             | 1/5             | 33          | 33         | 33                 |
| 1,2-Dichloroethane<br>1,1-Dichloroethylene            |                     |            |                      |             |                 |             |            |                    |
| 1,2-Trans-dichloroethylene                            |                     |            |                      |             |                 |             |            |                    |
| Methylene chloride                                    |                     |            |                      |             | 4/5             | 640         | 240        | 280                |
| Tetrachloroethylene                                   |                     |            |                      |             | 4/3             | 040         | 240        | 200                |
| 1,1,1-Trichloroethane                                 |                     |            |                      |             |                 |             |            |                    |
| 1,1,2-Trichloroethane                                 |                     |            |                      |             |                 |             |            |                    |
| Trichloroethylene<br>Trichlorofluoromethane           |                     |            |                      |             | 1/5             | 13          | 13         | 13                 |
|                                                       |                     |            |                      |             | 1/5             | 120         | 120        | 120                |
| Pesticides and metabolities<br>Chlordane              |                     |            |                      |             |                 |             |            |                    |
| 4,4'-DDE                                              |                     |            |                      |             |                 |             |            |                    |
| 4,4'-DDT                                              |                     |            |                      |             |                 |             |            |                    |
| Heptachlor                                            |                     |            |                      |             |                 |             |            |                    |
| Isophorone                                            |                     |            |                      |             |                 |             |            |                    |
|                                                       |                     |            |                      |             |                 |             |            |                    |

<sup>&</sup>lt;sup>a</sup>Number of times detected/number of analyses performed.

bReference reported compound in this form.

CNumber of times detected; no indication of number of analyses. Note: Blanks indicate pollutant not detected.

in the wastewaters from solvent cleaning and some dual-phase cleaning processes.

In addition to plant-to-plant variability, wastewater strength at any given industrial laundry may be quite variable from day to day and from hour to hour. This is caused by the changing nature of the workload and, on an instantaneous basis, by the particular wash cycle effluents that are being discharged. For example, the initial rinse, break, and wash waters contain much higher pollutant loadings than the final rinse waters.

Table 2-6 presents pH,  $BOD_5$ , TSS, and oil and grease data for the wastewater from one industrial laundry sampled on 30 separate days over a several-year period. These data clearly illustrate the fluctuating characteristics of industrial laundry wastes.

TABLE 2-6. VARIABILITY OF CONVENTIONAL POLLUT-ANT LOADINGS IN WASTEWATER FROM ONE INDUSTRIAL LAUNDRY [1]

|                                           |              |                  | Pollutant      | , mg/L         |
|-------------------------------------------|--------------|------------------|----------------|----------------|
| Day                                       | pH_          | BOD <sub>5</sub> | TSS            | Oil and grease |
| 1                                         | 11.9         | 1,700            | 2,300          | 490            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 12.0         | _,,              | 2,100          | 1,800          |
| 3                                         | 12.6         | 2,500            | 2,400          | 2,200          |
| 4                                         | 11.6         | ,                | 1,900          | 240            |
| 5                                         | 12.2         |                  | 1,900          | 5,300          |
| 6                                         | 11.8         |                  | 2,100          | 2,100          |
| 7                                         | 11.8         |                  | 5,000          | 2,800          |
| 8                                         | 10.0         |                  | 2,800          | 2,600          |
|                                           | 11.5         |                  | 3,600          | 3,400          |
| 10                                        | 11.6         |                  | 4,000          | 3,400          |
| 11                                        | 11.7         |                  | 3,800          | 3,800          |
| 12                                        | 11.4         |                  | 2,700          |                |
| 13                                        | 11.6         | 710              | 2,300          | 400            |
| 14                                        | 10.7         | 710              | 810            | <b>4</b> 00    |
| 15                                        | 10.8         | 650              | 650            | 510            |
| 16                                        | 10.9         | 1,300            | 3,500<br>1,700 | 1,600<br>970   |
| 17<br>18                                  | 10.7<br>10.1 | 690              | 1,800          | 720            |
| 19                                        | 10.4         | 0 30             | 1,000          | 1,200          |
| 20                                        | 10.2         | 940              | 2,600          | 1,200          |
| 21                                        | 11.0         | 680              | 4,400          | 2,600          |
| 22                                        | 12.0         | •-•              | 3,800          | 3,500          |
| 23                                        | 11.9         |                  | 5,300          | 3,900          |
| 24                                        | 9.4          |                  | •              | 1,500          |
| 25                                        | 10.2         |                  |                | 1,400          |
| 26                                        |              | 930              | 1,300          | 2,400          |
| 27                                        |              | 1,400            | 2,400          | 2,300          |
| 28                                        |              | 1,600            | 2,000          | 2,400          |
| 29                                        |              | 2,200            | 2,000          | 1,300          |
| 30                                        |              | 3,700            | 2,600          | 2,400          |
| Minimum                                   | 9.4          | 650              | 650            | 240            |
| Maximum                                   | 12.6         | 3,700            | 5,300          | 5,300          |
| Mean                                      | 11.2         | 1,500            | 2,700          | 2,100          |
|                                           |              |                  |                |                |

Note: Blanks indicate data not available.

Ten toxic pollutant metals were found in more than 50% of the industrial laundry effluents. Lead, zinc, and copper were detected in virtually all of the samples and were present at higher concentrations than any of the other metals. Chromium, nickel, antimony, cadmium, arsenic, silver, and mercury were also detected in the majority of the plant wastewaters, but generally at much lower concentrations.

A total of 25 toxic organic pollutants were detected in one or more of the 19 industrial laundry effluents analyzed for these substances. Six toxic organic pollutants were detected in more than 50% of the wastewater samples: toluene, bis(2-ethylhexyl) phthalate, tetrachloroethylene, naphthalene, chloroform, and benzene; however, only toluene and bis(2-ethylhexyl) phthalate were consistently present at concentrations greater than 0.1 mg/L in the wastewaters.

Ethylbenzene, 1,1,1-trichloroethane, methylene chloride, phenol, di-n-butyl phthalate, di-n-octyl phthalate, anthracene, and tri-chloroethylene were also found in 20% to 50% of the plant effluents.

#### II.2.2.2 Linen Supply

Linen supply wastewaters typically contain higher concentrations of  $BOD_5$ , COD, TOC, suspended solids, and oil and grease than does domestic sewage, but much lower concentrations of these pollutants than do industrial laundry wastewaters. This is attributed to the lighter soil loading on items such as bed sheets, pillow-cases, towels, napkins, tablecloths, and uniforms, which comprise the majority of the linen supply business. Phosphorus and pH were found at similar levels in industrial laundry and linen supply effluents, which reflects the fact that these pollutants are introduced to the wastewater by process additives rather than by soil on the articles being laundered.

Many linen supplies service industrial-type garments and flatwork articles as well as the more traditional linen supply items. Plant-to-plant differences in the amount of "industrial laundry" work performed is a major cause for variable pollutant concentrations. However, BOD<sub>5</sub>, TSS, and oil and grease loadings are also influenced by the particular types of "linen supply work" performed. For example, the wastewaters from laundries washing a high percentage of aprons, tablecloths, napkins, etc., used in restaurants contain higher levels of oil and grease than do wastewaters from laundries washing a high percentage of sheets or towels used in hotels.

Laundering chemicals are not considered a major source of  $BOD_5$ , TSS, or oil and grease in industrial laundry wastewaters. However, detergents, soaps, starches, and other organic process chemicals contribute BOD to the wastewater; soap is also a source

of oil and grease. These pollutant sources are considerably more significant in comparison to soil loading in the linen supply subcategory than in the industrial laundry subcategory. Variable oil and grease concentrations in linen laundry wastewaters are at least partially attributable to the fact that some establishments use soap while others use synthetic detergents. Seven toxic pollutant metals were detected in 50% or more of the wastewater samples analyzed for these substances. However, only zinc, lead, and copper were found at average concentrations greater than  $100 \cdot \mu g/L$ .

Sixteen toxic organic pollutants were detected in at least one of five linen laundry effluents analyzed for these compounds. With few exceptions, these were the same compounds found in the industrial laundry wastewaters. Much lower concentrations were observed in the linen supply effluents, however; only bis(2-ethylhexyl) phthalate, naphthalene, and chloroform were found in any of the effluents at concentrations greater than 100  $\mu$ g/L.

#### II.2.2.3 Power Laundries, Family and Commercial

Power laundry wastewaters typically contain lower concentrations of  $BOD_5$ , COD, TOC, suspended solids, and oil and grease than either industrial laundry or linen supply wastewaters. Much narrower ranges in concentration are also indicated.

Both of these observations are related to the types of customers serviced by power laundries. Family wash has been traditionally the largest source of business for these establishments, but many power laundries now service commercial businesses and service organizations. However, very little industrial-type work is performed; hence, the soil loadings on garments washed in these laundries tend to be light.

The median and mean concentrations of  $BOD_5$ , COD, TOC, TSS, oil and grease, and phosphorus are comparable to the levels at which these pollutants are found in domestic sewage. However, power laundry wastewaters tend to be more alkaline than does domestic sewage due to the use of alkali in the washing process.

Only five toxic pollutant metals (antimony, zinc, lead, copper and chromium) were present in any of the effluent samples at concentrations greater than 100  $\mu g/L$ . Except for zinc and copper, median concentrations of these metals were all much less than 100  $\mu g/L$ , in the range of detection limits.

Twenty-five toxic organic pollutants were present in one or more of the four wastewaters analyzed for these compounds, but only bis(2-ethylhexyl) phthalate and tetrachloroethylene were found in any of the samples at concentrations greater than 100  $\mu$ g/L.

## II.2.2.4 Diaper Services

In terms of  $BOD_5$ , COD, and oil and grease, these wastewaters appear to be roughly equivalent to the wastewater discharged by power laundries. Higher concentrations of TOC and phosphorus, and lower concentrations of suspended solids were present in the diaper service effluents, but these observations are based on limited data and may not represent the entire industry.

Median and mean concentrations of all conventional pollutants, excluding pH, are roughly comparable to the levels at which these pollutants are present in domestic wastewaters.

Seven toxic pollutant metals were detected in at least one sample, but only zinc was present at more than 100  $\mu$ g/L in any of the samples. No other toxic pollutants were found at significant levels, which is understandable in light of the types of soil present on diapers.

#### II.2.2.5 Coin-Operated Laundries

Coin-op wastewaters are less heavily polluted than are the wastewaters from any of the four commercial laundry subcategories previously discussed, and they are comparable to low-strength domestic wastewaters. Lightly soiled family wash accounts for nearly all of the business at these establishments.

Eight toxic pollutant metals and 12 toxic organic pollutants were detected in at least one of these effluent samples, but only zinc, total phenol, and bis(2-ethylhexyl) phthalate were present at concentrations greater than 100  $\mu$ g/L in any of the samples.

#### II.2.2.6 Carpet and Upholstery Cleaners

Except for phosphorus, all pollutant concentrations in this subcategory are comparable to or less than the median and mean pollutant loadings shown for coin-operated laundry wastewaters.

Zinc, copper, lead, and tetrachloroethylene were the only toxic pollutants found at a concentration greater than 100  $\mu g/L$ .

#### II.2.2.7 Dry Cleaning Plants

Conventional and toxic pollutant data from the dry cleaning industry were obtained from two plants that use perchloroethylene (tetrachloroethylene) solvent. All pollutant concentrations are extremely low--in the range of or below analytical detection limits. The source of process wastewater at these plants was condensate from the steam regeneration of carbon columns used for solvent vapor emission control.

Eighteen toxic organic pollutants were detected in one of the wastewater samples, but none was found in both effluents except, as expected, tetrachloroethylene.

Chlorinated ethanes, ethylenes, and chloroform were the only toxic pollutants, other than tetrachloroethylene, found at concentrations greater than 50  $\mu$ g/L.

#### II.2.2.8 Car Washes

The primary wastes present in car wash wastewater are suspended and dissolved solids, oil and grease,  $BOD_5$ , lead, and zinc. Other priority metals are sometimes encountered (especially in wand wash effluents) in small amounts.

The sources of solids are road grit, dust or mud, salt, snow, and ice, as well as plant and animal materials. Solids may also be picked up from suspended particles in the air.

Oil and grease may enter the wastewater either from the vehicle wash equipment and operation, or the vehicle itself. Much of the equipment used for car washing at tunnel and rollover facilities is hydraulically operated and may leak hydraulic fluid into the drain trench. Surfactants and waxes used in the washing operations may account for a portion of the measured oil and grease. Leaky crankcases and the washing of undercarriages and engines will account for much of the oil and grease measured in car wash effluents. The dumping of oil down the drains at unsupervised wand washes may also occur.

The main sources of  $BOD_5$  are the detergents and waxes used for cleaning purposes, although it may also result from organic plant and animal materials carried into the wash on car bodies and tires.

The presence of lead in the wastewater results from the use of lead additives in gasoline. Significant lead levels accumulate in crankcase oil and the exhaust fumes of automobiles, and lead may be introduced into the carwash via these sources. Gasoline deposits on the body of the car and on tire treads may also act as sources of lead.

Zinc may be used in the manufacture of automobile tires which may then act as a source of this metal.

Other trace metals such as arsenic, cadmium, chromium, copper, mercury, and nickel are often detected in car wash effluents. However, the concentrations found are generally quite low.

The variations encountered in waste loads are great and may be seasonal as well as regional. Winter conditions will increase the suspended solids load due to ice, grit, and mud accumulations.

Lead may also increase as a result of the use of fly ash as part of the road sanding material. Fly ash analysis usually shows a high lead content. Dusty soils will be turned into hard-toremove mud during rainy seasons. Geographical differences will be due to soil types, type and extent of industry, road condi-Variations in waste loads will also be found among the different types and locations of car washes. Wand washes tend to produce the heaviest loads, as vehicles other than cars (four-wheel drive vehicles, trucks, RV's, motorcycles), parts of the car other than the body (engines, undercarriages), and a wide variety of other objects, may be washed. At unattended sites customers may perform oil changes in the bay, and may dump the oil down the drain. Rollovers tend to exhibit a lighter waste load than either tunnels or wands. Many rollovers are situated at rental agencies and car dealerships where cars are washed with more than average frequency.

#### II.2.3 PLANT SPECIFIC DESCRIPTIONS

#### II.2.3.1 Car Washes

The sampling done at these plants was completed over a 4-hour period when road conditions were dry.

<u>Plant 1B</u> is a total recycle tunnel facility at which 75 cars were processed during the study. In this plant suspended solids and oil and grease concentrations were low compared to domestic sewage. Metal concentrations were generally low, with seven metals at less than 10  $\mu$ g/L. Of the remaining six metals only zinc, nickel, and lead concentrations exceeded 100  $\mu$ g/L. In this plant no analyses were performed to measure the toxic organics.

Wash water and rinse water are treated by different methods at this plant. The wash water is processed solely by settling in settling tanks. The rinse water is processed by settling followed by filtration through turbidity filters. Plant 1B plant specific data are presented in Tables 2-7 and 2-8.

Plant 2A is a total recycle wand facility where 57 cars were processed during sampling. The sampling results at this plant showed high suspended solids concentrations and low oil and grease concentrations compared to domestic sewage. Metal concentrations were generally low, with four metals at less than 10  $\mu g/L$  and six metals at less than 100  $\mu g/L$ . Only copper, lead, and zinc were present at high concentrations ranging from 860 to 1,230  $\mu g/L$ . Several groups of toxic organics appeared in the waste, but no organic was at a higher concentration than 100  $\mu g/L$ . The groups concerned were the phthalates, phenols, ethers, nitrogen compounds, polycyclic aromatics, and halogenated aliphatics.

TABLE 2-7. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR AUTO LAUNDRY 1B [1]

| Pollutant        | Concentrat  | ion, mg/L <sup>a</sup> |                    |              |                                      |                    |
|------------------|-------------|------------------------|--------------------|--------------|--------------------------------------|--------------------|
|                  | Raw<br>wash | Treated<br>wash        | Percent<br>removal | Raw<br>rinse | ion, mg/L <sup>a</sup> Treated rinse | Percent<br>removal |
| BOD <sub>5</sub> | 42          | 42                     | 0                  | 42           | 42                                   | 0                  |
| TSS.             | 56          | 24                     | <sup>57</sup> b    | 64           | 9.3                                  | 85_                |
| TDS              | 690         | 700                    | - <sup>D</sup>     | 600          | <b>6</b> 50                          | _D                 |
| Total phenols    | <0.002      | <0.002                 | -                  | <0.002       | <0.002                               | -                  |
| Oil and grease   | 21          | 20                     | 5                  | 24           | 4.7                                  | 80                 |
| рН               | 7.3         | 7.4                    | -                  | 7.3          | 7.2                                  |                    |

<sup>&</sup>lt;sup>a</sup>Except pH values, which are given in pH units.

TABLE 2-8. PLANT SPECIFIC TOXIC METALS FOR AUTO LAUNDRY 1B [2]

|                       | Concentra   | ation, µg/L     |                    | Concentration, µg/L |               |                    |
|-----------------------|-------------|-----------------|--------------------|---------------------|---------------|--------------------|
| Toxic pollutant       | Raw<br>wash | Treated<br>wash | Percent<br>removal | Raw<br>rinse        | Treated rinse | Percent<br>removal |
| TONIC POLITICIANC     | HU311       | - WODII         | 10110741           | 111100              |               | TCMO Va.           |
| Metals and inorganics |             |                 |                    |                     |               |                    |
| Antimony              | 5.2         | 4.4             | 15 <b>a</b>        | 3.4                 | 1.7           | 50                 |
| Arsenic               | 5.0         | 10              | _a                 | 5.0                 | 3.0           | 40                 |
| Beryllium             | <0.1        | <0.1            |                    | <0.1                | <0.1          | _                  |
| Cadmium               | 25.3        | 30.8            | _a<br>_a<br>_a     | 20.5                | 8.7           | 58                 |
| Chromium              | 64.3        | 86.2            | _a                 | 63.9                | 53.8          | 16                 |
| Copper                | 85.2        | 114             | _a                 | 623                 | 20.6          | 97                 |
| Cyanide               | <0.002      | <0.002          |                    | <0.002              | <0.002        | _                  |
| Lead                  | 470         | 910             | _a                 | 362                 | 62            | 83                 |
| Mercury               | <1          | <1              | -                  | <1                  | <1            | _                  |
| Nickel                | 690         | 331             | 52                 | 682                 | 39.5          | 94                 |
| Selenium              | <1          | <1              | -                  | <1                  | <1            | -                  |
| Silver                | <1          | <1              | -                  | <1                  | <1            | _                  |
| Thallium              | <1          | <1              | <b>-</b> _         | <1                  | <1            | _                  |
| Zinc                  | 720         | 1,000           | _a                 | 587                 | 55            | 91                 |

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

Wastewater treatment at this plant is carried out in the following sequence: settling storage, centrifugal separation, and turbidity filtration. At this point the stream is divided with part being stored for use as wash water. The remainder is treated by activated charcoal filtration and stored for use as rinse water. Plant 2A plant specific data are presented in Tables 2-9 and 2-10.

Plant 3A is a total recycle rollover facility. During the sampling period 24 cars were processed. At this facility the suspended solids concentration was moderate and the oil and grease concentration was low compared to domestic sewage. Metal

bTreated effluent concentration exceeds raw wastewater concentration.

TABLE 2-9. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR AUTO LAUNDRY 2A [2]

|                  | Concentrat:       | ion, mg/L <sup>a</sup>         |                    |
|------------------|-------------------|--------------------------------|--------------------|
| Pollutant        | Raw<br>wastewater | Treated<br>wastewat <b>e</b> r | Percent<br>removal |
| BOD <sub>5</sub> | 120               | 35                             | 71                 |
| TSS              | 520               | 36                             | 93                 |
| TDS              | 1,300             | 880                            | 30                 |
| Total phenols    | < 0.002           | <0.002                         | _                  |
| Oil and grease   | 20.5              | 18                             | 12                 |
| рН               | 7.2               | 7.2                            | -                  |

aExcept pH values, which are given in pH units.

TABLE 2-10. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR AUTO LAUNDRY 2A [2]

|                                  | Concentra  |            |                  |
|----------------------------------|------------|------------|------------------|
|                                  | Raw        | Treated    | Percent          |
| Toxic pollutant                  | wastewater | wastewater | removal          |
| Metals and inorganics            |            |            |                  |
| Antimony                         | 11         | 7          | 36               |
| Arsenic                          | 28         | 11         | 61               |
| Beryllium                        | 25<br>75   | <5         | 01               |
| Cadmium                          | 26         | 2.5        | 90               |
| Chromium                         | 30         | <5         | 83               |
| Copper                           | 860        | 150        | 83               |
| Cyanide                          | <0.004     | <0.004     | -                |
| Lead                             | 1,120      | 55         | 95               |
| Mercury                          | 26         | 5.6        | 78               |
| Nickel                           | 75         | 23         | 69               |
| Selenium                         | , 5<br>< 5 | <5         | -                |
| Silver                           | 5          | 5          | 0                |
| Thallium                         | < <b>5</b> | < 5        | _                |
| Zinc                             | 1,230      | 93         | 92               |
|                                  | 1,230      | 93         | 72               |
| Ethers                           |            |            | а                |
| Bis(2-chloroethoxy)methane       | <b>N</b> D | 11         | -"               |
| Phthalates                       |            |            |                  |
| Bis(2-ethylhexyl) phthalate      | 80         | 20         | 75               |
| Butyl benzyl phthalate           | 12         | 11         | , 8              |
| • • •                            |            |            | ŭ                |
| Nitrogen compounds               |            |            | _a               |
| 1,2-Diphenylhydrazine            | ND         | 30         |                  |
| Phenols                          |            |            |                  |
| 2,4-Dinitrophenol                | 19         | ND         | 100              |
| 4-Nitrophenol                    | 14         | <b>N</b> D | 100              |
| Polycyclic aromatic hydrocarbons |            |            |                  |
| Anthracene                       | 17         | ND         | 100              |
| Benz(a)anthracene                | 12         | ND<br>ND   |                  |
| Benzo(a)pyrene                   | 12         | 17         | 100 <sub>a</sub> |
| Benzo(k)fluoranthene             | 12         | ND<br>ND   | _                |
| Fluoranthene                     | 14         | ND<br>ND   | 100<br>100       |
| Phenanthrene                     | 17         | ND<br>ND   | 100              |
| Pyrene                           | 11         | ND<br>ND   | 100              |
| •                                | 11         | ND         | 100              |
| Halogenated aliphatics           |            |            |                  |
| Chlorodibromomethane             | 12         | ND         | 100              |
| Chloroform                       | 83         | 44         | 47               |
| Dichlorobromomethane             | 33         | ND         | 100              |
| Methylene chloride               | 16         | ND         | 100              |
| Trichloroethylene                | 13         | ND         | 100              |

 $<sup>{}^{\</sup>rm a}{
m Treated}$  effluent concentration exceeds raw wastewater concentration.

concentrations were generally low with nine metals at less than 10  $\mu$ g/L. Only copper, lead, nickel, and zinc concentrations exceeded 100  $\mu$ g/L. Only a very small number of toxic organic compounds were found in the wastewater and, with the exception of methylene chloride, at concentrations less than 100  $\mu$ g/L. The only toxic groups found were the phthalates, phenols, and halogenated aliphatics.

Wastewater treatment in this plant consists of the following sequence of steps: settling, centrifugal separation, and turbidity filtration. At this point the stream is split, and one portion is used as wash water. The other portion is filtered through activated charcoal and iodinated before it is used as rinse water. Plant specific information for this facility is shown in Tables 2-11 and 2-12.

## II.2.3.2 Other Laundries

Plant B is an industrial laundry without wastewater recycle. COD, suspended solids, and oil and grease concentrations found during sampling were high compared to domestic sewage. Concentrations of three metals (copper, lead, and zinc) were high, ranging from 1,600 to 9,400  $\mu$ g/L. Of the other metals analyzed for, four were found in concentrations of less than 100  $\mu$ g/L and four were not detected. Toxic organic compounds were not present in a wide variety, but those found tended to high concentrations, with 10 of 11 at greater than 100  $\mu$ g/L. Two of these, N-nitrosodiphenyl-amine and naphthalene, were present at 1,600  $\mu$ g/L and 4,000  $\mu$ g/L, respectively. At least one representative of each organic group except ethers, cresols, and polychlorinated biphenyls was detected.

The wastewater treatment used by this plant consists of calcium chloride coagulation of the solids with polymer addition, followed by dissolved air flotation. The floc from the flotation step is then skimmed from the surface and transferred to a sludge pit. Plant specific information for this plant is presented in Tables 2-13 and 2-14.

Plant G is a linen supply laundry with wastewater recycle. The wastewater from this plant exhibited very high levels of BOD, COD, TOC, and TSS concentrations as compared to domestic sewage. On the same basis, the phosphorus level was low and the oil and grease level was in the medium range. Metal concentrations tended to be high, although concentrations of six metals were below 100  $\mu g/L$  and two metals were not detected. Copper, mercury, and zinc were present at concentrations from 2,000 to 5,800  $\mu g/L$ . Only five toxic organics were detected, three of them at concentrations of less than 100  $\mu g/L$ . Only one, naphthalene, had a concentration greater than 1,000  $\mu g/L$ . The compound classes detected were phthalates, phenols, and polycyclic aromatics.

TABLE 2-11. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR AUTO LAUNDRY 3A [2]

|                              | Concentration     | n, mg/L <sup>a</sup>  |                    |
|------------------------------|-------------------|-----------------------|--------------------|
| Pollutant                    | Raw<br>wastewater | Treated<br>wastewater | Percent<br>removal |
| BOD <sub>5</sub>             | 8                 | <3                    | 62                 |
| TSS                          | 210               | 7.0                   | 97                 |
| TDS                          | 510               | 450                   | 12                 |
| Total phenols Oil and grease | Sample broken 6.0 | <0.002<br>30          | _p                 |
| рН                           | 6.2               | 5.8                   | -                  |

aExcept pH values, which are given in pH units.

TABLE 2-12. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR AUTO LAUNDRY 3A [2]

|            | tion, µg/L                                                    |                                                                                                                            |
|------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Raw        | Treated                                                       | Percent                                                                                                                    |
| wastewater | wastewater                                                    | removal                                                                                                                    |
|            |                                                               |                                                                                                                            |
| 2.5        | 1                                                             | 60                                                                                                                         |
| <10        | <10                                                           | -                                                                                                                          |
| <5         | <5                                                            | -                                                                                                                          |
| 2          | <1                                                            | 50                                                                                                                         |
| 10         | < 5                                                           | 50                                                                                                                         |
| 140        | 130                                                           | 7                                                                                                                          |
| <0.004     | <0.004                                                        | _                                                                                                                          |
| 460        | 11                                                            | 98                                                                                                                         |
| <1         | <1                                                            | -                                                                                                                          |
| 160        | 40                                                            | 75                                                                                                                         |
| <5         | < 5                                                           | _                                                                                                                          |
| <5         | < 5                                                           | _                                                                                                                          |
| <2         | <2                                                            | _                                                                                                                          |
| 340        | 140                                                           | 59                                                                                                                         |
|            |                                                               |                                                                                                                            |
| 31         | ND                                                            | 100                                                                                                                        |
| 16         | ND                                                            | 100                                                                                                                        |
|            |                                                               | _                                                                                                                          |
| ND         | 58                                                            | _a                                                                                                                         |
|            |                                                               |                                                                                                                            |
| 470        | 1.200                                                         | _a                                                                                                                         |
| ND         | 150                                                           | _a                                                                                                                         |
| -          | 2.5 <10 <5 2 10 140 <0.004 460 <1 160 <5 <5 <2 340  31 16  ND | 2.5 1 <10 <10 <5 <5 <5 2 <1 10 <5 140 130 <0.004 <0.004 460 11 <1 <1 <1 160 40 <5 <5 <5 <5 <2 <2 340 140  ND 58  470 1,200 |

aTreated effluent concentration exceeds raw wastewater concentration

bTreated effluent concentration exceeds raw wastewater concentration.

TABLE 2-13. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR INDUSTRIAL LAUNDRY B [1]

|                                                     | Concentrat                           | ion, mg/L <sup>a</sup>              |                      |
|-----------------------------------------------------|--------------------------------------|-------------------------------------|----------------------|
| Pollutant                                           | Raw<br>wastewater                    | Treated<br>wastewater               | Percent<br>removal   |
| COD<br>TSS<br>Total phenols<br>Oil and grease<br>pH | 3,800<br>700<br>0.016<br>440<br>11.6 | 1,300<br>48<br><0.001<br>190<br>7.0 | 66<br>93<br>94<br>57 |

aExcept pH values, which are given in pH units.

TABLE 2-14. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR INDUSTRIAL LAUNDRY B [1]

|                                  | Concentra   | tion, µg/L       |                 |
|----------------------------------|-------------|------------------|-----------------|
|                                  | Raw         | Treated          | Percent         |
| Toxic pollutant                  | wastewater  | wastewater       | removal         |
| Metals and inorganics            |             |                  |                 |
| Antimony                         | 41          | <20              | 51              |
| Arsenic                          | 12          | <10              | 17              |
| Cadmium                          | 170         | 23               | 86              |
| Chromium                         | 270         | <130             | 52              |
| Copper                           | 1,600       | <sup>-</sup> 330 | 79              |
| Lead                             | 9,400       | 230              | <b>9</b> 8      |
| Mercury                          | 2           | <0.2             | 90              |
| Nickel                           | 150         | <50              | 67              |
| Thallium                         | <5          | <5               | -               |
| Zinc                             | 4,500       | 200              | 96              |
| Phthalates                       |             |                  | •               |
| Di-n-butyl phthalate             | ND          | 290              | _a              |
| Nitrogen compounds               |             |                  |                 |
| N-nitrosodiphenylamine           | 1,800       | 620              | 66              |
| Phenols                          |             |                  |                 |
| Phenol                           | 600         | 120              | 80              |
| Aromatics                        |             |                  |                 |
| Ethylbenzene                     | 260         | 110              | 58 <sub>a</sub> |
| Toluene                          | 750         | 790              | ~~              |
| Polycyclic aromatic hydrocarbons |             |                  |                 |
| Naphthalene                      | 4,000       | 790              | 80              |
| Halogenated aliphatics           |             |                  |                 |
| Chloroform                       | 10          | 8                | 20              |
| Methylene chloride               | <b>54</b> 0 | 500              | 7<br>_a         |
| Tetrachloroethylene              | 880         | 1,000            | _a              |
| Trichloroethylene                | 210         | 30               | 86              |
| Pesticides and metabolites       |             |                  |                 |
| Isophorone                       | 190         | ND               | 100             |

aTreated effluent concentration exceeds raw wastewater concentration.

Wastewater treatment in this plant consists of polyelectrolyte coagulation and dissolved air flotation (with skimmers pushing the solids into a sludge hopper). All or part of this clarified water is passed through a multimedia filter and recycled. When 100% recycle is not employed the excess is discharged. Plant specific information is presented for plant G in Tables 2-15 and 2-16.

Plant J is a power laundry utilizing wastewater recycle. During sampling wastewater from this plant had low to medium concentrations of all the classical pollutants compared to domestic sewage. Metal concentrations also tended to be low with only the zinc concentration above 100  $\mu$ g/L. There were 19 toxic organics from 4 toxic pollutant categories present, but none at a higher concentration than 100  $\mu$ g/L, and most at less than 10  $\mu$ g/L. The four categories of organics are phthalates, phenols, polycylic aromatics, and halogenated aliphatics.

The wastewater treatment used in this facility is polyelectrolyte coagulation followed by dissolved air flotation equipped with skimmers. All or part of this clarified water may be filtered via a multimedia filter and recycled. Plant specific information for this facility is presented in Tables 2-17 and 2-18.

<u>Plant N</u> is a service laundry with no wastewater recycle. The concentrations of classical pollutants observed were all in the low range compared to domestic sewage. Metal concentrations also tended to be low, with six metals not detected and concentrations of only two (copper and zinc) greater than 100  $\mu$ g/L. A small number of toxic organics was present with only one above 10  $\mu$ g/L. The classes of organics detected were phthalates, phenols, monocyclic aromatics, and halogenated aliphatics.

The wastewater treatment process used in this plant is: alum coagulation and clarification by settling, and treatment of the clarified effluent by carbon adsorption, filtration, and chlorination/dechlorination. Plant specific information for Plant N is shown in Tables 2-19 and 2-20.

#### II.2.4 POLLUTANT REMOVABILITY [1, 2]

Treatment technology for this industry falls into two distinct groups, methods employed at car washes and methods employed at other laundries. Because of the large difference in the treatment methods, they are described separately below.

#### II.2.4.1 Car Washes [1, 2]

Settling is used by a large majority of car washes before recycle or discharge. New tunnel facilities are almost always equipped for recycle of their wash water after treatment by settling. The solids and oil and grease are removed from the settling tank

TABLE 2-15. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR LINEN SUPPLY FACILITY G [1]

|                  | Concentrat:       | ion, mg/L <sup>a</sup> |                    |
|------------------|-------------------|------------------------|--------------------|
| Pollutant        | Raw<br>wastewater | Treated<br>wastewater  | Percent<br>removal |
| BOD <sub>5</sub> | 2,000             | 1,100                  | 45                 |
| COD              | 2,600             | 1,800                  | 31                 |
| TOC              | 1,100             | 530                    | 52                 |
| TSS              | 1,300             | 210                    | 84                 |
| Total phosphorus | 5.7               | 3.7                    | 35                 |
| Total phenols    | 0.082             | 0.21                   | a                  |
| Oil and grease   | 130               | 240                    | _ <sup>a</sup>     |

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration (3-day composite).

TABLE 2-16. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR LINEN SUPPLY FACILITY G [1]

|                                  | Concentra  |            |                 |
|----------------------------------|------------|------------|-----------------|
| Maria mallutant                  | Raw        | Treated    | Percent         |
| Toxic pollutant                  | wastewater | wastewater | removal         |
| Metals and inorganics            |            |            |                 |
| Antimony                         | 45         | 4          | 91              |
| Arsenic                          | 33         | 15         | 55              |
| Cadmium                          | 240        | <2         | 99              |
| Chromium                         | 670        | 170        | 75              |
| Copper                           | 2,000      | 200        | 90 <sub>a</sub> |
| Cyanide                          | 63         | 88         | _a              |
| Lead                             | 4,000      | 720        | 82              |
| Mercury                          | 5          | 1          | 80              |
| Nickel                           | 880        | 50         | 94 <sub>a</sub> |
| Selenium                         | 2          | 7          | _a              |
| Silver                           | 10         | <1         | 90              |
| Zinc                             | 5,800      | 580        | 90              |
| Phthalates                       |            |            |                 |
| Bis(2-ethylhexyl) phthalate      | 280        | 96         | 66              |
| Di-n-butyl phthalate             | 26         | 11         | 58              |
| Phenols                          |            |            |                 |
| Phenol                           | 24         | 24         | 0               |
|                                  |            |            |                 |
| Polycyclic aromatic hydrogarbons | • •        | 10         | 0.5             |
| Anthracene/phenanthrene          | 16         | _12        | 25              |
| Naphthalene                      | 1,200      | 520        | 57              |

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration. <sup>b</sup>Reference reported compound in this form.

TABLE 2-17. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR POWER LAUNDRY FACILITY J [1]

| Concentrat        | ion, mg/L <sup>a</sup>                                       |                                                                                                                                        |
|-------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Raw<br>wastewater | Treated<br>wastewater                                        | Percent removal                                                                                                                        |
| 113               | 118                                                          | _a                                                                                                                                     |
| 497               | 378                                                          | 24                                                                                                                                     |
| 135               | 94                                                           | 30                                                                                                                                     |
| 50                | 40                                                           | 20                                                                                                                                     |
| 0.8               | 0.7                                                          | 12                                                                                                                                     |
| 0.432             | 0.264                                                        | 39                                                                                                                                     |
| 39                | 16                                                           | 59                                                                                                                                     |
|                   | Raw<br>wastewater<br>113<br>497<br>135<br>50<br>0.8<br>0.432 | wastewater     wastewater       113     118       497     378       135     94       50     40       0.8     0.7       0.432     0.264 |

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 2-18. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR POWER LAUNDRY FACILITY J [1]

|                                      |                  | tion, µg/L |                  |
|--------------------------------------|------------------|------------|------------------|
|                                      | Raw              | Treated    | Percent          |
| Toxic pollutant                      | wastewater       | wastewater | removal          |
| Metals and inorganics                |                  |            |                  |
| Antimony                             | <10              | <10        | -                |
| Cadmium                              | <2               | <2         | -                |
| Chromium                             | 26               | 16         | 38               |
| Copper                               | 55               | 52         | 5                |
| Cyanide                              | 29               | 11         | 62               |
| Lead                                 | <22              | <22        | -                |
| Nickel                               | <36              | <36        | -                |
| Silver                               | <5               | <5         | -                |
| Zinc                                 | 290              | 105        | 64               |
| Phthalates                           |                  |            |                  |
| Bis(2-ethylhexyl) phthalate          | 82               | 54         | 34               |
| Butyl benzyl phthalate               | 17               | 8          | 53               |
| Di-n-butyl phthalate                 | 2                | 0.9        | 55               |
| Di-n-octyl phthalate                 | 28               | 4          | 86               |
| Phenols                              |                  |            |                  |
| 2-Chlorophenol                       | 3                | 2          | 33               |
| 2,4-Dichlorophenol                   | 1                | 2          | - "              |
| 2,4-Dimethylphenol                   | 2                | 29         | -5               |
| Pentachlorophenol                    | 1<br>2<br>3<br>2 | 10         | -ä               |
| Phenol                               | 2                | 7          | -"               |
| Polycyclic aromatic hydrogarbons     |                  |            | _                |
| Anthracene/phenanthrene <sup>D</sup> | 0.9              | 2          | _a               |
| Fluoranthene                         | 0.3              | 0.4        | -a               |
| Naphthalene                          | 0.9              | 0.9        | 0                |
| Pyrene                               | 0.3              | 0.3        | 0                |
| Halogenated aliphatics               |                  |            |                  |
| Chloroform -                         | 41               | 12         | 71_              |
| Methylene chloride                   | 5.7              | 52         | _a               |
| 1,1,2,2-Tetrachloroethane            | ND               | 9          | _ª               |
| Tetrachloroethylene                  | 2<br>2           | 2          | 0                |
| 1,1,1-Trichloroethane                |                  | ND         | 100 <sub>a</sub> |
| Trichlorofluoromethane               | ND               | 5          | -"               |

 $<sup>^{\</sup>mathbf{a}}$ Treated effluent concentration exceeds raw wastewater concentration.

bReference reported compound in this form.

TABLE 2-19. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR SERVICE LAUNDRY N [1]

| Concentration, mg/L |                                                             |                                                                                                                                                                                         |  |  |
|---------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Raw<br>wastewater   | Treated<br>wastewater                                       | Percent<br>removal                                                                                                                                                                      |  |  |
| 163                 | 23                                                          | 86                                                                                                                                                                                      |  |  |
| 63                  | 21                                                          | 75<br>67                                                                                                                                                                                |  |  |
| 40<br>7.0           | 37<br>0.9                                                   | 8<br>87                                                                                                                                                                                 |  |  |
| 0.038<br>15         | 0.013<br>0.75                                               | 66<br>95                                                                                                                                                                                |  |  |
|                     | Raw<br>wastewater<br>163<br>240<br>63<br>40<br>7.0<br>0.038 | wastewater         wastewater           163         23           240         59           63         21           40         37           7.0         0.9           0.038         0.013 |  |  |

TABLE 2-20. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR SERVICE LAUNDRY N [1]

|                                          | Concentra  | tion, µg/L |                  |
|------------------------------------------|------------|------------|------------------|
|                                          | Raw        | Treated    | Percent          |
| Toxic pollutant                          | wastewater | wastewater | removal          |
| Metals and inorganics                    |            |            |                  |
| Cadmium                                  | 51         | 14         | 73               |
| Chromium                                 | 39         | 25         | 36               |
| Copper                                   | 138        | 32         | 77               |
| Cyanide                                  | <2         | <2         | _                |
| Lead                                     | 71         | 31         | 56               |
| Nickel                                   | 55         | 37         | 33               |
| Silver                                   | 14         | 7          | 50               |
| Zinc                                     | 609        | 244        | 60               |
| Phthalates                               |            |            | -                |
| Bis(2-ethylhexyl) phthalate              | ND         | 16         | _a               |
| Butyl benzyl phthalate                   | ND         | 4          | a                |
| Di-n-butyl phthalate                     | ND         | 3<br>2     | -a               |
| Di-n-octyl phthalate                     | ND         | 2          | _~               |
| Phenols                                  |            |            |                  |
| Phenol                                   | 1.8        | ND         | 100              |
| Aromatics                                |            |            |                  |
| Toluene                                  | 5          | 6          | _a               |
| - · · - · · · · · · · · · · · · · · · ·  | J          | v          |                  |
| Halogenated aliphatics                   |            |            | 100              |
| Chlorodibromomethane                     | 0.6        | ND         | 100 <sub>a</sub> |
| Chloroform                               | ND         | 9.5        | -a               |
| Dichlorobromomethane                     | ND         | 1.0        | -a               |
| 1,1,2,2-Tetrachloroethane                | ND         | 0.7        | -a               |
| Tetrachloroethylene<br>Trichloroethylene | 2<br>0.5   | 31<br>3.0  | _a<br>_a         |
| TITCHIOTOE CHYTEHE                       | 0.5        | 3.0        | -                |

aTreated effluent concentration exceeds raw wastewater concentration.

periodically for disposal. Hydrocyclones are gaining popularity and have been used quite sucessfully at some installations. Sand and multimedia turbidity filters may also be used to remove finely divided suspended solids, almost always in conjunction with settling. It is estimated that 5% to 10% of all car washes use this technology.

Activated charcoal filters are used to remove detergents and other organics from water to be used for rinsing purposes, but they are installed less frequently than turbidity filters. Foam fractionators are used in some car washes to remove surfactants from the wastewaters. Pollutant removal efficiencies for systems incorporating these technologies are included in Section II.2.3.1.

# II.2.4.2 Other Laundries [1]

Table 2-21 indicates the technologies being used in the other laundries segment and the estimated percentage of plants utilizing each. Tables 2-22 through 2-24 provide removability data for the three most common systems.

Bar screens are used in a small percentage at industrial and linen supply laundries to remove large solids (6.3 mm to 19 mm). Lint screens are used in the majority of industrial, linen supply, and power laundries and by more than a third of diaper service laundries to remove lint and particles such as sand and grit (in the range of 3.2 mm to 9.5 mm). Catch basins are used in approximately the same proportions in the industry to provide for settling of solids, with retention times of 15 to 40 minutes being typical. The only other technology in common use (approximately the same proportions) is countercurrent heat exchange between the wastewater and the incoming feedwater; this serves to reduce both fuel consumption for water heating and the temperature of the final effluent.

The following technologies are used by very small numbers of plants but provide greater reductions in pollutant concentrations than the common technologies. Equalization tanks having retention times of 2 to 4 hours smooth the discharge flow and remove solids and grease from the wastewater stream. These tanks are used in a small percentage of industrial, linen supply, and power laundries, as is pH adjustment. Dissolved air flotation (DAF) with chemical addition is used in a small percentage of industrial, linen supply, and power laundries to destabilize and remove the colloidal suspensions which contain most of the pollutants that result from plant operations in this industry segment. In the small proportion of the industry utilizing wastewater recycle, multimedia filters are used for removal of fine particulates remaining after dissolved air flotation. Removability data for systems containing these components are

TABLE 2-21. ESTIMATED PERCENT OF LAUNDRIES (BASED ON TECHNICAL SURVEY DATA) HAVING CONTROL TECHNOLOGY [1]

| Control technology                                                                                                              | Industrial<br>laundries | Linen supply<br>laundries | Power<br>laundries                      | Coin-op<br>laundries        | Diaper<br>service |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|-----------------------------------------|-----------------------------|-------------------|
| Pretreatment technology                                                                                                         |                         |                           |                                         |                             |                   |
| (Number of responses)                                                                                                           | (74)                    | (59)                      | (20)                                    | (1) <sup>a</sup>            | (75)              |
| Bar screens                                                                                                                     | 2.7                     | 5.1                       | 0                                       |                             | 0                 |
| Lint screens                                                                                                                    | 70                      | 81                        | 65                                      |                             | 36                |
| Catch basins                                                                                                                    | 72                      | 78                        | 55                                      |                             | 20                |
| Heat reclaimers                                                                                                                 | 70                      | 81                        | 25                                      |                             | 32                |
| Oil skimmers                                                                                                                    | 15 դ                    | 0 _                       | 0 4                                     |                             | 0                 |
| Equalization tanks                                                                                                              | 1.2 <sup>b</sup>        | 2.1                       | 0.033 <sup>d</sup>                      |                             | 0                 |
| pH adjustment                                                                                                                   | 4.1 <sub>b</sub>        | 5.1                       | 15 d                                    |                             | 0                 |
| Physical-chemical systems <sup>e</sup>                                                                                          | 1.3 <sup>D</sup>        | 0.38 <sup>C</sup>         | 0.033 <sup>d</sup>                      |                             | 0                 |
| Other*                                                                                                                          | 8.1                     | 3.4                       | 0                                       |                             | 4.0               |
| Treatment technology for disc<br>(Number of responses)<br>Physical-chemical systems <sup>e</sup><br>Biological<br>Other<br>None | charge other<br>(0)     | than to municing (0)      | pal treatmen<br>(2)<br>6.3 <sup>g</sup> | (33)<br>0<br>42<br>27<br>31 | (0)               |

Note: Blanks indicate data not available.

TABLE 2-22. RESULTS OF CONVENTIONAL TREATMENT - SYSTEM Ia, [1]

|                         | Number  |             | Concen       | tration     |             |                 |        |  |
|-------------------------|---------|-------------|--------------|-------------|-------------|-----------------|--------|--|
| Pollutant               | of data | Washro      | om discharge | Sewe        | r discharge | Percent removal |        |  |
| parameter               | points  | Median      | Range        | Median      | Range       | Median          | Range  |  |
| Dil and grease, mg/L    | 9       | 620         | 190 - 1,350  | <b>4</b> 80 | 140 - 1,360 | 19              | 0 - 65 |  |
| BOD <sub>5</sub> , mg/L | 9       | 310         | 170 ~ 660    | 300         | 190 - 970   | 6               | 0 - 18 |  |
| rss, mg/L               | 9       | 500         | 210 ~ 1,300  | 480         | 270 - 1,600 | 0               | 0 - 20 |  |
| Copper, µg/L            | 8       | 120         | 30 ~ 690     | 100         | 10 - 420    | 28              | 0 - 66 |  |
| Lead, µg/L              | 9       | 520         | 220 - 2,400  | 270         | 50 - 1,300  | 32              | 0 - 91 |  |
| Zinc, µg/L              | 5       | <b>4</b> 50 | 380 ~ 860    | 420         | 5 - 830     | 0               | 0 - 99 |  |

<sup>&</sup>lt;sup>a</sup>Data based on sampling results from three laundries.

<sup>&</sup>lt;sup>a</sup>Number of responses not sufficient to provide valid estimate.

bEstimate based on 12 physical-chemical system with equalization tanks operating at the 1,013 industrial laundry indirect dischargers.

<sup>&</sup>lt;sup>C</sup>Estimate based on 5 physical-chemical systems with equalization operating at the 1,308 linen supply indirect dischargers, plus the 1.7% of linen supplies that have equalization tanks based on survey responses.

dEstimate based on 1 physical-chemical system with equalization operating at the 3,078 power laundry indirect dischargers.

 $<sup>^{\</sup>mathbf{e}}$ Major unit operations consist of chemical addition and floc removal.

 $f_{\mbox{Other includes filtration, separators, oil hold back devices, and miscellaneous operations.}$ 

 $g_{\rm Estimate}$  based on 1 physical-chemical system operating at the 16 power laundry direct dischargers.

hOther includes filtration, settling, chlorination, and miscellaneous operations.

bSystem uses a bar screen, lint screen, catch basin, and heat reclaimer.

TABLE 2-23. RESULTS OF CONVENTIONAL TREATMENT - SYSTEM II a, b [1]

|                         | Number  |        | Concentration |        |           |                 |        |  |  |
|-------------------------|---------|--------|---------------|--------|-----------|-----------------|--------|--|--|
| Pollutant<br>parameter  | of data | Washro | om discharge  | Sewer  | discharge | Percent removal |        |  |  |
|                         | points  | Median | Range         | Median | Range     | Median          | Range  |  |  |
| Oil and grease, mg/L    | 3       | 760    | 420 - 850     | 460    | 420 - 550 | 51              | 0 - 72 |  |  |
| BOD <sub>5</sub> , mg/L | 3       | 310    | 150 - 540     | 240    | 230 - 500 | 7               | 0 - 23 |  |  |
| TSS, mg/L               | 3       | 420    | 230 - 470     | 390    | 280 - 630 | 17              | 0 - 33 |  |  |
| Copper, µg/L            | 2       | 310    | 220 - 400     | 270    | 220 - 320 | 9               | 0 - 18 |  |  |
| Lead, µg/L              | 3       | 700    | 100 - 1,100   | 450    | 350 - 600 | 40              | 0 - 50 |  |  |
| Zinc, µg/L              | 3       | 750    | 430 - 890     | 570    | 370 - 610 | 14              | 0 - 29 |  |  |

aData based on sampling results from one laundry.

TABLE 2-24. RESULTS OF CONVENTIONAL TREATMENT - SYSTEM III a, b [1]

|                         | Number  |        |                  |        |             |                 |        |  |
|-------------------------|---------|--------|------------------|--------|-------------|-----------------|--------|--|
| Pollutant               | of data |        | om discharge     | Sewe   | r discharge | Percent removal |        |  |
| parameter               | points  | Median | Range            | Median | Range       | Median          | Range  |  |
| Dil and grease, mg/L    | 3       | 770    | 890 - 1,260      | 740    | 340 - 1,070 | 41              | 0 - 42 |  |
| BOD <sub>5</sub> , mg/L | 3       | 610    | <b>450 - 650</b> | 710    | 690 - 730   | 0               | 0      |  |
| rss, mg/L               | 3       | 280    | 220 - 340        | 340    | 240 - 1,450 | 0               | 0 - 14 |  |
| Copper, µg/L            | 3       | 300    | 260 - 350        | 340    | 320 - 920   | 0               | 0 - 9  |  |
| Lead, µg/L              | 3       | 310    | 250 - 43,000     | 450    | 350 - 600   | 0               | 0      |  |
| Zinc, µg/L              | 3       | 960    | 780 - 2,000      | 1,500  | 920 - 1,700 | 4               | 0 - 15 |  |

<sup>&</sup>lt;sup>a</sup>Data based on sampling results from one laundry.

found in Section II.2.3 and listed in Tables 2-25 through 2-31. These systems are the most efficient currently in use.

In addition, three other technologies are potentially applicable to this segment of the industry: ultrafiltration, diatomaceous earth filtration, and electrocoagulation.

Both bench- and pilot-scale tests have shown that ultrafiltration (UF) using tubular modules is feasible, but it is not technically or economically feasible to use spirally wound membranes. From a technical standpoint UF systems with tubular modules have advantages over physical-chemical systems utilizing chemical addition and DAF. UF does not incorporate coagulation; thus it does not require chemical additives. Since laundry wastewater is highly variable, it can be difficult to provide an effluent of consistent quality based on a specific coagulant or

bSystem uses a bar screen, lint screen, catch basins, oil skimmer, and heat reclaimer.

bSystem uses a lint screen, catch basins, equalization tank, and heat reclaimer.

TABLE 2-25. RESULTS OF LAUNDRY WASTEWATER TREATMENT WITH ALUM COAGULATION AND DAF [1]

|                         | Number  |               |           | Concentr |             |        |      |         |           |      |
|-------------------------|---------|---------------|-----------|----------|-------------|--------|------|---------|-----------|------|
| Pollutant               | of data | Equaliza      | tion tank |          | Ef          | fluent |      |         | ent remov |      |
| parameter               | points  | Range         | Median    | Mean     | Range       | Median | Mean | Range   | Median    | Mear |
| Oll and grease, mg/L    | 3       | 150 - 260     | 175       | 195      | 11 - 50     | 43     | 35   | 72 - 94 | 81        | 82   |
| BOD <sub>5</sub> , mg/L | 3       | 180 - 352     | 340       | 290      | 63 - 120    | 65     | 83   | 65 ~ 81 | 66        | 71   |
| TSS, mg/L               | 3       | 51 - 510      | 487       | 349      | 16 - 118    | 24     | 53   | 69 - 95 | 77        | 80   |
| Phosphorus, mg/L        | 2       | 23 - 25       | 24        | 24       | 1.5 - 2.6   | 2.1    | 2.1  | 80 ~ 93 | 87        | 87   |
| Copper, µg/L            | 3       | 620 - 1,000   | 620       | 660      | 360 - 130   | 340    | 280  | 45 ~ 66 | 64        | 58   |
| Lead, µg/L              | 3       | 100 - 1,300   | 800       | 730      | 10 - 300    | 60     | 120  | 77 - 92 | 90        | 86   |
| Zinc, µg/L              | 3       | 1,000 - 3,300 | 1,800     | 2,000    | 500 - 1,300 | 1,000  | 930  | 45 - 61 | 50        | 52   |
| PHP                     | 5       | 9.9 - 11.0    | 10.6      | _c       | 4.6 - 7.2   | 7.0    | _c   | -       | -         | -    |

Results based on sampling and analysis of laundry effluent from one industrial laundry.

TABLE 2-26. RESULTS OF LAUNDRY WASTEWATER TREATMENT WITH CALCIUM CHLORIDE COAGULATION AND DAF [1]

|                         | Number  |               |           | Concentr |             |        |      |         |            |      |
|-------------------------|---------|---------------|-----------|----------|-------------|--------|------|---------|------------|------|
| Pollutant               | of data | Equalizat     | tion tank |          | Ef          | fluent |      | Perc    | ent remov  |      |
| parameter               | points  | Range         | Median    | Mean     | Range       | Median | Mean | Range   | Median     | Mean |
| Oil and grease, mg/L    | 13      | 212 - 1,600   | 477       | 647      | 9 - 230     | 116    | 116  | 57 - 99 | <b>7</b> 7 | 79   |
| BOD <sub>5</sub> , mg/L | 7       | 460 - 2,400   | 657       | 1,212    | 130 - 1,000 | 345    | 447  | 6 - 78  | 68         | 59   |
| TSS, mg/L               | 10      | 390 - 950     | 835       | 741      | 18 - 240    | 89     | 104  | 71 - 98 | 88         | 85   |
| Phosphorus, mg/L        | 2       | 13 - 42       | 27        | 27       | 1.7 - 23    | 12     | 12   | 0 - 96  | 48         | 48   |
| Copper, µg/L            | 5       | 1,000 - 1,700 | 1,500     | 1,200    | 200 - 500   | 340    | 300  | 67 - 80 | 78         | 73   |
| Lead, µg/L              | 10      | 2,600 - 9,400 | 4,800     | 5,400    | 50 - 700    | 170    | 210  | 89 - 99 | 98         | 96   |
| Zinc µg/L               | 10      | 1,000 - 4,500 | 3,200     | 3,000    | 10 - 780    | 150    | 210  | 76 - 99 | 94         | 93   |
| pHb                     | 5       | 11.0 - 11.6   | 11.4      | _c       | 6.5 - 7.5   | 7.0    | ~c   | -       | -          | -    |

aData from sampling of six industrial laundries.

TABLE 2-27. RESULTS OF LAUNDRY WASTEWATER TREATMENT WITH FERRIC SULFATE AND DAF [1]

|                      | Number  |             |           |       | tration     | Elwant.          |           | Davo    | ent remov | - 3  |
|----------------------|---------|-------------|-----------|-------|-------------|------------------|-----------|---------|-----------|------|
| Pollutant            | of data |             | ation tan |       | Range       | fluent<br>Median | Mean      | Range   | Median    | Mean |
| parameter            | points  | Range       | Median    | Mean  | Kange       | Median           | - FIE OIL | Kange   | Median    | Medi |
| Oil and grease, mg/L | 8       | 160 - 580   | 375       | 412   | 13 - 428    | 24               | 100       | 0 - 97  | 91        | 76   |
| BODs, mg/L           | В       | 485 - 2,000 | 1,550     | 1,420 | 100 - 2,400 | 235              | 187       | 0 - 87  | 80        | 87   |
| TSS, mg/L            | 8       | 300 - 840   | 535       | 536   | 22 - 770    | 64               | 61        | 0 - 96  | 89        | 89   |
| Phosphorus, mg/L     | 3       | 12 - 23     | 22        | 19    | 0.05 - 0.49 | 0.35             | 0.30      | 97 - 99 | 98        | 98   |
| Copper, µg/L         | 3       | 200 - 300   | 200       | 230   | 300 - 500   | 400              | 110       | 0       | 0         | 0    |
| Lead, µg/L           | 6       | 200 - 600   | 350       | 330   | 20 - 200    | 750              | 90        | 66 - 90 | 70        | 73   |
| Zinc, µg/L           | 8       | 420 - 1,100 | 600       | 670   | 500 - 1,100 | 1,100            | 910       | 0       | 0         | 0    |
| рнь                  | 5       | _c          | _c        | _c    | 5.8 - 7.0   | 6.1              | _c        | -       | -         | -    |

Results are obtained from sampling and analysis of one linen supply laundry.

bGiven in pH units.

CNot reported.

bGiven in pH units.

CNot reported.

b<sub>Given in pH units.</sub>

CNot reported.

TABLE 2-28. RESULTS OF LAUNDRY WASTEWATER TREATMENT WITH FERROUS SULFATE COAGULATION AND DAF [1]

|                         | Number  |                |          | oncentra |             |        |      |                 |           |      |
|-------------------------|---------|----------------|----------|----------|-------------|--------|------|-----------------|-----------|------|
| Pollutant               | of data | Equalizat      | ion tank |          | Eff         | uent   |      | Perce           | ent remov |      |
| parameter               | points  | Range          | Median   | Mean     | Range       | Median | Mean | Range           | Median    | Mear |
| Dil and grease, mg/L    | 8       | 347 - 2,600    | 735      | 915      | 12 - 41     | 27     | 28   | 93 - 99         | 97        | 97   |
| BOD <sub>5</sub> , mg/L | 8       | 757 - 1,900    | 1,235    | 1,312    | 85 - 370    | 215    | 209  | 77 <b>- 9</b> 1 | 87        | 84   |
| rss, mg/L               | 8       | 260 - 1,405    | 635      | 710      | 34 - 190    | 75     | 86   | 58 <b>-</b> 93  | 90        | 88   |
| Phosphorus, mg/L        | 3       | 17 - 27        | 21       | 21       | 0.05 - 0.33 | 0.05   | 0.14 | 99              | 99        | 99   |
| Copper, µg/L            | 3       | 800 - 8,000    | 2,000    | 3,600    | 30 - 100    | 90     | 730  | 87 - 99         | 96        | 80   |
| Lead, -µg/L             | 8       | 3,000 - 13,000 | 6,700    | 7,200    | 20 - 300    | 100    | 130  | 90 - 99         | 99        | 98   |
| lnc, µg/                | 8       | 940 - 3,400    | 2,600    | 2,500    | 70 - 300    | 110    | 130  | 85 - 90         | 95        | 95   |
| PH <sub>p</sub>         | 5       | 10.6 - 11.7    | 11.3     | _c       | 6.6 - 7.7   | 7.0    | _c   | -               | _         | _    |

aResults obtained from sampling and analysis at one industrial laundry.

TABLE 2-29. RESULTS OF LAUNDRY WASTEWATER TREATMENT WITH POLYELECTROLYTE AND DAF [1]

|                         | Number  |             |           | Concen | tration          |        |      |         |           |      |
|-------------------------|---------|-------------|-----------|--------|------------------|--------|------|---------|-----------|------|
| Pollutant               | of data | Equaliza    | ation tan |        | Ef               | fluent |      | Perc    | ent remov | al   |
| parameter               | points  | Range       | Median    | Mean   | Range            | Median | Mean | Range   | Median    | Mear |
| Oll and grease, mg/L    | 5       | 400 - 560   | 420       | 418    | 68 - 216         | 150    | 193  | 50 - 88 | 64        | 54   |
| BOD <sub>5</sub> , mg/L | 10      | 725 - 2,600 | 1,185     | 1,385  | 545 - 1,500      | 931    | 944  | 0 - 62  | 25        | 32   |
| rss, mg/L               | 9       | 390 - 3,000 | 615       | 904    | 110 - 670        | 410    | 387  | 0 - 96  | 32        | 57   |
| Phosphorus, mg/L        | 3       | 1.1 - 6.6   | 3.6       | 3.8    | 0.05 - 0.49      | 0.35   | 2.3  | 97 - 99 | 98        | 39   |
| Copper, µg/L            | 5       | 90 - 2,000  | 580       | 740    | 70 - <b>48</b> 0 | 180    | 200  | 0 - 96  | 35        | 73   |
| Lead, μg/L              | 5       | 40 - 2,000  | 950       | 810    | 50 - 950         | 210    | 320  | 0 - 84  | 51        | 60   |
| linc, µg/L              | 10      | 170 - 2,000 | 590       | 900    | 70 - 1,000       | 390    | 410  | 0 - 80  | 45        | 54   |
| oH <sub>p</sub>         | 5       | 8.6 - 10.1  | 9.7       | _c     | 7.5 - 10.0       | 8.5    | _c   | _       | -         | _    |

a Results obtained from sampling and analysis of three linen supply laundries.

bGiven in pH units.

CNot reported.

bGiven in pH units.

CNot reported.

TABLE 2-30. CONCENTRATIONS OF SELECTED ORGANICS IN LAUNDRY WASTEWATER BEFORE AND AFTER TREATMENT, BY TYPE OF CHEMICAL ADDITION [1]  $(\mu g/L)$ 

|                                                                                               | Syste            | em A <sup>b</sup> | Syst                      | em B <sup>C</sup>         | Syst                                                | em C <sup>d</sup>                      | Syst                  | em E <sup>e</sup>      |
|-----------------------------------------------------------------------------------------------|------------------|-------------------|---------------------------|---------------------------|-----------------------------------------------------|----------------------------------------|-----------------------|------------------------|
| Organic pollutant                                                                             | Influent         | Effluent          | Influent                  | Effluent                  | Influent                                            | Effluent                               | Influent              | Effluent               |
| Anthracene/phenanthrenef<br>Bis(2-ethylhexyl) phthalate<br>Butyl benzyl phthalate<br>Chrysene | 120 <sup>g</sup> | 100 <sup>g</sup>  | 20<br>4,700 <sup>g</sup>  | 10<br>450 <sup>g</sup>    | 380<br>1,900 <sup>g</sup><br>310                    | 70<br>610 <sup>g</sup>                 | 470<br>5,100<br>1,500 | 10<br>110<br>40<br>200 |
| Carbon tetrachloride<br>Pentachlorophenol<br>Chloroform                                       | 1,700            | 30                |                           |                           | 20                                                  | 30                                     |                       | 40<br>10               |
| 2-Chloronaphthalene<br>Dichlorobenzenes<br>Chlorobenzene                                      | 20 <sup>9</sup>  | 20 <sup>9</sup>   | 20                        | 10                        | 1,100                                               | 260                                    |                       | 20                     |
| Di-n-butyl phthalate 1,1-Dichloroethylene                                                     | 300g             | 270 <sup>g</sup>  | 30                        | 10                        | 50 <sup>g</sup>                                     | 150 <sup>g</sup>                       | 660                   | 60<br>20<br>1,000      |
| Di-n-octyl phthalate<br>Dichlorobromoethane                                                   |                  |                   |                           |                           | 150                                                 | 30                                     | 410                   | 290                    |
| 2,4-Dimethylphenol 1,2-Dichloropropane Ethylbenzene 1,2-Trans-dichloroethylene                |                  |                   | 10 <sup>g</sup>           | 30 <sup>g</sup>           | 460<br>1,000 <sup>9</sup>                           | 80 <sup>g</sup>                        | 50                    | 930                    |
| Isophorone<br>Methylene chloride<br>Naphthalene                                               | 40               |                   | 220 <sup>g</sup><br>1,200 | 2,600 <sup>g</sup><br>520 | 190<br>320<br>4,000 <sup>9</sup>                    | 3,300 <sup>g</sup><br>790 <sup>g</sup> | 410                   | 100                    |
| N-nitrosodiphenylamine<br>Tetrachloroethylene<br>1,1,1-Trichloroethane                        | 6,600            | 100               | 10 <sup>g</sup>           | 30 <b>g</b>               | 1,800<br>190 <sup>9</sup><br>20                     | 630<br>650 <b>9</b><br>10              |                       | 80                     |
| Trichloroethylene Toluene Phenol Benzene Pyrene                                               | <sub>20</sub> g  | 20 <sup>g</sup>   | 20 <sup>9</sup><br>20     | 80 <sup>9</sup><br>20     | 210<br>1,600 <sup>g</sup><br>100 <sup>g</sup><br>90 | 30<br>840g<br>100g<br>160              |                       | 190<br>120<br>20       |

 $<sup>^{</sup>a}$ Blanks indicate concentrations were below 10  $\mu$ g/L or compound was not detected. Values represent one data point only.

bPhysical-chemical treatment with alum coagulation and DAF for floc removal.

 $<sup>^{\</sup>mathrm{C}}$ Physical-chemical treatment with polyelectrolyte coagulation and DAF for floc removal.

dPhysical-chemical treatment with calcium chloride coagulation and DAF for floc removal.

ePhysical-chemical treatment with ferrous sulfate coagulation and DAF for floc removal.

fReference reported compound in this form.

gvalues are median concentrations for two or more data points.

TABLE 2-31. SUMMARY OF LAUNDRY WASTEWATER TREATMENT FOR REMOVAL OF ORGANIC CONTAMINANTS WITH PHYSICAL CHEMICAL SYSTEMS<sup>a</sup> [1]

|                             |                         | Co        | oncentra | tion, µg/L            |        |             |                      |           |      |
|-----------------------------|-------------------------|-----------|----------|-----------------------|--------|-------------|----------------------|-----------|------|
|                             | Equaliza                | ation tan | 4        | Ef                    | fluent |             | Perce                | ent remov |      |
| Organic pollutant           | Range                   | Median    | Mean     | Range                 | Median | Mean        | Range                | Median    | Mear |
| Anthracene/phenanthrene     | 160 - 470               | 380       | 290      | 10 - 66               | 12     | 29          | 25 - 98              | 83        | 69   |
| Benzene                     | 130                     | 65        | 65       | 120 - 200             | 160    | 160         | 0                    | 0         | 0    |
| Bis(2-ethylhexyl) phthalate | 820 - 9,000             | 740       | 2,300    | 35 - 1,000            | 140    | 310         | 0 - 98               | 68        | 63   |
| Butyl benzyl phthalate      | 170 - 1,500             | 310       | 610      | 42                    |        | 17          | 53 <b>-</b> 99       | 97        | 83   |
| Carbon tetrachloride        | 1,700                   | 850       | 850      | 30 - 36               | 33     | 33          | 0 - 88               | 49        | 49   |
| Chloroform                  | 180                     | 20        | 38       | 28                    | 12     | 15          | 0 - 76               | 41        | 41   |
| 2-Chloronaphthalene         | 14 - 20                 | 17        | 17       | 15 - 19               | 17     | 17          | 0 - 5                | 2         | 2    |
| Dichlorobenzene             | 1,100                   | 55        | 550      | 18 - 260              | 140    | 140         | 0 - 76               | 38        | 38   |
| Di-n-butyl phthalate        | 660                     | 160       | 230      | 11 - 350              | 100    | 150         | 0 - 97               | 55        | 48   |
| Di-n-octyl phthalate        | 28 - 410                | 150       | 200      | 33                    |        | 12          | 78 - 99              | 86        | 88   |
| 2,4-Dimethylphenol          | 46                      | 230       | 230      | 29                    | 15     | 15          | 0 - 99               | 50        | 50   |
| Ethylbenzene                | 17,500                  | 25        | 2,700    | 970                   | 44     | 250         | 0 - 99               | 3         | 37   |
| Isophorone                  | _D                      | 190       | 190      | -p                    |        |             |                      | 99        | 99   |
| Methylene chloride          | 10 - 540                | 57        | 120      | 6,000                 | 220    | 1,400       | 0 - 91               | 0         | 19   |
| Naphthalene                 | 4,800                   | 810       | 1,700    | 840                   | 500    | <b>4</b> 50 | 0 - 99               | 78        | 66   |
| N-nitrosodiphenylamine      | 1,800                   | 900       | 900      | 84 - 620              | 350    | 350         | 0 - 66               | 33        | 33   |
| Phenol                      | 600                     | 28        | 110      | 16 - 190              | 45     | 70          | 0 - 80               | 0         | 19   |
| Tetrachloroethylene         | 880                     | 30        | 190      | 1,000                 | 57     | 350         | 0 - 94               | 0         | 13   |
| 1,1,1-Trichloroethane       | 18 - <sub>b</sub> 6,600 | 3,300     | 3,300    | 14 - <sub>b</sub> 100 | 57     | 57          | 22 - <sub>b</sub> 98 | 60        | 60   |
| Trichloroethylene           | _D                      | 210       | 210      | _n                    | 30     | 30          | _B                   | 86        | 86   |
| Toluene                     | 19 - 2,600              | 250       | 720      | 14 - 8,300            | 380    | 1,400       | 0 - 65               | 0         | 19   |

 $<sup>^{\</sup>rm a}$ Blanks indicate concentration was below 10  $\mu$ g/L.

bMedians and means represent one data point.

based on a set coagulant dosage rate. UF systems also require less space than comparable physical-chemical systems with DAF.

Removability data for the tubular ultrafiltration module is given in Table 2-32.

TABLE 2-32. RESULTS OF LAUNDRY WASTEWATER TREATMENT USING A TUBULAR ULTRAFILTRATION MODULE [1]

| Pollutant        | concent  | rage<br>tration, | Average percent solids of sludge concentration, | Average<br>percent |
|------------------|----------|------------------|-------------------------------------------------|--------------------|
| <u>parameter</u> | Influent | Effluent         | mg/L                                            | removal            |
| Oil and grease   | 2,100    | 86               | 1.9                                             | 96                 |
| BOD <sub>5</sub> | 3,500    | 310              | 4.5                                             | 91                 |
| TSS              | 1,500    | 5                | _p                                              | 99                 |

aResults obtained from laboratory bench-scale unit.

Diatomaceous earth (DE) filters applied to treatment of laundry wastewater were found to be generally capable of excellent removal of suspended solids but not of colloidal matter. Wastewater at a linen supply laundry with an average flowrate of 530 m³/day (140,000 gpd) was treated by DE filtration. Effluent from an equalization tank was injected with DE and a proprietary oil adsorbent, then pumped through precoated pressure filters. Capabilities of this system, in terms of removing pollutants, are given in Table 2-33. The system was in full-scale operation; however, it has since been replaced by a treatment system using calcium chloride coagulation and DAF.

TABLE 2-33. RESULTS OF LAUNDRY WASTEWATER TREATMENT USING DIATOMACEOUS EARTH FILTRATION<sup>a</sup> [1]

|                      | Number  |                   | Concent     | ration |           |                 |         |
|----------------------|---------|-------------------|-------------|--------|-----------|-----------------|---------|
| Pollutant            | of data | Equalization tank |             | Ef:    | fluent    | Percent removal |         |
| parameter            | points  | Median            | Range       | Median | Range     | Median          | Range   |
| Oil and grease, mg/L | 5       | 390               | 250 - 430   | 210    | 180 - 350 | 43              | 0 - 53  |
| $BOD_5$ , $mg/L$     | 5       | 610               | 460 - 680   | 460    | 350 - 340 | 32              | 0 - 43  |
| TSS, mg/L            | 5       | 460               | 330 - 680   | 200    | 140 - 210 | 65              | 39 - 75 |
| Lead, µg/L           | 4       | 300               | 200 - 600   | 200    | 50 - 300  | 45              | 0 - 99  |
| Zinc, µg/L           | 5       | 570               | 430 - 1,100 | 430    | 340 - 500 | 35              | 0 - 55  |

aData obtained from 1 laundry; system is no longer in operation.

<sup>.</sup>bNot applicable.

Electrocoagulation (EC) systems are designed to treat laundry wastewater through two mechanisms. With the first, electrolysis includes coagulation by neutralizing or imparting a positive charge to negatively charged colloidal material. With the second, microbubbles formed as a result of electrolysis float the resulting floc to the surface of the contained effluent where it can be skimmed off.

In EC pilot tests chemical addition was required prior to electrolysis to achieve removal of pollutants. Alum, sulfuric acid, and polymer were added to the laundry effluent. Test results of laundry wastewater treatment using chemical addition and electrolysis are given in Table 2-34.

TABLE 2-34. RESULTS OF LAUNDRY WASTEWATER TREATMENT USING A PILOT ELECTROCOAGULATION SYSTEM<sup>a</sup> [1]

|                         | Number  |          | Concen    | tration  |                   |                |         |
|-------------------------|---------|----------|-----------|----------|-------------------|----------------|---------|
| Pollutant               | of data | Influent |           | Effluent |                   | Percent remova |         |
| parameter               | points  | Median   | Range     | Median   | Range             | Median         | Range   |
| Oil and grease, mg/L    | 4       | 530      | 380 - 690 | 79       | 74 - 146          | 80             | 75 - 89 |
| BOD <sub>5</sub> , mg/L | 4       | 770      | 660 - 960 | 270      | 140 - 600         | 70             | 9 - 82  |
| TSS, mg/L               | 4       | 290      | 250 - 330 | 140      | 120 - 170         | 53             | 48 - 51 |
| Copper, µg/L            | 4       | 200      | 200 - 300 | 100      | 100 - 200         | 50             | 33 - 50 |
| Lead, μg/L              | 1       | 1,100    | -         | 20       | -                 | 98             | -       |
| Zinc, µg/L              | 4       | 640      | 460 - 760 | 350      | 300 <b>- 44</b> 0 | 40             | 35 - 53 |

System incorporates chemical addition with alum, sulfuric acid, and polymer at average dosage rates of 1,100 mg/L, 850 mg/L, and 4 mg/L, respectively.

Other technologies have been tested on laundry wastewaters with varying degrees of success. In general, these techniques are not applicable to the pollutants present or are not considered economically competitive. They include reverse osmosis, foam separation, distillation and carbon adsorption.

#### II.2.3 REFERENCES

- Technical Support Document for Auto and Other Laundries Industry (draft contractor's report). Contract 68-03-2550, U.S. Environmental Protection Agency, Washington, D.C., August 1979.
- Status Report on the Treatment and Recycle of Wastewaters from the Car Wash Industry (draft contractor's report). Contract 68-01-5767, U.S. Environmental Protection Agency, Washington, D.C., July 1979.
- 3. NRDC Consent Decree Industry Summary Auto and Other Laundries.

#### II.3 COAL MINING

#### II.3.1 INDUSTRY DESCRIPTION [1, 2]

# II.3.1.1 General Description

Coals are classified into several ranks or types related to chemical composition and physical characteristics. The standard classes are anthracite, bituminous, subbituminous, and lignite. All ranks of coal are mined by the coal industry, which can be divided into the following two segments: (1) the production of anthracite, and (2) the production of bituminous coal, subbituminous coal, and lignite. The industry can also be divided by production processes into coal mining and coal services (coal cleaning and coal preparation), as indicated by the major SIC categories for this industry:

- SIC 1111 Anthracite Mining
- SIC 1112 Anthracite Mining Services SIC 1211 Bituminous Coal and Lignite Mining
- SIC 1213 Bituminous Coal and Lignite Mining Services

Once historically significant in the economic and industrial growth of the United States, the importance of anthracite coal as an energy source in this nation has been declining in recent years. Consequently, the anthracite industry is currently under consideration by the EPA for exemption from BATEA regulations.

The mining of bituminous coal and lignite constitutes the major portion of the coal mining industry. U.S. Geological Survey estimates indicate that bituminous coal and lignite currently comprise over 99% of the nation's total coal reserves.

According to the Bureau of Mines there were 6,168 active bituminous coal and lignite mines in the industry in 1975. The majority of the mines were small operations, with individual production of less than 90,700 Mg (100,000 tons) per year. Although these small mines comprised over 80% of the active facilities in 1975, they accounted for less than 20% of the bituminous coal production. Large mines producing greater than 90,700 Mg per year represented less than 20% of the facilities, but produced almost 81% of the coal. The recent trend has been toward larger mines and consolidation of mining companies.

The coal mining industry currently operates in 25 states located in Appalachia, the Midwest, and the Mountain and Pacific regions. The six leading coal producing states in 1975 were, in order of output, Kentucky, West Virginia, Pennsylvania, Illinois, Ohio, and Virginia. Production in these states accounted for 74% of the total U.S. output.

Table 3-1 presents industry summary data for the Coal Mining point source category in terms of the number of subcategories, number of dischargers, pollutants and toxics found in significant quantities, total number of toxic pollutants detected, and candidate treatment and control technologies [1, 3].

# TABLE 3-1. INDUSTRY SUMMARY [1, 3]

Industry: Coal Mining

Total Number of Subcategories: 3 Number of Subcategories Studied: 3

Number of Dischargers in Industry:

• Direct: 6,000

• Indirect: 0 • Zero: Not available

Pollutants and Toxics Found in Significant Quantities

Methylene chloride Chloroform Bis(2-ethylhexyl) phthalate Benzene Toluene 1,1,2,2-Tetrachloroethylene 1,2-Trans-dichloroethylene Di-n-butyl phthalate 1,1,1-Trichloroethane Trichlorofluoromethane Ethylbenzene 1,2-Dichloroethane Anthracene/Phenanthrene

2,6-Dinitrotoluene Chlorobenzene Suspended solids Iron Manganese Antimony Arsenic Chromium Copper Lead Mercury Nickel Thallium Zinc

Number of Toxic Pollutants Found in:

|                           | Raw<br>wastewater | Treated effluent |
|---------------------------|-------------------|------------------|
| Acid or ferruginous mines | 15                | 16               |
| Alkaline mines            | 29                | 48               |
| Preparation plants        | 54                | 28               |

#### Candidate Treatment and Control Technologies:

| Aeration        | Carbon adsorption |
|-----------------|-------------------|
| Neutralization  | Filtration        |
| Sedimentation   | Flocculation      |
| Ozonation       | Ion exchange      |
| Reverse osmosis | Starch xanthate   |
|                 |                   |

# II.3.1.2 Subcategory Descriptions

Based on similarities in raw materials, final products, manufacturing processes, and waste characteristics, the following subcategories of the coal mining industry were established [1]:

- 1. Acid or Ferruginous Mines
- 2. Alkaline Mines
- 3. Coal Preparation Plants and Associated Areas

Since wastewater characteristics within each of the subcategories are similar, these three subcategories are adequate to characterize the coal mining and preparation industries for the purpose of establishing effluent guidelines for the best available technology economically achievable (BATEA).

## Subcategory 1 - Acid or Ferruginous Mines

Characterizing the industry according to the quality of mine drainage is difficult because of the lack of readily available information on a mine-by-mine basis. However, the 1976 Development Document for the Coal Mining point source category generally categorizes mines in Maryland, Ohio, Pennsylvania, and northern West Virginia as being potentially acid or ferruginous [1]. According to the Bureau of Mines, there are an estimated 2,605 mines located in acid areas. Mines that are potentially acid make up a large portion of the bituminous surface mining facilities. Almost 50% of the surface mines reported by the Bureau of Mines in 1975 could be classified as potentially acid or ferruginous. Acid drainage, however, does not appear to be as much of a problem among deep mines in the bituminous industry. Approximately 70% of these mines can be categorized as having alkaline drainage.

Acid mine drainage is generated under natural conditions when pyritic coal seams are mined. The pyrites or iron sulfides contained in the coal and associated strata are exposed to the atmosphere during the mining process. In the presence of oxygen, water, and certain species of oxidizing bacteria (Thiobacillus ferroxidans and Ferrobacillus ferroxidans), these sulfides oxidize to ferrous sulfate, forming an acidic, ferruginous leachate.

#### Subcategory 2 - Alkaline Mines

Most bituminous and lignite coal mines are located in areas where the potential for the formation of acid mine drainage does not exist. According to estimates made by the Bureau of Mines, there are 3,563 bituminous coal and lignite mines which can be classified as having alkaline drainage (50% of the surface mines and 70% of the underground mines).

Alkaline mine drainage can be generated under natural conditions similar to those found in mines with acid drainage. Iron sulfides, however, are transformed into ferrous bicarbonates, and an alkaline iron-bearing water is produced. Additionally, there are large areas of coal reserves where the naturally occurring associated groundwaters are alkaline. The coal in these areas is usually lower in pyritic sulfur, and the resulting mine drainages do not develop the low pH characteristic of acid mine drainage.

# Subcategory 3 - Coal Preparation Plants and Associated Areas

The physical coal cleaning processes used today are oriented toward product standardization and reduction of ash, with increasing attention being placed on sulfur reduction. Coal preparation in commercial practice is currently limited to physical processes. In a modern coal cleaning plant, the coal is typically subjected to: (1) size reduction and screening, (2) gravity separation of coal from its impurities, and (3) dewatering and drying.

The commercial practice of coal cleaning is currently limited to separation of the impurities based on differences in the specific gravity of coal constituents (i.e., gravity separation process) and on the differences in surface properties of the coal and its mineral matter (i.e., froth flotation).

Coal preparation can be classified into five general levels. Levels 1 to 3 are generally used in the preparation of steam coal. Level 4 is used for metallurgical grade coal, and Level 5 has not yet been commercially demonstrated in this country. The five general levels of coal preparation are described below.

Level 1 - Crushing and Drying. Level 1 plants use rotary breaker crushers and screens for top size control and for the removal of coarse refuse. No washing is done and the entire process is dry. Since most removal of pyritic sulfur is accomplished by hydraulic separation, this level of cleaning is inefficient for reducing sulfur levels.

Level 2 - Coarse Size Coal Beneficiation. Level 2 cleaning plants, in addition to crushing and screening raw coal, also perform wet beneficiation of the coarse material with a jig or dense medium vessel. The fine material is mixed with the coarse product without washing. A finer sizing of the coal is accomplished than in Level 1. This system provides removal of only coarse pyritic sulfur material and is therefore recommended for a moderate pyritic sulfur content coal.

Level 3 - Coarse and Medium Size Coal Beneficiation. Level 3 cleaning is basically an extension of Level 2. Coal is crushed and separated into three size fractions by wet screening. The coarse material is cleaned in a coarse coal circuit. Medium

fractions are beneficiated by hydrocyclones, concentrating tables, or dense medium cyclones. Fine coal is dewatered and shipped with the clean coal or discarded as refuse. However, the level of beneficiation is not substantially greater than that of Level 2 with respect to sulfur removal and this system is recommended for use on low and medium sulfur coals which are relatively easy to wash. This process provides rejection of free pyrite and ash, as well as enhancement of energy content.

Level 4 - Coarse, Medium, and Fine Size Coal Beneficiation. In Level 4 preparation, coal is crushed and separated into three or more size fractions by wet screening. All size fractions are beneficiated. Heavy media processes are used for cleaning coarse and medium size fractions. Froth flotation processes or hydrocyclone processes are used for cleaning fine particles. Level 4 coal preparation systems provide high efficiency cleaning of coarse and fine coal fractions with lower efficiency cleaning of the ultrafines. This method accomplishes free pyrite rejection and improvement of Btu content.

Level 5 - "Deep Cleaning" Coal Beneficiation. Level 5 cleaning is basically Level 4 preparation in which one size fraction is rigorously cleaned to meet a low sulfur-low ash product specification. Two or three coal products are produced to various market specifications. This level also uses a fine coal recovery circuit to increase total plant recovery. Coal preparation processes are discussed in greater detail in the open literature.

There were 388 preparation plants processing bituminous coal and lignite in 1975 according to the Bureau of Mines [1]. Ninety-five percent of the preparation plants listed in the 1976 Keystone Coal Industry Manual used wet processing methods [1]. Only 21 plants were found to use dry processes. The majority of the wet processing plants use either heavy media separation or froth flotation, or both.

Wastewater from coal preparation emanates from two different sources: (1) process-generated wastewater, and (2) wastewater from associated areas which include coal preparation plant yards, immediate access roads, slurry ponds, drainage ponds, coal refuse piles, and coal storage piles and facilities.

The liquid discharges from coal preparation plants are often combined with discharges of the associated storage piles, refuse areas, and plant areas prior to final effluent treatment. The wastewater from these areas is characterized as being similar to the raw mine drainage at the mine being served by the preparation plant. Consequently, some refuse piles produce an acid leachate and others produce an alkaline leachate. The origin of the acid leachate is the same as that for acid mine drainage, and its prevention is the same; i.e., keep water away from the pyrites.

Date: 6/23/80 IT.3-5

#### II.3.2 WASTEWATER CHARACTERIZATION [1]

This section describes the sources and characteristics of wastewater from the coal mining industry. No wastewater is purposely generated in the extractive portion of coal mining because water is almost always a hindrance and an extra expense to pump and treat. A minor exception is the use of water for dust suppression and equipment cooling. Water enters coal mines via precipitation, groundwater infiltration, and surface runoff, and it can become polluted by contact with materials in the coal, overburden, or mine bottom. Most water entering underground mines passes through the mine roof from overlying strata (rock units). These rock units generally have well developed joint systems, which tend to cause vertical flow. Chemicals used in mining and repair of mining machinery may also be wastewater pollutants. Mine water is therefore considered a wastewater for the mining segment of the coal industry. It is discharged as mine drainage which may require treatment before it can enter into surface waters.

Based on these considerations and the industry categorization, it is possible to characterize wastewater from the coal mining industry in the following way.

- I. Mining of Anthracite, Bituminous Coal, and Lignite
  - A. Acid or Ferruginous Mines
    - 1. Raw Mine Drainage (untreated mine drainage definitely requiring neutralization and sedimentation treatment)
    - 2. Treated Mine Drainage
  - B. Alkaline Mines
    - 1. Raw Mine Drainage
    - 2. Discharge Effluent (untreated mine drainage of generally acceptable quality; i.e., not requiring neutralization or sedimentation)
    - 3. Sediment-Bearing Effluent (mine drainage which has passed through settling ponds or basins without a neutralization treatment)
- II. Mining Services for Anthracite, Bituminous Coal, and Lignite
  - A. Coal Preparation Plant Wastewater
  - B. Coal Storage, Refuse Storage, and Coal Preparation Plant Ancillary Wastewater

#### II.3.2.1 Subcategory 1 - Acid or Ferruginous Mines

Drainage from acid mines presents the most serious threat to the environment from the coal mining category. Acidity is deleterious to a variety of forms of life including fish and benthic organisms. The ferruginous components (ferric ion and ferrous ion), though not highly toxic in themselves, do contribute to the formation of insoluble hydroxides which coat benthic organisms, cover other aquatic food sources, and block fish gills. The acidic nature of this wastewater creates a strong solvent for many metals and minerals, and the data base confirms the elevated levels of many classical pollutants and heavy metals derived from both the coal seams and the associated strata.

All operations studied dewater their mines either on an intermittent or continual basis. The amount of wastewater discharged from these facilities varies considerably, ranging from approximately 3,800 to 265,000 m<sup>3</sup>/d (1 to 7 Mgal/d).

# II.3.2.2 Subcategory 2 - Alkaline Mines

The data base for this study shows that heavy metals and other toxic pollutants are seldom present in elevated concentrations in alkaline mine drainage, but alkaline wastewaters may be high in suspended solids and require settling.

Over 50% of the facilities studied in this subcategory dewater their mines on a continual basis. Of the rest, dewatering occurs only infrequently or not at all. The amount of wastewater discharged from these facilities ranges from 0 to 9,500  $\rm m^3/d$  (0 to 2.5 Mgal/d).

# II.3.2.3 Subcategory 3 - Coal Preparation Plants and Associated Areas

Since cleaning techniques generally require an alkaline medium for efficient and economic operation, process water does not dissolve appreciable quantities of the metallic minerals present in raw coal. On the other hand, some minerals and salts such as chlorides and sulfates of the alkalies and the alkaline earth metals found in raw coal dissolve easily in water. The principal pollutant present in preparation plant process water, however, is suspended solids. Process water from plants using froth flotation (Level 4 preparation plants) typically contains less suspended solids than such water from plants that do not recover coal fines.

All preparation plants studied use water in their cleaning processes, and 17 of 18 recycle at least 50% of their process water. The total process water circulated varied from 830 to 12,700 L/Mg

(240 to 3,700 gal/ton) of coal processed, and process water discharges to surface waters ranged from no discharge to 1,630 L/Mg of coal produced (475 gal/ton).

Tables 3-2 through 3-4 present the toxic pollutants detected for raw wastewater and secondary effluents, by subcategory. Tables 3-5 through 3-7 present conventional and classical pollutant raw wastewater and treated effluent concentrations, by subcategory. Values are generated from plant specific verification data presented in Section II.3.3.

#### II.3.3 PLANT SPECIFIC DESCRIPTION [1]

Reference 1 cites verification data for approximately 18 sample locations representative of 7 plants. Nine of the 18 sample locations (representative of 7 plants) had data for both untreated and treated wastewater, and 9 (representative of 3 plants) had data for treated wastewater only. Tables 3-8 through 3-18 present toxic pollutant and classical pollutant data for these 18 sample locations on a plant specific basis, by subcategory.

Verification data were not available to describe "associated areas," which is consequently defined based on screening data alone. Table 3-19 presents plant specific data for "associated areas."

Unless otherwise noted, all values are averages based upon a 3-day sampling period. Whenever a less-than value was encountered, its limit value was used to compute the given average. Unless present in all of the initial values, the less-than symbol (<) was dropped from the final average.

#### II.3.4 POLLUTANT REMOVABILITY

Full-scale treatment methods that have been cited in the literature, but for which no data were presented, include: neutralization sometimes followed by aeration and oxidation of Fe (II) to Fe (III), reverse osmosis, ion exchange, settling, ozonation, mixed media filtration, and engineering design (planning) to prevent acid formation (entailing oxygen, water, and contact time exclusion).

#### II.3.5 REFERENCES

1. Technical Assistance in the Implementation of the BAT Review of the Coal Mining Industry Point Source Category (draft contractor's report). Contracts 68-01-3273, 68-01-4762, and 68-02-2618, U.S. Environmental Protection Agency, Washington, D.C., March 1979.

- Development Document for Interim Final Effluent Limitations Guidelines and New Source Performance Standards for the Coal Mining Point Source Category. EPA 440/1-75/057 Group II, U.S. Environmental Protection Agency, Washington, D.C., October 1975.
- 3. NRDC Consent Decree Industry Summary Coal Mining.

TABLE 3-2. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN ACID OR FERRUGINOUS MINE WASTEWATER [1]

|                             |                  | wastewat | er     | Treat<br>Number of | ed efflu | ent     |
|-----------------------------|------------------|----------|--------|--------------------|----------|---------|
|                             | Number of sample |          |        |                    |          |         |
| Toxic pollutants            | locations        | Range    | Median | locations          | Range    | Median  |
| Metals and inorganics, mg/L |                  |          |        |                    |          |         |
| Antimony                    | 1                | 0.034    | 0.034  | 1                  | 0.016    | 0.016   |
| Arsenic                     | 1<br>1           | 0.028    | 0.028  | 1                  | 0.027    | 0.027   |
| Asbestos                    | NA               | NA       | NA     | NA                 | ΝA       | NA      |
| Beryllium                   | 1                | 0.009    | 0.009  | 1                  | <0.001   | < 0.001 |
| Cadmium                     | 1                | 0.010    | 0.010  | 1                  | <0.002   | < 0.002 |
| Chromium                    | 1                | 0.080    | 0.080  | 1                  | 0.020    | 0.020   |
| Copper                      | 1                | 0.043    | 0.043  | 1                  | <0.006   | <0.006  |
| Cyanide                     | 1                | <0.005   | <0.005 | 1                  | <0.006   | <0.006  |
| Lead                        | 1                | 0.100    | 0.100  | 1                  | <0.020   | <0.020  |
| Mercury                     | _a               | _a       | _a     | _a                 | _a       | _       |
| Nickel                      | 1                | 1.000    | 1.000  | 1                  | <0.005   | <0.005  |
| Selenium                    | 1                | 0.002    | 0.002  | 1                  | 0.003    | 0.003   |
| Silver                      | 1                | 0.003    | 0.003  | 1                  | 0.003    | 0.003   |
| Thallium                    | 1                | 0.008    | 0.008  | 1                  | <0.005   | <0.005  |
| Zinc                        | 1                | 2.00     | 2.00   | 1                  | <0.060   | <0.060  |
| Phthalates, µg/L            |                  |          |        |                    |          |         |
| Bis(2-ethylhexyl) phthalate |                  |          |        | 1                  | <6.7     | <6.     |
| Di-n-butyl phthalate        | 1                | <10      | <10    | 1                  | <10      | <10     |
| Diethyl phthalate           | 1                | <10      | <10    | 1                  | <10      | <10     |

Analysis not received.

TABLE 3-3. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN ALKALINE MINE WASTEWATER [1]

|                             |            | Raw wastewater      |                     | Ī         | reated effluent |        |
|-----------------------------|------------|---------------------|---------------------|-----------|-----------------|--------|
|                             | Number of  |                     |                     | Number of |                 |        |
|                             | sample     |                     |                     | sample    |                 |        |
| Toxic pollutants            | locations  | Range               | Median              | locations | Range           | Median |
| Metals and inorganics, mg/L |            |                     |                     |           |                 |        |
| Antimony                    | 5          | <0.002 - 0.006      | <0.002              | 14        | <0.002 - 0.016  | <0.005 |
| Arsenic                     | 1          | <0.002              | <0.002              | 13        | <0.002 - 0.009  | 0.002  |
| Asbestos                    | NA         | NA                  | NA                  | NA        | NA              | NA     |
| Beryllium                   | 1          | <0.001              | <0.001              | 9         | <0.001          | <0.001 |
| Cadmium                     | 1          | 0.002               | 0.002               | 9         | <0.002 - 0.004  | <0.002 |
| Chromium                    | 1          | 0.100               | 0.100               | 9         | 0.020 - 0.070   | 0.048  |
| Copper                      | 1          | <0.006              | <0.006              | 9         | <0.006 - 0.008  | <0.006 |
| Cyanide                     | 5          | <0.005              | <0.005              | 14        | <0.005 - <0.050 | <0.005 |
| Lead                        | <u>l</u> a | <0.020 <sub>a</sub> | <0.020 <sub>a</sub> | 9         | <0.020 - 0.267  | <0.020 |
| Mercury                     |            | _                   |                     | 4         | <0.001          | <0.001 |
| Nickel                      | 1          | <0.005              | <0.005              | 9         | < 0.005 - 0.027 | <0.005 |
| Selenium                    | 5          | <0.002 - <0.005     | 0.002               | 14        | <0.002 - 0.005  | <0.002 |
| Silver                      | 5          | <0.005 - 0.01       | <0.005              | 14        | <0.005 - <0.01  | <0.005 |
| Thallium                    | 5          | <0.005              | <0.005              | 14        | < 0.005 - 0.006 | <0.005 |
| Zinc                        | 1          | <0.060              | <0.060              | 14        | <0.060 - 0.073  | <0.060 |
| Phthalates, μg/L            |            |                     |                     |           |                 |        |
| Bis(2-ethylhexyl) phthalate | 4          | ND - <10            | <1.7                | 13        | ND - <10        | <6.7   |
| Butyl benzyl phthalate      | 4          | ND - <10            | ND                  | 13        | ND - <10        | ND     |
| Di-n-butyl pthalate         | 4          | <10                 | <10                 | 13        | <3.3 - <10      | <10    |
| Diethyl phthalate           | 4          | ND - <10            | ND                  | 13        | <6.7 - <10      | <10    |
| Di-n-octyl phthalate        |            |                     |                     | 13        | ND - <10        | ND     |
| Nitrogen compounds, µg/L    |            |                     |                     |           |                 |        |
| 3-3'-Dichlorobenzidine      |            |                     |                     | 13        | ND - < 6.7      | ND     |
| 1,2-Diphenylhydrazine       |            |                     |                     | 13        | ND - <10        | ND     |
| N-nitrosodiphenylamine      |            |                     |                     | 13        | ND - <6.7       | ŊD     |
| Phenols, µg/L               |            |                     |                     |           |                 |        |
| 2,4-Dinitrophenol           |            |                     |                     | 1         | <3.3            | <3.3   |
| Pentachlorophenol           |            |                     |                     | ī         | <3.3            | <3.3   |
| Phenol                      | 4          | ND - <10            | ND                  | 13        | ND - <10        | ND     |

TABLE 3-3 (continued)

|                                  | Ra        | w wastewater |        | Tre       | ated effluent |       |
|----------------------------------|-----------|--------------|--------|-----------|---------------|-------|
|                                  | Number of |              |        | Number of |               |       |
|                                  | sample    | _            |        | sample    | _             |       |
| Toxic pollutants                 | locations | Range        | Median | locations | Range         | Media |
| Monocyclic aromatics, µg/L       |           |              |        |           |               |       |
| Benzene                          |           |              |        | 13        | ND - < 6.7    | N     |
| 1,2-Dichlorobenzene              | 4         | ND - <10     | ND     | 13        | ND - <10      | N     |
| 1,4-Dichlorobenzene              | 4         | ND - <10     | ND     | 13        | ND - <10      | N     |
| Ethylbenzene                     |           |              |        | 13        | ND - < 6.7    | N!    |
| Toluene                          |           |              |        | 13        | ND - < 6.7    | N     |
| Polycyclic aromatic              |           |              |        |           |               |       |
| hydrocarbons, µg/L               |           |              |        |           |               |       |
| Anthracene                       | 4         | ND - <10     | ND     | 13        | ND - <10      | N     |
| Benz(a)anthracene                |           |              |        | 13        | ND - <10      | N     |
| Benzo(ghi)perylene               | 4         | ND - <10     | ND     | 13        | ND - < 3.3    | N     |
| Dibenz(ah)anthracene             | 4         | ND - <10     | ND     | 13        | ND - 8        | N     |
| Fluoranthene                     |           |              |        | 13        | ND - < 6.7    | N     |
| Indeno(1,2,3-cd)pyrene           | 4         | ND - <10     | ND     | 13        | ND - 6.3      | N     |
| Naphthalene                      |           |              |        | 13        | ND - <10      | N     |
| Pyrene                           |           |              |        | 13        | ND - < 3.3    | N     |
| Halogenated aliphatics, μg/L     |           |              |        |           |               |       |
| Carbon tetrachloride             | 4         | ND - <10     | ND     | 13        | ND - < 6.7    | N     |
| Chloroform                       |           |              |        | 13        | ND - <10      | N     |
| 1,2-Dichloroethane               | 4         | ND - <10     | ND     | 13        | ND - < 3.3    | N     |
| 1,1-Dichloroethylene             |           |              |        | 13        | ND - <10      | N     |
| Hexachloroethane                 |           |              |        | 13        | ND - <6.7     | N     |
| Methylene chloride               | 4         | ND - <10     | <1.7   | 13        | ND - 21       | < 3.  |
| 1,1,1-Trichloroethane            | 4         | ND - <10     | ND     | 13        | ND - <10      | N     |
| 1,1,2-Trichloroethane            |           |              |        | 13        | ND - <3.3     | N     |
| Trichloroethylene                |           |              |        | 13        | ND - <3.3     | N     |
| Pesticides and metabolites, µg/L |           |              |        |           |               |       |
| Aldrin                           |           |              |        | 9         | ND - <3.3     | 0.00  |
| α-BHC                            |           |              |        | 9         | ND - 0.02     | N     |
| δ−BHC                            |           |              |        | 9         | ND - 0.05     | N     |
| Y-BHC                            | 3         | ND - <10     | ND     | 9         | ND - <10      | N     |
| Heptachlor                       |           |              |        | 9         | ND - <3.3     | N     |
| Heptachlor epoxide               |           |              |        | 9         | ND - < 6.7    | N     |

<sup>&</sup>lt;sup>a</sup>Analysis not received.

TABLE 3-4. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN PREPARATION PLANT WASTEWATER [1]

|                             |           | Raw wastewater  |                                        | Treated effluent |                             |        |  |
|-----------------------------|-----------|-----------------|----------------------------------------|------------------|-----------------------------|--------|--|
|                             | Number of |                 | ······································ | Number of        |                             |        |  |
|                             | sample    | _               |                                        | sample           |                             |        |  |
| Toxic pollutants            | locations | Range           | Median                                 | locations        | Range                       | Mediar |  |
| Metals and inorganics, mg/L |           |                 |                                        |                  |                             |        |  |
| Antimony                    | 3         | 0.002 - 0.034   | <0.005                                 | 3                | <0.005 - 0.007              | 0.006  |  |
| Arsenic                     | 3         | 0.051 - 0.253   | 0.18                                   | 3                | 0.002 ~ 0.035               | <0.005 |  |
| Asbestos                    | NA        | NA              | NA                                     | NA               | NA                          | N/     |  |
| Beryllium                   | 3         | <0.010 - 0.057  | <0.01                                  | 3                | <0.001                      | <0.00  |  |
| Cadmium                     | 3         | <0.020          | <0.020                                 | 3                | <0.002 - 0.003              | <0.002 |  |
| Chromium                    | 3         | 0.233 - 0.530   | 0.367                                  | 3                | 0.013 - 0.043               | 0.01   |  |
| Copper                      | 3         | 0.233 - 1.33    | 0.687                                  | 3                | 0.006 - 0.009               | 0.00   |  |
| Cyanide                     | 3         | <0.005          | <0.005                                 | 3                | <0.005                      | <0.00  |  |
| Lead                        | 3_        | 0.400 - 0.967   | 0.467                                  | 3                | <0.020 - <sub>a</sub> 0.053 | 0.02   |  |
| Mercury                     | -a        | _a              | _a                                     | -                | _                           |        |  |
| Nickel                      | 3         | 0.217 - 1.23    | 0.30                                   | 3                | 0.003 - 0.100               | 0.0    |  |
| Selenium                    | 3         | <0.003 - 0.034  | <0.005                                 | 3                | 0.003 = 0.006               | 0.00   |  |
| Silver                      | 3         | <0.002 - <0.005 | <0.005                                 | 3                | <0.002 - <0.005             | <0.009 |  |
| Thallium                    | 3         | <0.005 - 0.015  | 0.006                                  | 3                | <0.005                      | <0.00  |  |
| Zinc                        | 3         | <0.600 - 5.33   | <0.600                                 | 3                | <0.060 - 0.06               | <0.060 |  |
| Ethers, µg/L                |           |                 |                                        |                  |                             |        |  |
| Bis(2-chloroethoxy) methane |           |                 |                                        | 3                | ND - < 3.3                  | N      |  |
| 4-Chlorophenyl phenyl ether | 3         | ND - 3.3        | ND                                     |                  |                             |        |  |
| Phthalates, µg/L            |           |                 |                                        |                  |                             |        |  |
| • • •                       | •         | -110 50         | -10                                    | 2                | <3.3 - <6.7                 | < 6.°  |  |
| Bis(2-ethylhexyl) phthalate | 3         | <10 - 50        | <10                                    | 3                | ND - <3.3                   | NI     |  |
| Butyl benzyl phthalate      | 3         | <3.3 - <10      | <10                                    | 3                | <3.3 - <10                  | < 3. I |  |
| Di-n-butyl phthalate        | 3         | <3.3 - <10      | <6.7                                   | 3                |                             | <3.    |  |
| Diethyl phthalate           | 3         | <3.3 - <10      | <3.3                                   | 3                | <3.3 - <10                  | <3.    |  |
| Dimethyl phthalate          | 3         | ND - <3.3       | ND                                     |                  |                             |        |  |
| Di-n-octyl phthalate        | 3         | ND - < 3.3      | ND                                     |                  |                             |        |  |
| Nitrogen compounds, µg/L    |           |                 |                                        |                  |                             |        |  |
| 1,2-Diphenylhydrazine       | 3         | ND - < 3.3      | ND                                     |                  |                             |        |  |
| N-nitrosodiphenylamine      | 3         | ND - 30         | ND                                     |                  |                             |        |  |
| Phenols, µg/L               |           |                 |                                        |                  |                             |        |  |
| • . •                       | 3         | ND - 36         | ND                                     |                  |                             |        |  |
| 2-Chlorophenol              | 3         | ND - 22         | ND                                     |                  |                             |        |  |
| 2,4-Dimethylphenol          | 3         | ND - 19         | ND                                     |                  |                             |        |  |
| 2-Nitrophenol               | 3         | ND - <10        | <10                                    | 3                | ND - < 6.7                  | <3.    |  |
| Phenol                      | •         |                 | - 20                                   | J                |                             | ,      |  |
| Cresols, µg/L               |           |                 |                                        |                  |                             |        |  |
|                             | 3         | ND - 194        | ND                                     |                  |                             |        |  |

TABLE 3-4 (continued)

|                                  | ĸ         | aw wastewater | Treated effluent |           |            |        |
|----------------------------------|-----------|---------------|------------------|-----------|------------|--------|
|                                  | Number of |               |                  | Number of |            |        |
|                                  | sample    |               |                  | sample    |            |        |
| Toxic pollutants                 | locations | Range         | Median           | locations | Range      | Median |
| Monocyclic aromatics, µg/L       |           |               |                  |           |            |        |
| Benzene                          | 3         | ND - 15       | <3.3             |           |            |        |
| 2,4-Dinitrotoluene               | 3         | ND - 6        | ND               |           |            |        |
| Ethylbenzene                     | 3         | ND - < 6.7    | ND               | 3         | ND - < 3.3 | N      |
| Nitrobenzene                     | 3         | ND - 7        | ND               |           |            |        |
| Toluene                          | 3         | ND - 8        | ND               | 3         | ND - 7.3   | N      |
| Polycyclic aromatic              |           | •             |                  |           |            |        |
| hydrocarbons, µg/L               |           |               |                  |           |            |        |
| Acenaphthene                     | 3         | ND - <10      | <3.3             |           |            |        |
| Acenaphthylene                   | 3         | ND - 8        | ND               |           |            | _      |
| Anthracene                       | 3         | <10 - 132     | 33               | 3         | ND - <3.3  | <3.    |
| Benz(a)anthracene                | 3         | 6 - 10.3      | <10              |           |            |        |
| Benzo(a)pyrene                   | 3         | <10 - 12      | <10              |           |            |        |
| Benzo(ghi)perylene               | 3         | <3.3 - 12     | <10              |           |            |        |
| Benzo(k)fluoranthene             | 3         | <3.3 - 12     | <10              |           |            |        |
| Chrysene                         | 3         | ND - 29       | ND               |           |            |        |
| Dibenz(ah)anthracene             | 3         | ND - < 3.3    | ND               |           |            |        |
| Fluoranthene                     | 3         | <6.7 - 16     | < 10             |           |            |        |
| Fluorene                         | 3         | <6.7 - 42     | < 10             |           |            |        |
| Indeno(1,2,3-cd)pyrene           | 3         | ND - < 6.7    | ND               |           |            |        |
| Naphthalene                      | 3         | <10 - 402     | 43.5             |           |            |        |
| Pyrene                           | 3         | <3.3 - 19     | <10              |           |            |        |
| Polychlorinated biphenyls        |           |               |                  |           |            |        |
| and related compounds, µg/L      |           |               |                  |           |            |        |
| 2-Chloronaphthalene              | 3         | ND - < 3.3    | ND               |           |            |        |
| Halogenated aliphatics, µg/L     |           |               |                  |           |            |        |
| Chloroform                       | 3         | ND - <6.7     | ND               | 3         | ND - < 6.7 | N      |
| Methylene chloride               | 3         | ND - 82       | ND               | 3         | ND - 19    | <3.    |
| 1,1,2,2-Tetrachloroethane        | •         |               |                  | 3         | ND - < 3.3 | N      |
| Tetrachloroethylene              |           |               |                  | 3         | ND - < 3.3 | N      |
| 1,1,1-Trichloroethane            | 3         | ND - 7.67     | ND               | 3         | ND - < 3.3 | N      |
| Trichloroethylene                | 3         | ND - <10      | ND               | 3         | ND - <10   | <1     |
| Pesticides and metabolites, µg/L |           |               |                  |           |            |        |
| α-Endosulfan                     | 3         | ND - < 6.7    | ' ND             |           |            |        |
| β-Endosulfan                     | 3         | ND - <6.7     | ND               |           |            |        |
| Isophorone                       | 3         | ND - 307      | ND               |           |            |        |

<sup>&</sup>lt;sup>a</sup>Analysis not received.

TABLE 3-5. WASTEWATER CHARACTERIZATION, ACID OR FERRUGINOUS MINES[1]

Influent flowrate, gpd: 5,970,000

|                 | Raw              | wastewa | ter    | Treated effluent |       |        |  |  |
|-----------------|------------------|---------|--------|------------------|-------|--------|--|--|
|                 | Number of sample |         |        | Number of sample |       |        |  |  |
| Characteristics | locations        | Range   | Median | locations        | Range | Median |  |  |
| COD, mg/L       | 1                | 62.7    | 62.7   | 1                | 4.6   | 4.6    |  |  |
| TOC, mg/L       | 1                | 8.0     | 8.0    | 1                | 3.9   | 3.9    |  |  |
| Hq              | 1                | 4.4     | 4.4    | 1                | 8.2   | 8.2    |  |  |

TABLE 3-6. WASTEWATER CHARACTERIZATION, ALKALINE MINES [1]

Influent flowrate, gpd: 53,000 median (2,880 to 710,000 range at 5 sample locations)

|                     | T                          | Treated effluent |        |                            |                 |        |
|---------------------|----------------------------|------------------|--------|----------------------------|-----------------|--------|
| Characteristics     | Number of sample locations | Range            | Median | Number of sample locations | Range           | Median |
|                     |                            |                  |        |                            |                 |        |
| COD, mg/L           | 5                          | 14.3 - 90.7      | 24.0   | 14                         | 13.7 - 136      | 22.5   |
| TOC, mg/L           | 5                          | 7.2 - 57.0       | 23.3   | 14                         | 2.9 - 65.3      | 7.8    |
| Total phenols, mg/L | 5                          | <0.010 - <0.020  | <0.010 | 14                         | <0.010 - <0.020 | <0.010 |
| pH                  | 5                          | 6.6 - 8.2        | 7.6    | 14                         | 6.3 - 8.5       | 7.8    |

Date: 6/21/79

TABLE 3-7. WASTEWATER CHARACTERIZATION, PREPARATION PLANTS [1]

Influent flowrate, gpd: 9,976,000 median (274,000 to 12,432,960 range at
3 sample locations)

|                     |                            | Raw wastewater  | T       | Treated effluent           |                 |         |  |  |
|---------------------|----------------------------|-----------------|---------|----------------------------|-----------------|---------|--|--|
| Characteristics     | Number of sample locations | Range           | Međian  | Number of sample locations | Range           | Median  |  |  |
| COD, mg/L           | 3                          | 20,724 - 48,792 | 36,300  | 3                          | 19.2 - 118.7    | 20.3    |  |  |
| TOC, mg/L           | 3                          | 1,492 - 8,447   | 2,863   | 3                          | 6.8 - 96.8      | 19.1    |  |  |
| Total phenols, mg/L | 3                          | <0.010 - <0.020 | < 0.010 | 3                          | <0.010 - <0.020 | < 0.010 |  |  |
| рН                  | 3                          | 6.6 - 7.3       | 6,37    | 3                          | 6.8 - 7.4       | 6.9     |  |  |

TABLE 3-8. WASTEWATER CHARACTERIZATION, MINE NC-20 [1]

Category: Coal Mining Subcategory: Acid or Ferruginous Mines Raw wastewater flowrate, gpd: 5,790,000

|                             | Wastewater<br>Characterization |                            |  |
|-----------------------------|--------------------------------|----------------------------|--|
|                             | Raw wastewater b               | Treated effluen            |  |
| Pollutant                   | characterization <sup>D</sup>  | concentration <sup>C</sup> |  |
| Classical parameters        |                                |                            |  |
| TSS, mg/L                   | 134.4                          | 47                         |  |
| Total volatile solids, mg/L | <b>391.</b> 3                  | 90                         |  |
| Settleable solids, mL/L     | 1.4                            | <0.1                       |  |
| COD, mg/L                   | 62.7                           | 4.6                        |  |
| TOC, mg/L                   | 8.0<br>4.4                     | 3.9 <sub>a</sub>           |  |
| рH                          |                                | 8.2                        |  |
| Phenol, mg/L                | <0.010                         | <0.010                     |  |
| Metals, mg/L                |                                |                            |  |
| Aluminum                    | 46.7                           | 0.133                      |  |
| Antimony                    | 0.034<br>0.028 <sup>d</sup>    | 0.016                      |  |
| Arsenic                     |                                | 0.027                      |  |
| Barium                      | <0.005                         | <0.005                     |  |
| Beryllium                   | 0.009                          | <0.001                     |  |
| Boron                       | 0 <b>.3</b> 33                 | 0.267                      |  |
| Cadmium                     | 0.010                          | <0.002                     |  |
| Calcium                     | <b>3</b> 67                    | 570                        |  |
| Chromium                    | 0.080                          | 0.020                      |  |
| Cobalt                      | 0. <b>3</b> 67                 | <0.005                     |  |
| Copper                      | 0.043                          | <0.006                     |  |
| Iron                        | 167                            | 0.233                      |  |
| Lead                        | 0.100                          | <0.020                     |  |
| Magnesium                   | 100                            | 57.3                       |  |
| Manganese                   | 10 <sub>e</sub>                | 0.833                      |  |
| Mercury                     | -                              |                            |  |
| Molybdenum                  | 0.083                          | <0.005                     |  |
| Nickel                      | 1.000                          | <0.005                     |  |
| Selenium                    | 0.002                          | 0.003                      |  |
| Silver                      | 0.003                          | 0.003                      |  |
| Sodium                      | 403                            | 427                        |  |
| Thallium                    | 0.008                          | <0.005                     |  |
| Tin                         | 0.093                          | 0.020                      |  |
| Titanium                    | <0.020                         | <0.020                     |  |
| Vanadium                    | 0.040                          | <0.010                     |  |
| Yttrium                     | 0.167                          | <0.020                     |  |
| Zinc                        | 2.00                           | <0.060                     |  |
| Cyanide                     | <0.005                         | <0.005                     |  |
| Toxic pollutants, µg/L      | e                              |                            |  |
| Acenaphthene                | _~<br>e                        | ND                         |  |
| Benzene                     |                                | ND                         |  |
| Carbon tetrachloride        | -                              | ND                         |  |
| Chlorobenzene               | <u>-</u> -                     | ND                         |  |
| Hexachloroethane            | <sup>ND</sup> e                | ND                         |  |
| 1,2-Dichloroethane          | -e                             | ND                         |  |
| 1,1,1-Trichloroethane       | _e                             | ND                         |  |
| 1,1,2-Trichloroethane       |                                | ND<br>ND                   |  |
| 1,1,2,2-Tetrachloroethane   | _                              | ND                         |  |
| 2-Chloronaphthalene         | ND <sub>e</sub>                | ND                         |  |
| Chloroform                  | -<br>175                       | ND                         |  |
| 2-Chlorophenol              | ND                             | ND                         |  |

TABLE 3-8 (continued)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wastewater a     |                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | characterization |                  |  |  |
| P=11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Raw wastewater b | Treated effluent |  |  |
| Pollutant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | characterization | concentration    |  |  |
| Toxic pollutants, µg/L (cont'd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |  |  |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND               | ND               |  |  |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND               | ND               |  |  |
| 3,3'-Dichlorobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND <sub>e</sub>  | ND               |  |  |
| 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | ND               |  |  |
| 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND               | ND               |  |  |
| 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND               | ND               |  |  |
| 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND               | ND               |  |  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Že.              | ND               |  |  |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND               | ND               |  |  |
| 4-Chlorophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND               | ND               |  |  |
| Bis (2-chloroethoxy) methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND_              | ND               |  |  |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _e               | ND               |  |  |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _e               | ND               |  |  |
| Trichlorfluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _e               | ND               |  |  |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND               | ND               |  |  |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND               | ND               |  |  |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND               | ND               |  |  |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND               | ND<br>ND         |  |  |
| 4,6-Dinitro-o-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND               | ND               |  |  |
| The state of the s | ND               | ND               |  |  |
| N-nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND<br>ND         | NTD              |  |  |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | ***              |  |  |
| Bis (2-ethylhexyl) phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND               | <6.7             |  |  |
| Butyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND               | ND               |  |  |
| Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <10              | <10              |  |  |
| Di-n-octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND               | ND               |  |  |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <10              | <10              |  |  |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND               | ND               |  |  |
| Benz(a)anthracene/chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND               | ND               |  |  |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND               | ND               |  |  |
| Benzo(b)fluoranthene/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  |  |  |
| benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND               | ND               |  |  |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND               | ND               |  |  |
| Anthracene/phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND               | ND               |  |  |
| Benzo(ghi)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>N</b> D       | ND               |  |  |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND               | ND               |  |  |
| Dibenz(ah)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>N</b> D       | ND               |  |  |
| Indeno(1,2,3-cd)pyrene +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND               | ND               |  |  |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND <sub>e</sub>  | ND               |  |  |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                | ND               |  |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _e               | ND               |  |  |
| Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _e               | ND               |  |  |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND               | ND               |  |  |
| <pre>a-Endosulfan</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>N</b> TD      | ND               |  |  |
| 8-Endosulfan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND               | ND               |  |  |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND               | ND               |  |  |
| Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND               | ND               |  |  |
| Heptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND               | ND               |  |  |
| a-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND               | ND               |  |  |
| Y-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<br>ND         | ND               |  |  |
| 6-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND               | ND               |  |  |
| 0-DUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND               | AL               |  |  |

a All data based on 3-day sampling, except as noted.

bRaw mine water.

CTreated effluent.

Data based on 2 days.

<sup>&</sup>lt;sup>e</sup>Analysis not available.

TABLE 3-9. WASTEWATER CHARACTERIZATION, MINE NC-8 [1]

Category: Coal Mining Subcategory: Alkaline Mines

Raw wastewater flowrate, gpd: 12,432,960

| T                                 |                      | Treated effluent |                  |                               |                               |                |  |
|-----------------------------------|----------------------|------------------|------------------|-------------------------------|-------------------------------|----------------|--|
|                                   | Raw wastewater       | Nondischarging   | Nondischarging   | Active pond 004               | Active pond 005               | Nondischarging |  |
| Pollutant                         | Influent to pond 003 | active pond 002  | active pond 003  | treated effluent <sup>a</sup> | treated effluent <sup>a</sup> | active pond 00 |  |
| Classical parameters <sup>b</sup> |                      |                  |                  |                               |                               |                |  |
| TSS, mg/L                         | 7.9                  | 16.4             | 26.0             | 4.1                           | 118                           | 26             |  |
| Total volatile solids, mg/L       | 207                  | 197              | 307              | 155                           | 333                           | 307            |  |
| Settleable solids, mL/L           | <0.1                 | 0.1              | 0.2              | 0.2                           | 0.43                          | 0.2            |  |
| COD, mg/L                         | 24                   | 13.9             | 17.8             | 41.3                          | 23.9                          | 17.8           |  |
| TOC, mg/L                         | 23.3                 | 2.9              | 4.6              | 4.8                           | 5.4                           | 4.6            |  |
| рH                                | 6.6°                 | 8.3              | 7.3 <sup>c</sup> | 7.9 <sup>c</sup>              | 8.1 <sup>c</sup>              | 8.1            |  |
| Phenol, mg/L                      | <0.020               | <0.020           | <0.020           | <0.020                        | <0.020                        | <0.020         |  |
| Metals, mg/L                      |                      |                  |                  |                               |                               |                |  |
| Aluminum                          | 0.97                 | 0.700            | 1.000            | 0.733                         | 3.33                          | 0.700          |  |
| Antimony                          | <0.002               | 0.002            | <0.002           | 0.002                         | 0.012                         | 0.002          |  |
| Arsenic                           | <0.002               | 0.002            | <0.002           | 0.002                         | 0.008                         | 0.002          |  |
| Barium                            | 0.013                | 0.009            | 0.010            | 0.030                         | 0.026                         | 0.020          |  |
| Beryllium                         | <0.001               | <0.001           | <0.001           | <0.001                        | <0.001                        | <0.001         |  |
| Boron                             | 0.43                 | 0.300            | 0.367            | 0.157                         | 1.00                          | 0.400          |  |
| Cadmium                           | 0.002                | <0.002           | <0.002           | <0.002                        | 0.002                         | <0.002         |  |
| Calcium                           | 243                  | 110              | 180              | 95.3                          | 103.3                         | 98             |  |
| Chromium                          | 0.100                | 0.037            | 0.067            | 0.020                         | 0.06                          | 0.030          |  |
| Cobalt                            | <0.005               | <0.005           | <0.005           | <0.005                        | <0.005                        | <0.005         |  |
| Copper                            | <0.006               | <0.006           | <0.006           | <0.006                        | 0.007                         | <0.006         |  |
| Iron                              | 0.630                | 0.367            | 0.733            | 0.400                         | 3.47                          | 0.467          |  |
|                                   | <0.020               | <0.020           | <0.020           | <0.020                        | <0.020                        | <0.020         |  |
| Lead                              | 100                  | 70               | 99               | 40                            | 87                            | 60             |  |
| Magnesium                         | 4.000                | 0.200            | 0.97             | 83.3                          | 0.17                          | 0.133          |  |
| Manganese                         | q                    | d                | _d               | _d                            | _d                            | _d             |  |
| Mercury                           | <0.005               | <0.005           | <0.005           | <0.005                        | 0.017                         | 0.008          |  |
| Molybdenum<br>Nickel              | <0.005               | <0.005           | <0.005           | <0.005                        | <0.005                        | <0.005         |  |
| Selenium                          | <0.005               | <0.005           | <0.005           | <0.005                        | <0.020                        | <0.005         |  |
| Silver                            | <0.005               | <0.005           | <0.005           | <0.005                        | <0.005                        | <0.005         |  |
|                                   | 313                  | 220              | 230              | 58                            | 800                           | 217            |  |
| Sodium                            | <0.005               | <0.005           | <0.005           | <0.005                        | <0.005                        | <0.005         |  |
| Thallium                          | 0.030                | 0.015            | 0.030            | 0.010                         | 0.033                         | 0.010          |  |
| Tin'                              | <0.020               | <0.020           | 0.020            | <0.020                        | 0.037                         | <0.020         |  |
| Titanium                          | <0.020               | <0.010           | <0.010           | <0.010                        | <0.010                        | <0.010         |  |
| Vanadium                          | <0.020               | <0.020           | <0.020           | <0.020                        | <0.010                        | <0.020         |  |
| Yttrium                           |                      | <0.020           | <0.060           | <0.060                        | 0.073                         | <0.060         |  |
| Zinc                              | <0.060               |                  | <0.005           | <0.050                        | <0.005                        | <0.050         |  |
| Cyanide                           | <0.005               | <0.005           | 10.003           | 10.030                        | -0.003                        |                |  |

TABLE 3-9 (continued)

|                             |                      | . Treated effluent |                 |                   |                  |                |
|-----------------------------|----------------------|--------------------|-----------------|-------------------|------------------|----------------|
|                             | Raw wastewater       | Nondischarging     | Nondischarging  | Active pond 004   | Active pond 005  | Nondischarging |
| Pollutant                   | influent to pond 003 | active pond 002    | active pond 003 | treated effluenta | treated effluent | active pond 00 |
| oxic pollutants, µg/L       |                      |                    |                 |                   | •                |                |
| Acenaphthene                | ND                   | ND                 | ND              | f                 | f                | ND             |
| Benzene                     | ND                   | ND                 | ND              | <br>f             | <br>f            | ND             |
| Carbon tetrachloride        | ND                   | ND                 | ND              | - <u>-</u> -      | - <u>-</u>       | ND             |
| Chlorobenzene               | ND                   | ND                 | ND              |                   | - <u>-</u> -     | ND             |
| Hexachloroethane            | ND                   | ND                 | ND              | <6.7 <sub>f</sub> | - <u>-</u>       | ND             |
| 1,2-Dichloroethane          | ND                   | ND                 | ND              | <del>,</del>      | - <u>-</u>       | ND             |
| 1,1,1-Trichloroethane       | ND                   | ND                 | ND              |                   | - <u>-</u> -     | ND             |
| 1.1.2-Trichloroethane       | <b>N</b> D           | ND                 | ND              | _f<br>_f          | - <u>-</u> -     | ND             |
| 1,1,2,2-Tetrachloroethane   | ND                   | ND                 | ND              |                   |                  | ND             |
| 2-Chloronaphthalene         | ND                   | ND                 | ND              | ND f              | ND <sub>f</sub>  | ND             |
| Chloroform                  | ND<br>_c             | ND                 | ND              | -*                | -                | ND             |
| 2-Chlorophenol              | _c                   | ND                 | ND              | ND                | ND               | ND             |
| 1,2-Dichlorobenzene         | <10                  | ND                 | ND              | <6.7              | МD               | <10            |
| 1.4-Dichlorobenzene         | <10                  | ND                 | ND              | <6.7              | ND               | <10            |
| 3,3'-Dichlorobenzidine      | <10 <sub>c</sub>     | ND                 | ND              | <6.7 <sub>£</sub> | ND               | ND             |
| 1,1-Dichloroethylene        | ND                   | ND                 | ND              |                   | ND               | ND             |
| 2,4-Dimethylphenol          | ND                   | ND                 | ND              | ND                | <b>N</b> D       | ND             |
| 2,4-Dinitrotoluene          | ND                   | ND                 | ND              | ND                | ND               | ND             |
|                             | NTD                  | ND                 | ND              | ND <sub>f</sub>   | ND               | <10            |
| 1,2-Diphenylhydrazine       | ND                   | ND                 | NTD             | _r                | <6.7             | ND             |
| Ethylbenzene                | ND                   | ND                 | ND              | <6.7              | ND               | ND             |
| Fluoranthene                | ND                   | ND                 | ND              | ND                | ND               | ND             |
| 4-Chlorophenyl phenyl ether | ND                   | ND                 | <10             | ND.               | ND               | ND             |
| Bis(2-chloroethoxy) methane | ND                   | ND                 | ND              | - <u>r</u>        | <6.7             | ND             |
| Methylene chloride          | ND                   | ND                 | ND              | - <mark>t</mark>  | ND               | ND             |
| Bromoform                   | ND                   | ND                 | ND              | _ <b>r</b>        | ND               | ND             |
| Trichlorofluoromethane      | ND                   | ND                 | ND              | ND                | ND               | ND             |
| Isophorone                  | ND                   | ND                 | ND              | ND                | ND               | <10            |
| Naphthalene                 |                      | ND                 | ND              | NTD               | ND               | ND             |
| Nitrobenzene                | ND<br>_c<br>_c       | ND                 | ND              | ND                | ND               | ND             |
| 2-Nitrophenol               | _c                   | ND                 | ND<br>ND        | ND                | <6.7             | ND             |
| 4,6-Dinitro-o-cresol        | NTO                  | ND                 | ND              | ND                | ND               | ND             |
| N-nitrosodiphenylamine      | <10 <sup>c</sup>     | <10                | ND<br><10       | <10               | <10              | ND             |
| Phenol                      | ~10                  | -70                | -10             | - 40              | <del>-</del> -   |                |

TABLE 3-9 (continued)

|                                | Treated effluent        |                 |                 |                   |                                               |                |  |
|--------------------------------|-------------------------|-----------------|-----------------|-------------------|-----------------------------------------------|----------------|--|
|                                | Raw wastewater          | Nondischarging  | Nondischarging  | Active pend 004   | Active pond 005                               | Nondischarging |  |
| Pollutant                      | influent to pond 003    | active pond 002 | active pond 003 | treated effluent" | treated effluenta                             | active pond 00 |  |
| Toxic pollutants, pg/L (cont'd | )                       |                 |                 |                   |                                               |                |  |
| Bis(2-ethylhexyl) phthalate    | <10                     | <10             | <10             | ~10               | <10                                           | -10            |  |
| Butyl benzyl phthalate         | <10                     | <10             | <10             | <10               | <19                                           | -10            |  |
| Di-n-butyl phthalate           | <10                     | <10             | <10             | <10               | <19                                           | -10            |  |
| Di-n-octyl phthalate           | ND                      | ND              | ND              | ND                | <6.7                                          | <10            |  |
| Diethyl phthalate              | ND_                     | <10             | ND              | <10               | <10                                           | <10            |  |
| Dimethyl phthalate             | _c                      | ND              | ND              | ND                | ND                                            | ND             |  |
| Benz(a)anthracene/chrysene     | ND<br>- c<br>- c<br>- c | ND              | ND              | <3.3              | ND                                            | ND             |  |
| Benzo(a)pyrene                 | _c                      | ND              | ND              | ND                | ND                                            | dи             |  |
| Benzo(b) fluoranthene/         |                         |                 |                 |                   |                                               |                |  |
| benzo(k)fluoranthane           | - <sup>c</sup>          | ND              | ND              | ND                | ND                                            | ND             |  |
| Acenaphthylene                 | ND                      | ND              | ND              | ND                | ND                                            | ND             |  |
| Anthracene/phenanthrene        | <10                     | <10             | ND              | <3.3              | <3.3                                          | ND             |  |
| Benzo(ghi)perylene             | <10                     | ND              | ND              | <3.3              | ND                                            | ND             |  |
| Fluorene                       | ND                      | ND              | ND              | ND                | ND                                            | ND             |  |
| Dibenzo(ah)anthracene          | <10                     | ND              | ND              | 8                 | ND                                            | ΝD             |  |
| Indeno(1,2,3-cd)pyrene         | <10                     | ND              | ND              | 6.3               | ND                                            | ND             |  |
| Pyrene                         | ND                      | ND              | ND              | <3.3              | МD                                            | ΝD             |  |
| Tetrachloroethylene            | ND                      | ND              | ND              | - <u>t</u>        | ND                                            | ND             |  |
| Toluene                        | ND                      | ND              | ND              | - i               | ND                                            | ND             |  |
| Trichloroethylene              | ND                      | ND              | NTD             | _f                | ND f                                          | ND             |  |
| Aldrin                         | NA                      | NА              | NA              | NA                | - <u>-</u> -                                  | NA             |  |
| q-Endosulfan                   | NA                      | NA              | NA              | NA                |                                               | NA             |  |
| 8-Endosulfan                   | NA                      | NA              | NA              | NA                |                                               | NA             |  |
| Endrin                         | NA                      | NA              | NA              | NA                |                                               | NA             |  |
| Heptachlor                     | NA                      | NA              | NA              | NA                |                                               | NA             |  |
| Heptaclor epoxide              | NA                      | NA              | NA              | NA                |                                               | AИ             |  |
| a-BHC                          | NA                      | NA              | NA              | NA                | - f<br>- f<br>- f<br>- f<br>- f<br>- f<br>- f | NA             |  |
| у-ВНС                          | NA                      | NA              | NA              | NA                | - <b>-</b> -                                  | NA             |  |
| δ-BHC                          | NA                      | NA              | NA              | NA                |                                               | NA             |  |
| 2,4-Dinitrophenol              | ND                      | ND              | ND              | ND                | <3.3                                          | ND             |  |
| Pentachlorophenol              | ND                      | ND              | ND              | NTD               | <3.3                                          | ND             |  |

a Data for toxic pollutants based on 2-day sampling, except as noted.

ball data for classical parameters and metals based on 3-day sampling, except as noted.

<sup>&</sup>lt;sup>C</sup>Data based on 2-day sampling.

d Analysis not available.

 $<sup>^{\</sup>mathbf{e}}_{\mathsf{Data}}$  for toxic pollutants are based on 1-day sampling, except as noted.

f Data based on 1-day sampling.

TABLE 3-10. WASTEWATER CHARACTERIZATION, MINE V-8 [1]

Category: Coal Mining Subcategory: Alkaline Mines Raw wastewater flowrate, gpd: 53,000

|                                                                                                   | Wastewater<br>characterization <sup>a</sup>             |                                                        |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--|--|
| Pollutant                                                                                         | Raw wastewater b                                        | Treated effluent concentration                         |  |  |
| Classical parameters                                                                              |                                                         |                                                        |  |  |
| TSS, mg/L Total volatile solids, mg/L Settleable solids, mL/L COD, mg/L TOC, mg/L pH Phenol, mg/L | 102.7<br>243.3<br>0.13<br>90.7<br>57.0<br>7.6<br><0.010 | 28.5<br>365.3<br>0.10<br>76.0<br>57.8<br>8.1<br><0.010 |  |  |
| Metals, mg/L Antimony Arsenic Selenium Silver Thallium Cyanide                                    | 0.006<br>0.004<br>0.002<br><0.005<br><0.005<br><0.005   | 0.011<br><0.002<br>0.002<br><0.005<br><0.005<br><0.005 |  |  |

aAll data based on 3-day sampling, except as noted.

bPond #4 influent.

<sup>&</sup>lt;sup>C</sup>Pond #4 effluent.

TABLE 3-11. WASTEWATER CHARACTERIZATION, MINE V-8 [1]

Category: Coal Mining Subcategory: Alkaline Mining Raw wastewater flowrate, gpd: 2,880

|                                                                 | characte                          | Wastewater<br>characterization <sup>a</sup> |  |  |  |
|-----------------------------------------------------------------|-----------------------------------|---------------------------------------------|--|--|--|
| Pollutant                                                       | Raw wastewater b characterization | Treated effluent concentration <sup>C</sup> |  |  |  |
| Classical parameters                                            |                                   |                                             |  |  |  |
| TSS, mg/L<br>Total volatile solids, mg/L                        | 44.8<br>168.0                     | 28.9<br>123.1                               |  |  |  |
| Settleable solids, mL/L COD, mg/L TOC, mg/L                     | <0.1<br>80.0<br>5 <b>4.</b> 3     | <0.1<br>38.7<br>21.7                        |  |  |  |
| pH<br>Phenol, mg/L                                              | 7.9<br><0.010                     | 8.5<br><0.010                               |  |  |  |
| Metals, mg/L                                                    |                                   |                                             |  |  |  |
| Aluminum<br>Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Boron | 0.027<br>0.006                    | 0.015<br>0.005                              |  |  |  |
| Cadmium Calcium Chromium Cobalt Copper Iron                     |                                   |                                             |  |  |  |
| Lead<br>Magnesium<br>Manganese<br>Mercury<br>Molybdenum         |                                   |                                             |  |  |  |
| Nickel<br>Selenium                                              | 0.002                             | <0.002                                      |  |  |  |
| Silver<br>Sodium                                                | <0.005                            | <0.005                                      |  |  |  |
| Thallium<br>Tin<br>Titanium<br>Vanadium<br>Yttrium<br>Zinc      | <0.005                            | <0.005                                      |  |  |  |
| Cyanide                                                         | <0.005                            | <0.005                                      |  |  |  |
| Toxic pollutants, µg/L                                          | N.D.                              | N.D.                                        |  |  |  |
| Acenaphthene<br>Benzene                                         | ND<br>ND                          | ND<br>ND                                    |  |  |  |
| Carbon tetrachloride                                            | <10                               | <6.7                                        |  |  |  |
| Chlorobenzene                                                   | ND                                | ND                                          |  |  |  |
| Hexachloroethane                                                | ND<br>ND                          | ND                                          |  |  |  |
| 1,2-Dichloroethane 1,1,1-Trichloroethane                        | ND<br><10                         | ND<br><10                                   |  |  |  |
| 1,1,2-Trichloroethane                                           | ND                                | ND                                          |  |  |  |
| 1,1,2,2-Tetrachloroethane                                       | ND                                | ND                                          |  |  |  |
| 2-Chloronaphthalene                                             | ND                                | ND                                          |  |  |  |
| Chloroform<br>2-Chlorophenol                                    | ND<br>ND                          | <6.7<br>ND                                  |  |  |  |
|                                                                 |                                   | (continued)                                 |  |  |  |

(continued)

TABLE 3-11 (continued)

|                                         | Wastew<br>character | vater            |
|-----------------------------------------|---------------------|------------------|
|                                         | Raw wastewater b    | Treated effluent |
| Pollutant                               | characterization    | concentration    |
| Toxic pollutants, µg/L (cont'd)         |                     |                  |
| 1,2-Dichlorobenzene                     | ND                  | ND               |
| 1,4-Dichlorobenzene                     | ND                  | ND               |
| 3,3'-Dichlorobenzidine                  | ND                  | ND               |
| 1,1-Dichloroethylene                    | <10                 | <10              |
| 2,4-Dimethylphenol                      | ND                  | ND               |
| 2,4-Dinitrotoluene                      | ND                  | ND               |
| 1,2-Diphenylhydrazine                   | ND                  | ND               |
| Ethylbenzene                            | ND                  | <3.3             |
| Fluoranthene                            | ND                  | ND               |
| 4-Chlorophenyl phenyl ether             | ND                  | ND               |
| Bis(2-chloroethoxy)methane              | ND                  | ND               |
| Methylene chloride                      | <10                 | 13.2             |
| Bromoform                               | ND                  | ND               |
| Trichlorfluoromethane                   | ND                  | ND               |
| Isophorone                              | ND                  | ND               |
| Naphthalene                             | ND                  | ND               |
| Nitrobenzene                            | ND                  | ND<br>ND         |
| 2-Nitrophenol                           | ND                  |                  |
| 4,6-Dinitro-o-cresol                    | ND                  | ND               |
| N-nitrosodiphenylamine                  | ND                  | ND               |
| Phenol                                  | ND                  | ND               |
| Bis (2-ethylhexyl) phthalate            | ND                  | ND               |
| Butyl benzyl phthalate                  | ND<br><10           | ND<br><6.7       |
| Di-n-butyl phthalate                    | ND                  | ND               |
| Di-n-octyl phthalate                    | ND                  | ND               |
| Diethyl phthalate<br>Dimethyl phthalate | ND                  | ND               |
| Benz(a)anthracene/chrysene              | ND<br>ND            | ND               |
| Benzo (a) pyrene                        | ND                  | ND               |
| Benzo (b) fluoranthene/                 | ND                  | 110              |
| benzo(k) fluoranthene                   | ND                  | ND               |
| Acenaphthylene                          | ND                  | ND               |
| Anthracene/phenanthrene                 | ND                  | ND               |
| Benzo (ghi) perylene                    | ND                  | ND               |
| Fluorene                                | ND                  | ND               |
| Dibenz (ah) anthracene                  | ND                  | ND               |
| Indeno(1,2,3-cd)pyrene                  | ND                  | ND               |
| Pyrene                                  | ND                  | ND               |
| Tetrachloroethylene                     | ND                  | ND               |
| Toluene                                 | ND                  | <6.7             |
| Trichloroethylene                       | ND                  | <3.3             |
| Aldrin                                  | ND                  | <3.3             |
| α-Endosulfan                            | ND                  | ND               |
| β-Endosulfan                            | ND                  | ND               |
| Endrin                                  | ND                  | ND               |
| Heptachlor                              | ND                  | <3.3             |
| Heptachlor epoxide                      | ND                  | <6.7             |
| α-BHC                                   | ND                  | ND               |
| Y-BHC                                   | <10                 | <10              |
| δ−BHC                                   | ND                  | ND               |

Note: Blanks indicate data not received.

Date: 6/23/80

 $<sup>^{\</sup>mathbf{a}}$ All data based on 1-day sampling.

bpond No. 6 influent.

cpond No. 6 effluent.

TABLE 3-12. WASTEWATER CHARACTERIZATION, MINE V-8 [1]

Category: Coal Mining Subcategory: Alkaline Mines

|                                                                                                                                                                                                               | Waster<br>characte:               | water<br>rization <sup>a</sup>                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|
| Pollutant                                                                                                                                                                                                     | Raw wastewater b characterization | Treated effluent concentration                 |
| Classical parameters                                                                                                                                                                                          |                                   |                                                |
| TSS, mg/L Total volatile solids, mg/L Settleable solids, mL/L COD, mg/L TOC, mg/L pH                                                                                                                          |                                   | 61.9<br>418<br><0.1<br>136<br>65.3<br>8.1      |
| Phenol, mg/L                                                                                                                                                                                                  |                                   | <0.010                                         |
| Metals, mg/L                                                                                                                                                                                                  |                                   |                                                |
| Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Molybdenum Nickel Selenium Silver Sodium Thallium                               |                                   | 0.010<br>0.005<br>0.003<br><0.005<br>0.006     |
| Titanium<br>Vanadium                                                                                                                                                                                          |                                   |                                                |
| Yttrium<br>Zinc                                                                                                                                                                                               |                                   |                                                |
| Cyanide                                                                                                                                                                                                       |                                   | <0.005                                         |
| Toxic pollutants, μg/L                                                                                                                                                                                        |                                   | 2200                                           |
| Acenaphthene Benzene Carbon tetrachloride Chlorobenzene Hexachloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Tetrachloroethane 2-Chloronaphthalene Chloroform 2-Chlorophenol |                                   | ND <6.7 ND |
|                                                                                                                                                                                                               |                                   | (continued                                     |

TABLE 3-12 (continued)

|                                 | Waster<br>character | a                |
|---------------------------------|---------------------|------------------|
|                                 | Raw wastewater b    | Treated effluent |
| Pollutant                       | characterization b  | concentration    |
| Toxic pollutants, µg/L (cont'd) |                     |                  |
| 1,2-Dichlorobenzene             |                     | ND               |
| 1,4-Dichlorobenzene             |                     | ND               |
| 3,3'-Dichlorobenzidine          |                     | ND               |
| 1,1-Dichloroethylene            |                     | <10              |
| 2,4-Dimethylphenol              |                     | ND               |
| 2,4-Dinitrotoluene              |                     | ND               |
| 1,2-Diphenylhydrazine           |                     | ND               |
| Ethylbenzene                    |                     | ND               |
| Fluoranthene                    |                     | ND               |
| 4-Chlorophenyl phenyl ether     |                     | ND               |
| Bis (2-chloroethoxy) methane    |                     | ND               |
| Methylene chloride              |                     | 12.7             |
| Bromoform                       |                     | ND               |
| Trichlorfluoromethane           |                     | ND               |
| Isophorone                      |                     | ND               |
| Naphthalene                     |                     | ND               |
| Nitrobenzene                    |                     | ND               |
| 2-Nitrophenol                   |                     | ND               |
| 4,6-Dinitro-o-cresol            |                     | ND               |
| N-nitrosodiphenylamine          |                     | ND               |
| Phenol                          |                     | ND               |
| Bis(2-ethylhexyl) phthalate     |                     | ND               |
| Butyl benzyl phthalate          |                     | <3.3<br><3.3     |
| Di-n-butyl phthalate            |                     |                  |
| Di-n-octyl phthalate            |                     | ND<br>ND         |
| Diethyl phthalate               |                     | ND<br>ND         |
| Dimethyl phthalate              |                     | ND<br>ND         |
| Benz(a)anthracene/chrysene      |                     | ND               |
| Benzo(a)pyrene                  |                     | ND               |
| Benzo(b) fluoranthene/          |                     | ND               |
| benzo(k) fluoranthene           |                     | ND               |
| Acenaphthylene                  |                     | ND<br>ND         |
| Anthracene/phenanthrene         |                     | ND               |
| Benzo(ghi)perylene              |                     | ND               |
| Fluorene                        |                     | ND<br>ND         |
| Dibenz (ah) anthracene          |                     | ND<br>ND         |
| Indeno(1,2,3-cd)pyrene          |                     | ND               |
| Pyrene Tetrachlorosthuloro      |                     | ND               |
| Tetrachloroethylene<br>Toluene  |                     | <6.7             |
| Trichloroethylene               |                     | <3.3             |
| Aldrin                          |                     | ND               |
| α-Endosulfan                    |                     | ND               |
| β-Endosulfan                    |                     | ND               |
| Endrin                          |                     | ND               |
| Heptachlor                      |                     | <6.7             |
| Heptachlor epoxide              |                     | ND               |
| α-BHC                           |                     | ND               |
| γ-BHC                           |                     | <3.3             |
| 6-BHC                           |                     | ND               |
| ·                               |                     |                  |

Note: Blanks indicate data not received.

<sup>&</sup>lt;sup>a</sup>All data based on 3-day sampling.

bRaw wastewater data not available.

cGrab composite from three ponds.

TABLE 3-13. WASTEWATER CHARACTERIZATION, MINE V-9 [1]

Category: Coal Mining Subcategory: Alkaline Mines Raw wastewater flowrate, gpd: 710,000

|                                                     | Waster<br>character | rizationa                              |
|-----------------------------------------------------|---------------------|----------------------------------------|
| <b>3</b> -11                                        | Raw wastewater b    | Treated effluent                       |
| Pollutant                                           | Characterization    | concentration                          |
| Classical parameters                                |                     | a                                      |
| TSS, mg/L                                           | 61.0                | 78.6 <sup>d</sup><br>52.5 <sup>d</sup> |
| Total volatile solids, mg/L                         | 99.0                | 52.5d                                  |
| Settleable solids, mL/L                             | 0.11                | \U.1                                   |
| COD, mg/L                                           | 16.3                | 13.7                                   |
| TOC, mg/L                                           | 10.8                | 9.6<br>7.7                             |
| pH                                                  | 8.2<br><0.010       | <0.010                                 |
| Phenol, mg/L                                        | 20.010              | (0.010                                 |
| Metals, mg/L                                        |                     |                                        |
| Aluminum                                            | <0.002              | 40.003                                 |
| Antimony                                            | 0.002               | <0.002<br><0.002                       |
| Arsenic                                             |                     | <0.002                                 |
| Barium                                              |                     |                                        |
| Beryllium<br>Boron                                  |                     |                                        |
| Cadmium                                             |                     |                                        |
| Calcium                                             |                     |                                        |
| Chromium                                            |                     |                                        |
| Cobalt                                              |                     |                                        |
| Copper                                              |                     |                                        |
| Iron                                                |                     |                                        |
| Lead                                                |                     |                                        |
| Magnesium                                           |                     |                                        |
| Manganese                                           |                     |                                        |
| Mercury                                             |                     |                                        |
| Molybdenum                                          |                     |                                        |
| Nickel                                              | <b>40.003</b>       | <0.002                                 |
| Selenium                                            | <0.002<br>0.01      | <0.01                                  |
| Silver<br>Sodium                                    | 0.01                | (0.01                                  |
| Thallium                                            | <0.005              | <0.005                                 |
| Tin                                                 | 10.002              |                                        |
| Titanium                                            |                     |                                        |
| Vanadium                                            |                     |                                        |
| Yttrium                                             |                     |                                        |
| Zinc                                                | _                   |                                        |
| Cyanide                                             | <0.005              | <0.005                                 |
| Toxic pollutants, µg/L                              |                     |                                        |
| Acenaphthene                                        | ND                  | ND                                     |
| Benzene                                             | <b>N</b> D          | ND                                     |
| Carbon tetrachloride                                | ND<br>ND            | ND<br>ND                               |
| Chlorobenzene                                       | ND<br>ND            | ND<br>ND                               |
| Hexachloroethane                                    | ND<br>ND            | ND<br>ND                               |
| <pre>1,2-Dichloroethane 1,1,1-Trichloroethane</pre> | ND<br>ND            | ND                                     |
| 1,1,2-Trichloroethane                               | ND<br>ND            | ND<br>ND                               |
| 1,1,2,2-Tetrachloroethane                           | ND                  | ND                                     |
| 2-Chloronaphthalene                                 | ND                  | ND                                     |
| Chloroform                                          | ND                  | <3.3                                   |
| 2-Chlorophenol                                      | <b>N</b> D          | ND                                     |
| -                                                   |                     | (continued)                            |
|                                                     |                     |                                        |

(continued)

TABLE 3-13 (continued)

|                                         | Wastewater<br>characterization <sup>a</sup> |                  |  |  |
|-----------------------------------------|---------------------------------------------|------------------|--|--|
|                                         | Raw wastewater b                            | Treated effluent |  |  |
| Pollutant                               | characterization                            | concentration    |  |  |
| Toxic pollutants, µg/L (cont'd)         |                                             |                  |  |  |
| 1,2-Dichlorobenzene                     | ND                                          | ND               |  |  |
| 1,4-Dichlorobenzene                     | ND                                          | ND               |  |  |
| 3,3'-Dichlorobenzidine                  | ND                                          | ND               |  |  |
| l,l-Dichloroethylene                    | ND                                          | ND               |  |  |
| 2,4-Dimethylphenol                      | ND                                          | ND               |  |  |
| 2,4-Dinitrotoluene                      | ND                                          | <b>N</b> D       |  |  |
| 1,2-Diphenylhydrazine                   | ND                                          | ND               |  |  |
| Ethylbenzene                            | ND                                          | ND               |  |  |
| Fluoranthene                            | ND                                          | ND               |  |  |
| 4-Chlorophenyl phenyl ether             | ND                                          | ND               |  |  |
| Bis(2-chloroethoxy)methane              | ND                                          | ND               |  |  |
| Methylene chloride                      | ND                                          | ND               |  |  |
| Bromoform                               | ND                                          | ND               |  |  |
| Trichlorfluoromethane                   | ND                                          | ND               |  |  |
| Isophorone                              | ND                                          | ND               |  |  |
| Naphthalene                             | ND                                          | ND               |  |  |
| Nitrobenzene                            | ND                                          | ND               |  |  |
| 2-Nitrophenol                           | ND                                          | ND               |  |  |
| 4,6-Dinitro-o-cresol                    | ND                                          | ND               |  |  |
| N-nitrosodiphenylamine                  | ND                                          | ND               |  |  |
| Phenol                                  | ND                                          | ND               |  |  |
| Bis(2-ethylhexyl) phthalate             | <3.3                                        | ND               |  |  |
| Butyl benzyl phthalate                  | ND                                          | ND               |  |  |
| Di-n-butyl phthalate                    | <10.0                                       | <6.7             |  |  |
| Di-n-octyl phthalate                    | ND                                          | ND               |  |  |
| Diethyl phthalate                       | <3.3                                        | ND               |  |  |
| Dimethyl phthalate                      | ND                                          | ND               |  |  |
| Benz(a)anthracene/chrysene              | ND                                          | ND               |  |  |
|                                         | ND                                          | ND               |  |  |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene/ | ND                                          | NB               |  |  |
| benzo(k) fluoranthene                   | ND                                          | ND               |  |  |
|                                         | ND                                          | ND               |  |  |
| Acenaphthylene                          | ND<br>ND                                    | ND               |  |  |
| Anthracene/phenanthrene                 | ND<br>ND                                    | ND               |  |  |
| Benzo(ghi)perylene                      | ND                                          | ND               |  |  |
| Fluorene                                | ND<br>ND                                    | ND               |  |  |
| Dibenz (ah) anthracene                  | ND<br>ND                                    | ND               |  |  |
| Indeno(1,2,3-cd)pyrene                  | ND                                          | ND               |  |  |
| Pyrene<br>Tetrachloroethylene           | ND                                          | ND               |  |  |
|                                         | ND                                          | ND               |  |  |
| Toluene                                 | ND                                          | ND               |  |  |
| Trichloroethylene                       | ND                                          | ND               |  |  |
| Aldrin                                  | ND<br>ND                                    | ND<br>ND         |  |  |
| a-Endosulfan                            | ND                                          | ND               |  |  |
| β-Endosulfan                            | ND<br>ND                                    | ND               |  |  |
| Endrin                                  | ND<br>ND                                    | ND<br>ND         |  |  |
| Heptachlor                              |                                             | ND<br>ND         |  |  |
| Heptachlor epoxide                      | ND<br>ND                                    | ND<br>ND         |  |  |
| a-BHC                                   | ND                                          |                  |  |  |
| Y-BHC                                   | ND                                          | ND               |  |  |
| δ-BHC                                   | ND                                          | ND               |  |  |

Note: Blanks indicate data not received.

 $<sup>^{\</sup>rm a}$ All data from 3-day sampling, except as noted.  $^{\rm b}$ Pollack pond raw water.

<sup>&</sup>lt;sup>C</sup>Pollack pond settling pond effluent.

dData from 2 days.

TABLE 3-14. WASTEWATER CHARACTERIZATION, MINE V-9 [1]

Category: Coal Mining Subcategory: Alkaline Mines Raw wastewater flowrate, gpd: 41,000

|                                   | Wastewater<br>characterization <sup>a</sup> |                            |  |  |
|-----------------------------------|---------------------------------------------|----------------------------|--|--|
|                                   | Raw wastewater b                            | Treated effluent           |  |  |
| Pollutant                         | characterization <sup>D</sup>               | concentration <sup>C</sup> |  |  |
| Classical parameters              |                                             |                            |  |  |
| TSS, mg/L                         | 110.6                                       | 46.1                       |  |  |
| Total volatile solids, mg/L       | 122                                         | 75                         |  |  |
| Settleable solids, mL/L           | 0.33                                        | 0.17                       |  |  |
| COD, mg/L                         | 14.3                                        | 18.3                       |  |  |
| TOC, mg/L                         | 7.2                                         | 14.6                       |  |  |
| pH                                | 7.6                                         | 7.5                        |  |  |
| Phenol, mg/L                      | <0.010                                      | <0.011                     |  |  |
| Metals, mg/L                      |                                             |                            |  |  |
| Aluminum                          | <0.002                                      |                            |  |  |
| Antimony                          | <0.002                                      | <0.002                     |  |  |
| Arsenic                           |                                             | <0.002                     |  |  |
| Barium                            |                                             |                            |  |  |
| Beryllium                         |                                             |                            |  |  |
| Boron                             |                                             |                            |  |  |
| Cadmium                           |                                             |                            |  |  |
| Calcium                           |                                             |                            |  |  |
| Chromium                          |                                             |                            |  |  |
| Cobalt                            |                                             |                            |  |  |
| Copper                            |                                             |                            |  |  |
| Iron                              |                                             |                            |  |  |
|                                   |                                             |                            |  |  |
| Lead                              |                                             |                            |  |  |
| Magnesium                         |                                             |                            |  |  |
| Manganese                         |                                             |                            |  |  |
| Mercury                           |                                             |                            |  |  |
| Molybdenum                        |                                             |                            |  |  |
| Nickel                            |                                             |                            |  |  |
| Selenium                          | 0.003                                       | <0.002                     |  |  |
| Silver                            | 0.01                                        | <0.01                      |  |  |
| Sodium                            |                                             |                            |  |  |
| Thallium                          | <0.005                                      | <0.005                     |  |  |
| Tin                               |                                             |                            |  |  |
| Titanium                          |                                             |                            |  |  |
| Vanadium                          |                                             |                            |  |  |
| Yttrium                           |                                             |                            |  |  |
| Zinc                              |                                             |                            |  |  |
| Cyanide                           | <0.005                                      | <0.005                     |  |  |
| Coxic pollutants, µg/L            |                                             |                            |  |  |
| Acenaphthene                      | ND                                          | ND                         |  |  |
| Benzene                           | ND                                          | ND                         |  |  |
| Carbon tetrachloride              | ND                                          | ND                         |  |  |
| Chlorobenzene                     | ND                                          | ND                         |  |  |
| Hexachloroethane                  | ND                                          | ND                         |  |  |
| 1,2-Dichloroethane                | ND                                          | ND                         |  |  |
| l,l,l-Trichloroethane             | ND                                          | ND                         |  |  |
| 1,1,2-Trichloroethane             | ND                                          | ND                         |  |  |
| 1,1,2,2-Tetrachloroethane         | ND                                          | ND                         |  |  |
|                                   | ND                                          | ND                         |  |  |
| 2-Chloronaphthalene               |                                             |                            |  |  |
| 2-Chloronaphthalene<br>Chloroform | ND                                          | ND                         |  |  |
|                                   |                                             | nd<br>nd                   |  |  |

TABLE 3-14 (continued)

|                                 | Wastewater<br>characterization <sup>a</sup> |                  |  |  |
|---------------------------------|---------------------------------------------|------------------|--|--|
|                                 | Character                                   | Treated effluent |  |  |
| Pollutant                       | Raw wastewater characterization             | concentration    |  |  |
| Toxic pollutants, pg/L (cont'd) |                                             |                  |  |  |
| 1,2-Dichlorobenzene             | ND                                          | ND               |  |  |
| l,4-Dichlorobenzene             | ND                                          | ND               |  |  |
| 3,3'-Dichlorobenzidine          | ND                                          | ND               |  |  |
| l,l-Dichloroethylene            | ND                                          | ND               |  |  |
| 2,4-Dimethylphenol              | ND                                          | ND               |  |  |
| 2,4-Dinitrotoluene              | ND                                          | ND               |  |  |
| l,2-Diphenylhydrazine           | ND                                          | ND               |  |  |
| Ethylbenzene                    | ND                                          | ND               |  |  |
| Fluoranthene                    | ND                                          | ND               |  |  |
| 4-Chlorophenyl phenyl ether     | ND                                          | ND               |  |  |
| Bis(2-chloroethoxy)methane      | ND                                          | ND               |  |  |
| Methylene chloride              | <3.3                                        | ND               |  |  |
| Bromoform                       | ND                                          | ND               |  |  |
| Trichlorfluoromethane           | ND                                          | ND               |  |  |
| Isophorone                      | ND                                          | ND               |  |  |
| Naphthalene                     | ND                                          | ND               |  |  |
| Nitrobenzene                    | <b>N</b> D                                  | ND               |  |  |
| 2-Nitrophenol                   | ND                                          | ND               |  |  |
| 4,6-Dinitro-o-cresol            | ND                                          | ND               |  |  |
| N-nitrosodiphenylamine          | ND                                          | ND               |  |  |
| Phenol                          | ND                                          | ND               |  |  |
| Bis(2-ethylhexyl) phthalate     | ND                                          | <3.3             |  |  |
| Butyl benzyl phthalate          | ND                                          | ND               |  |  |
| Di-n-butyl phthalate            | <10                                         | <6.7             |  |  |
| Di-n-octyl phthalate            | ND                                          | ND               |  |  |
| Diethyl phthalate               | ND                                          | <6.7             |  |  |
| Dimethyl phthalate              | ND                                          | ND               |  |  |
| Benz (a) anthracene/chrysene    | ND                                          | ND               |  |  |
| Benzo(a) pyrene                 | ND                                          | ND               |  |  |
| Benzo(b) fluoranthene/          |                                             |                  |  |  |
| benzo(k)fluoranthene            | ND                                          | ND               |  |  |
| Acenaphthylene                  | ND                                          | ND               |  |  |
| Anthracene/phenanthrene         | ND                                          | ND               |  |  |
| Benzo(ghi)perylene              | ND                                          | ND               |  |  |
| Fluorene                        | ND                                          | ND               |  |  |
| Dibenz (ah) anthracene          | ND                                          | ND               |  |  |
| Indeno(1,2,3-cd)pyrene          | ND                                          | ND               |  |  |
| Pyrene                          | ND                                          | ND               |  |  |
| Tetrachloroethylene             | ND                                          | ND               |  |  |
| Toluene                         | ND                                          | ND               |  |  |
|                                 | ND                                          | ND               |  |  |
| Trichloroethylene Aldrin        | ND                                          | ND               |  |  |
| a-Endosulfan                    | ND                                          | ND               |  |  |
| 6-Endosulfan                    | ND                                          | ND               |  |  |
| Endrin                          | ND                                          | ND               |  |  |
| Heptachlor                      | ND                                          | ND               |  |  |
|                                 | ND                                          | ND               |  |  |
| Heptachlor epoxide<br>a-BHC     | ND                                          | ND               |  |  |
|                                 | ND<br>ND                                    | ND               |  |  |
| Y-BHC                           | ND                                          | ND               |  |  |
| 6-BHC                           | ND                                          | ND               |  |  |

Note: Blanks indicate data not received.

<sup>&</sup>lt;sup>a</sup>All data from 3-day sampling. <sup>b</sup>Dugout pond raw water.

 $<sup>^{\</sup>mathbf{c}}_{\mathtt{Dugout}}$  pond settling pond effluent.

TABLE 3-15. WASTEWATER CHARACTERIZATION, MINE NC-22 [1]

Category: Coal Mining Subcategory: Alkaline Mines

| Pollutant                   | Raw wastewater <sup>a</sup> | Nondischarging<br>active pond<br>P 1371 AD-002 | Nondischarging<br>inactive pond<br>P 485-001 | Nondischarging<br>active pond<br>P 0063 AD-001 | Nondischarging<br>inactive pond<br>P 0063 AD-002 |
|-----------------------------|-----------------------------|------------------------------------------------|----------------------------------------------|------------------------------------------------|--------------------------------------------------|
| lassical parameters         |                             |                                                |                                              |                                                |                                                  |
| TSS, mg/L                   |                             | 19.6                                           | 20.7                                         | 15.4                                           | 18.1                                             |
| Total volatile solids, mq/L |                             | 217.7                                          | 86                                           | 247.7                                          | 160.3                                            |
| Settleable solids, mL/L     |                             | NA                                             | NA                                           | Ai1                                            | NA                                               |
| COD, mg/L                   |                             | 17.6                                           | 21.1                                         | 29.4                                           | 58.1                                             |
| TOC, mg/L                   |                             | 8.3                                            | 7.5                                          | 6.6                                            | 8.2                                              |
| pH                          |                             | 7.4                                            | 6.3                                          | 7.3                                            | 7.7                                              |
| Phenol, mg/L                |                             | <0.010                                         | <0.010                                       | <0.010                                         | <0.010                                           |
| etals, mg/L                 |                             |                                                |                                              |                                                |                                                  |
| Aluminum                    |                             | < 0.050                                        | 0.130                                        | <0.050                                         | <0.050                                           |
| Antimony                    |                             | 0.016                                          | 0.010                                        | 0.007                                          | <0.005                                           |
| Arsenic                     |                             | <0.005                                         | <0.005                                       | <0.005                                         | 0.009                                            |
| Barium                      |                             | 0.037                                          | 0.060                                        | 0.010                                          | 0.008                                            |
| Beryllium                   |                             | <0.001                                         | <0.001                                       | <0.001                                         | <0.001                                           |
| Boron                       |                             | 0.093                                          | 0.067                                        | 0.867                                          | 0.083                                            |
| Cadmium                     |                             | <0.002                                         | 0.004                                        | <0.002                                         | <0.002                                           |
| Calcium                     |                             | 250                                            | 58                                           | 307                                            | 228                                              |
| Chromium                    |                             | 0.060                                          | 0.020                                        | 0.070                                          | 0.048                                            |
| Cobalt                      |                             | <0.005                                         | 0.006                                        | <0.005                                         | <0.005                                           |
| Copper                      |                             | <0.006                                         | 0.008                                        | 0.006                                          | 0.007                                            |
| Iron                        |                             | <0.200                                         | 0.833                                        | <0.200                                         | <0.200                                           |
| Lead                        |                             | 0.020                                          | 0.083                                        | 0.200                                          | 0.267                                            |
| Magnesium                   |                             | 91                                             | 23                                           | 110                                            | 66.7                                             |
| Manganese                   |                             | 0.197                                          | 0.233                                        | 0.248                                          | 0.042                                            |
| Mercury                     |                             | <0.001                                         | <0.001                                       | <0.001                                         | <0.001                                           |
| Molybdenum                  |                             | 0.017                                          | 0.020                                        | 0.009                                          | 0.012                                            |
| Nickel                      |                             | <0.005                                         | 0.027                                        | <0.005                                         | <0.005                                           |
| Selenium                    |                             | 0.003                                          | 0.003                                        | <0.002                                         | <0.002                                           |
| Silver                      |                             | <0.005                                         | <0.005                                       | <0.005                                         | 0.005                                            |
| Sodium                      |                             | 59                                             | <15                                          | 16                                             | 39                                               |
|                             |                             | <0.005                                         | <0.005                                       | <0.005                                         | <0.005                                           |
| Thallium<br>Tin             |                             | 0.008                                          | 0.030                                        | 0.040                                          | 0.033                                            |
| Tin<br>Titanium             |                             | <0.020                                         | <0.020                                       | <0.020                                         | <0.020                                           |
|                             |                             | <0.010                                         | <0.010                                       | <0.010                                         | 0.133                                            |
| Vanadium                    |                             | <0.020                                         | <0.020                                       | <0.020                                         | <0.020                                           |
| Yttrium                     |                             | <0.020                                         | <0.060                                       | <0.060                                         | <0.060                                           |
| Zinc<br>Cyanide             |                             | <0.005                                         | < 0.005                                      | <0.005                                         | < 0.005                                          |

(continued)

TABLE 3-15 (continued)

| Pollutant                   | Raw wastewater <sup>a</sup> | Nondischarging<br>active pond :<br>P 1371 AD-002 | Nondischarging<br>inactive pond<br>P 485-001 | Nondischarging<br>active pond<br>P 0063 AD-001 | Nondischargir<br>inactive pond<br>P 0063 AD-002 |
|-----------------------------|-----------------------------|--------------------------------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------------|
| Toxic pollutants, pg/L      |                             |                                                  |                                              |                                                |                                                 |
| Acenaphthene                |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Benzene                     |                             | <3,3                                             | <3.3                                         | <3.3                                           | <3.3                                            |
| Carbon tetrachloride        |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Chlorobenzene               |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Hexachloroethane            |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| 1,2-Dichloroethane          |                             | <3.3                                             | ND                                           | ND                                             | ND                                              |
| 1,1,1-Trichloroethane       |                             | < 6.7                                            | <10                                          | ND                                             | <b>′3.3</b>                                     |
| 1,1,2-Trichloroethane       |                             | ND                                               | ND                                           | ND                                             | <3.3                                            |
| 1,1,2,2-Tetrachloroethane   |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| 2-Chloronaphthalene         |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Chloroform                  |                             | ND                                               | ND                                           | <10                                            | <6.7                                            |
| 2-Chlorophenol              |                             | ND                                               | ND                                           | ND                                             | ИD                                              |
| 1,2-Dichlorobenzene         |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| 1,4-Dichlorobenzene         |                             | ND                                               | ND                                           | <b>N</b> D                                     | ND                                              |
| 3,3'-Dichlorobenzidine      |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| 1,1-Dichloroethylene        |                             | ИD                                               | ND                                           | ND                                             | <3.3                                            |
| 2,4-Dimethylphenol          |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| 2,4-Dinitrotoluene          |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| 1,2-Diphenylhydrazine       |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Ethylbenzene                |                             | ND                                               | ND                                           | ND                                             | <3.3                                            |
| Fluoranthene                |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| 4-Chlorophenyl phenyl ether |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Bis(2-chloroethoxy) methane |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Methylene chloride          |                             | 21                                               | <3.3                                         | <6.7                                           | <10                                             |
| Bromoform                   |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Trichlorfluoromethane       |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Isophorone                  |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Naphthalene                 |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Nitrobenzene                |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| 2-Nitrophenol               |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| 4.6-Dinitro-o-cresol        |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| N-nitrosodiphenylamine      |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Phenol                      |                             | ND                                               | ND                                           | <3.3                                           | ND                                              |
| Bis(2-ethylhexyl) phthalate |                             | <3.3                                             | <6.7                                         | <3.3                                           | <6.7                                            |
| Butyl benzyl phthalate      |                             | ND                                               | ND                                           | ND                                             | ND                                              |
| Di-n-butyl phthalate        |                             | <10                                              | <10                                          | <10                                            | < 10                                            |
| Di-n-octyl phthalate        |                             | ND                                               | ND                                           | ND                                             | ND                                              |

(continued)

TABLE 3-15 (continued)

| Pollutant                      | Raw wastewater <sup>a</sup> | Nondischarging<br>active pond<br>P 1371 AD-002 | Nondischarging<br>inactive pond<br>P 485-001 | Nondischarging<br>active pond<br>P 0063 AD-001 | Nondischargin<br>inactive pond<br>P 0063 AD-002 |
|--------------------------------|-----------------------------|------------------------------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------------|
| oxic pollutants, µg/L (cont'd) |                             |                                                |                                              |                                                |                                                 |
| Diethyl phthalate              |                             | ND                                             | ND                                           | <10                                            | <10                                             |
| Dimethyl phthalate             |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Benz(a) anthracene/chrysene    |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Benzo(a) pyrene                |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Benzo(b) fluoranthene/         |                             |                                                |                                              |                                                |                                                 |
| benzo(k)fluoranthene           |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Acenaphthylene                 |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Anthracene/phenanthrene        |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Benzo(ghi)perylene             |                             | ND                                             | ND                                           | ND                                             | ИD                                              |
| Fluorene                       |                             | <b>N</b> D                                     | ND                                           | ND                                             | ND                                              |
| Dibenz(ah)anthracene           |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Indeno(1,2,3-cd)pyrene         |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Pyrene                         |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Tetrachloroethylene            |                             | <b>N</b> D                                     | ND                                           | ND                                             | ND                                              |
| Toluene                        |                             | <b>3.</b> 3                                    | ND                                           | ND                                             | <3.3                                            |
| Trichloroethylene              |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Aldrin                         |                             | ND                                             | ND                                           | 0.007                                          | 0.003                                           |
| α-Endosulfan                   |                             | ND                                             | <b>N</b> D                                   | ND                                             | ND                                              |
| β-Endosulfan                   |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Endrin                         |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Heptachlor                     |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| Heptachlor epoxide             |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| α-BHC                          |                             | ND                                             | ND                                           | ND                                             | 0.02                                            |
| Y-BHC                          |                             | ND                                             | ND                                           | ND                                             | ND                                              |
| б-внс                          |                             | ND                                             | ND                                           | 0.007                                          | 0.05                                            |

aRaw wastewater data not available.

TABLE 3-16. WASTEWATER CHARACTERIZATION, PLANT NC-8 [1]

Category: Coal Mining Subcategory: Preparation Plants Raw wastewater flowrate, gpd: 12,432,960

|                                                | Wastewater<br>characterization |                            |  |
|------------------------------------------------|--------------------------------|----------------------------|--|
|                                                | Raw wastewater                 | Treated effluent           |  |
| Pollutant                                      | characterization               | concentrationb             |  |
| Classical parameters <sup>C</sup>              |                                |                            |  |
| TSS, mg/L                                      | 34,400                         | 8.9                        |  |
| Total volatile solids, mg/L                    | 18,131                         | 163.3                      |  |
| Settleable solids, mL/L                        | 247                            | <0.1                       |  |
| COD, mg/L                                      | 36,300                         | 19.2                       |  |
| TOC, mg/L                                      | 1,492                          | 96.8<br>7.4 <sup>d</sup>   |  |
| pН                                             | 7.3                            |                            |  |
| Phenol, mg/L                                   | <0.020                         | <0.020                     |  |
| Metals, mg/L                                   |                                |                            |  |
| Aluminum                                       | 200                            | <0.050                     |  |
| Antimony                                       | 0.002                          | 0.006                      |  |
| Arsenic                                        | 0.253                          | 0.002                      |  |
| Barium                                         | 5.67                           | 0.050                      |  |
| Beryllium                                      | 0.057<br>3.00                  | <0.001<br>0.767            |  |
| Boron<br>Cadmium                               | <0.020                         | <0.002                     |  |
| Calcium                                        | 493                            | 77                         |  |
| Chromium                                       | 0.530                          | 0.013                      |  |
| Cobalt                                         | 0.500                          | <0.005                     |  |
| Copper                                         | 1.33                           | 0.006                      |  |
| Iron                                           | 1,000                          | 0.267                      |  |
| Lead                                           | 0.967                          | <0.020                     |  |
| Magnesium                                      | 87                             | 25                         |  |
| Manganese                                      | 8.0                            | 0.050                      |  |
| Mercury                                        | NA                             | NA                         |  |
| Molybdenum                                     | 0.600                          | 0.040                      |  |
| Nickel                                         | 1.23                           | <0.005                     |  |
| Selenium                                       | <0.005                         | 0.006                      |  |
| Silver                                         | <0.005                         | <0.005                     |  |
| Sodium                                         | 293                            | 283                        |  |
| Thallium                                       | 0.006                          | <0.005                     |  |
| Tin                                            | 0.200                          | <0.005                     |  |
| Titanium                                       | 3.67                           | <0.020                     |  |
| Vanadıum                                       | 0.833                          | <0.010                     |  |
| Yttrium                                        | 0.333                          | <0.020                     |  |
| Zinc                                           | 5.33<br><0.005                 | <0.060<br><0.005           |  |
| Cyanide<br>Toxic pollutants, pg/L <sup>e</sup> | 70.003                         | 70.003                     |  |
| Acenaphthene                                   | <10                            |                            |  |
| Benzene                                        | 15                             | _d                         |  |
| Carbon tetrachloride                           | ND                             | _d                         |  |
| Chlorobenzene                                  | ND                             | _d<br>_d<br>_d<br>_d<br>_d |  |
| Hexachloroethane                               | ND                             | _a                         |  |
| 1,2-Dichloroethane                             | ND                             | <b>-</b> a                 |  |
| 1,1,1-Trichloroethane                          | ND                             | <b>-</b> a                 |  |
| 1,1,2-Trichloroethane                          | ND                             | -a                         |  |
| 1,1,2,2-Tetrachloroethane                      | ND                             | _a                         |  |
| 2-Chloronaphthalene                            | ND                             | NDd                        |  |
| Chloroform                                     | ND                             |                            |  |
| 2-Chlorophenol                                 | ND                             | _d                         |  |
|                                                |                                | (continued)                |  |
|                                                |                                | ,                          |  |

II.3-33 Date: 6/23/80

TABLE 3-16 (continued)

|                                           | Wastewater<br>characterization |                   |
|-------------------------------------------|--------------------------------|-------------------|
|                                           | Raw wastewater                 | Treated effluent  |
| Pollutant                                 | characterization b             | concentrationC    |
| Toxic pollutants, mg/L (cont'd)           |                                |                   |
| 1.2-Dichlorobenzene                       | ND                             | -d<br>-d          |
| 1,4-Dichlorobenzene                       | ND                             | -a                |
| 3,3'-Dichlorobenzidine                    | ND                             | _                 |
| 1,1-Dichloroethylene                      | ND                             | -d                |
| 2,4-Dimethylphenol                        | ND                             | _d                |
| 2,4-Dinitrotoluene                        | ND                             | ND                |
| 1,2-Diphenylhydrazine                     | ND                             | ND <sub>d</sub>   |
| Ethylbenzene                              | ND                             | _6                |
| Fluoranthene                              | <10                            | ND                |
| 4-Chlorophenyl phenyl ether               | ND                             | ND                |
| Bis(2-chloroethoxy)methane                | ND                             | ND                |
| Methylene chloride                        | ND                             | <3.3 <sub>d</sub> |
| Bromoform                                 | ND                             |                   |
| Trichlorfluoromethane                     | ND                             | _a                |
| Isophorone                                | ND                             | ND                |
| Naphthalene                               | <10                            | ND                |
| Nitrobenzene                              | ND                             | ND d              |
| 2-Nitrophenol                             | ND                             |                   |
| 4,6-Dinitro-o-cresol                      | ND                             | <u>_</u> a        |
| N-nitrosodiphenylamine                    | ND                             | ND                |
| Phenol                                    | <10                            | <5.0              |
| Bis(2-ethylhexyl) phthalate               | <10                            | <3.3              |
| Butyl benzyl phthalate                    | <10                            | <3.3              |
| Di-n-butyl phthalate                      | <10                            | <3.3              |
| Di-n-octyl phthalate                      | ND                             | ND                |
| Diethyl phthalate                         | <10                            | <3.3 <sub>d</sub> |
| Dimethyl phthalate                        | ND                             |                   |
| Benz(a) anthracene/chrysene               | <10                            | _d                |
| Benzo(a) pyrene                           | <10                            | _d                |
| Benzo(b) fluoranthene/                    | 110                            | -                 |
| benzo(k)fluoranthene                      | <10                            | _ a               |
| = · • · · • · · · · · · · ·               | ND                             | ND                |
| Acenaphthylene<br>Anthracene/phenanthrene | <10                            | ND                |
|                                           | <10                            | ND                |
| Benzo(ghi)perylene<br>Fluorene            | <10                            | ND                |
|                                           | ND                             | ND                |
| Dibenz(ah) anthracene                     | ND                             | ND                |
| Indeno(1,2,3-cd)pyrene                    | <10                            | ND                |
| Pyrene                                    | ND                             | ND d              |
| Tetrachloroethylene<br>Toluene            | ND<br>ND                       | ā                 |
| +                                         | ND                             | _d                |
| Trichloroethylene                         |                                |                   |
| Aldrin<br>a-Endosulfan                    | NA<br>NA                       | ND<br>ND          |
| 6-Endosulfan                              | NA<br>NA                       | ND                |
| Endrin                                    | NA<br>NA                       | ND                |
|                                           |                                | ND<br>ND          |
| Heptachlor crowide                        | NA<br>NA                       | ND<br>ND          |
| Heptachlor epoxide                        | NA<br>NA                       | _                 |
| a-BHC                                     |                                | ND<br>ND          |
| Y-BHC                                     | NA<br>NA                       | ND                |
| 6-BHC                                     | NA                             | ND                |

aSlurry pond influent.

b<sub>Slurry pond decant.</sub>

Call data for classical parameters and metals representative of 3-day sampling, except as noted.

dpata from 2-day sampling.

epata for toxic pollutants are for 1-day sampling, except as noted.

TABLE 3-17. WASTEWATER CHARACTERIZATION, PLANT NC-20 [1]

Category: Coal Mining Subcategory: Preparation Plants Raw wastewater flowrate, gpd: 9,976,000

|                             | Wastewater a characterization |                   |  |
|-----------------------------|-------------------------------|-------------------|--|
|                             | Raw wastewater                | Treated effluent  |  |
| Pollutant                   | characterization b            | concentration     |  |
| Classical parameters        |                               |                   |  |
| TSS, mg/L                   | 9,131                         | 62.9              |  |
| Total volatile solids, mg/L | 7,567                         | 254               |  |
| Settleable solids, mL/L     | 56.3                          | 0.2               |  |
| COD, mg/L                   | 20,724                        | 118.7             |  |
| TOC, mg/L                   | 2,868                         | 19.1 <sub>d</sub> |  |
| pH                          | 6.87                          | 6.8 <sup>°</sup>  |  |
| Phenol, mg/L                | <0.010                        | <0.010            |  |
| Metals, mg/L                |                               |                   |  |
| Aluminum                    | 35                            | 0.100             |  |
| Antimony                    | 0.034                         | 0.007             |  |
| Arsenic                     | 0.051                         | 0.035             |  |
| Barium                      | 0.353                         | 0.167             |  |
| Beryllium                   | <0.010                        | <0.001            |  |
| Boron                       | 0.600                         | 0.300             |  |
| Cadmium                     | <0.020                        | <0.002            |  |
| Calcium                     | 453                           | 440               |  |
| Chromium                    | 0.367                         | 0.013             |  |
| Cobalt                      | <0.050                        | 0.023             |  |
| Copper                      | 0.687                         | 0.009             |  |
| Iron                        | 70                            | 3.333             |  |
| Lead                        | 0.400                         | 0.023             |  |
| Magnesium                   | 58                            | 40                |  |
| Manganese                   | 2.67                          | 2.00              |  |
| Mercury                     | NA                            | NA                |  |
| Molybdenum                  | 0.100                         | 0.008             |  |
| Nickel                      | 0.217                         | 0.100             |  |
| Selenium                    | <0.003                        | 0.003             |  |
| Silver                      | <0.002                        | <0.002            |  |
| Sodium                      | 480                           | 397               |  |
| Thallium                    | <0.005                        | <0.005            |  |
| Tin                         | <0.060                        | <0.005            |  |
| Titanium                    | 0.767                         | <0.005            |  |
| Vanadium                    | 0.200                         | <0.010            |  |
| Yttrium                     | <0.200                        | <0.020            |  |
| Zinc                        | <0.600                        | 0.060             |  |
| Cyanide                     | <0.005                        | <0.005            |  |
| Toxic pollutants, µg/L      |                               |                   |  |
| Acenaphthene                | <3.3                          | ND                |  |
| Benzene                     | ND                            | ND                |  |
| Carbon tetrachloride        | ND                            | ND                |  |
| Chlorobenzene               | ND                            | ND                |  |
| Hexachloroethane            | ND                            | ND                |  |
| 1,2-Dichloroethane          | ND                            | ND                |  |
| 1,1,1-Trichloroethane       | ND                            | ND                |  |
| 1,1,2-Trichloroethane       | ND                            | ND                |  |
| 1,1,2,2-Tetrachloroethane   | ND                            | ND                |  |
| 2-Chloronaphthalene         | ND                            | ND                |  |
| Chloroform                  | ND                            | ND                |  |
| 2-Chlorophenol              | ND                            | ND                |  |

(continued)

TABLE 3-17 (continued)

|                                      | Wastewater<br>characterization <sup>a</sup> |                                   |  |
|--------------------------------------|---------------------------------------------|-----------------------------------|--|
|                                      | Character                                   | rization                          |  |
| Pollutant                            | Raw wastewater characterization             | Treated effluent<br>concentration |  |
| Pollucane                            | Characterization                            | concentration                     |  |
| Toxic pollutants, µg/L (cont'd)      |                                             |                                   |  |
| 1,2-Dichlorobenzene                  | ND                                          | ND                                |  |
| 1,4-Dichlorobenzene                  | ND                                          | ND                                |  |
| 3,3'-Dichlorobenzidine               | ND                                          | ND                                |  |
| 1,1-Dichloroethylene                 | ND                                          | ND                                |  |
| 2,4-Dimethylphenol                   | ND                                          | ND                                |  |
| 2,4-Dinitrotoluene                   | ND                                          | ND                                |  |
| 1,2-Diphenylhydrazine                | ND                                          | ND                                |  |
| Ethylbenzene                         | ND                                          | ND                                |  |
| Fluoranthene                         | <6.7                                        | ND                                |  |
| 4-Chlorophenyl phenyl ether          | ND                                          | ND                                |  |
| Bis(2-chloroethoxy)methane           | ND                                          | ND                                |  |
| Methylene chloride                   | ND                                          | ND                                |  |
| Bromoform                            | ND                                          | ND                                |  |
| Trichlorfluoromethane                | ND                                          | ND                                |  |
| Isophorone                           | ND                                          | ND                                |  |
| Naphthalene                          | 43.5                                        | ND                                |  |
| Nitrobenzene                         | ND                                          | ND                                |  |
| 2-Nitrophenol                        | ND                                          | ND                                |  |
| 4,6-Dinitro-o-cresol                 | ND                                          | ND                                |  |
| N-nitrosodiphenylamine               | ND                                          | ND                                |  |
| Phenol                               | ND                                          | ND                                |  |
| Bis(2-ethylhexyl) phthalate          | 50                                          | <6.7                              |  |
| Butyl benzyl phthalate               | <3.3                                        | ND                                |  |
| Di-n-butyl phthalate                 | <6.7                                        | <10                               |  |
| Di-n-octyl phthalate                 | ND                                          | ND                                |  |
| Diethyl phthalate                    | <3.3                                        | <10                               |  |
| Dimethyl phthalate                   | ND                                          | ND                                |  |
|                                      | 10.3                                        | ND                                |  |
| Benz(a)anthracene/chrysene           | <10.3                                       | ND                                |  |
| Benzo(a)pyrene Benzo(b)fluoranthene/ | <b>\10</b>                                  | ND                                |  |
|                                      | <3.3                                        | ND                                |  |
| benzo(k) fluoranthene                | ND                                          | ND<br>ND                          |  |
| Acenaphthylene                       | 33                                          | <3.3                              |  |
| Anthracene/phenanthrene              | <6.7                                        | ND                                |  |
| Benzo(ghi)perylene                   | <6.7                                        |                                   |  |
| Fluorene                             |                                             | ND                                |  |
| Dibenz (ah) anthracene               | ND<br>ND                                    | ND<br>ND                          |  |
| Indeno(1,2,3-cd)pyrene               |                                             |                                   |  |
| Pyrene                               | <3.3                                        | ND                                |  |
| Tetrachloroethylene                  | ND                                          | ND                                |  |
| Toluene                              | ND                                          | ND                                |  |
| Trichloroethylene                    | ND                                          | ND                                |  |
| Aldrin                               | ND                                          | ND                                |  |
| a-Endosulfan                         | ND                                          | ND                                |  |
| β-Endosulfan                         | ND                                          | ND                                |  |
| Endrin                               | ND                                          | ND                                |  |
| Heptachlor                           | ND                                          | ND                                |  |
| Heptachlor epoxide                   | ND                                          | ND                                |  |
| α-BHC                                | ND                                          | ND                                |  |
| Y-BHC                                | ND                                          | ND                                |  |
| 6-BHC                                | ND                                          | ND                                |  |

a All data based on 3-day sampling, except as noted.

CRecycled preparation plant water.

dData from 2-day sampling.

TABLE 3-18. WASTEWATER CHARACTERIZATION, PLANT NC-22 [1]

Category: Coal Mining Subcategory: Preparation Plants Raw wastewater flowrate, gpd: 274,000

|                                    | Wastewater<br>characterization |                 |  |
|------------------------------------|--------------------------------|-----------------|--|
|                                    | Raw wastewater b               | Treated effluen |  |
| Pollutant                          | <u>characterization</u> b      | concentration   |  |
| Classical parameters               |                                |                 |  |
| TSS, mg/L                          | 13,876                         | 18.7            |  |
| Total volatile solids, mg/L        | 17,908                         | 200             |  |
| Settleable solids, mL/L            | 202                            | NA              |  |
| COD, mg/L                          | 48,792                         | 20.3            |  |
| TOC, mg/L                          | 8,447                          | 6.8             |  |
| рн                                 | 6.6                            | 6.9             |  |
| Phenol, mg/L                       | <0.010                         | <0.010          |  |
| Metals, mg/L                       |                                |                 |  |
| Aluminum                           | 57                             | <0.050          |  |
| Antimony                           | <0.005                         | <0.005          |  |
| Arsenic                            | 0.18                           | <0.005          |  |
| Barium                             | 2.0                            | 0.06            |  |
| Beryllium                          | <0.01                          | <0.001          |  |
| Boron                              | 0.200                          | 0.167           |  |
| Cadmium                            | <0.020                         | 0.003           |  |
| Calcium                            | 270                            | 187             |  |
| Chromium                           | 0.233                          | 0.043           |  |
| Cobalt                             | <0.050                         | <0.005          |  |
| Copper                             | 0.233                          | 0.008           |  |
| Iron                               | 110                            | <0.200          |  |
| Lead                               | 0.467                          | 0.053           |  |
| Magnesium                          | 100                            | 63              |  |
| Manganese                          | 0.767 <sub>a</sub>             | <0.005          |  |
| Mercury                            | 0.003                          | <0.001          |  |
| Molybdenum                         | 0.12                           | <0.030          |  |
| Nickel                             | 0.30                           | 0.01            |  |
| Selenium                           | 0.034                          | 0.003           |  |
| Silver                             | <0.005                         | <0.005<br>78    |  |
| Sodium                             | <150                           | <0.005          |  |
| Thallium                           | 0.015                          |                 |  |
| Tin                                | 0.053                          | 0.040           |  |
| Titanium                           | 0.433                          | <0.020<br>0.013 |  |
| Vanadium                           | 0.133                          | <0.020          |  |
| Yttrium                            | <0.200                         | <0.020          |  |
| Zinc                               | <0.600<br><0.005 <sup>d</sup>  | <0.005          |  |
| Cyanide                            | 20.003                         | (0.003          |  |
| Oxic pollutants, µg/L Acenaphthene | ND                             | ND              |  |
| Benzene                            | <3.3                           | ND              |  |
| Carbon tetrachloride               | ND                             | ND              |  |
| Chlorobenzene                      | ND                             | ND              |  |
| Hexachloroethane                   | ND                             | ND              |  |
| 1.2-Dichloroethane                 | ND                             | ND              |  |
| 1,1,1-Trichloroethane              | 7.67                           | <3.3            |  |
| 1,1,2-Trichloroethane              | ND                             | ND              |  |
|                                    | ND                             | <3.3            |  |
| 1,1,2,2-Tetrachloroethane          | <3.3                           | ND              |  |
| 2-Chloronaphthalene<br>Chloroform  | <6.7                           | <6.7            |  |
|                                    | 86                             | ND              |  |
| 2-Chlorophenol                     | • •                            | ND              |  |
|                                    |                                |                 |  |

Date: 6/23/80

(continued)

TABLE 3-18 (continued)

| Wastewater<br>characterization |                  |  |
|--------------------------------|------------------|--|
| astewater                      | Treated effluent |  |
| terization                     | concentration    |  |
|                                |                  |  |
| ND                             | ND               |  |
| 22                             | ND               |  |
| 6                              | ND               |  |
| <3.3                           | <b>N</b> D       |  |
| <6.7                           | <3.3             |  |
| 16                             | <b>N</b> D       |  |
| <3.3                           | ND               |  |
| ND                             | <3.3             |  |
| 82                             | 19               |  |
| ND                             | ND               |  |
| ND                             | ND               |  |
| 307                            | ND               |  |
| 402                            | ND               |  |
| 7                              | ND               |  |
| 19                             | ND               |  |
| 194                            | ND               |  |
| 30                             | ND               |  |
| <10                            | <6.7             |  |
| <10                            | <6.7             |  |
| <3.3                           | ND               |  |
| <3.3                           | <3.3             |  |
| <3.3                           | ND               |  |
| <3.3                           | <3.3             |  |
| <3.3                           | ND               |  |
| 6/29                           | ND               |  |
| 12                             | ND               |  |
|                                |                  |  |
| 12                             | ND               |  |
| 8                              | ND               |  |
| 132                            | <3.3             |  |
| 12                             | ND               |  |
| 47                             | ND               |  |
| <3.3                           | ND               |  |
| <6.7                           | ND               |  |
| 19                             | ND               |  |
| ND                             | <3.3             |  |
| 8                              | 7.3              |  |
| <10                            | <10              |  |
| ND                             | ND               |  |
| <6.7                           | ND               |  |
| <6.7                           | ND               |  |
| ND                             | ND               |  |
|                                | ND               |  |
|                                | ND               |  |
|                                | ND               |  |

<sup>&</sup>lt;sup>a</sup>All data based on 3-day sampling, except as noted. <sup>b</sup>Slurry.

c<sub>Slurry</sub> effluent.

d Data based on 2-day sampling.

TABLE 3-19. WASTEWATER CHARACTERIZATION, PLANT NC-15 [1]

Category: Coal Mining Subcategory: Associated Areas (screening data)

|                                    | Wastewater<br>characterization |                                   |  |
|------------------------------------|--------------------------------|-----------------------------------|--|
|                                    | Raw wastewater                 | Treated effluent                  |  |
| Pollutant                          | characterization D             | <u>concentration</u> <sup>C</sup> |  |
| Classical parameters               |                                |                                   |  |
| Total solids, mg/L                 | 410                            | 260                               |  |
| TSS, mg/L                          | 11.4                           | 62                                |  |
| Total volatile solids, mg/L        | 34                             | 36                                |  |
| Volatile suspended solids, mg/L    | 2.2                            | 19.6                              |  |
| COD, mg/L                          | 15.5                           | 29.1                              |  |
| TOC, mg/L                          | 3.6                            | 5.5                               |  |
| pH .                               | 4.0                            | 9.7                               |  |
| Phenol, mg/L                       | <0.02                          | <0.035                            |  |
| Metals, mg/L                       |                                |                                   |  |
| Aluminum                           | 1.47                           | <0.99                             |  |
| Antimony                           | 0.002                          | 0.002                             |  |
| Arsenic                            | 0.003                          | 0.004                             |  |
| Barium                             | 0.127                          | 0.17                              |  |
| Beryllium                          | <0.002                         | <0.02                             |  |
| Boron                              | 0.024                          | 0.11                              |  |
| Cadmium<br>Calcium                 | <0.02                          | <0.2                              |  |
| <del></del>                        | 26.5                           | 8.0                               |  |
| Chromium                           | <0.024                         | <0.24                             |  |
| Cobalt                             | 0.038<br>0.006                 | <0.1                              |  |
| Copper<br>Iron                     | 0.509                          | <0.04                             |  |
| Lead                               | <0.06                          | 1.0                               |  |
| Magnesium                          | 15.5                           | <0.6<br>3.0                       |  |
| Manganese                          | 2.09                           | <0.2                              |  |
| Mercury                            | 0.0048                         | 0.0043                            |  |
| Molybdenum                         | <0.01                          | <0.1                              |  |
| Nickel                             | <0.05                          | <0.5                              |  |
| Selenium                           | 0.003                          | 0.004                             |  |
| Silver                             | <0.025                         | <0.250                            |  |
| Sodium                             | 38.8                           | 65.0                              |  |
| Thallium                           | <0.001                         | <0.001                            |  |
| Tin                                | <0.099                         | < 0.99                            |  |
| Titanium                           | 0.014                          | <0.1                              |  |
| Vanadıum                           | <0.099                         | < 0.99                            |  |
| Yttrium                            | <0.01                          | <0.1                              |  |
| Zinc                               | 0.168                          | <0.25                             |  |
| Cyanide                            | <0.005                         | <0.005                            |  |
| Toxic pollutants, vg/L             |                                |                                   |  |
| Benzene                            | 48                             | 6.3                               |  |
| Chlorobenzene                      | ND                             | ND                                |  |
| 1,2-Dichloroethane                 | ND                             | ND                                |  |
| 1,1,1-Trichloroethane              | ND                             | 1.7                               |  |
| 1,1,2,2-Tetrachloroethane          | ND                             | 1.2                               |  |
| Chloroform                         | 45                             | , 19                              |  |
| 1,2-trans-Dichloroethylene         | ND                             | 1.7                               |  |
| 2,6-Dinitrotoluene                 | ND<br>ND                       | ND                                |  |
| Ethylbenzene<br>Mathylana Shlorida | ND<br>480                      | ND                                |  |
| Methylene chloride                 |                                | 66,000                            |  |
| Trichlorfluoromethane              | ND                             | 22                                |  |
| Toluene                            | 14                             | 2.0                               |  |
| Bis(2-ethylhexyl) phthalate        | ND                             | 6,100                             |  |
| Di-n-butyl phthalate               | ND<br>ND                       | 210<br>ND                         |  |
| Diethyl phthalate                  | ND<br>ND                       | ND                                |  |
| Anthracene/phenanthrene            | ND                             | ND                                |  |
|                                    |                                |                                   |  |

All data based on 1-day sampling.

bRefuse pile raw water.

c Refuse pile treated effluent.

#### II.4 ELECTROPLATING

#### II.4.1 INDUSTRY DESCRIPTION

# II.4.1.1 General Description [1]

The Electroplating Industry includes those facilities that apply a metallic surface coating to a second material typically by electrodeposition to provide corrosion protection, wear or erosion maintenance, antifrictional characteristics, or for decorative purposes. Approximately 13,000 companies are engaged in some phase or type of metal plating in the United States. Of these, 74% are captive shops (i.e., facilities plating products made in shop), while the remaining companies are independent (job) platers.

Electroplating facilities vary greatly in size and character from one plant to another. A single facility for plating individual parts formed by stamping, casting, and machining may employ plating or processing solutions (excluding water rinses) ranging in volume from less than 0.4 m<sup>3</sup> (100 gal) to more than 20 m<sup>3</sup> (5,300 gal). The area of the products being plated in these facilities varies as much as three orders of magnitude, from less than 10 to more than 1,000 m<sup>2</sup>/d (100 to 10,000 ft<sup>2</sup>/d). The power consumed by a single facility varies from a few kWh/ day to as much as 20,000 kWh/day. Products being plated vary in size from less than 6.5 cm<sup>2</sup> (1 in.<sup>2</sup>) to more than 1 m<sup>2</sup> (10 ft<sup>2</sup>) and in weight from less than 30 g (1 oz) to more than 9,000 kg (10 tons). Continuous strip and wire are plated in some plants on a 24-hr/d basis. Some companies have capabilities for electroplating 10 or 12 different metals and alloys, but others specialize in just 1 or 2. Because of differences in character, size, and processes, facilities are custom tailored to the specific needs of each individual plant.

Table 4-1 presents an industry summary for the Electroplating Industry including the total number of subcategories, number of subcategories studied, and the types of dischargers.

The industry dischargers in the table do not add up to the 13,000 initially estimated. This may be due to an overestimation by the first reference or to exclusion of some of the plants from the second reference.

# TABLE 4-1. INDUSTRY SUMMARY

Industry: Electroplating

Total Number of Subcategories: 10 Number of Subcategories Studied: 10

Number of Dischargers in Industry:

Direct: 2,932Indirect: 6,586

· Zero: 200

# II.4.1.2 Subcategory Descriptions [1]

The industry summary (Table 4-1) notes that this industry has 10 subcategories. However, the primary reference used for this industry report (written in August 1979) lists only seven subcategories. The three missing subcategories may have been absorbed into other subcategories or may have been eliminated because of their insignificance in the industry. This report will be limited to the seven subcategories for which descriptions are available:

- (1) Common Metals Plating
- (2) Precious Metals Plating
- (3) Anodizing
- (4) Coating
- (5) Chemical Milling and Etching
- (6) Electroless Plating
- (7) Printed Circuit Board Manufacturing

Although the subcategories are not mutually exclusive subdivisions of this industry, the categorization is based on the fact that distinctly different production processes are performed in each of the subcategories. The subcategory descriptions that follow provide an overview of the industry in the area of production processes and product descriptions.

Surface preparation, plating, and posttreatment are process steps common to nearly all the subcategories. To avoid repetition these three steps will be briefly described before the subcategory descriptions are presented.

#### Surface Preparation

The surface of the basic material must be cleaned or descaled prior to plating. Cleaning removes from the surface the oil, grease, and dirt that interefere with the plating step. Any of several cleaning methods may be used, including solvent, alkaline, acid, emulsion, and ultrasonic cleaning. Associated with each

method are advantages and disadvantages that affect the cleaning potential, polluting potential, and type of metal to be plated.

Solvent cleaning of metals is classified as either hot cleaning, such as vapor degreasing, or cold cleaning, in which the solvent is used at room temperature. Hot cleaning is effective in removing lubricants high in nonsaponifiable oils or sulfurized or chlorinated components. Cold cleaning solvents are selected based on the type of soil to be eliminated.

Alkaline cleaning is used to remove oily soils or solid soil from workpieces. The detergent nature of the solution provides the majority of the cleaning action, with agitation of the solution being secondary. Pieces may be sprayed, soaked, or cleaned electrolytically. Electrolytic cleaning produces the cleanest surfaces available from conventional methods of alkaline cleaning as a result of solution agitation by the gas evolution and the oxidation-reduction reactions that occur.

Emulsion cleaners consist of common organic solvents dispersed in an aqueous medium by emulsifying agents. Emulsion cleaning is conducted in the same manner as solvent cleaning.

Ultrasonic energy is finding increased use for the agitation of cleaning solutions and may represent substantial savings in time and labor. Ultrasonic cleaning is used to remove difficult inorganic and organic soils from intricate parts.

Acid cleaning is used to remove oxides that are formed on the metal surfaces prior to plating. The removal involves the dissolution of the oxide in an acid. Sulfuric, hydrochloric, and phosphoric acids are most commonly used.

Each of the above cleaning processes potentially generates wastewater pollutants in the form of the soils on the materials and the cleaning solutions used. Normally several of the above processes are used to ensure that the surface is thoroughly cleaned.

Salt bath descaling uses as molten salt bath - water quench - acid dip sequence to clean hard-to-remove oxides from stainless steels and other corrosion-resistant alloys. The work is immersed in the molten salt (temperature range from 400°C to 540°C), water quenched, and then acid dipped. Oxidizing, reducing, and electrolytic baths are available; the oxide to be removed governs the choice of bath.

#### Plating

The electroplating processes apply a surface coating for functional or decorative purposes. In electroplating, metal ions in

either acid, alkaline, or neutral solutions are reduced on cathodic surfaces (the surfaces of the workpiece being plated). The metal ions in solution are usually replenished by the dissolution of metal from anodes or small pieces contained in inert wire or expanded metal baskets. Replenishment with metal salts is also practiced, especially for chromium plating. In this case, an inert material must be selected for the anodes. Hundreds of different electroplating solutions have been adopted commercially, but only two or three types are utilized widely for any particular metal or alloy. Cyanide solutions are popular for copper, zinc, brass, and cadmium, for example, yet noncyanide alkaline solutions containing pyrophosphate or another agent have come into use in recent years for zinc and copper. Zinc, copper, tin, and nickel are plated with acid sulfate solutions, especially pieces with relatively simple shapes. Cadmium and zinc are sometimes electroplated from neutral or slightly acid chloride solutions.

The electroplating process is basically an oxidation-reduction reaction. Typically, the part to be plated is the cathode, and the plating metal is the anode. Thus, to plate copper on zinc parts, the zinc parts are the cathodes, and the anode is a copper bar. On the application of electric power, the copper bar anode will be oxidized, dissolving it in the electrolyte (which could be copper sulfate):

$$Cu = Cu^{+2} + 2e^{-}$$

The resulting copper ions are reduced at the cathode (the zinc part) to form a copper plate:

$$Cu^{+2} + 2e^{-} = Cu$$

With some exceptions, notably chromium plating, all metals are usually electroplated in a similar manner. In chromium plating, the typical anode material is lead, and the chromium is supplied to the plating baths as chromic acid.

Parts are most commonly plated either in barrels or on racks. Barrel plating is used for small parts that tumble freely in rotating barrels. Direct current loads up to several hundred amperes are distributed to the parts being plated. For rack plating, parts may be attached to plastic-coated copper frames designed to carry current equally to a few hundred small parts, several medium-size shapes, or just a few large products through springlike rack tips affixed to the rack splines. Racks fabricated for manual transfer from cleaning, plating, and rinsing tanks usually hold workpieces totaling 0.5 to 1 m<sup>2</sup> (5 to 10 ft<sup>2</sup>) in area. Larger racks for heavier parts are constructed for use with mechanical hoist and transfer systems.

#### Posttreatment

After deposition of a metallic coating by either electro or electroless techniques, an additional coating is sometimes applied to prepare the metal surface for painting or the application of a colored finish or to improve lubricity or corrosion protection. These posttreatments are the chromating, phosphating, and metal coloring processes of chemical conversion coating which are discussed later in the coating subcategory description.

### Subcategory 1 - Common Metals Plating

This subcategory covers the electroplating of the following common metals, or any combination of them, onto a surface: aluminum, cadmium, chromium, copper, iron, lead, nickel, or tin. The paragraphs below describe some of the individual characteristics of the different types of plating done in this subcategory.

Aluminum Electroplating. Application of aluminum on a commercial basis is limited. It has been used for coating uranium and steel strip and electroforming. Because it is more reactive than hydrogen, aluminum cannot be plated from aqueous solutions or any solution containing acidic hydrogen. Only plating from a hydride bath with the basic ingredients of diethyl ether, aluminum chloride, and lithium aluminum hydride has had any commercial applications.

Cadmium Electroplating. Cadmium electroplating provides a corrosion protection coating over the basis material. Iron and steel are the most commonly used basis materials. Since cadmium is relatively high priced, only thin coatings are applied. It is sometimes used as an undercoating for zinc. Cadmium plating is often used on parts consisting of two or more metals to minimize galvanic corrosion. Cadmium cyanide baths are by far the most popular because they cover completely and give a dense, finegrained deposit which can be made very lustrous by the use of stable brighteners.

Chromium Electroplating. Chromium electroplating solutions contain chromic acid and silicate or fluoride ions. Three basis materials account for the bulk of the chromium plate work: steel, nickel-electroplated steel, and nickel-electroplated zinc. Solutions containing 150 to 400 g/L of chromic acid are the common baths for electroplating 0.0002 mm to 0.10 mm (0.000008 to 0.00040 in.) of decorative chromium or hard chromium (for resisting wear) on steel and aluminum. Unlike the copper and nickel plating processes, which utilize soluble copper or nickel anodes to replenish the metal deposited on the workpieces, chromium electroplating processes always use insoluble lead alloy anodes. Thus, some portion of the chromic acid added regularly for maintenance is consumed by reduction to chromium metal at cathode surfaces.

Copper Electroplating. Copper is electroplated from several types of baths, among them alkaline cyanide, acid sulfate, pyrophosphate, and fluoborate, which are prepared with the corresponding copper salt. The cyanide solutions contain sodium carbonate and may also contain sodium hydroxide or sodium potassium tartrate. All four types may also contain a small amount of an organic chemical for refining the grain or brightening the plate. Cyanide solutions are used extensively for copper electroplating, but acid copper solutions have been adopted for plating large numbers of steel, plastic, and zinc alloy products. Steel and zinc are customarily plated first in a cyanide strike bath to insure good electroplate adhesion.

Alloyed forms of copper also find use in electroplating, the most common being brass and bronze. Brass, a combination of copper and zinc, is often used as a decorative plate on furniture hard-ware. Several types of bronze solutions including copper-tin, copper-cadmium, and copper-zinc are utilized primarily as decorative finishes.

Iron Electroplating. The electroplating of iron is used for certain specialized purposes such as electroforming and buildup of worn parts. Iron does not alloy with solder, which has led to iron plating of soldering tips. While there are several difficulties in the maintenance of an iron electroplating line, the iron electroplating solutions are comparatively stable and simple to operate. Special noncorrosive equipment is needed to heat and agitate the plating bath. Also, care must be taken that the plating bath does not oxidize. However, these disadvantages may be offset by the great abundance of low cost iron. Iron may be deposited as a hard and brittle or soft and ductile coat. Almost all iron is plated from solutions of ferrous salts at low pH's. The most common baths contain sulfate, chloride, fluoborate, and sulfamate.

Lead Electroplating. Lead is most resistant to hydrofluoric and sulfuric acids and is used for protective linings as well as coatings on nuts and bolts, storage battery parts, and bearings. Lead is often an undercoat for indium plating. Lead-tin and lead-antimony alloys are used. Solder plating is a 40/60 lead-tin alloy which is widely used in the electronics field.

Fluosilicate and fluoborate baths are the most widely used. The fluoborate bath is more expensive, but it gives finer grained, denser deposites, adheres better to steel, and will not decompose as readily.

Nickel Electroplating. Nickel is electroplated from several baths; among these are Watts (sulfate-chloride-boric acid), sulfamate, all chloride, and fluoborate baths. Each type of solution is prepared with the corresponding nickel salt, a buffer

such as boric acid, and a small concentration of a wetting agent. A small amount of another organic chemical may be added to brighten the deposits or control other properties. Nickel is extensively electroplated in a three-metal composite coating of copper, nickel, and chromium. Nickel is also electrodeposited on steel for decorative-protective finishes and on other materials for electroforming. In these applications, nickel electroplating is preceded by cleaning and activating operations in a sequence selected for a specific basis material.

Organic agents that refine the grain size of the deposit and brighten the plate are added to all nickel plating baths adopted for sequential nickel-chromium plating. Proprietary agents are supplied by metal finishing supply companies that have developed stable, effective chemicals for insuring mirrorlike, corrosion-protection deposits requiring no buffing.

Tin Electroplating. In terms of tonnage of product produced, continuous tin electroplating of coil steel represents the largest application of electroplating in the world. Resistant to corrosion and tarnish, tin is also solderable, soft, and ductile. These properties of tin make it excellent for food handling equipment, electronic components, and bearing surfaces where lubricity to prevent seizing and scoring is desired.

Tin electroplate can provide a mat or bright deposit. The common baths of alkaline stannate and acid fluoborate produce a mat finish while the acid sulfate process can result in either type of deposit. Commonly, mat finishes are brightened by a postplating operation of melting the deposit. This method is called "reflowing."

Zinc Electroplating. Zinc is electroplated in (a) cyanide solutions containing sodium cyanide, zinc oxides, or cyanide and sodium hydroxide; (b) noncyanide alkaline solutions prepared with zinc pyrophosphate or another chelating agent such as tetrasodium pyrophosphate, sodium citrate, or the sodium salt of ethylenediamine tetraacetic acid; (c) acid or neutral chloride baths prepared with zinc chloride and a buffer salt such as ammonium chloride; or (d) acid sulfate solutions containing zinc sulfate and a buffer salt such as aluminum chloride or sulfate. A small concentration of an organic compound such as glucose, licorice, or glycerin may be added to the chloride or sulfate baths for brightening purposes.

# Subcategory 2 - Precious Metals Plating

This subcategory is very similar to subcategory 1 in that it uses the same surface preparation, plating, and posttreatment processes. The difference lies in the type of metals to be plated onto the surfaces, of which there are six in this subcategory:

gold, indium, palladium, platinum, rhodium, and silver. Since the processes are very similar to those described above, no repetitive description is presented here. Individual characteristics of the plating metals and their processes are briefly described below.

Gold Electroplating. Gold electroplating provides not only decorative finishes and corrosion protection; it is also important in providing electrical contact surfaces, bonding surfaces, and electroformed conductors. Plating baths have been developed for each of these uses. Four types of gold baths are used. Three of these are cyanide baths - unbuffered alkaline with a pH range of 8.5 to 13, acid buffered with a pH range of 3 to 6, and a neutral buffer with a pH range of 6 to 8.5. The fourth is noncyanide.

Indium Electroplating. Indium electroplating is used in the manufacture of aircraft engine bearings. Corrosion of the originally plated cadmium-silver-copper bearings is reduced by an indium overlayer and heat treating. Indium is often alloy plated with copper, tin, lead, cadmium, nickel, bismuth, or rhodium.

Initially, indium baths were composed of cyanide and sugar. Today the sulfate bath is the most widely used, along with alkaline, fluoborate, sulfamate, chloride, perchlorate, and tartrate baths.

Platinum Metals Electroplating. Of the six metals in the platinum group only platinum, rhodium, and palladium are electroplated to any extent. Of these, rhodium is most often deposited. Decorative coatings for silverware, jewelry, and watches are very thin (0.1  $\mu m)$  and are used to prevent tarnish and excessive wear of silver and to enhance the color of gold and gold-filled products. When the basis metal is not a silver or a gold alloy an undercoat of nickel is generally used. Coatings 25  $\mu m$  (0.001 in.) thick are used for wear and corrosion resistance in the electronics industry and provide a surface of high optical reflectivity.

Platinum is electroplated on titanium and similar metals which are used as insoluble anodes in other plating operations (e.g., rhodium and gold). Electroplated platinum is used as an undercoat for rhodium plate. Ruthenium electroplating is used on high intensity electrodes to improve electrical contact. Commercial electroplating of osmium and iridium are believed to be nonexistent.

Rhodium electroplating baths are supplied as phosphate or sulfate concentrates. The only additions made to the diluted concentrate are phosphoric and/or sulfuric acids at concentrations of

Date: 6/23/80

25 to 75 mL per liter of plating bath. A rhodium concentration of 2.0 g/L is used for decorative coatings. Concentration is increased to 10 to 20 g/L for achieving thicker deposits.

The pallaidum content in plating solutions ranges from 2.5 to 10 g/L in the form of an amino nitrite complex. Other constituents are 11 g/L sodium nitrite and 40 mL/L of concentrated ammonium hydroxide. Palladium deposition has been accomplished from chloride or bromide solutions and from a molten cyanide bath.

Silver Electroplating. The use of silver electroplating is expanding in both the engineering and the decorative fields. Silver is typically electroplated in two types of baths, a conventional low metal bath and the high speed bath with a much higher silver content. Most baths are now based on potassium formulations because they provide high plating speeds, better conductivity, increased tolerance to carbonates, and smoother deposits.

### Subcategory 3 - Anodizing

Anodizing is an electrolytic oxidation process which converts the surface of the metal to an insoluble oxide. These oxide coatings provide corrosion protection, decorative surfaces, a base for painting and other coating processes, and special electrical and engineering properties. Aluminum is the most frequently anodized material, while some magnesium and limited amounts of zinc and titanium are also anodized.

Surface preparation for anodizing can be minor or extensive depending on the alloying elements in the basis material and the amount of oil, grease, or oxide present on the part. Generally, the surface is prepared by four sequential cleaning steps, each (except degreasing) followed by rinsing. The vapor degreasing step is required only if an excessive amount of oil and grease is present. The principal cleaning step, inhibited soak cleaning, follows the degreasing step. Acidic cleaning and an optional etching step complete the surface preparation. The etching step may form a smutlike surface when an alkaline etch is used on an alloying metal which is cleaned by a nitric acid bath. After a final rinse the piece is ready for anodizing.

For aluminum parts, the formation of the oxide occurs when the parts are made anodic in dilute sulfuric acid or dilute chromic acid solutions. The oxide layer begins formation at the extreme outer surface, and as the reaction proceeds, the oxide grows into the metal. The last formed oxide, known as the boundary layer, is located at the interface between the base metal and the oxide. The boundary is extremely thin and nonporous. The sulfuric acid process is typically used for all parts fabricated from

aluminum alloys except for parts subject to stress or containing recesses in which the sulfuric acid solution may be retained and attack the aluminum.

Chromic acid anodic coatings are more protective than sulfuric acid anodic coatings. This is partly due to the retention of chromic acid in the coating and its relatively thick boundary layer. For these reasons, a chromic acid bath is used if a complete rinsing of the part cannot be achieved.

# Subcategory 4 - Coating

This section deals with chemical conversion coating by chromating, phosphating, metal coloring, and immersion plating. These coatings are applied to previously deposited metal or basis materials for increased corrosion protection, lubricity, preparation of the surface for additional coatings, or formulation of a special surface appearance.

In addition to the surface preparation steps described earlier, polishing is often used in coating operations to obtain the desired surface prior to coloring. Mechanical polishing, electropoloshing, and chemical polishing are used to obtain specific surface finishes.

Anodic coatings once applied are usually improved by a sealing process, usually involving an acid mixture, that modifies the surface to give better corrosion protection and improved paint adhesion. Unsealed anodic coatings may be colored by immersion in inorganic or organic dyes followed by a sealing process. Other posttreatment processes include applying special surface characteristics and drying.

Chromating. Chromate conversion coatings are protective films formed on the metal surfaces. During the process of chromating, a portion of the base metal is converted to one of the components of the film by reaction with aqueous solutions containing hexavalent chromium and active organic or inorganic compounds. Chromating solutions are generally acidic and contain chromic acid or its sodium or potassium salts, plus organic or inorganic compounds such as activators, accelerators, or catalysts. Although chromate conversion coatings can be applied by chemical or electrochemical action, the bulk of the coatings are usually applied by a chemical immersion, spray, or brush treatment. Most chromate treatments used in industry employ proprietary solutions. Additional coloring of the coatings can be achieved by dipping the organic dye baths to impart red, green, blue, and other colors. Besides their use as protective or decorative films, chromate conversion coatings are extensively employed to provide an excellent base for paint and other organic finishes which do not adhere well to untreated metal surfaces.

Phosphating. Phosphate conversion coatings produce a mildly protective layer of insoluble crystalline phosphate on the surface of a metal. Phosphate coatings are used to (a) provide a good base for paints and other organic coatings, (b) condition the surfaces for cold forming operations by providing a base for drawing compounds and lubricants, and (c) impart corrosion resistance to the metal surface by the coating itself or by providing a suitable base for rust-preventive oils or waxes. Phosphate conversion coatings are formed by the immersion of iron, steel, or zinc-plated steel in a dilute solution of phosphoric acid plus other reagents.

The method of applying the phosphate coating is dependent upon the size and shape of the part to be coated. Small parts are coated in barrels immersed in the phosphating solution. Large parts, such as steel sheet and strip, are spray coated or continuously passed through the phosphating solution. Supplemental oil or wax coatings are usually applied after phosphating unless the part is to be painted.

Coloring. Metal coloring by chemical conversion methods produces a large group of decorative finishes. This section covers only chemical methods of coloring in which the metal surface is converted into an oxide or other insoluble metal compound. The most common colored finishes are used on copper, steel, zinc, and cadmium.

Application of the color to the cleaned basis metal involves only a brief immersion in a dilute aqueous solution. The colored films produced on the metal surface are extremely thin and delicate. Consequently, they lack resistance to handling and the atomsphere. A clear lacquer is often used to protect the colored metal surface.

Immersion Plating. Immersion plating is a chemical plating process in which a thin metal deposit is obtained by chemical displacement of the basis metal. In immersion plating, a metal will displace from solution any other metal that is below it in the electromotive series of elements.

The lower (more noble) metal will be deposited from solution while the more active metal (higher in the series) will be dissolved. A common example of immersion plating is the deposition of copper on steel from an acid copper solution.

The thickness of immersion deposits is usually of the order of 0.25  $\mu m$  (0.0000l in.) although a few processes produce deposits as thick as 2.5  $\mu m$  to 5  $\mu m$  (0.00l in. to 0.0002 in.). This thinness limits the usefulness of immersion deposits as to applications other than corrosion protection such as decoration or preparation for further processing such as painting or rubber bonding. The most widely used immersion plating processes are (a) tin on brass, copper, steel, or aluminum, (b) copper on

steel, (c) gold on copper or brass, (d) nickel on steel, and (e) zinc on aluminum.

# Subcategory 5 - Chemical Milling and Etching

Chemical milling and etching processes are used to produce specific design configuration and tolerances on metal parts by controlled dissolution with chemical reagents or etchants. Included in this general classification are the specific processes of chemical milling, chemical etching, bright dipping, electropolishing, and electrochemical machining.

In addition to the normal surface preparation processes, masks are applied by dip, spray, brush, roll or flow coating, silk-screen techniques, or photosensitive resists to prevent metal removal where it is not desired. Typically photographic techniques are used for the blanking of small, intricately shaped parts or for the production of nameplates, dials, and fine-mesh screen. After masking, parts may be dipped in acid to activate the surface prior to chemical milling or etching.

Chemical Milling. Chemical milling is similar to the etching procedure used for decades by photoengravers, except that the rates and depths of metal removal are usually much greater. Chemical milling is especially suited for removing metal from shallow depths on formed complex shaped parts (e.g., forgings, castings, extrusions) from thin sections and from large areas. The amount of metal removed or the depth of removal is controlled by the immersion time in the milling solutions. The metal can be removed from an entire part or restricted to selected areas by masking.

Typical solutions for chemical milling include ferric chloride, nitric acid, ammonium persulfate, chromic acid, cupric chloride, hydrochloric acid, and combinations of these reagents. Aluminum is milled in ferric chloride or hydrochloric acid or sodium hydroxide solutions. Copper is milled in ferric chloride, cupric chloride, chromic acid, or ammonium persulfate solutions.

Etching. Chemical etching is the same process as chemical milling, except that relatively small amounts (1-5 mils) of metal are removed. Bright dipping, a specialized example of the etching process, is used to remove oxide and tarnish from ferrous and nonferrous materials. Bright dipping can produce a range of surface appearances from bright clean to brilliant depending on the surface smoothness desired in the finished part. A smoother surface results in a more brillant appearance.

Bright dipping solutions usually involve mixtures of two or more of sulfuric, chromic, phosphoric, nitric, and hydrochloric acids. The rate of attack on the metal is controlled by the addition of

inhibiting materials. The quantity of these materials is dependent upon the metals that are to be dipped. The type and quantity of the parts to be bright dipped greatly influence the composition of the bath. For parts with simple shapes which can be easily removed from the dipping solution and quickly rinsed, fast-acting dips are used. Slow-acting dips are used for bulk loads of parts and parts with complex shapes.

#### Subcategory 6 - Electroless Plating

Electroless plating is a chemical reduction process which depends upon the catalytic reduction of a metallic ion in an aqueous solution containing a reducing agent and the subsequent deposition of It has found metal without the use of external electrical energy. widespread use in industry due to its several unique advantages over conventional electroplating. Electroless plating provides a uniform plating thickness on all areas of a part regardless of the part's configuration or geometry. This makes it possible to plate deep recesses and niches that electroplating cannot effectively reach due to current distribution problems. An electroless plate on a properly prepared surface is dense and virtually non-Furthermore, certain types of electroless platings provide better hardness and corrosion protection than their electroplated counterparts. Copper and nickel electroless plating are the most common. Others found on a smaller scale are iron, cobalt, gold, palladium, and arsenic.

The basic ingredients in an electroless plating solution are:

- · A source of metal, usually a salt.
- · A reducer to reduce the metal to its base state.
- A chelating agent to hold the metal in solution (so the metal will not plate out indiscriminately).
- Various buffers and other chemicals designed to maintain bath stability and increase bath life.

Of particular interest among the constituents of electroless plating baths are the chelating agents. Chelation is an equilibrium reacton between a metal ion and a complexing agent characterized by the formation of more than one bond between the metal and a molecule of the complexing agent. This results in the formation of a ring structure incorporating the metal ion and thus holding it in solution. Chelating agents control metal ions by blocking their reactive sites, thus preventing them from carrying out their normal (and in many cases undesirable) reactions.

In the electroless plating processes, the purpose of the chelating agent is to hold the metal in solution, to keep it from plating out indiscriminately. Thus, the chelate can only be replaced by

some material capable of forming an even more stable complex; that is, the part to be plated.

One of the drawbacks in the use of chelating agents is the difficulty in precipitating chelated metals out of wastewater during treatment. Quite often, plants which are engaged in plating activities that make use of chelating agents have treatment systems based on the precipitation and the settling out of heavy metals. Unfortunately, in the treatment system, the chelating agents continue to hold the metal in solution, and cause the chelated metal to pass through the treatment system without precipitation and settling. In some situations, particularly with the stronger chelates, special treatment is necessary to remove the bound metals.

Electroless plating is performed on two different types of surfaces, metal and plastic. For electroless metal plating, preparation consists of the conventional electroplating cleaning steps for metals with active surfaces. In addition, the smoother the surface, the better the resulting plating finish. Therefore, the parts usually undergo mechanical preparation, such as honing, and chemical treatment, such as acid dipping or alkaline cleaning. Some metals require an activation step which involves a flash deposit of a catalyst on the metal surface.

Surface preparation for electroless plastic plating, different from that for metal plating, involves roughening or etching and catalyst application. Roughnening is accomplished either by mechanical means such as tumbling or by chemical means such as etching. Following this step a catalyst is applied to allow metal deposition to occur. All plastics require this catalytic preparation prior to plating.

Two different catalyst application methods have been employed and both are based on the interaction of stannous and palladium salts. One method involves adsorbing stannous tin on the surface, then immersing the part in palladium chloride. This reduces the palladium to the metal form and oxidizes the tin from stannous to stannic. A molecular layer of palladium metal is deposited on the surface of the part and the tin remains in the solution. The other process used for catalyst application involves the application of a mixture of stannous and palladous compounds on the part. This activator is adsorbed on the part, and a reaction takes place when the part is exposed to a solution that dissolves tin on the surface. After the catalyst is applied, the part is immersed in the electroless bath and the desired metal plates out on the palladium. After the initial layer of metal is applied it becomes the catalyst for the remainder of the plating process.

Plating is completed by immersing the activated piece in a plating tank long enough for the desired thickness to accumulate.

Advantages of electroless plating over electroplating on metals include greater hardness values and greater resistance to wear and abrasion. Plastic electroless plating is done on nearly every type of plastic and allows for low cost pieces.

The most common operation carried out after electroless plating is electroplating. Virtually all of the electroless plating done on plastics is followed by some form of electroplating operation. Although an electroless plate has superior hardness and corrosion protection characteristics, it may be covered by some coating such as a lacquer.

# Subcategory 7 - Printed Circuit Board Manufacturing

Printed boards are fabricated from nonconductive board materials such as plastic or glass on which a circuit pattern of conductive metal, usually copper, has been formed. The board not only provides a surface for the application of a conductive wiring path but also gives support and protection to the components it connects. As a means of packing and interconnecting electronic devices, printed boards find widespread use in business machines, computers, and communications and home entertainment equipment.

<u>Printing Methods</u>. The printed board industry is limited to three main production methods: subtractive, additive, and semiadditive.

The subtractive process derives its name from the large amount of material that is removed to make the circuit. The simplest of the subtractive techniques is the print and etch process which begins with a board of nonconductive materials, such as glass or plastic, which is clad with a copper foil. The circuit pattern is printed onto this foil in oil, cellulose, asphalt, vinyl, or resin based ink and then the board goes through an etching operation in which the area of the foil not covered by the ink is removed. Next, the ink is stripped from the foil, leaving only the desired circuit of copper on the board.

At this point, the board can be handled in one of two ways. If it is to be panel plated, the whole board is electroplated with copper. Then a plating resist is applied in such a form that only the desired circuit is left exposed (not covered by resist). This exposed area is then electroplated (by immersing the entire board in the plating solution) with an etch resist, usually solder. If it is to be pattern plated, the plating resist is applied directly after the electroless copper step, so only the circuit is copper electroplated and likewise solder plated.

Following the application of the solder plate by either method the plating resist is stripped off, exposing the copper in areas where the circuit is not required. This copper is then etched off, leaving only the desired circuit which was etch protected by

solder plate. The tabs or fingers at the edges of the boards are now stripped of their solder in preparation for subsequent plating. These tabs are electroplated according to the specifications of the customer (in most cases with gold or nickel and gold). The solder plate in the circuit pattern is now reflowed to completely seal the copper circuitry and act as a corrosion preventive. The last steps are blanking and cutting of boards to size and final inspection.

The additive process involves deposition of plating material on the board in the pattern dictated by the circuit, rather than removal of metal already deposited (as in the subtractive process). There have been several "additive" methods for producing printed boards. The original method consisted of depositing a thin layer of electroless copper on a bare unclad board and following this up with conventional subtractive processing.

The additive process presently employed by some manufacturers is more totally additive than the original method. The process begins with a bare board which may or may not be impregnated with a catalyst. Holes are then formed by drilling or punching. An adhesion promotion operation (in which the surface is roughened or etched) is next, followed by the plating resist, describing the required circuit pattern, which is applied to the board in the noncircuit areas. The accelerator step necessary for electroless plating is then carried out, and the board goes into the electroless copper bath. Since the board does not initially have any copper in noncircuit areas and a resist is applied to these areas prior to electroless plating, a copper etching step is not necessary. Following copper deposition, the tabs are plated in the same manner as in the subtractive process. At this point, different finishing steps may be applied, such as application of a protective coating to the board.

A recently developed additive method involves sensitizing the entire board and then selectively activating the catalyst in the pattern of the circuit by means of ultraviolet light.

A semiadditive production process is a compromise between the additive and subtractive methods. The process sequence begins with an unclad board which undergoes hole fabrication (drilling or punching). An adhesion promotion operation is performed on the board just as in the additive process, the board being etched to obtain a microporous surface. At this point, the sequence follows the subtractive process. The entire board is catalyzed and activated, and electroless copper is applied to the entire board including the inside surfaces of the holes. The circuit pattern is then applied by conventional methods (screening or photoimaging). Copper electroplate is deposited to build up the circuit to the desired thickness. The solder plate for etch masking is then applied, and the plating mask is stripped from the noncircuit areas. The subsequent etching operation is a quick

etch (as compared with the subtractive process etch) because only the electroless copper flash has to be removed. In the subtractive process, the copper foil on the board and the electroless copper have to be etched away, but this is not required for the semiadditive process. Thus its advantage over the subtractive process is a reduction in copper waste. After the etch operation, the solder stripping, tab plating, and any final fabrication processes are performed as in the conventional subtractive process.

<u>Production Processes</u>. Printed board production for all the above board types can be broken down into the following operations: cleaning and surface preparation, catalyst application and electroless plating, pattern printing and masking, electroplating, and etching. Brief descriptions of these processes are presented below.

Cleaning and surface preparation is a crucial step in printed board production. For a board to be plated correctly without flaws, it must be cleaned and properly treated. In many cases, the boards go through a mechanical scrubbing before they reach the plating lines. In the case of multilayer boards, after they are bonded or laminated they go through an acid hole-cleaning operation to remove any bonding epoxy which spilled over the holes.

Once on the plating line, all types of boards are alkaline cleaned to remove any soil, fingerprints, smears, or other substances which cause plating flaws. A mild etch step is then performed with ammonium or sodium persulfate to prepare the copper foil surface (for copper clad boards) for subsequent plating. The copper clad boards are then acid treated to roughen the exposed plastic surfaces (inside areas of holes) so they will readily accept the catalyst.

Electroless copper deposits quite readily on a copper clad board, but for a deposit to form on the exposed plastic or on a bare board (as in the additive process or in through-hole plating), a catalyst must be involved for the copper plate on the nonmetal. The application and activation of the catalyst is a two-step process. The catalyst application consists of the deposition of a thin layer of palladium on the surface of the part.

Three different catalyst application methods have been employed, and all are based on the interaction of stannous and palladium salts. One method involves adsorbing stannous tin on the surface, then immersing the part in palladium chloride. This reduces the palladium to the metal form and oxidizes the tin from stannous to stannic. A molecular layer of palladium metal is deposited on the surface of the part and the tin remains in the solution.

Another process used for catalyst application involves the application of a mixture of stannous and palladous compounds on the part. This activator is adsorbed on the part, and a reaction

takes place when the part is exposed to a solution that dissolves tin, leaving only palladium on the surface. This step is commonly referred to as "acceleration."

In a recently developed method, specifically for printed boards, a catalyst is applied only to the area to be occupied by the circuit. Stannous chloride is adsorbed on the entire part's surface. Then the surface is exposed to ultraviolet light shone through a stencil. The light oxidizes the stannous tin to stannic in the area not to be plated. This area, when exposed to palladium chloride, undergoes no reaction, and no palladium is deposited. Only the unexposed area receives a palladium deposit.

Once the catalyst is applied, the metal in the electroless bath plates out on the palladium. After the initial layer of metal is applied, it becomes the catalyst for the remainder of the plating process.

After the boards have been catalyzed, they go into the electroless copper solution and are panel plated in the subtractive and semiadditive processes or pattern plated in the additive process. The electroless copper bath contains copper salts (copper sulfate being most prevalent), formaldehyde as a reducer, chelating agents to hold the copper in solution (in most cases either a tartrate or an ethylenediaminetetraacetic acid compound), sodium hydroxide as a pH buffer, and various polymers and amines which serve as brighteners and bath stabilizers. These chemicals vary according to each bath supplier and his own "proprietary" formulas.

Another key step in the manufacture of printed circuit boards is the pattern printing. The precision of this artwork is crucial since the quality of the final board can be no better than the image printed on it. There are three principal methods in which the image or pattern is applied to the board: screening, photosensitive resist techniques, and offset printing. All of the methods apply a resist material to the board.

Screening consists of selectively applying resist material through a stencil or screen. The screen material is placed over the work, and the ink or resist material is squeegeed through the screen. The screening method is highly acceptable for simple low density circuits because its low cost allows for high volume production.

Photosensitive resist is a light sensitive polymer which, after curing, has a significant chemical resistance. After the board has been cleaned and prepared, the polymer is applied by dipping or rolling. A light source (usually ultraviolet) is applied through a pattern onto the resist. The light sensitive material hardens, and the unexposed resist is then removed by one of several methods; usually a trichloroethylene degreaser is used. This is followed by a baking or curing step after which the resist

is able to withstand plating solutions. This type of precision masking has made possible the production of high density and intricate circuits.

Offset printing is a high volume production technique similar to the operation of a printing press. An etched plate (the printing plate) serves as a master pattern. Ink is transferred from an ink roller to the plate on a rubber cylinder. The ink image is then deposited on the copper-covered board. Enough ink can be built up on the board in several passes to form a plating or etching resist.

Whether an additive, semiadditive, or subtractive process is used, masking is applied when the tabs are being plated. The simplest and most commonly used mask for such applications is a water repellent tape which can be easily applied to or removed from the board.

Electroplating is performed at several junctures in the production of printed boards. It is employed in the actual buildup of the circuit (in the subtractive and semiadditive processes); it applies the etch resist and anticorrosion layer to the circuit; and it covers the tabs or fingers of all boards.

To build up the desired circuit in the subtractive and semiadditive processes, copper electroplating is followed by solder electroplating. The copper bath itself is usually one of four types: cyanide copper, fluoborate copper, pyrophosphate copper, or sulfate copper. The solder electroplate serves a dual purpose: it acts as a mask during the etching process, and it protects the copper circuit from corrosion after final fabrication. This solder plate usually consists of 60-40 tin-lead, although tin-nickel and gold are used in some instances.

The tabs or fingers of the printed circuit boards are electroplated for most applications (additive, semiadditive or subtractive). In the subtractive and semiadditive processes, a solder strip operation precedes plating to ensure better adhesion; this step is unnecessary in the additive process. In most cases, nickel and gold or simply gold is used.

Etching is that process by which all the unwanted copper (i.e., any copper other than in the circuit) is removed from the board. This step follows, in sequence, the pattern print and pattern plate. Most companies make use of mechanical etchers which spray solutions from various tanks (containing etch solutions, solder brighteners or activators, and rinse waters) onto horizontally traveling boards.

The etch solutions include:

- Ferric chloride base This provides good uniform etching but removal of the residual acid from the work is difficult.
- Cupric chloride This is suitable for any resist and has the advantage of continued regeneration through addition of chemicals.
- Chromic acid base This is the most expensive etchant listed here and requires special attention in waste treatment for chromium reduction. It is also very effective.
- Ammonium persulfate This is clean and easy to handle, but the solution can be somewhat unstable.

Etching is always used in the subtractive production method, while an abbreviated etch is employed in the semiadditive process. The etching operation is not a part of the additive process.

After etching, the boards are ready for solder stripping and the electroplating of the tabs.

Table 4-2 presents best practicable control technology effluent limitations for several subcategories in the electroplating industry.

# II.4.2 WASTEWATER CHARACTERIZATION [1]

Electroplating process wastewater is generated by (1) alkaline cleaning operations, (2) acid cleaning operations, (3) catalyst application and acceleration processes, (4) plating operations and posttreatment, and (5) auxiliary operations.

Wastewater constituents from the above sources include the basis material being finished as well as the components in the procesing solutions. Predominant wastewater constituents for the industry include copper, nickel, chromium, zinc, lead, tin, cadmium, gold, silver, and platinum, as well as ions such as phosphates, chlorides, and various complexing agents.

The following paragraphs describe the major waste sources for normal plating operations.

#### II.4.2.l Alkaline Cleaners

Cleaning solutions usually contain one or more of the following chemicals: sodium hydroxide, sodium carbonate, sodium metasilicate, sodium phosphate (di- or trisodium), sodium silicate, sodium tetraphosphate, and a wetting agent. The specific content of cleaners varies with the type of soil being removed. Waste waters from cleaning operations contain not only the chemicals

TABLE 4-2. BPT EFFLUENT LIMITATIONS FOR THE ELECTROPLATING INDUSTRY [3]

TABLE 4-2. BPT EFFLUENT LIMITATIONS FOR THE ELECTROPLATING INDUSTRY

|                 |                  |                   |                  | Concentrat        | ion, $mg/m^2$ (1) | b/M ft²) per o    | peration <sup>b</sup> |                   |                              |                   |
|-----------------|------------------|-------------------|------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|------------------------------|-------------------|
|                 | Common meta      | ls plating        | Precious met     |                   |                   | izing             |                       | ting              | Chemical milling and etching |                   |
| Parameter       | Daily<br>maximum | 30-day<br>average | Daily<br>maximum | 30-day<br>average | Daily<br>maximum  | 30-day<br>average | Daily<br>maximum      | 30-day<br>average | Daily<br>maximum             | 30-day<br>average |
| Cadmium         | 96(19.2)         | 48(9.6)           |                  |                   | 54(8.8)           | 27(4.4)           | 48(9.8)               | 24(4.9)           | 72(14.8)                     | 36(7.4)           |
| Chromium, total | 160(32.7)        | 80(16.4)          | 160(32.7)        | 80(16.4)          | 90(18.4)          | 45(9.2)           | 80(16.4)              | 40(8.2)           | 120(24.6)                    | 60(12.3)          |
| Chromium, VI    | 16(3.3)          | 8(1.6)            | 16(3.3)          | 8(1.6)            | 9(1.8)            | 4.5(0.9)          | 8(1.6)                | 4(0.8)            | 12(2.4)                      | 6(1.2)            |
| Copper          | 160(32.7)        | 80(16.4)          |                  |                   | 90(18.4)          | 45(9.2)           | 80(16.4)              | 40(8.2)           | 120(24.6)                    | 60(12.3)          |
| Cyanide, total  | 160(32.7)        | 80(16.4)          | 160(32.7)        | 80(16.4)          | 90(18.4)          | 45(9.2)           | 80(16.4)              | 40(8.2)           | 120(24.6)                    | 60(12.3)          |
| Cyanide, A      | 16(3.3)          | 8(1.6)            | 16(3.3)          | 8(1.6)            | 9(1.8)            | 4.5(0.9)          | 8(1.6)                | 4(0.8)            | 18(3.8)                      | 9(1.9)            |
| luoride         | 6,400(1,310)     | 3,200(654)        | , ,              | •                 | 3,600(738)        | 1,800(369)        | 3,600(738)            | 1,800(369)        | 4,800(984)                   | 2,400(492)        |
| iold .          |                  |                   | 16(3.3)          | 8(1.6)            |                   |                   |                       |                   |                              |                   |
| (ridium         |                  |                   | 16(3.3)          | 8(1.6)            |                   |                   |                       |                   |                              |                   |
| ron             | 320(65.4)        | 160(32.7)         |                  |                   | 180(36.8)         | 90(18.4)          | 160(32.8)             | 80(16.4)          | 240(49.2)                    | 120 (24.6)        |
| ead             | 160(32.7)        | 80(16.4)          |                  |                   |                   |                   |                       |                   |                              |                   |
| lickel          | 160(32.7)        | 80(16.4)          |                  |                   | 90(18.4)          | 45(9.2)           | 80(16.4)              | 40(8.2)           | 120(24.6)                    | 60(12.3)          |
| )smium          |                  |                   | 16(3.3)          | 8(1.6)            |                   |                   |                       |                   |                              |                   |
| Palladium       |                  |                   | 16(3.3)          | 8(1.6)            |                   |                   |                       |                   |                              |                   |
| Phosphorus      | 320(65.4)        | 160(32.7)         | 320(65.4)        | 160(32.7)         | 180(36.8)         | 90(18.4)          | 160(32.8)             | 80(16.4)          | 240(49.2)                    | 120(24.6)         |
| Platinum        |                  |                   | 16(3.3)          | 8(1.6)            |                   |                   |                       |                   |                              |                   |
| thodium         |                  |                   | 16(3.3)          | 8(1.6)            |                   |                   |                       |                   |                              |                   |
| Ruthenium       |                  |                   | 16(3.3)          | 8(1.6)            |                   |                   |                       |                   |                              |                   |
| Silver          |                  |                   | 16(3.3)          | 8(1.6)            |                   |                   |                       |                   |                              |                   |
| in .            | 320(65.4)        | 160(32.7)         |                  |                   | 180(36.8)         | 90(18.4)          | 160(32.8)             | 80(16.4)          | 240(49.2)                    | 120(24.6)         |
| Zinc            | 160(32.7)        | 80(16.4)          |                  |                   | 90(18.4)          | 45(9.2)           | 80(16.4)              | 40(8.2)           | 120(24.6)                    | 60(12.3)          |
| rss             | 6,400(1,310)     | 3,200(654)        | 6,400(1,310)     | 3,200(654)        | 3,600(738)        | 1,800(369)        | 3,600(738)            | 1,800(369)        | 4,800(984)                   | 2,400(492)        |
| рH              |                  | 5-9.5             | 6                | -9.5              |                   | 6-9.5             |                       | 6-9.5             |                              | <b>6-9</b> .5     |

Note: Blanks indicate data not available.

<sup>&</sup>lt;sup>a</sup>For the electroless plating and printed circuit board subcategories, only pretreatment standards have been promulgated. Other subcategories are not mentioned in the <u>Federal</u> <u>Register</u> at this time.

bExcept pH values (given in pH units).

found in the alkaline cleaners but also soaps from the saponification of greases left on the surface by polishing and buffing operations. Some oils and greases are not saponified but are, nevertheless, emulsified.

The raw wastes from cleaning process solutions and dissolution of basis metals show up in the rinse waters, spills, dumps of concentrated solutions, wash waters from air-exhaust ducts, and leaking heating or cooling coils and heat exchangers. The concentrations of dissolved basis metal in rinses following alkaline cleaning are usually small relative to acid dip rinses.

#### II.4.2.2 Acid Cleaners

Solutions for pickling or acid cleaning usually contain one or more of the following: hydrochloric acid (most common), sulfuric acid, nitric acid, chromic acid, fluoboric acid, and phosphoric acid. The solution compositions vary according to the nature of the basis metals and the type of tarnish or scale to be removed. These acid solutions accumulate appreciable amounts of metal as a result of dissolution of metal from workpieces or uncoated areas of plating racks that are recycled repeatedly through cleaning, acid treating, and electroplating baths. As a result, the baths usually have a relatively short life, and when they are dumped and replaced, large amounts of chemicals must be treated or reclaimed. These chemicals also enter the waste stream by way of dragout from the acid solutions into rinse waters.

# II.4.2.3 Catalyst Application and Acceleration

In electroless plating on plastics, a catalyst must be applied to the plastic to initiate the plating process. The catalyst consists of tin and palladium, and in the acceleration process the tin is removed. A chromic acid surface preparation of the plastic usually precedes the catalyst application.

# II.4.2.4 Plating Operations and Posttreatment

Plating and posttreatment baths contain metal salts, acids, alkalies, and various compounds used for bath control. Common plating metals include copper, nickel, chromium, zinc, cadmium, lead, iron, and tin. Precious plating metals include silver, gold, palladium, platinum, and rhodium. In addition to these metals, ammonia, sodium, and potassium are common cationic constituents of plating baths. Anions most likely to be present in plating and posttreatment baths are borate, cyanide, carbonate, fluoride, fluoborate, phosphates, chloride, nitrate, sulfate, sulfide, sulfamate, and tartrate.

Many plating solutions contain metallic, metallo-organic, and organic additives to induce grain refining, leveling of the plating surface, and deposit brightening. Arsenic, cobalt, molybdenum, and selenium are used in this way, as are saccharin and various

aldehydes. These additives are generally present in a bath at concentrations of less than 1% by volume or weight.

Complexing and chelating agents are important constituents of some plating baths, especially electroless plating solutions. Most electroless plating baths in commercial use are proprietary and identification of complexing agents present is difficult. From a wastewater standpoint, the prime importance of the agents lies in the difficulties they present for effective metal removal since they hinder precipitation of metal ions.

Chromium, aluminum, and manganese are the metal constituents most common in anodizing baths; ammonia, sulfate, fluoride, phosphate, and various bases are the most important nonmetal constituents. Basis metal, usually aluminum, will also be present in the bath. Posttreatment for anodized surfaces often consists only of hot water rinsing. Occasionally, anodized parts are sealed with a chromium salt solution or colored with organic or inorganic dyes.

Chromating baths are nearly all proprietary and little information about their formulation is available. However, all baths have chromate and a suitable activator (an organic or inorganic radical) usually in an acid solution. Chromate conversions can be produced on zinc, cadmium, aluminum, magnesium, copper, and brass, and these metals will dissolve into the chromating baths. Posttreatment of chromate conversion coatings may include dipping in organic dips or sealing in a hot water rinse.

The phosphates of zinc, iron, manganese, and calcium are most often used for phosphate coatings. Strontium and cadmium phosphates are used in some baths, and the elements aluminum, chromium, fluorine, boron, and silicon are also common bath constituents. Phosphoric acid is used as the solvent in phosphating solutions. Phosphated parts may be colored in a posttreatment step, or conditioned in very dilute chromic or phosphoric acid.

Solutions for chemical milling, etching, and associated operations contain dissolved or particulate basis metals and either chemical agents for metal oxidation or electrolytes for electrical metal removal (as in electrochemical machining). Bath constituents for chemical removal of basis metals include mineral acids, acid chlorides, alkaline ammonium solutions, nitro-organic compounds, and such compounds as ammonium peroxysulfate. Common electrolytes are sodium and ammonium chloride, sodium and ammonium nitrate, and sodium cyanide. Posttreatment baths for chemical milling or etching would not contain constituents significantly different from those listed above.

Immersion plating baths usually are simple formulations of metal salts, alkalies, and complexing agents. The complexing agents are typically cyanide or ammonia and are used to raise the deposition

potential of the plating metal. Parts plated by immersion are seldom posttreated except in the case of zinc immersion plating of aluminum. This process is used to form a base for subsequent electroplating, usually copper.

#### II.4.2.5 Auxiliary Operations

Auxiliary operations such as rack stripping, although essential to plant operation, are often neglected in considering overall pollutant reduction. Stripping solutions using a cyanide base can form compounds which are difficult to treat. One such compound is nickel cyanide, in which the cyanide is not readily amenable to chlorination. Frequent cleaning of stripping baths and use of alternative chemicals can significantly reduce the pollutants evolving from this type of source.

Water is used in the Electroplating Industry for rinsing work-pieces; for plant washdown, air scrubbing, and auxiliary operation rinsing; and in preparing solutions. Approximately 90% of the water used is for rinsing, which removes the process solution film from the workpiece surface and from the racks used in rack stripping. The water becomes contaminated with the constituents of the process solutions and is not directly reusable.

Plant cleanup operations create dilute wastewater that is the result of spills and air scrubbing operations. This wastewater is usually added to acid/alkali wastestream prior to treatment.

Most wastewaters emanating from this industry are contaminated with the particular constituents of the solutions used at the individual plant sites. The ranges of wastewater concentrations for the subcategories studied are presented in Table 4-3. No additional information is available at this time.

# II.4.3 PLANT SPECIFIC DESCRIPTION

No plant specific information is available at this time for the Electroplating Industry.

# II.4.4 POLLUTANT REMOVABILITY [1]

This section reviews the technology currently available and used to remove or recover pollutants from the wastewater generated from 196 plants in the electroplating data base. The technology available includes both in-plant recovery and reuse of water and final wastewater treatment.

#### II.4.4.1 In-Plant Technology

The intent of in-plant technology for the overall electroplating point source category is to reduce or eliminate the waste load requiring end-of-pipe treatment and thereby improve the efficiency

TABLE 4-3. POLLUTANT CONCENTRATION RANGES FOR THE SUBCATEGORIES OF THE ELECTROPLATING INDUSTRY [1]

|                                     |                             |                               | Co           | ncentration ran | ige           |                                    |                              |
|-------------------------------------|-----------------------------|-------------------------------|--------------|-----------------|---------------|------------------------------------|------------------------------|
| Pollutant<br>parameter              | Common<br>metals<br>plating | Precious<br>metals<br>plating | Electroless  | Anodizing       | Coating       | Chemical<br>milling and<br>etching | Printed<br>circuit<br>boards |
| Conventional                        |                             |                               |              |                 |               |                                    |                              |
| pollutants, mg/L                    |                             |                               |              |                 |               |                                    |                              |
| TSS                                 | 0.1 - 10,000                | 0.1 - 10,000                  | 0.1 - 39.0   | 36.0 - 920      | 19.0 - 5,300  | 0.1 - 4,300                        | 1.0 - 610                    |
| Toxic inorganic<br>pollutants, µg/L |                             |                               |              |                 |               |                                    |                              |
| Cadmium                             | 7 - 21,600                  |                               |              |                 |               |                                    |                              |
| Chromium, total                     | 88 - 530,000                |                               |              | 270 - 79,000    | 190 - 79,000  | 88 - 530,000                       | 5 - 48,000                   |
| Chromium, VI                        | 5 - 330,000                 |                               |              | 5 - 5,000       | 5 - 5,000     | 5 - 330,000                        | 5 - 4,400                    |
| Copper                              | 32 - 270,000                |                               | 2 - 48,000   | •               | ·             | 210 - 270,000                      | 200 - 540,000                |
| Cyanide, total                      | 5 - 150,000                 | 5 - 10,000                    | 5 - 12,000   | 5 - 78,000      | 5 - 130,000   | 5 - 130,000                        | 5 - 11,000                   |
| Cyanide, A                          | 3 - 130,000                 | 3 - 8,400                     | 5 - 1,000    | 4 - 68,000      | 4 - 68,000    | 5 - 100,000                        | 5 - 9,400                    |
| Lead                                | 660 - 25,000                | •                             | ·            |                 |               |                                    | 10 - 10,000                  |
| Nickel                              | 19 - 3,000,000              |                               | 28 - 47,000  |                 |               |                                    | 27 - 13,000                  |
| Silver                              | , .                         | 50 - 180,000                  |              |                 |               |                                    | 1 - 480                      |
| Zinc                                | 110 - 250,000               |                               |              |                 | 140 - 200     | 110 - 200,000                      |                              |
| Nontoxic                            |                             |                               |              | •               |               |                                    |                              |
| pollutants, µg/L                    |                             |                               |              |                 |               |                                    |                              |
| Fluoride                            | 22 - 140,000                |                               | 110 - 18,000 |                 |               | 22 - 140,000                       | •                            |
| Gold                                |                             | 13 - 25,000                   |              |                 |               |                                    | 6 - 110                      |
| Iron                                | 250 - 1,500,000             |                               |              |                 | 410 - 170,000 | 75 - 260,000                       | 5 000                        |
| Palladium                           |                             | 27 - 630                      | _            |                 |               |                                    | 5 - 230                      |
| Phosphorus                          | 20 - 140,000                | 20 - 140,000                  | 30 - 109,000 | 180 - 33,000    | 60 - 53,000   | 60 - 140,000                       | 51 - 54,0 <b>0</b> 0         |
| Platinum                            |                             | 110 - 6,500                   |              |                 |               |                                    |                              |
| Rhodium                             |                             | 34                            |              |                 |               |                                    |                              |
| Tin                                 | 60 - 100,000                |                               | 60 - 90,000  |                 | 100 - 6,600   | 340 - 6,600                        | 60 - 5 <b>4,00</b> 0         |

Note: Blanks indicate data not available.

<sup>&</sup>lt;sup>a</sup>Only one plant had a measurable level of this pollutant

of waste treatment. In-plant technology involves the selection of rinse techniques (with the emphasis on closed loop rinsing), plating bath conservation, recovery and/or reuse of plating and etch solutions, process modification, and integrated waste treatment.

#### Rinse Techniques

Reductions in the amount of water used in electroplating can be realized through installation and use of efficient rinse techniques. Cost savings associated with this water use reduction manifest themselves in reduced operating costs in terms of lower cost for rinse water and reduced chemical costs for wastewater treatment. An added benefit is that the waste treatment efficiency is also improved. It is estimated that rinse steps consume over 90% of the water used by a typical plating facility. Consequently, the greatest water use reductions can be anticipated to come from modifications of rinse techniques.

Several different methods of rinsing are available, with each method having a particular use, efficiency, and water usage rate. Methods may be combined to produce cleaner pieces. Other factors may also affect the choice and efficiency of a rinsing method. Recirculation of the rinse water is a possibility.

#### Plating Bath Conservation

If the overflow water from a rinse tank can be reused, it does not have to be treated, and additional water does not have to be purchased. One approach currently in use is to replace the evaporative losses from the plating bath with overflow from the rinse station. This way a large percentage of plating solution normally lost by dragout can be returned and reused. The usefulness of this method depends on the rate of evaporation from the plating bath and the overflow rate from the rinse tank. The evaporation from a bath is a function of its temperature, surface area, and ventilation rate, while the overflow rate is dependent on the dilution ratio, the geometry of the part, and the dragout rates.

#### Chemical Recovery

A number of techniques are utilized to recover and/or reuse plating solutions or etchants. The incentive to recover or reuse may be primarily economical, but the ecological impact of not having to treat these concentrated solutions for discharge should also be considered. The solutions can be reclaimed using any one of a number of techniques such as reverse osmosis, ion exchange, and evaporation.

#### Process Modification

Process modifications can reduce the amount of water required for rinsing and, thus, reduce the overall load on a waste treatment facility. As an example, for electroless plating, a rinse step can be eliminated by using a combined sensitization and activation solution followed by a rinse instead of a process sequence of sensitization-rinse, activation-rinse. Another potential process modification would be to change from a high concentration plating bath to one with a lower concentration. Parts immersed in the lower concentration bath require less rinsing (a dilution operation), which decreases water usage relative to high concentration baths. The use of noncyanide plating baths and phosphate-free and biodegradable cleaners, where possible, reduces the waste load on an end-of-pipe treatment system.

#### Integrated Waste Treatment

Waste treatment iself can be accomplished on a small scale in the plating room with constant recycling of the effluent. This process is generally known as integrated waste treatment. Integrated Integrated treatment uses a treatment rinse tank in the process line immediately following a process tank (plating, chromating, etc.). Treatment solution (usually caustic soda in excess) circulating through the rinse tank reacts with the dragout to form a precipitate and removes it to a clarifier. This clarifier is a small reservoir usually designed to fit near the treatment rinse tank and be an integral part of water use in the production Further treatment may take place in the clarifier process. (cyanide oxidation, chrome reduction), or settling alone may be used to separate the solids. Sludge is removed near the spillover plate on the effluent side of the clarifier, and the effluent is returned to the treatment rinse tank. Consequently, no pollutants are directly discharged by the waste treatment process. Although further rinsing of the parts is required to remove treatment chemicals, this rinse will not contain pollutants from the original process tank, and no further treatment is needed.

#### II.4.4.2 Individual Treatment Technologies

Table 4-4 summarizes the individual treatment technologies that are used by the plants in the electroplating data base. Some of them are described below.

#### Chemical Reduction of Hexavalent Chromium

Reduction of hexavalent chromium has proven effectiveness in the industry with up to 99.7% reduction efficiency possible. This technique is highly reliable because it can e controlled automatically and it operates at ambient conditions. Limitations

TABLE 4-4. INDIVIDUAL TREATMENT TECHNOLOGIES [1]

| Technology                                                                                                                                                                                                                                                                                                                      | Number of plants in data base                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Chemical reduction of hexavalent chromium pH adjustment Clarification Diatomaceous earth filtration Flotation Chemical oxidation (chlorine) Ion exchange Evaporation Reverse osmosis Ultrafiltration Membrane filtration Electrodialysis Filter press Sludge drying beds Vacuum filtration Centrifugation Electrolyte oxidation | 120<br>158<br>151<br>5<br>6<br>90<br>11<br>12<br>7<br>2<br>1<br>1<br>8<br>3<br>21<br>12<br>3 |

<sup>&</sup>lt;sup>a</sup>Some plants use more than one treatment technology.

include possible chemical interference by other wastes, and the necessity for precise pH control.

#### pH Control

The control of pH is standard in most industries to provide controlled effluent acidity/alkalinity. Because of its extensive use the technology is well developed. A possible problem with this technique is the disposal of a substantial quantity of sludge.

#### Clarification

Clarification is also a well defined treatment technology. Capable of handling large amounts of wastewater, it is the most common technology used in this industry.

#### Diatomaceous Earth Filtration

Diatomaceous earth filtration, combined with pH adjustment and precipitation, is an alternative to settling for suspended solids removal. This technique, used to remove metal hydroxides and other solids from the wastewater, releases high quality effluent. Table 4-5 presents the information available for this technique.

TABLE 4-5. DIATOMACEOUS EARTH FILTER [1]

|                    | Conce        |          |                    |
|--------------------|--------------|----------|--------------------|
|                    | Raw<br>waste | Effluent | Percent<br>removal |
| TSS                | 524          | 10       | 98                 |
| Zinc               | 13.4         | 0.139    | 99                 |
| Trivalent chromium | 12.2         | 0.611    | 95                 |
| Iron               | 5.81         | 0.248    | 96                 |
| Copper             | 7.53         | 0.444    | 94                 |
| Nickel             | 2.57         | 0.044    | 98                 |

# Flotation

Flotation units are commonly used to remove emulsified oils and greases as well as dissolved solids with a specific gravity close to that of water. The performance of the unit depends on production of sufficient air bubbles to float the suspended solids. Only limited application of this method has been demonstrated in this industry.

# Chemical Oxidation

Chlorine is used in treating industrial waste to oxidize cyanide. Advantages of this process include low cost, availability of automatic control, and operation at ambient temperatures. Disadvantages may include the release of toxic volatile components from intermediate reactions, chemical interference, and the potential hazard in using chlorine gas. Table 4-6 presents the available information from the Electroplating Industry on this treatment method.

TABLE 4-6. CHEMICAL OXIDATION (CHLORINE) [1]

|           | Percent   |
|-----------|-----------|
| Parameter | reduction |
| Cyanide   | 99.6      |
| Phenol    | 100       |
| Color     | 99        |
| Turbidity | 99.4      |
| Odor      | 85        |
|           |           |

Date: 6/23/80

#### Ion Exchange

Ion exchange is used extensively for water and wastewater treatment to allow for recovery of valuable waste materials or byproducts, particularly ionic forms of precious metals such as silver, gold, and uranium. This compact, relatively inexpensive technique can often be installed with minimal production interruption. However, many materials may clog or foul the resin capacity, reducing efficiency. When operated properly, this method is highly efficient and generates a high quality effluent. Table 4-7 is an example of the effluent characteristics from an ion exchange column.

|           | Concentra         | tion, mg/L            |                   |
|-----------|-------------------|-----------------------|-------------------|
| Pollutant | Raw<br>wastewater | Treated<br>wastewater | Percent reduction |
| Aluminum  | 5.60              | 0.24                  | 96                |
| Cadmium   | 1.05              | 0.00                  | 100               |
| Chromium  | 7.60              | 0.06                  | 99                |
| Copper    | 4.45              | 0.09                  | 98                |
| Iron      | 3.70              | 0.10                  | 97                |
| Nickel    | 6.20              | 0.00                  | 100               |
| Silver    | 1.50              | 0.00                  | 100               |
| Tin       | 0.50              | 0.00                  | 100               |
| Cyanide   | 0.80              | 0.20                  | 75                |
| Sulfate   | 21.0              | 2.0                   | 90                |
| Phosphate | 3.75              | 0.80                  | 79                |

TABLE 4-7. ION EXCHANGE [1]

#### Evaporation

Evaporation is advantageous because it permits recovery of a wide variety of plating and other process chemicals; the water recovered is of high purity, allowing for recycle; and it concentrates waste effluent, which is difficult by other means. However, this process is energy intensive and heating efficiency decreases as the heating plates scale up.

#### Others

Several other techniques, noted on Table 4-4, are available for treating wastewater from this industry. These techniques are currently being developed and at present are only being used in a few of the electroplating plants. Descriptions of these technologies are available in Volume III of this manual.

#### II.4.5 REFERENCES

- Final Development Document for Existing Source Pretreatment Standards for the Electroplating Point Source Category. EPA 440/1-79/003, U.S. Environmental Protection Agency, Washington, D.C., August 1979. 526 pp.
- 2. NRDC Consent Decree Industry Summary Electroplating.
- 3. Environmental Protection Agency Effluent Guidelines and Standards for Electroplating. Environment Reporter, 135:0341-0351, as of 5 May 1980.

#### II.5 INORGANIC CHEMICALS MANUFACTURING

#### II.5.1 INDUSTRY DESCRIPTION [1]

# II.5.1.1 General Description

In terms of Standard Industrial Classification (SIC) code numbers, the major industries included for application of effluent limitations, new source performance standards, and pretreatment standards within the Inorganic Chemicals Manufacturing Point Source Category are:

SIC 2812 - Alkalies and chlorine

SIC 2813 - Industrial gases

SIC 2816 - Inorganic pigments

SIC 2819 - Industrial inorganic chemicals,

not elsewhere classified

Table 5-1 presents industry summary data for the Inorganic Chemicals point source category in terms of the number of subcategories defined for study by Effluent Guidelines Division (EGD), the number studied by EGD, and the number of dischargers in the industry.

# TABLE 5-1 INDUSTRY SUMMARY [2]

Industry: Inorganic Chemicals

Total Number of Phase I Subcategories: 55

Number of Subcategories Studied: 11

Number of Dischargers in Industry:

• Direct: 630

• Indirect: 120

• Zero: 0

#### II.5.1.2 Subcategory Descriptions

Based on results of toxic pollutant screening and verification sampling and on evaluation of applicable technologies for discharge control and treatment, it has been recommended that

effluent limitation guidelines, new source performance standards, and pretreatment standards for new and existing sources be proposed for 11 inorganic chemical manufacturing subcategories. These subcategories, described herein, include [1]:

> Aluminum fluoride Chlor-alkali Chrome pigments Copper sulfate Hydrofluoric acid Hydrogen cyanide

Nickel sulfate Sodium bisulfite Sodium dichromate Sodium hydrosulfite Titanium dioxide

Additionally, 3 of the 11 subcategories may be further subdivided based on process subdivisions as follows:

> Subcategory Process subdivisions

Chlor-alkali Mercury cell Diaphragm cell

Titanium dioxide Sulfate

> Chloride-rutile Chloride-ilmenite

Lithium carbonate

Hydrogen cyanide Andrussow process

Acrylonitrile byproduct

In addition to the 11 subcategories to be discussed in depth, 44 subcategories have been recognized and recommended as candidates for exclusion either under Paragraph 8 of the NRDC consent decree or for other reasons. The 44 additional subcategories are:

> Aluminum sulfate Ammonium chloride Ammonium hydroxide Barium carbonate Borax Boric acid Bromine Calcium Calcium carbide Calcium carbonate Carbon dioxide Carbon monoxide Chromic acid Cuprous oxide Ferric chloride Ferrous sulfate Fluorine Hydrochloric acid

Hydrogen peroxide

Lead monoxide

Hydrogen

Iodine

Manganese sulfate Nitric acid Nitric acid (strong) Oxygen and nitrogen Potassium chloride Potassium iodide
Potassium metal
Potassium permanganate
Sodium bicarbonate
Sodium carbonate Sodium hydrosulfide Sodium metal Sodium silicate Sodium thiosulfate Stannic oxide Sulfur dioxide Sulfuric acid Zinc oxide Zinc sulfate

Date: 6/23/80

Table 5-2 (next page) presents subcategory profile data for the 55 subcategories of the inorganic chemicals industry. Table 5-3 presents best practicable control technology (BPT), parameters suggested for each subcategory and lists available data.

#### II.5.1.2.1 Aluminum Fluoride

Aluminum fluoride is used as a raw material in the production of cryolite (which is used in the production of aluminum), as a metallurgical flux (for welding rod coatings), as a ceramic flux (for glazes and enamels), and as a brazing flux (for aluminum fabrication).

Partially dehydrated alumina hydrate is reacted with hydrofluoric acid gas in the dry process for the manufacture of aluminum fluoride. The product, aluminum fluoride, is formed as a solid and is cooled with noncontact cooling water before being sent for milling and shipping. The gases from the reactor are scrubbed with water to remove unreacted hydrofluoric acid before being vented to the atmosphere.

Wastewater flows emanating from different streams generated from the production of aluminum fluoride are summarized in Table 5-4. Data were generated from prior development documents, industry visits, and 308 questionnaires.

TABLE 5-4. WASTEWATER FLOWS FROM ALUMINUM FLUORIDE MANUFACTURING PLANTS [1]

| (m³/Ma     | of       | aluminum       | fluoride) |
|------------|----------|----------------|-----------|
| 1111 / 119 | <b>-</b> | G I GILLII GIL | uo uo ,   |

| Wastewater                                                                        | Plant code |      |              |  |  |
|-----------------------------------------------------------------------------------|------------|------|--------------|--|--|
| source                                                                            | 605        | 705  | 837          |  |  |
| Scrubber water                                                                    | 20.0       | 9.1  | 3.44         |  |  |
| Maintenance, equipment cleaning,<br>and work area washdown<br>Other (storm water) | 1.61       | 2.39 | 1.13<br>7.55 |  |  |

Note: Blanks indicate data not available.

# II.5.1.2.2 Chlor-Alkali Industry

Chlorine, hydrogen, and caustic soda (NaOH) or caustic potash (KOH) are produced together by electrolysis of brine. Chlorine is used in the pulp and paper industry and the plastics industry, for water treatment, and as an input in the manufacture of vinyl chloride, chlorinated ethers, and other inorganic and organic chemicals. About two-thirds of the production is for captive use.

TABLE 5-2. INORGANIC CHEMICALS SUBCATEGORY PROFILE DATA SUMMARY [1-3]

|                          |                                                    |                                              |                              | Number                  |                  | 308 Dat<br>Product | a on file        |                                         |                                    |
|--------------------------|----------------------------------------------------|----------------------------------------------|------------------------------|-------------------------|------------------|--------------------|------------------|-----------------------------------------|------------------------------------|
| Subcategory              | Total subcategory<br>production<br>capacity, Mg/yr | Total subcategory production per year, Mg/yr | Total<br>number of<br>plants | of<br>plants<br>on file | Range,<br>Mg/yr  | Average,<br>Mg/yr  | Median,<br>Mg/yr | Percent of<br>subcategory<br>production | Wastewater,<br>flow range,<br>m³/d |
| Aluminum fluoride        |                                                    |                                              | 7                            | 6                       | 38-45,600        | 24,300             | 35,500           | 143,000 <sup>a</sup>                    | 539-2,200                          |
| Chlor-alkai              |                                                    |                                              |                              |                         |                  |                    |                  |                                         |                                    |
| Diaphragm cell           | 8,270,000                                          | 6,430,000                                    | 45                           | 19                      | 14,700-1,500,000 | 221,000            | 103,000          | 66                                      | 1,100-7,100                        |
| Mercury cell             | 3,540,000                                          | 2,750,000                                    | 32                           | 15                      | 19,100-198,000   | 77,900             | 70,400           | 40                                      | 4-2,100                            |
| Chrome pigments          | 63,000                                             | 64,500                                       | 11                           | 4                       | 3,500-8,800      | 6,300              | 6,400            | 30                                      | 360-800                            |
| Copper sulfate           |                                                    | 37,000                                       | 18                           | 10                      | 45-9,100         | 2,020              | 510              | 78                                      | 0-28                               |
| Hydrofluoric acid        | 363,000                                            | 262,000                                      | 14                           | 8                       | 7,300-62,000     | 22,100             | 15,800           | 68                                      | 0-4,700                            |
| Hydrogen cyanide         | 289,000                                            | 166,000                                      | 11                           | 3                       | 8,500-64,600     | 57,800             | 57,800           | 82                                      | 1,150-7,310                        |
| Nickel sulfate           |                                                    |                                              | 12                           | 6                       | 62~8,250         | 2,100              | 1,600            | 17,700 <sup>a</sup>                     | <1-200                             |
| Sodium bisulfite         |                                                    |                                              | 9                            | 2                       | 4,700~23,600     | 17,800             | 16,900           | 28,300 <sup>a</sup>                     | 3-100                              |
| Sodium dichromate        | 140,000                                            | 137,000                                      | 5                            | 3                       | 20,700~66,800    | 37,300             | 24,800           | 82                                      | 455-720                            |
| Sodium hydrosulfite      | 40,300                                             | 39,900                                       | 2                            | 1                       | 20,400           |                    |                  | 51                                      | 273                                |
| Titanium dioxide         |                                                    |                                              |                              |                         |                  |                    |                  |                                         |                                    |
| Chloride process         | 610,000                                            | <b>389,00</b> 0                              | 8                            | 5                       | 16,900-42,500    | 28,400             | 25,600           | 37                                      | 1,140-4,770                        |
| Sulfate process          | 401,000                                            | 259,000                                      | 5                            |                         | 31,000-74,500    | 49,000             | 43,000           | 95                                      | 35,000-125,000                     |
| Aluminum sulfate         | •                                                  | 1,100,000 (1974) <sup>D</sup>                | 84                           |                         |                  |                    |                  |                                         |                                    |
| Ammonium chloride        |                                                    |                                              | 6                            | 3                       | 4,600-13,400     |                    |                  | 29,800 <sup>a</sup>                     |                                    |
| Ammonium hydroxide       |                                                    |                                              | 6                            |                         | 206-9,500        |                    |                  | 17,000                                  |                                    |
| Barium carbonate         |                                                    | _                                            | 7                            | 5                       | 158-26,200       |                    |                  | 48,700 <sup>a</sup>                     |                                    |
| Borax                    |                                                    | 91 (1973) <sup>b</sup>                       |                              |                         |                  |                    |                  |                                         |                                    |
| Boric acid               |                                                    | 123,000                                      | 3                            | 2                       | 30,200-63,700    |                    |                  | 7 <b>7</b>                              |                                    |
| Bromine                  |                                                    | - • -                                        |                              |                         |                  |                    |                  |                                         |                                    |
| Calcium                  |                                                    | _                                            |                              |                         |                  |                    |                  |                                         |                                    |
| Calcium carbide          |                                                    | 567,000 (1971) <sup>b</sup>                  | 4                            |                         |                  |                    |                  |                                         |                                    |
| Calcium carbonate        |                                                    | 130,000                                      |                              | 3                       | 555-49,800       |                    |                  | 56                                      |                                    |
| Carbon dioxide           | 12,200,000                                         | 1,820,000                                    | 105                          | 12                      | 1,600-155,000    |                    |                  | 31                                      |                                    |
| Carbon monoxide          | ,,                                                 | 277,000                                      | 5                            | 5                       | 47-63,000        |                    |                  | 40                                      |                                    |
| Chromic acid             |                                                    | ,                                            | •                            |                         | •                |                    |                  |                                         |                                    |
| Cuprous oxide            |                                                    | _                                            | 0                            |                         |                  |                    |                  |                                         |                                    |
| Ferric chloride          |                                                    | 138,000 (1974) <sup>b</sup>                  | 21                           |                         |                  |                    |                  |                                         |                                    |
| Ferrous sulfate Fluorine |                                                    |                                              |                              |                         |                  |                    |                  |                                         |                                    |

TABLE 5-2 (continued)

|                                              |                                                    |                                         |                     |                                   |                 |                        | a on file        |                                         |                                    |
|----------------------------------------------|----------------------------------------------------|-----------------------------------------|---------------------|-----------------------------------|-----------------|------------------------|------------------|-----------------------------------------|------------------------------------|
| Subcategory                                  | Total subcategory<br>production<br>capacity, Mg/yr | Total subcat<br>production<br>year, Mg/ | per number of       | Number<br>of<br>plants<br>on file | Range,<br>Mg/yr | Product Average, Mg/yr | Median,<br>Mg/yr | Percent of<br>subcategory<br>production | Wastewater,<br>flow range,<br>m³/d |
| Hydrochloric acid<br>Hydrogen                |                                                    | 2,270,000                               | 83                  | 20                                |                 |                        |                  | 25                                      |                                    |
| Hydrogen peroxide<br>Iodine                  |                                                    | 85,700                                  | 7                   | 3                                 | 5,560-28,700    |                        |                  | 66                                      |                                    |
| Lead monoxide<br>Lithium carbonate           |                                                    |                                         | 17                  |                                   |                 |                        |                  |                                         |                                    |
| Manganese sulfate                            |                                                    |                                         | 0                   |                                   |                 |                        |                  |                                         |                                    |
| Nitric acid                                  | 9,180,000                                          | 7,170,000                               | 87                  | 11                                |                 |                        |                  | 11                                      |                                    |
| litric acid (strong)                         |                                                    |                                         |                     | 5                                 | 5,300-60,200    |                        |                  | 121,000 a                               |                                    |
| oxygen and nitrogen<br>Octassium chloride    | 31,200,000                                         |                                         | 171                 | 9                                 | 2,400-378,000   |                        |                  | 1,470,000 <sup>a</sup>                  |                                    |
| Potassium dichromate                         |                                                    | 4,000                                   | 1                   |                                   |                 |                        |                  |                                         |                                    |
| Potassium iodide<br>Potassium metal          |                                                    | 123,000<br>100 (1                       | 972) <sup>b</sup> 9 | 4                                 | 79 <b>-634</b>  |                        |                  | 10                                      |                                    |
| Potassium permanganate<br>Sodium bicarbonate |                                                    | 250,000 (1                              | 973) <sup>b</sup> 3 |                                   |                 |                        |                  |                                         |                                    |
|                                              | 9 650 000                                          | 250,000 (1                              | 10                  | 8                                 |                 |                        |                  | 2,830,000 <sup>a</sup>                  |                                    |
| Sodium carbonate                             | 8,650,000                                          |                                         | 4                   |                                   |                 |                        |                  | 2,830,000                               |                                    |
| Sodium fluoride                              |                                                    | 6,460                                   | 12                  | 2                                 | 2 000 26 500    |                        |                  | 44,700 a                                |                                    |
| Sodium hydrosulfide<br>Sodium metal          |                                                    |                                         | 5                   | 3<br>2                            | 3,800-36,500    |                        |                  | 300,000 <sup>a</sup>                    |                                    |
|                                              | 23.4.000                                           | (70.000                                 |                     | 7                                 | 12 400 57 300   |                        |                  | 300,000                                 |                                    |
| Sodium silicate                              | 814,000                                            | 679,000                                 | 30<br>6             | 5                                 | 12,400-57,300   |                        |                  | 70,300 <sup>a</sup>                     |                                    |
| odium thiosulfate                            |                                                    |                                         | 6                   | 5                                 | 4,400-27,000    |                        |                  | 70,300                                  |                                    |
| Stannic oxide                                |                                                    |                                         | 16                  | -                                 | 27 900 170 000  |                        |                  | 364,000 <sup>a</sup>                    |                                    |
| Sulfur dioxide                               | 42 100 000                                         | 30 500 000                              | 15                  | 5                                 | 27,800-170,000  |                        |                  |                                         |                                    |
| Sulfuric acid<br>Zinc oxide<br>Zinc sulfate  | 42,100,000                                         | 30,500,000                              | 151                 | 47                                | 5,300-47,700    |                        |                  | 21                                      |                                    |

Note: Blanks indicate data not available.

<sup>&</sup>lt;sup>a</sup>Production per year (Mg/yr) of 308 data file plants. Total subcategory production rate not available.

bIndicates the year data taken.

# TABLE 5-3. BPT PARAMETERS FOR INORGANIC CHEMICAL SUBCATEGORIES [1,5]

|                                                       |                             |                                        |                    | of Product (mg/L                       |                          |                  |
|-------------------------------------------------------|-----------------------------|----------------------------------------|--------------------|----------------------------------------|--------------------------|------------------|
| <b>C</b> al-annum                                     |                             | Minum                                  |                    | rium                                   | Chromiu<br>Daily maximum | m (total)        |
| Subcategory                                           | Daily maximum               | 30-Day average                         | Daily maximum      | 30-Day average                         | DRILLY MAXIMUM           | 30-Day averag    |
| Aluminum fluoride                                     | 0.34(20.0)                  | 0.17(10.0)                             |                    |                                        |                          |                  |
| Chlor-alkalı                                          |                             |                                        |                    |                                        |                          |                  |
| Diaphrahm cell                                        |                             |                                        |                    |                                        |                          |                  |
| Mercury cell                                          |                             |                                        |                    |                                        |                          |                  |
| Chrome pigments                                       |                             |                                        |                    |                                        | 0.10(1.5)                | 0.034(0.5)       |
| Copper sulfate                                        |                             |                                        |                    |                                        |                          |                  |
| (Recovery process) (Pure raw materials process)       |                             |                                        |                    |                                        |                          |                  |
| Hydrofluoric acid                                     | No discharge of             | nencess wastewa                        | ter pollutants to  | o navigable water                      | s.                       |                  |
| Hydrogen cyanide (Andrussow process)                  | no aracharge of             | . Process wastewa                      | ter porrueumen co  | 5 Mevigento                            |                          |                  |
| Nickel sulfate                                        |                             |                                        |                    |                                        |                          |                  |
| (Pure raw materials)                                  | No discharge of             | process wastewa                        | ter pollutants to  | o navigable water                      | 6.                       |                  |
| (Impure raw materials)                                | •                           | -                                      | =                  |                                        |                          |                  |
| Sodium bisulfite                                      | Reserved                    |                                        |                    |                                        |                          |                  |
| Sodium dichromate                                     |                             |                                        |                    |                                        | 0.0088                   | 0.0044           |
| Sodium hydrosulfite                                   | Reserved                    |                                        |                    |                                        |                          |                  |
| Titanium dioxide                                      |                             |                                        |                    |                                        |                          |                  |
| (Chloride process)                                    |                             |                                        |                    |                                        |                          |                  |
| (Sulfate process)                                     | W- 3 \                      |                                        |                    |                                        |                          | an di aabaasa    |
| Aluminum sulfate                                      |                             | r process wastewa<br>r total suspended |                    | o navigable water                      | s except rainwat         | er discharge     |
| Ammonium chloride                                     | allowance to                | total suspended                        | BOILUS.            |                                        |                          |                  |
| (Anhydrous)                                           | No discharge of             | process wastewa                        | ter pollutants to  | o navigable water                      | s.                       |                  |
| (Solvay byproduct)                                    |                             |                                        |                    |                                        |                          |                  |
| Ammonium hydroxide                                    | Reserved                    |                                        |                    |                                        |                          |                  |
| Barlum carbonate                                      | Reserved                    |                                        |                    |                                        |                          |                  |
| Borax                                                 | No discharge of             | process wastewa                        | ter pollutants ex  | xcept that residu                      | al brine and dep         | leted liquor ma  |
|                                                       | be returned t               | co original body                       | of water.          |                                        |                          |                  |
| Boric acid                                            |                             |                                        |                    |                                        |                          |                  |
| (Ore mined)                                           |                             | _                                      |                    |                                        |                          |                  |
| (Trona)                                               |                             |                                        |                    | xcept that residu                      | al brine and dep         | leted liquor mag |
| Dwanina                                               |                             | o original body                        |                    |                                        | al buing and dam         | loted liquer === |
| Bromine                                               |                             | c process wastewa<br>to original body  |                    | xcept that residu                      | at brine and deb         | refed fiduot ma  |
| Calcium                                               | be recurred a               | 20 Oliginal Rody                       | or water.          |                                        |                          |                  |
| Calcium carbide                                       | Reserved                    |                                        |                    |                                        |                          |                  |
| Calcium carbonate                                     |                             |                                        |                    |                                        |                          |                  |
| (Milk of lime)                                        |                             |                                        |                    |                                        |                          |                  |
| (Solvay process)                                      |                             |                                        |                    |                                        |                          |                  |
| Carbon dioxide                                        | Reserved                    |                                        |                    |                                        |                          |                  |
| Carbon monoxide                                       |                             |                                        |                    |                                        |                          |                  |
| Chromic acid                                          | -                           | process wastewa                        | ter pollutants to  | o navigable water                      | s.                       |                  |
| Cuprous oxide                                         | Reserved                    |                                        |                    |                                        |                          |                  |
| Ferric chloride                                       |                             | f process wastewa                      | ter pollutants to  | o navigable water                      | s.                       |                  |
| Ferrous sulfate                                       | Reserved                    |                                        |                    |                                        |                          |                  |
| Fluorine                                              |                             |                                        |                    | o navigable water                      |                          |                  |
| Hydrochloric acid                                     |                             |                                        |                    | o navigable water<br>o navigable water |                          |                  |
| Hydrogen Hydrogen peroxide                            | no discharge of             | . process wascewa                      | cer porrucanes co  | o navigable water                      | ٥.                       |                  |
| (Organic process)                                     |                             |                                        |                    |                                        |                          |                  |
| (Electrolytic process)                                |                             |                                        |                    |                                        |                          |                  |
| Iodine                                                | No discharge of             | f process wastewa                      | ter pollutants to  | o navigable water                      | s.                       |                  |
| Lead monoxide                                         | No discharge of             | process wastewa                        | ter pollutants to  | o navigable water                      | 5.                       |                  |
| Lithium carbonate                                     |                             |                                        |                    |                                        |                          |                  |
| (Spodumene ore)                                       |                             |                                        |                    |                                        |                          |                  |
| (Trona process)                                       |                             | process wastewa                        | ter pollutants to  | o navigable water                      | 5.                       |                  |
| Manganese sulfate                                     | Reserved                    |                                        |                    |                                        |                          |                  |
| Nitric acid Nitric acid (strong)                      | No discharge of<br>Reserved | process wastewa                        | ter pollutants to  | o navigable water                      | s.                       |                  |
| Oxygen and nitrogen                                   | Meset ved                   |                                        |                    |                                        |                          |                  |
| Potassium chloride                                    | No discharge of             | process wastewa                        | ter pollutants to  | o navigable water                      | except that res          | idual brine and  |
|                                                       | depleted liqu               | or may be return                       | ed to the original | al body of water.                      |                          |                  |
| Potassium dichromate                                  |                             |                                        |                    | o navigable water                      |                          |                  |
| Potassium iodide                                      |                             |                                        | 0.009(7.5)         | 0.003(2.5)                             |                          |                  |
| Potassium metal                                       |                             | f process wastewa                      | ter pollutants to  | o navigable water                      | s.                       |                  |
| Potassium permanaganate                               | Reserved                    | _                                      |                    |                                        |                          |                  |
| Sodium bicarbonate                                    | No discharge of             | process wastewa                        | ter pollutants to  | o ra…'gable water                      | s.                       |                  |
| Sodium carbonate<br>Sodium fluoride                   | No dia-t                    |                                        | mall +             |                                        | _                        |                  |
| Sodium fluoride<br>Sodium hydrosulfide                |                             | process wastewa                        | ter pollutants to  | o navigable water                      | ъ.                       |                  |
| Sodium nydrosulfide<br>Sodium metal                   | Reserved<br>Reserved        |                                        |                    |                                        |                          |                  |
|                                                       | Reserved                    |                                        |                    |                                        |                          |                  |
| Sodium silicate                                       |                             |                                        |                    |                                        |                          |                  |
| Sodium silicate Sodium thiosulfate                    | Reserved                    |                                        |                    |                                        |                          |                  |
|                                                       | Reserved<br>No discharge of | process wastewa                        | ter pollutants +   | o navigable water                      | s.                       |                  |
| Sodium thiosulfate                                    |                             | f process wastewa                      | ter pollutants to  | o navigable water                      | s.                       |                  |
| Sodium thiosulfate<br>Stannic oxide                   | No discharge of<br>Reserved |                                        | _                  | =                                      |                          |                  |
| Sodium thiosulfate<br>Stannic oxide<br>Sulfur dioxide | No discharge of<br>Reserved |                                        | _                  | o navigable water<br>o navigable water |                          |                  |

(continued)

|                                                 | Pollutant, kg/Mg of Product (mg/L)  Chromium (+6)  Copper  Cyanide |                   |                     |                                        |                  |                  |  |  |  |  |
|-------------------------------------------------|--------------------------------------------------------------------|-------------------|---------------------|----------------------------------------|------------------|------------------|--|--|--|--|
| Subcategory                                     | Daily maximum                                                      | 30-Day average    | Daily maximum       | 30-Day average                         | Daily maximum    | 30-Day average   |  |  |  |  |
|                                                 |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| Aluminum fluoride                               |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| Chlor-alkalı                                    |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| Diaphrahm cell                                  |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| Mercury cell                                    | 0.010/0.01                                                         | 0.0034/0.33       |                     |                                        | 0.010/1.5        | 0.003446.53      |  |  |  |  |
| Chrome pigments                                 | 0.010(0.2)                                                         | 0.0034(0.1)       |                     |                                        | 0.010(1.5)       | 0.0034(0.5)      |  |  |  |  |
| Copper sulfate                                  |                                                                    |                   | 0.002(3.2)          | 0.001(1.1)                             |                  |                  |  |  |  |  |
| (Recovery process) (Pure raw materials process) |                                                                    |                   | 0.003(3.2)<br>0.006 | 0.002                                  |                  |                  |  |  |  |  |
| Hydrofluoric acid                               |                                                                    |                   | 0.000               | 0.002                                  |                  |                  |  |  |  |  |
| Hydrogen cyanide (Andrussow process)            |                                                                    |                   |                     |                                        | 0.05(1.0)        | 0.025(0.5)       |  |  |  |  |
| Nickel sulfate                                  |                                                                    |                   |                     |                                        | 0.05(1.0)        | 0.023(0.3)       |  |  |  |  |
| (Pure raw materials)                            | No discharge of                                                    | f process wastewa | ter pollutants to   | navigable water                        | S.               |                  |  |  |  |  |
| (Impure raw materials)                          |                                                                    | •                 |                     |                                        | •                |                  |  |  |  |  |
| Sodium bisulfite                                | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Sodium dichromate                               | 0.009                                                              | 0.0005            |                     |                                        |                  |                  |  |  |  |  |
| Sodium hydrosulfite                             | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Titanium dioxide                                |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| (Chloride process)                              |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| (Sulfate process)                               |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| Aluminum sulfate                                |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| Ammonium chloride                               |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| (Anhydrous)                                     | No discharge of                                                    | t process wastewa | ter pollutants to   | navigable water:                       | 5.               |                  |  |  |  |  |
| (Solvay byproduct)                              | D                                                                  |                   |                     |                                        |                  |                  |  |  |  |  |
| Ammonium hydroxide                              | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Barium carbonate                                | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Borax                                           |                                                                    |                   |                     | ccept that residu                      | at brine and deb | refed lidnor mai |  |  |  |  |
| B                                               | be returned                                                        | to original body  | or water.           |                                        |                  |                  |  |  |  |  |
| Boric acid (Ore mined)                          |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| (Trona)                                         | No discharge o                                                     | f process western | tor pollutants s    | cept that residu                       | al brine and den | loted limior may |  |  |  |  |
| (110ila)                                        |                                                                    | to original body  |                     | rept that lesidu                       | ar brine and dep | reced riquor may |  |  |  |  |
| Bromine                                         |                                                                    |                   |                     | xcept that residu                      | al brine and der | leted limior mai |  |  |  |  |
| BIOMINE                                         |                                                                    | to original body  |                     | week char residu                       | ar brine and deb | reces riquor ma  |  |  |  |  |
| Calcium                                         | be recurred                                                        | to orrgrider body | or water.           |                                        |                  |                  |  |  |  |  |
| Calcium carbide                                 | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Calcium carbonate                               |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| (Milk of lime)                                  |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| (Solvay process)                                |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| Carbon dioxide                                  | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Carbon monoxide                                 |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| Chromic acid                                    | No discharge o                                                     | f process wastewa | ter pollutants to   | navigable water                        | s.               |                  |  |  |  |  |
| Cuprous oxide                                   | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Ferric chloride                                 |                                                                    | f process wastewa | ter pollutants to   | navigable water:                       | s.               |                  |  |  |  |  |
| Ferrous sulfate                                 | Reserved                                                           | -                 | •                   | •                                      |                  |                  |  |  |  |  |
| Fluorine                                        | No discharge o                                                     | f process wastewa | ter pollutants to   | navigable water                        | s.               |                  |  |  |  |  |
| Hydrochloric acid                               |                                                                    |                   |                     | navigable water                        |                  |                  |  |  |  |  |
| Hydrogen                                        |                                                                    |                   |                     | o navigable water                      |                  |                  |  |  |  |  |
| Hydrogen peroxide                               | •                                                                  | -                 | •                   | •                                      |                  |                  |  |  |  |  |
| (Organic process)                               |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| (Electrolytic process)                          |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| Iodine                                          | No discharge o                                                     | f process wastewa | ter pollutants to   | navigable water                        | 5.               |                  |  |  |  |  |
| Lead monoxide                                   | No discharge o                                                     | f process wastewa | ter pollutants to   | navigable water                        | s.               |                  |  |  |  |  |
| Lithium carbonate                               |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| (Spodumene ore)                                 |                                                                    |                   |                     |                                        |                  |                  |  |  |  |  |
| (Trona process)                                 |                                                                    | f process wastewa | ter pollutants t    | o navigable water                      | s.               |                  |  |  |  |  |
| Manganese sulfate                               | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Nitric acid                                     |                                                                    | f process wastewa | ter pollutants t    | o navigable water                      | S.               |                  |  |  |  |  |
| Nitric acid (strong)                            | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Oxygen and nitrogen                             |                                                                    | _                 |                     |                                        | _                |                  |  |  |  |  |
| Potassium chloride                              | No discharge o                                                     | f process wastewa | ter pollutants t    | o navigable water                      | except that res  | idual brine and  |  |  |  |  |
| *                                               |                                                                    |                   |                     | al body of water.                      | _                |                  |  |  |  |  |
| Potassium dichromate                            | No discharge o                                                     | i process wastewa | ter pollutants t    | o navigable water                      | s.               |                  |  |  |  |  |
| Fotassium iodide                                | No disabases -                                                     | £ 2222222 1222    | mallubant - +       |                                        |                  |                  |  |  |  |  |
| Potassium metal                                 | No discharge o                                                     | . Process wastewa | ter poliutants t    | o navigable water                      | ъ.               |                  |  |  |  |  |
| Potassium permanaganate Sodium bicarbonate      |                                                                    | f process week    | ter mallutanes t    | o navigable water                      | e                |                  |  |  |  |  |
| Sodium carbonate                                | usacharye o                                                        | · Process wasceMg | ter borracauts t    | . "asrdante water                      | ••               |                  |  |  |  |  |
| Sodium fluoride                                 | No discharge o                                                     | f process weekens | ter pollutante t    | o navigable water                      | ς.               |                  |  |  |  |  |
| Sodium hydrosulfide                             | Reserved                                                           | . Process wastewa | err borracance c    | water                                  |                  |                  |  |  |  |  |
| Sodium metal                                    | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Sodium metal<br>Sodium silicate                 | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Sodium thiosulfate                              | Reserved                                                           |                   |                     |                                        |                  |                  |  |  |  |  |
| Stannic cxide                                   |                                                                    | f Drocess week    | ter mollutents t    | o navidable weter                      | c                |                  |  |  |  |  |
| Sulfur dioxide                                  | Reserved                                                           | r brocess westews | res bolingants t    | o navigable water                      | a.               |                  |  |  |  |  |
|                                                 | WE BET AEG                                                         |                   |                     |                                        |                  |                  |  |  |  |  |
|                                                 | No discharge o                                                     | f nrocece         | + or noll           |                                        |                  |                  |  |  |  |  |
| Sulfuric acid                                   |                                                                    | f process wastewa | ter pollutants t    | o navigable water                      | s.               |                  |  |  |  |  |
|                                                 | Reserved                                                           | _                 | -                   | o navigable water<br>o navigable water |                  |                  |  |  |  |  |

(continued)

|                                               |                             |                   |                    | of Product (mg/L)  |                 |                  |  |  |  |
|-----------------------------------------------|-----------------------------|-------------------|--------------------|--------------------|-----------------|------------------|--|--|--|
| 0.1                                           | Cyanic                      |                   |                    | oride              |                 | Iron             |  |  |  |
| Subcategory                                   | Daily maximum               | 30-Day average    | Daily maximum      | 30-Day average     | Daily maximum   | 30-Day averag    |  |  |  |
| Aluminum fluoride                             |                             |                   | 0.68(40.0)         | 0.34(20.0)         |                 |                  |  |  |  |
| Chlor-alkalı                                  |                             |                   |                    |                    |                 |                  |  |  |  |
| Diaphrahm cell                                |                             |                   |                    |                    |                 |                  |  |  |  |
| Mercury cell                                  |                             |                   |                    |                    |                 |                  |  |  |  |
| Chrome pigments                               | 0.10(0.2)                   | 0.034(0.10)       |                    |                    | 0.72(10.8)      | 0.27(4.0)        |  |  |  |
| Copper sulfate<br>(Recovery process)          |                             |                   |                    |                    |                 |                  |  |  |  |
| (Pure raw materials process)                  |                             |                   |                    |                    |                 |                  |  |  |  |
| Hydrofluoric acid                             |                             |                   | 15(30)             |                    |                 |                  |  |  |  |
| Hydrogen cyanide (Andrussow process)          | 0.005(0.1)                  | 0.0025(0.05)      |                    |                    |                 |                  |  |  |  |
| Nickel sulfate                                |                             |                   |                    |                    |                 |                  |  |  |  |
| (Pure raw materials)                          | No discharge of             | process wastewa   | ter pollutants t   | o navigable waters |                 |                  |  |  |  |
| (Impure raw materials)                        |                             |                   |                    |                    |                 |                  |  |  |  |
| Sodium bisulfite Sodium dichromate            | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Sodium hydrosulfite                           | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Titanium dioxide                              | WEDEL AEG                   |                   |                    |                    |                 |                  |  |  |  |
| (Chloride process)                            |                             |                   |                    |                    | 0.72            | 0.36             |  |  |  |
| (Sulfate process)                             |                             |                   |                    |                    | 1.7(8.1)        | 0.84(4.0)        |  |  |  |
| Aluminum sulfate                              |                             |                   |                    |                    |                 |                  |  |  |  |
| Ammonium chloride                             |                             |                   |                    |                    |                 |                  |  |  |  |
| (Anhydrous)                                   | No discharge of             | process wastewa   | ter pollutants to  | o navigable waters | ١.              |                  |  |  |  |
| (Solvay byproduct) Ammonium hydroxide         | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Barium carbonate                              | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Borax                                         |                             | Drocess wastewa   | ter pollutants e   | cept that residua  | l brine and der | oleted lignor ma |  |  |  |
|                                               |                             | o original body   |                    |                    |                 |                  |  |  |  |
| Boric acid                                    |                             | -                 |                    |                    |                 |                  |  |  |  |
| (Ore mined)                                   |                             |                   |                    |                    |                 |                  |  |  |  |
| (Trona)                                       |                             |                   |                    | xcept that residua | l brine and dep | leted liquor ma  |  |  |  |
| Bromine                                       |                             | o original body   |                    |                    | 1 5             |                  |  |  |  |
| Bromine                                       |                             | o original body   |                    | xcept that residua | I brine and dep | stered liquor ma |  |  |  |
| Calcium                                       | DE TECUTION (               | o original body   | or water.          |                    |                 |                  |  |  |  |
| Calcium carbide                               | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Calcium carbonate                             |                             |                   |                    |                    |                 |                  |  |  |  |
| (Milk of lime)                                |                             |                   |                    |                    |                 |                  |  |  |  |
| (Solvay process)                              |                             |                   |                    |                    |                 |                  |  |  |  |
| Carbon dioxide                                | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Carbon monoxide<br>Chromic acid               | No discharge of             |                   |                    |                    |                 |                  |  |  |  |
| Cuprous oxide                                 | Reserved                    | process wastewa   | cer politicants to | navigable waters   | •               |                  |  |  |  |
| Ferric chloride                               |                             | Drocess Wasteway  | ter pollutants to  | navigable waters   |                 |                  |  |  |  |
| Ferrous sulfate                               | Reserved                    | process assesses  | ,                  |                    | •               |                  |  |  |  |
| Fluorine                                      | No discharge of             | process wastewar  | ter pollutants to  | navigable waters   | •               |                  |  |  |  |
| Hydrochloric acid                             | No discharge of             | process wastewar  | ter pollutants to  | navigable waters   | •               |                  |  |  |  |
| Hydrogen                                      | No discharge of             | process wastewar  | ter pollutants to  | navigable waters   | •               |                  |  |  |  |
| Hydrogen peroxide                             |                             |                   |                    |                    |                 |                  |  |  |  |
| (Organic process) (Electrolytic process)      | 0.0004                      | 0.0002            |                    |                    |                 |                  |  |  |  |
| Iodine                                        |                             |                   | ter pollutants to  | navigable waters   |                 |                  |  |  |  |
| Lead monoxide                                 |                             |                   |                    | navigable waters   |                 |                  |  |  |  |
| Lithium carbonate                             |                             | -                 | •                  | ,                  |                 |                  |  |  |  |
| (Spodumene ore)                               |                             |                   |                    |                    |                 |                  |  |  |  |
| (Trona process)                               |                             | process wastewar  | ter pollutants to  | navigable waters   | •               |                  |  |  |  |
| Manganese sulfate                             | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Nitric acid<br>Nitric acid (strong)           | No discharge of<br>Reserved | process wastewar  | ter pollutants to  | navigable waters   | •               |                  |  |  |  |
| Oxygen and nitrogen                           | reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Potassium chloride                            | No discharge of             | process wasteway  | er pollutants to   | navigable water    | except that res | idual brine and  |  |  |  |
|                                               | 31-4-3 12                   | or may be returne |                    |                    |                 |                  |  |  |  |
| Potassium dichromate                          |                             |                   |                    | navigable waters   | •               |                  |  |  |  |
| Potassium iodide                              |                             |                   |                    |                    | 0.015(12.5)     | 0.005(4.2)       |  |  |  |
| Potassium metal                               |                             | process wastewat  | ter pollutants to  | navigable waters   | •               |                  |  |  |  |
| Potassium permanaganate<br>Sodium bicarbonate | Reserved                    | DECEMBER MARKET   | mall               |                    |                 |                  |  |  |  |
| Sodium bicarponate                            | No discuarge of             | Process wastewat  | er pollutants to   | navigable waters   | •               |                  |  |  |  |
| Sodium fluoride                               | No discharge of             | DIOCASS Wasteust  | er poliutante to   | navigable waters   |                 |                  |  |  |  |
| Sodium hydrosulfide                           | Reserved                    | L-ocdes webigage  | -c. postucants tt  | watels             | •               |                  |  |  |  |
| Sodium metal                                  | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Sodium Silicate                               | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Sodium thiosulfate                            | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Stannic oxide                                 |                             | process wastewat  | er pollutants to   | navigable waters   | •               |                  |  |  |  |
| Sulfur dioxide                                | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Sulfuric acid<br>Zinc oxide                   |                             | process wastewat  | er pollutants to   | navigable waters   | •               |                  |  |  |  |
|                                               | Reserved                    |                   |                    |                    |                 |                  |  |  |  |
| Zinc sulfate                                  | No dischaus - "             | process wastewat  |                    |                    |                 |                  |  |  |  |

|                                         |                                         |                  |                    | of Product (mg/L)  |                  | -1-1             |
|-----------------------------------------|-----------------------------------------|------------------|--------------------|--------------------|------------------|------------------|
|                                         | Les                                     |                  |                    | rcury              |                  | ckel             |
| Subcategory                             | Daily maximum                           | 30-Day average   | Daily maximum      | 30-Day average     | Daily maximum    | 30-Day average   |
| Lluminum fluoride                       |                                         |                  |                    |                    |                  |                  |
| Thlor-alkalı                            |                                         |                  |                    |                    |                  |                  |
| Diaphrahm cell                          | 0.0025                                  | 0.005)           | 0.00014            | (0.00000)          |                  |                  |
| Mercury cell                            | 0.42(6.3)                               | 0.14(2.1)        | 0.00014            | (0.00028)          |                  |                  |
| Throme pigments<br>Copper sulfate       | 0.42(0.3)                               | 0.14(2.1)        |                    |                    |                  |                  |
| (Recovery process)                      |                                         |                  |                    |                    | 0.006(6.5)       | 0.002(2.2)       |
| (Pure raw materials process)            |                                         |                  |                    |                    |                  |                  |
| dydrofluoric acid                       |                                         |                  |                    |                    |                  |                  |
| lydrogen cyanide (Andrussow process)    |                                         |                  |                    |                    |                  |                  |
| Nickel sulfate                          |                                         |                  |                    |                    | _                |                  |
| (Pure raw materials)                    | No discharge of                         | process wastew   | ater pollutants to | o navigable water  | 0.006(5.1)       | 0.002(1.7)       |
| (Impure raw materials) Sodium bisulfite | Reserved                                |                  |                    |                    | 0.000(3.1)       | 0.002(1.7)       |
| Sodium dichromate                       |                                         |                  |                    |                    |                  |                  |
| Sodium hydrosulfite                     | Reserved                                |                  |                    |                    |                  |                  |
| Citanium dioxide                        |                                         |                  |                    |                    |                  |                  |
| (Chloride process)                      |                                         |                  |                    |                    |                  |                  |
| (Sulfate process)                       |                                         |                  |                    |                    |                  |                  |
| Aluminum sulfate                        |                                         |                  |                    |                    |                  |                  |
| Ammonium chloride<br>(Anhydrous)        | No discharge of                         | Drocess wastew   | ater pollutants t  | o navigable water  | ۹.               |                  |
| (Solvay byproduct)                      | no discharge of                         | process          | acer porrecuitor c |                    | ••               |                  |
| Ammonium hydroxide                      | Reserved                                |                  |                    |                    |                  |                  |
| Barium carbonate                        | Reserved                                |                  |                    |                    | ·                |                  |
| Borax                                   |                                         |                  |                    | xcept that residu  | al brine and dep | leted liquor may |
|                                         | be returned t                           | o original body  | of water.          |                    |                  |                  |
| Boric acid                              |                                         |                  |                    |                    |                  |                  |
| (Ore mined) (Trona)                     | No discharge of                         | Drocess wester   | ater mollutants e  | xcept that residu  | al brine and den | leted liguor may |
| (11 One)                                |                                         | o original body  |                    | noope out 10000    |                  | rotor reques mey |
| Bromine                                 | No discharge of                         | process wastew   | ater pollutants e  | xcept that residu  | al brine and dep | leted liquor may |
|                                         |                                         | o original body  |                    |                    |                  |                  |
| Calcium                                 |                                         |                  |                    |                    |                  |                  |
| Calcium carbide                         | Reserved                                |                  |                    |                    |                  |                  |
| Calcium carbonate                       |                                         |                  |                    |                    |                  |                  |
| (Milk of lime) (Solvav process)         |                                         |                  |                    |                    |                  |                  |
| Carbon dioxide                          | Reserved                                |                  |                    |                    |                  |                  |
| Carbon monoxide                         |                                         |                  |                    |                    |                  |                  |
| Chromic acid                            | No discharge of                         | process wastew   | ater pollutants to | o navigable water  | S.               |                  |
| Cuprous oxide                           | Reserved                                |                  |                    |                    |                  |                  |
| Ferric chloride                         |                                         | process wastew   | ater pollutants to | o navigable water  | 3.               |                  |
| Ferrous sulfate                         | Reserved                                |                  | near mallutents to | o navigable water: | • .              |                  |
| Fluorine                                | No discharge of                         | process wastew   | ater pollutants to | o navigable water: | s.               |                  |
| Hydrochloric acid<br>Hydrogen           | No discharge of                         | process wastew   | ater pollutants to | o navigable waters | 5.               |                  |
| Hydrogen peroxide                       |                                         | <b>2200</b> 000  | •                  | -                  |                  |                  |
| (Organic process)                       |                                         |                  |                    |                    |                  |                  |
| (Electrolytic process)                  |                                         |                  |                    |                    |                  |                  |
| Iodine                                  | No discharge of                         | process wastew   | ater pollutants to | o navigable waters | a.<br>-          |                  |
| Lead monoxide                           | No discharge of                         | process wastew   | ater pollutants to | o navigable water  | <b>.</b>         |                  |
| Lithium carbonate<br>(Spodumene ore)    |                                         |                  |                    |                    |                  |                  |
| (Trona process)                         | No discharge of                         | process wastew   | ater pollutants to | o navigable water: | 5.               |                  |
| Manganese sulfate                       | Reserved                                |                  |                    |                    |                  |                  |
| Nitric acid                             |                                         | process wastew   | ater pollutants to | o navigable water: | <b>s</b> .       |                  |
| Nitric acid (strong)                    | Reserved                                |                  |                    |                    |                  |                  |
| Oxygen and nitrogen                     | N- 4 b                                  |                  |                    | o navigable water  | event that res   | idual brine and  |
| Potassium chloride                      |                                         |                  | med to the origin  |                    |                  | Inder Dille and  |
| Potassium dichromate                    |                                         |                  |                    | o navigable water  |                  |                  |
| Potassium lodide                        |                                         |                  | •                  | •                  |                  |                  |
| Potassium metal                         | No discharge of                         | process wastew   | ater pollutants t  | o navigable water  | 6.               |                  |
| Potassium permanaganate                 | Reserved                                |                  |                    |                    |                  |                  |
| Sodium bicarbonate                      | No discharge of                         | process wastew   | ater pollutants t  | o navigable water  | 5.               |                  |
| Sodium carbonate                        | No. 4) achieves                         |                  |                    |                    |                  |                  |
| Sodium fluoride                         |                                         | . process wastew | erer bottnraurs t  | o navigable water  | ٥.               |                  |
| Sodium hydrosulfide                     | Reserved<br>Reserved                    |                  |                    |                    |                  |                  |
| Sodium metal<br>Sodium silicate         | Reserved                                |                  |                    |                    |                  |                  |
| Sodium silicate Sodium thiosulfate      | Reserved                                |                  |                    |                    |                  |                  |
|                                         |                                         |                  |                    | o navigable water  | •                |                  |
| Stannic oxide                           | No discharge of                         | t process wastew |                    |                    |                  |                  |
|                                         | No discharge of<br>Reserved             | process waster   | ater politicants t | O HEVIGEDIC WACCO  |                  |                  |
| Stannic oxide                           | Reserved<br>No discharge of             | •                | •                  | o navigable water  |                  |                  |
| Stannıc oxide<br>Sulfur dioxide         | Reserved<br>No discharge of<br>Reserved | f process wastew | vater pollutants t | •                  | s.               |                  |

|                                                                                                                                                                                                           |                                                                                                                                                |                                        | Pollutant, kg/Mc    | of Product (mg/L)                          |                                         |                  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------|--------------------------------------------|-----------------------------------------|------------------|--|--|--|--|--|
|                                                                                                                                                                                                           |                                                                                                                                                | nium                                   |                     | lfide                                      |                                         | inc              |  |  |  |  |  |
| Subcategory                                                                                                                                                                                               | Daily maximum                                                                                                                                  | 30-Day average                         | Daily maximum       | 30-Day average                             | Daily maximum                           | 30-Day averag    |  |  |  |  |  |
| Aluminum fluoride                                                                                                                                                                                         |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Chlor-alkalı                                                                                                                                                                                              |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Diaphrahm cell                                                                                                                                                                                            |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Mercury cell                                                                                                                                                                                              |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Chrome pigments                                                                                                                                                                                           |                                                                                                                                                |                                        |                     |                                            | 0.72(10.8)                              | 0.27(4.0)        |  |  |  |  |  |
| Copper sulfate                                                                                                                                                                                            |                                                                                                                                                |                                        |                     |                                            | • • • • • • • • • • • • • • • • • • • • | ************     |  |  |  |  |  |
| (Recovery process)                                                                                                                                                                                        | 0.0015(1.6)                                                                                                                                    | 0.0005(0.5)                            |                     |                                            |                                         |                  |  |  |  |  |  |
| (Pure raw materials process)                                                                                                                                                                              | 0.0015(1.0)                                                                                                                                    | 0.0003(0.5)                            |                     |                                            |                                         |                  |  |  |  |  |  |
| Hydrofluoric acid                                                                                                                                                                                         |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Hydrogen cyanide (Andrussow process)                                                                                                                                                                      |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Nickel sulfate                                                                                                                                                                                            |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| (Pure raw materials)                                                                                                                                                                                      | No discharge of                                                                                                                                | process wastew                         | water pollutants !  | to navigable waters                        | ;.                                      |                  |  |  |  |  |  |
| (Impure raw materials)                                                                                                                                                                                    |                                                                                                                                                | •                                      |                     | •                                          |                                         |                  |  |  |  |  |  |
| Sodium bisulfite                                                                                                                                                                                          | Reserved                                                                                                                                       |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Sodium dichromate                                                                                                                                                                                         |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Sodium hydrosulfite                                                                                                                                                                                       | Reserved                                                                                                                                       |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Titanium dioxide                                                                                                                                                                                          |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| (Chloride process)                                                                                                                                                                                        |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| (Sulfate process)                                                                                                                                                                                         |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Aluminum sulfate                                                                                                                                                                                          |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Ammonium chloride                                                                                                                                                                                         |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| (Anhydrous)                                                                                                                                                                                               | No discharge of                                                                                                                                | process wastew                         | water pollutants    | to navigable waters                        | ı.                                      |                  |  |  |  |  |  |
| (Solvay byproduct)                                                                                                                                                                                        |                                                                                                                                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | F                   |                                            |                                         |                  |  |  |  |  |  |
| Ammonium hydroxide                                                                                                                                                                                        | Reserved                                                                                                                                       |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Barium carbonate                                                                                                                                                                                          | Reserved                                                                                                                                       |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Borax                                                                                                                                                                                                     |                                                                                                                                                | Drocess waster                         | water pollutants (  | except that residua                        | al brine and dep                        | leted liquor may |  |  |  |  |  |
|                                                                                                                                                                                                           |                                                                                                                                                | o original body                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Boric acid                                                                                                                                                                                                |                                                                                                                                                | ,                                      |                     |                                            |                                         |                  |  |  |  |  |  |
| (Ore mined)                                                                                                                                                                                               |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| (Trona)                                                                                                                                                                                                   | No discharge of                                                                                                                                | Drocess wastew                         | water pollutants    | except that residua                        | al brine and dep                        | leted liquor may |  |  |  |  |  |
| 1-2                                                                                                                                                                                                       |                                                                                                                                                | o original body                        |                     |                                            | <u></u>                                 |                  |  |  |  |  |  |
| Bromine                                                                                                                                                                                                   |                                                                                                                                                |                                        |                     | except that residua                        | al brine and dep                        | leted liquor may |  |  |  |  |  |
|                                                                                                                                                                                                           |                                                                                                                                                | o original body                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Calcium                                                                                                                                                                                                   |                                                                                                                                                | ,                                      |                     |                                            |                                         |                  |  |  |  |  |  |
| Calcium carbide                                                                                                                                                                                           | Reserved                                                                                                                                       |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Calcium carbonate                                                                                                                                                                                         |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| (Milk of lime)                                                                                                                                                                                            |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| (Solvay process)                                                                                                                                                                                          |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Carbon dioxide                                                                                                                                                                                            | Reserved                                                                                                                                       |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Carbon monoxide                                                                                                                                                                                           |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Chromic acid                                                                                                                                                                                              | No discharge of                                                                                                                                | process wastew                         | ater pollutants     | to navigable waters                        | s.                                      |                  |  |  |  |  |  |
| Cuprous oxide                                                                                                                                                                                             | Reserved                                                                                                                                       | -                                      | •                   | •                                          |                                         |                  |  |  |  |  |  |
| Ferric chloride                                                                                                                                                                                           | No discharge of                                                                                                                                | process waster                         | water pollutants    | to navigable waters                        | 5.                                      |                  |  |  |  |  |  |
| Ferrous sulfate                                                                                                                                                                                           | Reserved                                                                                                                                       | =                                      | <del>-</del>        | •                                          |                                         |                  |  |  |  |  |  |
| Fluorine                                                                                                                                                                                                  | No discharge of                                                                                                                                | process wastew                         | mater pollutants    | to navigable waters                        | 3.                                      |                  |  |  |  |  |  |
| Hydrochloric acid                                                                                                                                                                                         |                                                                                                                                                |                                        |                     | to navigable waters                        |                                         |                  |  |  |  |  |  |
| Hydrogen                                                                                                                                                                                                  |                                                                                                                                                |                                        |                     | to navigable water:                        |                                         |                  |  |  |  |  |  |
| Hydrogen peroxide                                                                                                                                                                                         |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| (Organic process)                                                                                                                                                                                         |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| (Electrolytic process)                                                                                                                                                                                    |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Iodine                                                                                                                                                                                                    | No discharge of                                                                                                                                | process waster                         | water pollutants    | to navigable water:                        | 5.                                      |                  |  |  |  |  |  |
| Lead monoxide                                                                                                                                                                                             | No discharge of                                                                                                                                | process wastew                         | water pollutants f  | to navigable water:                        | 5.                                      |                  |  |  |  |  |  |
| Lithium carbonate                                                                                                                                                                                         |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| (Spodumene ore)                                                                                                                                                                                           |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| (Trona process)                                                                                                                                                                                           |                                                                                                                                                | Process wastew                         | water pollutants f  | to navigable waters                        | s.                                      |                  |  |  |  |  |  |
| Manganese sulfate                                                                                                                                                                                         | Reserved                                                                                                                                       |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Nitric acid                                                                                                                                                                                               | No discharge of                                                                                                                                | process wastew                         | water pollutants f  | to navigable water:                        | 5.                                      |                  |  |  |  |  |  |
| Nitric acid (strong)                                                                                                                                                                                      | Reserved                                                                                                                                       |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Oxygen and nitrogen                                                                                                                                                                                       |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Potassium chloride                                                                                                                                                                                        | No discharge of                                                                                                                                | process wastew                         | water pollutants f  | to navigable water                         | except that res                         | idual brine and  |  |  |  |  |  |
|                                                                                                                                                                                                           |                                                                                                                                                |                                        |                     | nal body of water.                         |                                         |                  |  |  |  |  |  |
| Potassium dichromate                                                                                                                                                                                      | No discharge of                                                                                                                                | process waster                         |                     | to navigable waters                        | 5.                                      |                  |  |  |  |  |  |
|                                                                                                                                                                                                           |                                                                                                                                                |                                        | 0.015(12.5)         | 0.005(4.2)                                 |                                         |                  |  |  |  |  |  |
| Potassium iodide                                                                                                                                                                                          | No discharge of                                                                                                                                | process wastew                         | water pollutants    | to navigable waters                        | 5.                                      |                  |  |  |  |  |  |
| Potassium metal                                                                                                                                                                                           |                                                                                                                                                |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Potassium metal<br>Potassium permanaganate                                                                                                                                                                | Reserved                                                                                                                                       |                                        |                     |                                            |                                         |                  |  |  |  |  |  |
| Potassium metal<br>Potassium permanaganate<br>Sodium bicarbonate                                                                                                                                          |                                                                                                                                                | process wastew                         | water pollutants    | to navigable waters                        | s.                                      |                  |  |  |  |  |  |
| Potassium metal<br>Potassium permanaganate<br>Sodium bicarbonate<br>Sodium carbonate                                                                                                                      | Reserved<br>No discharge of                                                                                                                    |                                        |                     | -                                          |                                         |                  |  |  |  |  |  |
| Potassium metal<br>Potassium permanaganate<br>Sodium hicarbonate<br>Sodium carbonate<br>Sodium fluoride                                                                                                   | Reserved<br>No discharge of<br>No discharge of                                                                                                 |                                        |                     | to navigable waters<br>to navigable waters |                                         |                  |  |  |  |  |  |
| Potassium metal Potassium permanaganate Sodium bicarbonate Sodium carbonate Sodium fluoride Sodium hydrosulfide                                                                                           | Reserved<br>No discharge of<br>No discharge of<br>Reserved                                                                                     |                                        |                     | -                                          |                                         |                  |  |  |  |  |  |
| Potassium metal Potassium permanaganate Sodium bicarbonate Sodium carbonate Sodium fluoride Sodium hydrosulfide Sodium metal                                                                              | Reserved<br>No discharge of<br>No discharge of<br>Reserved<br>Reserved                                                                         |                                        |                     | -                                          |                                         |                  |  |  |  |  |  |
| Potassium metal Potassium permanaganate Sodium bicarbonate Sodium carbonate Sodium fluoride Sodium hydrosulfide Sodium metal Sodium silicate                                                              | Reserved<br>No discharge of<br>No discharge of<br>Reserved<br>Reserved<br>Reserved                                                             |                                        |                     | -                                          |                                         |                  |  |  |  |  |  |
| Potassium metal Potassium permanaganate Sodium blcarbonate Sodium fluoride Sodium fluoride Sodium mydrosulfide Sodium metal Sodium silicate Sodium thiosulfate                                            | Reserved<br>No discharge of<br>No discharge of<br>Reserved<br>Reserved<br>Reserved<br>Reserved                                                 | process wastew                         | water pollutants (  | to navigable waters                        | s.                                      |                  |  |  |  |  |  |
| Potassium metal Potassium permanaganate Sodium bloarbonate Sodium fluoride Sodium fluoride Sodium hydrosulfide Sodium metal Sodium silicate Sodium thosulfate Stannic oxide                               | Reserved<br>No discharge of<br>No discharge of<br>Reserved<br>Reserved<br>Reserved<br>No discharge of                                          | process wastew                         | water pollutants (  | -                                          | s.                                      |                  |  |  |  |  |  |
| Potassium metal Potassium permanaganate Sodium bicarbonate Sodium carbonate Sodium fluoride Sodium fluoride Sodium metal Sodium silicate Sodium thosulfate Sodium thosulfate Stannic oxide Sulfur dioxide | Reserved<br>No discharge of<br>Reserved<br>Reserved<br>Reserved<br>Reserved<br>No discharge of<br>Reserved                                     | process wastew                         | water pollutants t  | to navigable waters                        | s.                                      |                  |  |  |  |  |  |
| Potassium metal Potassium permanaganate Sodium bicarbonate Sodium carbonate Sodium fluoride Sodium mydrosulfide Sodium metal Sodium silicate Sodium thiosulfate Stannic oxide Sulfur doxide Sulfur cacid  | Reserved<br>No discharge of<br>Reserved<br>Reserved<br>Reserved<br>No discharge of<br>Reserved<br>No discharge of                              | process wastew                         | water pollutants t  | to navigable waters                        | s.                                      |                  |  |  |  |  |  |
| Potassium metal Potassium permanaganate Sodium bicarbonate Sodium carbonate Sodium fluoride Sodium fluoride Sodium metal Sodium silicate Sodium thosulfate Sodium thosulfate Stannic oxide Sulfur dioxide | Reserved No discharge of No discharge of Reserved Reserved Reserved No discharge of Reserved No discharge of Reserved No discharge of Reserved | process wastew                         | water pollutants of | to navigable waters                        | s.<br>s.                                |                  |  |  |  |  |  |

TABLE 5-3 (continued)

|                                                                                                               |                                                            |                                        |                     | /Mg of Product (mg   |                   |                                         |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|---------------------|----------------------|-------------------|-----------------------------------------|
| Subcategory                                                                                                   | Daily maximum                                              | 30-Day average                         | ,                   | OC<br>30-Day average | Daily maximum     | 30-Day average                          |
| Subcategory                                                                                                   | Durry maximum                                              | 50 Day average                         | Darry Management    |                      |                   |                                         |
| Aluminum fluoride<br>Chlor-alkali                                                                             |                                                            |                                        |                     |                      | 0.86(50.6)        | 0.43(25.3)                              |
| Diaphrahm cell                                                                                                |                                                            |                                        |                     |                      | 0.32(             | (0.64)                                  |
| Mercury cell                                                                                                  |                                                            |                                        |                     |                      |                   | (0.64)                                  |
| Chrome rigments                                                                                               |                                                            |                                        |                     |                      | 5.1 (76.1)        | 1.7(25.4)                               |
| Copper sulfate                                                                                                |                                                            |                                        |                     |                      | 311(/3/1/         | 11/(23.4)                               |
| (Recovery process)                                                                                            |                                                            |                                        |                     |                      | 0.069(74.2)       | 0.023(24.7)                             |
| (Pure raw materials process)                                                                                  |                                                            |                                        |                     |                      |                   | *************************************** |
| Hydrofluoric acid                                                                                             |                                                            |                                        |                     |                      | 25 (50)           |                                         |
| Hydrogen cyanide (Andrussow process)                                                                          | 3.6(72.0)                                                  | 1.8(36.0)                              |                     |                      | 2.4(48.0)         | 1.2(24.0)                               |
| Nickel sulfate                                                                                                | , ,                                                        |                                        |                     |                      | , ,               | ,                                       |
| (Pure raw materials)                                                                                          | No discharge of                                            | process wastew                         | ater pollutants t   | o navigable waters   | ٠.                |                                         |
| (Impure raw materials)                                                                                        | <del>-</del>                                               | -                                      | -                   | _                    | 0.096(82.1)       | 0.032(27.4)                             |
| Sodium Eisulfite                                                                                              | Reserved                                                   |                                        |                     |                      |                   |                                         |
| Sodium dichromate                                                                                             |                                                            |                                        |                     |                      | 0.44              | 0.22                                    |
| Sodium hydrosulfite                                                                                           | Reserved                                                   |                                        |                     |                      |                   |                                         |
| Titanium dioxide                                                                                              |                                                            |                                        |                     |                      |                   |                                         |
| (Chloride process)                                                                                            |                                                            |                                        |                     |                      | 4.6               | 2.3                                     |
| (Sulfate process)                                                                                             |                                                            |                                        |                     |                      | 21.0(100)         | 10.5(50.0)                              |
| Aluminum sulfate                                                                                              |                                                            |                                        |                     |                      | (50)              | (25)                                    |
| Ammonium chloride                                                                                             |                                                            |                                        |                     |                      |                   |                                         |
| (Anhydrous)                                                                                                   | No discharge of                                            | process wastew                         | ater pollutants t   | o navigable waters   | i.                |                                         |
| (Solvay byproduct)                                                                                            | *                                                          |                                        |                     |                      |                   |                                         |
| Ammonium hydroxide                                                                                            | Reserved                                                   |                                        |                     |                      |                   |                                         |
| Barium carbonate                                                                                              | Reserved                                                   |                                        |                     |                      |                   |                                         |
| Borax                                                                                                         | No discharge of                                            | process wastew                         | ater pollutants e   | xcept that residua   | il brine and depl | eted liquor mag                         |
|                                                                                                               | be returned t                                              | o original body                        | of water.           |                      |                   |                                         |
| Boric acid                                                                                                    |                                                            |                                        |                     |                      |                   |                                         |
| (Ore mined)                                                                                                   |                                                            |                                        |                     |                      | 0.14              | 0.07                                    |
| (Trona)                                                                                                       | No discharge of                                            | process wastew                         | ater pollutants e   | xcept that residua   | il brine and depl | ieted liquor ma                         |
|                                                                                                               | be returned t                                              | o original body                        | of water.           |                      |                   |                                         |
| Bromine                                                                                                       |                                                            |                                        |                     | xcept that residua   | il brine and depl | Leted liquor ma                         |
|                                                                                                               | be returned t                                              | o original body                        | of water.           |                      |                   |                                         |
| Calcium                                                                                                       |                                                            |                                        |                     |                      |                   |                                         |
| Calcium carbide                                                                                               | Reserved                                                   |                                        |                     |                      |                   |                                         |
| Calcium carbonate                                                                                             |                                                            |                                        |                     |                      |                   |                                         |
| (Milk of lime)                                                                                                |                                                            |                                        |                     |                      | 0.56(50.0)        | 0.28(25.0)                              |
| (Solvay process)                                                                                              |                                                            |                                        |                     |                      | 1.16(49.6)        | 0.58(24.8)                              |
| Carbon dioxide                                                                                                | Reserved                                                   |                                        |                     |                      |                   |                                         |
| Carbon monoxide                                                                                               |                                                            |                                        |                     |                      | 0.12(19.5)        | 0.06(9.8)                               |
| Chromic acid                                                                                                  |                                                            | process wastew                         | ater pollutants t   | o navigable waters   | <b>5.</b>         |                                         |
| Cuprous oxide                                                                                                 | Reserved                                                   |                                        |                     |                      |                   |                                         |
| Ferric chloride                                                                                               |                                                            | process wastew                         | ater pollutants t   | o navigable waters   | š.                |                                         |
| Ferrous sulfate                                                                                               | Reserved                                                   |                                        |                     |                      |                   |                                         |
| Fluorine                                                                                                      |                                                            |                                        |                     | o navigable waters   |                   |                                         |
| Hydrochloric acid                                                                                             |                                                            |                                        |                     | o navigable waters   |                   |                                         |
| Hydrogen                                                                                                      | No discharge of                                            | process wastew                         | ater pollutants t   | o navigable waters   | 5.                |                                         |
| Hydrogen peroxide                                                                                             |                                                            |                                        |                     |                      |                   |                                         |
| (Organic process)                                                                                             |                                                            |                                        | 0.44                | 0.22                 | 0.8               | 0.4                                     |
| (Electrolytic process)                                                                                        |                                                            | _                                      |                     |                      | 0.005             | 0.0025                                  |
| Iodine                                                                                                        |                                                            |                                        |                     | o navigable waters   |                   |                                         |
| Lead monoxide                                                                                                 | No discharge of                                            | process wastew                         | water pollutants t  | o navigable waters   | 5.                |                                         |
| Lithium carbonate                                                                                             |                                                            |                                        |                     |                      |                   | 0.0                                     |
| (Spodumene ore)                                                                                               |                                                            |                                        |                     |                      | 2.7               | 0.9                                     |
| (Trona process)                                                                                               |                                                            | process wastew                         | water pollutants t  | o navigable waters   | š.                |                                         |
| Manganese sulfate                                                                                             | Reserved                                                   |                                        |                     |                      |                   |                                         |
| Nitric acid                                                                                                   |                                                            | : process wastew                       | water poliutants t  | o navigable waters   | ž.                |                                         |
| Nitric acid (strong)                                                                                          | Reserved                                                   |                                        |                     |                      |                   |                                         |
| Oxygen and nitrogen                                                                                           | No disabargo of                                            | F ==================================== | ustaw nallutants t  | o mauroable water    | awaant that was   | . Augl bring and                        |
| Potassium chloride                                                                                            |                                                            |                                        |                     | o navigable water    | except that res.  | iqual brine and                         |
| Potassium dichromate                                                                                          |                                                            |                                        |                     | al body of water.    | _                 |                                         |
|                                                                                                               | No discharge of                                            | , process wastew                       | vater politicants t | o navigable waters   | 0.09(75)          | 0.03(25)                                |
| Potassium iodide                                                                                              | No discharge of                                            | f process waster                       | water mollutants t  | o navigable waters   |                   | 0.03(23)                                |
| Potassium metal                                                                                               | Reserved                                                   | . process wasce.                       | water porrutants t  | .o navigable water.  | **                |                                         |
| Potassium permanaganate<br>Sodium bicarbonate                                                                 |                                                            | f process waster                       | water pollutante +  | o navigable waters   | <b>s</b> .        |                                         |
| Sodium carbonate                                                                                              | 40 discharge of                                            | . Process wastew                       | -weer Porraceutes ( | Havigable waters     | 0.20(222)         | 0.10(111)                               |
| Sodium fluoride                                                                                               | No discharge of                                            | f nrocess waster                       | water mollutants t  | o navigable water:   |                   | 0.10(111)                               |
|                                                                                                               | Reserved                                                   |                                        | Pozzucunos (        |                      | ••                |                                         |
|                                                                                                               | Reserved                                                   |                                        |                     |                      | 0.46              | 0.23                                    |
| Sodium hydrosulfide                                                                                           | Ve set AGG                                                 |                                        |                     |                      | 0.46              | 0.005                                   |
| Sodium hydrosulfide<br>Sodium metal                                                                           | Reserved                                                   |                                        |                     |                      | 0.01              | 0.003                                   |
| Sodium hydrosulfide<br>Sodium metal<br>Sodium silicate                                                        | Reserved                                                   |                                        |                     |                      |                   |                                         |
| Sodium hydrosulfide<br>Sodium metal<br>Sodium silicate<br>Sodium thiosulfate                                  | Reserved                                                   | : propose :::::::::                    | dator moliturants t | o navigable enter    |                   |                                         |
| Sodium hydrosulfide<br>Sodium metal<br>Sodium silicate<br>Sodium thiosulfate<br>Stennic oxide                 | Reserved<br>No discharge of                                | process wastew                         | water pollutants t  | to navigable water   | s.                |                                         |
| Sodium hydrosulfide Sodium metal Sodium silicate Sodium thiosulfate Stannic oxide Sulfur dioxide              | Réserved<br>No discharge of<br>Reserved                    | -                                      |                     |                      |                   |                                         |
| Sodium hydrosulfide Sodium metal Sodium silicate Sodium thiosulfate Stannic oxide Sulfur dioxide Sulfurc acid | Reserved<br>No discharge of<br>Reserved<br>No discharge of | -                                      |                     | to navigable waters  |                   |                                         |
| Sodium hydrosulfide<br>Sodium metal<br>Sodium silicate                                                        | Reserved No discharge of Reserved No discharge of Reserved | f process wastev                       | water pollutants t  |                      | s.                |                                         |

(continued)

Pollutant, kg/Mg of Product (mg/L)

Oll and grease

Daily maximum 30-Day average Arsenic
Daily maximum 30-Day average NH3-N
Daily maximum 30-Day average Subcategory Aluminum fluoride Chlor-alkali Diaphrahm cell Mercury cell Chrome pigments Copper sulfate (Recovery process) (Pure raw materials process)
Hydrofluoric acid Hydrogen cyanide (Andrussow process) Nickel sulfate 0.36(7.2) 0.18(3.6) No discharge of process wastewater pollutants to navigable waters. (Pure raw materials) (Impure raw materials) Sodium bisulfite Reserved Sodium dichromate Sodium hydrosulfite Titanium dioxide (Chloride process) (Sulfate process) Aluminum sulfate Ammonium chloride (Anhydrous) No discharge of process wastewater pollutants to navigable waters. (Solvay byproduct) Reserved Ammonium hydroxide Barium carbonate Reserved No discharge of process wastewater pollutants except that residual brine and depleted liquor may be returned to original body of water. Boric acid (Ore mined) No discharge of process wastewater pollutants except that residual brine and depleted liquor may be returned to original body of water.

No discharge of process wastewater pollutants except that residual brine and depleted liquor may (Trona) Bromine be returned to original body of water. Calcium Calcium carbide Reserved Calcium carbonate (Milk of lime) (Solvay process) Carbon dioxide Carbon monoxide Chromic acid No discharge of process wastewater pollutants to navigable waters. Cuprous oxide Reserved Ferric chloride No discharge of process wastewater pollutants to navigable waters. Ferrous sulfate Reserved No discharge of process wastewater pollutants to navigable waters. No discharge of process wastewater pollutants to navigable waters. No discharge of process wastewater pollutants to navigable waters. Fluorine Hydrochloric acid Hydrogen Hydrogen peroxide (Organic process) (Electrolytic process) Iodine Lead monoxide No discharge of process wastewater pollutants to navigable waters. No discharge of process wastewater pollutants to navigable waters. Lithium carbonate (Spodumene ore) (Trona process)
Manganese sulfate No discharge of process wastewater pollutants to navigable waters. No discharge of process wastewater pollutants to navigable waters. Nitric acid Nitric acid (strong) Reserved Oxygen and nitrogen Potassium chloride 0.001(25.6) 0.002(51.3) No discharge of process wastewater pollutants to navigable water except that residual brine and depleted liquor may be returned to the original body of water. No discharge of process wastewater pollutants to navigable waters. Potassium dichromate Potassium iodide Potassium metal No discharge of process wastewater pollutants to navigable waters. Potassium permanaganate Sodium bicarbonate No discharge of process wastewater pollutants to navigable waters. Sodium carbonate Sodium fluoride No discharge of process wastewater pollutants to navigable waters. Sodium hydrosulfide Sodium metal Reserved Reserved Reserved Sodium silicate Sodium thiosulfate Stannic oxide No discharge of process wastewater pollutants to navigable waters. Sulfur dioxide Sulfuric acid No discharge of process wastewater pollutants to navigable waters. Zinc oxide Zinc sulfate No discharge of process wastewater pollutants to navigable waters.

```
Pollutant, kg/Mg of Product (mg/L)
                                               Daily maximum
                                                                   30-Day average
              Subcategory
Aluminum fluoride
Chlor-alkalı
   Diaphrahm cell
   Mercury cell
Chrome pigments
Copper sulfate
    (Recovery process)
                                                                                          6.0-9.0
                                                                                          6.0-9.0
   (Pure raw materials process)
Hydrofluoric acid
Hydrogen cyanide (Andrussow process)
Nickel sulfate
   (Pure raw materials)
                                              No discharge of process wastewater pollutants to navigable waters.
   (Impure raw materials)
Sodium bisulfite
Sodium dichromate
                                              Reserved
Sodium hydrosulfite
Titanium dioxide
                                              Reserved
(Chloride process)
(Sulfate process)
Aluminum sulfate
                                                                                          6.0-9.0
Ammonium chloride
                                              No discharge of process wastewater pollutants to navigable waters.
   (Annyarous)
(Solvay byproduct)
Ammonium hydroxide
                                                                                          6.0-9.0
Barium carbonate
                                              Reserved
                                              No discharge of process wastewater pollutants except that residual brine and depleted liquor may be returned to original body of water.
Boric acid
   (Ore mined)
                                                                                          6.0-9.0
                                              No discharge of process wastewater pollucants except that residual brine and depleted liquor may
   (Trona)
                                              be returned to original body of water. No discharge of process wastewater pollutants except that residual brine and depleted liquor may
Bromine
                                                be returned to original body of water.
Calcium carbide
                                              Reserved
Calcium carbonate
   (Milk of lime)
    (Solvay process)
                                              Reserved
Carbon dioxide
Carbon monoxide
                                              0.5(81.3)
                                                                      0.25(40.7)
                                                                                           6.0-9.0
                                              No discharge of process wastewater pollutants to navigable waters.
Chromic acid
Cuprous oxide
Ferric chloride
                                              Reserved
                                              No discharge of process wastewater pollutants to navigable waters.
Ferrous sulfate
                                              Reserved
                                              No discharge of process wastewater pollutants to navigable waters.
Fluorine
                                              No discharge of process wastewater pollutants to navigable waters.
No discharge of process wastewater pollutants to navigable waters.
No discharge of process wastewater pollutants to navigable waters.
Hydrochloric acid
Hydrogen
Hydrogen peroxide
    (Organic process)
                                                                                           6.0-9.0
    (Electrolytic process)
                                                                                           6.0-9.0
                                              No discharge of process wastewater pollutants to navigable waters. No discharge of process wastewater pollutants to navigable waters.
Iodine
Lead monoxide
Lithium carbonate
                                                                                           6.0-9.0
    (Spodumene ore)
(Trona process)
Manganese sulfate
                                              No discharge of process wastewater pollutants to navigable waters.
                                              No discharge of process wastewater pollutants to navigable waters.
Nitric acid
Nitric acid (strong)
                                                                                           6.0-9.0
Oxygen and nitrogen
Potassium chloride
                                              No discharge of process wastewater pollutants to navigable water except that residual brine and
                                                 depleted liquor may be returned to the original body of water.
                                              No discharge of process wastewater pollutants to navigable waters.
Potassium dichromate
 Potassium lodide
                                                                                           6.0-9.0
                                              No discharge of process wastewater pollutants to navigable waters.
Potassium metal
 Potassium permanaganate
Sodium bicarbonate
                                               No discharge of process wastewater pollutants to navigable waters.
Sodium carbonate
Sodium fluoride
                                               No discharge of process wastewater pollutants to navigable waters.
Sodium hydrosulfide
                                               Reserved
                                               Reserved
 Sodium metal
Sodium silicate
                                               Reserved
 Sodium thiosulfate
                                               Reserved No discharge of process wastewater pollutants to navigable waters.
Stannic oxide
Sulfur dioride
Sulfuric acid
                                               Reserved
                                               No discharge of process wastewater pollutants to navigable waters.
Zinc oxide
Zinc sulfate
                                               No discharge of process wastewater pollutants to navigable waters.
```

Note: Blanks indicate data not available.

Two types of cells are currently used for the production of chlorine and caustic: mercury and diaphragm cells. Mercury cells account for approximately 30% of the production while the diaphragm cell accounts for 65%. The Downs cell is another electrolytic process for producing chlorine and sodium (or potassium) from fused salt. However, the amount of chlorine produced by this process is relatively small. Since the predominant method of making chlorine and byproduct caustic is by the use of mercury and diaphragm cells, this study of the chlor-alkali subcategory is restricted to these two processes. In the processes described below, sodium chloride is used as the starting material. The same descriptions hold true, however, when potassium chloride is used, but with one difference—the byproduct in the latter case is caustic potash (KOH) instead of caustic soda (NaOH).

The sodium chloride (NaCl) solution Mercury Cell Process. (brine or salt dissolved in water) is purified before it is sent to the mercury cell for chlorine, caustic, and hydrogen produc-This is done by the addition of soda ash (Na<sub>2</sub>CO<sub>3</sub>) and small amounts of caustic soda until the pH increases to 10 or The calcium and iron present in the brine and trace amounts of other metals are precipitated as hydroxides or carbonates, and the brine is sent to a clarifier for solids separation. underflow from the clarifier, known as brine mud, is sent to a lagoon or is filtered. The overflow from the clarifier, which is brine, is heated and brought to saturation by the addition of salt recovered from the caustic evaporation. Its pH is then lowered to 3-4 by addition of HCl before it is introduced to the mercury cell.

The mercury cell, in general, consists of two sections: the electrolyzer and the decomposer or denuder. The electrolyzer is an elongated steel trough that is inclined slightly from the horizontal so that the mercury flows in a thin layer at the bottom. This forms the cathode of the cell, and the brine flows concurrently on top of the mercury. Parallel graphite or metal anode plates are suspended from the cover of the cell. Electric current flowing through the cell decomposes the brine, liberating chlorine at the anode and sodium metal at the cathode. The metallic sodium forms an amalgam with mercury:

2 NaCl (aq) + 
$$Hg \longrightarrow Cl_2$$
 (aq) + 2 Na ( $Hg$ )

The amalgam from the electrolyzer flows to the denuder. The spent brine (reduced to 22% saturation) is recycled to the brine purification process where it is acidified to pH 3, blown with steam for dechlorination, and saturated by the addition of salt for reuse. In the denuder, the amalgam becomes an anode to a short-circuited iron or graphite cathode. Deionized water added to the denuder reacts with the amalgam to form hydrogen and caustic. The mercury is returned to the electrolyzer. The caustic formed has a concentration of 50% NaOH and is either sent

to the storage tank or evaporated (if higher concentrations are needed). The hydrogen gas is cooled by refrigeration to remove water vapor and mercury. The chlorine gas process is similar to that practiced for diaphragm cells.

Diaphragm Cell Process. As in the mercury cell process, the brine is purified by the addition of caustic soda to eliminate or reduce the calcium, magnesium, and iron impurities. The resulting brine mud is similar to that produced from the mercury cell except that it lacks the small amounts of ionic and metallic mercury present in the recycled brine. The final pH of the purified brine solution is adjusted to 6 by the addition of HCl, and the brine is then fed to the diaphragm cells.

The saturated salt solution (26% concentration) is electrolyzed in the diaphragm cell to form chlorine, hydrogen, and sodium hydroxide according to the reaction:

$$2 \text{ NaCl} + 2 \text{ H}_2\text{O} = \text{Cl}_2 + 2 \text{ NaOH} + \text{H}_2$$

In one pass through the cell the salt solution is decomposed to approximately half of its original concentration. The diaphragm cell contains a porous asbestos diaphragm separating the anode from the cathode. Chlorine is liberated at the anode, and the hydrogen and caustic are produced at the cathode. In the past, the predominant anode material was graphite with lead used to provide an electrical contact and support. In recent years, however, the majority of graphite anodes have been changed to stabilized metal anodes. The use of metal anodes tends to reduce or eliminate the chlorinated organics and lead impurities in the wastewaters.

The hydrogen from the top of the cathode is cooled to remove water and other impurities, and it is either sold, vented to the atmosphere, or burned to produce steam. The caustic leaving the cathode has a concentration of 11% to 12% NaOH, which may be increased to 50% through multiple-effect evaporation. If the vapor evolved from the last effect of the evaporator is air condensed in direct contact with water using barometric condensors, the amount of wastewater produced may be quite large. During evaporation, salt crystallizes and is removed from all of the evaporators. The concentrated caustic is then settled and stored. The chlorine from the cell is cooled to remove water and other impurities. The condensates are either discharged without treatment or recycled to the brine purifier after steam stripping for chlorine recovery. The chlorine gas, after cooling, is scrubbed with concentrated sulfuric acid to remove water, the acid being used until a constant dilution is reached.

Wastewater Flows. Wastewater flows emanating from different streams generated from the production of chlorine, hydrogen, and caustic soda by mercury-cell manufacturing plants are summarized

in Table 5-5. Data were generated from prior development documents, plant visits, and 308 questionnaires.

TABLE 5-5. WASTEWATER FLOWS FROM CHLORINE/CAUSTIC MANUFACTURING PLANTS (MERCURY CELL) [1]

 $(m^3/Mg \text{ of } Cl_2)$ 

| Wastewater                    |      |      |      | Pl   | ant co | de           |      |      |     |
|-------------------------------|------|------|------|------|--------|--------------|------|------|-----|
| source                        | 167  | 299  | 317  | 343  | 385    | 5 <b>8</b> 9 | 674  | 747  | 907 |
| Brine mud<br>Tail gas         | 0.67 |      | 0.54 |      |        | 0.65         | 0.87 |      |     |
| scrubber Mercury-contaminated | 2.25 | 0.11 | 0.05 |      | 3.39   |              | 0.58 | 0.02 |     |
| wastewater                    |      |      | 0.53 | 1.57 |        |              |      |      | 0.3 |

Note: Blanks indicate no data available.

The wastewater flows from chlorine/caustic manufacturing plants using diaphragm cells are summarized in Table 5-6. Data were collected from a prior development document, plant visits, and 308 questionnaires.

TABLE 5-6. WASTEWATER FLOWS FROM CHLORINE/CAUSTIC MANUFACTURING PLANTS (DIAPHRAGM CELL) [1]

 $(m^3/Mg \text{ of } Cl_2)$ Plant code Wastewater 967<sup>a</sup> 736 source 261 277 589 858 1.68 0.42 0.83 0.02 0.28 Brine mud 0.02 0.05 0.017 Cell wash 0.38 0.084 0.18 Tail gas scrubber effluent 0.17 0.29/0.11

Note: Blanks indicate no data available.

#### II.5.1.2.3 Chrome Pigments

Chrome pigments are primarily sold in the merchant market; consequently, captive use is minor. They are extensively used in paints, printing ink, floor covering products, and paper, as well as in ceramics, cement, and asphalt roofing.

Chrome pigments (a family of inorganic compounds containing chromium, lead, iron, molybdenum, and zinc) include chrome yellow, chrome orange, molybdate chrome orange, anhydrous and hydrous

a Graphite anode plant.

chromium oxide, zinc yellow and iron blues. At some manufacturing plants, compounds are made in the same facility either simultaneously or sequentially, depending on sales and market requirements.

Chromium Oxide. Chromium oxide consists of two compounds, anhydrous and hydrated chrome oxide (Guignet's green). Anhydrous oxide is prepared by calcination of sodium dichromate with sulfur or carbon. The use of sulfur as the reducing agent eliminates  $CO_2$ , CO, and  $SO_2$  emissions, but increases the sulfate raw waste. In the manufacturing process using sulfur, raw materials consisting of sodium dichromate and sulfur are mixed with water and the resultant solution is fed to a kiln. The material is heated, and reacted materials from the kiln are slurried with water, filtered, washed, dried, ground, screened, and packaged. The effluent gases from the kiln containing sulfur dioxide and sulfur trioxide are wet scrubbed before venting to the atmosphere.

Hydrated chromium oxide, also known as chromium hydrate and Guignet's green, is made by reacting sodium dichromate with boric acid. The raw materials are blended in a mixer, heated in an oven, slurried with water, and filtered. The filtered solids are washed with water, dried, ground, screened, and packaged. The filtrate and wash water are treated with sulfuric acid to recover boric acid. A waste stream containing some boric acid and sodium sulfate leaves the boric acid unit.

Chrome Yellow and Chrome Orange. Chrome yellow is one of the most important synthetic pigments. The chrome yellows consist primarily of lead chromate and are made by reacting sodium dichromate, caustic soda, and lead nitrate. Lead chromate is formed as a precipitate during the reaction and is filtered and treated with chemicals to develop the desired pigment properties. The product is then dried, milled, and packaged. The filtrate from the filtration operation is sent to the wastewater treatment facility.

Molybdenum Orange. Molybdenum orange is made by the coprecipitation of lead chromate (PbCrO4) and lead molybdate (PbMoO4). The process consists of dissolving molybdic oxide in aqueous sodium hydroxide and adding sodium chromate. The solution is mixed and reacted with a solution of lead nitrate. The precipitate from the reaction is filtered, washed, dried, milled, and packaged. The filtrate is sent to the treatment facility.

Chrome Green. Chrome greens are a coprecipitate of chrome yellow and iron blues. Iron blues are manufactured by reaction of aqueous solution of iron sulfate and ammonium sulfate with sodium hexacyanoferrate. The precipitate formed is separated and oxidized with sodium chlorate or sodium chromate to form iron blues ( $Fe[NH_4][Fe\{CN\}_6]$ ). Chrome green is produced by mechanically mixing chrome yellow and iron blue pigments in water.

Zinc Yellow. Zinc yellow, also called zinc chromate, is a complex compound of zinc, potassium, and chromium made by the reaction of zinc oxide, hydrochloric acid, sodium dichromate, and potassium chloride. Zinc yellow is formed as a precipitate and is filtered, washed, dried, milled, and packaged for sale.

Wastewater Flows. Process wastewater flows generated from the production of chrome pigments are summarized in Table 5-7. Data were generated from prior development documents, industry visits, and 308 questionnaires.

TABLE 5-7. PROCESS WASTEWATER FLOWS FROM CHROME PIGMENT MANUFACTURING PLANTS [1]

(m<sup>3</sup>/Mg of product)

| Wastewater                      |     |     |     |     |
|---------------------------------|-----|-----|-----|-----|
| source                          | 002 | 257 | 409 | 894 |
| Chrome yellow and chrome orange | 35  |     | 44  | 120 |
| Molybdate chrome orange         | 31  |     | 40  | 110 |
| Zinc yellow                     | 20  |     | 19  |     |
| Chrome green                    |     |     |     | 48  |
| Chrome oxide                    |     | 29  |     | 31  |

Note: Blanks indicate data not available or not applicable.

# II.5.1.2.4 Copper Sulfate

Most of the copper sulfate produced is sold in the merchant market, and captive use is very small. Copper sulfate is used in agriculture as an insecticide, an algicide, and as an addition to copper-deficient soils. It is also used in electroplating, in petroleum refining, and as a preservative for wood.

Copper sulfate is produced by reacting copper shot (blister copper) with sulfuric acid, air, and water. Some plants do not start with copper metal but use a waste stream from a copper refinery, which consists of copper, sulfuric acid, and a small amount of nickel.

The resulting copper sulfate solution is either sold or fed to crystallizers producing copper sulfate crystals. These are centrifuged, dried, screened, and then packaged dry for sale.

Wastewater flows emanating from different streams generated from the production of copper sulfate are summarized in Table 5-8. Data were generated from prior development documents, plant visits, and 308 questionnaires.

TABLE 5-8. WASTEWATER FLOWS FROM COPPER SULFATE MANUFACTURING PLANTS [1]

| (m³/Mg of CuSO <sub>4</sub> )                              | <del></del>           |
|------------------------------------------------------------|-----------------------|
| Wastewater<br>source                                       | Plant 034             |
| CuSO4 waste Effluent from lime treatment Stream condensate | 2.23<br>2.23<br>0.371 |

#### II.5.1.2.5 Hydrofluoric Acid

Produced as both anhydrous and aqueous products, hydrofluoric acid (hydrogen fluoride) is used in the manufacture of fluorocarbons, which are used as refrigerating fluids, as plastics for pressurized packing, and as dispersants in aerosol sprays. It is also used in the production of aluminum, in the refining and enriching of uranium fuel, in the pickling of stainless steel, in petroleum alkylation, and for the manufacture of fluoride salts.

With respect to volume of production, hydrofluoric acid (HF) is the most important manufactured compound in the fluorine family. The raw materials used for the manufacture of HF are fluorspar (mainly CaF<sub>2</sub>) and sulfuric acid. The reaction between fluorspar and sulfuric acid is endothermic. Reaction kinetics and product yield depend on the purity and fineness of the fluorspar. The sulfuric acid concentration, temperature of the reaction, and the ratio of sulfuric acid to fluorspar are the most important reaction variables.

Hydrogen fluoride generators are primarily externally fired rotary kilns with acid and fluorspar continuously fed through a screw conveyor at the forward end, and calcium sulfate (gypsum) removed from the other end through an air lock. The product also leaves this end, at the top, as a gas. The hydrogen fluoride gas leaving the reactor is cooled in a precooler to condense high boiling compounds, known as drip acid. These condensables consist primarily of fluorosulfonic acid and unreacted sulfuric acid. plants return the drip acid to the reactor, and the remaining plants send it to wastewater treatment. The HF gas from the precooler is further cooled and condensed in a cooler/refrigeration The uncondensed gas containing the HF is scrubbed with sulfuric acid and refrigerated to recover the product. scrubbed acid liquor is returned to the kiln, and residual vent gases are further scrubbed with water to remove HF and other fluoride compounds before they are vented to the atmosphere.

Crude hydrofluoric acid is then distilled to remove the residual impurities, and the concentrate (anhydrous hydrofluoric acid) is

stored in tanks. If aqueous hydrofluoric acid is desired, this is then diluted with water to form a 70% HF solution as the final product.

Wastewater flows emanating from different streams generated from the production of hydrofluoric acid are summarized in Table 5-9. Data were generated from prior development documents, 308 questionnaires, and industry visits.

TABLE 5-9. WASTEWATER FLOWS FROM HYDROFLUORIC ACID MANUFACTURING PLANTS [1]

(m<sup>3</sup>/Mg of hydrofluoric acid)

| Wastewater                                                 |                               |                         |                        | P                    | lant co                   | de             |                                |                             |      |
|------------------------------------------------------------|-------------------------------|-------------------------|------------------------|----------------------|---------------------------|----------------|--------------------------------|-----------------------------|------|
| source                                                     | 251                           | 987                     | 753                    | 426                  | 120                       | 722            | 167                            | 705                         | 837  |
| Gypsum slurry<br>Drip acid<br>Scrubber wastewater<br>Other | 64.0<br>0.049<br>14.4<br>0.53 | _a<br>_d<br>8.3<br>0.53 | _b<br>_d<br>2.3<br>8.4 | _a<br>_d<br>_b<br>_b | _a<br>_d<br>0.624<br>5.55 | _d<br>_c<br>_b | 41 <sub>d</sub> 6<br>40<br>5.2 | _c<br>0.018<br>11.2<br>22.5 | 6.5d |

<sup>&</sup>lt;sup>a</sup>Dry disposal.

# II.5.1.2.6 Hydrogen Cyanide

Over 50% of the hydrogen cyanide manufactured in the United States is produced by the Andrussow process, while about 40% is a byproduct from acrylonitrile manufacture. A major portion of the production is used in the manufacture of methyl methacrylate for Lucite, Plexiglas molding and extrusion powders, and surface coating resins. It is also used as a fumigant for orchards and tree crops.

The hydrogen cyanide subcategory in this study is confined to the Andrussow process, in which air, ammonia, and methane are reacted to produce hydrogen cyanide. The raw materials are reacted at elevated temperatures over a platinum catalyst. In addition to hydrogen cyanide, the reacted gases contain ammonia, nitrogen, carbon monoxide, carbon dioxide, hydrogen, and small amounts of oxygen. The reactor gases are cooled and then scrubbed in one of two processes that are used to remove the unreacted ammonia. In one process the gases are scrubbed with phosphate liquor, the resulting solution is decomposed, and the phosphate solution is recirculated. The recovered ammonia is recycled to the reactor. In the second process sulfuric acid is used to absorb ammonia from the reactor gases.

b<sub>Not available.</sub>

<sup>&</sup>lt;sup>C</sup>Total recycle.

dNot applicable.

The hydrogen cyanide is recovered from the ammonia scrubber effluent gases by absorption in cold water, and the waste gases are vented to the atmosphere. The absorbed solution containing hydrogen cyanide, water, and other contaminants is distilled to produce HCN gas of over 99% purity.

The water produced during the initial reaction for the formation of hydrogen cyanide is purged with the distillation bottom stream and is either recycled or discharged to the treatment facility.

Wastewater flows emanating from different streams generated from the production of hydrogen cyanide are summarized in Table 5-10. Data were generated from prior development documents, industry visits, and 308 questionnaires.

TABLE 5-10. WASTEWATER FLOWS FROM HYDROGEN CYANIDE MANUFACTURING PLANTS [1]

(m³/Mg of hydrogen cyanide) Wastewater Plant code 765 782 source 6.3 Recovery and purification Pump seal quenches 0.58 Flare stack flushes 0.09 0.02 Sample hoods NH<sub>3</sub> stripper caustic 0.24 Steam condensate from NH3 stripper 0.90 0.06 Freeze protection 0.25 Washdowns and cleanup Boiler blowdown and condensate 1.48 57 9.9 Total

#### II.5.1.2.7 Nickel Sulfate

The majority of the nickel sulfate produced in the United States is sold in the merchant market. The major use of nickel sulfate is in the metal plating industry, although it is also used in dyeing and printing fabrics and for producing a patina on zinc and brass.

Note: Blanks indicate data not available.

Pure nickel or nickel oxide powder, spent nickel catalysts, and nickel plating solutions or residues may be used to produce nickel sulfate. The nickel sulfate produced when pure raw materials are used is filtered and sold or processed further using a crystallizer to produce a solid nickel sulfate product.

The use of impure raw materials produces a nickel sulfate solution that must be treated in sequence with oxidizers, lime, and

sulfides to precipitate impurities which are then removed by filtration. The nickel sulfate solution can be sold or the product may be crystallized, classified, dried, and screened to produce solid nickel sulfate for sale.

Wastewater flows emanating from different streams generated from the production of nickel sulfate are summarized in Table 5-11. Data were generated from prior development documents, plant visits, and 308 questionnaires.

TABLE 5-11. WASTEWATER FLOWS FROM NICKEL SULFATE MANUFACTURING PLANTS [1]

| Wastewater                                                                                                                     | P]             | ant cod | le                    |
|--------------------------------------------------------------------------------------------------------------------------------|----------------|---------|-----------------------|
| source                                                                                                                         | 369            | 572     | 120                   |
| Untreated wastewater<br>Treated wastewater<br>Scrubber wastewater<br>NiSO4 wastewater<br>All nickel wastes<br>Treated effluent | 0.417<br>0.417 | 3.15    | 0.722<br>7.54<br>7.54 |

Note: Blanks indicate data not applicable.

# II.5.1.2.8 Sodium Bisulfite

Manufactured in both liquid and powdered form, sodium bisulfite is used in the production of photographic chemicals, organic chemicals, textiles, and in food processing. It is also used in the tanning industry and in the sulfite process for the manufacturing of paper products.

Sodium bisulfite is produced by reacting sodium carbonate (soda ash) with sulfur dioxide and water. This reaction produces a slurry of sodium bisulfite crystals which can be sold, but which is usually processed to form anhydrous sodium metabisulfite. This requires thickening, centrifuging, drying, and packaging operations.

Wastewater flows emanating from different streams generated from the production of sodium bisulfite are summarized in Table 5-12. Data were generated from prior development documents, plant visits, and 308 questionnaires.

TABLE 5-12. WASTEWATER FLOWS FROM SODIUM BISULFITE MANUFACTURING PLANTS [1]

(m³/Mg of sodium bisulfite)

| Wastewater                                                                    |      | Plant cod            | e                                  |
|-------------------------------------------------------------------------------|------|----------------------|------------------------------------|
| source                                                                        | 282  | 586                  | 987                                |
| Untreated waste                                                               | 2.67 | 100                  | 0.102                              |
| Treated waste MBS sump #1 MBS sump #2                                         | 2.67 | 188<br>9.68<br>9.68  | 0.133                              |
| Amine oxidation pond<br>Zinc sulfate pond effluent                            |      | 2.77<br>78.5         |                                    |
| Lime treatment influent<br>Truck washdown<br>SO <sub>2</sub> wastewater       |      | 110<br>0.134<br>85.9 |                                    |
| No. 1 filter wash Floor wash, spills, etc. No. 2 filter wash 54-hour aeration |      | 03.9                 | 0.051<br>0.0123<br>0.0386<br>0.133 |

Note: Blanks indicate data not applicable.

# II.5.1.2.9 Sodium Dichromate

Most of the sodium dichromate produced in the United States is used in the chromic acid and pigment industries. It is used for leather tanning and metal treatment, and as a corrosion inhibitor.

The starting materials for the preparation of sodium dichromate are chromite ore, limestone, and soda ash. Their reaction forms sodium chromate, which is reacted with sulfuric acid to produce sodium dichromate.

Chromite ore is a chromium iron oxide containing ferrous chromite (FeCr<sub>2</sub>O<sub>4</sub> or FeOCr<sub>2</sub>O<sub>3</sub>) as well as small amounts of aluminum, silica, and magnesia. At the plant site, the ore is ground to a fine powder, mixed with soda ash, and calcined in rotary kilns. The reacted product is leached with hot water and filtered. solid filter cake is dried in rotary kilns. The aluminum present in the thickener overflow is hydrolyzed and removed from the chromate solution as precipitated aluminum hydrate in slurry form. The solution is centrifuged and the centrate is evaporated, to give a concentrated solution of sodium chromate; the latter is reacted with sulfuric acid to give sodium dichromate and sodium sulfate. Sodium sulfate crystallizes as anhydrous sodium sulfate from the boiling solution, and the crystals are removed by filtration. The filtrate is concentrated in multiple-effect evaporators and fed to a water-cooled crystallizer. Sodium dichromate crystallizes out and is centrifuged, dried, and packaged for sale or future use.

Wastewater flows emanating from different streams generated from the production of sodium dichromate are summarized in Table 5-13. Data were generated from prior development documents, 308 questionnaires responses, and industry visits.

TABLE 5-13. WASTEWATER FLOWS FROM SODIUM DICHROMATE MANUFACTURING PLANTS [1]

| Wastewater               | Pla  | ant code | 2    |
|--------------------------|------|----------|------|
| source                   | 493  | 376      | 398  |
| Raw wastewater           | 4.95 |          |      |
| Residue slurry           | 2.13 |          |      |
| Mud slurry waste         |      | 7.68     |      |
| Primary pond effluent    |      | 7.68     |      |
| Treated effluent         | 28.9 | 4.16     |      |
| Surface runoff           |      | 4.16     | _    |
| Noncontact cooling water |      |          | 277° |

Note: Blanks indicate data not applicable.

# II.5.1.2.10 Sodium Hydrosulfite

Most of the sodium hydrosulfite produced in the United States is sold in the merchant market. Sodium hydrosulfite is extensively used in dyeing (cotton) and in the printing industry. It is a powerful reducing agent and is used in the wood pulp bleaching, reducing, and stripping operations of the food, vegetable oil, and soap industries.

In the formate process, sodium hydrosulfite is produced by reacting sodium formate solution, sodium hydroxide solution, and liquid sulfur dioxide in the presence of a recycled stream of methanol solvent. Sodium hydrosulfite precipitates and forms a slurry in the reactor. The coproduct, sodium sulfite is also formed, as are sodium bicarbonate and carbon monoxide gas.

Methyl formate, a minor side product, is produced as the result of a side reaction between sodium formate and methanol. This side reaction product remains in the recycling methanol during the entire process. As a result, some of the methanol must be periodically purged from the recycle system to avoid excessive buildup of this impurity.

The resulting slurry of sodium hydrosulfite in the solution of methanol, methyl formate, and coproducts is sent to a pressurized filter operation which recovers the crystals of sodium hydrosulfite. The crystals are dried in a steam-heated rotary drier, then recovered and packaged. Filtrate and backwash liquors from

a<sub>2</sub> streams.

the filter operation are sent to the solvent recovery system as is the vaporized methanol from the drying operation. Excess heat is avoided in the drying process as sodium hydrosulfite is heat sensitive and tends to decompose to sulfite.

Wastewater flow emanating from plant 672, the only plant sampled, totaled approximately 53 m $^3$ /d (14,000 gal/d). The three streams making up this wastewater production were a coproduct stream producing 0.91 m $^3$ /Mg of product, a raw waste stream yielding 1.87 m $^3$ /Mg of product, and a treated effluent stream producing 4.68 m $^3$ /Mg of product. The higher flow of the treated effluent stream is due to the addition of sanitary waste and dilution water to the aeration basin plus cooling tower and boiler blowdown to the chlorine contact tank. Data were generated by prior development documents, plant visits, and 308 questionnaires.

# II.5.1.2.11 Titanium Dioxide

Titanium dioxide (TiO<sub>2</sub>) is manufactured by both a chloride and a sulfate process. Ranking within the first 50 chemicals of all United States chemical production, over 50% of this high volume chemical is used in paints, varnishes, and lacquers. Approximately one-third is used in the paper and plastic industries. Other uses are found in ceramics, ink, and rubber manufacturing.

Chloride Process. The chloride process uses rutile or upgraded ilmenite ores as raw material, because the process requires relatively pure materials with a high titanium and low iron content. A beneficiation process, used to upgrade the ilmenite ore, removes a part or all of the iron from the low quality titanium ore. It is assumed that the wastes from the chloride process using beneficiation differ from wastes of the process using pure high grade titanium ore. Therefore, the titanium dioxide subcategory has been further subdivided into three separate categories: sulfate process using ilmenite ore, chloride process using rutile or upgraded titanium ore, and chloride process using ilmenite ore. This section is restricted to the chloride process using rutile ore.

In the chloride process, ore and coke are dried and then reacted with chlorine to form titanium tetrachloride. The titanium tetrachloride is then reacted with oxygen or air to form titanium dioxide and chlorine, the latter being recycled to the process. The reaction generally takes place in a fluidized bed reactor and the product gases leaving the reactor are cooled to remove the impurities, although in some cases purification is accomplished by washing the gases with liquefied titanium dioxide. Residual uncondensed gases are treated to remove acidic materials before being vented to the atmosphere.

The liquefied titanium tetrachloride contains impurities which are removed by distillation. The distillate is the purified

titanium tetrachloride and the impurities remain as a residual which becomes waste. The tail gases from the distillation column are scrubbed to remove acidic materials. The titanium tetrachloride product is then reacted with oxygen, as air, to form titanium dioxide and chlorine.

After the oxygenation reaction, the titanium dioxide forms a solid and is separated from the gases. Residual chlorine is refrigerated and liquefied. Tail gases are scrubbed with caustic soda to remove chlorine before being vented to the atmosphere. The titanium dioxide is then sent to the finishing operation where it is vacuum degassed and then treated with alkali, using a minimum amount of water to remove traces of absorbed chlorine and hydrochloric acid. The pigment is then milled, surface treated for end-use application, dried, and packaged for sale.

Wastewater flows emanating from different streams generated from the production of titanium dioxide by the chloride process are summarized in Table 5-14. Data were generated by prior development documents, industry visits, and 308 questionnaires.

TABLE 5-14. WASTEWATER FLOWS FROM TITANIUM DIOXIDE MANUFACTURING PLANTS (CHLORIDE PROCESS) [1]

(m³/Mg of titanium dioxide) Wastewater Plant code 172 102 source Pit solids and distillation bottom waste 13.9 Settling pond overflow 13.9 TiO<sub>2</sub> scrubber and other product wastewater 90 Inlet to wastewater treatment pond 28.9 35.8 95.7

Note: Blanks indicate data not applicable or not available.

Sulfate Process. Ilmenite ore and slag from iron production generally comprise the raw materials used for preparation of titanium dioxide by the sulfate process. Large amounts of water and sulfuric acid are used in this process, and the majority of plants are colocated with sulfuric acid plants. The preparation of TiO<sub>2</sub> by the sulfate process utilizes three important steps: digestion, precipitation, and calcination.

The ore is dried, ground, and then reacted with sulfuric acid. After the reduction, the product is dissolved in water and clarified with the aid of flocculation agents to remove insoluble impurities such as silicon, zirconium, and unreacted ore. The concentrated solution is diluted with water and heated to form titanium dioxide hydrate which precipitates out. The suspension is filtered and the filtrate (known as strong acid) is separated and either discharged or recycled. Filter residue is slurried

with water, and conditioning agents (including potassium, zinc, antimony, calcium compounds, and phosphate salts) are added to control particle size, color, dispersibility, and photochemical stability. This solution is then filtered. Residual acid and iron originally present in the precipitate are removed with the water of hydration by calcination. The resulting TiO<sub>2</sub> pigment is sent to finishing operations, which vary according to the end-product requirement and application. Wet finishing operations may include some, or all, of the following steps: repulping, milling, surface treatment, washing, and drying. Alternative dry finishing operations may include one or more milling steps followed by packaging.

Wastewater flows from the production of titanium dioxide by the sulfate process are summarized in Table 5-15. Data were generated by prior development documents, industry visits, and 308 questionnaires.

TABLE 5-15. WASTEWATER FLOWS FROM TITANIUM DIOXIDE MANUFACTURING PLANTS (SULFATE PROCESS) [1]

| (m³/Mg of titan:                                                           | ium dioxi           | de)       |                  |
|----------------------------------------------------------------------------|---------------------|-----------|------------------|
| Wastewater                                                                 | Pl                  | ant co    | de               |
| source                                                                     | 555                 | 559       | 605              |
| Strong acid wastewater<br>Weak acid wastewater<br>Other process wastewater | 8.49<br>78.2<br>362 | 7.4<br>85 | 7.8<br>93<br>597 |
|                                                                            |                     |           |                  |

Note: Blanks indicate data not available.

# II.5.1.2.12 Candidate Subcategories for Paragraph 8 and Other Exclusions

The following paragraphs briefly describe the remaining 44 sub-categories, which are candidates for exclusion under Paragraph 8 or for other reasons. No further consideration of these sub-categories with respect to wastewater characteristics will be presented in the remainder of this report due to this candidacy and the absence of data.

Aluminum Sulfate. Aluminum sulfate is produced by the reaction of concentrated sulfuric acid with bauxite, clay, and other compounds containing aluminum oxide. The resultant solution is purified to yield a product which can be sold or dehydrated to form crystals. The primary use for aluminum sulfate is as a flocculant in water treatment. Another use is in the papermaking industry where iron-free aluminum sulfate is required for sizing paper.

Due to the small quantity of wastewater discharged by this industry, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Ammonium Chloride. Most ammonium chloride is produced as a byproduct in the manufacture of sodium carbonate (soda ash) by the Solvay process. It is used in the manufacture of dry cell batteries, explosives, dyes, as a washing powder, a soldering flux, a chemical reagent, and a medicinal additive to livestock feed. It is also used in pharmaceutical preparations and freezing mixtures.

No significant concentrations of toxic pollutants were found in the waste during screening of ammonium chloride plant 736. Ammonium was found to be the only pollutant of significance. Since ammonia is not a toxic pollutant, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Ammonium Hydroxide. Ammonium hydroxide is predominantly used as a chemical intermediary and reagent. It is also used in the dyeing and bleaching of fabrics, the production of ammonium salts and aniline dyes, and the extraction of alkaloids from plants.

No plants with a discharge were found in this subcategory. Therefore, this industry has been recommended as a Paragraph 8 exclusion candidate.

Barium Carbonate. Barium carbonate is used in glass manufacturing, as a flux in ceramics and enameling, as an intermediate in the production of barium oxide and hydroxide, and as a coating for photographic paper. It is also used in the synthetic dyestuff industry and for the removal of soluble sulfate in brick manufacturing.

No toxic pollutants were found at significant levels in the waste during screening of barium carbonate plant 360. On the basis of these findings, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Borax. No descriptive information is available in References 1 through 4.

Boric Acid. Boric acid is used in the manufacture of chromic oxide, glazes, enamels, textile fiberglass, and heat resistant glass. It is also used medicinally as a mild antiseptic and in atomic power plants as a nuclear moderator.

This subcategory has only three plants, and the total waste water discharge is not high. Because of the nature of this industry, it has been recommended that this subcategory be further studied.

Bromine. No descriptive information is available in References 1 through 4.

<u>Calcium</u>. No descriptive information is available in References 1 through 4.

Calcium Carbide. Calcium carbide is produced by the reaction of calcium oxide and coke. Calcium carbide is used to produce acetylene by reaction with water. Because the process for calcium carbide production is dry, little wastewater is generated.

This subcategory has limited water effluent from the production plants and has been recommended as an exclusion candidate under Paragraph 8.

Calcium Carbonate. Calcium carbonate is manufactured both in pure and impure form and it is extensively used in many industries. In the pure form, it is used in the rubber, paint, cement, paper, and pharmaceutical industries.

No toxic pollutants were found at significant levels in the raw waste during screening of calcium carbonate plant 883. On the basis of these findings, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Carbon Dioxide. Carbon dioxide is produced in gaseous, liquid, or solid form. A major portion of the production is used captively for the production of urea and for the secondary recovery of oil and natural gas. It is also used for refrigeration, in the food industry, for the carbonation of beverages, in fire extinguishing equipment, and for oil well stimulation.

The only toxic pollutant found at a significant concentration in the raw waste during screening at plant 241 was zinc at a concentration of 910  $\mu g/L$ . When the data were reviewed with plant personnel, it was discovered that the high zinc level was due to zinc corrosion inhibitors; it was not process related. Therefore, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Carbon Monoxide and Byproduct Hydrogen. In the production of hydrogen by refining natural gas, carbon monoxide is also produced. Carbon monoxide is recovered from several gas sources including, partial combustion of oil or natural gas, coke oven gas, blast furnace gas, water gas, and methane reformer gas.

Carbon monoxide and byproduct hydrogen form the building blocks for other chemicals such as ammonia and methanol. The major use of carbon monoxide is for the manufacture of methanol. It is also used as a gaseous fuel for reducing oxides for special steels, in nickel refining, and in the manufacture of ammonia, acetic acid, and zinc white pigments.

The only pollutants of significance, in terms of waste loads, in this subcategory are chrome and zinc. However, this is the result of the use of corrosion-inhibiting additives in cooling water; it is not process related. Therefore this subcategory has been recommended as a Paragraph 8 exclusion candidate.

Chromic Acid. No descriptive information is available in References 1 through 4.

Cuprous Oxide. Copper oxide is used in the manufacturing of glass, ceramics, marine paints, and photoelectric cells. It is also used in agriculture as a seed fungicide, and as an antiseptic and catalyst.

Only one plant was found to be producing this product at the time of screening. Because this is now a single-plant industry, this subcategory has been recommended for exclusion under Paragraph 8.

Ferric Chloride. Commercial solutions of ferric chloride are produced from iron and steel pickling liquors which contain ferrous chloride and hydrochloric acid. The steel pickling liquors are preheated with steam and then reacted with iron, chlorine, additional hydrochloric acid, and water to produce the desired solution. These solutions are used as copper etchant in photoengraving, in textile dyes, for the chlorination of copper and silver ores, in pharmaceutical production, as an oxidizing agent in chemical synthesis, and for water purification.

This subcategory has been recommended for exclusion under Paragraph 8.

Ferrous Sulfate. No descriptive information is available in References 1 through 4.

Fluorine. No descriptive information is available in References 1 through 4.

Hydrochloric Acid. Most hydrochloric acid is produced as a byproduct in the manufacture of chlorinated organic compounds. It is used in oil well activation, pickling of steel, metal cleaning, monosodium glutamate manufacture, and starch hydrolysis. It is also used as an acid reagent in several chemical manufacturing processes.

On the basis of the low toxic pollutant findings, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Hydrogen. No descriptive information is available in References 1 through 4.

Hydrogen Peroxide. The organic process is the most commonly employed method in the manufacture of hydrogen peroxide. Hydrogen peroxide is used as a bleaching agent in the textile and the pulp and paper industries. It is also used in chemical manufacture (e.g., plasticizers and glycerine) and wastewater treatment, and as a rocket propellant.

During verification sampling of plant 765 it was discovered that the presence of the organics listed in Table 5-16 (Section II.5.2) was not process related; it was caused by a weed killer used at the plant site. Therefore, this subcategory has been recommended for exclusion under Paragraph 8.

Iodine. No descriptive information is available in References 1 through 4.

Lead Monoxide. Lead monoxide is generally produced by the air oxidation of metallic lead, followed by rapid cooling of the product, then milling. Most plants in this subcategory do not use water in the manufacturing process. Its major uses are for noncontact cooling water and dust washdown. Thus, only plants with a significant dust problem will have a significant quantity of wastewater. This subcategory has been recommended for exclusion under Paragraph 8 for this reason.

Lithium Carbonate. No descriptive information is available in References 1 through 4.

Manganese Sulfate. Manganese sulfate is normally sold as a mixture of tetra- and penta-hydrates. It is used in oils for the manufacture of varnishes, in dyeing, and in the manufacture of porcelain. It is also used in the fertilizer industry.

Only one plant in this subcategory was found to be in production at the time of screening. Out of the eight plants contacted, four no longer produced it, two were fertilizer manufacturers, and one manufactured reagent-grade manganese sulfate. Because this is now a single-plant industry, this subcategory has been recommended for exclusion under Paragraph 8.

Nitric Acid. Most of the nitric acid produced is used in the manufacture of ammonium nitrate and other nitrogen fertilizers. On-site captive use is extensively practiced. It is also used in the manufacture of explosives, plastics, and other organic products, and as an acidic and pickling agent.

2,4-Dinitrophenol was found in the raw wastewater during screening at two plants and it is presumed to be from contamination by the organic products manufactured at the plants, not process related. The chromium and zinc found are due to cooling water conditioners present in the blowdown which is mixed with process streams.

It has been recommended that this subcategory be included in the fertilizer industry guidelines.

Nitric Acid (Strong). Strong or concentrated nitric acid is used in the manufacture of organic compounds where nitric acid is required to act as an oxidizing agent rather than as an acid. It is also used in the manufacture of dye intermediates and explosives.

In a followup to the sampling discussed in the section entitled Nitric Acid, it was found that the chromium and zinc are used as corrosion inhibitors in the cooling water, and are not process related. The other values are below significant levels. Verification sampling at plant 623 confirmed this. On the basis of these findings, this subcategory has been recommended for exclusion under Paragraph 8.

Oxygen and Nitrogen. Oxygen, along with nitrogen, is produced from air by distillation of liquefied air. Oxygen is used in the production of steel; in gas welding, medicine, jet fuel, and sewage treatment plants; and in the manufacture of ethylene and acetylene. In rocket propulsion, liquid oxygen is often used as a cryogenic liquid oxidizer in the main stage boosters used for space exploration.

The largest use of nitrogen is in the manufacture of ammonia by the Haber process. It is also used in cryosurgery. As an inert gas, it is used to prevent oxidation by air. In the liquid form, it is used for low temperature refrigeration.

Only one toxic pollutant, copper, was found at a significant level in the raw waste during screening of oxygen and nitrogen plant 993.

Due to the small quantity of wastewater discharged by the industry and the resulting low waste load generated, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Potassium Chloride. No descriptive information is available in References 1 through 4.

Potassium Dichromate. Only one United States plant currently manufactures potassium dichromate. The production process involves the reaction of a sodium dichromate dihydrate solution with potassium chloride. The product is then crystallized by vacuum cooling. Potassium dichromate is used as an oxidizing agent and in brass pickling operations, electroplating, pyrotechnics, explosives, textiles, dyeing, printing, chrome products, and pharmaceuticals, and in many other processes.

This subcategory has been recommended for exclusion under Paragraph 8 on the basis of being a one-plant industry.

Potassium Iodide. Potassium iodide is used in photographic emulsions, animal and poultry feeds, table salts, and analytical chemistry. It also has a number of medical uses.

Due to the small quantity of wastewater discharged by the industry, and the resulting low waste loads generated, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Potassium Metal. For the production of potassium metal, potassium chloride is melted in a gas-fired melt pot and fed to an exchange column. In the column the molten potassium chloride contacts ascending sodium vapors, and sodium chloride and potassium metal are formed. Major uses of potassium metal include manufacture of organo-potassium compounds and production of sodium potassium alloys used in lard modification and nuclear reactor coolant.

Because the industry has only one primary plant, this subcategory has been recommended as a candidate for a Paragraph 8 exclusion.

Potassium Permanganate. No descriptive information is available in References 1 through 4.

Sodium Bicarbonate. Sodium bicarbonate is made by the reaction of sodium carbonate with water and carbon dioxide under pressure and is typically a minor byproduct of soda ash manufacturers. Major uses include food processing, chemical processes, pharmaceuticals, synthetic rubber processes, and leather, paper and textile production.

This subcategory has been recommended for exclusion under Paragraph 8 due to the low quantities of toxic pollutants.

Sodium Carbonate. On-site captive production of sodium carbonate (soda ash) is a dominant practice. Sodium carbonate is used in the manufacture of sodium bicarbonate, ammonium chloride, and calcium chloride. Because of the nature of this industry, it has been recommended that this subcategory be further studied.

Sodium Fluoride. Sodium fluoride is produced by three plants in the United States with each plant using a different process. Sodium fluoride is used to fluoridate water, to heat treat salts, for pickling stainless steel, and as a wood preservative, an adhesive, an insecticide, and an antiseptic.

This subcategory has been recommended for exclusion under Paragraph 8 due to the small number of plants.

Sodium Hydrosulfide. Sodium hydrosulfide is used in the manufacture of sodium sulfide and other chemicals and paper

(kraft). It is also used in dehairing of hides and industrial wastewater treatment.

Due to the very small flows and waste loads generated by this industry, this subcategory has been recommended as a Paragraph 8 exclusion candidate.

Sodium Metal. Sodium metal is manufactured with chlorine by electrolysis of fused salt. It is used in the production of tetraethyl lead gasoline additives, sodium cyanide, sodium peroxide, and titanium and zirconium metals. In liquid form, it is used as a nuclear reactor coolant; it is also used as a light, thermally conductive solid in various applications.

No toxic pollutants were found at significant concentrations during screening of sodium metal plant 339. On the basis of these findings, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Sodium Silicate. Sodium silicate is manufactured both in liquid and anhydrous powdered form. It has many industrial uses, such as additives in adhesives, flocculants, and cleaning agents. It is also used in the production of soap and household detergents.

Due to the low waste loads generated by this industry, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Sodium Thiosulfate. Sodium thiosulfate is extensively used in the development of negatives and prints in the photographic industry. It is also used in medicine, in the paper and dyeing industries, and as a bleaching agent for natural products.

No toxic pollutants were found at significant levels in the raw waste during screening of sodium thiosulfate plant 987.

On the basis of these findings, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Stannic Oxide. No descriptive information is available in References 1 through 4.

Sulfur Dioxide. Most sulfur dioxide is produced in the gaseous form, although a small percentage is also produced in liquid form. In the gaseous form, it is predominantly used in on-site manufacture of sulfuric acid. It is also used in the paper and petroleum industries, as well as for fermentation control in the wine industry, for bleaching in the textile and food industries, and in the production of other chemicals.

No toxic pollutants were found at significant levels in the waste during screening of sulfur dioxide plant 363. On the basis of these findings, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Sulfuric Acid. Sulfuric acid is one of the most extensively used of all manufactured chemicals. The major industrial use is in the fertilizer industry, with on-site captive use of the product as a dominant practice. It is also used in the manufacturing of plastics, explosives, detergents, hydrofluoric acid, nuclear fuel, and several other organic and inorganic products.

No toxic pollutants were found at significant concentrations in the raw waste during screening of sulfuric acid plant 363. On the basis of these findings, this subcategory has been recommended as an exclusion candidate under Paragraph 8.

Zinc Oxide. No descriptive information is available in References 1 through 4.

Zinc Sulfate. No descriptive information is available in References 1 through 4.

## II.5.2 WASTEWATER CHARACTERIZATION

Wastewaters in the Inorganic Chemicals industry vary considerably between subcategories. Toxic pollutants are generally metals except in cases where organic products are also produced at the same plant. Concentrations and effluent flows range from insignificant to considerable amounts. The following descriptions provide detailed wastewater characterization information for the li inorganic subcategories not proposed for exclusion either under Paragraph 8 of the NRDC consent decree or for other reasons. Table 5-16 presents the maximum concentration of each toxic pollutant found in each subcategory within the industry.

# II.5.2.1 Aluminum Fluoride Industry

# Water Use

Water is used in noncontact cooling of the product, for seals on vacuum pumps, and for scrubbing the reacted gases before they are vented to the atmosphere. Water is also used for leak and spill cleanup and equipment washdown.

# Wastewater Sources

Noncontact Cooling Water. Noncontact cooling water is used to cool the product coming out of the reactor. In some cases it is recirculated and the blowdown treated separately from other process contact wastewater or discharged without treatment. The water can be monitored for fluoride and if process contamination occurs it can be diverted to the wastewater treatment facility for fluoride removal.

Floor and Equipment Washings. The quantity and quality of wastewater generated from these operations is variable and depends largely on the housekeeping practices at the individual plants.

Scrubber Wastewater. This is the major source of wastewater requiring treatment before discharge or recycle back to the scrubber. It is contaminated with hydrofluoric acid, aluminum fluoride, and aluminum oxide, and, in some cases, the presence of sulfuric acid and silicotetrafluoride has been detected. These originate as impurities in the hydrofluoric acid used in the process.

## Wastewater Characteristics

A summary of daily and unit product raw waste loads found in screening and verification sampling is shown in Table 5-17.

TABLE 5-16. MAXIMUM RAW WASTEWATER CONCENTRATIONS OF TOXIC POLLUTANTS FOUND AT SAMPLED INORGANIC CHEMICAL PLANTS [1] (µg/L)

|                                            |           |              |           |              | Chlor-Alkali |                 |                |                   |              |
|--------------------------------------------|-----------|--------------|-----------|--------------|--------------|-----------------|----------------|-------------------|--------------|
|                                            |           |              |           |              |              | Diaphragm cel   | 1              |                   |              |
|                                            | Aluminum  | n Fluoride   | Mercu     | ry cell      | Meta]        | L anode         | Graphite       | Chrome            | Pigments     |
|                                            |           | Verification |           | Verification |              | Verification    | anode          |                   | Verification |
| Toxic pollutant                            | Screening | (2 plants)   | Screening | (5 plants)   | Screening    | (4 plants)      | Verification   | Screening         | (2 plants)   |
| Metals and inorganics                      |           |              |           |              |              | ь               |                |                   |              |
| Antimony                                   | 200       | 475          | <200      | 9 <b>5</b> 0 | 20           | 43 <sup>b</sup> | 1,910          | 7,700             | 1,480        |
| Arsenic                                    |           |              | <10       | 400          | 10           | 660             | 680            |                   |              |
| Asbestos                                   |           |              |           |              |              |                 |                |                   |              |
| Beryllium                                  |           |              |           |              |              |                 |                |                   |              |
| Cadmium                                    | 0.85      | 33           | 0.4       | 787          | 2            | 62              | 46             | 79                | 1,250        |
| Chromium                                   | 77        | 1,140        | 7.7       | 2 <b>3</b> 5 | 940          | 18,800          | 300            | 5 <b>5,</b> 000   | 349,000      |
| Copper                                     | 120       | 235          | 350       | 1,480        | 525          | 16,600          | 7 <b>,4</b> 50 | 7,500             | 4,700        |
| Cyanide                                    |           |              |           |              |              |                 |                | 360               | 8,200        |
| Lead                                       |           |              | 1         | 1,900        | 255          | 2,000           | 1,630,000      | 36,000            | 69,000       |
| Mercury                                    | 2         | 11           | 150       | 27,600       | 9            | 347             | 74             |                   |              |
| Nickel                                     | 150       | 285          | <100      | 2,450        | 54,400       | 22,100          | 640            | 160               | 740          |
| Selenium                                   | 110       | 97           |           |              |              |                 |                | <10               | 28           |
| Silver                                     |           |              | 0.6       | 1,460        | <9           | 93              |                | 7                 | 20           |
| Thallium                                   |           |              | <250      | 650          | 14           |                 | <2             |                   |              |
| Zinc                                       |           |              | 230       | 34,800       | 24           | 4,290           | 3,200          | 4,100             | 273,000      |
| Organics                                   |           |              |           |              |              |                 |                |                   |              |
| Benzene                                    |           |              |           |              |              |                 | 15             |                   |              |
| Carbon tetrachloride                       |           |              |           |              |              |                 | 197            |                   |              |
| 1,2-Dichloroethane                         |           |              |           |              |              |                 | 621            |                   |              |
| Hexachloroethane                           |           |              |           |              |              |                 | 90             |                   |              |
| Chloroform                                 |           |              |           |              |              |                 | 691            |                   |              |
| Dichlorobromomethane                       |           |              |           |              |              |                 | 309            | с                 |              |
| Bis(2-ethylhexyl) phthalate                |           |              |           |              |              |                 | 120            | <0.1 <sup>c</sup> |              |
| Tetrachloroethylene                        |           |              |           |              |              |                 | 196            |                   |              |
| Phenol<br>Pentachlorophenol<br>Naphthalene |           |              |           |              |              |                 |                | 73                |              |
| 2,4-Dinitrophenol 1,1,1-Trichloroethane    |           |              |           |              |              |                 |                | (con              | tinued)      |

TABLE 5-16 (continued)

|                       | Copper    | sulfate      | Hydrof    | luoric acid  | Hydroge   | cyanide      | Nickel    | sulfate      |
|-----------------------|-----------|--------------|-----------|--------------|-----------|--------------|-----------|--------------|
|                       |           | Verification |           | Verification |           | Verification |           | Verification |
| Toxic pollutant       | Screening | (l plant)    | Screening | (3 plants)   | Screening | (2 plants)   | Screening | (2 plants)   |
| Metals and inorganics |           |              |           |              |           |              |           |              |
| Antimony              | 307       | 330          | 70        | 2,805        |           |              |           |              |
| Arsenic               | 3,500     | 3,500        | 10        | 158          |           |              |           |              |
| Asbestos              |           |              |           |              |           |              |           |              |
| Beryllium             |           |              |           |              |           |              |           |              |
| Cadmium               | 870       | 870          | 2         | 20           |           |              | 9         | 160          |
| Chromium              |           |              | 73        | 1,180        |           |              | 1,300     | 110          |
| Copper                | 1,850,000 | 1,850,000    | 770       | 595          |           |              | 73,300    | 355          |
| Cyanide               |           |              |           |              | 166       | 186          |           |              |
| Lead                  | 175       | 180          | 5,190     | 199          |           |              | 55        | 120          |
| Mercury               |           |              | 2         | 43           |           |              | 4         | 10           |
| Nickel                | 112,000   | 112,000      | 150       | 2,005        |           |              | 175,500   | 1,115,000    |
| Selenium              |           |              | 25        | 234          |           |              | <235      | 141          |
| Silver                |           |              |           |              |           |              |           |              |
| Thallium              |           |              | 5.5       | 63           | 25        |              | 21        | <3           |
| Zinc                  | 11,000    | 11,100       | 8,120     | 11,313       |           |              |           |              |

#### Organics

Benzene

Carbon tetrachloride

1,2-Dichloroethane

Hexachloroethane

Chloroform

Dichlorobromomethane

Bis(2-ethylhexyl) phthalate

Tetrachloroethylene

Phenol

Pentachlorophenol

Naphthalene 2,4-Dinitrophenol

1,1,1-Trichloroethane

244<sup>d</sup>

(continued)

TABLE 5-16 (continued)

|                             |             |              |                  |                                     |              | Titanium dioxide |           |                |  |
|-----------------------------|-------------|--------------|------------------|-------------------------------------|--------------|------------------|-----------|----------------|--|
|                             | Sodium      | bisulfate    | Sodium o         | inchromate                          | Sodium       | Chloride         | Sul       | fate           |  |
|                             |             | Verification |                  | Verification                        | hydrosulfite | Verification     |           | Verification   |  |
| Toxic pollutant             | Screening   | (2 Plants)   | Screening        | (2 plants)                          | Verification | (2 plants)       | Screening | (2 plants)     |  |
| Metals and inorganics       |             |              |                  |                                     |              |                  |           |                |  |
| Antimony                    | 30          | 650          |                  |                                     |              |                  | 20        | 1,400          |  |
| Arsenic                     |             |              |                  |                                     |              |                  | 11        | 340            |  |
| <b>As</b> bestos            |             |              |                  |                                     |              |                  |           |                |  |
| Beryllium                   |             |              |                  |                                     |              |                  |           |                |  |
| Cadmium                     | 6           | 41           |                  |                                     | 43           |                  | 338       | 11.7           |  |
| Chromium                    | 17          | 3,360        | 25 <b>2,</b> 000 | 312,000                             | 9,300        | 15,200           | 124,000   | 30,600         |  |
| Copper                      | <b>37</b> 5 | 926          | 35               | 240                                 | 1,450        |                  | 1,480     | 1,000          |  |
| Cyanide                     |             |              |                  |                                     | 101          |                  |           |                |  |
| Lead                        | 8           | 1,050        |                  |                                     | 1,290        | 5,150            | 3,730     | 5,190          |  |
| Mercury                     | 3           | 16.7         |                  |                                     | 2 <b>8</b>   |                  |           |                |  |
| Nickel                      | 250         | 455          | 12,500           | 1,260 <sub>b</sub>                  | 1,660        | 6,230            | 6,370     | 1,300          |  |
| Selenium                    |             |              | <5               | 22 <sup>b</sup><br>228 <sup>b</sup> | 34           |                  |           |                |  |
| Silver                      | 2           | <30          | <0.5             | 228                                 | 128          |                  | 64        | <b>&lt;1</b> 5 |  |
| Thallium                    |             |              |                  |                                     |              |                  | 19        | 41             |  |
| Zinc                        | 2,480       | 3,600        | 544              | 1,230                               | 27,400       | 3,110            | 3,840     | 16,600         |  |
| Organics                    |             |              |                  |                                     |              |                  |           |                |  |
| Benzene                     |             |              |                  |                                     |              |                  |           |                |  |
| Carbon tetrachloride        |             |              |                  |                                     |              |                  |           |                |  |
| 1,2-Dichloroethane          |             |              |                  |                                     |              |                  |           |                |  |
| Hexachloroethane            |             |              |                  |                                     |              |                  |           |                |  |
| Chloroform                  |             |              |                  |                                     |              |                  |           |                |  |
| Dichlorobromomethane        |             |              |                  |                                     |              |                  |           |                |  |
| Bis(2-ethylhexyl) phthalate |             |              |                  |                                     |              |                  |           |                |  |
| Tetrachloroethylene         |             |              |                  |                                     |              |                  |           |                |  |
| Phenol                      |             |              |                  |                                     | 160          |                  | 20        | NA             |  |
| Pentachlorophenol           |             |              |                  |                                     | 373          |                  |           |                |  |
| Naphthalene                 |             |              |                  |                                     |              |                  |           |                |  |
| 2,4-Dinitrophenol           |             |              |                  |                                     |              |                  |           |                |  |
| 1,1,1-Trichloroethane       |             |              |                  |                                     |              |                  |           |                |  |

(continued)

TABLE 5-16 (continued)

|                             |            | Carbon    | Carbon    | Hydrochloric | Hydrogen                 | Nitr             | ic acad                 |                      | id (strong)      |
|-----------------------------|------------|-----------|-----------|--------------|--------------------------|------------------|-------------------------|----------------------|------------------|
|                             | Boric acid | dioxide   | monoxide  | acid         | peroxide                 | Screening        | Verification            | Screening            | Verification     |
| Toxic pollutant             | Screening  | Screening | Screening | Screening    | Screening                | (2 plants)       | (1 plant)               | (2 plants)           | (1 plant)        |
| Metals and inorganics       |            |           |           |              |                          |                  |                         |                      |                  |
| Antimony                    |            |           |           |              |                          |                  |                         |                      |                  |
| Arsenic                     |            |           |           |              |                          |                  |                         |                      |                  |
| Asbestos                    |            |           |           |              |                          |                  |                         |                      |                  |
| Beryllium                   |            |           |           |              |                          |                  |                         |                      |                  |
| Cadmium                     |            |           |           |              |                          |                  |                         | <2                   | <2               |
| Chromium                    |            |           | 2,590     |              |                          | 110 <sup>9</sup> | 100 <sup><b>g</b></sup> | 40,000 <sup>9</sup>  | <50 <sup>9</sup> |
| Copper                      | 340        |           | •         |              |                          |                  |                         |                      |                  |
| Cyanide                     |            |           |           |              |                          | <0.04            | <0.02                   | 0.02                 | <0.02            |
| Lead                        |            |           |           | 3.5          |                          | 29               | <10                     | 70                   | <10              |
| Mercury                     | 1.6        |           | 1.2       | 2.0          |                          | 0.47             | 4.5                     | 8.6                  | 1.2              |
| Nickel                      |            |           |           | 5.5          |                          | 170              | 85                      | <5                   | <50              |
| Selenium                    |            |           |           |              |                          |                  |                         |                      |                  |
| Silver                      |            |           | 1.4       |              |                          | 0.5              | <15                     | 0.69                 | <15              |
| Thallium                    | 140        |           |           |              |                          | _                | ~                       | ~                    | -                |
| Zinc                        | 1,190      | 910       | 820       |              |                          | 120 <sup>9</sup> | 791 <sup>9</sup>        | <b>9</b> 00 <b>g</b> | 115 <sup>9</sup> |
| rganics                     |            |           |           |              |                          |                  |                         |                      |                  |
| Benzene                     |            |           |           |              |                          |                  |                         |                      |                  |
| Carbon tetrachloride        |            |           |           |              |                          |                  |                         |                      |                  |
| 1,2-Dichloroethane          |            |           |           |              |                          |                  |                         |                      |                  |
| Hexachloroethane            |            |           |           |              |                          |                  |                         |                      |                  |
| Chloroform                  |            |           |           |              |                          |                  |                         |                      |                  |
| Dichlorobromomethane        |            |           |           |              |                          |                  |                         |                      |                  |
| Bis(2-ethylhexyl) phthalate | 530        |           |           |              |                          |                  |                         |                      |                  |
| Tetrachloroethylene         |            |           |           |              | •                        |                  |                         |                      |                  |
| Phenol                      |            |           |           |              | 29 <sup>£</sup>          |                  |                         |                      |                  |
| Pentachlorophenol           |            |           |           |              | 4,850 <sup>1</sup><br>11 |                  |                         |                      |                  |
| Naphthalene                 |            |           |           |              | 111                      | •                |                         |                      |                  |
| 2,4-Dinitrophenol           |            |           |           |              |                          | 215 <sup>1</sup> | NA.                     |                      |                  |
| 1,1,1-Trichloroethane       |            |           |           |              |                          |                  |                         |                      |                  |

(continued)

TABLE 5-16 (continued)

| Toxic pollutant                         | Oxygen<br>and<br>nitrogen<br>Screening | Potassium<br>iodide<br>Screening | Sodium carbonate<br>(Solvay process)<br>Screening | Sodium<br>hydrosulfide<br>Screening | Sodium<br>silicate<br>Screening |
|-----------------------------------------|----------------------------------------|----------------------------------|---------------------------------------------------|-------------------------------------|---------------------------------|
| Metals and inorganics Antimony          |                                        |                                  | 430                                               |                                     |                                 |
| Arsenic                                 |                                        |                                  | 430                                               |                                     |                                 |
| Asbestos<br>Beryllium                   |                                        |                                  | 220                                               |                                     |                                 |
| Cadmium<br>Chromium                     |                                        |                                  |                                                   |                                     |                                 |
| Copper                                  | 590                                    | 1,900                            |                                                   |                                     |                                 |
| Cyanide<br>Lead                         |                                        |                                  | 2,700                                             |                                     |                                 |
| Mercury                                 |                                        |                                  | -,,,,,                                            |                                     | 1.3                             |
| Mickel<br>Selenium                      |                                        |                                  |                                                   |                                     | 121                             |
| Silver<br>Thallium                      |                                        | 35<br>28.                        | <5 <i>7</i><br>200                                |                                     | 1.3                             |
| Zinc                                    |                                        | 930 <sup>h</sup>                 | 750                                               |                                     |                                 |
| rganics                                 |                                        |                                  |                                                   |                                     |                                 |
| Bensene<br>Carbon tetrachloride         |                                        |                                  |                                                   |                                     |                                 |
| 1.2-Dichloroethane                      |                                        |                                  |                                                   |                                     |                                 |
| Hexachloroethane                        |                                        |                                  |                                                   |                                     |                                 |
| Chloroform<br>Dichlorobromomethane      |                                        |                                  |                                                   |                                     |                                 |
| Bis(2-ethylhexyl) phthalate             |                                        |                                  |                                                   |                                     |                                 |
| Tetrachlorosthylene<br>Phenol           |                                        |                                  |                                                   | 76                                  |                                 |
| Pentachlorophenol<br>Maphthalene        |                                        |                                  |                                                   | 90                                  |                                 |
| 2,4-Dinitrophenol 1,1,1-Trichloroethane |                                        |                                  |                                                   | ,,,                                 |                                 |

<sup>&</sup>lt;sup>8</sup>No toxic pollutants were found in the following subcategories: ammonium chloride, barium carbonate, calcium carbonate, sodium metal, sodium thiosulfate, sulfur dioxide, and sulfuric acid. Samples were taken but no data were given for the following subcategories: ammonium hydroxide, cuprous oxide, and manganese sulfate. No data were available for the following subcategories: aluminum sulfate, borax, bromine, calcium, calcium carbide, chromic acid, ferric chloride, ferrous sulfate, fluorine, hydrogen, iodine, lead monoxide, lithium carbonate, potassium chloride, potassium dichromate, potassium metal, potassium permanganate, sodium bicarbonate, sodium fluoride, stannic oxide, zinc oxide, and zinc sulfate. bFound at one plant only.

Note: Blanks indicate no data available.

Prom organic pigment process.

Due to contaminated groundwater.

Includes other cyanide process wastes.

Organics due to organic weed killer - not process related.

Chromium and zinc concentrations due to anticorrosion additives.

AZinc concentration due to water source.

Presumed to be from contamination by the organic products manufactured at the plant - not process related.

TABLE 5-17. SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING AND VERIFICATION SAMPLING - ALUMINUM FLUORIDE SUBCATEGORY [1]

| -                       | Raw waste loadings |          |          |          |          |          |          |  |  |  |
|-------------------------|--------------------|----------|----------|----------|----------|----------|----------|--|--|--|
|                         | Minimum,           | Average, | Maximum, | Minimum, | Average, | Maximum, | plants   |  |  |  |
| Pollutant               | kg/d               | kg/d     | kg/đ     | kg/Mg    | kg/Mg    | kg/Mg    | averaged |  |  |  |
| Toxic pollutants        |                    |          |          |          |          |          |          |  |  |  |
| Arsenic                 | 0.071              | 0.078    | 0.086    | 0.0007   | 0.0016   | 0.002    | 3        |  |  |  |
| Cadmium                 |                    | 0.010    |          |          | 0.0002   |          | 1        |  |  |  |
| Chromium                | 0.072              | 0.16     | 0.25     | 0.0016   | 0.0035   | 0.0054   | 2        |  |  |  |
| Copper                  | 0.02               | 0.16     | 0.33     | 0.0002   | 0.0033   | 0.0071   | 3        |  |  |  |
| Nickel                  | 0.025              | 0.13     | 0.26     | 0.00025  | 0.003    | 0.0056   | 3        |  |  |  |
| Mercury                 | 0.0013             | 0.0041   | 0.0095   | 0.000027 | 0.00005  | 0.00009  | 3        |  |  |  |
| Selenium                | 0.051              | 0.11     | 0.17     | 0.001    | 0.0015   | 0.002    | 2        |  |  |  |
| Conventional pollutants |                    |          |          |          |          |          |          |  |  |  |
| TSS                     | 751                | 2,920    | 5,510    | 16.3     | 53.7     |          |          |  |  |  |
| Fluorine                | 493                | 727      | 986      | 9.71     | 11.9     |          |          |  |  |  |
| Aluminum                | 98.4               | 220      | 352      | 0.97     | 4.40     |          |          |  |  |  |

Note: Blanks indicate data not available.

# II.5.2.2 Chlor-Alkali Industry

# Water Use

The water uses common to both mercury and diaphragm cells include noncontact cooling, cell washings, tail gas scrubbing, equipment maintenance, and area washdown. Noncontact cooling water is used in cooling brine, caustic, chlorine, rectifiers, and compressors. Large amounts of water are also introduced into the process through the salt solution.

One water application unique to the mercury cell process is in the decomposition of mercury-sodium amalgam to form caustic in the denuder. In mercury cell plants, the quantity of water usage was found to range from 7.6 to 204 cubic meters per metric ton of chlorine produced, with noncontact cooling comprising approximately 70% of the total.

In the diaphragm cell process a large quantity of water is used in the barometric condensers if the vapors from the caustic evaporators are contact cooled. For plants practicing contact cooling through barometric condensers, the average amount of water usage is twice that of the mercury cell plant per metric tons of chlorine produced (15 to 492 m³/Mg). Of the total water usage in diaphragm cell plants, approximately 50% is used for noncontact cooling. In addition, the amount of water used for cleaning diaphragm cells is higher than that required for mercury cells.

# Waste Sources

Some of the waste sources produced during the manufacture of chlorine and caustic by diaphragm and mercury cells are similar with the notable exception of the presence of mercury in the wastewaters from mercury cells and asbestos fibers in the wastewater from the diaphragm cell plants. Following are descriptions of the common wastewater streams, followed by descriptions of the individual streams specific to mercury and diaphragm cells.

# Common Wastes (Mercury Cell and Diaphragm Cell).

Brine mud - Brine mud is the major portion of the waste solids produced from the two processes. The solids content of the stream varies from 2% to 20% and ranges in volume from 0.04 to 1.5 cubic meters per ton of chlorine produced. The waste is either sent to a pond or filtered. The overflow from the pond (filtrate) is recycled to the process as makeup water for the brine. In the mercury cell process, only 16% of the NaCl solution is decomposed in the cell, and the unconverted brine is recycled to the purification unit after dechlorination. This recycled brine is contaminated with mercury and, therefore, the resulting brine mud contains small amounts of mercury.

Cell room wastes - The major components of this stream include leaks, spills, and cell wash waters. The amount of cell room waste generated per metric ton of chloride is generally higher for diaphragm cell plants, and the wastewater from the washing and rebuilding of the cathode contains asbestos fibers, dissolved chlorine, and brine solution. In mercury cell plants, the cell room wastes contain mercury, dissolved hydrogen, chlorine, and some sodium chloride.

Cell room waste constitutes one of the major streams that has to be treated for mercury. If graphite anodes are used in either the mercury or diaphragm cells, the cell room wastes contain lead and chlorinated organic compounds in addition to the normal pollutants.

Chlorine condensate - Condensation from the cell gas is contaminated with chlorine. At some plants, the condensates are recycled to the process after chlorine recovery. Both contact and noncontact water is used for chlorine cooling and for removal of water vapor, so the amount of wastewater varies from plant to plant. When graphite anodes are used, chlorinated hydrocarbons, lead, and other impurities carried with the chlorine condense in the first-stage cooler. The chlorinated organic compounds that have been detected when graphite anodes are used are: chloroform, methylene chloride, hexachlorobenzene, hexachloroethane, and hexachlorobutadiene.

Spent sulfuric acid - Concentrated sulfuric acid is used to remove the residual water from the Cl<sub>2</sub> gas after the first stage of cooling. In most cases, sulfuric acid is used until a constant concentration of 50% to 70% is reached. The spent acid might contain mercury, asbestos fibers, or chlorinated hydrocarbons (depending on the type of cell) in addition to chlorine. The volume of waste acid is typically of the order of 0.01 cubic meter per metric ton of chlorine.

Tail gas scrubber liquid - The uncondensed chlorine gas from the liquefaction stage, containing some air and other gases, is scrubbed with sodium/calcium hydroxide to form sodium/calcium hypochlorite. When the equipment is purged for maintenance, the "sniff" gas, or tail gas, is absorbed in calcium or sodium hydroxide, producing the corresponding hypochlorites. The amount of tail gas scrubber water varies from 0.04 to 0.58 cubic meter per metric ton of chloride for both diaphragm and mercury cell plants.

Caustic filter washdown - The 50% caustic produced from both mercury and diaphragm cells is treated with chemicals and filtered to remove salt and other impurities. The filters are backwashed periodically as needed; the wastewater volume is variable and usually contains small amounts of mercury or asbestos fibers in addition to the salt.

# Process Specific Wastes.

Condenser drainage - In mercury cells, the hydrogen produced is cooled in surface condensers to remove mercury and water that is carried over with the gas. The wastewater is sent either to the wastewater treatment facility or to the mercury recovery facility. After mercury recovery, the water may be discharged to the treatment facility or returned to the denuder after deionization. Information on the volume of this waste stream is not available.

Barometric condenser water - The wastewater specific to the diaphragm cell process is the barometric condenser water. A significant amount of water is used in contact cooling the vapors from the evaporators used to concentrate the caustic. In the mercury cells, the caustic comes out at a concentration of 50% and does not require evaporators unless a caustic of high concentration (e.g., 73%) is required. The barometric condenser wastewater ranges from 89 to 191 cubic meters per metric ton of chlorine. The barometric condenser wastewater is either discharged without treatment or recycled, and a bleed is discharged with or without pH adjustment.

Discharges from the barometric condensers contain some salt and caustic as a result of the carryover from the caustic solution. When graphite anodes are used, the barometric condenser wastewater contains lead.

Sulfate purge wastewater - During the concentration of the caustic by evaporation, sodium chloride precipitates out. The salt is removed and is washed with water to remove sodium sulfate. A portion of wash water is recycled and the rest is purged to waste in order to stop the buildup of sulfates. The stream is one of the major sources of wastewater from chlorine/caustic plants using diaphragm cells.

A summary of daily and unit product raw waste loads for all plants sampled in the chlor-alkali/mercury cell subcategory is shown in Table 5-18. Similar data for diaphragm cell plants are presented in Table 5-19.

# II.5.2.3 Chrome Pigment Industry

# Water Use

In the chrome pigment industry water is used for noncontact cooling, for washing the precipitated product, and as boiler feed for steam generation. In some cases water is introduced into the reactor along with the raw materials. In anhydrous and hydrated chrome oxide manufacture, water is used for slurrying of the reaction product and in scrubbing the reactor vent gases.

TABLE 5-18. SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING AND VERIFICATION SAMPLING (MERCURY CELL PROCESS [1]

|                          |                  |                  | Raw waste        | loadings          |                   |                   | No. of             |
|--------------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|--------------------|
| Pollutant                | Minimum,<br>kg/d | Average,<br>kg/d | Maximum,<br>kg/d | Minimum,<br>kg/Mg | Average,<br>kg/Mg | Maximum,<br>kg/Mg | plants<br>averaged |
| 101144                   |                  |                  |                  |                   |                   |                   |                    |
| Toxic pollutants:        |                  |                  |                  |                   |                   |                   |                    |
| Antimony                 | 0.0059           | 0.15             | 0.29             | 0.00001           | 0.00045           | 0.00074           | 3                  |
| Arsenic                  | 0.00045          | 0.086            | 0.27             | 0.000001          | 0.0003            | 0.01              | 5                  |
| Cadmium                  | 0.00032          | 0.0091           | 0.025            | 0.0000008         | 0.00005           | 0.0002            | 5                  |
| Chromium                 | 0.0014           | 0.028            | 0.094            | 0.000004          | 0.00009           | 0.0004            | 6                  |
| Copper                   | 0.029            | 0.11             | 0.020            | 0.0001            | 0.00033           | 0.0006            | 6                  |
| Lead                     | 0.034            | 0.068            | 0.13             | 0.000089          | 0.00032           | 0.0007            | 5                  |
| Mercury                  | 0.086            | 2.84             | 6.71             | 0.0002            | 0.016             | 0.063             | 6                  |
| Nickel                   | 0.018            | 0.046            | 0.072            | 0.00003           | 0.00026           | 0.0007            | 4                  |
| Silver                   | 0.00036          | 0.058            | 0.22             | 0.00001           | 0.00022           | 0.0008            | 4                  |
| Thallium                 | 0.0027           | 0.071            | 0.14             | 0.00002           | 0.0003            | 0.001             | 4                  |
| Zinc                     | 0.11             | 0.42             | 1.10             | 0.0003            | 0.0023            | 0.01              | 6                  |
| Conventional pollutants: |                  |                  |                  |                   |                   |                   |                    |
| TSS                      | 6.76             | 307              | 1,200            | 0.018             | 2.19              | 10.8              |                    |

Note: Blanks indicate data not available.

TABLE 5-19. SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING AND VERIFICATION SAMPLING (DIAPHRAGM CELL PROCESS) [1]

|                          | Raw waste loadings |          |          |            |           |           |          |
|--------------------------|--------------------|----------|----------|------------|-----------|-----------|----------|
|                          | Minimum,           | Average, | Maximum, | Minimum,   | Average,  | Maximum,  | plants   |
| Pollutant                | kg/d               | kg/đ_    | kg/d     | kg/Mg      | kg/Mg     | kg/Mg     | averaged |
| Toxic pollutants:        |                    |          |          |            |           |           |          |
| Arsenic                  | 0.000028           | 0.0021   | 0.0033   | 0.00000015 | 0.0000056 | 0.000014  | 5        |
| Cadmium                  | 0.00034            | 0.0015   | 0.0029   | 0.000001   | 0.0000033 | 0.000006  | 5        |
| Chromium                 | 0.0036             | 0.58     | 2.81     | 0.000015   | 0.00095   | 0.0046    | 5        |
| Copper                   | 0.0037             | 0.12     | 0.27     | 0.000011   | 0.00041   | 0.0012    | 5        |
| Lead                     | 0.00086            | 0.021    | 0.064    | 0.0000037  | 0.000042  | 0.000095  | 5        |
| Nickel                   | 0.013              | 0.28     | 0.88     | 0.00004    | 0.00064   | 0.0014    | 5        |
| Zinc                     | 0.017              | 0.08     | 0.17     | 0.000057   | 0.00024   | 0.0007    | 4        |
| Mercury                  | 0.00018            | 0.00053  | 0.00082  | 0.0000003  | 0.0000013 | 0.0000025 | 3        |
| Selenium                 | 0.00023            | 0.0016   | 0.003    | 0.000003   | 0.000004  | 0.000005  | 2        |
| Antimony                 |                    | 0.00064  |          |            | 0.000003  |           | 1        |
| Thallium                 |                    | 0.000045 |          |            | 0.0000002 |           | 1        |
| Conventional pollutants: |                    |          |          |            |           |           |          |
| TSS                      | 7.39               | 23.8     | 53.9     | 0.026      | 0.069     | 0.18      |          |

Note: Blanks indicate data not available.

#### Waste Sources

Some plants produce different pigment products sequentially in the same process. At a few plants the different pigment products are manufactured concurrently and the wastewaters combined and treated at a single facility. The wastewater sources are similar for all pigment products except that at chrome oxide plants an additional scrubber waste is produced. The quantity of wastewater and the pollutants vary for the different pigment products since the pollutants are dependent on the raw materials used. All the wastewaters generated in the chrome pigments subcategory contain dissolved chromium and pigment particulates.

Additional pollutants that can be present are given below for each major pigment group.

Chrome yellow and chrome orange: The raw wastewaters contain sodium acetate, sodium chloride, sodium nitrate, sodium sulfate, and lead salts.

Chrome oxide: The aqueous process effluent contains sodium sulfate. If boric acid is used in the preparation of hydrated chromic oxide, the wastewater will contain sodium borate and boric acid.

Chrome yellow and chrome orange: Additional pollutants present in the raw wastewater from chrome yellow and chrome orange manufacture include sodium acetate, sodium chloride, sodium nitrate, sodium sulfate, and lead salts.

Molybdenum orange: Process waste effluents from the manufacture of molybdenum orange contain sodium chloride, sodium nitrate, sodium sulfate, chromium hydroxide, lead salts, and silica.

Chrome green: The raw wastewater contains sodium nitrate. If iron blue is manufactured on site as part of the process for chrome green manufacture, the wastewater also contains sodium chloride, ammonium sulfate, ferrous sulfate, sulfuric acid, and iron blue pigment particulates.

Zinc yellow: The raw wastes contain hydrochloric acid, sodium chloride, potassium chloride, and soluble zinc salts.

Because various plants make several chrome pigments sequentially or concurrently, the unit hydraulic load going to the treatment facility will be an average of all the waste loads from the different processes. The raw waste from a complex plant may contain nearly all of the following substances: sodium acetate; sodium chloride; sodium nitrate; sodium sulfate; potassium chloride; lead, iron, and zinc salts; soluble chromium; and pigment particulates.

# Wastewater Characteristics

A summary of daily and unit product raw waste loadings for all plants sampled is shown in Table 5-20.

TABLE 5-20. SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING AND VERIFICATION SAMPLING - CHROME PIGMENTS SUBCATEGORY [1]

|                         | Raw waste loadings |                  |                  |                   |                   |                   |                   |  |
|-------------------------|--------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|--|
| Pollutant               | Minimum,<br>kg/d   | Average,<br>kg/d | Maximum,<br>kg/d | Minimum,<br>kg/Mg | Average,<br>kg/Mg | Maximum,<br>kg/Mg | plants<br>average |  |
|                         |                    |                  |                  |                   |                   |                   | u.c.uge.          |  |
| Toxic pollutants        |                    |                  |                  |                   |                   |                   |                   |  |
| Antimony                | 5.90               | 51.7             | 98.0             | 0.14              | 0.87              | 1.61              | 2                 |  |
| Cadmium                 | 0.87               | 5.44             | 10.0             | 0.02              | 0.16 .            | 0.09              | 2                 |  |
| Chromium                | 698                | 1,020            | 1,330            | 11.5              | 21.5              | 30.8              | 2                 |  |
| Copper                  | 6.08               | 50.B             | 95.2             | 0.14              | 0.86              | 1.58              | 2                 |  |
| Lead                    | 237                | 347              | 458              | 5.46              | 6.49              | 7.62              | 2                 |  |
| Nickel                  | 1.38               | 1.71             | 2.03             | 0.032             | 0.0325            | 0.033             | 2                 |  |
| Zinc                    | 52.2               | 381              | 712              | 0.86              | 8.63              | 16.4              | 2                 |  |
| Cyanide                 | 3.11               | 24.4             | 45.8             | 0.072             | 0.41              | 0.75              | 2                 |  |
| Organics                |                    |                  |                  |                   |                   |                   |                   |  |
| Phenols                 |                    | 0.93             |                  |                   | 0.015             |                   | 1                 |  |
| Phenolics               |                    | 8.80             |                  |                   | 0.14              |                   | 1                 |  |
| Conventional pollutants |                    |                  |                  |                   |                   |                   |                   |  |
| TSS                     |                    | 3,050            |                  |                   | 70.4              |                   | 1                 |  |

Note: Blanks indicate data not available.

# II.5.2.4 Copper Sulfate Industry

## Water Use

Water is used in the process as a reaction component which becomes a part of the dry product as its water of crystallization. Water is also used for noncontact cooling, pump seals, and washdowns.

## Waste Sources

Noncontact Cooling Water. Noncontact cooling water is used in the crystallizers and constitutes one of the main wastes. This waste is treated before final discharge.

Contact Water. Washdowns, spills, and leaks are sources of contact wastewater, but the flows are relatively small and intermittent, and do not represent a major waste source.

Steam Condensate. A few plants use evaporators, and steam condensate is an additional noncontact waste formed in the process.

Solid Waste. Solid waste is produced by some plants. The copper metal used in the process contains copper sulfides, which are filtered out of the liquor and disposed of in a landfill.

Plants that produce copper sulfate in the liquid form have no contact waste streams from the process. The copper metal, acid, and water are reacted together to form the copper sulfate solution product with no generation of liquid wastes.

## Wastewater Characteristics

A summary of daily and unit product raw waste loads for plant 034 is presented in Table 5-21.

TABLE 5-21. SUMMARY OF RAW WASTE LOADINGS FOUND AT COPPER SULFATE PLANT 034 [1]

|                         | Raw waste | loadings |
|-------------------------|-----------|----------|
|                         | Average,  | Average, |
| Pollutant               | kg/d      | kg/Mg    |
| Toxic pollutants        |           |          |
| Antimony                | 0.014     | 0.00069  |
| Arsenic                 | 0.16      | 0.0078   |
| Cadmium                 | 0.039     | 0.0019   |
| Copper                  | 83.9      | 4.11     |
| Lead                    | 0.0079    | 0.00039  |
| Nickel                  | 5.08      | 0.25     |
| Zinc                    | 0.50      | 0.024    |
| Conventional pollutants |           |          |
| TSS                     | 1.78      | 0.087    |

# II.5.2.5 Hydrofluoric Acid Industry

#### Water Use

Water is used in hydrofluoric acid production in noncontact cooling, air pollution control, product dilution, seals on pumps and kilns, and for equipment and area washdown. Although noncontact cooling constitutes the major use of water, water is also used, in a majority of cases, in the transport of gypsum as a slurry to the wastewater treatment facility. The water for gypsum transport is provided either by recycling the water from the treatment facility or by using once-through cooling water.

## Waste Sources

<u>Drip Acid</u>. Drip acid is formed in the first stage of cooling of the gases emitted from the kiln. The drip acid primarily contains high boiling compounds consisting of complex fluorides and small amounts of hydrofluoric acid, sulfuric acid, and water.

Nine out of eleven plants producing HF recycle the drip acid back to the reactor.

Noncontact Cooling Water. Noncontact cooling water is used for precooling the product gases emitted from the kiln. This stream is relatively unpolluted, and the possibility of product or other process compounds leaking into it is small. In some plants, the cooling water is used to transport the waste gypsum.

Scrubber Wastewater. Scrubber wastewater constitutes the predominant and major source of wastewater in plants which practice dry disposal of gypsum. The water contains fluoride, sulfate, and acidity. The fluoride is present as hydrogen fluoride, silicon tetrafluoride, and hexafluosilicic acid. Scrubber water consequently needs treatment for fluoride before discharge.

Distillation Wastes. Distillation wastes generally contain HF and water. In some cases, vent gases from the distillation column are scrubbed before they are emitted to the atmosphere, resulting in scrubber water.

Gypsum Solids. Additionally, gypsum solids are generated as a byproduct. Seven out of eleven plants producing hydrofluoric acid slurry the gypsum with water and send it to a wastewater treatment facility. Three of the plants transport the gypsum as a dry solid.

# Wastewater Characteristics

A summary of daily and unit product raw waste loads for all plants sampled in this subcategory is shown in Table 5-22.

TABLE 5-22. SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING AND VERIFICATION SAMPLING - HYDROFLUORIC ACID SUBCATEGORY [1]

|                         | Raw waste loadings |                  |                  |                   |                   |                   |                    |  |
|-------------------------|--------------------|------------------|------------------|-------------------|-------------------|-------------------|--------------------|--|
| Pollutant               | Minimum,<br>kg/d   | Average,<br>kg/d | Maximum,<br>kg/d | Minimum,<br>kg/Mg | Average,<br>kg/Mg | Maximum,<br>kg/Mg | plants<br>averaged |  |
| Toxic pollutants        |                    |                  |                  |                   |                   |                   |                    |  |
| Antimony                | 0.015              | 1.63             | 6.44             | 0.0003            | 0.03              | 0.12              | 4                  |  |
| Arsenic                 | 0.012              | 0.46             | 1.12             | 0.003             | 0.0056            | 0.012             | 3                  |  |
| Cadmium                 | 0.0036             | 0.011            | 0.017            | 0.0001            | 0.00027           | 0.00031           | 3                  |  |
| Chromium                | 0.14               | 1.73             | 5.49             | 0.0043            | 0.024             | 0.06              | 4                  |  |
| Copper                  | 0.60               | 1.42             | 2.80             | 0.015             | 0.028             | 0.051             | 4                  |  |
| Lead                    | 0.10               | 1.74             | 5.62             | 0.003             | 0.046             | 0.165             | 4                  |  |
| Mercury                 | 0.0027             | 0.056            | 0.20             | 0.00008           | 0.00065           | 0.002             | 4                  |  |
| Nickel                  | 0.14               | 3.90             | 13.0             | 0.0004            | 0.051             | 0.14              | 4                  |  |
| Selenium                | 0.016              | 0.066            | 0.12             | 0.0005            | 0.001             | 0.002             | 3                  |  |
| Thallium                | 0.0054             | 0.084            | 0.16             | 0.00016           | 0.0021            | 0.003             | 2                  |  |
| Zinc                    | 0.49               | 21.1             | 72.1             | 0.014             | 0.41              | 1.33              | 4                  |  |
| Conventional pollutants |                    |                  |                  |                   |                   |                   |                    |  |
| TSS                     | 13,600             | 133,000          | 247,000          | 170               | 2,710             | 5,700             |                    |  |
| Fluorine                | 497                | 2,970            | 7,890            | 14.6              | 45.4              | 86.9              |                    |  |

Note: Blanks indicate data not available.

Date: 6/23/80

# II.5.2.6 Hydrogen Cyanide Industry

#### Water Use

Water is used in noncontact cooling in the absorber, pump seal quenches, flare stack flushes, for washdown and cleanup of tank cars, and for washing equipment and cleaning up leaks and spills.

## Waste Sources

The following are the sources of wastewater produced from the manufacture of hydrogen cyanide by the Andrussow process.

Distillation Bottoms. The wastewater contains ammonia, hydrogen cyanide, and small amounts of organic nitriles. The water consists of the water produced by the reaction plus scrubber water used for the absorption of HCN. The absorption water distillation bottoms are either recycled to the ammonia absorber or discharged to the treatment facility. Even if the distillation bottom stream is recycled to the absorber, a portion of it is discharged to stop the buildup of impurities.

Scrubber Streams. If the scrubber liquid is recycled, a portion of it has to be purged to control the accumulation of impurities. The bleed contains the acid used for scrubbing and minor amounts of organic nitriles. The scrubber solution can also be used for the manufacture of other products in which case nothing is discharged from the scrubber operation.

Other Wastewater. This includes leaks and spills, equipment and tank car washings, noncontact cooling water blowdown, and rainfall runoff.

## Wastewater Characteristics

A summary of daily and unit product raw waste loads for all plants sampled in this subcategory is presented in Table 5-23.

TABLE 5-23. SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING AND VERIFICATION SAMPLING - HYDROGEN CYANIDE SUBCATEGORY [1]

|                         | Raw waste loadings |                  |                  |                   |                   |                   |                    |
|-------------------------|--------------------|------------------|------------------|-------------------|-------------------|-------------------|--------------------|
| Pollutant               | Minimum,<br>kg/d   | Average,<br>kg/d | Maximum,<br>kg/d | Minimum,<br>kg/Mg | Average,<br>kg/Mg | Maximum,<br>kg/Mg | plants<br>averaged |
| Toxic pollutants        |                    |                  |                  |                   |                   |                   |                    |
| Total cyanide           | 173                | 205              | 237              | 0.81              | 1.20              | 1.60              | 2                  |
| Free cyanide            | 106                | 113              | 120              | 0.49              | 0.65              | 0.81              | 2                  |
| Conventional pollutants |                    |                  |                  |                   |                   |                   |                    |
| TSS                     | 152                | 383              | 614              | 1.02              | 1.94              | 2.87              |                    |
| NH <sub>3</sub> -N      | 3,880              | 5,790            | 7,700            | 26.2              | 31.1              | 36.0              |                    |
| BODs                    | 24.5               | 4,320            | 8,620            | 0.16              | 20.2              | 40.3              |                    |

Note: Blanks indicate data not available.

# II.5.2.7 Nickel Sulfate Industry

## Water Use

Noncontact cooling water is used for nickel sulfate production in the reactor and in crystallizers. Water is used for direct process contact in the reactor. Small amounts of water are used for maintenance, washdowns, cleanup, etc.

## Waste Sources

Noncontact Cooling Water. Noncontact cooling water is the main source of wastewater, but it is usually not treated before discharge.

Contact Water. Direct process contact water constitutes the major portion of treated waste. The water comes from the preliminary preparation of spent plating solutions used in the process. Plants which use impure nickel raw materials generate a filter backwash waste stream with high impurity levels. This stream must be sent through the treatment system.

Washdowns, spills, pump leaks, and maintenance uses account for the remaining wastes produced by nickel sulfate plants.

# Wastewater Characteristics

A summary of daily and unit product raw waste loads for all plants sampled is presented in Table 5-24.

TABLE 5-24. SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING AND VERIFICATION SAMPLING - NICKEL SULFATE SUBCATEGORY [1]

|                         | Raw waste loadings |          |          |          |          |          |         |
|-------------------------|--------------------|----------|----------|----------|----------|----------|---------|
|                         | Minimum,           | Average, | Maximum, | Minimum, | Average, | Maximum, | plants  |
| Pollutant               | kg/đ               | kg/đ     | kg/d     | kg/Mg_   | kg/Mg    | kg/Mg    | average |
| Toxic pollutants        |                    |          |          |          |          |          |         |
| Cadmium                 | 0.000014           | 0.0015   | 0.0045   | 0.000002 | 0.00017  | 0.0005   | 3       |
| Chromium                | 0.00023            | 0.00091  | 0.0018   | 0.00001  | 0.00025  | 0.0005   | 2       |
| Copper                  | 0.0011             | 0.039    | 0.11     | 0.0001   | 0.01     | .0.03    | 3       |
| Lead                    | 0.000082           | 0.0014   | 0.0028   | 0.00002  | 0.0001   | 0.0003   | 3       |
| Mercury                 |                    | 0.000027 |          |          | 0.00003  |          | 1       |
| Nickel                  | 0.27               | 10.8     | 31.5     | 0.035    | 1.20     | 3.45     | 3       |
| Selenium                | 0.00027            | 0.00059  | 0.00091  | 0.00003  | 0.000035 | 0.00004  | 2       |
| Thallium                |                    | 0.000032 |          |          | 0.000009 |          | 1       |
| Conventional pollutants |                    |          |          |          |          |          |         |
| TSS                     | 0.34               | 31.2     | 92.5     | 0.031    |          | 10.1     |         |

Note: Blanks indicate data not available.

# II.5.2.8 Sodium Bisulfite Industry

## Water Use

Direct process contact water is used to slurry the sodium carbonate for the reaction. Noncontact cooling water is another water use at one plant. Water is also used for pump seals, maintenance, and washdowns.

# Waste Sources

Noncontact Cooling Water. Noncontact cooling water from the centrifuge is a source of waste at one plant.

Contact Water. Direct process contact water is the main source of wastewater which must be treated, together with miscellaneous wastes such as water used for maintenance purposes, washdowns, and spill cleanup.

# Wastewater Characteristics

A summary of daily and unit product raw waste loads for all plants sampled in this subcategory is shown in Table 5-25.

TABLE 5-25. SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING AND VERIFICATION SAMPLING - SODIUM BISULFITE SUBCATEGORY [1]

|                         | Raw waste loadings |                  |                  |                   |                   |                   |                   |
|-------------------------|--------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|
| Pollutant               | Minimum,<br>kg/d   | Average,<br>kg/d | Maximum,<br>kg/d | Minimum,<br>kg/Mg | Average,<br>kg/Mg | Maximum,<br>kg/Mg | plants<br>average |
| Toxic pollutants        |                    |                  |                  |                   |                   |                   |                   |
| Antimony                | 0.00045            | 0.0018           | 0.0041           | 0.000007          | 0.000052          | 0.00008           | 2                 |
| Cadmium                 | 0.00023            | 0.0003           | 0.00041          | 0.000004          | 0.00001           | 0.000017          | 3                 |
| Chromium                | 0.018              | 0.54             | 1.05             | 0.0003            | 0.011             | 0.022             | 2                 |
| Copper                  | 0.005              | 0.011            | 0.015            | 0.00007           | 0.00046           | 0.001             | 2                 |
| Lead                    | 0.000091           | 0.0045           | 0.0095           | 0.000007          | 0.000092          | 0.0002            | 3                 |
| Mercury                 | 0.000091           | 0.00021          | 0.00045          | 0.000001          | 0.000006          | 0.00001           | 2                 |
| Nickel                  | 0.0032             | 0.0068           | 0.0091           | 0.00005           | 0.00031           | 0.0007            | 3                 |
| Zinc                    | 0.016              | 0.18             | 0.42             | 0.0002            | 0.0053            | 0.0088            | 3                 |
| Conventional pollutants |                    |                  |                  |                   |                   |                   |                   |
| TSS                     | 3.20               | 12.9             | 25.4             | 0.21              | 0.27              | 0.38              |                   |
| COD                     | 54.4               | 117              | 234              | 1.33              | 2.94              | 4.04              |                   |

Note: Blanks indicate data not available.

# II.5.2.9 Sodium Dichromate Industry

## Water Use

Water is used for noncontact cooling, in leaching, for scrubbing vent gases, and for process steam for heating.

# Water Sources

Spent Ore. The unreacted ore is removed from the process as a sludge. The solids contain chromium and other impurities originally present in the ore. The waste is disposed as a solid waste in a landfill or is slurried with water and sent to the treatment facility.

Noncontact Cooling Water and Cooling Tower Breakdown. The noncontact cooling water is either used on a once-through basis and discharged or is recycled and the blowdown discharged to the treatment facility. In addition to dissolved sulfate and chloride, it may contain chromates.

Boiler Blowdown. The steam used for heating is recovered as condensate, while the boiler blowdown is discharged to the treatment facility. It may become contaminated with chromium escaping from the process area and hence should be sent to the wastewater treatment facility for treatment.

The majority of aqueous streams resulting from the manufacture of sodium dichromate are recycled. Streams recycled include condensates from product evaporation and drying; product recovery filtrates; air pollution control scrubber effluents from product drying, leaching, and roasting kilns; filter wash waters; and equipment and process area washdowns. At two plants the wastewater, consisting of boiler and noncontact cooling tower, is used to slurry the spent ore residue to the wastewater treatment facility. At one plant, the only wastewater resulting from process operations is the noncontact cooling water, which is used on a once-through basis.

## Wastewater Characteristics

A summary of daily and unit product raw waste loads for all plants sampled in this subcategory is presented in Table 5-26.

TABLE 5-26. SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING AND VERIFICATION SAMPLING - SODIUM DICHROMATE SUBCATEGORY [1]

|                         | Raw waste loadings |          |          |          |          |          |         |  |
|-------------------------|--------------------|----------|----------|----------|----------|----------|---------|--|
|                         | Minimum,           | Average, | Maximum, | Minimum, | Average, | Maximum, | plants  |  |
| Pollutant               | kg/đ               | kg/d     | kg/đ     | kg/Mg    | ka/Mg    | kg/Mg    | average |  |
| Toxic pollutants        |                    |          |          |          |          |          |         |  |
| Chromium                | 82.1               | 132      | 181      | 0.95     | 1.17     | 1.39     | 2       |  |
| Hex. chromium           | 27.5               | 1,210    | 3,105    | 0.466    | 15.7     | 43.9     | 3       |  |
| Copper                  | 0.0091             | 0.32     | 0.92     | 0.00005  | 0.0046   | 0.013    | 3       |  |
| Nickel                  | 0.27               | 4.26     | 8.98     | 0.006    | 0.034    | 0.049    | 3       |  |
| Silver                  |                    | 0.058    |          |          | 0.0009   |          | 1       |  |
| Zinc                    | 0.067              | 0.22     | 3.91     | 0.0009   | 0.002    | 0.003    | 3       |  |
| Selenium                |                    | 0.23     |          |          | 0.003    |          | 1       |  |
| Arsenic                 |                    | 0.005    |          |          | 0.00008  |          | 1       |  |
| Conventional pollutants |                    |          |          |          |          |          |         |  |
| TSS                     | 26.600             | 131,000  | 236,000  | 140      | 2,070    | 4,000    |         |  |

Note. Blanks indicate data not available.

# II.5.2.10 Sodium Hydrosulfite Industry

## Water Use

Water is used in the process as makeup for the reaction solutions and for steam generation in the rotary dryers. Water is also used for noncontact cooling in the reactor gas vent scrubbers and dryers, as well as pump seals and washdowns.

# Water Sources

Distillation Column Residue. The strongest process waste is the aqueous residue from the distillation column bottoms (solvent recovery system). This waste contains concentrated reaction coproducts and is purged from the system at a rate of approximately  $53~\text{m}^3/\text{d}$  (14,000 gal/d). At one plant (672) this waste is sent to a coproduct pond where it is held and either sold to the pulp and paper industry or bled into the treatment system.

Dilute Wastes. The dilute wastes from process are contributed from leaks, spills, washdowns, and tank car washing. At one plant (672) this is collected in a sump and then sent to the biological treatment system.

Blowdown. Cooling tower and boiler blowdown constitutes a noncontaminated wastewater source. This is sent to the final compartment of the chlorine contact tank without treatment for discharge with the combined effluent of the treatment plant.

Scrubber Wastewater. The vent gas scrubbers create a wastewater source which is sent to the methanol recovery distillers for recycle. This waste eventually goes to the coproduct pond with the distilling column bottoms.

## Wastewater Characteristics

A summary of daily and unit product raw waste loads for the plant sampled (672) is presented in Table 5-27.

## II.5.2.11 Titanium Dioxide Industry

# II.5.2.11.1 Chloride Process

Water Use. Water is used in noncontact cooling, for scrubing tail gases from the purification and oxidation reactor to remove contaminants, and in some cases, in the finishing operation of the product. The total amount of water usage varies from 45.3 m³/Mg to 383 m³/Mg of TiO<sub>2</sub> produced. Cooling water constitutes the major use of water and varies from 10.7 m³/Mg to 280 m³/Mg of TiO<sub>2</sub> produced.

TABLE 5-27. SUMMARY OF RAW WASTE LOADINGS FOUND AT SODIUM HYDROSULFITE PLANT 672 (FORMATE PROCESS) [1]

|                         | Raw waste | loadings |
|-------------------------|-----------|----------|
| •                       | Average,  | Average, |
| Pollutant               | kg/d      | kg/Mg    |
| Toxic pollutants        |           |          |
| Cadmium                 | 0.0041    | 0.00007  |
| Chromium                | 0.81      | 0.14     |
| Copper                  | 0.11      | 0.0019   |
| Lead                    | 0.041     | 0.0007   |
| Nickel                  | 0.16      | 0.0027   |
| Silver                  | 0.0045    | 0.00008  |
| Zinc                    | 0.63      | 0.011    |
| Pentachlorophenol       | 0.04      | 0.0007   |
| Phenol                  | 0.017     | 0.0003   |
| Conventional pollutants |           |          |
| TSS                     | 91.6      | 1.57     |
| COD                     | 1,690     | 28.9     |

## Waste Sources.

Wastes from cooling chlorinator gas - These wastes consist of solid particles of unreacted ore, coke, iron, and small amounts of vanadium, zirconium, chromium and other heavy metal chlorides, which are either dissolved in water and sent to the wastewater treatment plant, or disposed in a landfill as solid waste.

Chlorinator process tail gas scrubber waste - The uncondensed gases, after the liquefaction of titanium tetrachloride, are wet scrubbed to remove hydrogen chloride, chlorine, phosgene, and titanium tetrachloride and chlorine in the first stage. In the second stage, they are scrubbed with caustic soda to remove chlorine as hypochlorite.

Distillation bottom wastes - These contain copper, sulfide, and organic complexing agents added during purification in addition to aluminum, silicon, and zirconium chlorides. These are removed as waterborne wastes, and reaction with water converts silicon and anhydrous aluminum chlorides to their respective oxides.

Oxidation tail gas scrubber wastes - The gases from the oxidation unit are cooled by refrigeration to liquefy and recover chlorine. The uncondensed off-gases are scrubbed with water or caustic soda to remove residual chlorine. When caustic soda is used as the scrubbing solution, the resulting solution of sodium

hypochlorite is either sold, decomposed, sent to the wastewater treatment facility, or discharged without treatment. The scrubber waste stream also contains titanium dioxide particulates.

Finishing operations waste - The liquid wastes from the finishing operation contain titanium dioxide as a suspended solid and dissolved sodium chloride formed by the neutralization of residual hydrochloric acid with caustic soda.

Wastewater Characteristics. A summary of daily and unit product raw waste loads found in screening and verification sampling is shown in Table 5-28.

TABLE 5-28. SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING AND VERIFICATION SAMPLING - TITANIUM DIOXIDE SUBCATEGORY (CHLORIDE PROCESS) [1]

|                         | Raw waste loadings |                  |                  |                   |                   |                   |                   |
|-------------------------|--------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|
| Pollutant               | Minimum,<br>kg/d   | Average,<br>kg/d | Maximum,<br>kg/d | Minimum,<br>kg/Mg | Average,<br>kg/Mg | Maximum,<br>kg/Mg | plants<br>average |
| Toxic pollutants        |                    |                  |                  |                   |                   |                   |                   |
| Chromium                | 1.76               | 64.4             | 127              | 0.024             | 0.79              | 1.55              | 2                 |
| Lead                    | 0.0032             | 2.0              | 4.0              | 0.0004            | 0.024             | 0.049             | 2                 |
| Nickel                  | 0.14               | 2.04             | 3.93             | 0.002             | 0.025             | 0.048             | 2                 |
| Zinc                    | 0.75               | 1.47             | 2.19             | 0.01              | 0.019             | 0.027             | 2                 |
| Conventional pollutants |                    |                  |                  |                   |                   |                   |                   |
| TSS                     | 442                | 4,140            | 7,830            | 6.06              | 51.0              | 95.9              |                   |
| Iron                    | 7.57               | 768              | 1,530            | 0.10              | 9.40              | 18.7              |                   |

# II.5.2.11.2 Sulfate Process

Water Use. Water is used in the preparation of titanium dioxide by the sulfate process for noncontact cooling, air emission control, and process reactions. In the process, water is used to leach the soluble sulfate salts from the reaction mass and to convert the titanyl sulfate to titanium dioxide hydrate. Water is also used to wash the titanium dioxide hydrate precipitate free from residual acid and iron. Water is used for air emission control during the drying of ore, on digester units, and for the cleaning of the kiln gases before they are vented to the atmosphere. In the digester unit, water seals are used to maintain a vacuum. Large amounts of water are also used in the finishing operations.

## Waste Sources.

Strong acid waste - The concentration of sulfuric acid in strong acid waste varies from 15% to 30% as H<sub>2</sub>SO<sub>4</sub>. In addition to sulfuric acid, the waste stream contains ferrous

sulfate, titania, antimony, and other heavy metal salts. A part of the acid is returned to the process and the rest is sent to the treatment facility.

Weak acid waste - The waste generated from washing the titanium dioxide hydrate precipitate is known as weak acid. The concentration of sulfuric acid in this waste varies from 2% to 4% as  $H_2SO_4$  and contains various impurities, including iron sulfate, titania, antimony, and other heavy metal salts. It also includes, in some cases, the conditioning agents added to the precipitate prior to washing, to control and improve the quality of the final product. The weak acid may also include kiln exhaust gas scrubber waste.

Scrubber wastes - Scrubber wastewater results from the scrubbing of vapors emitted during the drying of the ore, during digestion, and during kiln drying. The amount of wastewater generated depends on the amount of water used and type of emission controls practices. The scrubber water contains titanium dioxide particulates, acid mist, sulfur trioxide, and sulfur dioxide. Of all the waste produced by the titanium dioxidesulfate process manufacture subcategory, the scrubber wastewater constitutes the major portion.

Wet milling waste - These wastes are generated during wet finishing of the titanium dioxide pigment. Wet milling is used to produce pigment particles of the desired size and surface character and requires steam and water for repulping the pigment. Caustic soda is also used to remove any residual acidity from the titanium dioxide pigment during the finishing operation. The wastewater from wet finishing operations, therefore, contains titania, sodium sulfate, and other agents added to improve or achieve desired properties in the final product.

Digester sludge - After the digestion of the ore in sulfuric acid, the resulting sulfates are dissolved in water and the insoluble impurities are removed in a clarifier or filter. These include silica, alumina, sulfuric acid, and unreacted iron. The quality of this waste varies and depends on the type and quality of ore used. Data on the quantity of this waste indicate that approximately 210 kg/Mg is produced.

Copperas - The recovered ferrous sulfate is marketed or disposed of as a solid waste. The amount of copperas generated is about 950 kg/Mg of TiO<sub>2</sub>. The copperas generally contains small amounts of adsorbed sulfuric acid.

Wastewater Characteristics. A summary of daily and unit product raw waste loads found in screening and verification sampling is shown in Table 5-29.

TABLE 5-29. SUMMARY OF RAW WASTE LOADINGS FOUND IN SCREENING AND VERIFICATION SAMPLING - TITANIUM DIOXIDE SUBCATEGORY (SULFATE PROCESS) [1]

|                         |       |          | Raw wast     | e loadings |          |          | No. of             |
|-------------------------|-------|----------|--------------|------------|----------|----------|--------------------|
|                         | •     | Average, | Maximum,     | Minimum,   | Average, | Maximum, | plants<br>averaged |
| Pollutant               |       | kg/đ     | kg/d kg/d    | kg/Mg      | kg/Mg    | kg/Mg    |                    |
| Toxic pollutants        |       |          |              |            |          |          |                    |
| Antimony                | 7.66  | 18.0     | 28.3         | 0.08       | 0.21     | 0.32     | 2                  |
| Arsenic                 |       | 1.31     |              |            | 0.014    |          | 1                  |
| Cadmium                 | 0.091 | 2.40     | 6.85         | 0.0009     | 0.027    | 0.078    | 3                  |
| Chromium                | 132   | 200      | 327          | 1.36       | 2.11     | 3.37     | 3                  |
| Copper                  | 8.30  | 11.6     | 15.1         | 0.094      | 0.12     | 0.16     | 3                  |
| Lead                    | 3.28  | 8.56     | 12.4         | 0.037      | 0.089    | 0.13     | 3                  |
| Nickel                  | 8.30  | 11.5     | 14.7         | 0.086      | 0.12     | 0.15     | 2                  |
| Thallium                |       | 0.76     |              |            | 0.0078   |          | 1                  |
| Zinc                    | 53.4  | 55.3     | 5 <b>7.1</b> | 0.55       | 0.57     | 0.59     | 2                  |
| Organics                |       |          |              |            |          |          |                    |
| Phenol                  | 0.20  |          |              |            | 0.002    |          |                    |
| Conventional pollutants |       |          |              |            |          |          |                    |
| TSS                     |       | 20,500   |              |            | 211      |          |                    |
| Iron                    |       | 58,500   |              |            | 602      |          |                    |

Note: Blanks indicate data not available.

#### II.5.3 PLANT SPECIFIC DESCRIPTIONS

The following paragraphs, tables, and figures describe, in as much detail as possible, specific plants for 11 of the inorganic chemical subcategories. Descriptions are limited to plants chosen from the available data because they have the lowest concentrations of toxic pollutants in their final effluent streams and/or are described in sufficient detail in Reference 1.

### II.5.3.1 Aluminum Fluoride

Two plants were selected for more detailed description from available data on the aluminum fluoride industry based on the lowest concentration of toxic pollutants in the final effluent stream.

#### Plant 705

Screening and verification data are provided for plant 705, which produces both hydrofluoric acid and aluminum fluoride. Waste-waters from both processes are mixed and sent to the treatment facility. The combined wastewater is neutralized with lime and sent to a series of settling ponds. Effluent from the last pond is given a final pH adjustment before a portion is discharged and the remainder recycled to the process. Plant 705 does not treat noncontact cooling water.

Figure 5-1 (next page) shows a simplified block diagram of the process including the wastewater treatment facility and sampling locations. Table 5-30 summarizes the flow data of the sample streams and the emission characteristics for important classical pollutant parameters for screening and verification data. Table 5-31 provides toxic pollutant raw waste loads.

TABLE 5-30. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANT 705 PRODUCING ALUMINUM FLUORIDE [1]

| Sampling     | Wastestream                                     | Flow,<br>m³/Mg   |       | kg/Mg AlF3    |                |
|--------------|-------------------------------------------------|------------------|-------|---------------|----------------|
| phase        | description                                     | AlF <sub>3</sub> | SS    | Fluoride      | Aluminum       |
| Screening    | AlF <sub>3</sub> scrubber                       | 8.9              | 117   | 4.67          | 6.94           |
|              | Surface drains a cooling tower, blowdown, etc.  | 17.8             | 3.5   | 6.14          | 0.76           |
|              | Treated waste                                   | 24               | 1.98  | 1.63          | 0.168          |
| Verification | AlF <sub>3</sub> scrubber                       | 8.9              | 12.8  | 12.3          | 4.08           |
|              | Surface drains, a cooling tower, blowdown, etc. | 17.8             | 3.57  | 3.01          | 0 <b>.47</b> 5 |
|              | Treated waste                                   | 24               | 0.048 | 0 <b>.5</b> 5 | 0.012          |

<sup>&</sup>lt;sup>a</sup>Contribution from both HF and AlF<sub>3</sub> plants.

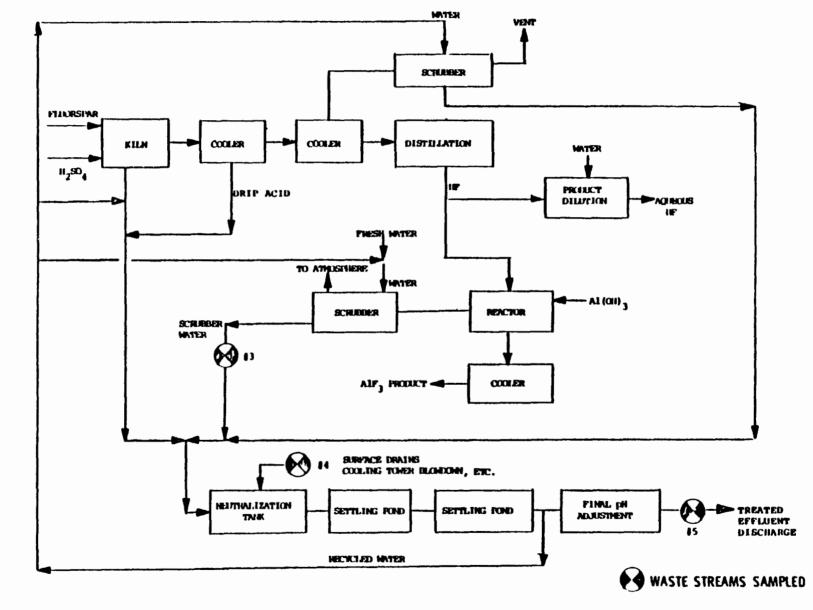



Figure 5-1. General process flow diagram at plant 705 manufacturing aluminum fluoride showing the sampling points [1].

TABLE 5-31. TOXIC POLLUTANT LOADS IN RAW WASTE ALUMINUM FLUORIDE AT PLANT 705 [1] (kg/Mg product)

| Pollutant                                                         | Screening<br>phase                                                | Veri-<br>fication<br>phase                                                   |
|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|
| Arsenic Selenium Chromium Copper Lead Mercury Nickel Zinc Cadmium | 0.002<br>0.001<br>0.0016<br>0.0027<br>0.0004<br>0.000036<br>0.003 | 0.002<br>0.0054<br>0.0071<br>0.001<br>0.000027<br>0.0056<br>0.0047<br>0.0002 |

aScreening and verification data shown in table were not completely identified in Reference 1; reported data were assumed by MRC to correspond to the screening and verification phases as noted in the table.

Note: Blanks indicate data not available.

## Plant 605

Verification data are provided for plant 605, which produces hydrofluoric acid and aluminum fluoride. Wastewaters from the two processes are combined and sent to gypsum ponds for suspended solids removal. The overflow is treated with an effluent stream from another plant product for pH control and neutralization prior to discharge.

Figure 5-2 is a simplified flow diagram showing the sampling points for plant 605. Table 5-32 summarizes the verification data for the wastestream flows and the emissions of selected classifical pollutants. Table 5-33 presents data for water usage, wastewater flow, and solids generated for plants 705 and 605.

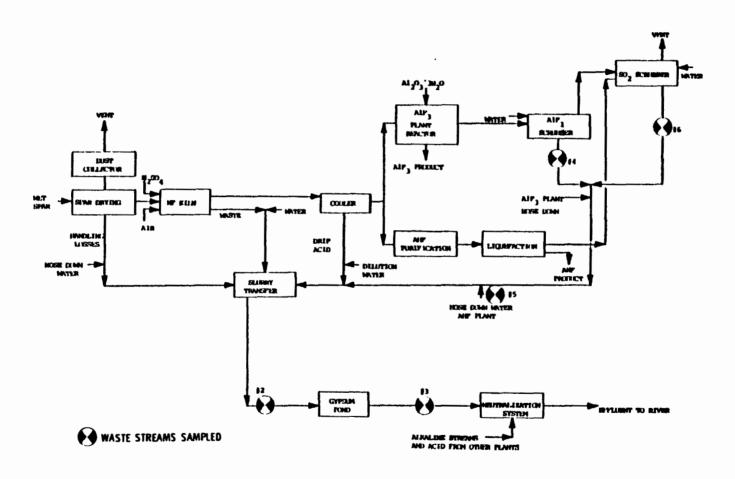



Figure 5-2. General process flow diagram at plant 605 manufacturing aluminum fluoride, showing the sampling points [1].

TABLE 5-32. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANT 605 PRODUCING ALUMINUM FLUORIDE [1]

| Wastestream                    | Flow, m³/Mg                                                                                        | kg/Mg                                                                                                          | AlF <sub>3</sub>                                                                                                                                                   |
|--------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| descripti <b>o</b> n           | AlF3                                                                                               | SS                                                                                                             | Fluoride                                                                                                                                                           |
|                                |                                                                                                    |                                                                                                                |                                                                                                                                                                    |
| AlF₃ scrubber water            | 11.9                                                                                               | 14.7                                                                                                           | 5.53                                                                                                                                                               |
| SO <sub>2</sub> scrubber water | 12.2                                                                                               | 2.6                                                                                                            | 19.3                                                                                                                                                               |
| Gypsum pond influent           | 24.9                                                                                               |                                                                                                                | 16.4                                                                                                                                                               |
| Gypsum pond effluent           | 24.8                                                                                               | 0.232                                                                                                          | 8.00                                                                                                                                                               |
|                                | description  AlF <sub>3</sub> scrubber water  SO <sub>2</sub> scrubber water  Gypsum pond influent | Wastestream m3/Mg description A1F3  A1F3 scrubber water 11.9 SO2 scrubber water 12.2 Gypsum pond influent 24.9 | Wastestream $m^3/Mg$ $kg/Mg$ description $A1F_3$ $SS$ AlF <sub>3</sub> scrubber water $11.9$ $14.7$ $SO_2$ scrubber water $12.2$ $2.6$ Gypsum pond influent $24.9$ |

TABLE 5-33. WATER USAGE, WASTEWATER FLOW, AND SOLIDS GENERATION FOR ALUMINUM FLUORIDE PLANTS 705 and 506 [1] (m³/Mg AlF<sub>3</sub>)

| Description                                                                                 | Plant<br>705 | Plant<br>605 |
|---------------------------------------------------------------------------------------------|--------------|--------------|
| Water usage                                                                                 |              |              |
| Water usage<br>Noncontact co <b>o</b> ling                                                  |              |              |
| Indirect process contact                                                                    | 1.15         |              |
| <pre>(pumps, seals, leaks, spills) Maintenance   (cleaning and work area   washdown)</pre>  | 2.4          | 1.6          |
| Scrubber                                                                                    | 9.52         | 20.0         |
| Wastewater flow Scrubber water Maintenance (equipment cleanup and work area washdown) Other | 9.1<br>2.39  | 20.0<br>1.61 |
| Solids generated                                                                            | 54           | 69           |

Note. Blanks indicate data not available.

### II.5.3.2 Chlor-Alkali

### II.5.3.2.1 Chlor-Alkali Mercury Cell

Two plants (plants 747 and 317) were selected for detailed description from available data on the chlor-alkali (mercury cell) industry. One other plant (plant 167) is described because of the variety of treatments used in processing the final effluent; however, no final effluent data are available for that plant.

Plant 747. Verification data are provided for plant 747. At that plant, the brine dechlorination system has been converted from barometric condensers to a steam ejector system. The conversion resulted in increased chlorine recovery and reduced contact wastewater. By providing settling and secondary filter facilities, the brine filter backwash has been eliminated. The tail gas scrubber liquid is offered for sale; if not marketed, it is decomposed. The mercury-bearing wastewaters are collected and treated with Na<sub>2</sub>S. The reacted solution is filtered, and the filtered solids are retorted for mercury recovery. The filtrate is mixed with the other process wastewaters, and the pH is adjusted before discharge.

The flow diagram of the manufacturing process, including the wastewater treatment facility, is given in Figure 5-3 (next page). Table 5-34 provides the flow data for the sampled streams. The residual chlorine effluent loading at Plant 747, after treatment, ranged from 0.0 to 0.006 kg/Mg. Table 5-35 presents residual mercury loadings, and Table 5-36 shows final effluent loadings of toxic pollutants.

TABLE 5-34. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANTS 747, 317, AND 167 PRODUCING CHLORINE BY USING MERCURY CELLS [1]

|      |        | Wastestream               | Flow,<br>m <sup>3</sup> /Mq |            | kg/Mg Cla |            |
|------|--------|---------------------------|-----------------------------|------------|-----------|------------|
| lant | Stream | description               | Cla Cla                     | Lead       | SS        | Mercury    |
| 747  | 1      | Cell waste                | 0.23                        | 0.000073   | 0.16      | 0.0043     |
|      | 2      | Treated waste             | 0.23                        | 0.000017   | 0.014     | 0.000023   |
|      | 3      | Input Cla drying<br>tower | 0.15                        | 0.00041    |           | 0.0000035  |
|      | 4      | Output Cla drying tower   | 0.24                        | 0.000014   |           | 0.00000072 |
|      | 5      | Dechloro system           | 0.43                        | 0.0000043  | 0.0037    | 0.000015   |
|      |        | Cla condensate            | 0 0067                      | 0.00000087 | 0.000027  | 0.0000018  |
|      | 7      | Tail gas-hypo             | 0.022                       | 0.000031   |           | 0.0000008  |
| ٠.   | 1      | Cell waste                | 0.29                        | 0.00398    | 0.013     | 0.000014   |
|      | -      | Brine mud filtrate        | 0.54                        | 0.000063   | 0.28      | 0.019      |
|      |        | Tank car wash             | 0.11                        | 0.000011   | 0.00198   | 0.0000036  |
|      | •      | Collection tank<br>(Hg+3) | 0.41                        | 7.028      | 8.67      | 0.00056    |
|      | >      | Treated effluent          | 0.41                        | 0.000068   | 0.044     | 0.000043   |
|      | 6      | Deloniser effluent        | 0.29                        | 0.0000038  | 0.0052    | 0.0000002  |
|      | 7      | cooling water             | 135                         | 0.0014     | 2.16      | 0 00014    |
|      | 8      | Final affluent            | 136                         | 0.0032     | 2.45      | 0.00036    |
| 67   |        | All chlorine              | 3.35                        | 0.00024    | 1.89      | 0.013      |
|      | 6      | Cell wash                 | 0.0093                      | 0.0000026  | 0.00057   | 0.0000067  |
|      | 7      | Brine process             | 1.70                        | 0.000018   | 0.0071    | 0.000009   |
|      | R      | Treated Chlorine          | 5.58                        | 0.00065    | 0.013     | 0 3018     |
|      |        | Srine mud                 | 0 67                        | 0.00696    | 3.99      | .000087    |

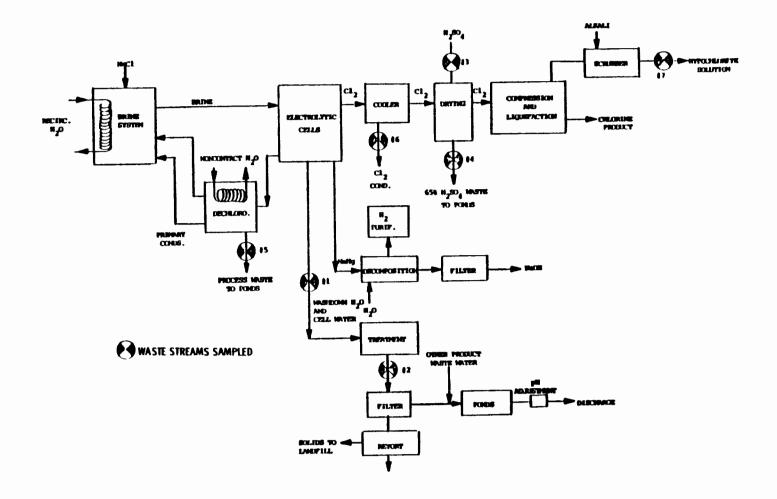



Figure 5-3. General process flow diagram at plant 47, manufacturing chlorine caustic (mercury cell), showing the sampling points [1].

TABLE 5-35. EFFLUENT LOADINGS FROM SELECTED CHLOR-ALKALI PLANTS USING MERCURY CELLS [1]

|                  | Me       | rcury waste load, | ,a<br>kg/Mg    |
|------------------|----------|-------------------|----------------|
| Dlant            |          |                   | Maximum        |
| Plant            | Average  | Maximum daily     | 30-day average |
| 747              | 0.000055 | 0.00008           | 0.000067       |
| 747 <sup>a</sup> | 0.000055 | 0.000083          | 0.000065       |
| 317 <sup>a</sup> | 0.000006 | 0.000048          | 0.00001        |

<sup>&</sup>lt;sup>a</sup>From plant long-term monitoring data.

TABLE 5-36. EFFLUENT TOXIC POLLUTANT LOADS FOLLOWING MERCURY TREATMENT AT CHLORO-ALKALI PLANTS [1] (kg/Mg product)

| Pollutant                                                    | Plant 747                              | Plant 317                                            |
|--------------------------------------------------------------|----------------------------------------|------------------------------------------------------|
| Antimony<br>Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead | <0.059 <0.002 0.03 <0.011 <0.006 0.016 | <0.10<br><0.008<br><0.001<br><0.02<br><0.012<br>0.07 |
| Nickel<br>Silver                                             | <0.011<br><0.0035                      | <0.028<br><0.006                                     |
| Thallium<br>Zinc                                             | <0.01<br><0.006                        | <0.1<br><0.21                                        |
|                                                              |                                        |                                                      |

aFlow = 0.23  $m^3/Mg$  at Plant 747, and 0.41  $m^3$  at Plant 317.

Plant 317. Verification data are provided for plant 317. At that plant, the brine purification mud is mixed with spent sulfuric acid and sodium hypochlorite solution. The treatment removes mercury from the mud and transfers it to the solution. The solution is filtered, and the solids are landfilled. The filtrate is mixed with other mercury-contaminated wastewater, which includes the brine purge, cellroom liquid wastes, and plant

bResults of 3-day verification sampling.

CIndicates effluent load higher than influent load.

area washwater. This is then reacted with sodium hydrosulfide to precipitate the mercury as mercury sulfide and then filtered. The solids are sent to a mercury recovery unit; the filtrate is sent to a holding tank. The effluent from the holding tank is mixed with deionizer waste and noncontact cooling water before discharge.

The process flow diagram, given in Figure 5-4 (next page), shows the waste streams sampled. Table 5-34 summarizes the flow data and pollutant emissions for the sampled streams. Table 5-35 presents residual mercury loadings for plant 317; Table 5-36 shows final effluent loadings of toxic pollutants. Table 5-37 provides the unit flow data from the different wastestreams for plants 317 and 167.

TABLE 5-37. WASTE FLOW DATA FOR CHLOR-ALKALI PLANTS USING MERCURY CELLS [1]

| Wastestream description | Plant | Flow,<br>m³/Mg Cl <sub>2</sub> |
|-------------------------|-------|--------------------------------|
| wastestream description | Flanc | m / Mg C12                     |
| Brine mud               | 317   | 0.54                           |
|                         | 167   | 0.67                           |
| Tail gas scrubber       | 317   | 0.046                          |
| (hypochlorite solution) | 167   | 2.25                           |
| Mercury-contaminated    | 317   | 0.529                          |
| wastewaters             | 167   |                                |

Note. Blanks indicate data not available.

Plant 167. Verification data are provided for plant 167. At that plant, the wastewater streams, consisting of filter backwash, cell-room wash, rainwater runoff, and leaks and spills, are combined and treated for mercury removal. The water is sent to a holding lagoon; the overflow is reduced by reaction with ferrous chloride, which precipitates mercury. The reacted solution is sent to a clarifier. The clarifier underflow is disposed of in a landfill. The overflow is filtered, and the filtrate is passed through activated carbon and an ion exchange column prior to discharge to a lagoon. Effluent from the lagoon, after pH adjustment, is discharged.

Figure 5-5 shows the simplified process flow diagram for plant 167, including the sampling locations. Table 5-34 gives the flow data and pollutant emissions for the sampled streams. Table 5-38 presents toxic pollutant loadings for raw waste from three plants.

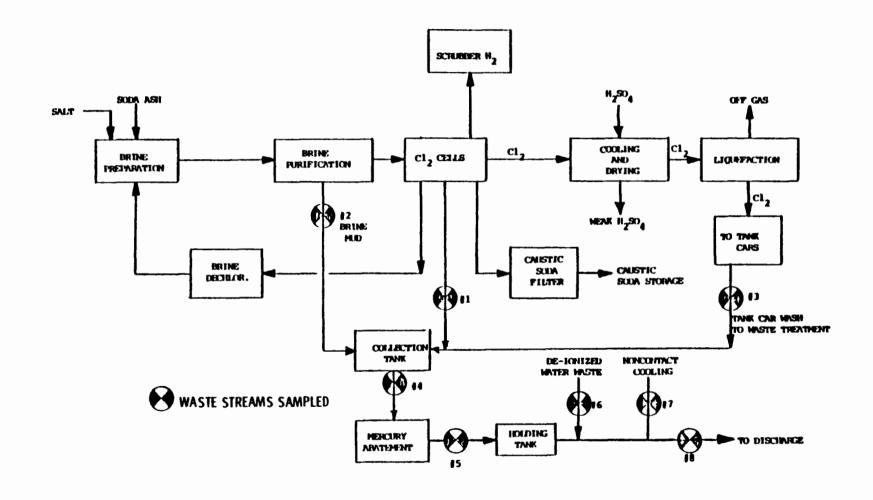



Figure 5-4. General process flow diagram at plant 317, manufacturing chlorine caustic (mercury cell), showing the sampling points [1].

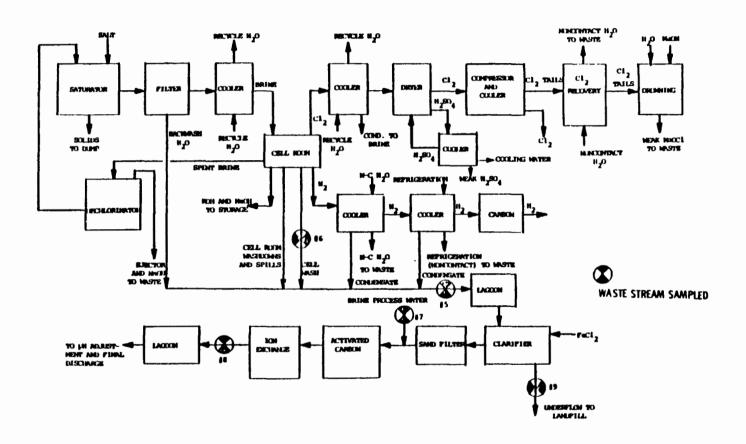



Figure 5-5. General process flow diagram at plant 167, manufacturing chlorine caustic (mercury cell), showing the sampling points [1].

TABLE 5-38. TOXIC POLLUTANT LOADS IN RAW WASTE AT CHLOR-ALKALI PLANTS 747, 317, AND 167 [1] (kg/Mg product)

| Pollutant | Plant 747 <sup>a</sup> | Plant 317 | Plant 167 <sup>a</sup> |
|-----------|------------------------|-----------|------------------------|
|           |                        |           |                        |
| Mercury   | 0.0044                 | 0.063     | 0.013                  |
| Chromium  | 0.00004                | 0.000048  | 0.0004                 |
| Thallium  |                        | 0.00014   | 0.0001                 |
| Arsenic   | 0.000001               | 0.0003    | 0.001                  |
| Nickel    | 0.00003                | 0.0007    | 0.0001                 |
| Cadmium   | 0.00001                | 0.0002    |                        |
| Copper    | 0.0002                 | 0.0006    | 0.0001                 |
| Lead      | 0.0001                 | 0.0007    | 0.0002                 |
| Zinc      | 0.0005                 | 0.010     | 0.0006                 |
| Antimony  | 0.00001                | 0.020     | 0.000                  |
| Silver    | 0.00002                | 0.00005   |                        |
|           |                        |           |                        |

aDoes not include brine muds.

Note. Blanks indicate data not available.

## II.5.3.2.2 Chlor-Alkali Diaphragm Cell

One plant employing a metal anode was selected for detailed description from the available data on the chlor-alkali (metal anode) diaphragm cell industry based on the lowest concentration of toxic pollutants in the final effluent stream.

Plant 736. Verification data are provided for plant 736, which has demisters installed to control the vapors evolved from the last stage of the evaporator during the concentration of caustic. In this treatment, the steam evolved from the concentration of cell liquors passes through metal-wool filters to reduce entrained solids. Cell room washings are sent to a settling chamber, and settled asbestos is sent to a landfill. Other waste waters, consisting of caustic evaporator washings and wastes from salt separation, brine purification operations, and caustic filtration backwash waters, are combined and sent to one of two settling ponds. Skimming devices on the settling ponds remove any oil that separates; the settled solids in the ponds are dredged and diposed of in an abandoned brine well.

Figure 5-6 shows the process flow diagram and sampling points. Table 5-39 provides the pollutant loadings of the streams sampled. Table 5-40 presents the toxic pollutant raw waste load for the plant.

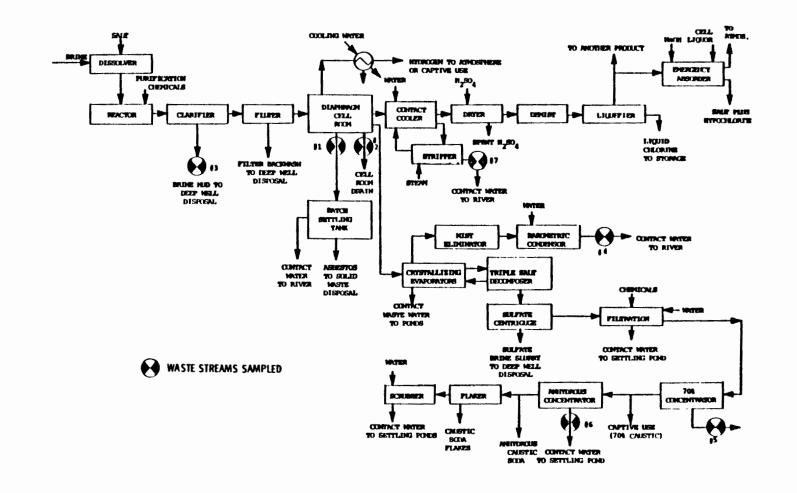



Figure 5-6. General process flow diagram at plant 736, manufacturing chlorine caustic (diaphragm cell), showing the sampling points [1].

TABLE 5-39. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANT 736 PRODUCING CHLORINE USING METAL ANODE DIAPHRAGM CELLS [1]

|        | Wastestream              | Flow,<br>m³/Mg |                        | kg/Mg Cl <sub>2</sub>    |                                        |
|--------|--------------------------|----------------|------------------------|--------------------------|----------------------------------------|
| Stream | description              | Cl2            | SS                     | Lead                     | Asbestos                               |
| 1      | Cell wash                | 0.652          | 0.06                   | 0.00000091               |                                        |
| 2      | Cell room drain          | 0.0163         | 0.00462                | 0.00000275               | 0.000000085                            |
| 3      | Brine mud                | 1.63           | 32.6                   | 0.000031                 | _                                      |
| 4      | 50% Barometric condenser |                | $(32 \text{ mg/L})^a$  | $(<0.01 \text{ mg/L})^a$ | (0.0001 mg/L) <sup>a</sup>             |
| 5      | 70% Barometric condenser |                | (20 mg/L) <sup>a</sup> | $(<0.01 \text{ mg/L})^a$ | (0.001 mg/L) <sup>a</sup>              |
| 6      | 95% Barometric           |                | (90 mg/L) <sup>a</sup> | $(0.01 \text{ mg/L})^a$  | $(4 \times 10^{-11} \text{ mg/L})^{6}$ |
| 7      | Chlorine<br>condenser    | 0.163          | 0.00039                | 0.00000163               |                                        |

aFlow rate of sampled stream is not available; hence pollutant concentration is given in mg/L.

Note. Blanks indicate data not available.

TABLE 5-40. PRIORITY POLLUTANT LOADS IN RAW WASTE AT CHLOR-ALKALI PLANTS 736 and 967 [1]

| Pollutant                   | Plant 736              | Plant 967 <sup>b</sup> |
|-----------------------------|------------------------|------------------------|
| Chromium                    | 0.000044               | 0.00026                |
| Copper                      | 0.0012                 | 0.0019                 |
| Lead<br>Mercury             | 0.0000037<br>0.0000025 | 0.273<br>0.000022      |
| Nickel                      | 0.0000023              | 0.00054                |
| Selenium                    | ND                     | ND                     |
| Thallium                    | ND                     | ND                     |
| Zinc                        | 0.0007                 | 0.00054                |
| Antimony                    | 0.000003               | 0.00026                |
| Arsenic                     | 0.000014<br>0.000006   | 0.0028<br>0.000004     |
| Cadmium<br>Benzene          | ND                     | 0.000004               |
| Carbon tetrachloride        | ND                     | 0.0003                 |
| 1,2-Dichloroethane          | ND                     | 0.001                  |
| Hexachloroethane            | ND                     | 0.00014                |
| Chloroform                  | ND                     | 0.0011                 |
| Dichlorobromomethane        | ND                     | 0.00046                |
| Hexachlorobutadiene         | ND                     | 0.00005                |
| Bis(2-ethylhexyl) phthalate | ND                     | 0.00001                |
| Tetrachloroethylene         | ND                     | 0.00046                |
|                             |                        |                        |

a Does not include brine muds.

Date: 6/23/80

 $<sup>^{\</sup>mathrm{b}}$ Uses graphite anodes

One plant (plant 967) employing a graphite anode was selected for detailed description from the available data on the chlor-alkali (graphite anode) diaphragm cell industry.

Plant 967. Verification data are provided for plant 967. Plant cell washings are sent to an asbestos pond that has a continuous cover of water. Periodically, the settled solids are removed, sealed in drums, and disposed of in a landfill. The overflow from the pond is treated with soda ash to precipitate lead, treated with sulfuric acid to bring the pH down to 6-9, and finally settled.

Table 5-41 shows the wastestreams sampled and waste loadings for plant 967. Figure 5-7 (next page) shows a general process flow diagram, and Table 5-42 shows toxic pollutant removal at the lead treatment facility for the plant. Toxic pollutant raw waste loadings are presented in Table 5-40.

TABLE 5-41. FLOW AND POLLUTANT CONCENTRATION DATA
OF THE SAMPLED WASTESTREAMS FOR PLANT
967 PRODUCING CHLORINE USING GRAPHITE
ANODE DIAPRAGM CELLS [1]

|        | Wastestream                                         | Flow,<br>m³/Mg |       | kg/Mg C | l <sub>2</sub> |
|--------|-----------------------------------------------------|----------------|-------|---------|----------------|
| Stream | description                                         | Cl2            | SS    | Lead    | Asbestos       |
| 1      | Cell building wastes                                | 0.18           | 0.187 | 0.1     | 0.000075       |
| 2      | Lead pond<br>effluent                               | 0.55           | 0.03  | 0.016   | 0.0000156      |
| 3      | Caustic plant effluent                              | 5.38           | 0.841 | 0.014   | 0.00076        |
| 4      | Brine filter<br>back wash                           | 0.45           | 5.75  | 0.0002  | 0.0000018      |
| 5      | Cell wash                                           | 0.18           | 0.05  | 0.0086  | 0.00066        |
| 6      | Condensate and spent H <sub>2</sub> SO <sub>4</sub> | 0.79           | 0.85  | 0.00073 | 0.0000098      |

TABLE 5-42. TOXIC POLLUTANT REMOVAL IN LEAD TREATMENT FACILITY AT CHLOR-ALKALI PLANT 967 [1]

|                                                      | Pollutant<br>kg/M                                   |                                          |                                                |
|------------------------------------------------------|-----------------------------------------------------|------------------------------------------|------------------------------------------------|
|                                                      | Influent                                            | Effluent                                 | Percent                                        |
| Pollutant                                            | average                                             | average                                  | removal                                        |
| Antimony<br>Arsenic<br>Chromium<br>Copper<br>Mercury | 0.00078<br>0.00032<br>0.00016<br>0.0049<br>0.000026 | 0.00005<br>0.00037<br>0.00005<br>0.00003 | 93 <sub>5</sub> 6<br>68.7<br>99 <sub>5</sub> 4 |
| Nickel                                               | 0.00069                                             | <0.00005                                 | >92.8                                          |
| Zinc<br>Lead<br>Thallium                             | 0.0016<br>0.733<br><0.00004                         | <0.0001<br>0.029<br>0.00015              | >93.8<br>96 <sub>5</sub> 0                     |

aFlow - 1.0  $m^3/Mg$ .

bNegative removal.

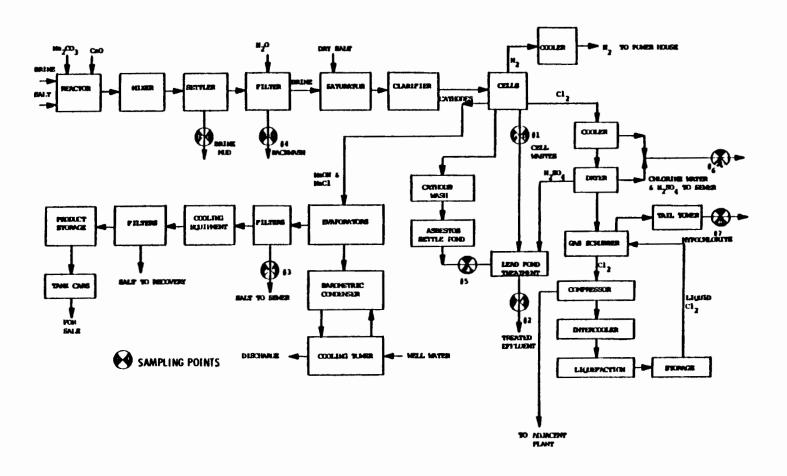



Figure 5-7. General process flow diagram at plant 967, manufacturing chlorine caustic (diaphragm cell), showing the sampling points [1].

Waste flow data from the various sampling points at plants 736 and 967 are contained in Table 5-43. Table 5-44 presents the results of asbestos sampling at the two plants.

TABLE 5-43. WASTE FLOW DATA FOR CHLOR-ALKALI PLANTS USING DIAPHRAGM CELLS [1]

|                                                      | Flow, m <sup>3</sup> | Mg Cl₂         |
|------------------------------------------------------|----------------------|----------------|
| Wastestream description                              | Plant 967            | Plant 736      |
| Brine mud<br>Cell wash<br>Tail gas scrubber effluent | 0.277<br>0.29; 0.105 | 1.68<br>0.0168 |
| Wales Displaying indicate data                       |                      |                |

Note: Blanks indicate data not available.

TABLE 5-44. RESULTS OF ASBESTOS SAMPLING AT CHLOR-ALKALI PLANTS USING DIAPHRAGM CELLS [1]

|                  |                           | Milli          | on fibers/liter |           |
|------------------|---------------------------|----------------|-----------------|-----------|
|                  |                           | Total asbestos |                 |           |
| Plant            | Wastestream description   | fibers         | Chrisotile      | Amphibole |
|                  |                           |                |                 |           |
| 736              | Supply                    | 0.7            | 0.7             | 0         |
|                  | Cell wash                 | 20,000,000     | 20,000,000      | 0         |
|                  | Barometric condenser      | 1.8            | 0               | 1.8       |
|                  | Barometric condenser      | 5 <b>.3</b>    | 5.3             | 0         |
|                  | Barometric condenser      | 140            | 140             | 0         |
| 967 <sup>a</sup> | Supply                    | 970            | 970             | BDL       |
|                  | Cell waste                | 24,000         | 24,000          | 800       |
|                  | Pond effluent             | 2,400          | 2,400           | BDL       |
|                  | Caustic wash              | 7,800          | 7,800           | BDL       |
|                  | Brine filter backwash     | 800            | 620             | 180       |
|                  | Cathode wash waste        | 320,000        | 320,000         | BDL       |
|                  | Condensate and spent acid | 270            | 180             | 89        |
|                  | Neutralizer waste         | 2,100          | 2,100           | BDL       |

<sup>&</sup>lt;sup>a</sup>Uses graphite anode.

# II.5.3.3 Chrome Pigments

Two plants were selected for detailed description from the available data on the chrome pigment industry based on the lowest concentration of toxic pollutants in the final effluent stream.

#### Plant 894

Screening data are provided for plant 894, which produces over 100 products including organic pigments such as copper phthalocyanine. All wastes are combined and treated together. Treatment consists of chromium VI reduction, equalization, and neutralization, followed by clarification and filtration. Sulfur dioxide is added to reduce the hexavalent chromium to the trivalent state at a low pH prior to hydroxide precipitation. The backwash from the sand filters is recycled to the equalization tank. Sludge from the clarifiers is passed through filter presses and then hauled to a landfill, which has a bottom composed of two clay layers with gravel in between to allow the collection of leachate drainage. Water from the sludge is trapped in the gravel layer, then pumped out and returned to the plant for retreatment.

Figure 5-8 (next page) shows the treatment system flow diagram and the sampling points. Table 5-45 provides waste flows and pollutant loadings. Table 5-46 presents influent and effluent verification data as well as monitoring data for the treated effluent.

TABLE 5-45. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANTS PRODUCING CHROME PIGMENTS [1]

|                                | Wastestream                    | Flow,<br>m³/Mg |                | kg/Mg    | produc | ct    |        |
|--------------------------------|--------------------------------|----------------|----------------|----------|--------|-------|--------|
| Plant                          | description                    | product        | TSS            | Chromium | Iron   | Lead  | Copper |
| 894<br>(Verification<br>phase) | Treatment influent             | 100            | 78.1           | 7.93     | 4.9    | 1.52  | 0.356  |
|                                | Treatment effluent             | 100            | 0 <b>.39</b> 3 | 0.032    | 0.03   | 0.011 | 0.004  |
|                                | Leachate                       |                |                | 0.258    | 0.39   | 0.164 | 0.008  |
|                                | Sand filter<br>feed            | 100            | 1.1            | 0.060    | 0.10   | 0.068 | 0.000  |
| 002<br>(Verification<br>phase) | Untreated<br>waste             | 85.6           | 59.8           | 26.2     | 4.64   | 13.9  |        |
| , Fileso,                      | Unfiltered<br>treated<br>waste | 85.6           |                | 11.1     | 0.128  | 10.0  |        |
|                                | Filtered<br>treated<br>waste   | 85.6           | 82.9           | 29.9     | 4.25   | 14.3  |        |

Note. Blanks indicate no data analyzed.

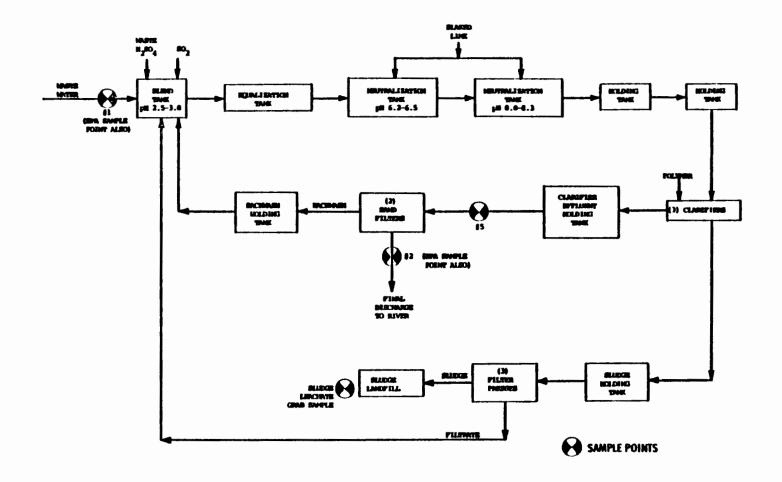



Figure 5-8. General wastewater treatment process flow diagram at plant 894, manufacturing chrome pigment, showing the sampling points [1].

TABLE 5-46. MONITORING AND VERIFICATION SAMPLING OF CHROME PIGMENTS PLANT 894 [1]

| Verification sampling <sup>a</sup> |         |        |       |         |  |
|------------------------------------|---------|--------|-------|---------|--|
|                                    | Influ   | uent   |       | uent    |  |
| Pollutant                          | μg/L    | kg/Mg  | μg/L  | kg/Mg   |  |
| TSS                                | 780,000 | 78     | 3,900 | 0.39    |  |
| Chromium                           | 78,000  | 7.8    | 320   | 0.032   |  |
| Chromium VI                        | <10     | <0.001 | < 30  | <0.003  |  |
| Iron                               | 49,000  | 4.9    | 300   | 0.03    |  |
| Lead                               | 15,200  | 1.52   | 110   | 0.011   |  |
| Zinc                               | 4,200   | 0.42   | 58    | 0.0058  |  |
| Total cyanide                      | 5,100   | 0.51   | < 66  | <0.0066 |  |
| Free cyanide                       | < 940   | <0.094 | <11   | <0.0011 |  |
| Antimony                           | 740     | 0.074  | 300   | 0.030   |  |
| Cadmium                            | 900     | 0.090  | 8.4   | 0.00084 |  |
| Copper                             | 3,560   | 0.36   | 40    | 0.004   |  |
| Nickel                             | 17      | 0.0017 | < 24  | <0.0024 |  |

### Monitoring Data - Treated Effluent

|               | Concentra | ation, µg/L | Waste load    |
|---------------|-----------|-------------|---------------|
| Pollutant     | Av        | 30-day av   | (av), $kg/Mg$ |
|               |           |             |               |
| TSS           | 11,200    | 23,500      | 1.92          |
| Chromium VI   | 110       | 300         | 0.018         |
| Chromium      | 440       | 730         | 0.074         |
| Copper        | 130       | 250         | 0.023         |
| Lead          | 410       | 870         | 0.069         |
| Zinc          | 44        | 75          | 0.0072        |
| Free cyanide  | <12       | 44          | 0.0019        |
| Total cyanide | 120       | 310         | 0.019         |
| Arsenic       | 80        | 160         | 0.0125        |
| Cadmium       | 80        | 120         | 0.013         |
| Mercury       | <1        | 1.7         | 0.00007       |
|               |           |             |               |

 $<sup>\</sup>overline{a}$ Average flow = 153 m<sup>3</sup>/Mg.

### Plant 002

Verification data are provided for plant 002, which normally produces over 100 products. However, at the time of sampling, zinc chromate was being produced by a continuous production unit. All process contact wastes are treated continuously. The waste is pumped to a treatment tank where sulfur dioxide is added to convert hexavalent chromium to trivalent. The pH is adjusted to 8.5 and the waste is then passed through precoated filters and discharged to a sewer.

Figure 5-9 (next page) shows the waste treatment flow diagram and sampling points. Table 5-45 shows the waste flows and pollutant loadings. At sample point 2, half of the sample was filtered through a glass filter on a Buechner funnel to simulate the filtration process that was bypassed at the time of sampling.

Table 5-47 presents toxic pollutant raw waste loads for both plants. Table 5-48 shows water usage and aqueous process waste effluents.

TABLE 5-47. TOXIC POLLUTANT LOAD IN RAW WASTE AT CHROME PIGMENT PLANTS [1] (kg/Mg product)

| Pollutant           | Plant 894        | Plant 002      |
|---------------------|------------------|----------------|
| Cyanide             | 0.754            | 0.072          |
| Chromium<br>Cadmium | 11.5<br>0.165    | 0.020<br>30.8  |
| Copper              | 1.58             | 0.140          |
| Lead<br>Zinc        | 7.52<br>0.855    | 5.46<br>16.4   |
| Antimony<br>Nickel  | 1.612            | 0.136<br>0.032 |
| Phenols             | 0.0334<br>0.0152 | 0.032          |
| Phenolics           | 0.145            |                |
|                     |                  |                |

Note: Blanks indicate data not available.

TABLE 5-48. WATER USAGE AND AQUEOUS PROCESS WASTE EFFLUENTS FROM CHROME PIGMENT PLANTS [1] (m³/Mg product)

|                                   | Plant 894                                   |                               |                 |                 | Plant 002                       |                               |                |
|-----------------------------------|---------------------------------------------|-------------------------------|-----------------|-----------------|---------------------------------|-------------------------------|----------------|
| Description                       | Chrome<br>yellow<br>and<br>chrome<br>orange | Molybdate<br>chrome<br>orange | Chrome<br>oxide | Chrome<br>green | Chrome yellow and chrome orange | Molybdate<br>chrome<br>orange | Zinc<br>yellow |
|                                   |                                             |                               |                 |                 |                                 |                               |                |
| Water usage<br>Noncontact cooling |                                             | 0                             | 4.7             |                 | 3.1                             | 5.0                           | 0              |
|                                   | 2.2                                         | -                             |                 |                 |                                 |                               | =              |
| Consumed in product boiler feed   | 3.3                                         | 3.5                           | 2.0             |                 | 1.0                             | 1.3                           | 1.0            |
| Process waste effluent            | 120                                         | 110                           | 31              | 48              | 35                              | 31                            | 20             |

Note. Blanks indicate data not available.

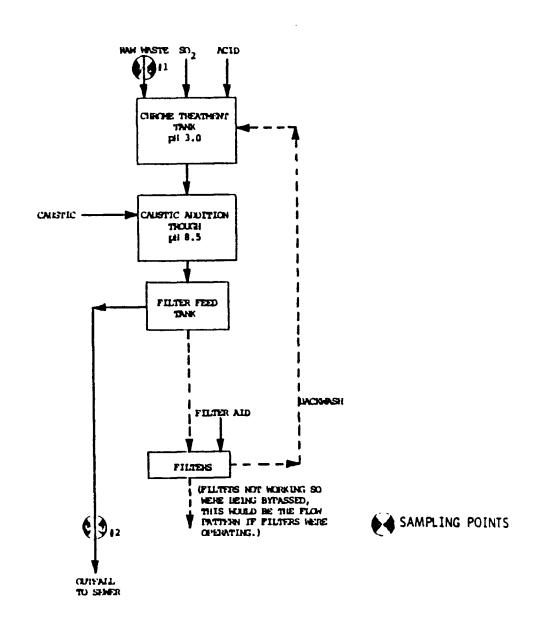



Figure 5-9. General wastewater treatment process flow diagram at plant 002, manufacturing chrome pigment, showing the sampling points [1].

## II.5.3.4 Copper Sulfate

One plant was selected for detailed description from the available data on the copper sulfate industry based on the lowest effluent concentration of toxic pollutants in the final effluent stream.

## Plant 034

Verification data are provided for plant 034. Waste from the plant drains into a sump from which it is pumped to two neutralization tanks where lime is added. The waste is then passed through a filter press, and filter residue is hauled to a landfill disposal site. The filtrate is mixed with noncontact cooling water and steam condensate in a collection tank. Wastes are then passed through a cloth filter for final polishing and discharged to a sewer.

Figure 5-10 (next page) shows the process flow and sampling points for this plant. Table 5-49 provides data on waste flows and classical pollutant emissions. Table 5-50 presents a summary of the raw waste loadings at this plant, and Table 5-51 gives treated and 30-day monitoring data.

TABLE 5-49. FLOW AND POLLUTANT CONCENTRATION DATA
OF THE SAMPLED WASTESTREAMS FOR
PLANT 034 PRODUCING COPPER SULFATE [1]

| Wastestream                  | Flow,<br>m³/Mg |         | kg/Mg j  | product |        |
|------------------------------|----------------|---------|----------|---------|--------|
| description                  | product        | TSS     | Phenol   | Copper  | Nickel |
| CuSO4 waste <sup>a</sup>     | 2.23           | 0.0862  | 0.00004  | 4.11    | 0.248  |
| Effluent from lime treatment | 2.23           | 0.0769  | 0.000027 | 0.0101  | -      |
| Steam condensate             | 0.371          | 0.00133 | -        | 0.00167 | -      |

<sup>&</sup>lt;sup>a</sup>Infiltration of groundwater into the collection sump was suspected at the time of sampling.

TABLE 5-50. SUMMARY OF RAW WASTE LOADINGS FOUND AT COPPER SULFATE PLANT 034 [1]

|                          | Load    | ings    |
|--------------------------|---------|---------|
|                          | Average | Average |
| Pollutant                | kg/day  | kg/Mg   |
| Priority pollutants:     |         |         |
| Antimony                 | 0.014   | 0.00069 |
| Arsenic                  | 0.16    | 0.0078  |
| Cadmium                  | 0.039   | 0.0019  |
| Copper                   | 83.9    | 4.11    |
| Lead                     | 0.0079  | 0.00039 |
| Nickel                   | 5.08    | 0.25    |
| Zinc                     | 0.50    | 0.024   |
| Conventional pollutants: |         |         |
| TSS -                    | 1.78    | 0.087   |

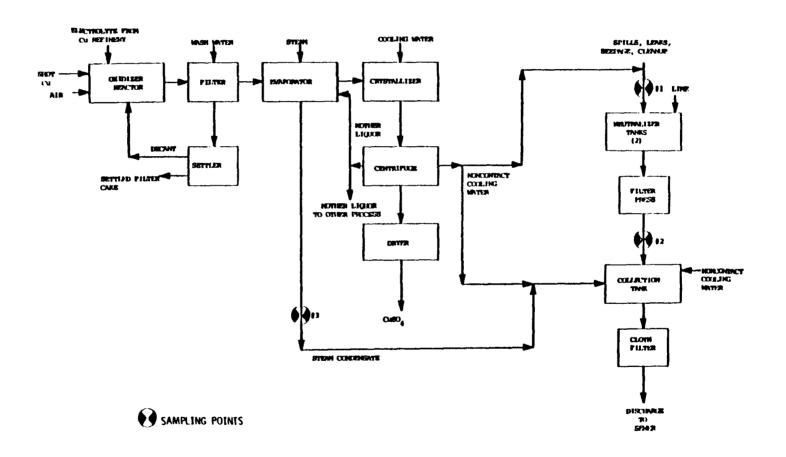



Figure 5-10. General process flow diagram at plant 034, manufacturing copper sulfate, showing the sampling points [1].

TABLE 5-51. VERIFICATION SAMPLING AT COPPER SULFATE PLANT 034 [1]

|            | Raw wa    | aste <sup>a</sup> | Treated | effluentb |
|------------|-----------|-------------------|---------|-----------|
| Pollutant_ | μg/L      | kg/Mg             | μg/L    | kg/Mg     |
|            | Verific   | cation Samp       | ling    |           |
| TSS        | 39,200    | 0.087             | 35,000  | 0.078     |
| Copper     | 1,850,000 | 4.1               | 4,650   | 0.010     |
| Nickel     | 112,000   | 0.248             | 240     | 0.0005    |
| Antimony   | 330       | 0.0007            | 36      | 0.000079  |
| Arsenic    | 3,500     | 0.0078            | <20     | 0.000044  |
| Cadmium    | 870       | 0.0019            | 1       | 0.000002  |
| Chromium   | 142       | 0.00038           | 5       | 0.00001   |
| Lead       | 180       | 0.00039           | 5       | 0.00001   |
| Selenium   | <11       | 0.000024          | 100     | 0.00022   |
| Zinc       | 11,100    | 0.025             | 16      | 0.000035  |

# Monitoring Data - Treated Effluent<sup>C</sup>

|                                         | Concenti                            | ration, µg/L                              | Waste load                                      |
|-----------------------------------------|-------------------------------------|-------------------------------------------|-------------------------------------------------|
| Pollutant                               | Av                                  | 30-day avg                                | (av), kg/Mg                                     |
| TSS Copper Nickel Zinc Arsenic Selenium | 26,000<br>4,300<br>340<br>120<br>12 | 62,400<br>6,900<br>750<br>290<br>41<br>43 | 0.096<br>0.016<br>0.0013<br>0.00044<br>0.000044 |

<sup>&</sup>lt;sup>a</sup>Raw waste flow =  $2.23 \text{ m}^3/\text{Mg}$ .

## II.5.3.5 Hydrofluoric Acid

One plant was selected for detailed description from the available data on the hydrofluoric acid industry based on the lowest concentration of toxic pollutants in the final effluent stream. Information on an additional plant is also presented due to the significant amount of available data.

bBefore combining with noncontact cooling and steam condensate streams.

CTreated effluent flow - 3.7 m<sup>3</sup>/Mg.

#### Plant 705

Screening and verification data are provided for plant 705, which produces hydrofluoric acid and aluminum fluoride. The drip acid is sent to the wastewater treatment facility, and the gypsum produced from the reaction is slurried with water and also sent to the treatment facility. Wastewaters from the HF production facility are combined with the aluminum fluoride plant wastewaters. The combined raw wastewater is treated with lime and sent to settling ponds before discharge.

Figure 5-11 (next page) shows the general process and the locations of the sampling points. Table 5-52 provides the screening and verification flow data and TSS and fluoride emissions. Table 5-53 shows pollutant removability data for plant 705.

TABLE 5-52. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS OF PLANTS PRODUCING HYDROFLUORIC ACID [1]

|                      |        | Wastestream                                 | Flow,<br>m <sup>3</sup> /Mg | ka/1     | Mg HF |
|----------------------|--------|---------------------------------------------|-----------------------------|----------|-------|
| Plant                | Stream | description                                 | HF                          | Fluoride | SS    |
| 705<br>(Screening    | 1      | Kiln slurry                                 | 2 <b>6.</b> 6               | 14.6     | 1,360 |
| phase)               | 2      | Scrubber waste<br>water                     | 10                          | 9.6      | 0.07  |
|                      | 3      | Surface drains<br>cooling tower<br>blowdown | 20                          | 6.9      | 3.92  |
|                      | 4      | Treated effluent                            | 23.3                        | 1.58     | 1.91  |
| 705<br>(Verification | 1      | Kiln slurry                                 | 2 <b>6.</b> 6               | 3.8      | 4,730 |
| phase)               | 2      | Scrubber waste<br>water                     | 10                          | 1.52     | 0.023 |
|                      | 4      | Surface drains<br>cooling tower<br>blowdown | 20                          | 3.38     | 4.02  |
|                      | 5      | Treated effluent                            | 23.3                        | 0.54     | 0.04  |
| 251<br>(Verification | 5      | AHF plant<br>hosedown                       | 1.2                         | 1.9      | 0.26  |
| phase)               | 6      | SO <sub>2</sub> scrubber<br>waste           | 14.4                        | 0.31     | 0.1   |
|                      | 2      | Gypsum pond<br>inlet                        | 82.3                        | 54       | 1,530 |
|                      | 3      | Gypsum pond outlet                          | 82.3                        | 26.5     | 0.8   |

Date: 6/23/80

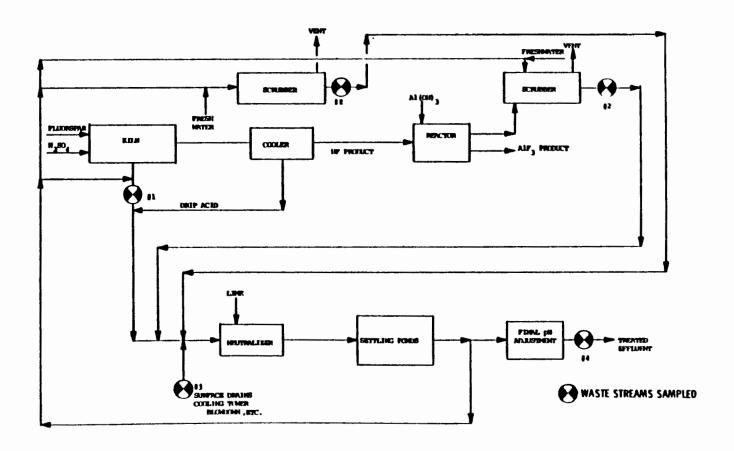



Figure 5-11. General process flow diagram at plant 705, manufacturing hydrofluoric acid, showing the sampling points [1].

TABLE 5-53. TOXIC POLLUTANT REMOVAL AT HYDROFLUORIC ACID PLANT 705<sup>a</sup>,<sup>b</sup> [1] (kg/Mg)

|                                                              | <del></del>                                                                 | <del></del>                                                                      |
|--------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Pollutant                                                    | Influent                                                                    | Effluent                                                                         |
| Antimony Arsenic Cadmium Chromium Copper Lead Mercury Nickel | 0.00065<br>0.0025<br>0.0006<br>0.024<br>0.018<br>0.0031<br>0.00036<br>0.035 | 0.00012<br><0.0006<br>0.0001<br>0.0029<br>0.0012<br>0.0014<br>0.00003<br><0.0006 |
| Selenium                                                     |                                                                             | 0.0003                                                                           |
| Thallium<br>Zinc                                             | 0.00016<br>0.015                                                            | 0.00007<br>0.0033                                                                |
|                                                              |                                                                             |                                                                                  |

aFlow = 62.1 m³/Mg; value for total raw waste from HF only.

Note: Blanks indicate data not available.

#### Plant 251

Verification data are provided for plant 251, in which the final effluent stream was not sampled. The drip acid at this facility is sent to the waste treatment plant, and the hydrofluoric acid wastewaters are combined with aluminum fluoride plant waste for treatment. In addition to drip acid, the plant wastewater consists of scrubber water, gypsum slurry, and plant area hose down. The treatment consists of gypsum ponds in which the suspended solids are removed. Overflow from the last gypsum pond is neutralized, and the pH is adjusted with wastes from other product lines.

Figure 5-12 provides a block diagram of the process showing the sampling locations. Table 5-52 gives a summary of the waste flow verification data and the concentration and loads of important classical pollutants. Table 5-54 give raw waste toxic pollutant loads for the above two plants. Water usage, wastewater flow, and solids generation data are presented in Table 5-55.

bValues are for combined wastes from HF and AlF3.

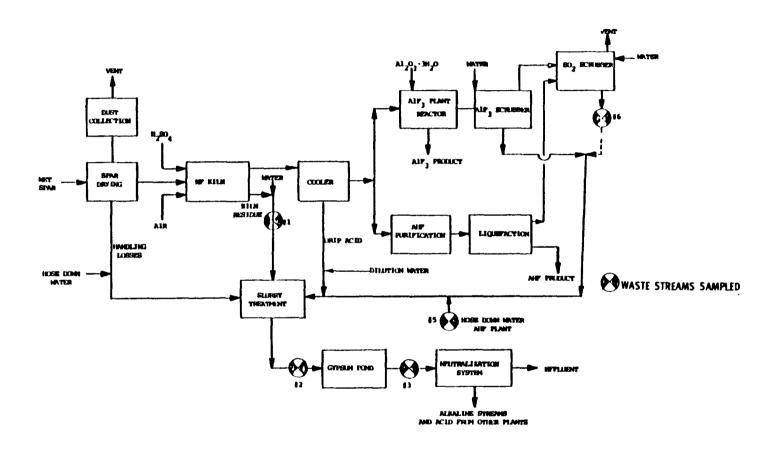



Figure 5-12. General process flow diagram at plant 251, manufacturing hydrofluoric acid, showing the sampling points [1].

TABLE 5-54. TOXIC POLLUTANT LOAD IN RAW WASTE AT HYDROFLUORIC ACID PLANTS [1] (kg/Mg product)

| Pollutant | Plant 705 | Plant 705 | Plant 251 |
|-----------|-----------|-----------|-----------|
|           |           |           |           |
| Arsenic   | 0.003     |           | 0.012     |
| Copper    | 0.027     | 0.018     | 0.015     |
| Lead      | 0.003     | 0.0075    | 0.0098    |
| Nickel    | 0.004     | 0.032     | 0.143     |
| Selenium  | 0.0005    |           | 0.0013    |
| Zinc      | 0.269     | 0.014     | 0.031     |
| Cadmium   | 0.0001    | 0.0004    |           |
| Chromium  | 0.0043    | 0.018     | 0.06      |
| Mercury   | 0.00008   | 0.0004    | 0.002     |
| Antimony  | 0.0016    | 0.0004    | 0.0003    |
| Thallium  |           |           |           |
|           |           |           |           |

Note: Blanks indicate data not available.

TABLE 5-55. WATER USAGE, WASTEWATER FLOW, AND SOLIDS GENERATION FOR HYDROFLUORIC ACID PLANT 251 AND PLANT 7-5 [1] (m³/Mq HF)

| Description                                     | Plant 705     | Plant 251             |
|-------------------------------------------------|---------------|-----------------------|
| Water usage                                     |               |                       |
| Noncontact cooling                              | 30            | 154                   |
| Gypsum slurry transport Maintenance, equipment, | 30            | 0                     |
| and area washdown                               | 16.9          |                       |
| Air pollution control                           | 11.2          | 7.9                   |
| Wastewater flow                                 | matal massals | <i>C</i> <b>1</b> · 0 |
| Gypsum slurry                                   | Total recycle | 64.0                  |
| Drip acid                                       | 0.018         | 0.049                 |
| Scrubber wastewater                             | 11.2          | 14.4                  |
| Other                                           | 22.5          | 0.53                  |
| Solids generation Gypsum solids going to        |               |                       |
| treatment facility                              | 3,300         | 1,530                 |
| Total solids produced                           | 3,380         | 1.650                 |
| Kiln residue produced Total wastewater influent | _a            | 4.0 <sup>a</sup>      |
| to treatment facility                           | 58.2          | 82.4                  |

<sup>&</sup>lt;sup>a</sup>Residue is slurried with water.

Note: Blanks indicate data not available.

## II.5.3.6 Hydrogen Cyanide

Two plants were selected for detailed description from the available data on the hydrogen cyanide industry based on the lowest concentration of toxic pollutants in the final effluent stream.

### Plant 765

Screening and verification data are provided for plant 765. combined wastes for the plant consist of distillation bottoms, ammonia recovery purge liquor, tank car washings, leaks, spills, and equipment cleanout, purge from the noncontact cooling water system, and stormwater runoff. These combined wastes are commingled with the other cyanide production wastewaters and sent to the alkaline chlorination treatment facility, which consists of a trench, where the pH is adjusted to 10 with dilute caustic, followed by two ponds. Sodium hypochlorite is added at the pond inlets. The effluents from the ponds are discharged to a third pond where sufficient chlorine and caustic are added to reach the required effluent quality; namely, an oxidizable free-cyanide residual of 0.1 ppm and a residual chlorine of about 15 to 20 The third pond is operated in a continuous-flow mode and is baffled to control circulation. Agitation is provided in the flow channel, and the outlet is equipped with a control device to stop the flow when the effluent cyanide concentration exceeds the desired level.

Figure 5-13 (next page) is a flow diagram of the treatment process indicating the sampling locations used during the screening program. Table 5-56 provides the flow and pollutant data for the sampled streams. A comparison of the raw and treated effluent data in the table indicates that the plant achieves a cyanide reduction of 99%. Table 5-57 gives treated effluent and daily monitoring data for plant 765.

TABLE 5-56. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANT 765 PRODUCING HYDROGEN CYANIDE [1]

|                                                                         | Flow,                                       | kg/Mg HCN           |                                                             |                                                      |  |
|-------------------------------------------------------------------------|---------------------------------------------|---------------------|-------------------------------------------------------------|------------------------------------------------------|--|
| Wastestream description                                                 | m³/Mg<br>HCN                                | SS                  | Ammonia<br>nitrogen                                         | Cyanide                                              |  |
| Raw HCN waste Influent to the pond Treated effluent from the final pond | 57<br>57 <sup>a</sup><br>57 <sup>b</sup> ,c | 1.08<br>55.8<br>1.9 | 27.2 <sub>b</sub><br>11.1 <sup>b</sup><br>7.05 <sup>b</sup> | 0.82<br>0.388 <sup>b</sup><br><0.000114 <sup>b</sup> |  |

<sup>&</sup>lt;sup>a</sup>Stream is a commingled wastewater; flow given is the amount contributed by the HCN process.

bPollutant load was calculated by apportioning the mass emitted between the two wastestreams on the basis of measured flows; this is clearly a very approximate process, and the results must be used with caution.

Chaddition or loss of water from rainfall, addition of chemicals, and evaporation has not been estimated.

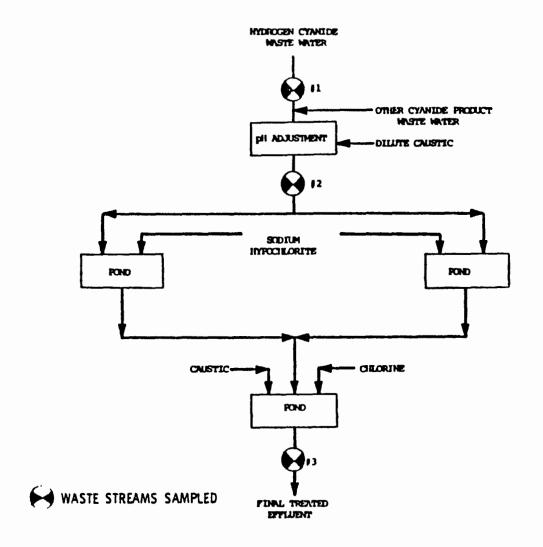



Figure 5-13. General wastewater treatment process flow diagram at plant 765, manufacturing hydrogen cyanide, showing the sampling points [1].

TABLE 5-57. VERIFICATION SAMPLING AT HYDROGEN CYANIDE PLANT 765 [1]

## Verification samplinga

|               | Infl | uent  | Effluent quality, |
|---------------|------|-------|-------------------|
| Pollutant     | mg/L | kg/Mg | mg/L              |
| TSS           | 71   | 6.52  | 19                |
| Total cyanide | 28.4 | 2.61  | <0.0026           |
| Free cyanide  | 6.81 | 0.626 | <0.002            |
| BOD           | 6.3  | 0.580 | <33               |
| Ammonia       | 194  | 17.8  | 124               |

# Monitoring Data - Treated Effluent<sup>C</sup>

|                    | Concentration, mg/L |         |         | Waste load, kg/Mg |         |         |
|--------------------|---------------------|---------|---------|-------------------|---------|---------|
| Parameter          | Minimum             | Average | Maximum | Minimum           | Average | Maximum |
|                    | 0.70                | 2.0     | 0.0     | 0.020             | 0.100   | 0.46    |
| Total cyanide      | 0.78                | 3.8     | 9.2     | 0.039             | 0.192   | 0.46    |
| Oxidizable cyanide | 0.01                | 0.2     | 3.27    | 0.0005            | 0.01    | 0.16    |
| Ammonia nitrogen   | 3.86                | 72      | 204     | 0.193             | 3.63    | 10.2    |
| $(NH_3-N)$         |                     |         |         |                   |         |         |
| COD                | 54.2                | 320     | 904     | 2.71              | 15.9    | 45.2    |
| TOC                | 15.7                | 166     | 512     | 0.78              | 8.3     | 25.6    |
| TSS                | 5.0                 | 35      | 267     | 0.25              | 1.75    | 13.4    |
|                    |                     |         |         |                   |         |         |

 $a_{\text{Flow}} \approx 57 \text{ m}^3/\text{Mg}.$ 

## Plant 782

Verification data are provided for plant 782, which combines the plant wastewater with other production wastewater and treats the combined flow in a complex biological treatment system. A part of the commingled wastewater is sent to an ammonia stripper from which the aqueous effluent is mixed with the rest of the wastewater and sent to the treatment facility. The primary treatment facility consists of oil skimmers, grit removal, and pH adjustment. Effluent from the primary treatment goes through an API separator and into an aerated lagoon. Effluent from the lagoon is flocculated and sent to a clarifier. Overflow from the clarifier is sent to a final settling basin before discharge. Surface drainage from the hydrogen cyanide and other process areas is collected separately. It is treated chemically and passed through a trickling filter from which a portion of the

Average for 2 days only.

CResults of a 28-day comprehensive test.

A general flow diagram of the treatment process including the streams sampled is shown in Figure 5-14 (next page). Table 5-58 provides the flow data and concentrations of the important pollutants. Because of the intermixing of the various product wastewaters, unit pollution loads are uncertain and not given. The total wastewater generated from HCN manufacture and the amount going to the treatment facility was verified during the plant visit and was confirmed in the 308 Questionnaire response provided by the industry. Based on that flow and the concentrations determined by analysis, the raw waste load is that shown below:

|                                              | Flow,<br>m³/Mg | Total<br>cyanide,<br>kg/Mg HCN | Ammonia<br>nitrogen,<br>kg/Mg HCN | TSS,<br>kg/Mg HCN |
|----------------------------------------------|----------------|--------------------------------|-----------------------------------|-------------------|
| Effluent from combined plant waste treatment | 9.9            | 0.02                           | 0.05                              | 0.74              |

The load values assigned to the HCN process were estimated by proportioning the total loads in relation to the respective flow rates. The result is, therefore, approximate and must be used with caution. In calculating the pollutant loads, the loss or gain of water to the treatment system due to factors such as evaporation, loss through filtered solids, precipitation, and the water introduced by treatment chemicals, has been neglected.

TABLE 5-58. FLOW AND POLLUTANT CONCENTRATION DATA OF OF THE SAMPLED WASTESTREAMS FOR PLANT 782 PRODUCING HYDROGEN CYANIDE [1]

|        |                                        |                 | mg/L             |                     |      |
|--------|----------------------------------------|-----------------|------------------|---------------------|------|
| Stream | Wastestream description                | Flow,<br>m³/day | Total<br>cyanide | Ammonia<br>nitrogen | TSS  |
| 1      | Distillation bottom purge              | 11.3            | 70               | 887                 | 24   |
| 2      | Ammonia stripper influent              | 1,140           | 167              | 410                 | 76   |
| 3      | Ammonia stripper effluent              | 1,140           | 51.3             | 41                  | 162  |
| 4      | Influent to primary treatment facility | 5,560           | 31               | 1,380               | 110  |
| 5      | Final treated effluent                 |                 | 2.2              | 5.16                | 74.3 |

Note. Blanks indicate data not available.

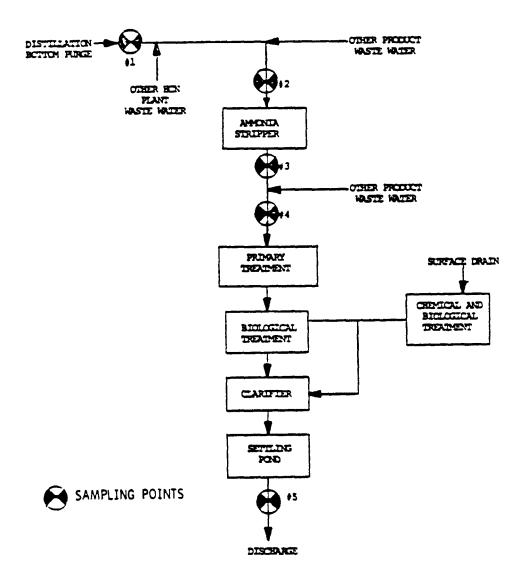



Figure 5-14. General wastewater treatment process flow diagram at plant 782, manufacturing hydrogen cyanide, showing the sampling points [1].

The final concentrations of cyanide and ammonia in the treated effluent shown in Table 5-58 indicate that the treatment system is efficient in the removal of these pollutants with cyanide destruction exceeding 99 percent. Table 5-59 gives treated effluent and daily monitoring data for plant 782.

TABLE 5-59. VERIFICATION SAMPLING AT HYDROGEN CYANIDE PLANT 782 [1]

Verification sampling<sup>a</sup>

# Effluent Influent quality, mg/L kg/Mg mg/L

|               | Influ | quality, |      |
|---------------|-------|----------|------|
| Pollutant     | mg/L  | kg/Mg    | mg/L |
|               |       |          |      |
| TSS           | 110   | 2.87     | 74   |
| Total cyanide | 31    | 0.808    | 2.2  |
| Free cyanide  | 19.0  | 0.495    | 1.73 |
| BOD           | 1,550 | 40.3     | 376  |
| Ammonia       | 1,380 | 36.0     | 5.04 |

Daily Monitoring Data - Treated Effluent

|                    | Concentration, mg/L |         |         | Was     | kg/Mg   |         |
|--------------------|---------------------|---------|---------|---------|---------|---------|
| Parameter          | Minimum             | Average | Maximum | Minimum | Average | Maximum |
| BOD                | 9.0                 | 39.7    | 125     | 0.041   | 2.38    | 10.2    |
| Oxidizable cyanide | 0.021               | 0.112   | 0.18    | 0.0014  | 0.0072  | 0.013   |
| Total cyanide      | 0.38                | 2.33    | 8.83    | 0.0025  | 0.14    | 1.0     |
| Ammonia            | 2.0                 | 27.1    | 281     | 0.023   | 1.7     | 24.1    |
| TSS                | 5.0                 | 103     | 585     | 0.0088  | 6.5     | 50.6    |
|                    |                     |         |         |         |         |         |

aFlow = 6.25  $m^3/Mg$ .

Water usage and wastewater flow data are presented in Table 5-60 for plants 765 and 782. The large variation in flow is the result of plant 765 not recycling the water used to absorb the hydrogen cyanide from the reactor gases. This procedure is used because the plant is located where sufficient cold water is readily available at low cost, and once-through use is cost effective. Table 5-61 gives toxic pollutant raw waste loads for the plants.

TABLE 5-60. WATER USAGE AND WASTEWATER FLOW DATA FOR HYDROGEN CYANIDE PLANTS 765 AND 782 [1] (m<sup>3</sup>/Mg)

| Plant 765    | Plant 782    |
|--------------|--------------|
| 29.5<br>58.3 | 18.93<br>8   |
| 57           | 9.9          |
|              | 29.5<br>58.3 |

TABLE 5-61. TOXIC POLLUTANT LOADS IN RAW WASTE AT HYDROGEN CYANIDE PLANTS [1] (kg/Mg product)

| Pollutant                     | Plant 765 | Plant 782 <sup>a</sup> | Plant 765 <sup>a</sup> |
|-------------------------------|-----------|------------------------|------------------------|
| Total cyanide<br>Free cyanide | 5.9       | 0.808<br>0.49          | 1.6<br>0.807           |
| Thallium                      | 0.0014    | 0.43                   | 0.007                  |

aVerification data.

Note: Blanks indicate data not available.

## II.5.3.7 Nickel Sulfate

Two plants were selected for detailed description from the available data on the nickel sulfate industry based on the lowest concentration of toxic pollutants in the effluent stream.

## Plant 120

Verification data are provided for plant 120. Treatment of process wastes at the plant consists of pH adjustment to precipitate nickel and other trace metals, followed by sand filtration. The wastes are mixed with other plant wastes and discharged through a single outfall. Solid wastes from the plant are disposed of or used as landfill.

Figure 5-15 provides the general process flow diagram. Figure 5-16 presents the wastewater treatment process flow diagram including sampling points. Table 5-62 gives flow and concentration data for the sampled wastestreams. Table 5-63 presents the treated effluent and daily monitoring data for plant 120.

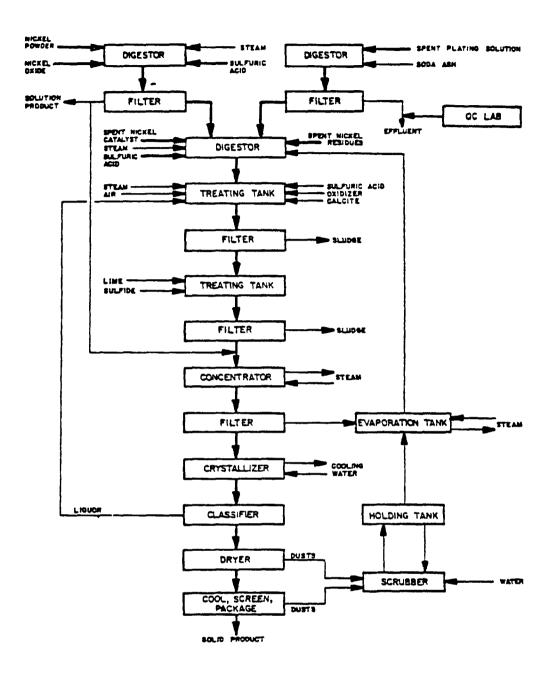



Figure 5-15. General process flow diagram of plant 120, manufacturing nickel sulfate [1].

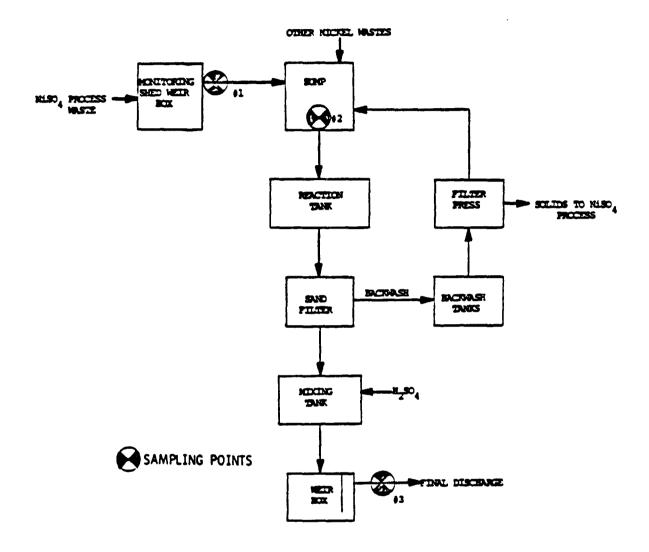



Figure 5-16. General wastewater treatment process flow diagram at plant 120, manufacturing nickel sulfate, showing the sampling points [1].

TABLE 5-62. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANTS PRODUCING NICKEL SULFATE [1]

|       | Wastestream                      | Flow,<br>m <sup>3</sup> /Mg | _              | kg/Mg           | product |         |
|-------|----------------------------------|-----------------------------|----------------|-----------------|---------|---------|
| Plant | description                      | product                     | TSS            | Nickel          | Copper  | Lead    |
| 120   | NiSO4 waste<br>All nickel wastes | 0.722<br>7.54               | 0.031<br>0.521 | 0.0355<br>0.094 | 0.00015 | 0.00004 |
|       | Treated effluent                 | 7.54                        | 0.032          | 0.0015          | 0.0002  |         |
| 369   | Untreated waste                  | 0.417                       |                | 0.073           | 0.031   | 0.0005  |
|       | Treated waste                    | 0.417                       |                | 0.00058         | 0.0075  | 0.0002  |

Note. Blanks indicate data not available.

TABLE 5-63. WASTE CHARACTERISTICS OF NICKEL SULFATE PLANT 120 [1]

|           |         | Treated e | ffluent |         |          |         |
|-----------|---------|-----------|---------|---------|----------|---------|
|           | µg,     | /L        | kg,     | /Mg     | quality, | μg/L    |
| Pollutant | Average | Maximum   | Average | Maximum | Average  | Maximum |
| TSS       | 43,000  | 64,000    | 0.842   | 1.25    | 4,330    | 8,000   |
| Nickel    | 49,200  | 75,800    | 0.962   | 1.48    | 200      | 340     |

Verification sampling<sup>a</sup>

#### Effluent Monitoring - Daily Data

|           | Concentration, µg/L |         |         | Waste load, kg/Mg |         |         |
|-----------|---------------------|---------|---------|-------------------|---------|---------|
| Pollutant | Minimum             | Average | Maximum | Minimum           | Average | Maximum |
|           |                     |         |         |                   |         |         |
| Nickel    | 80                  | 1,830   | 8,330   | 0.043             | 0.35    | 1.89    |
|           |                     |         |         |                   |         |         |

aFlow = 0.72  $m^3/Mg$ .

# Plant 369

Screening data are provided for plant 369. Treatment at this plant consists of adjusting the pH to between 9 and 10 to precipitate metal hydroxides, which are removed by settling prior to final discharge. Table 5-62 gives flow and concentration data for the sampled waste streams. No flow diagram is available for plant 369.

Table 5-64 presents raw waste load data for plants 120 and 369. Table 5-65 presents water usage information for the two plants.

TABLE 5-64. TOXIC POLLUTANT LOADS IN RAW WASTE AT NICKEL SULFATE PLANTS [1] (kg/Mg product)

| Pollutant | Plant 369 | Plant 120 |
|-----------|-----------|-----------|
| Nickel    | 0.073     | 0.035     |
| Copper    | 0.030     | 0.0002    |
| Chromium  | 0.0005    | 0.00001   |
| Lead      | 0.00002   | 0.00006   |
| Zinc      | 0.00011   | 0.00004   |
| Mercury   |           |           |
| Cadmium   | 0.000004  | 0.000002  |
| Selenium  |           | 0.00004   |
| Thallium  | 0.000009  |           |
|           |           |           |

Note: Blanks indicate data not available.

TABLE 5-65. WATER USAGE FOR NICKEL SULFATE PLANTS 120 AND 369 [1] (m³/Mg)

| Description                                                                      | Plant 120 <sup>a</sup> | Plant 369               |
|----------------------------------------------------------------------------------|------------------------|-------------------------|
| Noncontact cooling Direct process contact Miscellaneous (main, pump seals, etc.) | 13.6<br>4.01<br>0      | 0.417<br>0.783<br>0.094 |

a Includes uses for other process.

#### II.5.3.8 Sodium Bisulfite

Two plants were selected for detailed description from the available verification data on the sodium bisulfite industry based on the lowest concentration of toxic pollutants in the effluent stream.

## Plant 987

The filter wash is the main process waste at plant 987. This waste is neutralized with 50% caustic soda to a pH of 9 to 10 in

an oxidation tank while mechanically agitating to convert the bisulfite waste to sulfite. The sulfite is then oxidized to sulfate with air. The treated waste, including solids, is discharged to a river after a 17-hour retention period.

Figure 5-17 (next page) provides a process flow diagram of plant 987 including sampling points. Table 5-66 provides flow and pollutant concentration data on the sampling points.

TABLE 5-66. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANTS PRODUCING SODIUM BISULFITE [1]

|       |                            | Flow,<br>m³/Mg |        | kg/    | kg/Mg product |           |
|-------|----------------------------|----------------|--------|--------|---------------|-----------|
| Plant | Wastestream description    | product        | TSS    | COD    | Zinc          | Copper    |
| 987   | Filter wash l              | 0.051          | 0.113  | 1.42   | 0.000071      | 0.000018  |
|       | Floor wash, spills, etc.   | 0.0123         | 0.0457 | 0.299  | 0.000044      | 0.0000111 |
|       | Filter wash 2              | 0.0386         | 0.0052 | 0.908  | 0.000039      | 0.0000357 |
|       | Treatment influent (1+2+3) | 0.102          | 0.315  | 3.46   | 0.00024       | 0.000075  |
|       | 54-hour aeration           | 0.133          | 0.375  | 1.19   | 0.00024       | 0.000075  |
|       | Treated effluent           | 0.133          | 0.0031 | 1.02   | 0.000000799   | 0.000036  |
| 586   | MBS sump 1                 | 9.68           | 0.191  | 1.12   | 0.0067        | 0.011     |
|       | MBS sump 2                 | 9 <b>.68</b>   | 0.051  | 0.455  | 0.0025        | 0.00031   |
|       | Amine oxidation pond       | 2.77           | 2.43   | 2.33   | 0.0031        | 0.00028   |
|       | ZnSO4 pond effluent        | 78.5           | 11.8   | 0.759  | 1.38          | 0.0022    |
|       | Lime treatment influent    | 110            | 10.8   | 28.6   |               | 0.0040    |
|       | Truck washdown             | 0.134          | 0.0117 | 0.0975 | 0.00517       | 0.0000026 |
|       | SO <sub>2</sub> wastes     | 85.9           | 1.97   | 52.5   |               |           |
|       | Final treated effluent     | 188            | 4.27   | 21.7   |               |           |

Note: Blanks indicate data not available.

# Plant 586

The sodium bisulfite wastes at plant 586 are combined with process wastes from an amine plant, a zinc sulfate plant, and truck wash waste. Lime is added to the wastes, which are then passed through an aeration tank with an 8-hour retention time. Treated waste goes through primary and secondary settling before final discharge.

Figure 5-18 (page II.5.3-44) is a general flow diagram of plant 586 showing the sampling point locations. Table 5-66 provides flow and pollutant concentration data for the sampled streams. Table 5-67 gives final treated effluent concentrations for TSS, COD and zinc.

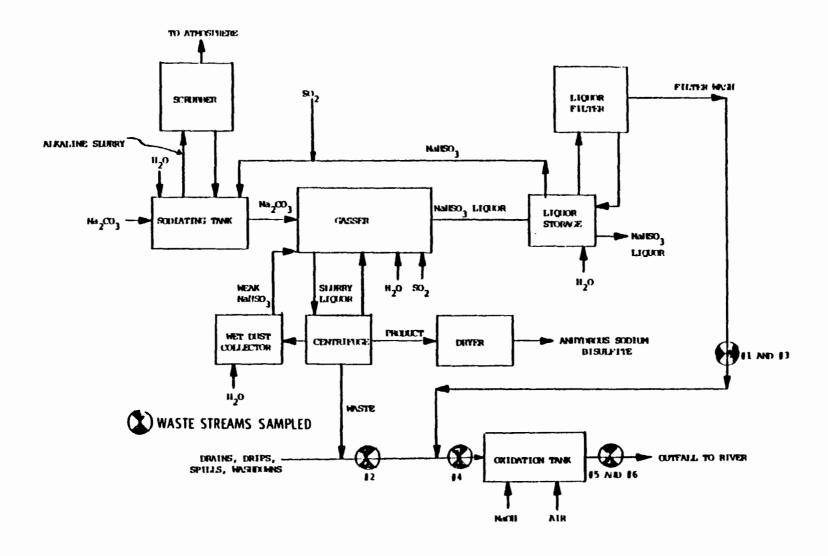



Figure 5-17. General process flow diagram at plant 987, manufacturing sodium bisulfite, showing the sampling points [1].

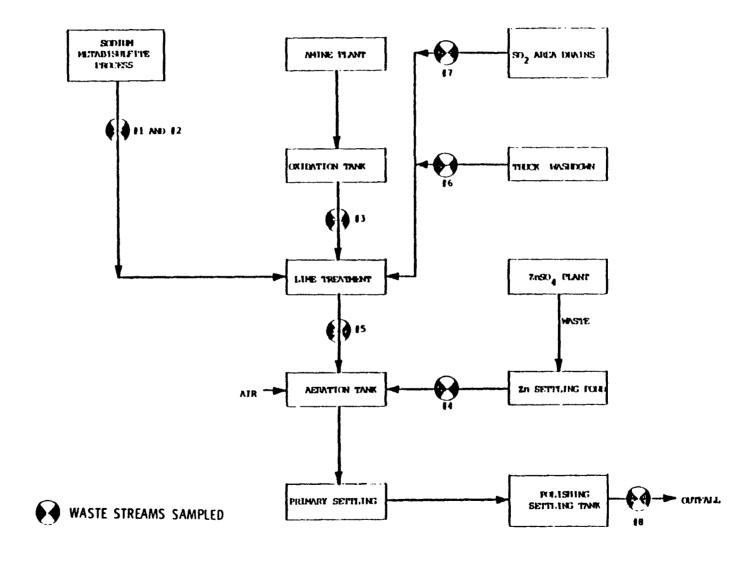



Figure 5-18. General flow diagram at plant 586, manufacturing sodium bisulfite, showing the sampling points [1].

TABLE 5-67. TREATMENT PRACTICES AND VERIFICATION SAMPLING AT SODIUM BISULFITE PLANT 586 [1]

|                                                | Treated effluent |       |      |       |      |       |       |
|------------------------------------------------|------------------|-------|------|-------|------|-------|-------|
| _                                              | T                | SS    | C    | OD    | Z    | inc   | Flow, |
| Treatment                                      | mg/L             | kg/Mg | mg/L | kg/Mg | μg/L | kg/Mg | m³/Mg |
| Lime pH adjustment aera-<br>tion, and settling | 22.7             | 0.386 | 115  | 1.96  | 59   | 0.001 | 17    |

Combined treatment with other process wastes.

Note: Blanks indicate data not available.

Table 5-68 provides water usage data for plants 586 and 987. Table 5-69 gives raw waste toxic pollutant loads for the selected plants.

TABLE 5-68. WATER USAGE AT SODIUM BISULFITE PLANTS [1] (m³/Mg)

| Description                                                            | Plant 986          |
|------------------------------------------------------------------------|--------------------|
| Direct contact process Noncontact cooling Maintenance, washdowns, etc. | 1.15<br>0<br>0.397 |

TABLE 5-69. TOXIC POLLUTANT LOADS IN RAW WASTE AT SODIUM BILSULFITE PLANTS [1] (kg/Mg product)

| Pollutant | Plant 987 <sup>a</sup> | Plant 586ª |
|-----------|------------------------|------------|
|           |                        |            |
| Copper    | 0.00007                | 0.0002     |
| Zinc      | 0.0002                 | 0.0088     |
| Cadmium   | 0.000004               | 0.00001    |
| Chromium  | 0.0003                 | 0.022      |
| Lead      | 0.00007                | 0.0002     |
| Mercury   | 0.000001               | 0.00001    |
| Nickel    | 0.00005                | 0.00017    |
| Antimony  | 0.000007               | 0.00008    |

a Verification data.

## II.5.3.9 Sodium Dichromate

Two plants were selected for detailed description from the available data on the sodium dichromate industry based on the lowest concentration of toxic pollutants in the final effluent stream. Screening data are provided for plant 493, and verification data are given for plant 376.

## Plant 493

At plant 493, the wastewater going to the treatment facility includes the boiler and cooling tower blowdown and a small volume of effluent from a scrubber on a by-product sodium sulfate operation. The total waste includes the spent ore residue, which is also sent to the treatment facility. At the treatment facility, the alkaline wastewaters are reacted with imported acidic industrial waste at an elevated temperature in a reactor. The chromium is precipitated during the reaction. The reacted waste is sent to clarifiers via holding tanks. In the clarifiers, large quantities of water are used to wash the precipitated solids in a countercurrent fashion. The final clarifier overflow, which is the treated effluent, is filtered and discharged, and the clarifier underflow is disposed of in a quarry.

Figure 5-19 (next page) provides a block diagram of the treatment process and indicates the streams sampled. Table 5-70 gives the flow data and pollutant emissions of the streams sampled. Treated effluent data are given in Table 5-71 and Table 5-72.

TABLE 5-70. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANTS PRODUCING SODIUM DICHROMATE [1]

|                     |        |                       | Flow,   | k     | g/Mg product |          |
|---------------------|--------|-----------------------|---------|-------|--------------|----------|
|                     |        | Wastestream           | m³/Mg   |       | Hexavalent   |          |
| Plant               | Stream | description           | product | TSS   | chromium     | Chromium |
| 493                 | 1      | Raw wastewater        | 4.95    | 183   | 3.5          | 1.25     |
| (Screening phase)   | 2      | Treated<br>effluent   | 28.9    | 0.018 | 0.00004      | 0.022    |
|                     | 3      | Residue slurry        | 2.13    | 185   | 0.0004       | 3.93     |
| 376<br>Verification | 1      | Mud slurry<br>waste   | 7.68    | 3,990 | 0.407        | 1.04     |
| phase)              | 2      | Primary pond effluent | 7.68    | 0.591 |              | 0.808    |
|                     | 3      | Surface runoff        | 4.16    | 0.621 | 0.057        | 0.55     |
|                     | 4      | Effluent              | 4.16    | 7.94  |              | 0.77     |

Note. Blanks indicate no data available.

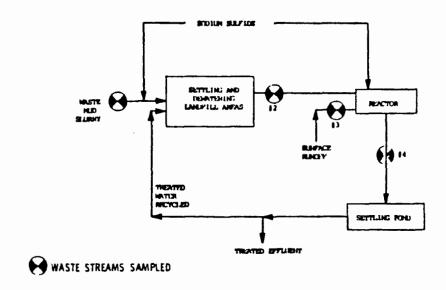



Figure 5-20. General wastewater treatment process flow diagram at plant 376, manufacturing sodium chromate, showing the sampling points [1].

TABLE 5-73. TOXIC POLLUTANT RAW WASTE LOADS AT SODIUM DICHROMATE PLANTS [1] (kg/Mg product)

| Pollutant                                         | Plant 493 <sup>a</sup>            | Plant 376                                  |
|---------------------------------------------------|-----------------------------------|--------------------------------------------|
| Chromium Copper Lead Nickel Zinc Selenium Arsenic | 0.95<br>0.00005<br>0.047<br>0.002 | 1.39<br>0.0008<br>0.0002<br>0.006<br>0.003 |
|                                                   |                                   |                                            |

a Screening data.

Note: Blanks indicate no data available.

TABLE 5-74. WATER USAGE IN SODIUM DICHROMATE SUBCATEGORY [1] (m3/Mg)

| Description                                                                                         |            | usage<br>Plant 493 |
|-----------------------------------------------------------------------------------------------------|------------|--------------------|
| Description                                                                                         | 114116 370 | 114110 475         |
| Noncontact cooling Direct process contact Indirect process contact (pumps, seals, leaks and spills) | 11.4       | 5.7<br>2.85<br>0.2 |
| Maintenance (e.g., clean-<br>ing and work area<br>washdown)                                         |            | 0.2                |
| Air pollution control<br>Noncontact ancillary uses                                                  |            | 1.0<br>3.12        |

Note: Blanks indicate data not available.

## II.5.3.10 Sodium Hydrosulfite

One plant was selected for detailed description from data available on the sodium hydrosulfite industry based on the lowest concentration of toxic pollutants in the final effluent stream.

#### Plant 672

Screening data are provided for plant 672; two different streams at the plant were analyzed. Because of the nature of the two wastestreams, each one is handled differently. The dilute waste is first sent to a holding pond, where the flow is equalized and the waste is mechanically aerated. This pond also contains approximately  $5.7~\text{m}^3/\text{d}$  (1,500 gpd) of waste from a sodium bisulfite process. The pH of the pond effluent is adjusted with sulfuric acid, and the effluent is then sent to an aeration basin. A nitrogen-phosphate fertilizer and urea are added as nutrients. Approximately 13 m<sup>3</sup>/d (3,500 gal/d) of sanitary waste and up to 98  $m^3/d$  (25,900 gal/d) of clean dilution water are also added to the aeration basin. This basin formerly had mechanical aerators, but now has air diffusers that allow better temperature control for biological oxidation. Effluent from aeration goes to a clarifier. Approximately 53 m<sup>3</sup>/d (14,000 gal/d) of the settled sludge is returned to the aeration basin and 9 m<sup>3</sup>/d (2,400 gal/d) is sent to drying piles on site. More dilution water is added to the clarifier when needed for TDS control. Overflow from the clarifier goes to a chlorine contact tank because of the sanitary waste. Blowdown water from the cooling tower and boilers is added to the final chamber of the chlorine contact tank. Effluent from this unit is sent to a final polishing pond for settling and equalization before discharge.

The coproduct waste from the distilling column bottoms is sent to a lined coproduct pond at a rate of 53 m³/d (14,000 gal/d) and held for one of two possible disposal methods. When there is a market for the coproducts, the waste is concentrated and sold to the pulp and paper industry. When this is not possible and the pond reaches near capacity, the waste is bled into the treatment system described above through the dilute waste holding pond.

A general flow diagram of the biological treatment system is included in Figure 5-21 (next page). Table 5-75 shows the individual wastestreams, the total combined input to the treatment system, the treated effluent quality, and the efficiency of the system.

TABLE 5-75. FLOW AND POLLUTANT CONCENTRATION DATA
OF THE SAMPLED WASTESTREAMS FOR PLANT
672 PRODUCING SODIUM HYDROSULFITE [1]

|              | Wastestream      | Flow,             | CO     | D     | Т    | SS    |        | Zinc    |
|--------------|------------------|-------------------|--------|-------|------|-------|--------|---------|
| Stream       | description      | m³/Mg             | mg/L   | kg/Mg | mg/L | kg/Mg | µg/L   | kg/Mg   |
| 1            | Coproduct        | 0.91              | 77,922 | 70.9  | 61   | 0.056 | 24,000 | 0.022   |
| 2            | Dilute waste     | 1.87              | 14,628 | 27.4  | 263  | 0.49  | 770    | 0.0014  |
| 3            | Raw influent     | 1.87_             | 15,487 | 29.0  | 843  | 1.58  | 5,850  | 0.011   |
| 4            | Treated effluent | 4.68 <sup>C</sup> | 740    | 3.46  | 25   | 0.12  | 122    | 0.00057 |
| ent removal  |                  |                   | 9:     | 5.2   | 97   | .0    | 9'     | 7.9     |
| cent removal |                  |                   | 9:     | 5.2   | 97   | .0    | 9.     | 7.9     |

<sup>&</sup>lt;sup>a</sup>Only dilute wastewater being treated at sampling time.

Table 5-76 presents final treated effluent concentrations and loadings; raw waste pollutant loadings are presented in Table 5-77.

TABLE 5-76. SCREENING RESULTS FROM SODIUM HYDROSULFITE PLANT 672<sup>a</sup> [1]

|                   | Raw waste     | influent | Treated | effluent |
|-------------------|---------------|----------|---------|----------|
| Pollutant         | μ <b>g/</b> L | kg/Mg    | μg/L    | kg/Mg    |
| COD               | 15,500,000    | 29.0     | 740,000 | 3.46     |
| TSS               | 840,000       | 1.58     | 25,000  | 0.12     |
| Zinc              | 5,800         | 0.011    | 120     | 0.00057  |
| Chromium          | 7,400         | 0.014    | <43     | <0.0002  |
| Copper            | 1,000         | 0.0019   | 28      | 0.00013  |
| Lead              | 830           | 0.0015   | 70      | 0.00013  |
| Nıckel            | 1,400         | 0.0027   | 160     | 0.00075  |
| Cadmium           | 37            | 0.000069 | 29      | 0.00014  |
| Phenol            | 150           | 0.0003   | <10     | <0.00005 |
| Pentachlorophenol | 370           | 0.0007   | <10     | <0.0000  |

aFlow of raw waste influent = 1.87 m³/Mg; flow of treated effluent = 4.68 m³/Mg. The higher flow in the treated effluent is due to the addition of sanitary wastes and dilution water to the aeration basin, plus cooling tower and boiler blowdown to the chlorine contact tank.

All values are an average of 3 days of sampling.

<sup>&</sup>lt;sup>C</sup>Higher flow due to the addition of sanitary waste and dilution water to the aeration basin plus cooling tower and boiler blowdown to the chlorine contact tank.

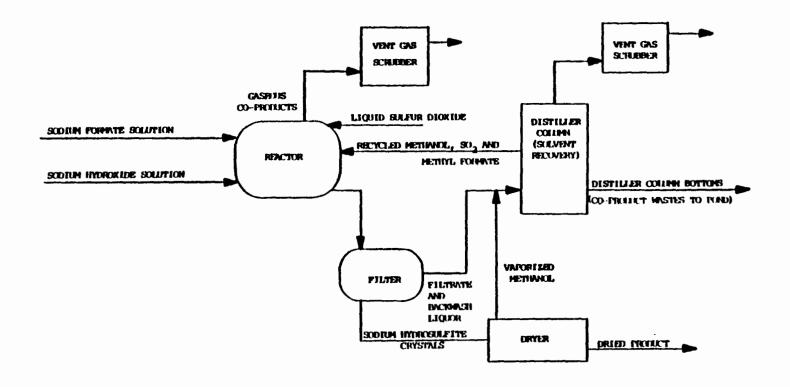



Figure 5-21. General process flow diagram at plant 672, manufacturing sodium hydrosulfite [1].

TABLE 5-77. SUMMARY OF RAW WASTE LOADINGS FOUND AT A SODIUM HYDROSULFITE PLANT (FORMATE PROCESS) 672 [1]

|                   | Loadir  | ıgs     |
|-------------------|---------|---------|
|                   | Average | Average |
| Pollutant         | kg/day  | kg/Mg   |
| Priority          |         |         |
| Cadmium           | 0.0041  | 0.00007 |
| Chromium          | 0.81    | 0.14    |
| Copper            | 0.11    | 0.0019  |
| Lead              | 0.041   | 0.0007  |
| Nickel            | 0.16    | 0.0027  |
| Silver            | 0.0045  | 0.00008 |
| Zinc              | 0.63    | 0.011   |
| Pentachlorophenol | 0.04    | 0.0007  |
| Phenol            | 0.017   | 0.0003  |
| Conventional      |         |         |
| TSS               | 91.6    | 1.57    |
| COD               | 1,690   | 28.9    |

# II.5.2.11 Titanium Dioxide

# II.5.3.11.1 Chloride Process

Two plants were selected for detailed description from the available data on the titanium dioxide chloride process industry based on the lowest concentration of toxic pollutants in the final effluent stream.

# Plant 559

Screening and verification data are provided for plant 559 which uses the conventional chloride process to produce titanium dioxide. The solids, hereinafter called pit solids and consisting mainly of unreacted ore, coke, iron, and trace metal chlorides, including TiCl4, separated from the first stage cooling of the chlorinated gases, are slurried with water and sent to the wastewater treatment facility. The wastewater from the chloride process is mixed with other product wastewater and treated in combination. A flow diagram of the treatment facility, including the sampling locations, is shown in Figure 5-22. Slurried pit solids and the distillation column bottom residue are sent to a large settling pond where they are mixed with the other process wastewater. Overflow from the settling pond is neutralized with ground calcium carbonate in a reactor. The scrubber and other wastewater from the chloride process is mixed with other product

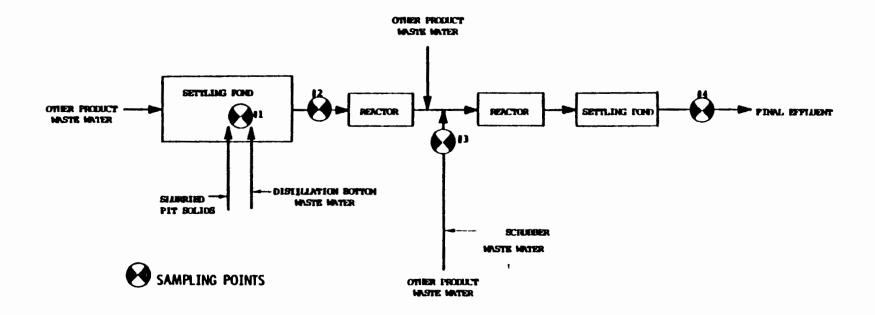



Figure 5-22. General flow diagram at plant 559, manufacturing titanium dioxide (chlorine process), showing the sampling points [1].

wastewater and combined with the settling pond effluent. The combined solutions are neutralized with lime in a second reactor and then sent to a settling pond before discharge. Because the chloride process wastewaters are mixed with other product wastewater prior to treatment, the sampling results represent the total input mixture rather than only the TiO<sub>2</sub> process raw wastes. Problems were encountered during the sampling of the pit solids and distillation bottoms. The pipes carrying the wastes from the process discharged at the bottom of the settling pond, and it was not possible to take the samples right at the outlet of the pipe. The combined sample of the two streams was taken at the surface of the discharge. It is probable that some solids settled before the stream reached the surface.

Table 5-78 provides the waste flows and pollutant loadings for the streams sampled at plant 559. Treated effluent pollutant concentrations are given in Table 5-79.

TABLE 5-78. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANT 559 PRODUCING TITANIUM DIOXIDE USING THE CHLORIDE PROCESS [1]

|        | Wastestream                                              | Flow, m <sup>3</sup> /Mg |                   | kg/Mg TiO                                  | 2                                        |
|--------|----------------------------------------------------------|--------------------------|-------------------|--------------------------------------------|------------------------------------------|
| Stream | description                                              | TiO <sub>2</sub>         | SS                | Iron                                       | Chromium                                 |
| 1      | Pit solids and distillation bottom waste                 | 13.9 <sup>a</sup>        | 95.7              | 18.7                                       | 1.55                                     |
| 2      | Settling pond overflow                                   | 13.9 <sup>a</sup>        | 0.22<br>28.2      | >18.7 <sup>a</sup> ,b<br>38.7 <sup>a</sup> | 0.36 <sup>a</sup><br>0.0096 <sup>a</sup> |
| 3      | TiO <sub>2</sub> (Cl process) scrubber and other product | 90                       | 28.2 <sup>a</sup> | 38.7 <sup>a</sup>                          | 0.0 <b>0</b> 96 <sup>a</sup>             |
| 4      | wastewater<br>Final effluent                             | 104 <sup>a</sup>         | 2.3 <sup>a</sup>  | 0.45 <sup>a</sup>                          | 0.0026 <sup>a</sup>                      |

<sup>&</sup>lt;sup>a</sup>Pollutant load was calculated by apportioning the mass emitted between the two wastestreams on the basis of measured flows; this is clearly a very approximate process and results must be used with caution.

Effluent value is higher than influent because of the introduction of other product wastewater in the pond contributing to higher load.

TABLE 5-79. RAW WASTE AND TREATED EFFLUENT
QUALITY AT TITANIUM DIOXIDE PLANT
USING CHLORIDE PROCESS [1]

## Verification sampling

|           |            | _                     |           | Plant      | 559 <sup>a,b</sup> |
|-----------|------------|-----------------------|-----------|------------|--------------------|
|           | P          | lant 172 <sup>C</sup> |           |            | Treated            |
|           | Raw waste, |                       | effluent  | Raw waste, | effluent,          |
| Pollutant | kg/Mg      | μg/L                  | kg/Mg     | kg/Mg      | μg/L               |
|           |            |                       |           |            |                    |
| TSS       | 6.06       | 6,670                 | 0.245     | 95.9       | 23,000             |
| Iron      | 0.104      | 327                   | 0.012     | 18.7       | 4,400              |
| Chromium  | 0.024      | 17                    | 0.00062   | 1.55       | 25                 |
| Lead      | 0.00004    | <2.3                  | <0.000084 | 0.049      | <2.3               |
| Nickel    | 0.002      | <10                   | <0.00037  | 0.048      | 5                  |
| Zinc      | 0.010      | 90                    | 0.0033    | 0.027      | 61.7               |

#### Monitoring Data - Plant 172 Treated Effluent

| 1   |
|-----|
| 018 |
| 037 |
| 38  |
|     |

a Loads in effluent not included because it includes other process wastes.

#### Plant 172

Screening and verification data are provided for the chloride process wastewater in plant 172. The wastewater from the process, mainly the scrubber water, is collected in trenches and sent to a central reactor basin. Other discharges, including a part of the total rain runoff, are also collected in ditches and sent to the reactor basin. In the reactor basin, sodium hyroxide is used for neutralization, and the resulting effluent is mixed with the remaining rainwater runoff and sent to the first of two retention basins arranged in series. Overflow from the second retention is adjusted for pH using sulfuric acid before discharge.

A simplified diagram of the treatment system including the sampling points is shown in Figure 5-23. Table 5-80 provides the

bAverage raw waste flow = 13.9 m<sup>3</sup>/Mg.

CAverage flow of treated effluent = 35.9 m<sup>3</sup>/Mg.

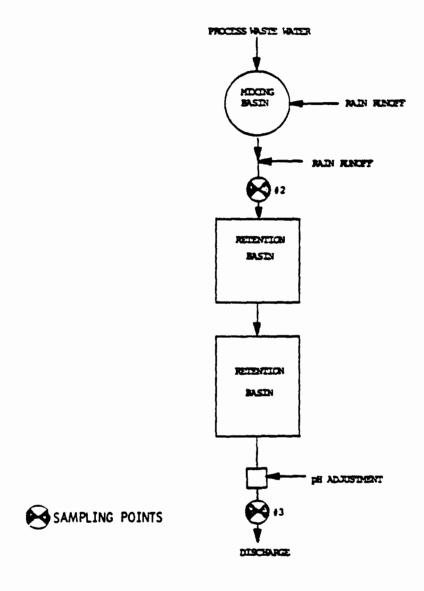



Figure 5-23. General flow diagram at plant 172, manufacturing titanium dioxide (chloride process) showing the sampling points [1].

TABLE 5-80. FLOW AND POLLUTANT CONCENTRATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANT 172 PRODUCING TITANIUM DIOXIDE USING CHLORIDE PROCESS [1]

|        | Wastestream                        | Flow,<br>m³/Mg |     |       |        | kg/Mg TiO <sub>2</sub> |       |          |
|--------|------------------------------------|----------------|-----|-------|--------|------------------------|-------|----------|
| Stream | description                        | TiO2           | Нф  | TSS   | Zinc   | Chromium               | Iron  | Nickel   |
| 2      | Inlet to wastewater treatment pond | 35.8           | 7.9 | 7.97  | 0.0096 | 0.0223                 | 0.107 | <0.0008  |
| 3      | Wastewater treatment effluent      | 35.8           | 7.6 | 0.238 | 0.003  | 0.0006                 | 0.011 | <0.00036 |

waste flow and pollutant loadings for the streams sampled. Table 5-79 presents treated effluent and monitoring data, and Table 5-81 presents water usage.

TABLE 5-81. WATER USAGE AT TITANIUM DIOXIDE PLANT 172 USING CHLORIDE PROCESS [1] (m<sup>3</sup>/Mg TiO<sub>2</sub>)

| <del></del>                                                                         |                      |
|-------------------------------------------------------------------------------------|----------------------|
| Descript/ion                                                                        | Water usage          |
| Noncontact cooling<br>Direct process contact<br>Indirect process contact            | 10.7<br>15.3<br>0.72 |
| Maintenance, equipment cleaning and work area                                       | 0.52                 |
| washdown Air pollution control Noncontact ancillary uses Sanitary and potable water | 7.14<br>10.4<br>0.31 |
| Total                                                                               | 45.3                 |

Table 5-82 gives the raw wastewater toxic pollutant loadings for exemplary plant 559.

Date: 6/23/80

TABLE 5-82. TOXIC POLLUTANT LOADS IN RAW WASTE AT TITANIUM DIOXIDE PLANT 559
USING THE CHLORIDE PROCESS [1]
(kg/Mg product)

|           | Raw waste |
|-----------|-----------|
| Pollutant | load      |
|           |           |
| Chromium  | 1.55      |
| Lead      | 0.049     |
| Nickel    | 0.048     |
| Zinc      | 0.027     |
|           |           |
|           |           |

# II.5.3.11.2 Sulfate Process

One plant was selected for detailed description from the available data on the titanium dioxide-sulfate process industry based on the lowest concentration of toxic pollutants in the final effluent stream.

#### Plant 559

Verification and screening data are provided for plant 559 which uses the sulfate process to produce titanium dioxide. At this plant, the strong acid is sent to a lined holding pond for equalization. Effluent from the pond is neutralized with ground calcium carbonate in a reactor; a sufficient amount is added to raise the pH to a level such that calcium sulfate, but not ferrous hydroxide, is precipitated. The CO<sub>2</sub> formed during the reaction is vented to the atmosphere, and the calcium sulfate slurry goes to a clarifier. Underflow from the clarifier is filtered to produce pure gypsum crystals at a concentration of 70 to 80%.

The weak acid is sent to a settling pond, where it is combined with a small quantity of other wastes. Effluent from the weak acid pond is mixed with the calcium sulfate clarifier overflow and neutralized with ground calcium carbonate in a three-stage reactor. Pebble and slaked lime are also added to raise the pH and precipitate more calcium sulfate. Air is also introduced to convert the ferrous iron to ferric. Effluent from the reactor goes to another clarifier, and the clarifier underflow is filtered to concentrate the solids to 70%. Overflow from the second clarifier is mixed with the other process wastewaters, which include the scrubber finishing, and cooling wastewaters. The combined water is neutralized with slaked lime before it is sent to a final settling pond, the effluent from which is discharged.

Figure 5-24 (next page) represents the flow diagram of the treatment process and shows the sampling locations for both screening and verification. Table 5-83 provides the flow data for the waste streams and Table 5-84 presents pollutant data for the effluent; Table 5-85 presents daily monitoring data of the effluent. Table 5-86 presents raw waste toxic pollutant loading for both sampling phases.

TABLE 5-83. FLOW AND POLLUTANT CONCENTRATION DATA
OF THE SAMPLED WASTESTREAMS FOR PLANT
559 PRODUCING TITANIUM DIOXIDE USING
THE SULFATE PROCESS [1]

|        | Wastestream                                 | Flow,<br>m <sup>3</sup> /Mg | kg/Mg T102       |                  |                    |  |
|--------|---------------------------------------------|-----------------------------|------------------|------------------|--------------------|--|
| Stream | description                                 | T102                        | SS               | Iron             | Chromium           |  |
| 4      | Weak acid pond<br>overflow                  | 107                         | 1.75ª            | 305 <sup>a</sup> | 2.81 <sup>a</sup>  |  |
| 3      | Strong acid pond<br>overflow                | 9.7                         | 1.94             | 87.6             | 0.18               |  |
| 5      | Scrubber and<br>other product<br>wastewater | 593                         | 193 <sup>a</sup> | 83.6ª            | 0.062 <sup>a</sup> |  |
| 6      | Final treatment effluent                    | 700 <sup>a,b</sup>          | 16.1             | 3.08             | 0.017              |  |

aPollutant load was calculated by multiplying the flow contributed by the sulfate process stream times the concentration of pollutant. Pollutant load = (total stream flow) x (fraction contributed by sulfate process waste) x (stream pollutant concentrated).

TABLE 5-84. VERIFICATION RESULTS OF RAW WASTE AND TREATED EFFLUENT FOR TITANIUM DIOXIDE PLANT 559 [1]

|            |                  |             | T             | reated efflue | nt      |
|------------|------------------|-------------|---------------|---------------|---------|
|            | Raw waste, kg/Mg |             | μg,           | /L            | kg/Mg   |
| Pollutant  | Average          | Maximum     | Average       | Maximum       | Average |
| TSS        | 310              | 330         | 23,000        | 38,000        | 19.5    |
| Total iron | 670              | 770         | 4,400         | 7,900         | 3.7     |
| Antimony   |                  |             | <15           | <15           | 0.01    |
| Arsenic    | 0.015            | 0.020       | <10           | <10           | <0.008  |
| Cadmium    | 0.008            | 0.001       | 0.1           | 0.2           | 0.0001  |
| Chromium   | 5.0              | 5 <b>.6</b> | 25            | 30            | 0.02    |
| Copper     | 0.13             | 0.14        | <b>&lt;</b> 5 | <5            | <0.004  |
| Lead       | 0.16             | 0.17        | 2             | 3             | 0.002   |
| Nickel     | 0.19             | 0.22        | <b>&lt;</b> 5 | <5            | 0.004   |
| Thallium   | 0.004            | 0.008       | <5            | <5            | 0.002   |
| Zinc       | 0.72             | 0.76        | 61            | 65            | 0.05    |

<sup>&</sup>lt;sup>a</sup>Flow = 616 m<sup>3</sup>/Mg; includes cooling water and a small part of chloride process waste.

Note: Blanks indicate data not available.

bwhile calculating the unit flow, the contributions to the treatment process from precipitation, the water in the treatment chemicals, and the losses from evaporation and from solids leaving the process have not been considered.

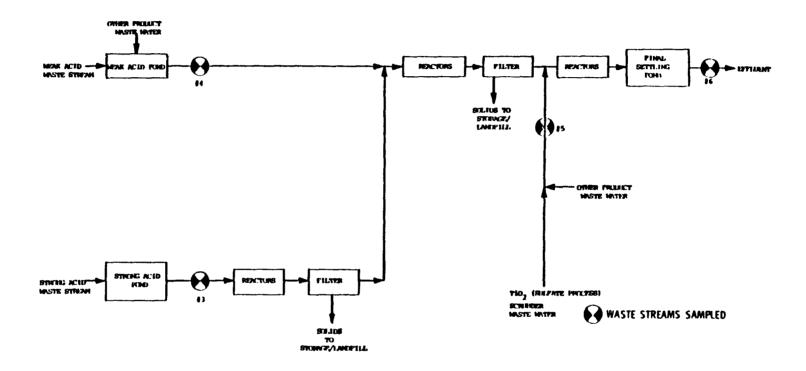



Figure 5-24. General flow diagram at plant 559, manufacturing titanium dioxide (sulfate process), showing the sampling points [1].

TABLE 5-85. SUMMARY OF DAILY EFFLUENT MONITORING DATA FOR COMBINED WASTEWATER TREATMENT DISCHARGE AT TITANIUM DIOXIDE PLANT 559 USING SULFATE PROCESS [1]

|                |                  |         |         | 7       | Waste load |         |
|----------------|------------------|---------|---------|---------|------------|---------|
|                | Concentration, p |         | μg/L    | kg/Mg   | lbs/1,0    | 00 lbs  |
| Parameter      | Minimum          | Average | Maximum | Minimum | Average    | Maximum |
| Chromium       | 10               | 21      | 119     | 0.00049 | 0.0014     | 0.0045  |
| Cadmium        | 1                | 9       | 20      | 0.00004 | 0.00062    | 0.0012  |
| Total iron     | 400              | 3,250   | 19,100  | 0.29    | 2.14       | 12.99   |
| Dissolved iron | 80               | 279     | 4,980   | 0.04    | 0.194      | 4.0     |
| Lead           | 2                | 17      | 50      | 0.00008 | 0.0012     | 0.003   |
| Nickel         | 10               | 29      | 80      | 0.00057 | 0.0019     | 0.0046  |
| Zinc           | 10               | 27      | 300     | 0.00049 | 0.0019     | 0.022   |
| TSS            |                  | 35,800  |         |         | 23.9       |         |

Note. Blanks indicate data not available.

TABLE 5-86. TOXIC POLLUTANT RAW WASTE LOADS AT TITANIUM DIOXIDE PLANT 559 USING THE SULFATE PROCESS [1] (kg/Mg)

| Pollutant | Screening <sup>a</sup> phase | Verification <sup>a</sup> phase |
|-----------|------------------------------|---------------------------------|
|           |                              |                                 |
| Cadmium   | 0.0009                       | 0.003                           |
| Chromium  | 3.37                         | 1.36                            |
| Copper    | 0.118                        | 0.155                           |
| Arsenic   | 0.0135                       |                                 |
| Lead      | 0.103                        | 0.128                           |
| Nickel    | 0.151                        | 0.086                           |
| Zinc      | 0.55                         | 0.589                           |
| Antimony  | 0.08                         |                                 |
| Phenol    | 0.00                         | 0.002                           |
| Thallium  | 0.0078                       | 0.002                           |

a Screening and verification data shown in table were not completely identified in Reference 1; reported data were assumed by MRC to correspond to screening and verification phases as noted in table.

Note: Blanks indicate not detected in measurable quantities.

#### II.5.4 POLLUTANT REMOVABILITY

The inorganic chemicals industry discharges a variety of toxic pollutants into plant wastewater streams due to the large number of products manufactured by the different subcategories of this industry. Each subcategory has specific major pollutants, and in some subcategories a specific treatment method is used to control pollutant discharge. Generally, these major pollutants are toxic metals. Table 5-87 (next page) lists the toxic metals and the treatment methods normally used to reduce their concentrations. The treated waste concentrations and removal efficiencies are assumed to represent the best performance characteristics obtainable under the specified operating conditions. The operating conditions are assigned as optimal conditions.

# II.5.4.1 Aluminum Fluoride Industry

The toxic pollutants found in actual aluminum fluoride plant wastewaters include copper, arsenic, chromium, and selenium. In the case of selenium, it is apparent that the source was largely the raw water supply. Therefore, selenium is not regarded as a process related pollutant, but its control in the treated effluent may be required.

Copper and chromium trace impurities may be present in the hydro-fluoric acid used to react with bauxite to form aluminum fluoride. Arsenic may originate as an impurity in the bauxite ore. Waste treatment processes should be designed to control fluoride, copper, arsenic, and chromium.

Toxic pollutants are generally reduced in the wastewater from this industry by neutralization and settling. Lime, soda ash, and alum are the common chemicals used to precipitate the pollutants. Fluoride is also precipitated as calcium fluoride using this technology.

No effluent data are available at this time.

Potential treatment technologies include the exchange of copper and chromium for hydrogen or sodium ions by ion exchange from clarified solutions. Copper and chromium at low levels may also be controlled by xanthate precipitation, although the process is not widely used. Sulfide precipitation will reduce copper to very low levels but does not control chromium or arsenic. A combination of lime and ferric sulfate coagulation is probably the most effective proposed method for reducing arsenic concentrations.

TABLE 5-87. WASTEWATER TREATMENT OPTIONS AND PERFORMANCE DATA SUMMARY FOR TOXIC METALS [1]

|                                  |            | Antimo |         |      |                            | Arsenic                                |                                  |                        |
|----------------------------------|------------|--------|---------|------|----------------------------|----------------------------------------|----------------------------------|------------------------|
|                                  | Concentrat |        | Percent |      |                            | tion, µg/L                             | Percent                          |                        |
| Treatment technology             | Initial    | Final  | removal | рН   | Initial                    | Final                                  | removal                          | На                     |
| ctivated alumina                 |            |        |         |      | 400-1,000 <sup>a</sup>     | <400                                   | 96~99+                           | 6.8                    |
| ctivated carbon                  |            |        |         |      | 400-1,000 <sup>b</sup>     | <4.000                                 | 63-97                            | 3.1-3.6                |
| ctivated carbon                  |            |        |         |      |                            |                                        |                                  |                        |
| (granular)                       |            |        |         |      |                            |                                        |                                  |                        |
| ctivated carbon                  |            |        |         |      |                            |                                        |                                  |                        |
| (pulverized, Pittsburgh type RC) |            |        |         |      |                            |                                        |                                  |                        |
| ctivated carbon/alum             |            |        |         |      |                            |                                        |                                  |                        |
| lum                              |            |        |         |      |                            |                                        |                                  |                        |
| lum/filter                       | 600        | 200    | 62      | 6.4  |                            |                                        |                                  |                        |
| isulfite reduction               |            |        |         |      |                            |                                        |                                  |                        |
| austic soda/filter               |            |        |         |      |                            |                                        |                                  |                        |
| hlorine precipitation            |            |        |         |      |                            |                                        |                                  |                        |
| (alkaline chlorination           |            |        |         |      |                            |                                        |                                  |                        |
| in presence of cyanide)          |            |        |         |      |                            |                                        |                                  |                        |
| erric chloride                   |            |        |         |      | 300                        | 50                                     | 98                               |                        |
| erric chloride/filter            | 500        | 200    | 65      | 6.2  |                            |                                        |                                  |                        |
| erric sulfate                    |            |        |         |      | 5,000                      | 500                                    | 90                               | 6.0                    |
| erric sulfate/filter             |            |        |         |      | •                          |                                        |                                  |                        |
| errite coprecipitation           |            |        |         |      |                            |                                        |                                  |                        |
| errite coprecipitation/filter    |            |        |         |      |                            |                                        |                                  |                        |
| errous sulfate/filter            |            |        |         |      |                            |                                        |                                  |                        |
| errous sulfide (Sulfex)          |            |        |         |      | _                          | _                                      | _                                |                        |
| ine                              |            |        |         |      | 5,000.° 5,000 <sup>d</sup> | 1,000, <sup>c</sup> 1,400 <sup>d</sup> | 80, <sup>C</sup> 72 <sup>d</sup> | 10.0. <sup>C</sup> 11. |
| ime softening                    |            |        |         |      | 200                        | 30                                     | 85                               | •                      |
| ime/ferric chloride/filter       |            |        |         |      | 3.000                      | 50                                     | 98                               | 10.3                   |
| ime/filter                       | 600        | 400    | 28      | 11.5 | - •                        |                                        |                                  |                        |
| ime/sulfide                      |            |        |         |      |                            |                                        |                                  |                        |
| eduction/lime                    |            |        |         |      |                            |                                        |                                  |                        |
| odium carbonate/filter           |            |        |         |      |                            |                                        |                                  |                        |
| odium hydroxide                  |            |        |         |      |                            |                                        |                                  |                        |
| odium hydroxide/filter           |            |        |         |      |                            |                                        |                                  |                        |
| ulfide                           |            |        |         |      |                            |                                        |                                  |                        |
| ulfide precipitation             |            |        |         |      |                            |                                        |                                  |                        |
| ulfide/filter                    |            |        |         |      |                            | 50                                     |                                  | 6-7                    |
| ulfur dioxide reduction          |            |        |         |      |                            |                                        |                                  |                        |

TABLE 5-87 (continued)

|                                  |            | Beryllı   | LITTA   |      |                                        | Cadmi                              | um        |                         |
|----------------------------------|------------|-----------|---------|------|----------------------------------------|------------------------------------|-----------|-------------------------|
|                                  | Concentrat | ion, pg/L | Percent |      | Concentration                          | oπ, μg/L                           | Percent   |                         |
| Treatment technology             | Initial    | Final     | removal | рН   | Initial                                | Final                              | removal   | рн                      |
| ctivated alumina                 |            |           |         |      |                                        |                                    |           |                         |
| ctivated carbon                  |            |           |         |      |                                        |                                    |           |                         |
| ctivated carbon                  |            |           |         |      |                                        |                                    |           |                         |
| (granular)                       |            |           |         |      |                                        |                                    |           |                         |
| ctivated carbon                  |            |           |         |      |                                        |                                    |           |                         |
| (pulverized, Pittsburgh type RC) |            |           |         |      |                                        |                                    |           |                         |
| ctivated carbon/alum             |            |           |         |      |                                        |                                    |           |                         |
| lum                              |            |           |         |      |                                        |                                    |           |                         |
| lum/filter                       |            |           |         |      |                                        |                                    |           |                         |
| isulfite reduction               |            |           |         |      |                                        |                                    |           |                         |
| austic soda/filter               |            |           |         |      |                                        |                                    |           |                         |
| hlorine precipitation            |            |           |         |      |                                        |                                    |           |                         |
| (alkaline chlorination           |            |           |         |      |                                        |                                    |           |                         |
| in presence of cyanide)          |            |           |         |      |                                        |                                    |           |                         |
| erric chloride                   |            |           |         |      |                                        |                                    |           |                         |
| erric chloride/filter            |            |           |         |      |                                        |                                    |           |                         |
| erric sulfate                    |            |           |         |      |                                        |                                    |           |                         |
| erric sulfate/filter             |            |           |         |      |                                        |                                    |           |                         |
| errite coprecipitation           |            |           |         |      |                                        |                                    |           |                         |
| errite coprecipitation/filter    |            |           |         |      | 240,000                                | 8                                  | >99       | Neutral                 |
| errous sulfate/filter            |            |           |         |      | 2.07.000                               | -                                  |           |                         |
| errous sulfide (Sulfex)          |            |           |         |      | 4,000                                  | 10                                 | >99       | 8.5-9.0                 |
| ime                              |            |           |         |      | .,,                                    |                                    |           |                         |
| ime softening                    |            |           |         |      | 440-1,000                              | 8                                  | 92-98     | 5-6.5                   |
| ime/ferric chloride/filter       |            |           |         |      | 2,                                     |                                    |           |                         |
| ime/filter                       | 100        | 6         | 99.4    | 11.5 | 5,000, <sup>C</sup> 5,000 <sup>d</sup> | 250, <sup>C</sup> 100 <sup>d</sup> | 95, c 98d | 10.0, <sup>c</sup> 11,5 |
| ime/sulfide                      |            | -         |         |      | 300-1,000                              | 6                                  | >98       | 8.5-11.3                |
| eduction/lime                    |            |           |         |      | 200 2,000                              | -                                  |           |                         |
| odium carbonate/filter           |            |           |         |      |                                        |                                    |           |                         |
| odium hydroxide                  |            |           |         |      |                                        |                                    |           |                         |
| dium hydroxide/filter            |            |           |         |      |                                        |                                    |           |                         |
| ilfide                           |            |           |         |      |                                        |                                    |           |                         |
| ulfide precipitation             |            |           |         |      |                                        |                                    |           |                         |
| ulfide/filter                    |            |           |         |      |                                        |                                    |           |                         |
| ulfur dioxide reduction          |            |           |         |      |                                        |                                    |           |                         |
| did dioxide reduction            |            |           |         |      |                                        |                                    |           |                         |

TABLE 5-87 (continued)

|                                  |                                               | Copper                                |                                      |                                |
|----------------------------------|-----------------------------------------------|---------------------------------------|--------------------------------------|--------------------------------|
|                                  | Concentration                                 |                                       | Percent                              |                                |
| Treatment technology             | Initial                                       | Final                                 | removal                              | pH                             |
| Activated alumina                |                                               |                                       |                                      |                                |
| Activated carbon                 |                                               |                                       |                                      |                                |
| Activated carbon                 |                                               |                                       |                                      |                                |
| (granular)                       |                                               |                                       |                                      |                                |
| Activated carbon                 |                                               |                                       |                                      |                                |
| (pulverized, Pittsburgh type RC) |                                               |                                       |                                      |                                |
| Activated carbon/alum            |                                               |                                       |                                      |                                |
| Alum                             | 3,000                                         | 200                                   | 93                                   | 6.5-7.0                        |
| Alum/filter                      |                                               |                                       |                                      |                                |
| disulfite reduction              |                                               |                                       |                                      |                                |
| Caustic soda/filter              |                                               |                                       |                                      |                                |
| Chlorine precipitation           |                                               |                                       |                                      |                                |
| (alkaline chlorination           |                                               |                                       |                                      |                                |
| in presence of cyanide)          |                                               |                                       |                                      |                                |
| Ferric chloride                  |                                               |                                       |                                      |                                |
| Ferric chloride/filter           |                                               |                                       |                                      |                                |
| Perric sulfate                   |                                               |                                       |                                      |                                |
| Ferric sulfate/filter            | 5,000                                         | 300                                   | 95                                   | 6.0                            |
| Perrite coprecipitation          |                                               |                                       |                                      |                                |
| Perrite coprecipitation/filter   |                                               | 10                                    | >99                                  |                                |
| Perrous sulfate/filter           |                                               |                                       |                                      |                                |
| Perrous sulfide (Sulfex)         | 3,200, 4,000                                  | 20, 10                                | 99, >99                              | 8.5~9.0                        |
| ine                              | 1,000-2,000, 3,000                            | 1.000-2.000, 200                      | 90, 93                               | >8.5, 9.5                      |
| ime softening                    | 2,333                                         | _•                                    |                                      |                                |
| ime/ferric chloride/filter       |                                               |                                       |                                      |                                |
| Lime/filter                      | 3,200, 5,000, <sup>C</sup> 5,000 <sup>d</sup> | 70,400, <sup>C</sup> 500 <sup>d</sup> | 98, 92, <sup>C</sup> 91 <sup>a</sup> | 8.5~9.0, 10, <sup>c</sup> 11,5 |
| ime/sulfide                      | 50,000-130,000                                | <500                                  |                                      | 5.0~6.5                        |
| eduction/lime                    |                                               |                                       |                                      |                                |
| odium carbonate/filter           |                                               |                                       |                                      |                                |
| odium hydroxide                  |                                               |                                       |                                      |                                |
| odium hydroxide/filter           |                                               |                                       |                                      |                                |
| ulfide                           |                                               |                                       |                                      |                                |
| Sulfide precipitation            |                                               |                                       |                                      |                                |
| Sulfide/filter                   |                                               |                                       |                                      |                                |
| Sulfur dioxide reduction         |                                               |                                       |                                      |                                |
|                                  |                                               |                                       |                                      | (continued)                    |

TABLE 5-87 (continued)

|                                                       |                                          | Chromaum III |          |               |                          | Chromium VI |                    |          |
|-------------------------------------------------------|------------------------------------------|--------------|----------|---------------|--------------------------|-------------|--------------------|----------|
| Total and Analysis                                    | Concentratio                             |              | Percent  |               | Concentration<br>Initial | Final       | Percent<br>removal | pН       |
| Treatment technology                                  | Initial                                  | Final        | removal  | pH            | Initial                  | Final       | removar            | Pn       |
| Activated alumina                                     |                                          |              |          |               |                          |             |                    |          |
| Activated carbon                                      |                                          |              |          |               |                          |             |                    |          |
| Activated carbon                                      |                                          |              |          |               | 3,000                    | 500         | 98                 | 6.0      |
| (granular)                                            |                                          |              |          |               |                          |             |                    |          |
| Activated carbon                                      |                                          |              |          |               | 10,000, 10,000           | 1,500, 400  | 85, 96             | 3.0, 2.0 |
| (pulverized, Pittsburgh type RC)                      |                                          |              |          |               |                          |             |                    |          |
| Activated carbon/alum                                 |                                          |              |          |               |                          |             |                    |          |
| Alum                                                  |                                          |              |          |               |                          |             |                    |          |
| Alum/filter                                           |                                          |              |          |               |                          |             |                    |          |
| Bisulfite reduction                                   |                                          |              |          |               |                          | 50-1,000    |                    |          |
| Caustic soda/filter                                   |                                          |              |          |               |                          | -           |                    |          |
| Chlorine precipitation                                |                                          |              |          |               |                          |             |                    |          |
| (alkaline chlorination                                |                                          |              |          |               |                          |             |                    |          |
| in presence of cyanide)                               |                                          |              |          |               |                          |             |                    |          |
| Ferric chloride                                       |                                          |              |          |               |                          |             |                    |          |
| Ferric chloride/filter                                |                                          |              |          |               |                          |             |                    |          |
| Ferric sulfate                                        |                                          |              | >98      | 6.5-9.3       |                          |             |                    |          |
| Ferric sulfate/filter                                 | 5,000                                    | 50           | 99       | 0.5 5.5       |                          |             |                    |          |
| Ferrite coprecipitation                               | 3,000                                    | 30           | ,,,      |               | 500                      | BDL         |                    |          |
|                                                       | 10,000                                   | <10          |          |               | 300                      | non         |                    |          |
| Ferrite coprecipitation/filter Ferrous sulfate/filter | 10,000                                   | 10           |          |               |                          |             |                    |          |
|                                                       |                                          |              |          |               |                          |             |                    |          |
| Ferrous sulfide (Sulfex)                              | 15 000 3 000                             | 100 4100     |          | 9.5           |                          |             |                    |          |
| Lime                                                  | 15,000, 3,200                            | 100, <100    | >98      | 10.6-11.3     |                          |             |                    |          |
| Lime softening                                        |                                          | 150          | >98      | 10.6-11.3     |                          |             |                    |          |
| Lime/ferric chloride/filter                           | 5,000, <sup>c</sup> , 5,000 <sup>d</sup> | c d          | an c and | d             |                          |             |                    |          |
| Lime/filter<br>Lime/sulfide                           |                                          |              | 98, 98   | 10, 11.5, 7-9 |                          |             |                    |          |
| Reduction/lime                                        | 140,000, e 1,300,000 e                   | 1 000 f 60f  |          | 7-8           |                          |             |                    |          |
| Sodium carbonate/filter                               | 140,000, 1,300,000                       | 1,000, 00    |          | 1-0           |                          |             |                    |          |
|                                                       |                                          |              |          |               |                          |             |                    |          |
| Sodium hydroxide                                      |                                          |              |          |               |                          |             |                    |          |
| Sodium hydroxide/filter                               |                                          |              |          |               |                          |             |                    |          |
| Sulfide                                               |                                          |              |          |               |                          |             |                    |          |
| Sulfide precipitation                                 |                                          |              |          |               |                          |             |                    |          |
| Sulfide/filter                                        |                                          |              |          |               |                          | 50-1,000    |                    |          |
| Sulfur dioxide reduction                              |                                          |              |          |               |                          | 30 1,000    |                    |          |

TABLE 5-87 (continued)

|                                  |                                      | le.                                    | ad                                         |                                |
|----------------------------------|--------------------------------------|----------------------------------------|--------------------------------------------|--------------------------------|
|                                  | Concentration,                       | μg/L                                   | Percent                                    |                                |
| Treatment technology             | Initial                              | Final                                  | removal                                    | pH                             |
| Activated alumina                |                                      |                                        |                                            |                                |
| Activated carbon                 |                                      |                                        |                                            |                                |
| ctivated carbon                  |                                      |                                        |                                            |                                |
| (granular)                       |                                      |                                        |                                            |                                |
| ctivated carbon                  |                                      |                                        |                                            |                                |
| (pulverized, Pittsburgh type RC) |                                      |                                        |                                            |                                |
| ctivated carbon/alum             |                                      |                                        |                                            |                                |
| 1 um                             |                                      |                                        |                                            |                                |
| lum/filter                       |                                      |                                        |                                            |                                |
| isulfite reduction               |                                      |                                        |                                            |                                |
| austic soda/filter               |                                      |                                        |                                            |                                |
| hlorine precipitation            |                                      |                                        |                                            |                                |
| (alkaline chlorination           |                                      |                                        |                                            |                                |
| in presence of cyanide)          |                                      |                                        |                                            |                                |
| erric chloride                   |                                      |                                        |                                            |                                |
| erric chloride/filter            |                                      |                                        |                                            |                                |
| erric sulfate                    |                                      |                                        |                                            |                                |
| erric sulfate/filter             |                                      |                                        |                                            |                                |
| errite coprecipitation           |                                      |                                        |                                            |                                |
| errite coprecipitation/filter    | 475,000                              | 10                                     | 99.9                                       |                                |
| errous sulfate/filter            | 5,000                                | 75                                     | 98.5                                       | 6.0                            |
| errous sulfide (Sulfex)          | 189,000                              | 100                                    | 99.9                                       | 8.5-9.0                        |
| ime                              |                                      |                                        |                                            |                                |
| ime softening                    |                                      |                                        |                                            |                                |
| ime/ferric chloride/filter       | _                                    |                                        |                                            |                                |
| ime/filter                       | 189,000, 5,000, c 5,000 <sup>d</sup> | 100, 75, <sup>C</sup> 100 <sup>Q</sup> | 99.9, 98.5, <sup>C</sup> 98.0 <sup>Q</sup> | 8.5-9.0, 10, <sup>C</sup> 11.5 |
| ime/sulfide                      |                                      |                                        |                                            |                                |
| eduction/lime                    |                                      |                                        |                                            |                                |
| odium carbonate/filter           | 1,260,000, 5,000                     | 600, 10-30                             | >99, >99                                   | 10.1, 9.0-9.5                  |
| odium hydroxide                  |                                      |                                        |                                            |                                |
| odium hydroxide/filter           | 1,700,000                            | 600                                    | >99                                        | 10.5                           |
| ulfide                           |                                      |                                        |                                            |                                |
| ulfide precipitation             |                                      |                                        |                                            |                                |
| ulfide/filter                    |                                      |                                        |                                            |                                |
| ulfur dioxide reduction          |                                      |                                        |                                            |                                |
|                                  |                                      |                                        |                                            | (continue                      |
|                                  |                                      |                                        |                                            | Concinde                       |

TABLE 5-87 (continued)

|                                  |                           | Mercury        | II                     |                  |
|----------------------------------|---------------------------|----------------|------------------------|------------------|
|                                  | Concentration,            | ug/L           | Percent                |                  |
| Treatment technology             | Initial                   | Final          | removal                | PH               |
| Activated alumina                |                           |                |                        |                  |
| Activated carbon                 | 10-50, 60-90              | <0.5-60        |                        |                  |
| Activated carbon                 |                           |                |                        |                  |
| (granular)                       |                           |                |                        |                  |
| ctivated carbon                  |                           | ,              |                        |                  |
| (pulverized, Pittsburgh type RC) |                           |                |                        |                  |
| ctivated carbon/alum             | 20-30                     | 9              |                        |                  |
| lum                              |                           |                |                        |                  |
| lum/filter                       |                           |                |                        |                  |
| disulfite reduction              |                           |                |                        | •                |
| Caustic soda/filter              |                           |                |                        |                  |
| Chlorine precipitation           |                           |                |                        |                  |
| (alkaline chlorination           |                           |                |                        |                  |
| in presence of cyanide)          |                           |                |                        |                  |
| erric chloride                   |                           |                |                        |                  |
| erric chloride/filter            |                           |                |                        |                  |
| erric sulfate                    |                           |                |                        |                  |
| erric sulfate/filter             |                           |                |                        |                  |
| errite coprecipitation           | 6,000-7,400               | 1-5            | 99.9                   |                  |
| errite coprecipitation/filter    |                           |                |                        |                  |
| errous sulfate/filter            |                           |                |                        |                  |
| errous sulfide (Sulfex)          |                           |                |                        |                  |
| ime                              |                           |                |                        |                  |
| ime softening                    |                           |                |                        |                  |
| ime/ferric chloride/filter       |                           |                |                        |                  |
| ime/filter                       |                           |                |                        |                  |
| ime/sulfide                      |                           |                |                        |                  |
| eduction/lime                    |                           |                |                        |                  |
| odium carbonate/filter           |                           |                |                        |                  |
| odium hydroxide                  |                           |                |                        |                  |
| odium hydroxide/filter           | 300-50,000, 10,000        | 10126 1 000    | -, <sup>g</sup> , 96.4 | 10,0             |
| Sulfide                          | 300-30,000, 10,000        | 10-120, 1,800  | -, -, 96.4             | 10.0             |
| ulfide precipitation             | 16,000, 36,000, 300-6,000 | 40 60 10-135   | 00 00 0 07 00 3        |                  |
| ulfide/filter                    | 14,000, 36,000, 300-6,000 | 40, 60, 10-125 | 99, 99.8, 87-99.2      | 5.5, 4.0, 5.8-8. |
| ulfur dioxide reduction          |                           |                |                        |                  |
|                                  |                           |                | (                      | continued        |

TABLE 5-87 (continued)

|                                                   |                                        | Nicke    |                  |                                      |                 | Silver      |           |          |
|---------------------------------------------------|----------------------------------------|----------|------------------|--------------------------------------|-----------------|-------------|-----------|----------|
|                                                   | Concentration                          | on, ug/L | Percent          |                                      | Concentration   |             | Percent   |          |
| Treatment technology                              | Initial                                | Final    | removal          | рн                                   | Initial         | Final       | removal   | pН       |
| Activated alumina                                 |                                        |          |                  |                                      |                 |             |           |          |
| Activated carbon                                  |                                        |          |                  |                                      |                 |             |           |          |
| Activated carbon                                  |                                        |          |                  |                                      |                 |             |           |          |
| (granular)                                        |                                        |          |                  |                                      |                 |             |           |          |
| Activated carbon (pulverized, Pittsburgh type RC) |                                        |          |                  |                                      |                 |             |           |          |
| Activated carbon/alum                             |                                        |          |                  |                                      |                 |             |           |          |
| Alum                                              |                                        |          |                  |                                      |                 |             |           |          |
| Alum/filter                                       |                                        |          |                  |                                      |                 |             |           |          |
| Bisulfite reduction                               |                                        |          |                  |                                      |                 |             |           |          |
| Caustic soda/filter                               |                                        | 300      |                  | 11.0                                 |                 |             |           |          |
| Chlorine precipitation                            |                                        |          |                  |                                      | 105,000-250,000 | 1,000-3,500 | >97       |          |
| (alkaline chlorination                            |                                        |          |                  |                                      |                 |             |           |          |
| in presence of cyanide)                           |                                        |          |                  |                                      |                 |             |           |          |
| Ferric chloride                                   |                                        |          |                  |                                      |                 |             |           |          |
| Ferric chloride/filter                            |                                        |          |                  |                                      | 500             | 40          | 98.2      | 6.2      |
| Ferric sulfate                                    |                                        |          |                  |                                      | 150             | 30-40       | 72-83     | 6-9      |
| Ferric sulfate/filter                             |                                        |          |                  |                                      |                 |             |           |          |
| Ferrite coprecipitation                           |                                        |          |                  |                                      |                 |             |           |          |
| Ferrite coprecipitation/filter                    |                                        |          |                  |                                      |                 |             |           |          |
| Ferrous sulfate/filter                            |                                        |          |                  |                                      |                 |             |           |          |
| Ferrous sulfide (Sulfex)                          | 75,000                                 | <50      | 99.9             | 8.5-9.0                              |                 |             |           |          |
| Lime                                              | 75,000                                 | 1,500    | 98               | 8.5-9.0                              |                 |             |           |          |
| Lime softening                                    |                                        |          |                  |                                      | 150             | 10-30       | 80-93     | 9.0-11.5 |
| Lime/ferric chloride/filter                       |                                        |          |                  |                                      |                 |             |           |          |
| Lime/filter                                       | 5,000, <sup>c</sup> 5,000 <sup>d</sup> | 300, 150 | 9 <b>4,</b> 97 a | 10.0, <sup>c</sup> 11.5 <sup>d</sup> |                 |             |           |          |
| Lime/sulfide                                      |                                        |          |                  |                                      |                 |             |           |          |
| Reduction/lime                                    |                                        |          |                  |                                      |                 |             |           |          |
| Sodium carbonate/filter                           |                                        |          |                  |                                      |                 |             |           |          |
| Sodium hydroxide                                  |                                        |          |                  |                                      | 54,000          | 15,000      | 72        | 9.0      |
| Sodium hydroxide/filter                           |                                        |          |                  |                                      |                 |             |           |          |
| Sulfide                                           |                                        |          |                  |                                      |                 |             |           |          |
| Sulfide precipitation                             |                                        |          |                  |                                      |                 |             | very high | 5-11     |
| Sulfide/filter                                    |                                        |          |                  |                                      |                 |             |           |          |
| Sulfur dioxide reduction                          |                                        |          |                  |                                      |                 |             | (conti    | nuedl    |
|                                                   |                                        |          |                  |                                      |                 |             | (COLLET   |          |

TABLE 5-87 (continued)

| Treatment technology             | Selenium            |        |         |            | Thallium            |       |         |     |
|----------------------------------|---------------------|--------|---------|------------|---------------------|-------|---------|-----|
|                                  | Concentration, µg/L |        | Percent |            | Concentration, pg/L |       | Percent |     |
|                                  | Initial             | Final  | removal | рн         | Initial             | Final | removal | P   |
| ctivated alumina                 |                     |        |         |            |                     |       |         |     |
| ctivated carbon                  |                     |        |         |            |                     |       |         |     |
| ctivated carbon                  |                     |        |         |            |                     |       |         |     |
| (granular)                       |                     |        |         |            |                     |       |         |     |
| ctivated carbon                  |                     |        |         |            |                     |       |         |     |
| (pulverized, Pittsburgh type RC) |                     |        |         |            |                     |       |         |     |
| ctivated carbon/alum             |                     |        |         |            |                     |       |         |     |
| ilum                             |                     |        |         |            |                     |       |         |     |
| lum/filter                       | 500                 | 260    | 48      | 6.4        | 600                 | 400   | 31      | 6.  |
| isulfite reduction               |                     |        |         |            |                     |       |         |     |
| austic soda/filter               |                     |        |         |            |                     |       |         |     |
| hlorine precipitation            |                     |        |         |            |                     |       |         |     |
| (alkaline chlorination           |                     |        |         |            |                     |       |         |     |
| in presence of cyanide)          |                     |        |         |            |                     |       |         |     |
| erric chloride                   |                     |        |         |            |                     |       |         |     |
| erric chloride/filter            | 100, 50             | 30, 10 | 75-80   | 6.2, 6.2   | 600                 | 400   | 30      | 6.  |
| erric sulfate                    | 100, 100            | 20. 30 | 82, 75  | 5.5, 7.0   |                     |       |         |     |
| erric sulfate/filter             |                     | •      |         |            |                     |       |         |     |
| errite coprecipitation           |                     |        |         |            |                     |       |         |     |
| errite coprecipitation/filter    |                     |        |         |            |                     |       |         |     |
| errous sulfate/filter            |                     |        |         |            |                     |       |         |     |
| errous sulfide (Sulfex)          |                     |        |         |            |                     |       |         |     |
| ime                              |                     |        |         |            |                     |       |         |     |
| ime softening                    |                     |        |         |            |                     |       |         |     |
| ime/ferric chloride/filter       |                     |        |         |            |                     |       |         |     |
| .ime/filter                      | 500, 60             | 300-40 | 35, 38  | 11.5, 11.5 | 500                 | 200   | 60      | 11. |
| ime/sulfide                      |                     |        |         |            |                     |       |         |     |
| eduction/lime                    |                     |        |         |            |                     |       |         |     |
| odium carbonate/filter           |                     |        |         |            |                     |       |         |     |
| odium hydroxide                  |                     |        |         |            |                     |       |         |     |
| odium hydroxide/filter           |                     |        |         |            |                     |       |         |     |
| ul fide                          |                     |        |         |            |                     |       |         |     |
| ulfide precipitation             |                     |        |         |            |                     |       |         |     |
| ulfide/filter                    |                     |        |         |            |                     |       |         |     |
| ulfur dioxide reduction          |                     |        |         |            |                     |       |         |     |

TABLE 5-87 (continued)

|                                                                          | Zinc                                       |                                                   |                            |                       |  |  |  |
|--------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|----------------------------|-----------------------|--|--|--|
| Treatment technology                                                     | Concentrat                                 | ion, µg/L<br>Final                                | Percent<br>removal         |                       |  |  |  |
|                                                                          |                                            | 121102                                            | Temoval                    | рн                    |  |  |  |
| ctivated alumina                                                         |                                            |                                                   |                            |                       |  |  |  |
| activated carbon                                                         |                                            |                                                   |                            |                       |  |  |  |
| Activated carbon                                                         |                                            |                                                   |                            |                       |  |  |  |
| (granular)                                                               |                                            |                                                   |                            |                       |  |  |  |
| Activated carbon                                                         |                                            |                                                   |                            |                       |  |  |  |
| (pulverized, Pittsburgh type RC)                                         |                                            |                                                   |                            |                       |  |  |  |
| ctivated carbon/alum                                                     |                                            |                                                   |                            |                       |  |  |  |
| Alum/filter                                                              |                                            |                                                   |                            |                       |  |  |  |
| disulfite reduction                                                      |                                            |                                                   |                            |                       |  |  |  |
| Caustic soda/filter                                                      |                                            |                                                   |                            |                       |  |  |  |
| Chlorine precipitation                                                   |                                            |                                                   |                            |                       |  |  |  |
| (alkaline chlorination                                                   |                                            |                                                   |                            |                       |  |  |  |
| in presence of cyanide)                                                  |                                            |                                                   |                            |                       |  |  |  |
| erric chloride                                                           |                                            |                                                   |                            |                       |  |  |  |
| erric chloride/filter                                                    |                                            |                                                   |                            |                       |  |  |  |
| erric sulfate                                                            |                                            |                                                   |                            |                       |  |  |  |
| erric sulfate/filter                                                     |                                            |                                                   |                            |                       |  |  |  |
| errite coprecipitation                                                   | 18,000                                     | 20                                                | >99                        |                       |  |  |  |
| errite coprecipitation/filter                                            |                                            |                                                   |                            |                       |  |  |  |
| errous sulfate/filter                                                    |                                            |                                                   |                            |                       |  |  |  |
| errous sulfide (Sulfex)                                                  | 3,600                                      | 10-20                                             | >99                        | 8.5-9.0               |  |  |  |
| ine                                                                      |                                            |                                                   |                            |                       |  |  |  |
| ime softening                                                            |                                            |                                                   |                            |                       |  |  |  |
| ime/ferric chloride/filter                                               |                                            |                                                   |                            |                       |  |  |  |
| ime/filter                                                               | 3,600, 16,000, 5,000, c 5,000 <sup>d</sup> | 250, 20-230, 800, <sup>c</sup> 1,200 <sup>d</sup> | 93, ~, 84, 77 <sup>d</sup> | 8.5-9.0, -, 10.0, 11. |  |  |  |
| ime/sulfide                                                              |                                            |                                                   |                            |                       |  |  |  |
| Meduction/lime                                                           |                                            |                                                   |                            |                       |  |  |  |
| odium carbonate/filter                                                   |                                            |                                                   |                            |                       |  |  |  |
| odium hydroxide                                                          | 33,000                                     | 1,000                                             | 97                         | 9.0                   |  |  |  |
| Sodium hydroxide/filter                                                  | 44 444                                     |                                                   |                            |                       |  |  |  |
| ulfide                                                                   | 42,000                                     | 1,200                                             | 97                         |                       |  |  |  |
| ulfide precipitation                                                     |                                            |                                                   |                            |                       |  |  |  |
| ulfide/filter<br>ulfur dioxide reduction                                 |                                            |                                                   |                            |                       |  |  |  |
|                                                                          |                                            |                                                   |                            |                       |  |  |  |
| Activated alumina (2 g/L).                                               |                                            | <u></u>                                           |                            | <del> </del>          |  |  |  |
| Activated carbon (3 mg/L).                                               |                                            |                                                   |                            |                       |  |  |  |
| Lime (260 mg/L).                                                         |                                            |                                                   |                            |                       |  |  |  |
| Lime (600 mg/L).                                                         |                                            |                                                   |                            |                       |  |  |  |
| Concentration as chromium VI.                                            |                                            |                                                   |                            |                       |  |  |  |
| Concentration as chromium III.                                           |                                            |                                                   |                            |                       |  |  |  |
| Percent removal unavailable due to<br>lote: Blanks indicate no data avai |                                            |                                                   |                            |                       |  |  |  |

Multiple tests are reported, if available, with values separated by commas.

#### II.5.4.2 Chlor-Alkali Industry

#### Mercury Cells

Existing chlorine plants using mercury cells are already controlling mercury in their wastewaters in response to current regulations which call for a discharge of less than 0.00014 kg/Mg of product as a 30-day average. Potential candidates for further control are the common heavy metals: chromium, nickel, zinc, copper, lead, and antimony, as well as arsenic, thallium, and asbestos, most of which respond to the sulfide process for mercury precipitation. Some of these metals represent corrosion products from reaction between chlorine and the plant materials of construction.

With the phasing out of graphite anodes, chlorinated organics are not common constituents of mercury cell wastewaters, although some may originate by the contact of chlorine with rubber linings and other organic structural components. Traces of certain toxic organics were found but none in significant concentrations.

Air pollutant emissions, generally called tail gas emissions, are a result of noncondensable gas emissions and often have high chlorine concentrations. These emissions are normally scrubbed with caustic soda or lime solution to produce hypochlorite which may be sold, decomposed to chloride, sent to the water treatment plant, or discharged without treatment. Other scrubbing processes often used include steam and vacuum stripping, and chlorine absorption columns.

There are many water treatment practices used to reduce the pollutant concentrations in chlor-alkali wastewater. Most of the toxic pollutants can be essentially removed by sulfide precipitation followed by settling or filtration. However, chromium and asbestos are not affected by such treatment. Alkaline precipitation controls all of the heavy metals with varying degrees of removability at a given pH. Mercury levels are generally controled by mercury sulfide precipitation as a result of treatment with hydrochloric acid and sodium bisulfide. Other technologies currently being practiced on a limited scale include ferrous chloride reduction, activated carbon absorption, ion exchange, and chemical treatment with sodium bisulfite, sodium hydrosulfide, sodium sulfide, and sodium borohydride.

Tables 5-88 and 5-89 show the effluent loadings for treated effluent emanating from mercury cell chlor-alkali manufacturing facilities.

TABLE 5-88. EFFLUENT LOADINGS FROM SELECTED CHLOR-ALKALI MERCURY CELL PLANTS [1] (kg/Mg)

|                  | 1        | Mercury wast | te load        |
|------------------|----------|--------------|----------------|
|                  |          | Maximum      | Maximum        |
| Plant            | Average  | daily        | 30-day average |
|                  |          |              |                |
| 343              | 0.000025 | 0.00094      | 0.00029        |
| 907              | 0.00002  | 0.00026      | 0.00003        |
| 898              | 0.00006  | 0.0025       | 0.00043        |
| 195              | 0.00004  | 0.00073      | 0.00015        |
| 106              | 0.000065 | 0.00022      | 0.000096       |
| 747              | 0.000055 | 0.00008      | 0.000067       |
| 589              | 0.000055 | 0.00086      | 0.00049        |
| 299_             | 0.00004  | 0.00019      | 0.000056       |
| 747 <sup>a</sup> | 0.000055 | 0.000083     | 0.000065       |
| 317 <sup>a</sup> | 0.000006 | 0.000048     | 0.00001        |
| 195 <sup>a</sup> | 0.000022 | 0.00066      | 0.0001         |
| 324 <sup>a</sup> | 0.00086  | 0.0022       | 0.0018         |

aFrom plant long-term monitoring data.

TABLE 5-89. EFFLUENT TOXIC POLLUTANT LOADS FOLLOWING MERCURY TREATMENT [1] (kg/Mg)

Flow, m<sup>3</sup>/Mg: 0.23, plant 747; 2.8, plant 106; 0.41, plant 317; 1.5, plant 299

|                                                      |                                                | <del></del>                                               |                                                               |                                                            |
|------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|
| **************************************               |                                                | Plan                                                      | nt                                                            |                                                            |
| Pollutant                                            | 747                                            | 106                                                       | 317                                                           | 299                                                        |
| Antimony Arsenic Cadmium Chromium Copper Lead Nickel | <0.059 <0.002 0.035 <0.011 <0.006 0.016 <0.011 | 1.6<br><0.015<br><0.039<br><0.028<br>0.15<br>1.05<br>0.40 | <0.10<br><0.008<br><0.01<br><0.02<br><0.012<br>0.07<br><0.028 | 0.22<br>0.092<br>0.11<br>0.09<br>0.055<br><0.074<br><0.074 |
| Silver<br>Thallium<br>Zinc                           | <0.0035<br><0.01<br><0.006                     | 0.72<br>0.71<br><0.23                                     | <0.006<br><0.1<br>0.21                                        | 0.022<br>0.3<br>0.15                                       |

a Results of 3-day verification sampling.

bEffluent load higher than influent load.

## Diaphragm Cells

Existing regulations in diaphragm cell-graphite anode chlorine plants call for lead discharge to be less than 0.0025 kg/Mg as a 30-day average. Other toxic pollutants to be controlled include asbestos, antimony, arsenic, chromium, copper, nickel, and chlorinated organics.

The use of graphite anodes, in either mercury cell or diaphragm cell plants, results in the generation of a variety of simple chlorinated hydrocarbons as a result of the attack of the product chlorine on the anodes. These organic pollutants are sometimes produced by the reaction of the chlorine with process exposed rubber.

Toxic heavy metals are normally controlled by sulfide or carbonate precipitation. Asbestos is trapped in a chemical flocculant or may be settled or filtered to remove the toxic fibers. Chlorinated organics are normally controlled by a reboiler on the chlorine purifier or by a vacuum stripper. Carbon absorption and steam stripping are also used for this purpose.

Alternate metal removal methods include ion exchange and xanthate precipitation. Hydrocarbons may be removed by waste incineration. Membrane separation for metal control has not proven to be a viable alternative.

Table 5-90 gives a subcategory profile of treatment processes used at reported plants for the diaphragm cell subdivision of the chlor-alkali industry. Table 5-91 shows the lead wasteload and the removal efficiency of a lead treatment facility associated with graphite anode-diaphragm cell plant 967.

TABLE 5-90. EFFLUENT LOADINGS - CHLOR-ALKALI DIAPHRAGM CELL PLANTS [1] (kg/Mg)

|                                                                        |                                             | <del></del>                           |                            | <del></del> |  |
|------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|----------------------------|-------------|--|
| · · · · · · · · · · · · · · · · · · ·                                  | Lead was                                    | ste load                              | Suspended solid waste load |             |  |
| Plant                                                                  | Average                                     | Maximum                               | Average                    | Maximum     |  |
| 589 <sup>a</sup><br>738 <sup>a</sup><br>261 <sup>a</sup><br>014<br>967 | 0.002<br>0.001<br>0.0025<br>0.006<br>0.0085 | 0.030<br>0.015<br>0.019<br>-<br>0.024 | 2.81                       | -           |  |

a Plant uses metal anodes.

TABLE 5-91. TOXIC POLLUTANT REMOVAL AT LEAD TREATMENT FACILITY, PLANT 967 [1]

Flow:  $1.0 \text{ m}^3/\text{Mg}$ 

| <del></del>              |          |          | <del></del> |  |  |  |  |  |
|--------------------------|----------|----------|-------------|--|--|--|--|--|
| Pollutant load,<br>kg/Mg |          |          |             |  |  |  |  |  |
|                          | Influent | Effluent | Removal,    |  |  |  |  |  |
| Pollutant                | average  | average  | percent     |  |  |  |  |  |
|                          |          |          |             |  |  |  |  |  |
| Antimony                 | 0.00078  | 0.00005  | 93.6        |  |  |  |  |  |
| Arsenic                  | 0.00032  | 0.00037  | _a          |  |  |  |  |  |
| Chromium                 | 0.00016  | 0.00005  | 68.7        |  |  |  |  |  |
| Copper                   | 0.0049   | 0.00003  | 99.4        |  |  |  |  |  |
| Mercury                  | 0.000026 | 0.00005  | _a          |  |  |  |  |  |
| Nickel                   | 0.00069  | <0.00005 | >92.8       |  |  |  |  |  |
| Zinc                     | 0.0016   | <0.0001  | >93.8       |  |  |  |  |  |
| Lead                     | 0.733    | 0.029    | 96.g        |  |  |  |  |  |
| Thallium                 | <0.00004 | 0.00015  | _a          |  |  |  |  |  |
|                          |          |          |             |  |  |  |  |  |

a Negative removal.

# II.5.4.3 Chrome Pigments Industry

The toxic pollutants found within the chrome pigments industry in significant amounts are the heavy metals often found in chromium ore, including chromium, antimony, copper, cadmium, nickel, lead, and zinc. In some raw wastes, ferro- and ferricyanide are found, presumably from metal complexing steps in the ore processing and the manufacture of iron blues. These complex cyanides may pass through the treatment processes and could slowly revert to simple cyanide ions.

All of the common heavy metals (except hexavalent chromium) found in chrome pigment wastes are normally treated by alkaline precipitation with substances such as lime or caustic soda, although the optimum pH may differ from each metal. Reaction with sulfide compounds such as sodium bisulfide precipitates the same metals, but in a less pH-dependent manner and, with the exception of chromium, to lower concentrations. Chromium in its hexavalent form is reduced to its trivalent form by SO<sub>2</sub> reduction and then precipitated as chromium hydroxide at a pH above 10. Ion exchange, biological oxidation, filtration, and settling are other treatment methods used for pollutant reduction within this industry.

Table 5-92 shows treated effluent verification data for plant 894 of this subcategory.

# TABLE 5-92. VERIFICATION SAMPLING OF CHROME PIGMENTS PLANT 894 [1]

Average flow: 153 m<sup>3</sup>/Mg

|                | Inf              | luent   | Efflu | ent     | Percent |  |
|----------------|------------------|---------|-------|---------|---------|--|
| Pollutant      | μg/L             | kg/Mg   | μg/L  | kg/Mg   | removal |  |
|                |                  |         |       |         |         |  |
| TSS            | 780 <b>,</b> 000 | 119     | 3,900 | 0.60    | 99.5    |  |
| Chromium       | 78,000           | 11.9    | 320   | 0.05    | 99.6    |  |
| Chromium VI    | <10              | <0.0015 | < 30  | 0.005   | _a      |  |
| Iron           | 49,000           | 7.5     | 300   | 0.046   | 99.4    |  |
| Lead           | 15,200           | 2.3     | 110   | 0.017   | 99.3    |  |
| Zinc           | 4,200            | 0.64    | 58    | 0.009   | 98.6    |  |
| Cyanide        | 5,100            | 0.78    | <66   | 0.010   | 98.7    |  |
| Cyanide (free) | < 940            | 0.14    | <11   | <0.0017 | 98.8    |  |
| Antimony       | 740              | 0.11    | 300   | 0.046   | 59.5    |  |
| Cadmium        | 900              | 0.14    | 8.4   | 0.0013  | 99.1    |  |
| Copper         | 3,560            | 0.54    | 40    | 0.006   | 98.9    |  |
| Nickel         | 17               | 0.003   | < 24  | <0.0037 | _a      |  |

aNegative removal.

# II.5.4.4 Copper Sulfate Industry

The toxic pollutants found in copper sulfate plant wastewaters are closely related to the purity of the copper and acid sources. The heavy metals (cadmium, nickel, and zinc) which were found during field sampling may originate as trace impurities in copper scrap. Arsenic was found at one plant in wastewater containing floor washings and infiltrated groundwater. A possible source of arsenic, and other copper ore trace metals, is the use of sulfuric acid made from sulfur dioxide produced in the roasting of copper sulfide ore. In any event, it appears that copper, arsenic, cadmium, nickel, and zinc are typical toxic pollutants encountered in copper sulfate wastewaters.

Copper, nickel, cadmium, and zinc can be separated from solution by alkaline precipitation at pH values from 7.2 (copper) to 9.7 (cadmium). Arsenic levels are also reduced by this treatment at high pH levels. Other technologies currently employed include aeration, clarification, gravity separation, centrifugation, and filtration.

Metal removal from plant wastewaters could also be accomplished by sulfide precipitation, ion exchange from clarified solutions, or the xanthate process. Arsenic removal can also be achieved by the addition of ferric chloride during alkaline or sulfide precipitation.

Table 5-93 shows verification data for the raw waste, treated effluent, and removal efficiencies for plant 034.

TABLE 5-93. VERIFICATION SAMPLING OF COPPER SULFATE PLANT 034 [1]

Flow: 2.23 m<sup>3</sup>/Mg

|           | Raw wa    | Raw waste |        | Treated effluenta |                   |  |
|-----------|-----------|-----------|--------|-------------------|-------------------|--|
| Pollutant | μg/L      | kg/Mg     | μg/L   | kg/Mg             | removal           |  |
|           |           |           |        |                   |                   |  |
| TSS       | 39,200    | 0.087     | 35,000 | 0.078             | 10.7              |  |
| Copper    | 1,850,000 | 4.1 '     | 4,650  | 0.010             | 99.7              |  |
| Nickel    | 112,000   | 0.248     | 240    | 0.0005            | 99.8              |  |
| Antimony  | 330       | 0.0007    | 36     | 0.000079          | 89.1              |  |
| Arsenic   | 3,500     | 0.0078    | < 20   | 0.000044          | >99.4             |  |
| Cadmium   | 870       | 0.0019    | 1      | 0.000002          | 99.9              |  |
| Chromium  | 142       | 0.00038   | 5      | 0.00001           | 96.5              |  |
| Lead      | 180       | 0.00039   | 5      | 0.00001           | 97.2 <sub>b</sub> |  |
| Selenium  | <11       | 0.000024  | 100    | 0.00022           | _D                |  |
| Zinc      | 11,100    | 0.025     | 16     | 0.000035          | 99.8              |  |
|           |           |           |        |                   |                   |  |

aBefore combining with noncontact cooling and steam condensate streams.

# II.5.4.5 Hydrofluoric Acid Industry

Toxic pollutants in raw wastewaters and slurries typical of the hydrogen fluoride industry include the heavy metals zinc, lead, nickel, mercury, chromium, arsenic, copper, and selenium, which are often found as impurities in fluorspar. Raw wastewaters from plants practicing dry disposal of kiln wastes may include some of the heavy metals in scrubber and area washdown wastes, but in considerably smaller amounts, since the spent ore is hauled as a solid waste and bypasses the wastewater treatment facilities. Although a fluoro-sulfonate complex is found in hydrofluoric acid wastes containing drip acid, organic compounds are not anticipated in wastewaters from this industry.

Raw wastewater from this industry is presently being treated by alkaline precipitation, settling, filtration, clarification, and complete recycle of wastewater.

Treatment methods currently under study or feasible due to other industry applications include sulfide precipitation, xanthate process, and ion exchange from clarified solutions. Sulfide precipitation from cleared solutions will control zinc, lead, nickel, copper, and, to a lesser extent, antimony.

b<sub>Negative removal.</sub>

Tables 5-94 and 5-95 present treated effluent and waste influent-treated effluent comparisons for several hydrofluoric acid manufacturing plants.

TABLE 5-94. TOXIC POLLUTANT REMOVAL AT HYDROFLUORIC ACID PLANTS [1] (kg/Mg)

Flow, b m<sup>3</sup>/Mg: 62.1, plant 705; 127, plant 167

|           | Plan     | t 705    | Plant 167 |                     |  |
|-----------|----------|----------|-----------|---------------------|--|
| Pollutant | Influent | Effluent | Influent  | Effluent            |  |
| Antimony  | 0.00065  | 0.00012  | 0.0058    | <0.026 <sup>C</sup> |  |
| Arsenic   | 0.0025   | <0.0006  | 0.019     | <0.003              |  |
| Cadmium   | 0.0006   | 0.0001   | _         | <0.0003             |  |
| Chromium  | 0.024    | 0.0029   | 0.060     | 0.032               |  |
| Copper    | 0.018    | 0.0012   | 0.015     | 0.010               |  |
| Lead      | 0.0031   | 0.0014   | 0.011     | 0.0047              |  |
| Mercury   | 0.00036  | 0.00003  | 0.0034    | <0.00015            |  |
| Nickel    | 0.035    | <0.0006  | 0.14      | 0.077_              |  |
| Selenium  | _        | 0.0003   | 0.008     | 0.011               |  |
| Thallium  | 0.00016  | 0.00007  | _         | 0.0010              |  |
| Zinc      | 0.015    | 0.0033   | 0.031     | 0.023               |  |

aValues are for combined wastes from HF and AlF3.

TABLE 5-95. SUMMARY OF EFFLUENT QUALITY ATTAINED AND VARIABILITY OBSERVED AT FOUR REPRESENTATIVE HYDROFLUORIC ACID PLANTS [1]

|                                                                           | Treate     | ed waste load               | <u>d</u> |                          |
|---------------------------------------------------------------------------|------------|-----------------------------|----------|--------------------------|
|                                                                           |            | Fluoride,                   | TSS,     | Flow, m <sup>3</sup> /Mg |
| Parameter                                                                 | Нq         | kg/Mg                       | kg/Mg    | (gal/short ton)          |
| Plant 664                                                                 |            |                             |          |                          |
| Daily average                                                             | 6.8        | 0.10                        | 0.29     | 5.6 (1,340)              |
| Daily maximum                                                             | 2.9 - 7.7  | 0.34                        | 1.1      | 16 (3,760)               |
| Monthly average                                                           | 6.8        | 0.10                        | 0.27     | 5.6 (1,340)              |
| Monthly maximum                                                           | 5.0 - 7.5  | 0.16                        | 0.63     | 10.5 (2,500)             |
| Plant 753  Daily average  Daily maxımum  Monthly average  Monthly maximum |            | 0.72<br>2.0<br>0.64<br>0.76 | 0.38     | 11 (2,650)               |
| Plant 722<br>Daily average                                                | 9.0        | 0.81                        | 0.54     | 10.2 (2,450)             |
| Daily maximum<br>Monthly average<br>Monthly maximum                       | 2.8 - 12.2 | 2.6                         | 1.2      | 24 (5,760)               |
| Plant 705<br>Daily average<br>Daily maximum                               |            |                             |          |                          |
| Monthly average                                                           |            | 0.49                        | 0.84     | 26.8 (6,430)             |
| Monthly maximum                                                           |            | 0.8                         | 1.53     | 139 (33,400)             |

Note: Blanks indicate no data available.

bValues are for total raw waste from HF only.

<sup>&</sup>lt;sup>C</sup>Negative removal.

# II.5.4.6 Hydrogen Cyanide Industry

The only toxic pollutant found during field sampling within the hydrogen cyanide industry was cyanide, both oxidizable and in the form of metallic complexes such as ferro- and ferricyanides. Ammonia, which is present as a nonconventional pollutant, exerts a demand for the chlorine used to oxidize cyanide and should be removed by steam stripping.

Cyanide is decomposed readily by oxidation at high pH levels, forming cyanate as an intermediate product. Further decomposition into carbon dioxide and nitrogen is possible with complete oxidation. Alkaline chlorination is widely used in the electroplating industry to break down metallic cyanide complexes. Although oxidation agents such as hydrogen peroxide might be used, their operating costs are generally not favorable. If ammonia is present, it increases the cost of chlorination since it also reacts with the chlorine. If ammonia is not to be controlled, ozonation may prove to be a more cost effective oxidant.

Due to excess chlorine usage, the discharge from cyanide destruction is high in chlorine, and dechlorination is generally needed. Biological treatments such as aeration and trickling filtration are used to reduce the chlorine concentration in the raw wastewater. Other technologies often used include sodium hypochlorite treatment, API separators, and caustic adjustment.

Ozonation to oxidize the chlorine in the wastewater is currently under study for use as a treatment method within this industry. Sulfur dioxide is also a potential treatment technology.

Table 5-96 shows raw waste and treated effluent verification data and removal efficiencies for plants 765 and 782.

TABLE 5-96. VERIFICATION SAMPLING OF HYDROGEN CYANIDE PLANTS [1]

| Flow, m <sup>3</sup> /Mg: | 57, | plant | 765; | 6.25, | plant | 782 |
|---------------------------|-----|-------|------|-------|-------|-----|
|---------------------------|-----|-------|------|-------|-------|-----|

| Plant |                                                             | Infl                                | uent                                   | Effluent,                             | Percent                              |  |
|-------|-------------------------------------------------------------|-------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------|--|
| code  | Pollutant                                                   | mg/L                                | kg/Mg                                  | mg/L                                  | removal                              |  |
| 765   | TSS <sup>a</sup> Cyanide (total) Cyanide (free) BOD Ammonia | 71<br>28.4<br>6.81<br>6.3           | 6.52<br>2.61<br>0.626<br>0.580<br>17.8 | 19<br><0.0026<br><0.002<br><33<br>124 | 73.2<br>>99.9<br>>99.9<br>5          |  |
| 782   | TSS<br>Cyanide (total)<br>Cyanide (free)<br>BOD<br>Ammonia  | 110<br>31<br>19.0<br>1,550<br>1,380 | 2.87<br>0.808<br>0.495<br>40.3<br>36.0 | 74<br>2.2<br>1.73<br>376<br>5.04      | 32.7<br>92.9<br>90.9<br>75.7<br>99.6 |  |

a Average for 2 days only.

bNegative removal.

#### II.5.4.7 Nickel Sulfate Industry

The toxic pollutants present in a specific process operation depend upon the sources and nature of the raw materials being used, which presumably could vary from time to time. If impure raw materials include spent plating solutions, most of the heavy metals will be rejected from the process as sludges by the purification of the plating solutions prior to nickel sulfate production. The sludge produced may be handled as a solid or slurry waste, with the former being safely landfilled and the latter being treated and settled in treatment facilities. The only significant toxic pollutant found in the sampling program was nickel.

Alkaline precipitation will remove nickel and most other heavy metals from solution, allowing them to be settled and filtered in successive steps. Nickel and the common heavy metals, except chromium, can also be precipitated as metallic sulfide, for later separation by settling and filtration.

Table 5-97 shows raw waste and treated effluent characteristics and removal efficiency for plant 120.

TABLE 5-97. VERIFICATION SAMPLING OF WASTE CHARACTER-ISTICS AND TREATED EFFLUENT QUALITY OF NICKEL, SULFATE PLANT 120 [1]

Flow:  $0.72 \text{ m}^3/\text{Mg}$ 

|               |         | waste                        | rreated                                    | effl <b>u</b> ent                                    |                                                                       |                                                                                  |
|---------------|---------|------------------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|
| μg/L          |         | kg/Mg                        |                                            | quality, µg/L                                        |                                                                       | Percent_                                                                         |
| <b>e</b> rage | Maximum | Average                      | Maximum                                    | Average                                              | Maximum                                                               | removala                                                                         |
|               |         |                              |                                            |                                                      |                                                                       |                                                                                  |
| ,000          | 64,000  | 0.842                        | 1.25                                       | 4,330                                                | 8,000                                                                 | 8 <b>9.</b> 9                                                                    |
| ,200          | 75,800  | 0.96                         | 1.48                                       | 200                                                  | 340                                                                   | 99.6                                                                             |
|               | erage   | erage Maximum<br>,000 64,000 | erage Maximum Average<br>,000 64,000 0.842 | erage Maximum Average Maximum ,000 64,000 0.842 1.25 | erage Maximum Average Maximum Average<br>,000 64,000 0.842 1.25 4,330 | erage Maximum Average Maximum Average Maximum ,000 64,000 0.842 1.25 4,330 8,000 |

aBased on raw waste and treated effluent average values.

#### II.5.4.8 Sodium Bisulfite Industry

Toxic pollutants should not normally be present in wastes originating solely from the manufacture of sodium bisulfite from sodium carbonate and sulfur dioxide. However, it is reported that some sources of sodium carbonate contain zinc and other trace metals in measurable amounts. Dissolved zinc was found in some sodium bisulfite wastewaters during the sampling program. It may be assumed that zinc enters the wastestream by corrosion

of galvanized metals from coproduct operations, or from non-process zinc compounds used by the industry.

Raw wastewater from this industry is generally treated by alkaline precipitation to remove the toxic metal pollutants. Lime, sodium carbonate, and caustic soda are normally used for this treatment, which is usually followed by a settling basin. Sodium hypochlorite may also be used as a treatment chemical.

Three other treatment methods may also be feasible for this industry: sulfide precipitation, which readily precipitates zinc from solution; ion exchange from clarified solutions; and the xanthate process.

Table 5-98 shows treated effluent verification data for plants 282 and 586.

TABLE 5-98. TREATMENT PRACTICES AND VERIFICATION SAMPLING AT SODIUM BISULFITE PLANTS [1]

Flow, m<sup>3</sup>/Mg: 2.67, plant 282; 17, plant 586

|                  |                                                                  | Treated effluent |       |      |       |       |        |  |
|------------------|------------------------------------------------------------------|------------------|-------|------|-------|-------|--------|--|
|                  |                                                                  | TSS              |       | COD  |       | Zinc  |        |  |
| Plant            | Treatment                                                        | mg/L             | kg/Mg | mg/L | kg/Mg | μg/L  | kg/Mg  |  |
| 282              | Caustic neutraliza-<br>tion, sodium<br>hypochlorite<br>oxidation | 159              | 0.424 | 979  | 2.61  | 2,540 | 0.0068 |  |
| 586 <sup>a</sup> | Lime pH adjustment, aeration, and settling                       | 22.7             |       | 115  |       | 59    |        |  |

a Combined treatment with other process wastes. Note: Blanks indicate data not available.

#### II.5.4.9 Sodium Dichromate Industry

Toxic pollutants found within the sodium dichromate industry in significant amounts are the primary pollutant, hexavalent chromium, and the common heavy metals often present as impurities in the chromium ore, notably zinc and nickel. By controlling chromium, the incidental removal of other trace heavy metals will also be achieved.

Alkaline precipitation and reaction with sulfite are two methods used to separate nickel and zinc from solution. Hexavalent chromium must be reduced to its trivalent form by reacting with

sodium bisulfide before it can be precipitated by alkaline substances. Clarification, filtration, and settling are also used as control technologies.

Although ion exchange or xanthates can remove metals from clarified solutions, they are inappropriate for treating raw waste slurries from this industry.

Table 5-99 shows chromium and suspended solids effluent waste loadings and a brief description of the waste treatment practices. Table 5-100 shows verification toxic pollutant data for treated effluent from plants 398 and 493.

TABLE 5-99. EFFLUENT CONTROL AND TREATMENT PRACTICES AND ACHIEVEMENTS AT SODIUM DICHROMATE PLANTS [1]

|       |                                                                                                                                                                     |            |         |         |         | e load, kg |         |         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|---------|---------|------------|---------|---------|
|       | Control and                                                                                                                                                         |            | Chro    |         | Chrom   | ıum VI     | T:      | SS      |
| Plant | Treatment practice                                                                                                                                                  | PH         | Average | Maximum | Average | Maximum    | Average | Maximur |
| 398   | Once-through cooling<br>water, dispose of<br>ore residue as<br>solid, no treatment<br>of cooling water<br>discharge.                                                | 6.6 tO 8.5 |         |         | 0.0079  | 0.034      |         |         |
| 493   | Recirculate cooling<br>water, slurry Ore<br>residue, treat all<br>wastes with pickle<br>liquor, counter-<br>current solids<br>wash, clarify and<br>filter effluent. | 6.3 to 8.3 | 0.00038 | 0.0049  |         | 0.00018    | 0.1     | 0.3     |
| 376   | Recirculate cooling<br>water, slurry or<br>residue, treat all<br>wastewater with<br>sodium sulfide,<br>remove solids in<br>settling ponds.                          |            | 0.00058 | 0.0017  |         | 0.00058    | 0.047   | 0.69    |

TABLE 5-100. VERIFICATION SAMPLING OF SODIUM DICHROMATE PLANTS [1]

Flow, m<sup>3</sup>/Mg: 584, plant 398; 3.8, plant 493

|             | Plant 398 <sup>a</sup> | Plant 493  |         |          |  |  |
|-------------|------------------------|------------|---------|----------|--|--|
| Pollutant   | treated effluent,      | Raw waste, | Treated | effluent |  |  |
|             | kg/Mg                  | kg/Mg      | µg/L    | kg/Mg    |  |  |
| TSS         | 2.05                   | 140        | 2,000   | 0.0075   |  |  |
| Chromium VI | 43.9                   | 2.64       | 4       | 0.000016 |  |  |
| Chromium    | b                      | 0.95       | 2,500   | 0.0094   |  |  |
| Nickel      | 0.049                  | 0.047      | 90      | 0.00034  |  |  |
| Zinc        | 0.0009                 | 0.002      | 110     | 0.00041  |  |  |
| Copper      | 0.013                  | 0.00005    | 16      | 0.00006  |  |  |

<sup>&</sup>lt;sup>a</sup>No treatment, only cooling water outfalls.

Date: 6/23/80

bLess than supply water of 495 µg/L.

#### II.5.4.10 Sodium Hydrosulfite Industry

Although sodium hydrosulfite is being manufactured by both the zinc process and the formate process, the trend is away from the zinc process for environmental reasons. This discussion concerns only the formate process, using a sodium formate feedstock from a source which appears to contain significant heavy metal impurities (chromium, zinc, nickel, lead, and copper), as well as trace amounts of cyanide. A predominant characteristic of sodium hydrosulfite wastes is their high chemical oxygen demand resulting from various forms of sulfite, from methyl formate, and from residual methanol after a solvent recovery process. Low levels of phenolic compounds are also found in the raw wastes.

The significant heavy metals appear largely in a coproduct wastestream which is often sold for use in the pulp and paper industry. When no market exists, these wastes are bled into the product wastes.

Practical technologies for controlling COD include various forms of mechanical and biological oxidation. For the relatively simple chemical oxidation of sulfite to sulfate, intimate contact with atmospheric oxygen is effective, using submerged air diffusers, induced air in a circulating system, or mechanical surface aeration. For biochemical oxidation of resistant organics such as formates, phenols, chlorinated hydrocarbons, and methanol, trickling filtration, rotating biological discs, or variations of the activated sludge process can provide intimate contact between organic pollutants and the microbiological organisms which use them as food.

Technologies for controlling heavy metals include alkaline precipitation, which is effective for the common heavy metals, and sulfide treatment, which precipitates nickel, zinc, and copper, but does not control chromium without a subsequent pH increase.

In this subcategory an exception is made to the assumed exclusion of sanitary sewage from the wastestream. To utilize the nutrients and bacteria present in sewage as support for a biological oxidation system to control organics and COD, the plant sanitary wastes are included in the biological treatment.

Vent scrubber water containing methanol is also treated by the above processes.

Table 5-101 shows concentrations, loadings, and the removal efficiency for conventional and toxic pollutants for plant 672.

# TABLE 5-101. SCREENING RESULTS FROM SODIUM HYDROSULFITE PLANT 672 [1]

| Flow.  | m3/Mc·      | 1.87. | influent:   | 4.68. | effluent <sup>a</sup> |
|--------|-------------|-------|-------------|-------|-----------------------|
| L TOM' | III / PIG : | 1.01, | THIT TUCHE, | 7.00, | CITION                |

|                   | Raw waste                               | influent       | Treated | effluent_ | Percent |  |
|-------------------|-----------------------------------------|----------------|---------|-----------|---------|--|
| Pollutant         | μg/L                                    | kg/Mg          | μg/L    | kg/Mg     | removal |  |
| 100               | 15 500 000                              | 29.0           | 740,000 | 3.46      | 95.2    |  |
| COD               | 15,500,0 <b>0</b> 0<br>840.0 <b>0</b> 0 | 1.58           | 25,000  | 0.12      | 97.0    |  |
| linc              | 5,800                                   | 0.011          | 120     | 0.00057   | 97.9    |  |
| Chromium          | 7,400                                   | 0.014          | <43     | <0.0002   | >99.4   |  |
| Copper            | 1,000                                   | 0.0019         | 28      | 0.00013   | 97.2    |  |
| Lead              | 830                                     | 0.0015         | 70      | 0.00013   | 91.6    |  |
| Nickel            | 1,400                                   | 0.0027         | 160     | 0.00075   | 88.6    |  |
| Cadmium           | 37                                      | 0.000069       | 29      | 0.00014   | 11.7    |  |
| Phenol            | 150                                     | 0.0003         | <10     | <0.00005  | >93.4   |  |
| Pentachlorophenol | 37                                      | 0.00 <b>07</b> | <10     | <0.00005  | >97.3   |  |

A Higher flow due to the addition of sanitary wastes and dilution water to the aeration basin, plus cooling tower and boiler blowdown to the chlorine contact tank.

# II.5.4.ll Titanium Dioxide Industry

Toxic pollutants to be controlled in this industry are the common heavy metals found in the ore (i.e., chromium, lead, nickel, and zinc). Although coke and certain proprietary organic complexing agents are used in the chloride process, the amount of chlorinated organic toxic pollutants produced is insignificant and pollutants are found in all ores, nor are they found in all plants utilizing the same process.

Alkaline substances and sulfide compounds are used to control the heavy metals by precipitation as metallic hydroxides, carbonates, or sulfides. Lime neutralization also reduces the concentration of arsenic in the wastewater, although the removal mechanism is not known. Dissolved air flotation, settling, filtration, and centrifuging are a few of the physical methods used for pollutant control.

Among potential treatment technologies, ion exchange can remove metals from clarified solutions, but it is seldom specific enough to remove only the trace metals and is not effective in solutions saturated with calcium. Lime treatment combined with ferric iron may be the most effective means of controlling arsenic concentrations.

Table 5-102 and Table 5-103 show verification effluent data for the chloride process and sulfate process, respectively.

TABLE 5-102. FLOW AND POLLUTANT CONCENTRATION VERIFICATION DATA OF THE SAMPLED WASTESTREAMS FOR PLANTS PRODUCING TITANIUM DIOXIDE (CHLORIDE PROCESSES) [1]

Average flow,  $m^3/Mg$ : 35.9, plant 172; 13.9, plant 559

|            |                     | Plant 172                    |           | Plant 559 <sup>a</sup> |                          |  |  |
|------------|---------------------|------------------------------|-----------|------------------------|--------------------------|--|--|
| Pollutant_ | Raw waste,<br>kg/Mg | Treated effluent  pg/L kg/Mg |           | Raw waste,<br>kg/Mg    | Treated effluent<br>µg/L |  |  |
| TSS        | 6.06                | 6,670                        | 0.245     | 95.9                   | 23,000                   |  |  |
| Iron       | 0.104               | 327                          | 0.012     | 18.7                   | 4,400                    |  |  |
| Chromium   | 0.024               | 17                           | 0.00062   | 1.55                   | 25                       |  |  |
| Lead       | 0.00004             | <2.3                         | <0.000084 | 0.049                  | <2.3                     |  |  |
| Nickel     | 0.002               | <10                          | <0.00037  | 0.048                  | 5                        |  |  |
| Zinc       | 0.010               | 90                           | 0.0033    | 0.027                  | 61.7                     |  |  |

<sup>&</sup>lt;sup>a</sup>Loads in effluent not included because it includes other process water.

TABLE 5-103. SUMMARY OF DAILY EFFLUENT MONITORING VERIFICATION DATA FOR COMBINED WASTE WATER TREATMENT DISCHARGE AT TITANIUM DIOXIDE PLANT 559 (SULFATE PROCESS) [1]

Flow:  $616 \text{ m}^3/\text{Mg}^a$ 

|             | Raw w   | aste,   | Tr      | eated efflu | ent      |
|-------------|---------|---------|---------|-------------|----------|
|             | kg/     | Mg      | μg,     | /L          | Average, |
| Pollutant   | Average | Maximum | Average | Maximum     | kg/Mg    |
| TSS         | 310     | 330     | 23,000  | 38,000      | 19.5     |
| Total, iron | 670     | 770     | 4,400   | 7,900       | 3.7      |
| Antimony    |         |         | <15     | <15         | <0.01    |
| Arsenic     | 0.015   | 0.020   | <10     | <10         | <0.008   |
| Cadmium     | 0.008   | 0.001   | 0.1     | 0.2         | 0.0001   |
| Chromium    | 5.0     | 5.6     | 25      | 30          | 0.02     |
| Copper      | 0.13    | 0.14    | < 5     | < 5         | <0.004   |
| Lead        | 0.16    | 0.17    | 2       | 3           | 0.002    |
| Nickel      | 0.19    | 0.22    | < 5     | < 5         | 0.004    |
| Thallium    | 0.004   | 0.008   | < 5     | < 5         | 0.002    |
| Zinc        | 0.72    | 0.76    | 61      | 65          | 0.05     |

a Includes cooling water and a small part of chloride process

Note: Blanks indicate no data available.

#### II.5.5 REFERENCES

- Draft Development Document for Inorganic Chemicals Manufacturing Point Source Category BATEA, NSPS, and Pretreatment Standards (draft contractor's report). Contract 68-01-4492, U.S. Environmental Protection Agency, Effluent Guidelines Division, Washington, D.C., April 1979.
- 2. NRDC Consent Decree Industry Summary Inorganic Chemicals Industry.
- 3. Supplement for Pretreatment to the Development Document for the Inorganic Chemicals Manufacturing Point Source Category. EPA-440/1-77/087A, U.S. Environmental Protection Agency, Washington, D.C., July 1977.
- 4. Development Document for Effluent Limitations Guidelines and NSPS for the Major Inorganic Products Point Source Category. EPA-440/1-74-007-a, U.S. Environmental Protection Agency, Washington, D.C., March 1974.
- 5. Environmental Protection Agency Effluent Guidelines and Standards for Inorganic Chemicals (40CFR415; 39FR9612, March 12, 1974; amended as shown in Code of Federal Regulations, Vol. 40, revised as of July 1, 1976; 41FR51599 and 51601, November 23, 1976; 42FR17443, April 1, 1977, 42FR10681, February 23, 1977; 42FR37294, July 20, 1977).

#### II.6 IRON AND STEEL MANUFACTURING

#### II.6.1 INDUSTRY DESCRIPTION [1-9]

# II.6.1.1 General Description

The Iron and Steel Manufacturing Industry encompasses all operations under SIC codes 3312, 3315, 3316, and 3317. Within these classifications are establishments involved in the production of iron, steel, and those ferrous products which do not require machining (rolling and drawing are not considered machining operations for these classifications). It also includes ancillary processes necessary to the primary functions of the plants. Therefore, coke production, scale removal, pickling, and alkaline cleaning are all included in this industry. Excluded are those operations engaged in the manufacture of iron and steel castings, which are classified under group 332 of the SIC code.

There are 1,863 plants in this industry, but far fewer plant sites. Because of the interrelationships of these plants, there are frequently a large number of plants on a single site with the product of one plant serving as the feedstock for another through a series of operations that produce one or more final products (usually several). Depending on the subcategory, about 40% to 80% of the plants in this industry are located in Pennsylvania and Ohio. Approximately 75% to 85% of all plants are located in the states of Pennsylvania, Ohio, West Virginia, Kentucky, Indiana, Illinois, Michigan and Wisconsin. These plants are grouped around the coal and iron mining regions, where shipping distance of the needed raw materials is short and shipment is inexpensive. The remaining plants tend to be found in coastal portation costs also tend to be moderate (especially Alabama, California, Texas, and Georgia). Furthermore, all the states mentioned have sizable contiguous bodies of water available for There are a few plants in the arid region of the Southwest, but they must necessarily be among the portion of the industry with low or zero discharge rates.

Discharge rates in the industry vary from 0 to over 384 m<sup>3</sup>/Mg (23,000 gal/ton) with a mean discharge of 30.5 m<sup>3</sup>/Mg (1,827 gal/ton). Additional industry data are found in Table 6-1.

Industry: Iron and Steel Manufacturing Total Number of Subcategories: 25 Number of Subcategories Studied: 24

Number of Dischargers in Industry:

Direct: 1,405Indirect: 238

· Zero: 220

#### II.6.1.2 Subcategory Descriptions [1-10]

The following paragraphs briefly describe the 24 subcategories of this industry that were studied. Process descriptions, number of facilities, subdivisions, production capacity and wastewater discharge flow rates are included in this general description. The wire pickling and coating subcategory is not described in this section due to a lack of information. However, some categories address related subjects and may be referred to if information is needed.

Table 6-2 presents best practicable control technology pollutant data for each subcategory within this industry.

# Cokemaking [2]

The production of metallurgical coke is an essential part of the iron and steel industry, since coke is one of the basic raw materials necessary for the operation of ironmaking blast furnaces. Cokemaking has been divided into the byproduct recovery cokemaking subcategory and the beehive cokemaking subcategory. Of the two traditional processes for the manufacture of coke, byproduct recovery has virtually eclipsed beehive oven in commercial application. Less than 1% of the metallurgical coke produced in 1977 was made in beehive ovens (four small plants in three states). The remaining 99% of coke production comes from coke plants practicing varying degrees of byproduct recovery (61 locations, some with 2 or 3 plants per location, in 17 different states).

Byproduct Recovery Coke. The byproduct recovery process, as the name implies, places emphasis not only on the production of high-quality coke for use as blast furnace or foundry fuels and carbon sources, but also provides a means for recovery of valuable byproducts of the distillation reaction. Air is deliberately excluded from the coking chambers, while heat for the distillation process is supplied from external combustion of fuel gases in flues located within dividing walls separating adjacent ovens.

TABLE 6-2. BPT LIMITATIONS FOR IRON AND STEEL MANUFACTURING<sup>a</sup> [11]

|                                                       | Pollutant parameter      |               |                   |                   |                |                          |              |  |  |
|-------------------------------------------------------|--------------------------|---------------|-------------------|-------------------|----------------|--------------------------|--------------|--|--|
| Subcategory <sup>b</sup>                              | Oil and grease,<br>kg/Mg | TSS, kg/Mg    | Ammonia,<br>kg/Hg | Cyanide,<br>kg/Hg | Phenol, kg/Mg  | Dissolved iron,<br>kg/Mg | Zinc, kg/Mg  |  |  |
| Byproduct coke                                        | 0.0327/0 0109            | 0.1095/0.0365 | 0 2736/0.0912     | 0 0657/0.0219     | 0.0045/0.001\$ |                          |              |  |  |
| Beehive coke <sup>C</sup>                             |                          |               |                   |                   |                |                          |              |  |  |
| Sintering                                             | 0.0063/0.0021            | 0.0312/0.0104 |                   |                   |                |                          |              |  |  |
| Blast furnace (iron)                                  |                          | 0.0780/0 0260 | 0.1953/0.0651     | 0.0234/0 0078     | 0.0063/0 0021  |                          |              |  |  |
| Blast furnace (ferromanganese)                        |                          | 0.3129/0.1043 | 1 5636/0.5212     | 0.4689/0.1563     | 0 0624/0.0208  |                          |              |  |  |
| Basic oxygen furnace (seminwet air pollution control) |                          |               |                   |                   |                |                          |              |  |  |
| Basic oxygen furnace (wet air pollution control)      |                          | 0.0312/0.0104 |                   |                   |                |                          |              |  |  |
| Open hearth furnace                                   |                          | 0.0312/0.0104 |                   |                   |                |                          |              |  |  |
| Electric arc furnace (semiwet air pollution control)  |                          |               |                   |                   |                |                          |              |  |  |
| Electric arc furnace (wet air pollution control)      |                          | 0.0312/0.0104 |                   |                   |                |                          |              |  |  |
| Vacuum degassing                                      |                          | 0.0156/0.0052 |                   |                   |                |                          |              |  |  |
| Continuous casting and pressure slab molding          | 0.0234/0.0078            | 0.0780/0.0260 |                   |                   |                |                          |              |  |  |
| Hot forming-primary                                   | 0.0684/0.0288            | 0.1113/0.0371 |                   |                   |                |                          |              |  |  |
| ot forming-section                                    | 0.3285/0.1095            | 0.7260/0.2420 |                   |                   |                |                          |              |  |  |
| ot forming-flat                                       | 0.5004/0.1668            | 0.5004/0.1668 |                   |                   |                |                          |              |  |  |
| ipe and tube                                          | 0.1254/0.0418            | 0.4254/0.1418 |                   |                   |                |                          |              |  |  |
| Pickling-sulfuric acid, batch and continuous          | 0.00312/0.00104          | 0.0156/0.0052 |                   |                   |                | 0.00033/0.00011          |              |  |  |
| Pickling-hydrochloric acid,<br>batch and continuous   | 0.0039/0.0013            | 0.0189/0.0063 |                   |                   |                | 0.00039/0.00013          |              |  |  |
| Cold rolling                                          | 0.00312/0.00104          | 0.0078/0.0026 |                   |                   |                | 0.00030/0.00011          |              |  |  |
| Hot coating-galvanizing                               | 0.1125/0.0375            | 0.3750/0.1250 |                   |                   |                |                          | 0.0375/0.012 |  |  |
| Hot coating-terne                                     | 0.1125/0.0375            | 0.3750/0.1250 |                   |                   |                |                          |              |  |  |
| Combination acid pickling (batch and continuous)      | 0.1251/0.0417            | 0.3129/0.1043 |                   |                   |                | 0.0126/0.0042            |              |  |  |
| Scale removal (kolene and                             |                          |               |                   |                   |                |                          |              |  |  |
| hydride                                               |                          | 0.1563/0.0521 |                   | 0.0015/0.0005     |                | 0.0063/0.0021            |              |  |  |
| vire pickling and coating                             | 0.1251/0.0417            | 0.3129/0.1043 |                   | 0.0030/0.0010     |                | 0.0126/0.0042            |              |  |  |
| Continuous alkaline cleaning                          |                          | 0.0156/0.0052 |                   |                   |                | 0.00 <b>06/</b> 0.0002   |              |  |  |

# TABLE 6-2 (continued)

|                                                       |                                 |                                  | Po!             | llutant parameter |                    |                              |                               |        |
|-------------------------------------------------------|---------------------------------|----------------------------------|-----------------|-------------------|--------------------|------------------------------|-------------------------------|--------|
| suucategory                                           | Dissolved<br>chromium,<br>kg/Mg | Hexavalent<br>chromium,<br>kg/Hg | Lead, kg/Mg     | Tin, kg/Mg        | Fluorine,<br>kg/Mg | Dissolved<br>nickel<br>kg/Hg | Dissolved<br>copper,<br>kg/Mg | рН     |
| Byproduct coke                                        |                                 |                                  |                 |                   |                    |                              |                               | 6 to ' |
| Beehive coke <sup>C</sup>                             |                                 |                                  |                 |                   |                    |                              |                               |        |
| Sintering                                             |                                 |                                  |                 |                   |                    |                              |                               | 6 to 9 |
| Blast furnace (iron)                                  |                                 |                                  |                 |                   |                    |                              |                               | 6 to 9 |
| Blast furnace (ferromanganese)                        |                                 |                                  |                 |                   |                    |                              |                               | 6 to 9 |
| Basic oxygen furnace (seminwet air pollution control) |                                 |                                  |                 |                   |                    |                              |                               |        |
| Basic oxygen furnace (wet air pollution control)      |                                 |                                  |                 |                   |                    |                              |                               | 6 to 9 |
| Open hearth furnace                                   |                                 |                                  |                 |                   |                    |                              |                               | 6 to 9 |
| Electric arc furnace (semiwet air pollution control)  |                                 |                                  |                 |                   |                    |                              |                               |        |
| Electric arc furnace (wet air pollution control)      |                                 |                                  |                 |                   |                    |                              |                               | 6 to ' |
| Vacuum degassing                                      |                                 |                                  |                 |                   |                    |                              |                               | 6 to ' |
| Continuous casting and pressure slab molding          |                                 |                                  |                 |                   |                    |                              |                               | 6 to ' |
| Hot forming-primary                                   |                                 |                                  |                 |                   |                    |                              |                               | 6 to   |
| lot forming-section                                   |                                 |                                  |                 |                   |                    |                              |                               | 6 to ' |
| ot forming-flat                                       |                                 |                                  |                 |                   |                    |                              |                               | 6 to   |
| Pipe and tube                                         |                                 |                                  |                 |                   |                    |                              |                               | 6 to ' |
| Pickling-sulfuric acid, batch and continuous          |                                 |                                  |                 |                   |                    |                              |                               | 6 to ' |
| Pickling-hydrochloric acid,<br>batch and continuous   |                                 |                                  |                 |                   |                    |                              |                               | 6 to   |
| Cold rolling                                          |                                 |                                  |                 |                   |                    |                              |                               | 6 to   |
| Hot coating-galvanizing                               | 0.0225/0.0075                   | 0.00015/0.00005                  |                 |                   |                    |                              |                               | 6 to   |
| Hot coating-terne                                     |                                 |                                  | 0.00375/0.00125 | 0.0375/0.0125     |                    |                              |                               | 6 to   |
| Combination acid pickling (batch and continuous)      | 0.0063/0.0021                   |                                  |                 |                   | 0.1878/0.0626      | 0.0030/0.0010                |                               | 6 to   |
| Scale removal (kolene and hydride                     | 0.0030/0.0010                   | 0.0003/0.0001                    |                 |                   |                    |                              |                               | 6 to   |
| Wire pickling and coating                             | 0.0063/0.0021                   |                                  |                 |                   | 0.1878/0.0626      | 0.0030/0.0010                | 0.0030/0.0010                 | 6 to   |
| Continuous alkaline cleaning                          | 0.0003/0.0001                   |                                  |                 |                   |                    | 0 00015/0.00005              |                               | 6 to   |

Note: Blanks indicate no data available.

 $<sup>^{\</sup>rm a}$ Values are daily maximum/30-day average limitations.

balthough not a subcategory, miscellaneous runoffs from casting and slagging have the following BPT limitation: there shall be no discharge of process wastewater pollutants from casting and slagging to navigable waters (but the limitation does not apply to any operation in Mahoning Valley).

<sup>&</sup>lt;sup>C</sup>There shall be no discharge of process wastewater pollutants to navigable waters

Volatile components are recovered and processed in a variety of ways to produce tars, light oils, phenolates, ammonium compounds, naphthalene, and other materials, including coke oven gas. A complete list of coal chemicals produced by byproducts coke plants appears in Table 6-3.

TABLE 6-3. COAL CHEMICALS PRODUCED BY U.S. BYPRODUCTS RECOVERY COKEMAKING PLANTS [2]

Crude coal tar Crude light oils Ammonium sulfate Sodium phenolate or sodium carbolate Toluene, all grades Xylene, all grades Intermediate light oils Naphthalene, solidifying at <74°C Naphthalene, solidifying at between 74°C and 79°C Benzene, specification grades Benzene, all other industrial grades Solvent naphtha, all grades Pitch-of-tar, soft (S.P. <43.3°C) Pitch-of-tar, hard (S.P. >71.1°C) Creosote oils, straight distillate Creosote oils, in coal tar solutions Enriched ammonia liquor (high NH3 content) Crude chemical oil (tar acid oils) Mono- and diammonium phosphate Phenol, industrial grades Phenol, all other grades Cresols Cresylic acid Picolines Anhydrous ammonia Elemental sulfur

Production capacities of the 59 byproduct recovery cokemaking plants range from 520 Mg/d (580 tons/d) to 21,000 Mg/d (23,000 tons/d), with a total annual capacity of 69,000,000 Mg (77,000,000 tons). The average raw wastewater flow for the byproduct recovery cokemaking subcategory is 0.38 m³/Mg (92 gal/ton) of product.

Beehive Coke. The beehive process utilizes ovens in which carefully controlled quantities of air are admitted to the coking chambers so that the volatile products which distill from the coal are immediately burned, thus generating additional heat for further coking of the coal. No attempt is made to recover gases or other byproducts of this distillation process. The average

raw wastewater flow for the beehive cokemaking subcategory is 1.5 m<sup>3</sup>/Mg (370 gal/ton) of product.

This subcategory has been recommended as a Paragraph 8 exclusion under the NRDC Consent Decree.

# Sintering [3]

The 35 sintering steel mills in the United States have an annual production capacity of 48,000,000 Mg (53,000,000 tons). Fourteen of these mills operate dry dust collecting systems and do not discharge wastewater; therefore they are not included in the data base for this report. Production capacity at the 21 wet sintering mills ranges from a minimum of 450 Mg/d (500 tons/d) to a maximum of 11,000 Mg/d (12,000 tons/d).

Sintering is an agglomeration process in which iron-bearing material, generally fines from various sources, is taken and mixed with finely divided fuel such as coke breeze. The mixture is placed on a traveling grate, the bed of raw feed mix is ignited on the surface, and, as the mixture moves along on the traveling grate, air is pulled down through the mixture (wind boxes) to enhance combustion and to sinter the fine ore particles into lumps. The combusted sinter drops off the traveling grate at the end of the machine and is then cooled, crushed, and screened before the proper size sinter is sent to the blast furnace. Improper size sinter is returned to the head of the sinter process.

Wastewater flow rates for this subcategory range from 0.11  $^{\rm m}$ /Mg (26 gal/ton) to 39  $^{\rm m}$ /Mg (9,300 gal/ton). Process water varies from 0.50  $^{\rm m}$ /Mg (120 gal/ton) to 39  $^{\rm m}$ /Mg (9,300 gal/ton).

#### Blast Furnaces [3]

Blast furnace operations produce both pig iron and ferromanganese iron. Therefore, there are two blast furnace subcategories, blast furnace-iron and blast furnace-ferromanganese. Only one furnace was found producing ferromanganese on a regular basis. The following description of blast furnace operations applies to both pig iron and ferromanganese furnaces, with the exception that ferromanganese ore is used in the latter.

Blast furnaces are large, cylindrical steel structures approximately 100 feet high. Iron is produced by combusting a mixture of iron ore, coke, and limestone which is fed periodically through the top of the furnace. Combustion is promoted by blowing heated air into the lower part of the furnace. As the raw materials melt and decrease in volume, the entire mass of the charge descends. Additional raw materials are added to keep the mass within the furnace at a constant level.

Cleaning of top gases produced in the furnace can be accomplished using a variety of wet or dry processes. One method uses one wet scrubber (primary), a second type uses two wet scrubbers (primary and secondary), and a third uses one wet scrubber and one dry air pollution control device.

There are 55 plants with blast furnace operations in the United States, most having more than one blast furnace, for a total of 174 blast furnaces. The annual capacity of the 55 plants is 109,000,000 Mg (120,000,000 tons). Productions range from 720 Mg/d (800 tons/d) to 20,000 Mg/d (22,000 tons/d).

## Basic Oxygen Furnaces [4]

Basic oxygen furnace (BOF) steelmaking operations are divided into two subcategories: basic oxygen furnace-semiwet air pollution control, and basic oxygen furnace-wet air pollution control. The latter is further subdivided into open combustion and suppressed combustion.

All BOF furnace methods use pure oxygen to refine the hot metal (iron) and other metallics into steel by oxidizing and removing the elements present such as silicon, phosphorus, etc.

The basic oxygen furnace top blown steelmaking process is a method of producing steel in a pearshaped, refractory-lined, open-mouth furnace with a mixture of hot metal, scrap, and fluxes. Pure oxygen is injected at supersonic velocities through a water-cooled copper-tipped steel lance for approximately 25 minutes. As this process is exothermic, (heat generating), a definite percentage of steel scrap can be melted without use of external fuel. The general ratio is about 70% hot metal and 30% scrap.

The waste products from the basic oxygen process are heat, airborne fluxes, slag, carbon monoxide and dioxide gases, and oxides of iron (FeO, Fe<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4</sub>) emitted as submicrometer dust.

The basic oxygen furnace is always equipped with some type of gas-cleaning system for containing and cooling the huge amounts of hot gases and collecting the submicrometer particulates produced. Water is always used to quench the offgases to temperatures where the gas-cleaning equipment can effectively handle them. Two main process types of gas-cleaning systems are used for the basic oxygen furnace, precipitators and venturi scrubbers, although a bag filter type installation is presently being installed for a BOF specialty steel producer.

There are 10 semiwet BOF steelmaking operations in the United States producing approximately 19,000,000 Mg (21,000,000 tons) annually; there are 13 wet-open combustion plants producing nearly 44,000,000 Mg (48,000,000 tons) annually; and there are 6 wet-suppressed combustion plants producing 15,000,000 Mg

(16,000,000 tons) annually. In 1976, the basic oxygen process accounted for about 63% of steel production.

# Open Hearth Furnace [4]

The open hearth subcategory is subdivided into plants using semiwet air pollution control methods (APCM) and wet APCMs. There are five open hearth facilities in the United States with only one facility using a semiwet APCM. Production capacity at these five plants ranges from 3,500 Mg/d (3,800 tons/d) to 9,100 Mg/d (11,000 tons/d).

The open hearth furnace steelmaking process is an old method of steel production. A shallow rectangular refractory basin or hearth enclosed by refractory-lined walls and roof is used. The front wall has water-cooled doors for charging raw materials. These raw materials may be all scrap, but the most common charge is a 50-50 mixture of hot metal and scrap steel. A tap hole is provided to drain the molten metal from the furnace.

Open hearth furnaces are normally equipped with some type of gascleaning system for cooling and scrubbing the hot gases emitted from the furnace. Dry, semiwet, and wet APCMs may be used. Semiwet systems generally consist of a spark box or spray chamber that cools the gas by water spray to approximately 280°C (550°F). The wet scrubber systems quench the gases emanating from the furnace by evaporation. If waste heat boiler tubes are used less heat is required to be removed. Scrubbers may be independently mounted or manifolded into a central system. Effluent from these process is discharged for treatment.

The applied flow rate is 5 m³/Mg (1,200 gal/ton) at the semiwet APCM facility; it ranges from 3.4 m³/Mg (900 gal/ton) to 16.7 m³/Mg (4,400 gal/ton) at the wet APCM plants. The discharge flow rate is 0.26 m³/Mg (69 gal/ton) at the semiwet APCM facility, and it ranges from 0.40 m³/Mg (105 gal/ton) to 2.2 m³/Mg (580 gal/ton) at the wet APCM plants.

# Electric Arc Furnaces [5]

The electric arc furnace (EAF) steelmaking process is a method of producing high-quality and alloy steels in refractory-lined cylindrical furnaces utilizing a cold steel scrap charge and fluxes. The heat for melting the scrap charge, fluxes, etc., is furnished by passing an electric current (arcing) through the scrap or steel bath by means of three triangularly spaced cylindrical carbon electrodes inserted through the furnace roof.

Electric arc furnace steelmaking operations are divided into two subcategories by the type of air pollution control system used: electric arc furnace-semiwet APCM, and electric arc furnace-wet APCM. These air pollution control methods have been briefly described in previous subcategories. The majority of electric

arc furnace operations in the United States are dry operations with no discharge and are therefore not considered a subcategory. There are four semiwet electric arc furnace plants in the United States with an annual production capacity of 3,800,000 Mg (4,200,000 tons). The eight wet electric arc furnace plants have an annual production capacity of 4,700,000 Mg (5,100,000 tons). There is one specialty steel wet electric arc furnace operation which has an annual production capacity of 830,000 Mg (910,000 tons).

Applied flow rates for process wastewater for semiwet electric arc furnace plants range from 1.13  $m^3/Mg$  (270 gal/ton) to 2.67  $m^3/Mg$  (640 gal/ton). For wet electric arc furnace plants the range is 3.46  $m^3/Mg$  (830 gal/ton) to 14.6  $m^3/Mg$  (3,500 gal/ton). The discharge flow ranges from 0  $m^3/Mg$  (0 gal/ton) to 1.13  $m^3/Mg$  (270 gal/ton) for semiwet operations and from 0  $m^3/Mg$  (0 gal/ton) to 14.6  $m^3/Mg$  (3,500 gal/ton) for wet operations.

#### Vacuum Degassing [5]

The vacuum degassing subcategory is subdivided into specialty steel and carbon steel vacuum degassers. There are a total of 35 vacuum degassers in the United States, with 7 producing carbon steel and the remainder producing specialty steels. Annual production capacity of the carbon steel facilities is approximately 6,100,000 Mg (6,700,000 tons); for specialty steels it is 6,900,000 Mg (7,700,000 tons).

The vacuum degassing operation serves as an intermediary step in steelmaking. After the hot metal has been refined to steel in BOF, EAF, or open hearth furnaces, the heat of steel is transferred to the vacuum degasser for further refining. Degassing is performed only if steel order specifications require it.

Vacuum degassing is the process whereby molten steel is subjected to low pressures in order to eliminate gases absorbed by the steel that may reduce its quality. Gases such as hydrogen, oxygen, and nitrogen can impact detrimental qualities to the finished product if not removed from the steel while it is in its molten state. Hydrogen, in particular, can cause flaking and embrittlement of steel. Oxygen and nitrogen when in combination with other elements can remain in the steel as weakening impurities.

Hydrogen and oxygen are removed from the molten steel by decreasing the partial pressure of each above the molten bath. Oxygen is removed as carbon monoxide or by complexing with strong deoxidizers such as aluminum, titanium, or silicon. After degassing the steel is sent to final product processing. Vacuum degassing is used primarly for specialty steels. Only 7 of the 35 degassing plants refine more carbon steel than specialty steel.

# Continuous Casting [5]

Continuous casting plants in the United States are identified as carbon steel or specialty steel casters. There are 54 continuous casting facilities in the United States with a total annual production of 24,849,000 Mg (27,392,000 tons) of cast steel. Five of these plants are specialty steel facilities and the remainder produce carbon steel.

In the continuous casting process the hot molten steel is poured from the ladle into a refractory-lined tundish that maintains a constant head of molten metal. This constant head is essential to a controlled rate, and in multiple-strand operations it distributes the molten metal to the casting networks. The molten metal is poured into oscillating water-cooled copper molds where partial solidification occurs. These molds oscillate to prevent the steel from sticking to them. As the metal solidifies, the product is removed continuously to a series of cooling zones. The rough product is then sent to finishing.

Flow rates for applied process water in this subcategory vary from 0.09  $\rm m^3/Mg$  (22 gal/ton) to 67  $\rm m^3/Mg$  (16,000 gal/ton) and average 19.6  $\rm m^3/Mg$  (4,700 gal/ton). Discharge flow rates range from 0  $\rm m^3/Mg$  (0 gal/ton) to 23  $\rm m^3/Mg$  (5,300 gal/ton) and average 1.7  $\rm m^3/Mg$  (400 gal/ton).

# Hot Forming-Primary [6]

The hot forming-primary mill is the first step toward making a finished product from steel ingots. Primary mills produce either blooms, slabs, or billets. Blooming mills can be coupled with billet mills so that the semifinished bloom can immediately be rolled in the billet mill while it is still hot. There are, however, many variations of primary mills depending upon the plants' needs.

The hot forming-primary subcategory is subdivided into carbon steel and specialty steels. The 86 hot forming-primary carbon steel mills in the United States have an annual production capacity of 192,000,000 Mg (212,000,000 tons). The 14 hot forming-primary specialty mills have an annual production capacity 12,400,000 Mg (13,700,000 tons).

Typical primary mill operations begin when an ingot buggy transfers a heated ingot from the soaking pits where the ingot is maintained at approximately 1200°C, to an ingot-receiving table which, in turn, delivers the ingot to the mill-approach tables. The latter tables transport the ingot to the front table or roller table in preparation for rolling.

Depending upon the type of primary mill, (reversing, tandem, etc.), the hot ingot is passed between the mill rollers and

reduced in cross-sectional size. After the ingot is rolled to the desired size, the end of the bloom, slab, or billet is cut off or "cropped." The crop shear removes a sufficient length of stock to meet chemical and metallurgical specifications.

Blooms from the primary mill are processed into rails and joint bars, structural and other sections, and billets. Billets are further processed into tube rounds, bar and rod, wire, and special products.

Average flow rates of the eight sampled carbon primary mills are  $2.8 \text{ m}^3/\text{Mg}$  (670 gal/ton) applied flow and  $1.4 \text{ m}^3/\text{Mg}$  (320 gal/ton) discharge flow. Average flow rates at the nine sampled specialty steel mills are  $12 \text{ m}^3/\text{Mg}$  (2,800 gal/ton) applied flow and 7.0 m³/Mg (1,700 gal/ton) discharge flow.

#### Hot Forming-Section [6]

Section rolling mills take the semifinished product from blooming mills and hot roll either an intermediate finished product called a billet (which is further reduced in other finishing mills) or roll the bloom directly to a finished product. Most billets are rolled directly from the blooming mill without reheating furnaces, but some steel plants do provide furnaces between the blooming and billet mills.

The intermediate and finished products from a section mill include rails, joint bars, I-beams, channels, angles, wide flanged beams, H-beams, sheet piling, and billets (which are further processed into tube rounds, bar and rod, wire, and numerous special sections).

The hot forming-section steel mills are of two types: carbon steel and specialty steel mills. The 235 hot forming-section carbon steel mills in the United States have an annual production capacity of 130,000,000 Mg (140,000,000 tons), and the 37 special steel section mills have an annual production capcity of 15,000,000 Mg (16,000,000 tons). Daily production at hot forming-section steel mills ranges from 8.1 Mg (9 tons) to 9,700 Mg (11,000 tons). Average applied and discharge flow rates for the hot forming-section mills sampled are 19 m³/Mg (4,500 gal/ton) applied flow and 6.9 m³/Mg (1,660 gal/ton) discharge flow.

#### Hot Forming-Flat [6]

The hot forming-flat subcategory is subdivided into plate mills and hot strip and sheet mills. In the United States there are a total of 68 facilities in this subcategory. The 26 plate mills annually produce  $2.2 \times 10^7$  Mg. The 42 flat-hot strip and sheet mills annually produce  $9.4 \times 10^7$  Mg. Some mills are capable of producing both types of product.

The basic operation of a plate mill is the reduction of a heated slab to the weight and dimensional limitations defining plates (more than 8 inches wide and at least 0.23 inch thick or over 48 inches wide and 0.18 inch thick). This is accomplished by heating the slab descaling, rolling, leveling or flattening, cooling, and shearing to desired size.

Hot strip mills are often continuous. These mills use slabs that are reheated to rolling temperature by reheating furnaces. The basic operation of a hot strip mill is the reduction of slabs to flat strip steel in thicknesses of 0.04 inch to 1.25 inches, widths of 24 inches to 96 inches and lengths up to 2,000 feet. The product may be sold as produced, further processed in cold reduction mills, or used for plated or coated products.

# Pipe and Tube [7]

The pipe and tube subcategory is subdivided into hot forming and cold forming operations. In the United States there are 55 hot forming pipe and tube mills (with an annual production capacity of 17,000,000 Mg [19,000,000 tons]) and 108 cold forming pipe and tube mills (with an annual production capacity of 8,794,000 Mg [9,696,000 tons]).

Within the pipe and tube subcategory, the processes employed and the equipment used vary between hot forming and cold forming operations. The basic differences between the two arise in the process water usage rates and the wastewater characteristics.

A hot forming pipe and tube mill takes hot steel and processes it into products such as seamless pipe and tube. Relatively high water rates are required for the various contact and noncontact cooling systems. On the other hand, the cold forming process takes a cold semifinished product and manufactures cold drawn or welded pipe and tube. Water requirements are lower and the presence of soluble oil distinguishes the wastewater.

Daily production capacity of the hot forming pipe and tube mills ranges from 44 Mg (48 tons) to 3,100 Mg (3,400 tons). Daily production capacity of the cold forming pipe and tube mills ranges from 0.73 Mg (0.8 tons) to 3,100 Mg (3,400 tons). Average applied flow rate for all 55 hot forming pipe and tube mills is 25.8 m³/Mg (6,200 gal/ton) and the average discharge rate is 17.7 m³/Mg (4,250 gal/ton). The average applied flow rate for the 108 cold forming pipe and tube mills is 11 m³/Mg (2,700 gal/ton) and the average discharge rate is 7.1 m³/Mg (1,700 gal/ton).

#### Sulfuric Acid Pickling [8]

The sulfuric acid pickling subcategory is subdivided into continuous pickling and batch pickling, each further subdivided into carbon steel and specialty steel. The 44 continuous sulfuric

acid pickling operations in the United States have an estimated annual production capacity of 14,500,000 Mg (16,000,000 tons); the 105 batch sulfuric acid operations have an estimated annual production capacity of 8,200,000 Mg (19,000,000 tons).

Annual production at batch  $\rm H_2SO_4$  pickling-carbon steel mills ranges from 180 Mg (200 tons) to 840,000 Mg (920,000 tons). At batch  $\rm H_2SO_4$  pickling-specialty steel mills the range is 3,800 Mg (4,200 tons) to 280,000 Mg (300,000 tons); at continuous  $\rm H_2SO_4$  pickling-carbon steel mills it is 1,000 Mg (1,100 tons) to 2,500,000 Mg (2,800,000 tons); and at continuous  $\rm H_2SO_4$  pickling-specialty steel mills it is 17,200 Mg (19,000 tons) to 261,000 Mg (288,000 tons).

The traditional method of scale removal is "pickling," the chemical removal of surface oxides from metal by immersion in a heated solution. Carbon steel pickling is almost universally accomplished in either hydrochloric or sulfuric acid, and stainless is pickled in hydrofluoric or nitric acid. Acid type used, bath temperature, use of inhibitors, and source of agitation depend on the type of material to be pickled.

Various organic chemicals are used in pickling to inhibit acid attachment on the base metal, while permitting preferential attachment to the oxider. Wetting agents are used to improve the effective contact of the acid solution with the metal surface. Pickling may be done on a batch or a continuous basis depending on the product being pickled. A rinse step normally follows the operation to reduce acid carryover.

The major wastewater flows arise from rinsing and fume-scrubbing operations. Rinse water flows are somewhat dependent on product requirements and process line configuration. As process lines become more complex, an occasional opportunity arises to reduce flows via recirculation of a portion of the rinse water. For example, final rinse water can be reused for initial spray rinsing and for makeup to fume scrubber, thus reducing the total process wastewater.

Discharge flow rates of wastewater vary throughout this subcategory. Continuous pickling generally discharges slightly more water than does batch pickling. Continuous processes consisting of rinses, fume hood scrubbers, acid recovery systems, and spent pickle liquor condensates release averages of 2.3, 0.42, 0.32, and 0.086 m³/Mg of product, respectively. Batch processes use the same general processes and release 2.0, 0.55, 0.012, and 0.075 m³/Mg of product, respectively.

# Hydrochloric Acid Pickling [8]

The hydrochloric acid pickling subcategory includes continuous strip pickling and batch pickling operations. There are 43 hydrochloric acid pickling steel mills with an annual production capacity of 23,000,000 Mg. Pickling is accomplished by one of two general processes dependent upon the type of material to be pickled. Pickling lines for hot-rolled strip operate continuously on long coils. The steel passes through the pickler countercurrently to the flow of the acid solution. Most pickling operations are followed by several rinsing steps which remove the excess acid and oxides that may cling to the surface. The water for the rinse can be reused in subsequent rinsing operations.

Continuous operations have several wastewater sources including acid regeneration, neutral rinse, and specialty, carbon steel, and wire product rinses. Average flow from the various continuous operations are:

| Acid regeneration        |     | $m^3/Mg$ |
|--------------------------|-----|----------|
| Neutral rinse            | 1.7 | $m^3/Mg$ |
| Specialty steel pickling | 2.7 | $m^3/Mg$ |
| Carbon steel pickling    | 1.8 | $m^3/Mg$ |
| Wire pickling            | 6.8 | $m^3/Mg$ |

Batch operations normally use much more water. Average flows for this pickling process are:

| Neutral rinse         | 5.5 | $m^3/Mg$ |
|-----------------------|-----|----------|
| Carbon steel pickling | 3.8 | $m^3/Mg$ |
| Wire pickling         | 7.9 | $m^3/Mg$ |

#### Cold Rolling [7]

Cold rolling is an operation in which unheated metal is passed through a pair of rolls to reduce its thickness, generally by a relatively small amount; to produced a smooth, dense surface; and/or to develop controlled mechanical properties in the metal.

A typical modern cold rolling shop would contain a continuous pickling operation (sulfuric or hydrochloric acid) for the removal of scale and rust from the hot rolled breakdown coil. Oil applied to the strip as it leaves the pickler prevents rusting and acts as a lubricant in the cold rolling mill. The coil is then fed into a continuous cold rolling reducing mill that can contain up to six rolling stands in series.

During rolling the steel becomes quite hard and unsuitable for most uses. As a result, the strip must usually undergo an annealing operation to return its ductility and to effect other required changes in mechanical properties. This is done in either a batch or continuous annealing operation.

The cold rolling subcategory is divided into three subsections: recirculating mills, direct application mills, and combination mills. There are 170 recirculating cold rolling mills in the United States with an annual production capacity of 27,000,000 Mg (30,000,000 tons). The 79 direct application cold rolling mills have an annual production capacity of 17,000,000 Mg (19,000,000 tons). Annual production capacity at the 20 combination cold rolling mills is 13,000,000 Mg (15,000,000 tons).

#### Hot Coating [9]

Hot coating operations are divided into two subcategories, hot coating-galvanizing and hot coating-terne plating. Hot coating processes in the iron and steel industry involve the immersion of clean steel into baths of molten metal for the purpose of attaching a thin layer of this metal onto the steel surfaces. Such coatings serve to provide certain desired qualities, such as resistance to corrosion, safety from contamination, or a decorative bright appearance. Finished products retain the strength of steel while gaining the improved surface quality of the coated metal for a fraction of the cost of products made entirely of that metal alone.

The principal metallic coating operations practiced in the iron and steel industry can be divided into two major classes; hot coating and cold coating. Zinc, terne, and aluminum coatings are most often applied hot, while tin and chromium are usually applied electrolytically from plating solutions maintained at 20°C to 90°C (68-194°F), not actually "cold," but relatively so when compared with molten metal temperatures encountered in the hot dip processes. This cold coating process is not considered within this industry description due to its inclusion in the electroplating industry.

Continuous hot dip-galvanizing is the most common method used for hot coating steel with zinc. The process starts with annealed and tempered strip which receives a light muriatic acid (HCl) pickle and rinse, then proceeds directly through a layer of fluxing agent to the molten zinc bath. The coated strip is dried and recoiled, or cut to size for shipment.

Terne (from a French word meaning "dull") is an inexpensive, corrosion-resistant, hot dip coating consisting of tin and lead in a ratio typically near five or six parts lead to one part tin.

A major portion of all terne-coated material is used in the auto industry to manufacture gas tanks, with lesser amounts going into the production of automotive mufflers, oil pans, air cleaners, and radiator parts.

The third major metallic coating applied using the hot dip technique is aluminum. Products made of aluminum-finished steel include bright and matte finished sheets and strip used as building materials in marine, industrial, or other environments where high degrees of resistance to corrosion are required.

There are 94 hot coating plants in the United States, of which 68 responded to basic DCP's. The annual production capacity of those 68 plants (representing 173 production lines) is 7,700,000 Mg (8,500,000 tons).

Daily production at the nine sampled hot coating-galvanizing plants ranges from 5 Mg/d (6 tons/d) to 1,585 Mg/d (1,750 tons/d). At the three sampled hot coating-terne plating plants daily production ranges from 475 Mg/d (525 tons/d) to 510 Mg/d (560 tons/d).

#### Combination Acid Pickling [8]

Pickling is the process of chemically removing oxides and scale from the surface of a metal by the action of water solutions of inorganic acids. While pickling is only one of several methods of removing surface oxides, it is widely used in the manufacture of various steel products because of its comparatively low operating costs and ease of operation. Considerable variation in the types of pickling solutions, operations, and equipment is found in the industry.

In combination acid pickling, a minimum of two different acid solutions act on the product being processed. These two acids can be in different tanks or can be mixed together, as is done in some cases with nitric and hydrofluoric acids. Depending on the type of material to be pickled, combination acid pickling (CAP) is carried out by one of two general processes, the subdivisions of this subcategory: CAP-batch type and CAP-continuous type.

Batch Type Pickling. Large, open tanks of a wide range of sizes are used for batch type pickling, principally for rods, bars, billets, sheet, strip, wire and tubing. The tanks, generally rubber lined and brick sheathed, hold a large volume of heated acid solution. After reaching a certain iron buildup due to scale removal, the acid solution is considered spent and dumped as a batch.

Continuous Pickling. Continuous pickling is done on a small number of steel products, including, strip, sheet, and wire. In this process, there are at least two acid tanks, each usually divided into 4 or 5 compartments. The fresh acid solution is added to the last tank section and cascades through the tank to an overflow located in the first section. Acid flow is opposite to the direction of product travel.

After pickling, the product is rinsed before moving on to the next sequence in the process. The rinse step may vary from a one-step dunk to more sophisticated multistage rinsing.

In the United States there are 57 plants with 152 combination acid pickling mills. Of these mills, 78 are batch type and 74 are continuous type operations. The annual production capacity of the 78 batch type operations is 3,000,000 Mg (2,700,000 tons); that of the 74 continuous type operations is 3,100,000 Mg (3,400,000 tons).

Wastewater discharge at combination acid facilities varies with the process type used. Batch type processes discharge 2.1 m<sup>3</sup> of water per Mg of product (500 gal/ton) while continuous type processes discharge nearly 11 m<sup>3</sup> of water per Mg of product (2,500 gal/ton). Other sources of wastewater include fume hood scrubber water (6.3 m<sup>3</sup>/Mg [1,500 gal/ton]) and spent pickle liquor (0.063 m<sup>3</sup>/Mg [15 gal/ton]).

# Scale Removal, Kolene and Hydride [9]

The scale removal subcategory is subdivided into kolene scale removal and hydride scale removal. Kolene scale removal operations are further subdivided into continuous and batch type operations. In the United States there are 11 continuous type kolene scale removal mills, which have an annual production capacity of 120,000 Mg (130,000 tons). There are 10 batch type kolene scale removal mills with an annual production capacity of 260,000 Mg (280,000 tons). The eight hydride scale removal mills in the United States have an annual production capacity of 92,000 Mg (100,000 tons).

The kolene process utilizes highly oxidizing salt baths at 370°C to 480°C (700-900°F), which react far more aggressively with scale than with the base metal. This results in a smoother surface than is obtainable with acid pickling.

Sodium hydride descaling depends on the strong reducing properties of a 1.5% to 2% by weight concentration of sodium hydride in a fused caustic soda bath at 370°C (700°F). Most scaleforming oxides are reduced to the base metal; oxides of metals that form acid radicals are partially reduced. Hydride and kolene descaling operations are operated only as an integral part of the pickling process.

The average discharge flow rates for kolene scale removal mills are 6.20  $\rm m^3/Mg$  (1,500 gal/ton) for batch type operations and 1.8  $\rm m^3/Mg$  (420 gal/ton) for continuous type operations. The average discharge flow rate for hydride scale removal mills is 2.6  $\rm m^3/Mg$  (610 gal/ton).

# Continuous Alkaline Cleaning [9]

Alkaline cleaners are used where mineral and animal fats and oils must be removed. Mere dipping in solutions of various compositions, concentrations, and temperatures is often satisfactory. The use of electrolytic cleaning may be advisable for large-scale production, or where this method yields a cleaner product. Caustic soda, soda ash, alkaline silicates, and phosphates are common alkaline cleaning agents. Sometimes the addition of wetting agents to the cleaning bath will facilitate cleaning.

Alkaline cleaning may be carried out by two different methods. Continuous cleaning is used at 70% of the mills that responded to questionnaires, and the balance use batch cleaning. Continuous cleaning mills use approximately 1.8 m³ of water per Mg of product (434 gal/ton) to clean sheet, strip, or wire. Batch cleaning transfers the product from the wash to the rinse manually and uses approximately 1.3 m³ of water per Mg of product (307 gal/ton).

Alkaline cleaning lines are usually operated as a part of a larger, more complex line such as an annealing, galvanizing, or pickling line. Water flow rates range from 0.002 m³/Mg (0.059 gal/ton) of product to 1.25 m³/Mg (300 gal/ton) of product. Products from this process vary considerably, ranging from sheet and strip to chain link fence.

# II.6.2 WASTEWATER CHARACTERIZATION [1-9]

The following paragraphs and tables describe the wastewater generated from each subcategory. These descriptions normally include a general statement on the potential sources of wastewater, average wastewater flow, and the common pollutants found in the wastewater. Tables present median, maximum, and average conventional and toxic pollutant concentrations for the raw and treated wastewater when sufficient data are available. The tables were generated from the sampling data found in the reference documents. Also reported is the average percent removal determined by the reduction in the average treated effluent concentration compared with the average raw wastewater concentration.

#### II.6.2.1 Subcategory 1 - Byproduct Cokemaking [2]

Raw waste loads from byproduct cokemaking operations differ widely based on the type of coal used, variations in recovery processes, water use system configurations, oven carbonizing temperatures, and duration of the cycle. The major liquid wastes generated during cokemaking and byproduct recovery operations include excess ammonia liquor, final cooler wastewater, light oil recovery wastes from the benzol plant, barometric condenser wastes, desulfurizer wastes, and contaminated waters

from air pollution emission scrubbers. Some additional wastewater may result from coke wharf drainage, quench pump overflows, and coal pile runoff. Table 6-4 shows the ranges of volumes for these sources.

TABLE 6-4. WASTEWATER FLOWS FROM SOURCES IN THE BYPRODUCT COKEMAKING SUBCATEGORY [2]

| Wastewater stream                | Average,<br>m³/Mg |
|----------------------------------|-------------------|
| Excess ammonia liquor            | 0.17              |
| Final cooler wastewater          | 0.14              |
| Benzol plant wastes              | 0.25              |
| Barometric condenser             | 0.16              |
| Desulfurizer                     | 0.081             |
| Air pollution emission scrubbers | 1.7               |
| Steam condensates                | 0.040             |
| Miscellaneous wastes             | 0.15              |

Conventional pollutants often found in the raw wastewater include significant concentrations of total suspended solids, ammonia, sulfide, and oil and grease. Subcategory data are presented in Table 6-5. Toxic pollutants found in the wastewater generally consist of metals, phenols, and aromatics. Table 6-6 lists information on these pollutants.

TABLE 6-5. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANT FOR THE BYPRODUCT RECOVERY COKEMAKING SUBCATEGORY [2]

|                |          | Raw wast | ewater    |          |          |        | Average   |         |         |
|----------------|----------|----------|-----------|----------|----------|--------|-----------|---------|---------|
|                | Number   | Conce    | ntration, | $mg/L^a$ | Number   |        | ntration, | mg/La   | percent |
| Parameter      | detected | Median   | Maximum   | Average  | detected | Median | Maximum   | Average | removal |
| Ammonia        | 7        | 2,400    | 8,300     | 2,900    | 9        | 220    | 4,900     | 900     | 69      |
| Thiocyanate    | 7        | 593      | 1,250     | 530      | 9        | 29     | 1,050     | 29      | 95      |
| Oil and grease | 7        | 83       | 180       | 140      | 8        | 11     | 40        | 16      | 90      |
| Phenol         | 7        | 630      | 1,700     | 740      | 7        | 5.1    | 220       | 26      | 96      |
| Sulfide        | 7        | 440      | 1,800     | 630      | 8        | 91     | 1,800     | 320     | 49      |
| TSS            | 7        | 59       | 97        | 67       | 8        | 41     | 540       | 120     | -p      |
| рH             | 7        | 8.6      | 9.7       | 8.3      | 9        | 8.5    | 11.8      | 8.9     |         |

Except pH values, given in pH units.

bNegative removal.

TABLE 6-6. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS
FOR THE BYPRODUCT RECOVERY COKEMAKING SUBCATEGORY [2]

| Toxic pollutant            |          | Treated effluent    |         |         |          | Average        |         |         |                 |
|----------------------------|----------|---------------------|---------|---------|----------|----------------|---------|---------|-----------------|
|                            | Number   | Concentration, µg/L |         |         | Number   | Concentration, |         |         | percent         |
|                            | detected | Median              | Maximum | Average | detected | Median         | Maximum | Average | removal         |
| Metals and inorganics      |          |                     |         |         |          |                |         |         |                 |
| Antimony                   | 3        | 33                  | 335     | 120     | 3        | 41             | 130     | 60      | 50              |
| Arsenic                    | 3        | 660                 | 170.000 | 57.000  | 2        | 210            | 400     | 210     | 99              |
| Cyanide                    | 7        | 26,000              | 190,000 | 47,000  | 5        | 2.500          | 22,000  | 8.800   | 81              |
| Selenium                   | 4        | 410                 | 2,600   | 860     | 3        | 640            | 650     | 430     | 50              |
| Silver                     | 6        | 25                  | 670     | 130     | 4        | 17             | 25      | 17      | 87              |
| Zinc                       | 5        | 130                 | 470     | 200     | 3        | 130            | 220     | 110     | 45              |
| Nitrogen compounds         |          |                     |         |         |          |                |         |         |                 |
| Acrylonitrile              | 5        | 2,700               | 4,700   | 2,700   | 2        | 1,600          | 3,000   | 1,600   | 40              |
| Phenols                    |          |                     |         |         |          |                |         |         |                 |
| 2,4-Dimethylphenol         | 3        | 5,000               | 84,000  | 23,000  | 0        |                |         |         |                 |
| 2-Nitrophenol              | 2        | 770                 | 1,500   | 770     | ĭ        | <5             |         |         | 99              |
| Pentachlorophenol          | î        | 395                 | 1,500   | ,,,     | î        | 49             |         |         | 88              |
| Phenol                     | 7        | 120.000             | 670,000 | 240,000 | 5        | 48             | 53,000  | 11,000  | 95              |
| 2,4,6-Trichlorophenol      | í        | 400                 | 0,0,000 | 240,000 | ő        | 10             | 33,000  | 11,000  | ,,              |
| p-Chloro-m-cresol          | 2        | 2,200               | 4,300   | 2,200   | 2        | 33             | 64      | 33      | 94              |
| 4,6-Dinitro-o-cresol       | 2        | 530                 | 970     | 530     | ī        | < 5            | 0.1     | 33      | 99              |
| ·                          | •        | 330                 | 370     | 330     | -        | \3             |         |         | ,,,             |
| Aromatics                  | _        |                     |         |         | _        |                |         |         | _a              |
| Benzene                    | 7        | 27,000              | 86,000  | 29,000  | 5        | 260            | 140,000 | 30,000  |                 |
| 2,4-Dinitrotoluene         | 1        | 1,900               |         |         | 1        | 510            |         |         | 78              |
| 2,6-Dinitrotoluene         | 1        | 240                 |         |         | 1        | 140            |         | _       | 42 <sub>a</sub> |
| Ethylbenzene               | 5        | 300                 | 640     | 340     | 4        | 27             | 6,600   | 1,700   | -               |
| Toluene                    | 5        | 5,700               | 17,000  | 6,700   | 5        | 73             | 11,000  | 2,600   | 61              |
| Polycyclic aromatics       |          |                     |         |         |          |                |         |         |                 |
| Acenaphthylen <del>e</del> | 7        | 3,200               | 6,400   | 3,000   | 5        | 7              | 1,600   | 330     | 89              |
| Benzo(a)anthracene         | 3        | 150                 | 1,200   | 490     | 3        | 5              | 260     | 88      | 82              |
| Benzo(a)pyrene             | 4        | 360                 | 1,100   | 480     | 3        | 13             | 13      | 9       | 98              |
| Chrysene                   | 5        | 320                 | 1,500   | 550     | 0        |                |         |         |                 |
| Fluoranthene               | 7        | 950                 | 3,100   | 1,200   | 5        | 8              | 500     | 110     | 91              |
| Fluorene                   | 7        | 370                 | 2,500   | 700     | 5        | 10             | 190     | 47      | 87              |
| Naphthalene                | 7        | 27,500              | 39,000  | 25,000  | 4        | 700            | 5,900   | 1,800   | 95              |
| Pyrene                     | 6        | 760                 | 2,600   | 910     | 5        | 8              | 280     | 64      |                 |
| Halogenated aliphatics     |          |                     |         |         |          |                |         |         |                 |
| Chloroform                 | 5        | 120                 | 1,400   | 400     | 3        | 200            | 280     | 180     | 55              |
| l,l-Dichloroethylene       | 2        |                     | 3       | 3       |          |                |         | 0       |                 |
| Pesticides and metabolites |          |                     |         |         |          |                |         |         |                 |
| Isophorone                 | 2        | 2,000               | 4,000   | 2,000   | 1        | 170            |         |         | 92              |

Note: Blanks indicate no data available.
Dashes indicate negligible removal.

 $<sup>^{\</sup>mathbf{a}}$ Treated effluent concentration exceeds raw wastewater concentration.

#### II.6.2.2 Subcategory 2 - Beehive Cokemaking [2]

This subcategory provides sufficient oxygen to burn volatile byproducts during the cokemaking process. As a result of this
complete burning and the lack of byproduct recovery, relatively
simple wastewater is generated, solely from the quenching operation. Total suspended solids is the only pollutant requiring
control in this subcategory. Table 6-7 shows conventional pollutant data for the beehive cokemaking process.

TABLE 6-7. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLU-TANTS FOR THE BEEHIVE COKEMAKING SUBCATEGORY [2]

| Parameter      |          | Raw wa:        | stewater |         |          |               |         |                    |         |
|----------------|----------|----------------|----------|---------|----------|---------------|---------|--------------------|---------|
|                | Number   | Concentration, |          | mg/La   | Number   | Concentration |         | ,mq/L <sup>a</sup> | Percent |
|                | detected | Median         | Maximum  | Average | detected | Median        | Maximum | Average            | removal |
| Ammonia        | 3        | 0              | 0.33     | 0.11    | 3        | 0             | 0.24    | 0.08               | 27      |
| Cyanide, total | 3        | 0              | 0.002    | 0.0007  | 3        | 0             | 0.004   | 0.001              | -p      |
| Oil and grease | 3        | <5             | <5       | <5      | 3        | 0             | <5      | <1.6               | 68      |
| Phenol         | 3        | 0              | 0.011    | 0.004   | 3        | 0             | 0.014   | 0.005              | _p      |
| TSS            | 3        | 170            | 720      | 310     | 3        | 0             | 36      | 12                 | 96      |
| рН             | 3        | 7.3            | 7.3      | 7.2     | 1        |               |         | 7.1                |         |

a Except pH values, given in pH units.

Effluent flow rates range from 0 to  $2.04 \text{ m}^3/\text{Mg}$ . Total recycle is often used because of the low pollutant loadings.

# II.6.2.3 Subcategory 3 - Sintering [3]

Process wastewaters emanating from the sintering subcategory exhibit common quality characteristics. Suspended solids, oil and grease, sulfide, and fluoride are normally present in some concentrations. However, the quantities of these regulated parameters exhibit considerable variability depending on the number of sources generating wastewater. Tables 6-8 and 6-9 present conventional and toxic pollutant data for this subcategory.

TABLE 6-8. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR SINTERING SUBCATEGORY [3]

Average raw wastewater flow. 2 0 m $^3/{\rm Mg}$  (485 gal/ton) Average treated effluent flow 0.55 m $^3/{\rm Mg}$  (132 gal/ton)

| Pärameter      | Raw wastewater |                |         |         |          |                      |         |         |         |
|----------------|----------------|----------------|---------|---------|----------|----------------------|---------|---------|---------|
|                | Number         | Concentration, |         | mg/L    | Number   | Concentration, mg/La |         |         | Percent |
|                | detected       | Median         | Maximum | Average | detected | Median               | Maximum | Average | removal |
| Fluoride       | 4              | 4.7            | 18 0    | 6 9     | 4        | 20                   | 180     | 55      | _p      |
| TSS            | 5              | 4,300          | 20,000  | 6,000   | 4        | 420                  | 15,000  | 3,900   | 36      |
| Oil and grease | 5              | 200            | 500     | 240     | 3        | 180                  | 1,100   | 430     | -ь      |
| Sulfide        | 5              | 5.8            | 190     | 52      | 4        | 4.1                  | 11      | 5.0     | 91      |
| pН             | 5              | 11.4           | 12.7    | 10.4    | 4        | 8.9                  | 12.8    | 9.4     |         |

a Except pH values, given in pH units.

b Treated effluent concentration exceeds raw wastewater concentration.

b Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-9. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR SINTERING SUBCATEGORY [3]

|                        |          | Raw wast | ewater    |         |          | Treated e | ffluent   |         | Average         |
|------------------------|----------|----------|-----------|---------|----------|-----------|-----------|---------|-----------------|
|                        | Number   | Conce    | ntration, | μg/L    | Number   | Conce     | ntration, | µg/L    | percent         |
| Toxic pollutant        | detected | Median   | Maximum   | Average | detected | Median    | Maximum   | Average | removal         |
| Metals and inorganics  |          |          |           |         |          |           |           |         |                 |
| Cadmium                | 2        | 690      | 1,300     | 690     | 2        | 420       | 770       | 420     | 39              |
| Chromium               | 3        | 98       | 620       | 250     | 2        | 50        | 90        | 50      | 80 <sub>a</sub> |
| Copper                 | 3        | 520      | 600       | 400     | 3        | 270       | 550       | 410     | ~_a             |
| Cyanide                | 4        | 260      | 15,000    | 3,900   | 3        | 160       | 1,100     | 430     | 89              |
| Lead                   | 2        | 5,600    | 5,900     | 5,600   | 3        | 800       | 5,500     | 3,200   | 43              |
| Nickel                 | 2        | 110      | 200       | 110     | 2        | 74        | 130       | 70      | 36              |
| Silver                 | 2        | 12       | 13        | 12      | 2        | 10        | 10        | 10      | 17              |
| Zinc                   | 3        | 940      | 8,700     | 3,400   | 3        | 940       | 5,000     | 1,900   | 44              |
| Phthalates             |          |          |           |         |          |           |           |         |                 |
| Butyl benzyl phthalate | 3        | 85       | 290       | 130     | 3        | 580       | 990       | 520     | _a              |
| Di-n-butyl phthalate   | 3        | 120      | 250       | 130     | 3        | 170       | 420       | 200     | _a              |
| Di-n-octyl phthalate   | 3        | 20       | 370       | 130     | 3        | 350       | 490       | 280     | _a<br>_a<br>_a  |
| Phenols                |          |          |           |         |          |           |           |         |                 |
| 2,4-Dinitrophenol      | 1        | 14       |           |         | 1        | 140       |           |         | _a              |
| Phenol                 | 1<br>3   | 56       | 1,000     | 380     | 1<br>3   | 630       | 990       | 370     | 2               |
| Polycyclic aromatics   |          |          |           |         |          |           |           |         |                 |
| Benzo(a)anthracene     | 2        | 260      | 516       | 260     | 3        | 150       | 260       | 140     | 46              |
| Benzo(a)pyrene         | 2<br>2   | 220      | 430       | 220     | 3        | 190       | 240       | 140     | 36              |
| Chrysene               | 2        | 160      | 320       | 160     | 3        | 53        | 410       | 160     | _               |
| Fluoranthene           | 2        | 130      | 254       | 130     | 3        | 310       | 860       | 390     | _a              |
| Pyrene                 | 3        | 7        | 320       | 110     | 3        | 300       | 1,100     | 470     | _a              |

Note: Blanks indicate no data available.
Dashes indicate negligible removal.

 $<sup>^{\</sup>mathbf{a}}$ Treated effluent concentration exceeds raw wastewater concentrations.

Wastewater is generated from several areas. Sinter machine and pretreatment areas produce an average wastewater flow of 6.06 m³/Mg of product (1,442 gal/ton). If a large discharger is eliminated from the data set, the average flow reduces to 1.34 m³/Mg (319 gal/ton). The final product treatment area produces an average wastewater flow of 2.03 m³/Mg of product (4999 gal/ton). Other areas generating smaller quantities of wastewater include storage areas, sinter cooling, and crushing/screening operations.

# II.6.2.4 Subcategories 4 and 5 - Blast Furnace-Iron and Ferromanganese [3]

Blast furnace process wastewater is water which comes into intimate contact with the process or its products, thus becoming contaminated with various pollutants associated with the process. This wastewater may be a combination of several wastestreams, but it is primarily associated with the scrubber wash water from the wet scrubbing of blast furnace top gases. Other miscellaneous waters may include floor drains, drip legs, and dekishing operations.

Top gases contain large amounts of particulates, carbon dioxide, carbon monoxide, and organic substances. Large particulates are removed by dry processing, and the gas is then wet scrubbed to remove other contaminants. Thus, the wastewater entering the treatment system contains quantities of suspended solids and organic substances. Wastewater flow entering treatment ranges from  $2.52~\text{m}^3/\text{Mg}$  product to  $37.7~\text{m}^3/\text{Mg}$ . Treated discharge ranges from  $0~\text{m}^3/\text{Mg}$  (water recycle) to  $27.9~\text{m}^3/\text{Mg}$ .

Tables 6-10, 6-11, and 6-12 present conventional and toxic pollutant data on a subcategory basis. Data come from sampled plants. No toxic pollutant data are available for the ferromanganese subcategory.

TABLE 6-10. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR BLAST FURNACE-IRON SUBCATEGORY [3]

|           |          | Raw wast | ewater    |         |          | Treated e | ffluent   |         | Average |
|-----------|----------|----------|-----------|---------|----------|-----------|-----------|---------|---------|
|           | Number   |          | ntration, |         | Number   | Conce     | ntration, | mg/La   | percent |
| Parameter | detected | Median   | Maximum   | Average | detected | Median    | Maximum   | Average | removal |
| Ammonia-N | 4        | 39       | 64        | 40      | 4        | 30        | 45        | 30      | 75      |
| Cyanide   | 4        | 6.2      | 85        | 24      | 4        | 0.66      | 33        | 8.6     | 64      |
| Fluoride  | 4        | 13       | 160       | 48      | 4        | 12        | 147       | 44      | 8       |
| Phenol    | 4        | 2.8      | 5.4       | 2.8     | 4        | 2.4       | 6.7       | 2.9     | ~p      |
| TSS       | 4        | 1,600    | 7,100     | 2,700   | 4        | 54        | 168       | 78      | 97      |
| Sulfide   | 4        | 7        | 68        | 21      | 3        | 0.4       | 0.5       | 0.4     | 98      |
| рH        | 4        | 9.7      | 10.2      | 9.1     | 4        | 9.8       | 10.9      | 9.5     |         |

a Except pH values, given in pH units.

bTreated effluent concentration exceeds raw wastewater concentration.

TABLE 6-11. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOUND IN BLAST FURNACE-IRON SUBCATEGORY [3]

|                             |          | Raw wast | ewater    |         |          | Treated e    | ffluent   |         | Average |
|-----------------------------|----------|----------|-----------|---------|----------|--------------|-----------|---------|---------|
|                             | Number   | Conce    | ntration, | pg/L    | Number   |              | ntration, | 1/64    | percent |
| Toxic pollutant             | detected |          | Maximum   | Average | detected | Median       | Maximum   | Average | removal |
| Metals and inorganics       |          |          |           |         |          |              |           |         |         |
| Antimony                    | 1        | 37       |           |         | 1        | 15           |           |         | 59      |
| Arsenic                     | 1        | 46       |           |         | 1        | 6            |           |         | 87      |
| Cadm 1 um                   | 4        | 100      | 200       | 100     | 3        | 10           | 11        | 10      | 90      |
| Chromium                    | 4        | 300      | 630       | 330     | 3        | 23           | 54        | 29      | 91      |
| Copper                      | 4        | 240      | 1,200     | 420     | 4        | 28           | 170       | 60      | 85      |
| Lead                        | 2        | 21,000   | 43,000    | 18,000  | 4        | 81           | 3,100     | 830     | 95      |
| Nickel                      | 3        | 230      | 1,200     | 480     | 3        | 60           | 94        | 54      | 89      |
| Selenium                    | 1        | 63       |           |         | 1        | 4            |           |         | 94      |
| Silver                      | 3        | 57       | 73        | 47      | 3        | 10           | 26        | 14      | -       |
| Zinc                        | 4        | 25,000   | 90,000    | 36,000  | 3        | 1,200        | 32,000    | 8,500   | 76      |
| Phthalates                  |          |          |           |         |          |              |           |         |         |
| Bis(2-ethylhexyl) phthalate | 4        | 100      | 3,200     | 860     | 4        | 320          | 11,000    | 2,900   | _a      |
| Butyl benzyl phthalate      | 4        | 95       | 340       | 130     | 4        | 8            | 350       | 94      | 28      |
| Di-n-butyl phthalate        | 4        | 320      | 9,800     | 2,600   | 4        | 94           | 190       | 73      | 98      |
| Diethyl phthalate           | 2        | 10       | 16        | 10      | 2        | 86           | 170       | 86      | -•      |
| Dimethyl phthalate          | 1        | 47       |           |         | 3        | 3            | 120       | 30      | 36      |
| Di-n-octyl phthalate        | 4        | 82       | 12,000    | 3,000   | 3        | 36           | 86        | 32      | 99      |
| Phenols                     |          |          |           |         |          |              |           |         |         |
| 2,4-Dichlorophenol          | 1        | 240      |           |         | 2        | 30           | 44        | 30      | 88      |
| 2,4-Dimethylphenol          | 3        | 3        | 53        | 18      | 2        | 83           | 163       | 83      | -       |
| Phenol                      | 3        | 640      | 2,800     | 1,200   | 4        | 5 <b>9</b> 0 | 1,800     | 770     | 38      |
| Aromatics                   |          |          |           |         |          |              |           |         |         |
| Hexachlorobenzene           | 1        | 103      |           |         | 0        |              |           |         | >99     |
| Polycyclic aromatics        |          |          |           |         |          |              |           |         |         |
| Benzo(a)pyrene              | 3        | 7        | 9,500     | 3,200   | 2        | 5            | 8         | 5       | 99      |
| Chrysene                    | 3        | 15       | 310       | 110     | 3        | 7            | 74        | 28      | 75      |
| Fluoranthene                | 3        | 82       | 11,000    | 3,600   | 4        | 15           | 230       | 65      | 98      |
| Fluorene                    | 2        | 15       | 21        | 15      | 4        | 8            | 29        | 12      | 20      |
| Naphthalene                 | 3        | 14       | 19        | 14      | 3        | 3            | 15        | 5       | 64      |
| Pyrene                      | 3        | 53       | 10,000    | 3,400   | 3        | 12           | 41        | 20      | 99      |
| Halogenated aliphatics      |          |          |           |         |          |              |           |         | _a      |
| Chloroform                  | 4        | 12       | 48        | 20      | 4        | 31           | 54        | 34      | -"      |

Note: Blanks indicate no data available Dashes indicate negligible removal.

TABLE 6-12. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE BLAST FURNACE-FERROMANGANESE SUBCATEGORY [3]

|           |                    | aw wastewater        |                    | eated effluent       |                    |
|-----------|--------------------|----------------------|--------------------|----------------------|--------------------|
| Parameter | Number<br>detected | Concentration, mg/La | Number<br>detected | Concentration, mg/La | Percent<br>removal |
| Ammonia-N | 1                  | 710                  | 1                  | 680                  | 4                  |
| Cyanide   | 1                  | 690                  | 1                  | 710                  | _p                 |
| Manganese | 1                  | 500                  | 1                  | 53                   | 89                 |
| Phenol    | 1                  | 64                   | 1                  | 6.3                  | 3                  |
| Sulfide   | 1                  | 130                  |                    |                      |                    |
| rss       | 1                  | 4,200                | 1                  | 410                  | 90                 |
| эн        | 1                  | 8.8 - 11.1           | 1                  | 8.8 - 11.1           |                    |

Note: Blanks indicate no data available.

a Treated effluent concentration exceeds raw wastewater concentration

Except pH values, given in pH units.

bTreated effluent concentration exceeds raw concentration.

# II.6.2.5 Subcategories 6 and 7 - Basic Oxygen Furnace-Semiwet and -Wet Air Pollution Control [4]

Wastewater results from the steelmaking process when wet gas collection systems are used on furnaces. Spray water cooling and quenching or the use of wet washers result in wastewaters containing particulates from the gas stream. The basic oxygen furnace has four main water systems:

- 1. Oxygen lance cooling water system,
- 2. Furnace trunnion ring and nose cone cooling water system,
- 3. Hood cooling water system, and
- 4. Fume collection scrubber and gas cooling system.

The first three can be either "once-through" systems or closed recirculating systems. Fume collection systems can vary from a completely dry precipitator to a semiwet precipitator to a wet, high energy venturi scrubber. Water use and characterization varies with each system. The raw wastewater flow rate as determined by EPA field sampling varies from plant to plant, depending on the gas-cleaning system used. The flow rates are presented in Table 6-13.

TABLE 6-13. DISCHARGE FLOW RATES FOR BASIC OXYGEN FURNACE PLANTS SAMPLED [4]

| Gas treatment             | Plant | Dischar | ge flow |
|---------------------------|-------|---------|---------|
|                           | code  | m³/Mg   | gal/ton |
| Semiwet                   | 0432A | 0       | 0       |
|                           | 0396D | 0.12    | 29      |
| Wet-open combustion       | 0112A | 1.83    | 440     |
|                           | 0584F | 0.27    | 65      |
|                           | 0020B | 2.7     | 640     |
|                           | 0856B | 2.0     | 470     |
|                           | 0868A | 0.54    | 130     |
|                           | 0112D | 0.42    | 100     |
| Wet-suppressed combustion | 0060  | 0.31    | 75      |
|                           | 0384A | 0.33    | 80      |
|                           | 0856N | 0.37    | 89      |
|                           | 0684F | 0.04    | 10      |

The raw effluent discharges from the semiwet, wet-open and wetsuppressed combustion gas-cleaning systems are similar in waste characterization of the regulated parameters of suspended solids, fluoride, and pH. However, the quantity of solids may vary depending on the gas-cleaning system installed. Semiwet systems discharge less solids than wet systems, and open combustion

systems discharge more than suppressed systems. Fluoride concentrations vary with the amount of raw material, fluorspar, which is used as a fluxing compound. BOF raw and effluent waste loads for semiwet, wet-open combustion, and wet-suppressed combustion are shown in Table 6-14.

TABLE 6-14. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE BASIC OXYGEN FURNACE SUBCATEGORIES [4]

|                                  | Raw        | Treated  |
|----------------------------------|------------|----------|
| Average flow, m <sup>3</sup> /Mg | wastewater | effluent |
| Semiwet                          | 0.98       | 3.7      |
| Wet-open combustion              | 3.0        | 1.3      |
| Wet-suppressed combustion        | 4,1        | 0.24     |

|                           |                |                    | Raw wast | ewater      |                              |                                              | Treated e                                      | ffluent     |                              | Average         |
|---------------------------|----------------|--------------------|----------|-------------|------------------------------|----------------------------------------------|------------------------------------------------|-------------|------------------------------|-----------------|
| Subcategory               |                | Number<br>detected |          |             | mg/L <sup>a</sup><br>Average | ng/L <sup>a</sup> Number<br>Average detected | Concentration, mg/La<br>Median Maximum Average |             | mg/L <sup>a</sup><br>Average | percent         |
| Semiwet APCM              | TSS            | 2                  | 420      | 330         | 300                          | 1                                            | 125                                            | 81<br>3.8   | 81<br>3.8                    | <sup>75</sup> b |
|                           | Fluoride<br>pH | 2                  | 11.8     | 3.1<br>11.5 | 11.5                         | 2                                            | 11.9                                           | 11.6        | 11.6                         | -               |
| Wet-open combustion       | TSS            | 4                  | 7,800    | 3,500       | 4,000                        | 6                                            | 1,200                                          | 50          | 340                          | 92              |
|                           | Fluoride<br>pH | 1<br>4             | 11.7     | 8.5<br>9.8  | 9.8                          | 2<br>6                                       | 11.9                                           | 6.7<br>10.1 | 6.7<br>10                    | 21              |
| Wet-suppressed combustion | TSS            | 3                  | 1,500    | 380         | 840                          | 3                                            | 55                                             | 47          | 38                           | 95              |
| •••                       | pН             | 3                  | 11.3     | 9.4         | 10                           | 3                                            | 10                                             | 8.8         | 8.9                          |                 |

aExcept pH values, given in pH units.

A total of 68 different toxic pollutants were detected at the nine wet-open and wet-suppressed combustion basic oxygen furnace plants sampled. Semiwet plants were not sampled because these technologies are recommended by BPT and BAT limitations as zero discharges. The toxic pollutant data for raw waste loads and gross treated effluent wastewater are shown in Table 6-15.

#### II.6.2.6 Subcategory 8 - Open Hearth Furnace [4]

The open hearth furnace process has two separate water systems. The furnace cooling system normally includes a checker reversal valve system and is generally limited to cooling the furnace doors and the valve system. Because it is usually a once-through system, the only parameter of concern is temperature.

The fume collection water system conditions the flue gas from the furnace for final release. Pollutants captured by this system are dependent on the type of fuel used in the furnace, and the system's wastewater may contain nitrous and sulfur oxides. The aqueous discharge from the high venturi scrubbers are scrubbing waters from primary quenching operations. Wet and semiwet air pollution control methods divide the open hearth furnace subcategory into two subdivisions. The raw effluent discharges from the semiwet and wet gas-cleaning systems are similar in

bTreated effluent concentration exceeds raw wastewater concentration.

TABLE 6-15. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE BASIC OXYGEN FURNACE-WET SUBCATEGORY [4]

|                             |          |        |             | Wet-open co | ombustion |         |              |         |                |
|-----------------------------|----------|--------|-------------|-------------|-----------|---------|--------------|---------|----------------|
|                             |          | Raw w  | astewater   |             |           | Treated | effluent     |         | Averag         |
|                             | Number   |        | ncentration | , μg/Ľ      | Number    |         | ntration, po | g/L     | percen         |
| Toxic pollutant             | detected | Median | Maximum     | Average     | detected  | Median  | Maximum      | Average | remova         |
| Metals and inorganics       |          |        |             |             |           |         |              |         |                |
| Antimony                    | 1        | 17     |             | 0.01        |           |         |              |         |                |
| Arsenic                     | 2        | 60     | 70          | 60          | 2         | 12      | 17           | 12      | 80             |
| Cadmium                     | 3        | 174    | 260         | 150         | 3         | 10      | 488          | 170     | 80<br>_a<br>_a |
| Chromium                    | 3        | 360    | 17,000      | 5,800       | 4         | 540     | 30,100       | 7,800   | _a             |
| Copper                      | 4        | 825    | 1,200       | 600         | 4         | 217     | 476          | 230     | 62             |
| Lead                        | 4        | 370    | 12,000      | 3,300       | 4         | 455     | 942          | 517     | 84             |
| Mercury                     | 3        | 33     | 34          | 16.8        | 4         | 0.05    | 0.30         | 0.15    | 99_            |
| Nickel                      | 3        | 47     | 675         | 244         | 4         | 530     | 2,020        | 773     | ´_a            |
| Selenium                    | 2        | 16     | 28          | 16          | 2         | 20      | 31           | 20      | _a<br>_a<br>_a |
| Silver                      | 2        | 27     | 43          | 27          | 2         | 175     | 339          | 175     | _a             |
| Thallium                    | 2        | 11     | 15          | 11          | 2         | 70      | 80           | 70      | _a             |
| Zinc                        | 4        | 3,400  | 48,500      | 14,300      | 4         | 706     | 2,140        | 970     | 93             |
| Phthalates                  |          |        |             |             |           |         |              |         | _              |
| Bis(2-ethylhexyl) phthalate | 2        |        | 120         | 60          | 4         | 72      | 317          | 118     | _a             |
| Aromatics                   |          |        |             |             |           |         |              |         |                |
| Benzene                     | 2        | 1.5    | 3           | 1.5         |           |         |              |         |                |
| Polycyclic aromatics        |          |        |             |             |           |         |              |         |                |
| Chrysene                    | 2        | 13     | 23          | 13          |           |         |              |         |                |
| Fluoranthene                | ì        | 34     |             |             |           |         |              |         |                |
| Pyrene                      | 1        | 32     |             |             |           |         |              |         |                |
| Halogenated aliphatics      |          |        |             |             |           |         |              |         | _              |
| Chloroform                  |          |        |             |             | 4         | 56      | 122          | 62      | _a             |

(continued)

TABLE 6-15 (continued)

|                             |          |                     |           | Wet-suppres | sed combusti | .on     |             |         |                  |
|-----------------------------|----------|---------------------|-----------|-------------|--------------|---------|-------------|---------|------------------|
|                             |          | Raw w               | astewater |             |              | Treated | effluent    |         | Averag           |
|                             | Number   | Concentration, µg/L |           |             | Number       |         | ntration, µ |         | percen           |
| Toxic pollutant             | detected | Median              | Maximum   | Average     | detected     | Median  | Maximum     | Average | removal          |
| Metals and inorganics       |          |                     |           |             |              |         |             |         |                  |
| Antimony                    | 1        | 4                   |           |             |              |         |             |         |                  |
| Arsenic                     | 1<br>2   |                     |           | 0.01        |              |         |             |         |                  |
| Cadmium                     | 2        | 62                  | 91        | 62          | 2            | 9       | 10          | 9       | 85               |
| Chromium                    |          | 603                 | 1,050     | 603         | 3            | 12      | 13          | 11.6    | 98               |
| Copper                      | 3        | 63                  | 310       | 3           | 2            | 10      | 100         | 60      | -                |
| Cyanide                     | 1        | 1                   |           |             |              |         |             |         |                  |
| Lead                        | 3        | 700                 | 27,000    | 13,850      | 2            | 645     | 822         | 645     | 95               |
| Mercury                     | 1        | 0.2                 |           |             |              |         |             |         | •                |
| Nickel                      | 2        | 174                 | 327       | 174         | 3            | 10      | 691         | 237     | _a               |
| Selenium                    | 1        | 3                   |           |             |              |         |             |         |                  |
| Silver                      | 2        | 12                  | 19        | 12          | 2            | 12.5    | 15          | 12.5    | 4 <sub>å</sub> 2 |
| Zinc                        | 1        | 8.3                 |           |             | 3            | 227     | 281         | 203     | -"               |
| Phthalates                  |          |                     |           |             |              |         |             |         |                  |
| Bis(2-ethylhexyl) phthalate | 2        | 447                 | 868       | 447         | 3            | 29      | 298         | 112     | 75               |
| Butyl benzyl phthalate      | 1        | 9                   |           |             |              |         |             |         |                  |
| Di-n-butyl phthalate        | 2        |                     | 11        | 7           | 2            | 10      | 10          | 10      | _a               |
| Phenols                     |          |                     |           |             |              |         |             |         |                  |
| Phenol                      | 1        | 8                   |           |             |              |         |             |         |                  |
| Aromatics                   |          |                     |           |             |              |         |             |         |                  |
| Toluene                     | 2        | 2                   | 3         | 2           |              |         |             |         |                  |
| Polycyclic aromatics        |          |                     |           |             |              |         |             |         |                  |
| Pyrene                      | 1        | 5                   |           |             |              |         |             |         |                  |

Note: Blanks indicate no data available.
Dashes indicate negligible removal.

 $<sup>{}^{\</sup>mathbf{a}}\mathbf{T}\mathbf{r}\mathbf{e}\mathbf{a}\mathbf{t}\mathbf{e}\mathbf{d}$  effluent concentration exceeds raw wastewater concentration.

waste characterization as regards the regulated parameter of suspended solids, fluoride, pH, etc. However, the quantity of solids is variable according to the gas-cleaning systems installed. Semiwet gas-cleaning systems discharge less solids than wet systems. Fluoride concentrations are variable depending on fluorspan usage. Wastewater characterization for conventional pollutants for sampled wet system open hearth plants is presented in Table 6-16. Toxic pollutant data are found later in the plant specific section of this subcategory, because only one semiwet and one wet air pollution control plant have been sampled. See Tables 6-70 and 6-71.

TABLE 6-16. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE OPEN HEARTH FURNACE SUBCATEGORY, WET APCM SUBDIVISION [4]

Average raw wastewater flow: 2.2  $\rm m^3/Mg$  (510 gal/ton) Average treated effluent flow: 1.5  $\rm m^3/Mg$  (360 gal/ton)

|           | R                  | aw wastewater        | Tr                 |                      |                    |
|-----------|--------------------|----------------------|--------------------|----------------------|--------------------|
| Parameter | Number<br>detected | Concentration, mg/La | Number<br>detected | Concentration, mg/La | Percent<br>removal |
| TSS       | 1                  | 1,500                | 1                  | 15                   | 99                 |
| Fluoride  | 1                  | 100                  | 1                  | 27                   | 63                 |
| Nitrate   | 1                  | 640                  | 1                  | 450                  | 30                 |
| рн        | 1                  | 6.7                  | 1                  | 9.1                  |                    |

aExcept pH values, given in pH units.

# II.6.2.7 Subcategories 9 and 10 - Electric Arc Furnace-Semiwet and -wet Air Pollution Control [5]

The electric arc furnace (EAF) subcategory has two main plant water systems. A once-through cooling system that maintains the door and electrode rings generates heated water that may be recirculated or released. Pollutant levels in this stream are small. A fume collection cooling scrubbing system may be a dry, semiwet, or wet system. Dry systems do not produce any aqueous discharges. The semiwet system employs a spark box or spray chamber to condition the hot gases for a precipitator or baghouse. Aqueous discharges from such systems are generally treated with other, similar wastes. The wet high energy venturi scrubber systems extract gases from the furnace and condition and cool them. The discharge is similar to that of a basic oxygen furnace.

The raw effluent discharges from semiwet and wet gas-cleaning systems are similar in waste characterization of the regulated parameter of suspended solids, fluoride, zinc, and pH. However, the quantity of solids is variable according to the gas-cleaning systems installed. Semiwet gas-cleaning systems discharge less solids than wet systems. pH is generally in the range of 7.0 to 9.0 for all gas-cleaning systems. Fluoride concentrations are variable, but this is due to the amount of raw material,

b Treated effluent concentration exceeds raw concentration.

fluorspan (a fluxing compound), rather than the type of gascleaning system used. Zinc concentrations are likewise variable; they are highly dependent upon the amount of galvanized scrap charged to the furnace.

Only one plant (059B) was sampled for toxic pollutants in the electric arc furnace-semiwet subcategory. Data for this plant are presented in the plant specific section in Tables 6-74 and 6-75.

Conventional pollutant data for the semiwet subcategory are presented in Table 6-17.

TABLE 6-17. WASTEWATER CHARACTERIZATION FOR CONVENTIONAL POLLUTANTS FOR ELECTRIC ARC FURNACE-SEMIWET SUBCATEGORY [5]

Average raw wastewater flow: 0.4  $\rm m^3/Mg$  (975 gal/ton) Average treated effluent flow: 0  $\rm m^3/Mg$  (0 gal/ton)

|           | R                  | aw wastewater        | Tr                 |                      |                    |
|-----------|--------------------|----------------------|--------------------|----------------------|--------------------|
| Parameter | Number<br>detected | Concentration, mg/La | Number<br>detected | Concentration, mg/La | Percent<br>removal |
| TSS       | 1                  | 2,200                | 1                  | 530                  | 76                 |
| Fluoride  | 1                  | 30                   | 1                  | 28                   | 7                  |
| рн        | 1                  | 7.8                  | 1                  | 6.7                  |                    |

Note: Blanks indicate no data available.

Conventional pollutants are characterized in Table 6-18 for wet operations. Wastewater characterization of toxic pollutants for the electric arc furnace-wet subcategory is presented in Table 6-19.

TABLE 6-18. WASTEWATER CHARACTERIZATION FOR CONVENTIONAL POLLUTANTS FOR ELECTRIC ARC FURNACE-WET SUBCATEGORY [5]

Average raw wastewater flow: 2.4  $\rm m^3/Mg$  (578 gal/ton) Average treated effluent flow: 1.3  $\rm m^3/Mg$  (309 gal/ton)

|           |                    | Raw wast        | ewater               |                              |                    | Average         |                      |                              |                    |
|-----------|--------------------|-----------------|----------------------|------------------------------|--------------------|-----------------|----------------------|------------------------------|--------------------|
| Parameter | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | percent<br>removal |
| TSS       | 3                  | 2,800           | 6,300                | 3,400                        | 3                  | 38              | 86                   | 44                           | 99                 |
| Fluoride  | 2                  | 39              | 49                   | 39                           | 2                  | 30              | 34                   | 30                           |                    |
| рН        | 3                  | 7.1             | 9.0                  | 7.9                          | 3                  | 7.6             | 7.8                  | 7.6                          |                    |

aExcept pH values, given in pH units.

Date: 6/23/80

aExcept pH values, given in pH units.

TABLE 6-19. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR ELECTRIC ARC FURNACE-WET SUBCATEGORY [5]

|                             |                 | Raw wast | ewater    |              |          | Treated e | ffluent   |         | Average         |
|-----------------------------|-----------------|----------|-----------|--------------|----------|-----------|-----------|---------|-----------------|
|                             | Number          | Conce    | ntration, | μ <b>g/Ľ</b> | Number   |           | ntration, | µg/L    | percent         |
| Toxic pollutant             | <u>detected</u> | Median   | Maximum   | Average      | detected | Median    | Maximum   | Average | removal         |
| Metals and inorganics       |                 |          |           |              |          |           |           |         |                 |
| Antimony                    | 1               | 670      |           |              | 1        | 10        |           |         | 99              |
| Arsenic                     | 1               | 120      |           |              | 1        | 11        |           |         | 91              |
| Cadmium                     | 1               | 3,300    |           |              | 1        | 1,500     |           |         | 55              |
| Chromium                    | 1               | 4,300    |           |              | 1        | 550       |           |         | 87<br>94<br>_a  |
| Copper                      | 1               | 1,300    |           |              | 1        | 80        |           |         | 94              |
| Lead                        | 1               | 9        |           |              | 1        | 1,500     |           |         | _a              |
| Nickel                      | 1               | 43       |           |              | 1        | 10        |           |         | 77              |
| Silver                      | 1               | 63       |           |              | 1        | 10        |           |         | 84              |
| Zinc                        | 3               | 100,000  | 190,000   | 97,000       | 2        | 29,000    | 38,000    | 29,000  | 70              |
| Phthalates                  |                 |          |           |              |          |           |           |         |                 |
| Bis(2-ethylhexyl) phthalate | 3               | 160      | 170       | 110          | 3        | 110       | 330       | 150     | _a              |
| Butyl benzyl phthalate      | 3               | 57       | 150       | 70           | 2        | 51        | 95        | 51      | 27              |
| Di-n-butyl phthalate        | 3               | 17       | 65        | 30           | 3        | 11        | 21        | 12      | 60              |
| Phenols                     |                 |          |           |              |          |           |           |         |                 |
| 4-Nitrophenol               | 2               | 19       | 31        | 19           | 0        |           |           |         | >99             |
| Pentachlorophenol           | 2<br>2          | 22       | 40        | 22           | 1        | 14        |           |         | 36              |
| Aromatics                   |                 |          |           |              |          |           |           |         | _               |
| Benzene                     | 3               | 10       | 25        | 14           | 3        | 12        | 28        | 15      | _a              |
| Polycyclic aromatics        |                 |          |           |              |          |           |           |         |                 |
| Fluoranthene                | 2               | 30       | 58        | 30           | 2        | 7         | 10        | 7       | 77 <sub>a</sub> |
| Pyrene                      | 2<br>2          | 28       | 53        | 28           | 2        | 72        | 150       | 72      | _a              |

Note: Blanks indicate no data available.
Dashes indicate negligible removal.

aTreated effluent concentration exceeds raw wastewater concentration.

## II.6.2.8 Subcategory 11 - Vacuum Degassing [5]

The effluent discharges from the vacuum degassing process are characteristically low in concentrations of the following regulated parameters: suspended solids, lead, manganese, nitrate, zinc, and pH. Typical concentrations of these parameters in degasser effluent waters are:

| Suspended solids | 30 mg/L   |
|------------------|-----------|
| Lead             | l mg/L    |
| Manganese        | 10 mg/L   |
| Nitrate          | 25 mg/L   |
| Zinc             | 5 mg/L    |
| pH               | 6.0 - 9.0 |

The appearance of lead, manganese, and zinc in degasser effluents is due to the use of these metals in specialty steels. The gases emitted from the molten steel contain these constituents, which come into contact with barometric condenser cooling water during degassing. Nitrates occur in the effluent as a result of the reaction of nitrogen gas with oxygen in the high-temperature environment. Nitrogen gas is used to blanket the molten steel bath to enhance degassing, and it is therefore available for conversion to nitrate form. Wastewater characterization data for conventional and toxic pollutants emitted from sampled carbon steel vacuum degassing plants are presented in Tables 6-20 and 6-21. Refer to Tables 6-79 and 6-80 of the plant specific section for wastewater characterization for toxic pollutants for the sampled specialty steel vacuum degassing plant.

TABLE 6-20. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE VACUUM DEGASSING SUBCATEGORY [5]

Average raw wastewater flow: 1.3  $m^3/Mg$  (303 gal/ton) Average treated effluent flow: 1.2  $m^3/Mg$  (280 gal/ton)

|           |                    | Raw wast        | ewater               |                              |                    | Average         |                      |                              |                    |
|-----------|--------------------|-----------------|----------------------|------------------------------|--------------------|-----------------|----------------------|------------------------------|--------------------|
| Parameter | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | percent<br>removal |
| TSS       | 4                  | 30              | 81                   | 47                           | 3                  | 29              | 39                   | 28                           | 40                 |
| Nitrate   | 3                  | 2.8             | 27                   | 10                           | 2                  | 14              | 27                   | 14                           | _p                 |
| Manganèse | 3                  | 4.0             | 9.0                  | 5.0                          | 3                  | 0.27            | 9                    | 3.1                          | 38                 |
| рĦ        | 2                  | 8.1             | 8.6                  | 7.9                          | 3                  | 7.9             | 7.9                  | 7.0                          |                    |

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

Date: 6/23/80

b Average treated effluent concentration exceeds average raw wastewater concentration.

TABLE 6-21. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE VACUUM DEGASSING SUBCATEGORY, CARBON STEEL SUBDIVISION [7]

|                        |          | Raw wast | ewater              |         |          | Treated e           | ffluent |         | Average |
|------------------------|----------|----------|---------------------|---------|----------|---------------------|---------|---------|---------|
|                        | Number   | Conce    | Concentration, µg/L |         | Number   | Concentration, µg/L |         |         | percent |
| Toxic pollutant        | detected | Median   | Maximum             | Average | detected | Median              | Maximum | Average | removal |
| Metals and inorganics  |          |          |                     |         |          |                     |         |         |         |
| Chromium               | 3        | 130      | 3,000               | 1,100   | 3        | 26                  | 3,000   | 1,000   | 10      |
| Copper                 | 3        | 90       | 440                 | 190     | 3        | 210                 | 440     | 230     | _a      |
| Lead                   | 3        | 300      | 2.000               | 830     | 3        | 90                  | 2,000   | 720     | 13      |
| Nickel                 | 2        | 32       | 40                  | 32      | 2        | 22                  | 30      | 22      | 31      |
| Zinc                   | 3        | 2,000    | 30,000              | 10,800  | 3        | 330                 | 30,000  | 10,000  | 8       |
| Phthalates             |          |          |                     |         |          |                     |         |         |         |
| Butyl benzyl phthalate | 2        | 34       | 57                  | 34      | . 2      | 28                  | 53      | 28      | 18_     |
| Di-n-butyl phthalate   | 2        | 31       | 43                  | 31      | 2        | 260                 | 500     | 260     | _a      |

Note: Blanks indicate no data available.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw waste water concentration.

## II.6.2.9 Subcategory 12 - Continuous Casting [5]

The continuous casting steelmaking process produces mill scale and oils and greases from the secondary spray cooling process. Withdrawal and guide rolls guide the cast product through the solidification stage. Since the cast product is hot, the surface oxidizes and the resulting scale washes out with the spray cooling water. Additional mill scale flakes off when the cast product discharges onto caster runout tables. Caster equipment employs hydraulic and lubrication systems which add oils and greases to the wastewater. A typical analysis of the regulated parameters is as follows:

Suspended solids 50 mg/L Oil and grease 25 mg/L 6-9

The appearance of heavy metal constituents, such as chromium, lead, and zinc, in caster wastewaters is due to the use of these metals in steelmaking and alloying. Concentrations of heavy metals in the wastewater, however, are generally low and have little impact upon the treatment of caster wastes. Also, relatively few organic pollutants are found in wastewater samples.

Wastewater characterization for conventional pollutants for sampled continuous casting carbon steel plants is presented in Table 6-22. Major toxic pollutants for this subcategory are listed in Table 6-23.

#### II.6.2.10 Subcategory 13 - Hot Forming-Primary [6]

The hot forming process produces scale and oil and grease as the waste products from the primary rolling mill operation. As the hot ingot is being rolled in the mill stands, the steel surface oxidizes and is continuously scaling and chipping off. These scale particles range in size, with approximately 6% being less than 100 mesh, and consist primarily of iron oxides. Oils are found in rolling mill wastewaters as a result of oil spills, line breaks, and excessive dripping of lubricants as well as wash down oils. Another wastestream that contributes to the pollutant loading is the emission gas scrubber, which collects particulates and other pollutants. The raw effluent discharges from the primary carbon and specialty rolling mills have similar waste characterization for the regulated parameters of suspended solids, oil and grease, and pH. However, the quantities of solids vary between carbon and specialty rolling mills. The carbon rolling operation results in higher scale quantities, and specialty scale is much finer. Applied water rates are generally higher for specialty steel rolling mills.

TABLE 6-22. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE CONTINUOUS SUBCATEGORY [5]

Average raw wastewater flow: 12 m<sup>3</sup>/Mg (2.852 gal/ton) Average treated effluent flow: 0.28 m<sup>3</sup>/Mg (67.5 gal/ton)

|                |                    | Raw wast | ewater               |                              |                    | Average |                      |                   |                    |
|----------------|--------------------|----------|----------------------|------------------------------|--------------------|---------|----------------------|-------------------|--------------------|
| Parameter      | Number<br>detected | Conce    | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | Number<br>detected | Conce   | ntration,<br>Maximum | mg/L <sup>a</sup> | percent<br>removal |
| TSS            | 4                  | 25       | 48                   | 26                           | 4                  | 15      | 37                   | 15                | _b                 |
| Oil and grease | 4                  | 22       | 39                   | 23                           | 4                  | 2       | 35                   | 15                | 35                 |
| pΗ             | 4                  | 7.4      | 8.3                  | 7.2                          | 4                  | 7.8     | 9.4                  | 8.0               |                    |

aExcept pH values, given in pH units.

TABLE 6-23. WASTEWATER CHARACTERIZATION FOR TOXIC POLLUTANTS FOR CONTINUOUS CASTING SUBCATEGORY [5]

|                       |          | Raw wast |           |          |          | Treated e      | ffluent |         | Average         |
|-----------------------|----------|----------|-----------|----------|----------|----------------|---------|---------|-----------------|
|                       | Number   | Conce    | ntration, | µg/L     | Number   | Concentration, |         | pg/L    | percent         |
| Toxic pollutant       | detected | Median   | Maximum   | Average  | detected | Median         | Maximum | Average | removal         |
| Metals and inorganics |          |          |           |          |          |                |         |         |                 |
| Copper                | 4        | 54       | 160       | 72       | 4        | 120            | 210     | 120     | 75 <sub>a</sub> |
| Nickel                | 4        | 11       | 100       | 32       | 3        | 27             | 90      | 47      | _a              |
| Selenium              | 3        | 10       | 220       | 80       | 3        | 8              | 10      | 8       | 90.             |
| Zinc                  | 4        | 250      | 740       | 360      | 4        | 290            | 970     | 430     | 90 a            |
| Phenols               |          |          |           |          |          |                |         |         |                 |
| p-Chloro-m-cresol     | 3        | 16       | 110       | 45       | 2        | 7              | 11      | 7       | 84              |
| Phthalates            |          |          |           |          |          |                |         |         |                 |
| Di-n-butyl phthalate  | 3        | 12       | 84        | 34       | 3        | 45             | 50      | 43      | _ <b>a</b>      |
| Di-n-octyl phthalate  | 4        | 19       | 180       | 34<br>57 | 3        | 11             | 710     | 180     | _a              |
| Aromatics             |          |          |           |          |          |                |         |         |                 |
| Toluene               | 4        | 7        | 26        | 12       | 4        | 6              | 10      | 6       | 50              |

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

The appearance of heavy metal constituents such as chromium, lead, and zinc in hot forming wastewaters is due to the use of these metals in steelmaking and alloying. Concentrations of heavy metals in the wastewater, however, are generally low and have little impact upon the treatment of the wastewater. Also, relatively few organic toxic pollutants were detected in the water of plants sampled.

Wastewater characterization data for conventional pollutant parameters for sampled hot forming-primary mills are presented in Table 6-24. Toxic pollutant concentrations for all sampled hot forming-primary (carbon and specialty) steel mills are presented in Table 6-25.

 $<sup>^{\</sup>mathrm{b}}\mathrm{Treated}$  effluent concentration exceeds raw wastewater concentration.

# TABLE 6-24. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE HOT FORMING-PRIMARY SUBCATEGORY [6]

Average raw wastewater flow: 2.8 m $^3/Mg$  (678 gal/ton) Average treated effluent flow: 1.3 m $^3/Mg$  (323 gal/ton)

|                |                    | Raw wast        | ewater               |                              |                    | Average         |                      |                              |                    |
|----------------|--------------------|-----------------|----------------------|------------------------------|--------------------|-----------------|----------------------|------------------------------|--------------------|
| Parameter      | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | percent<br>removal |
| TSS            | 5                  | 54              | 240                  | 87                           | 5                  | 2               | 18                   | 6                            | 93                 |
| Oil and grease | 5                  | 35              | 170                  | 60                           | 5                  | 10              | 12                   | 9                            | 85                 |
| рĦ             | 9                  | 7.9             | 8.9                  | 7.9                          | 8                  | 7.8             | 8.1                  | 7.6                          |                    |

aExcept pH values, given in pH units.

### II.6.2.11 Subcategory 14 - Hot Forming-Section [6]

The hot forming process produces scale and oil and grease as the waste products from the section rolling mill operation. Wastewater sources and loadings are very similar to those of the hot forming-primary subcategory and include scale pit effluent, rolling mill wastewater, oil spill wastes, high pressure water sprays, and wet precipitation or scrubber for cleaning gaseous emissions. Rolling mill wastewaters generally contain 100 to 200 mg/L of suspended solids and 50 to 100 mg/L of oil and grease. The pH of these wastewaters rarely deviates from the 6.0 to 9.0 range. The appearance of heavy metal constitutuents such as chromium, lead, and zinc in hot forming wastewaters is due to the use of these metals in steelmaking and alloying. Concentrations of heavy metals in the wastewaters, however, are generally low and have little impact upon treatment of the wastewater. Also, relatively few organic toxic pollutants were detected in the waters of the plants sampled. Conventional pollutant concentrations for hot forming-sections mills are presented in Table 6-26. Toxic pollutant concentrations for hot forming-section mills are presented in Table 6-27.

#### II.6.2.12 Subcategory 15 - Hot Forming-Flat [6]

The raw effluent discharges from plate mills in the hot forming-flat subcategory are similar in character to the wastewaters of other hot forming mills. Plate mill wastewaters generally contain 100 to 200 mg/L of suspended solids and 50 to 100 mg/L of oil and grease. The pH range of these wastewaters rarely deviates from the 6.0 to 9.0 range. Wastewater sources are also similar to those of the previously described hot forming subcategories. Major sources include rolling mill wastewater, oil and grease spills, and wet scrubbing of gaseous emissions. Wastewater characterization for flat plate mills is presented

TABLE 6-25. WASTEWATER CHARACTERIZATION FOR TOXIC POLLUTANTS FOR HOT FORMING-PRIMARY SUBCATEGORY [6]

|                             |          | Raw wast | ewater    |              |          | Treated e | ffluent   |         | Average            |
|-----------------------------|----------|----------|-----------|--------------|----------|-----------|-----------|---------|--------------------|
|                             | Number   | Conce    | ntration, | μ <b>g/L</b> | Number   |           | ntration, | μg/L    | percent<br>removal |
| Toxic pollutant             | detected | Median   | Maximum   | Average      | detected | Median    | Maximum   | Average |                    |
| Metals and inorganics       |          |          |           |              |          |           |           |         |                    |
| Cadmium                     | 5        | <10      | <10       | <10          |          |           |           |         |                    |
| Chromium                    | 5        | 50       | 130       | 80           | 5        | 40        | 130       | 62      | 22                 |
| Copper                      | 5        | 300      | 970       | 440          | 5        | 40        | 760       | 180     | 59                 |
| Cyanide                     | 2        | 2        | 2         | 2            |          |           |           |         |                    |
| Lead                        | 5        | 300      | 810       | 330          | 5        | 50        | 320       | 10      | 97                 |
| Nickel                      | 5        | 220      | 570       | 310          | 5        | 20        | 480       | 120     | 61                 |
| Silver                      | 5        | 20       | 20        | 20           |          |           |           |         |                    |
| Zinc                        | 5        | 100      | 140       | 90           | 5        | 30        | 100       | 48      | 47                 |
| Phthalates                  |          |          |           |              |          |           |           |         |                    |
| Bis(2-ethylhexyl) phthalate | 3        | 18       | 149       | 71           |          |           |           |         |                    |
| Di-n-butyl phthalate        | 2        | 6        | 10        | 6            |          |           |           |         |                    |
| Di-n-octyl phthalate        | 2<br>3   | 6<br>7   | 7         | 6            |          |           |           |         |                    |
| Halogenated aliphatics      |          |          |           |              |          |           |           |         |                    |
| Chloroform                  | 6        | <10      | 13        | <10          |          |           |           |         |                    |
| Methylene chloride          | 2        | 2        | 2         | 2            |          |           |           |         |                    |
| Trichloroethylene           | 3        | 100      | 270       | 63           |          |           |           |         |                    |

Note: Blanks indicate no data available.

TABLE 6-26. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE HOT FORMING-SECTION SUBCATEGORY, [6]

Average raw wastewater flow:  $18~\text{m}^3/\text{Mg}$  (4,400 gal/ton) Average treated effluent flow:  $3~\text{m}^3/\text{Mg}$  (720 gal/ton)

|                |                    | Raw wast        | ewater               |                              |                    | Average         |                      |                              |                    |
|----------------|--------------------|-----------------|----------------------|------------------------------|--------------------|-----------------|----------------------|------------------------------|--------------------|
| Parameter      | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | percent<br>removal |
| TSS            | 10                 | 44              | 260                  | 66                           | 10                 | 10              | 87                   | 26                           | 60                 |
| Oil and grease | 10                 | 32              | 250                  | 47                           | 10                 | 9               | 30                   | 11                           | 77                 |
| рН             | 10                 | 7.6             | 8.1                  | 7.6                          | 10                 | 7.8             | 9.5                  | 7.9                          |                    |

aExcept pH values, given in pH units.

TABLE 6-27. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE HOT FORMING-SECTION SUBCATEGORY [6]

|                             |          | Raw wast | ewater    |         |          | Treated e | ffluent   |         | Average         |
|-----------------------------|----------|----------|-----------|---------|----------|-----------|-----------|---------|-----------------|
|                             | Number   | Conce    | ntration, | µg/L    | Number   | Conce     | ntration, | µg/L    | percent         |
| Toxic pollutant             | detected | Median   | Maximum   | Average | detected | Median    | Maximum   | Average | remova.         |
| Metals and inorganics       |          |          |           |         |          |           |           |         |                 |
| Cadmium                     | 1        | 10       |           |         |          |           |           |         |                 |
| Chromium                    | 10       | 30       | 240       | 67      | 10       | 36        | 130       | 59      | 12 <sub>a</sub> |
| Copper                      | 10       | 60       | 600       | 70      | 10       | 38        | 760       | 130     | _*              |
| Lead                        | 10       | 50       | 790       | 140     | 9        | 50        | 320       | 85      | 39              |
| Nickel                      | 10       | 55       | 830       | 230     | 9        | 22        | 490       | 170     | 26 <sub>a</sub> |
| Zinc                        | 10       | 80       | 1,230     | 270     | 10       | 47        | 2,200     | 280     | _a              |
| hthalates                   |          |          |           |         |          |           |           |         |                 |
| Bis(2-ethylhexyl) phthalate | 5        | 150      | 1,300     | 190     |          |           |           |         |                 |
| Butyl benzyl phthalate      | ì        | 14       |           |         |          |           |           |         |                 |
| Dimethyl phthalate          | 3        | 5        | 11        | 7       |          |           |           |         |                 |
| henols                      |          |          |           |         |          |           |           |         |                 |
| 2,4-Dinitrophenol           | 3        | 13       | 19        | 12      |          |           |           |         |                 |
| olycyclic aromatics         |          |          |           |         |          |           |           |         |                 |
| Naphthalene                 | 3        | 10       | 10        | 7       |          |           |           |         |                 |
| Pyrene                      | 2        |          | 5         | 5       |          |           |           |         |                 |
| alogenated aliphatics       |          |          |           |         |          |           |           |         |                 |
| Methylene chloride          | 4        | 160      | 190       | 44      |          |           |           |         |                 |

Note: Blanks indicate no data available.
Dashes indicate negligible removal.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

in Tables 6-28 and 6-29. Tables 6-30 and 6-31 present conventional and toxic wastewater characteristics for the hot formingflat hot strip and sheet mills.

TABLE 6-28. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE HOT FORMING-FLAT SUB-CATEGORY, PLATE MILL SUBDIVISION [6]

Average raw wastewater flow:  $10~m^3/Mg$  (2,500 gal/ton) Average treated effluent flow:  $5.0~m^3/Mg$  (1,200 gal/ton)

|                |                    | Raw wast        | ewater               |                              |                    | Average         |                      |                              |                    |
|----------------|--------------------|-----------------|----------------------|------------------------------|--------------------|-----------------|----------------------|------------------------------|--------------------|
| Parameter      | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | percent<br>removal |
| TSS            | 7                  | 35              | 110                  | 49                           | 7                  | 1               | 7                    | 2.5                          | 45                 |
| Oil and grease | 7                  | 18              | 72                   | 30                           |                    | 10              | 13                   | 10                           | 59                 |
| рĦ             | 7                  | 7.7             | 8.9                  | 7.8                          | 10                 | 7.4             | 7.9                  | 7.5                          |                    |

Except pH values, given in pH units.

## II.6.2.13 Subcategory 16 - Pipe and Tube [6, 7]

Wastewater results from the hot forming operation because of the large amount of direct contact cooling and descaling waters required between the hot steel and the piercing, plug, and reeler mill equipment. Seamless pipe and tube operations and butt weld mills emit wastewater from the cleaning of the dies and the rolling operations respectively. Roll cooling sprays used in butt welded pipe mills are generally once-through water systems where the scale- and oil-bearing waters are discharged to scale pits. Seamless tube mills have similar roll cooling wastewaters, plus a once-through spray quench water system. The cold forming process produces wastewater as a result of continuous flushing of rolls and welders with soluble oil coolant solutions. The raw effluent discharges from pipe and tube mills are similar in character to other hot forming mill wastewaters. Pipe and tube mill wastewaters generally contain 100 to 200 mg/L of suspended solids and 50 to 100 mg/L of oil and grease. The pH of these wastewaters rarely deviates from the 6.0 to 9.0 range. Oils are found in hot mill wastewaters as a result of oil spills, line breakers, and excessive dripping of lubricants; appreciable quantities of spent oils and greases are added when equipment is washed down. The appearance of heavy metal constituents such as chromium, lead, and zinc in hot forming wastewaters is due to the use of these metals in steelmaking and alloying. Concentrations of heavy metals in the wastewater, however, are generally low and have little impact upon treatment of the wastewater. The scale formed in the cold worked mills is primarily a very fine ferric oxide (Fe<sub>2</sub>O<sub>3</sub>) which occurs as a result of surface oxidation of the steel.

TABLE 6-29. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE HOT FORMING-FLAT SUBCATEGORY, PLATE MILL SUBDIVISION [6]

|                             |          | Raw wast | ewater    |         |          | Treated e | ffluent    |         | Average            |
|-----------------------------|----------|----------|-----------|---------|----------|-----------|------------|---------|--------------------|
|                             | Number   | Conce    | ntration, | μg/L    | Number   | Conce     | entration, | μg/L    | percent<br>removal |
| Toxic pollutant             | detected | Median   | Maximum   | Average | detected | Median    | Maximum    | Average |                    |
| Metals and inorganics       |          |          |           |         |          |           |            |         |                    |
| Chromium                    | 7        | 40       | 120       | 50      | 7        | 640       | 1,000      | 460     | _a                 |
| Copper                      | 7        | 210      | 330       | 190     | 7        | 40        | 50         | 40      | 79                 |
| Lead                        | 7        | 60       | 470       | 140     | 7        | 50        | 50         | 46      | 67                 |
| Nickel                      | 7        | 150      | 980       | 270     | 7        | 40        | 40         | 34      | 87                 |
| Zinc                        | 7        | 90       | 110       | 80      | 7        | 30        | 70         | 34      | 57                 |
| Phthalates                  |          |          |           |         |          |           |            |         |                    |
| Bis(2-ethylhexyl) phthalate | 6        | 430      | 820       | 350     |          |           |            |         |                    |
| Di-n-butyl phthalate        | ì        | 32       |           |         |          |           |            |         |                    |
| Phenols                     |          |          |           |         |          |           |            |         |                    |
| 2,4-Dimethylphenol          | 2        |          | 14        | 9       |          |           |            |         |                    |
| Pentachlorophenol           | 2        |          | 12        | 8       |          |           |            |         |                    |
| Halogenated aliphatics      |          |          |           |         |          |           |            |         |                    |
| Methylene chloride          | 3        | 14       | 120       | 44      | 1        |           |            | <0.01   |                    |

Note: Blanks indicate no data available.
Dashes indicate negligible removal.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

# TABLE 6-30. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE HOT FORMING-FLAT SUB-CATEGORY, HOT STRIP AND SHEET MILL SUBDIVISION [6]

Average raw wastewater flow: 22  $\rm m^3/Mg$  (5,300 gal/ton) Average treated effluent flow: 22  $\rm m^3/Mg$  (5,300 gal/ton)

|                |                       | Raw wast | ewater  |         |          | Treated e | ffluent   |         | Average |
|----------------|-----------------------|----------|---------|---------|----------|-----------|-----------|---------|---------|
|                | Number Concentration, |          |         |         | Number   |           | ntration, | mg/La   | percent |
| Parameter      | _detected             | Median   | Maximum | Average | detected | Median    | Maximum   | Average | removal |
| TSS            | 2                     | 52       | 57      | 52      | 2        | 21        | 38        | 21      | 60      |
| Oil and grease | 2                     | 8        | 10      | 8       | 2        | 3         | 4         | 3       | 67      |
| pН             | 2                     | 7.8      | 8.1     | 7.8     | 2        | 7.8       | 7.9       | 7.8     |         |

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

Water soluble and emulsified oils, which are essential to the operation of the cold forming mill, are found in appreciable quantities in the wastewater. Suspended solids concentrations are generally in the range of 100 to 200 mg/L. The pH is sometimes slightly acidic, but it is generally in the range of 6.0 to 9.0.

As is true for hot forming operations, wastewaters are generally low in heavy metals and organic toxic pollutants.

Wastewater characterization for conventional and toxic pollutants for two sampled hot forming pipe and tube mills is presented in Tables 6-32 and 6-33. Heavy metal toxic pollutants originate in the raw materials used in steel making. These metals find their way into the process wastewaters when the product scale contaminates the wastewater. Copper was the only toxic metal found in the data reviewed. No toxic organics were detected at levels greater than 10  $\mu g/L$  and are not reported due to this. Refer to Table 6-96 in the plant specific section for wastewater characterization for conventional pollutants for the sampled cold forming pipe and tube plant.

#### II.6.2.14 Subcategory 17 - Sulfuric Acid Pickling [8]

There are three main sources of wastewater in sulfuric acid pickling operations: spent pickle liquor (acid concentrates), rinse waters, and acid vapors and mists. Typical spent sulfuric pickle liquor averages about 8% free acid and 8% dissolved iron. On this basis, each ton of steel pickled (at 1% loss) would generate about 25 gal of spent pickle liquor.

After pickling, the material is subjected to a water rinse to remove the acid/iron solution from the surface. Typical rinse water flow rates range from 1 to 50 L/S (15 to 80 gal/min).

TABLE 6-31. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE HOT FORMING-FLAT SUBCATEGORY, HOT STRIP AND SHEET MILL SUBDIVISION [11]

|                                   |          | Raw wast | ewater    |         |          | Treated e |            |         | Average    |
|-----------------------------------|----------|----------|-----------|---------|----------|-----------|------------|---------|------------|
|                                   | Number   |          | ntration, | µg/L    | Number   |           | entration, | µg/L    | percent    |
| Toxic pollutant                   | detected | Median   | Maximum   | Average | detected | Median    | Maximum    | Average | removal    |
| Metals and inorganics             |          |          |           |         |          |           |            |         |            |
| Chromium                          | 2        | 86       | 170       | 86      | 2        | 88        | 174        | 88      | _a         |
| Copper                            | 2        | 35       | 45        | 35      | 2        | 16        | 31         | 16      | 5 <b>4</b> |
| Lead                              | ī        | 50       |           |         | ī        | 50        |            |         | 0          |
| Nickel                            | ī        | 20       |           |         | ī        | 20        |            |         | 0          |
| Zinc                              | 2        | 112      | 200       | 112     | 2        | 105       | 206        | 105     | 6          |
| Phthalates                        |          |          |           |         |          |           |            |         |            |
| Bis(2-ethylhexyl) phthalate       | 1        | 279      |           |         |          |           |            |         |            |
| Di-n-butyl phthalate              | 2        |          | 23        | 12      |          |           |            |         |            |
| Phenols                           |          |          |           |         |          |           |            |         |            |
| 2,4-Dinitrophenol                 | 1        | 28       |           |         |          |           |            |         |            |
| Halogenated aliphatics Chloroform | 1        | 18       |           |         |          |           |            |         |            |

Note: Blanks indicate no data available.
Dashes indicate negligible removal.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-32. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE PIPE AND TUBE SUBCATEGORY, HOT FORMING SUBDIVISION [6]

Average raw wastewater flow: 31 m $^3/Mg$  (7,500 gal/ton) Average treated effluent flow: 34 m $^3/Mg$  (8,100 gal/ton)

|                |          | Raw wast | ewater    |         |          |        | Average   |                   |         |
|----------------|----------|----------|-----------|---------|----------|--------|-----------|-------------------|---------|
|                | Number   | Conce    | ntration, | mg/La   | Number   | Conce  | ntration, | mg/L <sup>a</sup> | percent |
| Parameter      | detected | Median   | Maximum   | Average | detected | Median | Maximum   | Average           | removal |
| TSS            | 2        | 51       | 66        | 51      | 4        | 20     | 38        | 20                | 61      |
| Oil and grease | 2        | 6.5      | 7.9       | 6.5     | 4        | 4      | 4         | 4                 | 38      |
| рН             | 2        | 7.6      | 7.8       | 7.6     | 4        | 7.6    | 7.8       | 7.6               |         |

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

TABLE 6-33. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE PIPE AND TUBE SUBCATEGORY, HOT FORMING SUBDIVISION [6]

|                       |          | Raw wast | ewater    |         |          | Treated e | ffluent   |         | Average |
|-----------------------|----------|----------|-----------|---------|----------|-----------|-----------|---------|---------|
|                       | Number   | Conce    | ntration, | µg/L    | Number   | Conce     | ntration, | µg/L    | percent |
| Toxic pollutant       | detected | Median   | Maximum   | Average | detected | Median    | Maximum   | Average | removal |
| Metals and inorganics |          |          |           |         |          |           |           |         |         |
| Beryllium             | 1        | 10       |           |         |          |           |           |         |         |
| Cadmium               | 1        | < 10     |           |         |          |           |           |         |         |
| Chromium              | 2        | 140      | 240       | 140     | 2        | 37        | 43        | 37      | 74      |
| Copper                | 2        | 73       | 80        | 73      | 2        | 26        | 31        | 26      | 64      |
| Lead                  | 2        | 430      | 800       | 430     | 1        | 50        |           |         | 88      |
| Nickel                | 2        | 300      | 500       | 300     | 1        | 20        |           |         | 93      |
| Zinc                  | 2        | 160      | 250       | 160     | 1        | 120       | 210       | 120     | 25      |

Note. Blanks indicate no data available.

Many pickling facilities are equipped to include a scrubbing device which uses water to collect the acid mist. Others use condensing "demisters" to trap acid vapors for return to the pickling tanks. Most large continuous  $\rm H_2SO_4$  picklers utilize wet scrubber systems with recycle of frame scrubber wastewaters. Efficient operations achieve less than 3% blowdown from their scrubbers.

Another source of acid vapors and mists is the absorber vent scrubber associated with an acid recovery mist. Other recovery units tend to use demister type or dry vent controls for preventing pollution from this source. In most cases condensates are returned to the pickling tank.

Wastewater characterization for conventional pollutants is presented in Table 6-34 for sulfuric acid batch pickling operations and in Table 6-35 for sulfuric acid continuous pickling operations. Toxic pollutant data for batch pickling operations are presented in Table 6-36. Two continuous pickling operations were sampled for toxic pollutants, and data for both plants (094 and 097) are presented in Tables 6-97 and Table 6-98 in the plant specific section.

TABLE 6-34. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE SULFURIC ACID PICKLING SUBCATEGORY, BATCH SUBDIVISION [8]

Average raw wastewater flow: rinse water - 0.68 m<sup>3</sup>/Mg (271 gal/ton)

|                  | Gr       | oss raw w | astewater |                   | Gross process effluent |                     |         |         |  |  |
|------------------|----------|-----------|-----------|-------------------|------------------------|---------------------|---------|---------|--|--|
|                  | Number   | Conce     | ntration, | mg/L <sup>a</sup> | Number                 | Concentration, mg/L |         |         |  |  |
| <u>Parameter</u> | detected | Median    | Maximum   | Average           | detected               | Median              | Maximum | Average |  |  |
| TSS              | 5        | 32        | 360       | 180               |                        | 0.6                 | 1.3     | 0.7     |  |  |
| Oil and grease   | 5        | 18        | 48        | 24                | 4                      | 8.8                 | 11      | 4.9     |  |  |
| рН               | 5        | 1.8       | 6.9       | 3.3               |                        | 8.4                 | 9.0     | 8.3     |  |  |

Note: Blanks indicate no data available.

TABLE 6-35. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE SULFURIC ACID PICKLING SUBCATEGORY, CONTINUOUS SUBDIVISION [8]

Average raw wastewater flow: spent concentrate - 0.083 m<sup>3</sup>/Mg (19.8 gal/ton) rinse water - 0.69 m<sup>3</sup>/Mg (164 gal/ton) fume hood scrubber - 0 037 m<sup>3</sup>/Mg (8.9 gal/ton)

|                | Spent concentrate  |                 |           |         |          | Rinse  | water     |         | Fume hood scrubber |        |           |                   |  |
|----------------|--------------------|-----------------|-----------|---------|----------|--------|-----------|---------|--------------------|--------|-----------|-------------------|--|
| Parameter      | Number<br>detected | Conce<br>Median | ntration, |         | Number   |        | ntration, |         | Number             |        | ntration, | mg/L <sup>a</sup> |  |
| - rarameter    | detected           | neuran          | Maximum   | Average | detected | Median | Maximum   | Average | detected           | Median | Wexzwan   | Average           |  |
| TSS            | 7                  | 200             | 17,000    | 2,600   | 13       | 38     | 500       | 192     | 3                  | 7.5    | 200       | 69                |  |
| Oil and grease | 6                  | 10              | 46        | 18      | 3        | 14     | 33        | 19      | 3                  | 2.5    | 9         | 4.5               |  |
| рН             | 7                  | <1              |           |         | 2        | 4      | 5.7       | 4       | 3                  | 1.7    | 1.9       | 1.7               |  |

Note: Blanks indicate no data available.

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

Except pH values, given in pH units

TABLE 6-36. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE SULFURIC ACID PICKLING SUBCATEGORY, BATCH SUBDIVISION [8]

|                        |                    |            | oncentrat             |         |                    | Rinse     | water     |         |
|------------------------|--------------------|------------|-----------------------|---------|--------------------|-----------|-----------|---------|
|                        |                    | Concentra  | tion, µg/             | L       |                    | oncentrat | ion, µg/L |         |
| Toxic pollutant        | Number<br>detected | Median     | Maximum               | Average | Number<br>detected | Median    | Maximum   | Average |
| Metals and inorganics  |                    |            |                       |         |                    |           |           |         |
| Arsenic                | 1                  | 170        |                       |         | 3                  | <10       | 173       | 64      |
| Cadmium                | 2                  | 270        | 280                   | 270     | 3                  | <10       | 302       | 107     |
| Hexavalent chromium    | 2                  | 4          |                       |         |                    |           |           |         |
| Chromium, Total        | 2                  | 232,000    | 260,000               | 232,000 | 3                  | 50        | 2,000     | 680     |
| Copper                 | 2                  | 3,600      | 4,700                 | 3,600   | 3                  | 140       | 2,400     | 860     |
| Cyanide                | 2                  | 13         | 17                    | 13      | 2                  | 11        | 11        | 11      |
| Lead                   | 2                  | 800        | 1,600                 | 800     | 3                  | 40        | 1,000     | 360     |
| Nickel                 | 2                  | 25,000     | 27,000                | 25,000  | 3                  | 60        | 13,800    | 4,600   |
| Silver                 | 2                  | 51         | 600                   | 51      |                    |           | _         |         |
| Zinc                   | 2                  | 74,000     | 133,000               | 74,000  | 3                  | 90        | 1,800     | 640     |
| Phenols                |                    |            |                       |         |                    |           |           |         |
| 2,4,6-Trichlorophenol  | 1                  | 41         |                       |         |                    |           |           |         |
| Aromatics              |                    |            |                       |         |                    |           |           |         |
| Benzene                |                    |            |                       |         | 1                  | <10       |           |         |
| Toluene                | 1                  | <10        |                       |         |                    |           |           |         |
| Polycyclic aromatics   |                    |            |                       |         |                    |           |           |         |
| Acenaphthylene         |                    |            |                       | 5       |                    |           |           | 1       |
| Naphthalene            |                    |            |                       |         | 1                  | <10       |           |         |
| Pyrene                 |                    |            |                       |         | 2                  | <10       | <10       | <10     |
| Halogenated aliphatics |                    |            |                       |         |                    |           |           |         |
| Chloroform             | 1                  | 20         |                       |         | 2                  | <10       | <10       | <10     |
| Methylene chloride     | 2                  | 33         | 52                    | 33      | 3                  | 43        | 165       | 73      |
| Trichloroethylene      | 1                  | <10        |                       |         |                    |           |           |         |
|                        |                    |            |                       |         |                    |           |           |         |
|                        |                    | reated wa  | stewater<br>ion, µg/L |         |                    |           |           |         |
|                        | Number             | One Cherta | 1011/ 19/1            |         |                    |           |           |         |
|                        | detected           | Median     | Maximum               | Average |                    |           |           |         |
| Aromatics              |                    |            |                       |         |                    |           |           |         |
| Benzene                | 2                  | <10        | <10                   | <10     |                    |           |           |         |
|                        |                    |            |                       |         |                    |           |           |         |
| Polycyclic aromatics   | ,                  | . 7 ^      |                       |         |                    |           |           |         |
| Fluoranthene           | 1                  | <10        | .10                   | 410     |                    |           |           |         |
| Naphthalene            | 2                  | <10        | <10                   | <10     |                    |           |           |         |
| Halogenated aliphatics | _                  | <b>.</b> - |                       |         |                    |           |           |         |
| Chloroform             | 5                  | 20         | 25                    | 22      |                    |           |           |         |
| Methylene chloride     | 5                  | 154        | 230                   | 140     |                    |           |           |         |

Note: Blanks indicate no data available.

## II.6.2.15 Subcategory 18 - Hydrochloric Acid Pickling [8]

The process wastewater generated during pickling operations include spent acid concentrations, rinse water, fume hood scrubber wastewater, and absorber vent scrubber wastewater. A typical discharge flow rate for an acid concentrate is 0.084 m³/Mg (20 gal/ton). The spent pickling solution may contain free acid, ferrous salts, and relatively small amounts of other metal sulfates, chlorides, lubricants, inhibitors, and hydrocarbons. Rinse water is used to flush the pickled metal and thus appears as dilute spent liquor. Continuous facilities use 6 to 65 L/S (100 to 1,000 gpm) and batch facilities use 1.5 to 20 L/S (25 to 300 gpm). Fume hood scrubbers and absorber vent scrubbers collect acid mists to prevent air contamination; as a result their discharges must be treated to neutralize the captured acid.

Most chemical characteristics show significant variation, reflecting pickling line configuration and applied flows. Note that the major constituents of the wastewater are dissolved iron and suspended solids. The concentrations of other constituents are generally less than 1 mg/L except in the concentrates where chromium, copper, nickel, and zinc concentrations were generally greater than 10 mg/L. Tables 6-37 through 6-40 present conventional and metal concentrations for raw wastewater and gross treated effluent for continuous line acid concentrates, rinse water, fume hood scrubbers, and absorber vent scrubbers. Table 6-41 presents toxic pollutant concentration data for the continuous line raw wastewater. Additional data on the hydrochloric acid pickling subcategory appear in the plant specific section. Also found in the plant specific section is information on batch-type hydrochloric acid pickling.

TABLE 6-37. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS AND METALS FOR THE HYDROCHLORIC ACID PICKLING SUBCATEGORY, CONTINUOUS SUBDIVISION (CONCENTRATES) [8]

Average raw waste flow: 0.08 m³/Mg (19.5 gal/ton) Average gross effluent flow: 0.17 m³/Mg (41.4 gal/ton)

|                |          | Raw wast | ewater    |                 |          | Gross e              | ffluent |         | Average |
|----------------|----------|----------|-----------|-----------------|----------|----------------------|---------|---------|---------|
|                | Number   | Conce    | ntration, | ntration, mg/La |          | Concentration, mg/La |         |         | percent |
| Parameter      | detected | Median   | Maximum   | Average         | detected | Median               | Maximum | Average | remova. |
| TSS            | 6        | 97       | 320       | 120             | 1        |                      |         | 36      | 30      |
| Oil and grease | 1        |          |           | 5.1             | 1        |                      |         | <1      | 80      |
| ρH             | 3        | <1       | <1        | <1              | 1        |                      |         | 8.4     |         |
| Antimony       | 2        |          | 3.7       | 1.9             |          |                      |         |         |         |
| Arsenic        | 2        |          | 0.4       | 0.21            |          |                      |         |         |         |
| Cadmium        | 2        |          | 0.31      | 0.3             |          |                      |         |         |         |
| Total chromium | 3        | 8.7      | 18        | 9.4             |          |                      |         |         |         |
| Copper         | 3        | 11       | 28        | 14              |          |                      |         |         |         |
| Lead           | ì        |          |           | 2.1             |          |                      |         |         |         |
| Nickel         | 3        | 13       | 13        | 9.5             |          |                      |         |         |         |
| Zinc           | 3        | 4.2      | 4.6       | 3.8             |          |                      |         |         |         |

Note: Blanks indicate no data available.

Except pH values, given in pH units.

Date: 6/23/80

TABLE 6-38. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS AND TOXIC METALS FOR THE HYDROCHLORIC ACID PICKLING SUBCATEGORY, CONTINUOUS SUBDIVISION (RINSES) [8]

Average raw waste flow: 0.5 m $^3/Mg$  (120 gal/ton) Average gross effluent flow: 0.64 m $^3/Mg$  (152 gal/ton)

|                  |          | Raw wast | ewater    |         |          | Gross ef | fluent    |         | Average         |
|------------------|----------|----------|-----------|---------|----------|----------|-----------|---------|-----------------|
|                  | Number   | Conce    | ntration, | mg/La   | Number   | Conce    | ntration, | mg/La   | percent         |
| <u>Parameter</u> | detected | Median   | Maximum   | Average | detected | Median   | Maximum   | Average | removal         |
| TSS              | 9        | 15       | 210       | 34      | 5        | 2        | 36        | 12      | 65              |
| Oil and grease   | 6        | 28       | 150       | 40      | 5        | 1        | 6         | 3.5     | 91              |
| рH               | 11       | 1.6      | 4.2       | 2.4     | 5        |          | 9.0       | 8.0     |                 |
| Antimony         | 2        |          | 0.19      | 0.19    |          |          |           |         |                 |
| Arsenic          | 2        |          | 0.24      | 0.23    | 2        |          | 0.044     | 0.031   | 86 <sub>P</sub> |
| Cadmium          | 1        |          |           | 0.01    | 2        |          |           | 0.011   | - D             |
| Total chromium   | 3        | 0.57     | 0.79      | 0.57    | 1        |          |           | 0.22    | 61              |
| Copper           | 5        | 0.67     | 1.6       | 0.72    | 2        |          | 0.25      | 0.14    | 81              |
| Lead             | 2        |          | 0.43      | 0.29    | 1        |          |           | 0.032   | 89              |
| Nickel           | 4        | 0.73     | 1.3       | 0.78    | 2        |          | 0.44      | 0.25    | 68              |
| Zinc             | 5        | 0.38     | 1.4       | 0.49    | 2        |          | 0.066     | 0.045   | 91              |

Note: Blanks indicate no data available.

TABLE 6-39. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS AND TOXIC METALS FOR THE HYDROCHLORIC ACID PICKLING SUBCATEGORY, CONTINUOUS SUBDIVISION (FUME HOOD SCRUBBERS) [8]

Average raw waste flow: 0.11  $\rm m^3/Mg$  (25  $\rm gal/ton$ ) Average gross effluent flow: 0.078  $\rm m^3/Mg$  (18.6  $\rm gal/ton$ )

|                  |          | Raw wast | ewater    |                   | -        | Gross ef | fluent    |         | Average |
|------------------|----------|----------|-----------|-------------------|----------|----------|-----------|---------|---------|
|                  | Number   | Conce    | ntration, | mg/L <sup>a</sup> | Number   | Conce    | ntration, | mg/La   | percent |
| <u>Parameter</u> | detected | Median   | Maximum   | Average           | detected | Median   | Maximum   | Average | removal |
| TSS              | 4        | 7.5      | 2,100     | 530               | 2        |          | 11        | 7.0     | 98      |
| Oil and grease   | 4        | 29       | 330       | 95                | 2        |          | 1.9       | 1.4     | 99      |
| pH               | 6        | 1.4      | 3.3       | 1.6               | 2        |          | 9.0       | 8.0     |         |
| Antimony         | 2        | 0.10     | 0.11      | 0.10              |          |          |           |         |         |
| Arsenic          | 2        | 0.055    | 0.07      | 0.055             | 2        | 0.008    | 0.013     | 0.008   | 99      |
| Cadmium          |          |          |           | _D                | 1        | 0.011    |           |         |         |
| Total chromium   | 3        | 0.15     | 0.24      | 0.16              | 1        | 0.075    |           |         | 53      |
| Copper           | 4        | 0.19     | 0.76      | 0.31              | 2        | 0.17     | 0.28      | 0.17    | 55      |
| Lead             | 1        | 0.35     |           |                   | 1        | 0.025    |           |         | 93      |
| Nickel           | 3        | 0.1      | 0.2       | 0.13              | 2        | 0.13     | 0.19      | 0.13    | 23      |
| Zinc             | 4        | 0.13     | 1.5       | 0.45              | 1        | 0.027    |           |         | 94      |

Note: Blanks indicate no data available.

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

<sup>&</sup>lt;sup>b</sup>Gross effluent concentration exceeds raw waste concentration.

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

Detected but not quantified.

TABLE 6-40. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS AND TOXIC METALS FOR THE HYDROCHLORIC ACID PICKLING SUBCATEGORY, CONTINUOUS SUBDIVISION (ABSORBER VENT SCRUBBERS) [8]

Average raw waste flow: 0.86  $m^3/Mg$  (205 gal/ton) Average gross effluent flow: 0.71  $m^3/Mg$  (170 gal/ton)

|                |          | Raw wast | ewater    |                   |                  | Gross ef           | fluent    |         | Average |
|----------------|----------|----------|-----------|-------------------|------------------|--------------------|-----------|---------|---------|
|                | Number   | Conce    | ntration, | mg/L <sup>a</sup> | Number           | Conce              | ntration, | mg/La   | percent |
| Parameter      | detected | Median   | Maximum   | Average           | <b>de</b> tected | Median             | Maximum   | Average | removal |
| TSS            | 6        | 85       | 150       | 80                | 1                | 9.7                |           |         |         |
| Oil and grease | 2        |          | 2.2       | 2.0               | 1                | 0.47               |           |         | 75      |
| рH             | 6        | 5.6      | 7.1       | 4.2               |                  |                    |           |         |         |
| Antimony       | 1        |          |           | 0.21              |                  |                    |           |         | _       |
| Arsenic        | 1        |          |           | 0.017_            | 1                | 0.002              |           | 0.002   | _c      |
| Cadmium        |          |          |           | _c                | 1                | 0.011              |           | L       |         |
| Total chromium | 1        |          |           | 0.98              |                  | - <sup>D</sup>     |           | _p      |         |
| Copper         | 2        |          | 1.3       | 0.87              | 1                | 0.024              |           | ъ.      | 98      |
| Lead           | 1        |          |           | 0.1               |                  | - <sup>D</sup>     |           | _b      |         |
| Nickel         | 2        |          | 0.79      | 0.72              | 1                | 0.059 <sub>b</sub> |           |         | 92      |
| Zinc           | 2        |          | 1.1       | 0.9               |                  | _D                 |           | _p      |         |

Note: Blanks indicate no data available.

## II.6.2.16 Subcategory 19 - Cold Rolling [7]

The major water use on cold rolling mills is for cooling the rolls and the material being rolled. This is accomplished by using a flooded lubrication system to supply both lubrication and cooling. A water-oil emulsion is sprayed directly on the material and rolls as the material enters the rolls. Each stand has its own sprayer and, where recycle is used, its own recycle system.

The water used in cold rolling mill must be of fairly good quality, free of suspended matter. High quality rolling oils are added to form the emulsion. Recirculating mills recircle the oil emulsion. The material being rolled is clean and free from rust, and because no scale is generated during the rolling, oil and temperature are the basic pollutants in the discharge when the emulsion is not recirculated.

Direct application mills constantly add fresh rolling solutions on a once-through basis. Normally these plants install treatment systems to recover the oils for potential reuse. This process is normally used only when a high quality product is desired.

A third type of cold rolling mill is a combination mill which combines the recirculation and direct application of the rolling emulsion. The discharge rate at such a mill is substantially less than that at a direct application mill due to the partial recirculation. Wastewater characterization for conventional pollutants for the three subdivisions of the

<sup>\*</sup>Except pH values, given in pH units.

bDetected but not quantified.

<sup>&</sup>lt;sup>C</sup>Gross effluent concentration exceeds raw waste concentration.

TABLE 6-41. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE THE HYDROCHLORIC ACID PICKLING SUBCATEGORY, CONTINUOUS SUBDIVISION [14]

|                            |          | r vent sc<br>wastewat |         |          |           | r raw was |            |          | Rinse was    |           |              |
|----------------------------|----------|-----------------------|---------|----------|-----------|-----------|------------|----------|--------------|-----------|--------------|
|                            | Concen   | tration,              | μg/L    | C        | oncentrat | ion, µg/L | ,          |          | oncentrat    | ion, µg/L |              |
|                            | Number   |                       |         | Number   |           |           |            | Number   |              |           |              |
| Toxic pollutant            | detected | Maximum               | Average | detected | Median    | Maximum   | Average    | detected | Median       | Maximum   | Average      |
| Metals and inorganics      |          |                       |         |          |           |           |            |          |              |           |              |
| Antimony                   | 1        | <210                  |         | 2        | 175       | 200       | 170        | 3        | <100         | 190       | 110          |
| Arsenic                    | 1        | <23                   |         | 3        | 66        | 75        | 50         | 3        | 233          | 290       | 190          |
| Beryllium                  | 1        | <20                   |         | 1        | <20       |           |            | 1        | <20          |           |              |
| Cadmium                    | 1        | <20                   |         | 4        | <12       | <200      | 5 <b>9</b> | 6        | <15          | <200      | <b>4</b> 5   |
| Chromium                   | 2        | <200                  | <140    | 3        | 150       | <330      | 190        | 6        | 390          | 840       | 300          |
| Copper                     | 2        | 1,600                 | 850     | 4        | 120       | 390       | 180        | 5        | 690          | 1,500     | 7 <b>7</b> 0 |
| Cyanide                    | 2        | 18                    | 10      | 4        | 6         | 12        | 6          | 6        | 8            | 75        | 20           |
| Lead                       | 1        | <600                  |         | 3        | <100      | <600      | 260        | 6        | 2 <b>6</b> 0 | 6,200     | 1,250        |
| Mercury                    | 1        | 32                    |         | 1        | 2         |           |            |          |              |           |              |
| Nickel                     | 2        | 790                   | 420     | 3        | 150       | <500      | 230        | 6        | <b>69</b> 0  | 1,300     | 700          |
| Selenium                   | 1        | <35                   |         | 3        | <10       | <10       | 7          | 3        | <10          | 200       | 70           |
| Silver                     | 1        | <250                  |         | 4        | <20       | <250      | 75         | 6        | 21           | <250      | 58           |
| Thallium                   | 1        | <70                   |         | 1        | <50       |           |            |          |              |           |              |
| Zinc                       | 2        | 1,300                 | 670     | 4        | 87        | 270       | 120        | 6        | 380          | 1,500     | 520          |
| Phenols                    |          |                       |         |          |           |           |            |          |              |           |              |
| Pentachlorophenol          |          |                       |         |          | 26        | 43        | 26         |          |              |           |              |
| Aromatics                  |          |                       |         |          |           |           |            |          |              |           |              |
| Benzene                    |          |                       |         |          |           |           |            |          | 12           | 14        | 12           |
| Chlorobenzene              |          |                       |         | 1        | 26        |           |            |          |              |           |              |
| Polycyclic aromatics       |          |                       |         |          |           |           |            |          |              |           |              |
| <b>Fluoranthene</b>        |          |                       |         |          |           |           |            | 6        | <10          | 65        | 19           |
| Pyrene                     |          |                       |         |          |           |           |            | 6        | <10          | 75        | 22           |
| Halogenated aliphatics     |          |                       |         |          |           |           |            |          |              |           |              |
| Chlorodibromomethane       |          |                       |         | 1        | 13        |           |            |          |              |           |              |
| Chloroform                 | 1        | 26                    |         | 4        | <10       | 16        | 12         | 5        | <10          | 37        | 16           |
| l,l-Dichloroethylene       |          |                       |         | 1        | 12        |           |            |          |              |           |              |
| 1,2-Trans-dichloroethylene | 1        | 23                    |         |          |           |           |            |          |              |           |              |
| Methylene chloride         | 2        | 1,100                 | 550     | 3        | <10       | 82        | 34         | 6        | 11           | 3,600     | 6 <b>9</b> 0 |
| Tetrachloroethylene        | 1        | 14                    |         |          |           |           |            | 3        | 22           | 40        | 24           |
| Trichloroethylene          |          |                       |         |          |           |           |            | 2        | 37           | 65        | 37           |

(continued)

TABLE 6-41 (continued)

|                        |          | Spent pic | kle liquor |         |          | scharge w |           |              |
|------------------------|----------|-----------|------------|---------|----------|-----------|-----------|--------------|
|                        |          | Concentra | tion, µg/L |         |          | oncentrat | ion, µg/L |              |
|                        | Number   |           |            |         | Number   |           |           |              |
| Toxic pollutant        | detected | Median    | Maximum    | Average | detected | Median    | Maximum   | Average      |
| Metals and inorganics  |          |           |            |         |          |           |           |              |
| Antimony               | 2        | 2,100     | 4,100      | 2,100   | 2        | 100       | 190       | 100          |
| Arsenic                | 2        | 35        | 45         | 35      | 3        | 230       | 260       | 170          |
| Beryllium              |          |           |            |         | 1        | < 20      |           |              |
| Cadmium                | 4        | 140       | 280        | 150     | 5        | <20       | 240       | 96           |
| Chromium               | 5        | 8,700     | 37,000     | 13,000  | 5        | 440       | 2,300     | 770          |
| Copper                 | 5        | 11,000    | 22,000     | 11,000  | 5        | 680       | 900       | 620          |
| Cyanide                | 5        | 8         | 11         | 8       | 5        | 14        | 74        | 23           |
| Lead                   | 4        | 1,700     | 1,500,000  | 390,000 | 5        | 420       | 33,000    | 7,000        |
| Mercury                |          | •         | -,- ,-     | •       | 1        | <2        | ·         |              |
| Nickel                 | 5        | 13,000    | 22,000     | 10,000  | 5        | 640       | 860       | 5 <b>4</b> 0 |
| Selenium               | 4        | <10       | 170        | 50      | 4        | 6         | 20        | 9            |
| Silver                 | 4        | 290       | 390        | 250     | 5        | 23        | 250       | 70           |
| Thallium               | i        | 180       |            |         | 1        | <50       |           |              |
| Zinc                   | 5        | 4,200     | 61,000     | 15,000  | 5        | 600       | 290,000   | 58,000       |
| Aromatics              |          |           |            |         |          |           |           |              |
| Benzene                |          |           |            |         | 2        | 12        | 14        | 12           |
| Polycyclic aromatics   |          |           |            |         |          |           |           |              |
| Fluoranthene           | 5        | <10       | 65         | 21      | 5        | <10       | 56        | 20           |
| Pyrene                 | 4        | <10       | 75         | 26      | 5        | <10       | 65        | 22           |
| Halogenated aliphatics |          |           |            |         |          |           |           |              |
| Chloroform             | 5        | <10       | 100        | 28      | 5        | <10       | 36        | 15           |
| Methylene chloride     | 5        | 14        | 3,500      | 720     | 5        | 15        | 3,600     | 740          |
| Tetrachloroethylene    | 3        | 31        | 40         | 27      | 2        | 29        | 37        | 29           |
| Trichloroethylene      |          |           |            |         | 2        | 50        | 90        | 50           |

Note: Blanks indicate no data available.

<sup>&</sup>lt;sup>a</sup>Detected but not quantified.

cold rolling subcategory is presented in Table 6-42 through Table 6-44. Wastewater characterization for the cold rolling subcategory for toxic pollutants is presented in Table 6-45.

TABLE 6-42. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE COLD ROLLING SUBCATEGORY, RECIRCULATING MILL SUBDIVISION [7]

Average raw waste flow: 27.7 m<sup>3</sup>/Mg (6,602 gal/ton) Average gross effluent flow: 0.2 m<sup>3</sup>/Mg (50.3 gal/ton)

|                |          | Raw wast | ewater    |         |          | Average |           |         |         |
|----------------|----------|----------|-----------|---------|----------|---------|-----------|---------|---------|
|                | Number   | Conce    | ntration, | mg/La   | Number   | Conce   | ntration, | mg/La   | percent |
| Parameter      | detected | Median   | Maximum   | Average | detected | Median  | Maximum   | Average | removal |
| TSS            | 3        | 2,200    | 5,000     | 2,600   | 2        | 110     | 200       | 110     | 96      |
| Oil and grease | 3        | 37,000   | 82,000    | 40,000  | 2        | 71      | 140       | 71      | 99      |
| рН             | 3        | 6.5      | 6.7       | 6.3     | 8        | 6.1     | 8.2       | 6.1     |         |

aExcept pH values, given in pH units.

TABLE 6-43. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE COLD ROLLING SUBCATEGORY, DIRECT APPLICATION MILL SUBDIVISION [7]

Average raw waste flow:  $2.7~{\rm m}^3/{\rm Mg}$  (659 gal/ton) Average gross effluent flow:  $2.7~{\rm m}^3/{\rm Mg}$  (659 gal/ton)

|                |                    | Raw wast        | ewater               |                              |                    | Gross ef        | fluent            |                              | Average            |
|----------------|--------------------|-----------------|----------------------|------------------------------|--------------------|-----------------|-------------------|------------------------------|--------------------|
| Parameter      | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | Number<br>detected | Conce<br>Median | ntration, maximum | mg/L <sup>a</sup><br>Average | percent<br>removal |
| TSS            | 1                  | 290             |                      |                              | 1                  | 300             |                   |                              | _b                 |
| Oil and grease | 1                  | 1,900           |                      |                              | 1                  | 1,400           |                   |                              | 26                 |
| pН             | 1                  | 7.2             |                      |                              | 1                  | 3.3             |                   |                              |                    |

Note: Blanks indicate no data available.

TABLE 6-44. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE COLD ROLLING SUBCATEGORY, COMBINATION MILL SUBDIVISION [7]

Average raw waste flow: 1.4 m $^3$ /Mg (339 gal/ton) Average gross effluent flow: 1.4 m $^3$ /Mg (339 gal/ton)

|                |                    | Raw wast        | ewater               |                              |                    | Average         |                      |                              |                    |
|----------------|--------------------|-----------------|----------------------|------------------------------|--------------------|-----------------|----------------------|------------------------------|--------------------|
| Parameter      | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | percent<br>removal |
| TSS            | 2                  | <b>63</b> 0     | 990                  | <b>63</b> 0                  | 2                  | 11              | 16                   | 11                           | 98                 |
| Oil and grease | 3                  | 1,000           | 1,400                | 1,000                        | 2                  | 5               | 6                    | 5                            | 99                 |
| рН             | 3                  | 6.2             | 7.1                  | 6.2                          | 2                  | 7.9             | 8.2                  | 7.9                          |                    |

Note: Blanks indicate no data available.

Date: 6/23/80

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

 $<sup>^{</sup>m b}$ Treated effluent concentration exceeds raw wastewater concentration.

aExcept pH values, given in pH units.

TABLE 6-45. WASTEWATER CHARACTERIZATION OF POLLUTANTS FOR COLD ROLLING SUBCATEGORY [7]

|                            |          | Raw was |            |            |          | Treated e |           |         | Average |
|----------------------------|----------|---------|------------|------------|----------|-----------|-----------|---------|---------|
|                            | Number   | Conc    | entration, | μg/L       | Number   | Conce     | ntration, | µg/L    | percen  |
| Toxic pollutant            | detected | Median  | Maximum    | Average    | detected | Median    | Maximum   | Average | remova  |
| Metals and inorganics      |          |         |            |            |          |           |           |         |         |
| Antimony                   | 1        | 580     |            |            | 2        | 200       | 300       | 200     | 66      |
| Cadmium                    | 2        | 45      | 45         | <b>4</b> 5 | 1        | 20        |           |         | 56      |
| Chromium                   | 2        | 380     | 6,500      | 2,300      | 3        | 600       | 1,170     | 600     | 74      |
| Copper                     | 3        | 2,260   | 7,450      | 3,470      | 2        | 43        | 65        | 43      | 99      |
| Cyanide                    | 2        | 23      | 34         | 23         |          |           |           |         |         |
| Lead                       | 3        | 1,550   | 2,500      | 1,420      | 2        | 70        | 90        | 70      | 95      |
| Nickel                     | 2        | 740     | 1,250      | 740        | 1        | 35        |           |         | 95      |
| Zinc                       | 3        | 680     | 1,750      | 870        |          |           |           |         |         |
| Phenols                    |          |         |            |            |          |           |           |         |         |
| 2-Chlorophenol             | 2        | 17,760  | 35,500     | 17,760     |          |           |           |         |         |
| 2,4-Dimethylphenol         | 2        | 12,530  | 25,000     | 12,530     |          |           |           |         |         |
| 2-Nitrophenol              | 2        | 35,030  | 70,000     | 35,030     | 1        | 21        |           |         | >99     |
| Pentachlorophenol          | ī        | 43      | ,          | 50,050     | -        |           |           |         |         |
| Phenol                     | 2        | 160     |            | 250        | 3        | 288       | 536       | 288     | _a      |
| 4,6-Dinitro-o-cresol       | ī        | 94      |            | 200        | J        | 200       |           | 200     |         |
| Aromatics                  |          |         |            |            |          |           |           |         |         |
| Ethylbenzene               | 1        | 390     |            |            | 1        | 10        |           |         | 98      |
| Toluene                    | 2        | 87      | 110        | 87         | 1<br>1   | 60        |           |         | 31      |
| Tordene                    | 2        | 67      | 110        | 87         | 1        | 60        |           |         | 31      |
| Halogenated aliphatics     |          |         |            |            |          |           |           |         |         |
| Carbon tetrachloride       | 1        | 110     |            |            |          |           |           |         |         |
| Chloroform                 | 3        | 80      | 540        | 210        | 2        | 34        | 43        | 34      | 83      |
| 1,1,2,2-Tetrachloroethane  | ī        |         |            | 0.005      |          |           |           |         |         |
| Tetrachloroethylene        | 2        | 815     | 1.150      | 815        | 1        | 16        |           |         | 98      |
| 1,1,1-Trichloroethane      | 2        | 217     | 415        | 217        | _        |           |           |         |         |
| Pesticides and metabolites |          |         |            |            |          |           |           |         |         |
| Xylene                     | 1        | 4,300   |            |            |          |           |           |         |         |

Note: Blanks indicate no data available.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

# II.6.2.17 Subcategories 20 and 21 - Hot Coating-Galvanizing and -Terne Plating [9]

The major wastewater flows generated during hot coating operations in the iron and steel industry fall into several distinct groupings such as:

- 1. Continuously running dilute wastewater from rinsing and scrubbing operations following alkaline or acid cleaning steps, rinses following chemical treatment or surface passivation steps and final product rinses after hot dripping. These waters carry suspended and dissolved matter, chlorides, sulfates, phosphates, silicates, oily matter, and varying amounts of dissolved metals (iron, zinc, chromium, lead, tin, aluminum, cadmium) depending on which coating metal is used.
- 2. More concentrated intermittent discharges, including spent alkaline and acid cleaning solutions, fluxes, chemical treatment solutions, and regenerant solutions from in-line ion exchange systems. These discharges contain higher concentrations of the parameters listed above as being present in rinse water.
- 3. Terne scrubber wastewaters, produced by continuously scrubbing vapors and mists collected from the coating liner cleaning and coating steps. Scrubbers may be once-through a recirculating, and the wastewaters from scrubbing can be used as process rinses, since only volatile components are scrubbed out of the air. Less than one-third of the hot coating lines have wet fume scrubbers.
- 4. Noncontact cooling waters, used to control temperatures of the furnaces and molten metal bath pots associated with coating operations. Except for an increase in temperature, these waters do not pick up any pollutants during their passage through the coating lines; thus, they require no treatment if they are kept separate from contaminated process waters.

Wastewater characterization of conventional and toxic pollutants for the nine sampled plants in the hot coating-galvinizing subcategory is presented in Tables 6-46 and 6-47. Wastewater characterization of conventional pollutants for three plants sampled in the hot coating-terme plating subcategory is presented in Table 6-48. Toxic pollutant data on the terme plating subcategory are currently limited to one plant and may be found in the plant specific section of this report.

TABLE 6-46. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE HOT COATING-GALVANIZING SUBCATEGORY [9]

Raw wastewater flow:  $4.3~{\rm m}^3/{\rm Mg}$  (1,025 gal/ton) Treated effluent flow:  $4.3~{\rm m}^3/{\rm Mg}$  (1,026 gal/ton)

|                        |          | Raw wast | ewater    |         |          | Treated e | ffluent   |                   | <b></b>            |
|------------------------|----------|----------|-----------|---------|----------|-----------|-----------|-------------------|--------------------|
|                        | Number   |          | ntration, |         | Number   |           | ntration, | mg/L <sup>a</sup> | Average<br>percent |
| Parameter              | detected | Median   | Maximum   | Average | detected | Median    | Maximum   | Average           | removal            |
| Hexavalent<br>chromium | 8        | 0.005    | 7         | 0.88    | 5        | 0.006     | 0.077     | 0.020             | 77                 |
| Oil and grease         | 10       | 20       | 210       | 45      | 6        | 6         | 11        | 6                 | 87                 |
| TSS                    | 10       | 84       | 330       | 100     | 6        | 9         | 43        | 17                | 83                 |
| рH                     | 10       | 6.1      | 11.2      | 5.8     | 6        | 8.1       | 9.0       | 8.2               |                    |

a Except pH values, given in pH units.

#### II.6.2.18 Subcategory 22 - Combination Acid Pickling [8]

The wastewater from continuous acid pickling operations can originate from three sources depending on the wastewater disposal practices at the mill and the type of equipment installed. The first source of wastewater is the rinse tank(s) used to rinse the acid solution from the product after it is pickled. This wastewater source has the highest flow and contains solids, oils and greases, and dissolved metals, and it normally has a very low pH.

If fume hood scrubbers are installed, wastewater characteristics similar to those found in the rinse waters are generated. Fume hood scrubbers represent the second source of wastewater from continuous and pickling operations. The flow rates through the scrubbers vary considerably throughout this subcategory, but the discharge flow rate from this source can be reduced to below 0.42 m³/Mg (100 gal/ton) of steel processed if recycle is practiced.

The third source of wastewater from continuous acid pickling operations is the spent pickle liquor bath, which has lower flow rates but higher contamination levels than the other two sources. Because of the small volume and high pollutant levels in this source, the waste is handled off site in more than 60% of the mills. Typical levels in the three sources are summarized in Table 6-49.

Wastewater characterization data for pickle rinse water for the combination acid pickling-batch type is shown in Tables 6-50 and 6-51. Wastewater characterization data of conventional pollutants for pickle rinse water in the combination acid pickling-continuous type is shown in Table 6-52. No toxic pollutant data are currently available for the continuous combination acid process.

TABLE 6-47. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE HOT COATING-GALVANIZING SUBCATEGORY [9]

|                            |          | Raw was | tewater   |         |          | Treated | effluent  |         | Augrag            |
|----------------------------|----------|---------|-----------|---------|----------|---------|-----------|---------|-------------------|
|                            | Numbei   | Conc    | entration | . μα/L  | Number   | Conc    | entration | . ua/L  | Averag<br>persen  |
| Toxic pollutant            | detected | Median  | Maximum   | Average | detected | Median  | Maximum   | Average | remova            |
| Metals and inorganics      |          |         |           |         |          |         |           |         |                   |
| Antimony                   | 1        | 3       |           |         | 1        | 3       |           |         | _                 |
| Arsenic                    | 3        | 14      | 40        | 21      | 3        | 10      | 0.1       | 9       | 51                |
| Beryllium                  | ĭ        | < 20    |           | 21      | 3        | < 20    | 10        | ٠ó.     |                   |
| Cadmium                    | 6        | 20      | 200       | 45      | 6        | 20      | 20        | 17      | 62                |
| Chromium                   | 6        | 15      | 10,200    | 2,113   | 6        | 35      | 200       | 77      | 96                |
| Copper                     | 6        | 90      | 2,500     | 487     | 6        | 30      | 170       | 52      | 90                |
| Cyanide                    | 6        | 12      | 19        | 12      | 6        | 10      | 21        | 9.      |                   |
| Lead                       | 6        | 310     |           |         |          |         |           |         | 8 18              |
| Selenium                   | 3        |         | 25,000    | 4,390   | 6        | 145     | 600       | 270     | 94 <sub>b</sub>   |
|                            |          | 10      | 10        | 8.4     | 3        | 10      | 12        | 11      | _p                |
| Silver                     | 6        | 20      | 2,500     | 65      | 6        | 20      | 250       | 70      |                   |
| Thallium                   | 1        | 50      |           |         | 1        | 50      |           |         | -                 |
| Zinc                       | 6        | 9,100   | 88,900    | 26,760  | 6        | 130     | 770       | 1,390   | 95                |
| Phenols                    |          |         |           |         |          |         |           |         |                   |
| 2-Chlorophenol             | 2        | 7       | 10        | 7       | 2        | 4       | 5         | 4       | 43<br>_a          |
| 2,4-Dichlorophenol         | 3        | 5       | 5         | 5       | 1        | 10      |           |         | _a                |
| 2,4-Dinitrophenol          | 1        | 5       |           |         | 1        | 5       |           |         |                   |
| 2-Nitrophenol              |          |         |           | NTD     | 2        | 5       | 5         | 5       | _b                |
| Pentachlorophenol          | 3        | 5       | 22        | 10      | 3        | 5       | 5         | 4       | 60                |
| Phenol                     | ĭ        | 5       | -~        |         | 2        | ă       | 10        | ā       | 60 <sup>P</sup>   |
| 2,4,6-Trichlorophenol      | 2        | ě       | 10        | 8       | ī        | 5       | 10        |         | 30                |
| 4,6-Dinitro-o-cresol       | -        | ŭ       | 10        | ND      | 2        | 10      | 20        | 10      | 38 <sup>P</sup>   |
| Aromatics                  |          |         |           |         |          |         |           |         |                   |
| Benzene                    | 3        | 5       | 11        | 11      | 4        | 6       | 10        | 7       | 36                |
| 1,3-Dichlorobenzene        | 1        | 144     |           |         |          |         |           | ND      |                   |
| Toluene                    | 2        | 8       | 10        | 8       | 3        | 10      | 10        | 8       | >99<br>b          |
| Polycyclic aromatics       |          |         |           |         |          |         |           |         |                   |
| Acenaphthene               | 1        | 5       |           |         | 5        | 5       | 5         | 5       | _                 |
| Acenaphthylene             | 1        | 10      |           |         | 5        | 5       | 10        | 7       | 30 <sub>b</sub>   |
| Anthracene                 | 1        | 5       |           |         | ì        | 7       |           |         | ,p                |
| Benzo(a)anthracene         | -        | -       |           | ND      | ĩ        | 5       |           |         | Ţt.               |
| Benzo(a)pyrene             |          |         |           | ND      | 4        | Š       | 10        | 6       | _h                |
| Chrysene                   |          |         |           | ND      | i        | 5       | 10        | v       | _b                |
| Fluoranthene               | 4        | 7       | 24        | 11      | 6        | 9       | 10        | 7       | 36                |
| Fluorene                   | 3        | 5       | 10        | 10      | 4        | 5       | 10        | 6       |                   |
|                            | 3        | 5       | 10        |         |          |         |           |         | 14 <sub>t</sub>   |
| Naphthalene                | ,        | _       |           | ND      | 2        | 10      | 10        | 10      |                   |
| Phenanthrene               | 1        | 5       |           |         | 1        | 7       |           |         | -                 |
| Pyrene                     | 5        | 5       | 21        | 12      | 5        | 7       | 10        | 7       | 42 <sub>1</sub>   |
| 2-Chloronaphthalene        |          |         |           |         | 2        | 4       | 5         | 4       |                   |
| Halogenated aliphatics     |          |         |           |         |          |         |           |         |                   |
| Chloroform                 | 6        | 13      | 106       | 37      | 6        | 12      | 48        | 18      | - 51              |
| Dichlorobromomethane       | 1        | 10      |           |         |          |         |           | ND      | >99               |
| 1,2-Trans-dichloroethylene | ī        | 5       |           |         |          |         |           | ND      | > 99 <sub>b</sub> |
| Methylene chloride         | ŝ        | 16      | 12        | 134     | 5        | 13      | 230       | 60      | t                 |
| Tetrachloroethylene        | 5        | 10      | 17        | 10      | 2        | 8       | 8         | 8       | 20                |
| 1,1,1-Trichloroethane      | 2        | 39      | 67        | 39      | 2        | 19      | 32        | 19      | 51                |
| Trichloroethylene          | ĺ        | 46      | 07        | 39      | 2        | 7       | 10        | 7       | 85                |

Note: Blanks indicate no data available.
Dashes indicate negligible removal.

<sup>&</sup>lt;sup>a</sup>Indicates water quality of central treatment effluent.

 $<sup>\</sup>boldsymbol{b}_{\mbox{Treated}}$  effluent concentration exceeds raw wastewater concentration.

TABLE 6-48. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE HOT COATING-TERNE PLATING SUBCATEGORY [9]

Average raw waste flow: 5.2 m³/Mg (1,239 lb/ton) Average gross effluent flow: 5.2 m³/Mg (1,239 lb/ton)

|                |                    | Raw wast        | ewater                                      |                    | Gross ef        | fluent                             | Average            |
|----------------|--------------------|-----------------|---------------------------------------------|--------------------|-----------------|------------------------------------|--------------------|
| Parameter      | Number<br>detected | Conce<br>Median | ntration, mg/L <sup>a</sup> Maximum Average | Number<br>detected | Conce<br>Median | ntration, mg/La<br>Maximum Average | percent<br>removal |
| Oil and grease | 1                  | 4               |                                             | 1                  | 4               |                                    | -                  |
| TSS            | 1                  | 11              |                                             | 1                  | 11              |                                    | -                  |
| pН             | 1                  | 6.5             |                                             | 1                  | 6.5             |                                    |                    |

Note: Dashes indicate negligible removal.

TABLE 6-49. TYPICAL CONTAMINANT LEVELS IN THE THREE WASTEWATER SOURCES IN COMBINATION ACID PICKLING OPERATIONS [8]

| Flow/parameter                             | Pickle rinse water,<br>batch type | Pickle rinse water,<br>continuous type | Fume hood<br>scrubber water | Spent pickle<br>liquor |
|--------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------|------------------------|
| Flow                                       |                                   |                                        |                             |                        |
| - normal, m <sup>2</sup> /Mg               | 2.1                               | 10.5                                   | 6.3                         | 0.063                  |
| - after recycle, m <sup>3</sup> /Mg        |                                   |                                        | 0.42                        |                        |
| Parameter concentration, mg/L <sup>a</sup> |                                   |                                        |                             |                        |
| TSS                                        | 1,300                             | 200                                    | 50                          | 150                    |
| Oil and grease                             | 12.5                              | 3.3                                    | 5                           | 2.0                    |
| Dissolved iron                             | 300                               | 80                                     | 190                         | 20,000                 |
| Fluoride <sup>b</sup>                      | 230                               | 75                                     | 2,000                       | 5,000                  |
| Dissolved chromium                         | 75                                | 20                                     | 40                          | 3,500                  |
| Dissolved nickel                           | 45                                | 15                                     | 20                          | 4,800                  |
| Nitrates <sup>C</sup>                      | 150                               |                                        |                             | 5,000                  |
| Copper                                     | 1.7                               | 0.21                                   |                             | 180                    |
| рĦ                                         | 2.5                               | 4.0                                    | 2.5                         | 1.2                    |

Note: Blanks indicate data not available.

TABLE 6-50. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE COMBINATION ACID PICKLING SUBCATEGORY, BATCH-TYPE SUBDIVISION [8]

Average raw waste flow. 1.2 m<sup>3</sup>/Mg Average gross effluent flow: 1.2 m<sup>3</sup>/Mg

|                |                    | Raw wast        | ewater               |                              |                    | Gross ef | fluent               |                              |                               |
|----------------|--------------------|-----------------|----------------------|------------------------------|--------------------|----------|----------------------|------------------------------|-------------------------------|
| Parameter      | Number<br>detected | Conce<br>Median | mtration,<br>Maximum | mg/L <sup>a</sup><br>Average | Number<br>detected | Conce    | ntration,<br>Maximum | mg/L <sup>a</sup><br>Average | Average<br>percent<br>removal |
| TSS            | 4                  | 80              | 460                  | 124                          | 4                  | 40       | 530                  | 159                          |                               |
| Oil and grease | 4                  | 6               | 10.5                 | 7.1                          | 4                  | 6.8      | 24                   | 11                           |                               |
| Fluoride       | 3                  | 37              | 52                   | 38                           | 3                  | 19       | 95                   | 41                           |                               |
| рН             | 4                  | 3.1             | 9                    | 4.5                          | 4                  | 9 9      | 11.9                 | 9.9                          |                               |

Note: Blanks indicate no data available.

Except pH values, given in pH units.

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

bFluorides are present in significant quantities only when hydrofluoric acids are used in the combination acid pickling process.

<sup>&</sup>lt;sup>C</sup>Nitrates are present in significant quantities only when nitric acids are used in the combination acid pickling process.

Except pH values, given in pH units.

b\_Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-51. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE COMBINATION ACID-BATCH-TYPE SUBDIVISION [8]

Raw wastewater flow:  $5.2 \text{ m}^3/\text{Mg}$  (1,239 lb/ton) Treated effluent flow:  $5.2 \text{ m}^3/\text{Mg}$  (1,239 lb/ton)

|                |          | Raw waste | water     |         |          | Treated eff | luent      |                   | Average |
|----------------|----------|-----------|-----------|---------|----------|-------------|------------|-------------------|---------|
|                | Number   | Conce     | ntration, | mg/La   | Number   |             | entration, | mg/L <sup>a</sup> | percent |
| Parameter      | detected | Median    | Maximum   | Average | detected | Median      | Maximum    | Average           | removal |
| Total iron     | 3        | 19        | 110       | 45      | 3        | 19          | 110        | 46                | ~p      |
| Total lead     | 3        | <0.06     | 0.2       | 0.1     | 3        | <0.06       | 0.25       | 0.12              | _b      |
| Oil and grease | 3        | 3         | 10        | 4.3     | 3        | 4.3         | 13         | 7.1               | _b      |
| TSS            | 3        | 11        | 48        | 22      | 3        | 11          | 51         | 24                | _b      |
| Total tin      | 3        | <2        | <2        | <2      | 3        | <2          | <2         | <2                | -       |
| pН             | 3        | 3.6 - 5.2 | 5.2 - 6.1 | 4.5     | 3        | 3.6 - 5.2   | 5.2 - 6.1  | 4.5               | -       |

Note: Dashes indicate negligible removal.

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

bTreated effluent concentration exceeds raw wastewater concentration.

TABLE 6-52. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR COMBINATION ACID PICKLING-CONTINUOUS-TYPE SUBDIVISION [8]

Average raw wastewater flow:  $6.6~\text{m}^3/\text{Mg}$  Average treated effluent flow:  $6.64~\text{m}^3/\text{Mg}$ 

|                |                    | Raw wast        | evater                                      |                    | Treated effluent |                                              |                 |  |  |
|----------------|--------------------|-----------------|---------------------------------------------|--------------------|------------------|----------------------------------------------|-----------------|--|--|
| Parameter      | Number<br>detected | Conce<br>Median | ntration, mg/L <sup>a</sup> Maximum Average | Number<br>detected | Conce            | entration, mg/L <sup>a</sup> Maximum Average | Percent removal |  |  |
| TSS            | 1                  | 14              |                                             | 1                  | 8                |                                              | 43              |  |  |
| Oil and grease | 1                  | 6.3             |                                             | 1                  | 4.3              |                                              | 32              |  |  |
| Fluoride       | 1                  | 180             |                                             | 1                  | 9.5              |                                              | 94              |  |  |
| Nitrate        | 1                  | 0.35            |                                             |                    |                  |                                              |                 |  |  |
| рĦ             | 1                  | 7.5             |                                             | 1                  | 7.9              |                                              |                 |  |  |

Note: Blanks indicate data not available.

\*\*Except pH values, given in pH units.

## II.6.2.19 Subcategory 23 - Scale Removal [9]

The major source of wastewater in the kolene operation is the discharge from the quench water tank and/or the rinse steps that follow the scale removal operation. The wastewaters generated in these steps contain significant levels of solids, and total and hexavalent chromium, and they are at elevated pH and temperature levels. The quality of the rinse water may vary greatly depending on the age of the salt solution in the kolene bath and the amount of carry-over into the rinse tanks. Wastewater characterization data of conventional and toxic pollutants for kolene scale removal mills is represented in Tables 6-53 and 6-54, respectively.

TABLE 6-53. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR KOLENE SCALE REMOVAL SUBDIVISION [9]

Average raw wastewater flow: 1.31  $\rm m^3/Mg$  Average treated effluent flow: 1.31  $\rm m^3/Mg$ 

|                        |          | Raw wast | evater    |         |          |        |           |         |         |
|------------------------|----------|----------|-----------|---------|----------|--------|-----------|---------|---------|
|                        | Number   |          | ntration, |         | Number   |        | ntration, |         | Percent |
| Parameter              | detected | Median   | Maximum   | Average | detected | Median | Maximum   | Average | removal |
| TSS                    | 4        | 440      | 1,200     | 340     | 4        | 71     | 190       | 88      | 74      |
| Hexavalent<br>chromium | 3        | 120      | 260       | 160     | 3        | 1      | 80        | 27      | 83      |
| На                     | 4        | 12.5     | 13        | 12.4    | 4        | 8.5    | 11.7      | 10.8    |         |
|                        |          |          |           |         | _        | _      |           |         |         |

Note: Blanks indicate data not available.

a includes batch and cintinuous processes.

Except pH values, given in pH units.

TABLE 6-54. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR KOLENE SCALE REMOVAL SUBDIVISION [9]

|                                   |          |         |           | Average |          |                     |         |         |            |
|-----------------------------------|----------|---------|-----------|---------|----------|---------------------|---------|---------|------------|
|                                   | Number   | Conce   | ntration, | µg/L    | Number   | Concentration, pg/L |         |         | percent    |
| Toxic pollutant                   | detected | Median  | Maximum   | Average | detected | Median              | Maximum | Average | removal    |
| Metals and inorganics             |          |         |           |         |          |                     |         |         |            |
| Antimony                          | 3        | 100     | 450       | 190     | 1        | 203                 |         |         |            |
| Cadmium                           | 2        | 80      | 140       | 80      | 1        | 20                  |         |         | 75         |
| Total chromium                    | 3        | 365,000 | 367,000   | 278,000 | 3        | 15,000              | 102,000 | 39,060  | <b>8</b> 5 |
| Copper                            | 3        | 133     | 4,750     | 1,645   | 3        | 50                  | 61      | 53.7    | 98         |
| Nickel                            | 3        | 835     | 37,500    | 13,034  | 3        | 835                 | 1,350   | 820     | 94         |
| Selenium                          | ì        | 27      |           |         |          |                     |         |         |            |
| Zinc                              | 3        | 80      | 179       | 93      | 3        | 34                  | 40      | 31.3    | 66         |
| Halogenated aliphatics Chloroform | 1        | 41      |           |         | 1        | 141                 |         |         | _&         |

Note: Blanks indicate data not available.
Dashes indicate negligible removal.

Because different salt solutions are used in the hydride scale removal process, the flow and wastewater characteristics from that process are significantly different than those from the kolene operations. The flow rate averages approximately 2.52 m³/Mg (600 gal/ton) of product. Generally, the same pollutants are found, but in different quantities, in the waste streams from both processes. In addition, cyanide is sometimes generated in the hydride process but not in the kolene process. Wastewater characterization data for conventional and toxic pollutants for the hydride process are presented in Tables 6-55 and 6-56, respectively.

TABLE 6-55. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE HYDRIDE SCALE REMOVAL SUBDIVISION [9]

Average raw waste flow:  $5.3~\text{m}^3/\text{Mg}$  Average gross effluent flow:  $5.3~\text{m}^3/\text{Mg}$ 

|                | Raw wastewater |        |           |         |          |        | Gross effluent |         |         |  |  |  |
|----------------|----------------|--------|-----------|---------|----------|--------|----------------|---------|---------|--|--|--|
|                | Number         | Conce  | ntration, | mg/La   | Number   |        | ntration,      | mg/La   | Percent |  |  |  |
| Parameter      | detected       | Median | Maximum   | Average | detected | Median | Maximum        | Average | removal |  |  |  |
| TSS            | 2              | 440    | 490       | 440     | 2        | 43     | 69             | 43      | 91      |  |  |  |
| Dissolved iron | 2              | 18     | 37        | 18      | 2        | 0.53   | 0.83           | 0.53    | 97      |  |  |  |
| рĦ             | 3              | 11.9   | 12.4      | 11.9    | 3        | 7.9    | 8.2            | 7.9     |         |  |  |  |

Note: Blanks indicate no data available.

 $<sup>^{\</sup>mathbf{a}}$ Treated effluent concentration exceeds raw wastewater concentration.

a Except pH values, given in pH units.

TABLE 6-56. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR HYDRIDE SCALE REMOVAL SUBDIVISION [9]

|                      |                            |        |         | Average |          |           |         |         |            |
|----------------------|----------------------------|--------|---------|---------|----------|-----------|---------|---------|------------|
|                      | Number Concentration, µg/L |        |         | Number  | Conce    | ntration, | µq/L    | percent |            |
| Toxic pollutant      | detected                   | Median | Maximum | Average | detected | Median    | Maximum | Average | removal    |
| etals and inorganics |                            |        |         |         |          |           |         |         |            |
| Antimony             | 2                          | 475    | 750     | 475     | 1        | 250       |         |         | 47         |
| Cadmium              | 1                          | 12     |         |         | 1        | 10        |         |         |            |
| Chromium             | 2                          | 8,400  | 15,300  | 8,400   | 2        | 24,000    | 47,800  | 24,000  | _ <b>a</b> |
| Copper               | 2                          | 593    | 670     | 593     | 2        | 50        | 50      | 50      | 35_        |
| Cyanide              | 0                          |        |         |         | 2        | 203       | 369     | 203     | _a         |
| Lead                 | 2                          | 675    | 1,100   | 675     | 2        | 50        | 50      | 50      | 93         |
| Nickel               | 2                          | 4,510  | 8,700   | 4,510   | 2        | 780       | 1,350   | 780     | 83         |
| Selenium             | 1                          | 35     |         |         | 0        |           |         | -       |            |
| Silver               | 1                          | 115    |         |         | 2        | 20        | 20      | 20      | 82         |
| Zinc                 | 2                          | 138    | 75      | 138     | 2        | 32.5      | 40      | 32.5    | 76         |

Note: Blanks indicate data not available.

## II.6.2.20 Subcategory 24-Continuous Alkaline Cleaning [9]

In the alkaline cleaning process, wastewaters are generated in the cleaning solution tanks and in the subsequent rinsing steps. The first potential source, the bath itself, contains a caustic solution that usually has a high level of sodium compounds and other constituents, depending on the type of solutions being used. Some mills have demonstrated the ability to reuse the same cleaning solution continuously, and they add fresh solution only to make up for evaporation losses. However, due to the buildup of contamination in the baths, most mills discharge the contents of the bath on a weekly or monthly basis, or as soon as the cleaning ability of the solution is impaired by the buildup of dissolved solids and oils.

Depending on the type of cleaning solutions used, the constituents in the wastewater from this process may vary considerably. The usual pollutant materials present in the waste streams from the process are suspended and dissolved solids, oils and greases that are sometimes in emulsions, and lesser amounts of dissolved metals. These pollutants are generated by the mills using the standard cleaning solution prepared with a caustic such as sodium hydroxide. However, some mills use solutions containing phosphates or permanganates that may contribute additional pollutants to the waste stream. Because of the nutrient potential of the phosphates, in some forms, the impact of this parameter on receiving bodies may be significant.

Because most alkaline cleaning baths are used to process a large amount of product, contamination can build up in the tank

<sup>\*</sup>Treated effluent concentration exceeds raw wastewater concentration.

to extremely high levels. Average levels of pollutants found in alkaline cleaning baths are shown below:

| Parameter      | Typical value |
|----------------|---------------|
| Alkalinity     | 1,000 mg/L    |
| Iron (total)   | 100 mg/L      |
| Oil and grease | 1,500  mg/L   |
| рН             | 12-13         |
| TDS            | 25,000 mg/L   |
| TSS            | 1,000 mg/L    |
| Temperature    | 70°F - 200°F  |

The rinse step(s) following the cleaning operation represent the second source of wastes from the alkaline cleaning process. After immersion of the product into the cleaning bath, rinsing is required to remove residual cleaning solution from the product and to cool the product if the cleaning bath was heated. Rinsing is usually performed in drip tanks or spray chambers, using either one tank or several depending on the degree of rinsing required. Although some mills use standing (or bath) rinse tanks (i.e., no continuous flow through the tanks), many mills use rinse tanks that have continuous water feed and overflows. This is done to keep the rinse water relatively free from contamination and at a low temperature, so that the product may be cooled if necessary. The quality of the wastewater being discharged from the rinse tanks can vary considerably depending on such factors as the type of rinsing used (i.e., whether rinsing is done on a batch or flow-through basis), the age of the solution in the cleaning tanks, and the amounts of cleaning solution carried over from the cleaning step.

Tables 6-57 and 6-58 present conventional and toxic pollutant data, respectively, for the alkaline cleaning subcategory.

TABLE 6-57. WASTEWATER CHARACTERIZATION OF CLASSICAL POLLUTANTS FOR THE ALKALINE CLEANING SUBCATEGORY [9]

Average raw waste flow: 1.49  $\rm{m}^3/Mg$  Average gross effluent flow: 1.49  $\rm{m}^3/Mg$ 

|                |                    | Raw wast        | ewater               |                              |                    |                 | Average              |                              |                    |
|----------------|--------------------|-----------------|----------------------|------------------------------|--------------------|-----------------|----------------------|------------------------------|--------------------|
| Parameter      | Number<br>detected | Conce<br>Median | mtration,<br>Maximum | mg/L <sup>b</sup><br>Average | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | mg/L <sup>b</sup><br>Average | percent<br>removal |
| TSS            | 3                  | 11              | 17                   | 7.2                          | 3                  | 16              | 92                   | 36                           | _c                 |
| Oil and grease | 3                  | 9               | 21                   | 13                           | 3                  | 4               | 4.5                  | 4.1                          | 68                 |
| Dissolved iron | 3                  | 0.34            | 0.70                 | 0.38                         | 3                  | 0.83            | 18                   | 6.3                          | _c                 |
| pН             | 3                  | 9               | 10.8                 | 9.2                          | 3                  | 7.5             | 7.6                  | 7.1                          |                    |

<sup>&</sup>lt;sup>a</sup>Includes batch and continuous cleaning.

Except pH values, given in pH units.

<sup>&</sup>lt;sup>C</sup>Effluent concentration exceeds raw wastewater concentration.

TABLE 6-58. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOUND IN THE CONTINUOUS ALKALINE CLEANING SUBCATEGORY [9]

|                                 |                    | Raw wast               | ewater               |                 | Treated effluent   |                 |                      |                 | Average            |
|---------------------------------|--------------------|------------------------|----------------------|-----------------|--------------------|-----------------|----------------------|-----------------|--------------------|
| Toxic pollutant                 | Number<br>detected | <u>Conce</u><br>Median | ntration,<br>Maximum | µg/L<br>Average | Number<br>detected | Conce<br>Median | ntration,<br>Maximum | µg/L<br>Average | percent<br>removal |
| Metals and inorganics<br>Nickel | 2                  | 20                     | 35                   | 20              | 2                  | 4,175           | 7,000                | 4,175           | _a                 |
| Phenols<br>Phenol               | 1                  | 24                     |                      |                 |                    |                 |                      |                 |                    |
| Aromatics                       |                    |                        |                      |                 |                    |                 |                      |                 |                    |
| 2,6~Dinitrotoluene              | 1                  | 47                     |                      |                 |                    |                 |                      |                 |                    |
| Fluoranthene                    | 1                  | 24                     |                      |                 |                    |                 |                      |                 |                    |
| Pyrene                          | 1                  | 32                     |                      |                 |                    |                 |                      |                 |                    |
| Halogenated aliphatics          |                    |                        |                      |                 |                    |                 |                      |                 |                    |
| Chloroform                      | 2                  | 48.                    | 5 52                 | 48.             | 5 3                | 64.             | 5 65                 | 64.             | .5 -4              |
| Tetrachloroethylene             | 2                  | 37                     | 49                   | 37              | 1                  | 52              |                      |                 | _a                 |

Note: Blanks indicate no data available.
Dashes indicate negligible removal.

#### II. 6.3 PLANT SPECIFIC DESCRIPTION [2-9]

The following paragraphs describe conventional and toxic pollutant data, and treatment methods at selected plants within each subcategory of the iron and steel industry. Plants were selected on the basis of completeness of sampling data and description of control methods. Only conventional data are presented for some subcategories due to the lack of toxic pollutant analyses. One plant was selected for presentation for each subcategory and subdivision. Selection was based on the availability of data and description of the treatment method used. Additional plant specific data are available in the draft contractor reports (See references).

#### II.6.3.1 Subcategory 1 - Byproduct Coke [2]

#### Plant 009

This plant uses a physical/chemical treatment system. Excess ammonia liquor from two coke plants is mixed and then passed through a gas flotation unit, a mixed media filtration unit, an activated carbon adsorption unit, and free and fixed ammonia strippers. Benzol plant wastewaters for both plants are mixed and passed through the gas flotation, mixed media filtration, and activated carbon adsorption units prior to disposal in coke quenching. Table 6-59 and Table 6-60 present plant specific conventional and toxic pollutant data, respectively, for Plant 009 in the byproduct coke subcategory.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-59. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR THE BYPRODUCT COKE SUB-CATEGORY (PLANT 009) [2]

Raw wastewater flow: 0.20 m<sup>3</sup>/Mg (47 gal/ton) Treated effluent flow: 0.40 m<sup>3</sup>/Mg (97 gal/ton)

|                | Concentrat        | ion, mg/La       |                    |
|----------------|-------------------|------------------|--------------------|
| Parameter      | Raw<br>wastewater | Treated effluent | Percent<br>removal |
| Ammonia        | 8,300             | 220              | 97                 |
| Oil and grease | 83                | 9                | 89                 |
| Total phenols  | 1,700             | 1                | 99                 |
| Sulfide        | 980               | 550              |                    |
| TSS            | 97                | 31               | 68                 |
| рН             | 8.6               | 9                |                    |

a Except pH values, given in pH units.

## II.6.3.2 Subcategory 2 - Beehive Coke [2]

### Plant E

Coke quench runoffs from this plant are treated in simple settling ponds with no provision for recycle. Table 6-61 presents conventional pollutant data for this plant.

## II.6.3.3 Subcategory 3 - Sintering [3]

#### Plant 019

Sinter plant wastewaters are treated by mixing them with lime to aid floc formation. The floc is settled in a Lamella thickener. Overflow is mixed with makeup water and recycled to scrubbers. Underflow is discharged to a blast furnace clarifier for further treatment.

Table 6-62 and Table 6-63 present plant specific conventional and toxic pollutant data, respectively, for Plant 019 in the sintering subcategory.

#### II. 6.3.4 Subcategory 4 - Blast Furnace-Iron [3]

#### Plant 028

Blast furnace gas cleaning system wastewaters are treated by aeration, neutralization with lime, chlorination, coagulation

TABLE 6-60. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR THE BYPRODUCT COKE SUBCATEGORY (PLANT 009) [2]

Average raw wastewater flow:  $1.49 \text{ m}^3/\text{Mg}$ Average treated effluent flow:  $1.49 \text{ m}^3/\text{Mg}$ 

|                |          | Raw was | tewater   |         |          |        | Average    |                   |         |
|----------------|----------|---------|-----------|---------|----------|--------|------------|-------------------|---------|
|                | Number   | Conce   | ntration, | mg/La   | Number   | Conce  | ntration,  | mg/L <sup>a</sup> | percent |
| Parameter      | detected | Median  | Maximum   | Average | detected | Median | Maximum    | Average           | removal |
| TSS            | 4        | 18      | 550       | 150     | 4        | 54     | 130        | 60                | 60      |
| Oil and grease | 3        | 5       | 21        | 10      | 4        | 4      | 5          | 3.6               | 64      |
| Dissolved iron | 3        | 0.10    | 0.30      | 14      | 4        | 9.4    | 2 <b>4</b> | 11                | 21      |
| pН             | 4        | 8.3     | 12        | 10      | 4        | 6.9    | 7.5        | 6.9               |         |

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

TABLE 6-61. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT E, BEEHIVE COKE SUBCATEGORY [2]

Raw wastewater flow: 2.05 m<sup>3</sup>/Mg Treated effluent flow: 2.05 m<sup>3</sup>/Mg

|                | Concentrati       | entration, mg/L <sup>a</sup> |                 |  |  |  |  |  |
|----------------|-------------------|------------------------------|-----------------|--|--|--|--|--|
| Parameter      | Raw<br>wastewater | Treated effluent             | Percent removal |  |  |  |  |  |
| Ammonia        | 0.33              | 0.24                         | 27              |  |  |  |  |  |
| Oil and grease | <5                | <5                           | -               |  |  |  |  |  |
| Total phenols  | 0.011             | 0.014                        | _b              |  |  |  |  |  |
| Sulfide        | <0.02             | <0.02                        | -               |  |  |  |  |  |
| TSS            | 170               | 36                           | 78              |  |  |  |  |  |
| рН             | 7.3               | 7.1                          |                 |  |  |  |  |  |

Note: Dashes indicate negligible removal.

TABLE 6-62. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 019, SINTERING SUBCATEGORY [3]

Raw wastewater flow: 1.25 m<sup>3</sup>/Mg Treated effluent flow: 0.11 m<sup>3</sup>/Mg

| ************************************** | Concentrat        | Concentration, mg/La |                 |  |  |  |  |  |
|----------------------------------------|-------------------|----------------------|-----------------|--|--|--|--|--|
| Parameter                              | Raw<br>wastewater | Treated<br>effluent  | Percent removal |  |  |  |  |  |
| TSS                                    | 810               | 15,000               | _b              |  |  |  |  |  |
| Oil and grease                         | 210               | 1,100                | _b              |  |  |  |  |  |
| рН                                     | 5.9               | 8.6                  |                 |  |  |  |  |  |
| Total phenols                          | 2,200             | 2,100                | 5               |  |  |  |  |  |

aExcept pH values, given in pH units.

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

bTreated effluent concentration exceeds raw wastewater concentration.

bTreated effluent concentration exceeds raw wastewater concentration.

TABLE 6-63. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT, 019 FOR THE SINTERING SUBCATEGORY [3]

|                                                                             | Concentrat      | ion, µg/L         |                      |
|-----------------------------------------------------------------------------|-----------------|-------------------|----------------------|
|                                                                             | Raw             | Treated           | Percent              |
| Toxic pollutant                                                             | wastewater      | effluent          | removal              |
| Metals and inorganics                                                       |                 |                   |                      |
| Cadmium                                                                     | 1,300           | 770               | 41                   |
| Chromium                                                                    | 20              | 10                | 50                   |
| Copper                                                                      | 600             | 270               | 55                   |
| Cyanide                                                                     | 260             | 160               | 38                   |
| Lead                                                                        | 5,300           | 800               | 85                   |
| Nickel                                                                      | 200             | 130               | 35                   |
| Silver                                                                      | 13              | 10                | 23                   |
| Zinc                                                                        | 8,700           | 5,000             | 43                   |
| Phthalates Butyl benzyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate | 85<br>124<br>20 | 990<br>420<br>490 | _a<br>_a<br>_a       |
|                                                                             |                 |                   |                      |
| Phenols Phenol                                                              | 1,000           | 990               | ז                    |
| 2,4-Dinitrophenol                                                           | ND              | ND                |                      |
| 2,4-binicrophenor                                                           | ND              | ND                | _                    |
| Polycylic aromatic hydrocarbons                                             |                 |                   | а                    |
| Benz(a)anthracene                                                           | ND              | 260               | _a                   |
| Benzo(a)pyrene                                                              | ND              | 190               | -a                   |
| Chrysene                                                                    | ND              | 53                | _a<br>_a<br>_a<br>_a |
| Fluoranthene                                                                | ND<br>7         | 860               | -a                   |
| Pyrene                                                                      | /               | 1,100             | _                    |

Note: Blanks indicate no data available Dashes indicate negligible removal.

with polymer, thickening, cooling and recycle. A portion of the recycle water is blown down and discharged to a municipal sanitary sewer.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

Tables 6-64 and 6-65 present plant specific classical and toxic pollutant data, respectively, for Plant 028 in the iron blast furnace subcategory.

TABLE 6-64. PLANT SPECIFIC CLASSICAL POLLUTANT DATA FOR PLANT 028, IRON BLAST FURNACE SUBCATEGORY [3]

Raw wastewater flow: 9.5 m<sup>3</sup>/Mg (2,300) Treated effluent flow: 0.78 m<sup>3</sup>/Mg (190)

|               | Concentrat        | ion, mg/L <sup>a</sup> |                 |
|---------------|-------------------|------------------------|-----------------|
| Parameter     | Raw<br>wastewater | Treated<br>effluent    | Percent removal |
| Ammonia-N     | 25                | 16                     | 36              |
| Fluoride      | 9                 | 7.9                    | 14              |
| Total phenols | 2.5               | 2.0                    | 80              |
| TSS           | 1,600             | 44                     | 97              |
| Sulfide       | 2.5               | 0.5                    | 80              |
| pН            | 10.2              | 8.8                    |                 |

aExcept pH values, given in pH units.

## II.6.3.5 Subcategory 5 - Blast Furnace-Ferromanganese [3]

#### Plant 025

Venturi scrubber wastewaters at this plant are treated via thickening and complete recycle to the scrubbers. Gas cooler wastewaters are treated in a similar manner. As a result, this plant achieves zero discharge.

Tables 6-66 and 6-67 presents plant specific classical and toxic pollutant data, respectively, for Plant 025 in the ferromanganese blast furnace subcategory.

# II. 6.3.6 Subcategory 6 - Basic Oxygen Furnace - Semiwet Air Pollution Control [4]

#### Plant U

Table 6-68 presents plant specific conventional pollutant data for Plant U in the basic oxygen furnace-semiwet air pollution control subcategory.

TABLE 6-65. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 028, THE IRON BLAST FURNACE SUBCATEGORY [3]

|                             | Concentrat | ion, µg/L |            |
|-----------------------------|------------|-----------|------------|
|                             | Raw        | Treated   | Percent    |
| Toxic pollutant             | wastewater | effluent  | removal    |
| Metals and inorganics       |            |           |            |
| Cadmium                     | 150        | 10        | 93         |
| Chromium                    | 630        | 9         | 99         |
| Copper                      | 1,200      | 30        | 98         |
| Lead                        | 23,000     | 83        | 99         |
| Nickel                      | 1,200      | 60        | 95         |
| Silver                      | 73         | 5         | 93         |
| Zinc                        | 30,000     | 330       | 99         |
| Phthalates                  |            | •         |            |
| Bis(2-ethylhexyl) phthalate | 3,200      | 11,000    | _a         |
| Butyl benzyl phthalate      | 340        | 9         | 97         |
| Di-n-butyl phthalate        | 540        | 180       | 67         |
| Diethyl phthalate           | ND         | ND        | <b>-</b> a |
| Dimethyl phthalate          | ND         | 3         | -          |
| Di-n-octyl phthalate        | 130        | 90        | 31         |
| Phenols                     |            |           |            |
| 2,4-Dichlorophenol          | 240        | 44        | 82         |
| 2,4-Dimethylphenol          | 3          | ND        | >99        |
| Phenol                      | 250        | 560       | -"         |
| Aromatics                   |            |           |            |
| Hexachlorobenzene           | ND         | ND        | -          |
| Polycylic aromatic          |            |           | <b>a</b>   |
| Benzo(a)pyrene              | ND         | 190       | - a        |
| Fluoranthene                | ND         | 23        | - a        |
| Flourene                    | ND         | 10        | -"         |
| Chrysene                    | ND         | ND        | <b>-</b> a |
| <u>N</u> aphthalene         | 8          | 15        | _a<br>_a   |
| Pyrene                      | ND         | 12        |            |
| Halogenated aliphatics      |            |           | a          |
| Chloroform                  | 10         | 32        | _~         |

Note: Blanks indicate no data available Dashes indicate negligible removal.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-66. PLANT SPECIFIC CLASSICAL POLLUTANT DATA FOR PLANT 025, FERROMANGANESE BLAST FURNACE SUBCATEGORY [3]

Raw wastewater flow: 48.1 m<sup>3</sup>/Mg (11,500 gal/ton) Treated effluent flow: 48.3 m<sup>3</sup>/Mg (11,600 gal/ton)

| Concentration, mg/La |                   |                  |                 |  |  |  |
|----------------------|-------------------|------------------|-----------------|--|--|--|
| Parameter            | Raw<br>wastewater | Treated effluent | Percent removal |  |  |  |
| Ammonia-N            | 710               | 680              | 4               |  |  |  |
| Manganese            | 500               | 53               | 89              |  |  |  |
| Total phenols        | 6.5               | 6.3              | 3               |  |  |  |
| Sulfide              | 130               |                  |                 |  |  |  |
| TSS                  | 4,200             | 410              | 90              |  |  |  |
| pН                   | 11.3              |                  |                 |  |  |  |

Note: Blanks indicate no data available.

TABLE 6-67. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 025, FERROMANGANESE BLAST FURNACE SUBCATEGORY [3]

|                                                             | Concentrat        |                     |                 |
|-------------------------------------------------------------|-------------------|---------------------|-----------------|
| Toxic pollutant                                             | Raw<br>wastewater | Treated<br>effluent | Percent removal |
| Metals and inorganics<br>Cyanide<br>Zinc                    | 690,000<br>30,000 | 710,000<br>26,000   | _a<br>13        |
| Aromatics<br>Benzene<br>Toluene                             | 21<br>17          | 10<br>4             | 52<br>76        |
| Polycylic aromatic<br>Napthalene                            | 39                | 24                  | 38              |
| Halogenated aliphatics<br>Chloroform<br>Tetrachloroethylene | 160<br>64         | 140<br>9            | 13<br>86        |

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

aExcept pH values, given in pH units.

TABLE 6-68. PLANT SPECIFIC POLLUTANT DATA FOR PLANT U, BASIC OXYGEN FURNACE - SEMIWET AIR POLLUTION CONTROL SUBCATEGORY [4]

Raw wastewater flow: 3.0 m<sup>3</sup>/Mg (730 gal/ton) Treated effluent flow: 3.0 m<sup>3</sup>/Mg (730 gal/ton)

|           | Concentrat        | ion, mg/La          |                    |
|-----------|-------------------|---------------------|--------------------|
| Parameter | Raw<br>wastewater | Treated<br>effluent | Percent<br>removal |
| TSS       | 420               | 38                  | 91                 |
| Fluoride  | 3.1               | 3.8                 | _p                 |
| pН        | 11.8              | 11.9                |                    |
| Copper    | 0.03              |                     |                    |
| Lead      | 1.0               | 1.0                 | -                  |
| Mercury   | 0.001             | 0.0027              | _b                 |
| Zinc      | 1.1               | 1.6                 | _b                 |

Note: Blanks indicate data not available.

Dashes indicate negligible removal.

This plant utilizes chemical coagulation, thickening, and recycle of all wastewaters generated by its gas cleaning system. Thirteen percent of the recycle is reused for slag processing. System equipment is comprised of thickener and vacuum filters for solids dewatering.

# II. 6.3.7 Subcategory 7 - Basic Oxygen Furnace- Wet Air Pollution Control [4]

#### Open Combustion

Plant 036. This plant uses primary solids separation (cyclones and classifiers). Classifier overflow is discharged to a thickener. Thickener overflow is recycled with 53% blowdown. Makeup water is added to the recycle. Blowdown is discharged to sewers. Thickener underflow is discharged to centrifuges for final dewatering.

#### Suppressed Combustion

Plant 032. This plant uses primary solids separation (hydroclones and classifiers). Overflow from primary solids

a Except pH values, given in pH units.

bTreated effluent concentration exceeds raw wastewater concentration.

separation is discharged to thickeners. Thickener overflow is recycled after pH adjustment with 6.1% blowdown. Blowdown is discharged to a clarifier, and this overflow is discharged to a central wastewater treatment system. Thickener and clarifier underflows are discharged to settling lagoons. The BOF system has a secondary ventilation scrubber system that also discharges effluents to the thickeners.

Table 6-69 and Table 6-70 present plant specific conventional and toxic pollutant data, respectively, for both Plant 036 and Plant 032 in the open combustion and suppressed combustion subdivisions of the basic oxygen furnace - wet air pollution control subcategory.

TABLE 6-69. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANTS 036 and 032, BASIC OXYGEN FURNACE - WET AIR POLLUTION CONTROL SUBCATEGORY, OPEN COMBUSTION AND SUPPRESSED COMBUSTION SUBDIVISIONS [4]

|                                            | Plant 036<br>(Open<br>combustion) | Plant 032 (Suppressed combustion) |
|--------------------------------------------|-----------------------------------|-----------------------------------|
| Raw wastewater flow, m <sup>3</sup> /Mg:   | 1.91                              | 6.16                              |
| Treated effluent flow, m <sup>3</sup> /Mg: | 1.02                              | 0.41                              |

|           |                   | Plant 036        |                    |                   | Plant 032        |                    |
|-----------|-------------------|------------------|--------------------|-------------------|------------------|--------------------|
|           | Concentration     | on, mg/La        |                    | Concentration     | on, mg/La        |                    |
| Parameter | Raw<br>wastewater | Treated effluent | Percent<br>removal | Raw<br>wastewater | Treated effluent | Percent<br>removal |
| TSS       | 7,100             | 1,200            | 82                 | 1,500             | 55               | 96                 |
| pН        | 11.3              | 12               |                    | 9.2               | 8.8              |                    |

aExcept pH values, given in pH values.

## II.6.3.8 Subcategory 8 - Open Hearth Furnace [4]

#### Semiwet Air Pollution Control

Plant 043. The gas cleaning system used at this plant is a semiwet unit whereby gases are temperature conditioned for precipitation cleaning. Each furnace has its own spray chamber and is manifolded to a central precipitator gas cleaning system. A common water treatment system services all of the spray chambers.

The water treatment system consists of a thickener for sedimentation. Thickener overflow is recycled with a 0.3% blowdown

TABLE 6-70. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR (PLANTS 036 AND 032), THE BASIC OXYGEN FURNACE - WET AIR POLLUTION CONTROL SUBCATEGORY, THE OPEN COMBUSTION AND SUPPRESSED COMBUSTION SUBDIVISIONS [4]

|                             |                   | Plant 036           |                    |                                 | Plant 032        |                    |
|-----------------------------|-------------------|---------------------|--------------------|---------------------------------|------------------|--------------------|
|                             |                   | n combustion        | n)                 | (Suppressed combustion          |                  |                    |
| Toxic Pollutants            | Raw<br>wastewater | Treated<br>effluent | Percent<br>removal | Concentrat<br>Raw<br>wastewater | Treated effluent | Percent<br>removal |
| Metals and inorganics       |                   |                     |                    |                                 |                  |                    |
| Cadmium                     | 170               | 10                  | 94                 | 98                              | 8                | 92                 |
| Chromium                    | 370               | 40                  | 43                 | 1,100                           | 13               | 99                 |
| Copper                      | 330               | 360                 | a.                 | 320                             | 9                | 97                 |
| Lead                        | 370               | 160                 | 57                 | 27,000                          | 470              | 98                 |
| Mercury                     | 34                | 0.1                 | 99                 |                                 |                  |                    |
| Nickel                      | 47                | 10                  | 79                 | 340                             | 10               | 97                 |
| Silver                      | 43                | 340                 | '_a                | 30                              | 15               | 50                 |
| Zinc                        | 2,000             | 710                 | 65                 | 8,400                           | 230              | 97                 |
| Phthalates                  |                   |                     |                    |                                 |                  |                    |
| Bis(2-ethylhexyl) phthalate | 10                | 110                 | _a                 | 60                              | 29               | 52 <sub>a</sub>    |
| Di-n-butyl phthalate        |                   |                     |                    | 7                               | 10               | -•                 |
| Halogenated aliphatics      |                   |                     |                    |                                 |                  |                    |
| Chloroform                  | 53                | 120                 | _ <b>a</b>         |                                 | 0.04             |                    |

Note: Blanks indicate no data available.
Dashes indicate negligible removal.

discharged to a final polishing lagoon. Thickener underflow is conveyed to a settling lagoon. The dry precipitation dust is slurried and evacuated from precipitation hoppers by pneumatic conveyors with water jet ejectors. The effluent is discharged to another thickener. The thickener overflow is recycled to the water jet ejectors, and the underflow is discharged to the same settling lagoons as are the spark box effluents.

Table 6-71 and Table 6-72 present plant specific conventional and toxic pollutant data, respectively, for Plant 043 in the semiwet air pollution control subdivision of the open hearth furnace subcategory.

#### Wet Air Pollution Control

Plant 042. This plant uses a manifolded, wet hydroscrubber, gas cleaning system by which all furnaces are exhausted through a common ductwork to three gas cleaning systems. Three central ducters of hydroscrubbers serve as the gas cleaning

Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-71. PLANT SPECIFIC CLASSICAL POLLUTANT DATA PLANT 043, OPEN HEARTH FURNACE SUBCATEGORY, SEMIWET AIR POLLUTION CONTROL SUBDIVISION [4]

Raw wastewater flow:  $4.9 \text{ m}^3/\text{Mg}$  (1,160 gal/ton) Treated effluent flow:  $0.02 \text{ m}^3/\text{Mg}$  (3.7 gal/ton)

|           | Concentrat        | ion, mg/La       |                    |
|-----------|-------------------|------------------|--------------------|
| Parameter | Raw<br>wastewater | Treated effluent | Percent<br>removal |
| TSS       | 510               | 30               | 94                 |
| Fluoride  | 260               | 32               | 88                 |
| Nitrate   | 10                | 9.1              | 9                  |
| рН        | 2.7               | 10.8             |                    |

aExcept pH values, given in pH units.

TABLE 6-72. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 043, THE OPEN HEARTH FURNACE SUBCATEGORY, THE SEMIWET AIR POLLUTION CONTROL SUBDIVISION [4]

|                       | Concentrat        |                  |                 |
|-----------------------|-------------------|------------------|-----------------|
| Toxic pollutant       | Raw<br>wastewater | Treated effluent | Percent removal |
| Metals and inorganics |                   |                  |                 |
| Chromium              | 80                | 10               | 78              |
| Copper                | 83                | 13               | 84              |
| Cyanide               | 39                | 6                | 85              |
| Nickel                | 53                | 9                | 83              |
| Zinc                  | 600               | 40               | 93              |
| Phthalates            | 21                | 10               | 52              |
| Di-n-butyl phthalate  | 21                | 10               | 32              |

Note: Blanks indicate data not available.
Dashes indicate negligible removal.

system, with each cluster capable of serving a number of furnaces through the manifolded ductwork. The hydroscrubber uses steam or air and a water jet ejector to pump and clean open hearth off gases. Waste heat boilers furnish the steam.

The joint water treatment system serves both the electric arc furnace shop and the open hearth shop. The effluent discharge waters are neutralized, flocculated with polymers, and then discharged to clarifiers for sedimentation. Clarifier overflow is recycled with a 71% blowdown that is discharged to final polishing lagoons. Clarifier underflow is dewatered in vacuum filters.

Table 6-73 presents plant specific classical pollutant data for Plant 042 in the wet air pollution control subdivision of the open hearth furnace subcategory.

TABLE 6-73. PLANT SPECIFIC POLLUTANT DATA FOR PLANT 042, OPEN HEARTH FURNACE SUBCATEGORY, WET AIR POLLUTION CONTROL SUBDIVISION [4]

Raw wastewater flow: 2.1 m<sup>3</sup>/Mg (510 gal/ton) Treated effluent flow: 1.5 m<sup>3</sup>/Mg (360 gal/ton)

|           | Concentrat:       | ion, mg/L <sup>a</sup> |                    |
|-----------|-------------------|------------------------|--------------------|
| Parameter | Raw<br>wastewater | Treated<br>effluent    | Percent<br>removal |
| TSS       | 1,500             | 15                     | 99                 |
| Fluoride  | 100               | 27                     | 73                 |
| Nitrate   | 640               | 450                    | 30                 |
| рН        | 6.7               | 9.1                    |                    |
| Zinc      | 390               | 4                      | 99                 |

aExcept pH values, given in pH units.

# II.6.3.9 Subcategory 9 - Electric Arc Furnace Semiwet Air Pollution Control [5]

Plant 059B The treatment system at this plant consists of a clarifier for sedimentation. Clarifier overflow is discharged, and the underflow is dewatered using vacuum filters. Table 6-74 and Table 6-75 present plant specific conventional and toxic pollutant data, respectively, for Plant 059B in the electric arc furnace - toxic pollutant data, respectively, for Plant 059B in the electric arc furnace - semiwet air pollution control subcategory.

# II.6.3.10 Subcategory 10 - Electric Arc Furnace-Wet Air Pollution Control [5]

#### Plant 052

Plant 052 uses neutralization, flocculation, and clarification to treat the wastewaters from the electric arc furnace (EAF) shop. The water treatment system also treats open-hearth shop wastewaters. The wastewaters from the steam hydroscrubber systems of the EAF and open-hearth shops discharge to a pump station and are pumped to a flocculation and neutralization tank which is followed by a clarifier. Thirty percent of the clarifier overflow is recycled to the gas cleaning system. Vacuum filters dewater the clarifier underflow. Blowdown is discharged to mill settling ponds.

Tables 6-76 and 6-77 present conventional and toxic pollutant data for plant 052 in this subcategory.

## II.6.3.11 Subcategory 11 - Vacuum Degassing [5]

#### Carbon Steel

Plant 062. This plant utilizes a combination treatment system for its vacuum degasser and continuous caster. Vacuum degasser wastewater is discharged to a hot well from which a sidestream is treated through a belt filter. The filter effluent and the remaining degasser wastewater is then discharged to a main hot well. From the hot well, the combined degasser and caster wastewaters are treated through a scale pit, sand filters, and cooling tower. A recycle is taken from the cooling tower back to the degasser. This system has zero discharge since the plant recirculates its water through a 7.6 x 10<sup>4</sup> m<sup>3</sup> (20 M gal) reservoir.

Tables 6-78 and 6-79 present conventional and toxic pollutant data for carbon steel vacuum degasser plant 065.

#### Specialty Steel

Plant 068. Vacuum degasser wastewater discharges to a hot well and is then treated via the mill central treatment facility. Treatment includes deep bed filters and clarifiers. A recycle is taken from the central treatment facility to the vacuum degasser.

Tables 6-80 and 6-81 present conventional and toxic pollutant data for specialty steel vacuum degasser plant 068.

TABLE 6-74. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 059B, ELECTRIC ARC FURNACE -SEMIWET AIR POLLUTION CONTROL SUBCATEGORY [5]

Raw wastewater flow: 0.33 m<sup>3</sup>/Mg
Treated effluent flow: 0.33 m<sup>3</sup>/Mg

|           | Concentration           | on, mg/L <sup>a</sup> |
|-----------|-------------------------|-----------------------|
|           | Daw                     | Treated               |
| Parameter | wastewater <sup>b</sup> | effluent              |
|           |                         |                       |
| TSS       |                         | 120                   |
| Fluoride  |                         | 64                    |
| рН        |                         | 8.1                   |
|           |                         |                       |

aExcept pH values, given in pH units.

TABLE 6-75. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 059B, ELECTRIC ARC FURNACE - SEMIWET AIR POLLUTION CONTROL SUBCATEGORY [5]

|                                                                                                                                              | Concentrat                     |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|
| Toxic pollutant                                                                                                                              | Raw<br>wastewater <sup>a</sup> | Treated effluent                |
| Metals and inorganics<br>Cyanide (EPA)<br>Zinc                                                                                               |                                | 3<br>450                        |
| Phthalates Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate Di-n-butyl phthalate Diethyl phthalate Dimethyl phthalate Di-n-octyl phthalate |                                | 31<br>21<br>7<br>51<br>ND<br>57 |
| Phenols<br>Phenol                                                                                                                            |                                | ND                              |
| Halogenated aliphatics<br>Chloroform<br>1,2-trans-Dichloroethane                                                                             |                                | 66<br>14                        |

Note: Blanks indicate data not available.

bA representative raw wastewater sample could not be obtained.

<sup>&</sup>lt;sup>a</sup>A raw wastewater sample could not be obtained.

TABLE 6-76. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 052, ELECTRIC ARC FURNACE-WET SUBCATEGORY [5]

Raw wastewater flow: 4.96 m<sup>3</sup>/Mg Treated effluent flow: 3.5 m<sup>3</sup>/Mg

|           | Concentrati       | ion, mg/L <sup>a</sup> |                    |
|-----------|-------------------|------------------------|--------------------|
| Parameter | Raw<br>wastewater | Treated<br>effluent    | Percent<br>removal |
| TSS       | 890               | 7                      | 99                 |
| Fluoride  | 30                | 27                     | 10                 |
| рН        | 9.0               | 7.8                    |                    |

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

TABLE 6-77. PLANT SPECIFIC DATA FOR PLANT 052, THE ELECTRIC ARC FURNACE-WET AIR POLLUTION CONTROL SUBCATEGORY [5]

|                                                                                    | Concentrat<br>Raw | ion, µg/L<br>Treated | Percent        |
|------------------------------------------------------------------------------------|-------------------|----------------------|----------------|
| Toxic pollutant                                                                    | wastewater        | effluent             | removal        |
| Metals and inorganics Zinc                                                         | 2,000             |                      |                |
| Phthalates Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate Di-n-butyl phthalate | 160<br>7<br>7     | 330<br>95<br>11      | _a<br>_a<br>35 |
| Phenols 4-Nitrophenol Pentachlorophenol                                            | ND<br>ND          | ND<br>ND             | -              |
| Aromatics<br>Benzene                                                               | 7                 | 5                    | 29             |
| Polycyclic aromatic hydrocarbons<br>Fluoranthene<br>Pyrene                         | ND<br>ND          | ND<br>ND             | =              |

Note: Blanks indicate data not available.
Dashes indicate negligible removal.

Date: 6/23/80

II.6.1-77

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-78. PLANT SPECIFIC POLLUTANT DATA FOR PLANT 062, VACUUM DEGASSER SUBCATEGORY, CARBON STEEL SUBDIVISION [5]

Raw wastewater flow: 0.73 m<sup>3</sup>/Mg (175 gal/ton) Treated effluent flow: 0.66 m<sup>3</sup>/Mg (159 gal/ton)

|           | Concentration, mg/La |                  |                 |  |
|-----------|----------------------|------------------|-----------------|--|
| Parameter | Raw<br>wastewater    | Treated effluent | Percent removal |  |
| TSS       | 30                   | 16               | 47              |  |
| Nitrate   | 2.8                  |                  |                 |  |
| Manganese | 2.0                  | 0.27             | 87              |  |
| pН        | 8.6                  | 7.9              |                 |  |

aExcept pH values, given in pH units.

TABLE 6-79. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 062, VACUUM DEGASSER SUBCATEGORY, THE CARBON STEEL SUBDIVISION [5]

|                        | Concentrat        | ion, µg/L        |                    |
|------------------------|-------------------|------------------|--------------------|
| Toxic pollutant        | Raw<br>wastewater | Treated effluent | Percent<br>removal |
| Metals and inorganics  |                   |                  |                    |
| Chromium               | 130               | 26               | 80                 |
| Copper                 | 90                | 207              | _a                 |
| Lead                   | 300               | 60               | 80                 |
| Nickel                 | 23                | 13               | 43                 |
| Zinc                   | 2,000             | 330              | 84                 |
| Phthalates             |                   |                  |                    |
| Butyl benzyl phthalate | 57                | 3                | 95                 |
| Di-n-butyl phthalate   | 43                | 7                | 84                 |

Note: Blanks indicate data not available.
Dashes indicate negligible removal.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-80. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 068, VACUUM DEGASSER SUBCATEGORY, SPECIALTY STEEL SUBDIVISION [5]

Raw wastewater flow: 2.8 m<sup>3</sup>/Mg Treated effluent flow: 2.8 m<sup>3</sup>/Mg

|           | Concentrat        | ion, mg/L <sup>a</sup> |                    |
|-----------|-------------------|------------------------|--------------------|
| Parameter | Raw<br>wastewater | Treated<br>effluent    | Percent<br>removal |
| TSS       | 81                | 39                     | 52                 |
| Nitrate   | 0.7               | 0.7                    | -                  |
| Manganese | 4,000             | 0.13                   | 99                 |
| pН        | 8.1               | 7.9                    |                    |

Note: Dashes indicate negligible removal.

TABLE 6-81. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 068, VACUUM DEGASSER SUBCATEGORY, THE SPECIALTY STEEL SUBDIVISION [5]

| Toxic pollutant                                                | Concentrat<br>Raw<br>wastewater | Treated | Percent removal |
|----------------------------------------------------------------|---------------------------------|---------|-----------------|
| Metals and inorganics Chromium Copper Lead Nickel              | 50                              | 19      | 62              |
|                                                                | 47                              | 23      | 51              |
|                                                                | 200                             | 90      | 55              |
|                                                                | 40                              | 30      | 75              |
| Zinc  Phthalates  Butyl benzyl phthalate  Di-n-butyl phthalate | 500                             | 300     | 40              |
|                                                                | ND                              | 53      | _a              |
|                                                                | ND                              | 500     | _a              |

Note: Blanks indicate data not available.
Dashes indicate negligible removal.

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

## II.6.3.12 Subcategory 12 - Continuous Casting [5]

#### Carbon Steel

Plant AF. The continuous caster at this plant is on a combination treatment system with a vacuum degasser. The treatment consists of a scale pit, high-flow-rate pressure filters, a cooling tower, and a recycle pump system. Blowdown is less than 2%.

Table 6-82 presents pollutant data for plant AF.

TABLE 6-82. PLANT SPECIFIC POLLUTANT DATA FOR PLANT AF, CONTINUOUS CASTING SUBCATEGORY, CARBON STEEL SUBDIVISION [5]

Raw wastewater flow:  $6.2 \text{ m}^3/\text{Mg}$  (1,500 gal/ton) Treated effluent flow:  $3.9 \text{ m}^3/\text{Mg}$  (930 gal/ton)

|                | Concentration, mg/La |                     |                    |
|----------------|----------------------|---------------------|--------------------|
| Parameter      | Raw<br>wastewater    | Treated<br>effluent | Percent<br>removal |
| TSS            | 89                   | 22                  | 80                 |
| Oil and grease | 3                    | <0.5                | 98                 |
| pН             | 6.6                  | 6.8                 |                    |
| Copper         | 37                   | 0.25                | 99                 |
| Zinc           | 2.6                  | 1.6                 | 38                 |

aExcept pH values, given in pH units.

## II.6.3.13 Subcategory 13 - Hot Forming-Primary [6]

#### Carbon Steel

Plant 083. The wastewater treatment system at plant 083 serves several hot forming mills and steelmaking facilities (BOF, electric arc furnace, etc.). The hot forming mills include primary, section, and plate rolling mills, (blooming mill, structural mill, plate mill, and rod mill). The blooming mill wastewaters are discharged to a main pump station after passing through primary scale pits with oil collection equipment. The rod mill has its own treatment equipment and discharges only a blowdown to the central treatment system. Other mill wastewaters discharge to the main pump station as well. The combined waste stream is then treated by flocculating clarifiers and is recycled through a cooling tower to the mills. Tables 6-83 and 6-84 present conventional and toxic pollutant data for this plant.

TABLE 6-83. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 083 (53 IN.), HOT FORMING-PRIMARY SUBCATEGORY, CARBON SUBDIVISION [6]

Raw wastewater flow: 1.3 m<sup>3</sup>/Mg Treated effluent flow: 0.05 m<sup>3</sup>/Mg

|                | Concentrat        | ion, mg/La          |                    |
|----------------|-------------------|---------------------|--------------------|
| Parameter      | Raw<br>wastewater | Treated<br>effluent | Percent<br>removal |
| TSS            | 240               | 9                   | 96                 |
| Oil and grease | 35                | 10                  | 71                 |
| рН             | 7.1               | 7.6                 |                    |

aExcept pH values, given in pH units.

TABLE 6-84. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 083 (53 IN.) FOR HOT FORMING-PRIMARY SUBCATEGORY, CARBON STEEL SUBDIVISION [6]

|                                   | Concentrat        | ion, µg/L        |                    |
|-----------------------------------|-------------------|------------------|--------------------|
| Toxic pollutant                   | Raw<br>wastewater | Treated effluent | Percent<br>removal |
| Metals and inorganics<br>Chromium | 120               | 130              | <b>_</b> a         |
| Copper                            | 530               | 40               | 92                 |
| Lead                              | 70                | 50               | 29                 |
| Nickel                            | 9                 | 20               | - a                |
| Zinc                              | 100               | 70               | 30                 |

Note: Blanks indicate no data available Dashes indicate negligible removal.

#### Specialty Steel

<u>Plant 082</u>. The wastewater treatment system at plant 082 serves a combination of hot forming mills consisting of primary and flat rolling mills (two slab mills, two plate mills) for carbon and specialty steel production. The wastewaters from the specialty, primary, and flat rolling mills are discharged to the waste treatment plant main collection sump after passing

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

through primary and combination secondary scale pits. The waste-waters from the main collection sump are discharged to settling basins which, in turn, discharge to filters. Filtered water is then discharged to the river. No recycle is employed.

Tables 6-85 and 6-86 present conventional and toxic pollutant data for this plant.

TABLE 6-85. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 082 (140 IN) HOT FORMING-PRIMARY-SPECIALTY STEEL [6]

Raw wastewater flow: 0.71 m<sup>3</sup>/Mg (170 gal/ton) Treated effluent flow: 0.71 m<sup>3</sup>/Mg (170 gal/ton)

|                | Concentrat        | ion, mg/L <sup>a</sup> |                    |
|----------------|-------------------|------------------------|--------------------|
| Parameter      | Raw<br>wastewater | Treated effluent       | Percent<br>removal |
| TSS            | 83                | 1                      | 99                 |
| Oil and grease | 75                | 12                     | 84                 |
| рН             | 7.8               | 7.5                    |                    |

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

TABLE 6-86. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 082 (140 IN), FOR HOT FORMING-PRIMARY SUBCATEGORY, SPECIALTY STEEL SUBDIVISION [6]

|                       | Concentrat        |                     |                    |
|-----------------------|-------------------|---------------------|--------------------|
| Toxic pollutant       | Raw<br>wastewater | Treated<br>effluent | Percent<br>removal |
| Metals and inorganics |                   |                     |                    |
| Chromium              | 50                | 30                  | <b>4</b> 0         |
| Copper                | 190               | 40                  | 79                 |
| Lead                  | <b>4</b> 00       | 50                  | 88                 |
| Nickel                | 570               | 50                  | 91                 |
| Zinc                  | 80                | 30                  | 6 <b>3</b>         |

## II.6.3.14 Subcategory 14 - Hot Forming-Section [6]

#### Carbon Steel

Plant 088. Bar mill wastewaters at plant 088 are first treated by two sets of scale pits. One set receives wastewaters from the hot saws, shears, stands, pull rods and bar rotators and then recycles them to the process. The second set of pits accepts bar mill stands effluent and skip cooling water. A partial recycle is taken from the scale pits back to the process. The remainder of the scale pit effluent is sent to a mix tank and then to a clarifier. Clarifier overflow is recycled to the bar mill. Three percent of the overflow is blowdown to the sewer. Clarifier underflow is discharged to an underflow pond.

Tables 6-87 and 6-88 present conventional and toxic pollutant data for hot forming-section-carbon steel plant 088.

TABLE 6-87. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 088 (14 IN. BAR MILL), HOT FORMING-SECTION SUBCATEGORY, CARBON SUBDIVISION [6]

Raw wastewater flow: 29 m<sup>3</sup>/Mg Treated effluent flow: 0.58 m<sup>3</sup>/Mg

| Concentration, mg/La |                   |                     |                    |  |
|----------------------|-------------------|---------------------|--------------------|--|
| Parameter            | Raw<br>wastewater | Treated<br>effluent | Percent<br>removal |  |
| TSS                  | 80                | 87                  | _p                 |  |
| Oil and grease       | 68                | 15                  | 79                 |  |
| рН                   | 7.5               | 7.5                 |                    |  |

aExcept pH values, given in pH units.

### Specialty Steel

Plant 081. The wastewater treatment system for plant 081 serves a combination of hot forming mills consisting of primary and section rolling. The wastewaters are discharged to a Lamella separator after passing through primary scale pits. The overflow from the Lamella is recycled to the primary and section rolling mills. A 7.1% blowdown from the Lamella is discharged to a central wastewater treatment system which also treats the wastewater from combination acid pickling, alkaline cleaning, kolene

bTreated effluent concentration exceeds raw wastewater concentration.

TABLE 6-88. PLANT SPECIFIC TOX POLLUTANT DATA FOR PLANT 088, (14 IN. BAR MILL) FOR THE HOT FORMING-SECTION SUBCATEGORY, CARBON STEEL SUBDIVISION [6]

| Concentrat        |                                     |                                                                                             |
|-------------------|-------------------------------------|---------------------------------------------------------------------------------------------|
| Raw<br>wastewater | Treated<br>effluent                 | Percent<br>removal                                                                          |
| 30                | 120                                 | _a                                                                                          |
| 75                |                                     | _a                                                                                          |
| 66                | 95                                  | _a<br>_a<br>_a                                                                              |
| 180               | 470                                 | _a                                                                                          |
| 1,200             | 2,200                               | <b>-</b> "                                                                                  |
|                   | Raw<br>wastewater<br>30<br>75<br>66 | wastewater     effluent       30     120       75     270       66     95       180     470 |

Note: Blanks indicate no data available Dashes indicate negligible removal.

and hydride descaling, continuous alkaline cleaning, and onesection rolling mill. Makeup water is added to the Lamella separator and section mills as required.

Tables 6-89 and 6-90 present conventional and toxic pollutant data for hot forming-section-specialty steel plant 081.

TABLE 6-89. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 081 (NO. 4 HOT MILL), HOT FORMING-SECTION SUBCATEGORY, SPECIALTY STEEL SUBDIVISION [6]

Raw wastewater flow:  $34 \text{ m}^3/\text{Mg}$  (8,200 gal/ton) Treated effluent flow:  $1.4 \text{ m}^3/\text{Mg}$  (340 gal/ton)

| Concentration, mg/La |                   |                     |                    |  |
|----------------------|-------------------|---------------------|--------------------|--|
| Parameter            | Raw<br>wastewater | Treated<br>effluent | Percent<br>removal |  |
| TSS                  | 84                | 23                  | 73                 |  |
| Oil and grease       | 250               | 8                   | 97                 |  |
| рН                   | 7.3               | 7.9                 |                    |  |

aExcept pH values, given in pH units.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-90. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 081 (NO. 4 HOT MILL), HOT FORMING-SECTION SUBCATEGORY, SPECIALTY STEEL SUBDIVISION [6]

|                       | Concentrat        |                  |                    |
|-----------------------|-------------------|------------------|--------------------|
| Toxic pollutant       | Raw<br>wastewater | Treated effluent | Percent<br>removal |
| Metals and inorganics |                   | •                |                    |
| Chromium              | 90                | 70               | 22                 |
| Copper                | 130               | 75               | 42                 |
| Lead                  | 50                | 50               | _                  |
| Nickel                | 830               | 490              | 41                 |
| Zinc                  | 85                | 45               | 47                 |

Note: Blanks indicate no data available

Dashes indicate negligible removal.

## II.6.3.15 Subcategory 15 - Hot Forming-Flat [6]

#### Plate Mills

Plant 082. Wastewaters from the 3.56 m (140-inch) mill go to primary scale pits and then to a combined secondary scale pit. Overflow from the secondary scale pits is discharged to three common settling basins set in parallel. The effluent from the settling basin is then passed through media filters. Filtered water is then discharged to a receiving stream. Filter backwash is taken to a backwash settling basin which discharges to the three parallel settling basins.

Tables 6-91 and 6-92 present conventional and toxic pollutant data for plant 082 of this subdivision.

#### Hot Strip and Sheet Mills

Plant 087. Plant 087 is a central treatment system serving a merchant mill, butt weld pipe mill, blooming mill, hot scarfer and a 1.12 m (44-inch) hot strip mill. Wastewaters from the various sources pass first through their individual scale pits equipped with baffler and oil removal equipment and are then pumped to clarifiers. Coagulant aids are added at the clarifier inlet to assist in settling. Clarifier overflow is discharged to a receiving stream as the underflow is processed by vacuum filters.

Table 6-93 presents conventional and toxic pollutant data for plant 087 of this subdivision.

TABLE 6-91. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 082 (140 IN. MILL), HOT FORMING-FLAT SUBCATEGORY, PLATE MILL SUBDIVISION [6]

Raw wastewater flow: 0.50 m<sup>3</sup>/Mg Treated effluent flow: 0.50 m<sup>3</sup>/Mg

| Concentration, mg/La |                   |                     |                    |  |  |
|----------------------|-------------------|---------------------|--------------------|--|--|
| Parameter            | Raw<br>wastewater | Treated<br>effluent | Percent<br>removal |  |  |
| TSS                  | 67                | 1                   | 99                 |  |  |
| Oil and grease       | 46                | 10                  | 78                 |  |  |
| рН                   | 8.9               | 7.4                 |                    |  |  |

a Except pH values, given in pH units.

TABLE 6-92. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 082 (140 IN. MILL) HOT FORMING-FLAT SUBCATEGORY, PLATE MILL SUBDIVISION [6]

|                       | Concentrat        |                       |                    |
|-----------------------|-------------------|-----------------------|--------------------|
| Toxic pollutant       | Raw<br>wastewater | Effluent <sup>a</sup> | Percent<br>removal |
| Metals and inorganics |                   |                       | ı.                 |
| Chromium              | 60                | 1,000                 | _D                 |
| Copper                | 160               | 40                    | 75                 |
| Lead                  | 260               | <b>4</b> 0            | <b>h</b>           |
| Nickel                | 37                | 40                    | <b>_</b> b         |
| Zinc                  | 80                | 30                    | 63                 |

Note: Blanks indicate no data available Dashes indicate negligible removal.

aEffluent from primary scale pit.

bTreated effluent concentration exceeds raw wastewater concentration.

TABLE 6-93. PLANT SPECIFIC POLLUTANT DATA FOR PLANT 087 (44 IN. HOT STRIP), HOT FORMING-FLAT SUB-CATEGORY, HOT STRIP AND SHEET SUBDIVISION [6]

Raw wastewater flow: 20.1 m<sup>3</sup>/Mg Treated effluent flow: 20.1 m<sup>3</sup>/Mg

|                | Concentration, mg/La |                  |                 |  |  |
|----------------|----------------------|------------------|-----------------|--|--|
| Parameter      | Raw<br>wastewater    | Treated effluent | Percent removal |  |  |
| TSS            | 57                   | 38               | 33              |  |  |
| Oil and grease | 6                    | 4                | 33              |  |  |
| рН             | 7.6                  | 7.6              |                 |  |  |
| Chromium       | 170                  | 170              | -               |  |  |
| Copper         | 45                   | 35               | 22              |  |  |
| Zinc           | 200                  | 210              | _b              |  |  |

Note: Blanks indicate not determined.

Dashes indicate negligible removal.

### II.6.3.16 Subcategory 16 - Pipe and Tube [6, 7]

#### Hot Forming

Weld Mill (Plant 087). This mill practices once-through treatment and utilizes a primary scale pit that discharges to a central clarification water treatment facility. The primary scale pit overflow waters are mixed with other wastewater from a merchant mill, hot strip mill, and blooming mill hot scarfer before treatment in the clarifier. Lime and polymer are added as coagulant aids. Clarifier overflow is discharged to a receiving stream, while the clarifier underflow is dewater through vacuum filters.

Table 6-94 presents conventional and toxic pollutant data respectively, for plant 087.

aExcept pH values, given in pH units.

<sup>&</sup>lt;sup>b</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-94. PLANT SPECIFIC POLLUTANT DATA FOR PLANT 087 (WELD MILL), TUBE AND PIPE SUBCATEGORY, HOT FORMING SUBDIVISION [6]

Raw wastewater flow: 34 m<sup>3</sup>/Mg Treated effluent flow: 34 m<sup>3</sup>/Mg

|                | Concentrat        | ion, mg/L <sup>a</sup> |                    |
|----------------|-------------------|------------------------|--------------------|
| Parameter      | Raw<br>wastewater | Treated<br>effluent    | Percent<br>removal |
| rarameter      | Wastewater        | ellidenc               | Temovai            |
| TSS            | 66                | 38                     | 42                 |
| Oil and grease | 5                 | 4                      | 20                 |
| pН             | 7.4               | 7.5                    |                    |
| Chromium       | 240               | 43                     | 82                 |
| Copper         | 65                | 31                     | 52                 |
| Lead           | 800               |                        |                    |
| Nickel         | 500               |                        |                    |
| Zinc           | 250               | 21                     | 92                 |

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

#### Cold Forming

<u>Plant HH-2</u>. Tubing mill wastewaters discharge to a settling and cooling basin which receives wastes from other mill operations such as open hearths and rolling mills. Overflow from this settling basin flows to a similar basin and then to oilskimming facilities. The effluent is then pumped to a large main reservoir from which all of the water is recycled. However, if the reservoir is full, the treated effluent, after oil skimming, is discharged to a receiving stream.

Table 6-95 presents conventional pollutant data for cold-forming plant HH-2. No toxic pollutant data are currently available for this subdivision.

#### II.6.3.17 Subcategory 17 - Sulfuric Acid Pickling [8]

#### Continuous Pickling

Plant 094. Spent concentrates from this plant are hauled off-site. Rinses are combined with all other finishing mill wastewaters, equalized, skimmed, treated with lime and polymers, and clarified with thickening and centrifugation of underflows. These treated effluents are discharged.

TABLE 6-95. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT HH-2, PIPE AND TUBE SUBCATEGORY, COLD FORMING SUBDIVISION [7]

Raw wastewater flow:  $24.2 \text{ m}^3/\text{Mg}$ Treated effluent flow:  $0 \text{ m}^3/\text{Mg}$ 

|                | Concentration, mg/La |                     |                    |  |
|----------------|----------------------|---------------------|--------------------|--|
| Parameter      | Raw<br>wastewater    | Treated<br>effluent | Percent<br>removal |  |
| TSS            | 23                   | 4.3                 | 81                 |  |
| Oil and grease | 63                   | 2                   | 33                 |  |
| рН             | 5.8                  | 6.2                 |                    |  |

Note: Blanks indicate no data available.

Tables 6-96 and 6-97 present conventional and toxic pollutant data for continuous sulfuric acid pickling plant 094.

TABLE 6-96. PLANT SPECIFIC CLASSICAL POLLUTANT DATA FOR PLANT 094, SULFURIC ACID PICKLING SUBCATEGORY, CONTINUOUS PICKLING SUBDIVISION [8]

Rinsewater flow: 1.5 m<sup>3</sup>/Mg Carbon treated wastewater: 1.5 m<sup>3</sup>/Mg

|                | Concentrat |                                  |                    |
|----------------|------------|----------------------------------|--------------------|
| Pollutant      | Rinsewater | Carbon-<br>treated<br>wastewater | Percent<br>removal |
| TSS            | 38         | 6                                | 84                 |
| Oil and grease | 9          | 6                                | 33                 |
| Dissolved iron | 40         | 0.05                             | 99                 |
| рН             | 5.7        | 7.8                              |                    |

aExcept pH values, given in pH units.

#### Batch Pickling

Plant 092. Treatment at this facility includes contract hauling of major portions of the spent concentrates, blending

aExcept pH values, given in pH units.

TABLE 6-97. PLANT SPECIFIC TOXIC POLLUTANTS FOR PLANT 094, FOUND IN THE SULFURIC ACID PICKLING SUBCATEGORY, CONTINUOUS PICKLING SUBDIVISION [8]

|                             |            | centration, |            |
|-----------------------------|------------|-------------|------------|
|                             | Sheet      | Strip       | Treated    |
| Toxic pollutant             | pickling   | pickling    | wastewater |
| Metals and inorganics       |            |             |            |
| Arsenic                     | <10        | <10         | <10        |
| Cadmium                     | <10        | <10         | <10        |
| Chromium                    | <10        | 50          | 20         |
| Copper                      | <b>5</b> 5 | 140         | <10        |
| Cyanide                     | 11         | 11          | 8          |
| Lead                        | 40         | <10         | <10        |
| Nickel                      | 60         | 11          | 40         |
| Silver                      | <10        | <10         | <10        |
| Zinc                        | 40         | 90          | 70         |
| Phthalates                  |            |             |            |
| Bis(2-ethylhexyl) phthalate | <10        | <10         | 62         |
| Butyl benzyl phthalate      | ND         | <10         | ND         |
| Di-n-butyl phthalate        | <10        | <10         | <10        |
| Diethyl phthalate           | ND         | 34          | <10        |
| Dimetĥyl phthalate          | ND         | <10         | <10        |
| Aromatics                   |            |             |            |
| Benzene                     | <10        | ND          | <10        |
| Polycyclic aromatics        |            |             |            |
| Acenaphthylene              | ND         | <10         | <10        |
| Fluoranthene                | ND         | ND          | <10        |
| Naphthalene                 | ND         | <10         | <10        |
| Pyrene                      | <10        | <10         | 10         |
| Halogenated aliphatics      |            |             |            |
| Chloroform                  | <10        | <10         | 19         |
| Methylene chloride          | 170        | <10         | 230        |

Note: Blanks indicate no data available.

and equalization of some concentrates and all rinses, and treatment via a central facility, which includes chromium reduction, neutralization with lime, coagulation with polymer, sedimentation with a clarifier, thickening and vacuum filtration of underflows, and oil skimming.

Tables 6-98 and 6-99 present conventional and toxic pollutant data for batch-type sulfuric acid pickling plant 092.

TABLE 6-98. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 092, SULFURIC ACID PICKLING SUBCATEGORY, BATCH PICKLING SUBDIVISION [8]

Concentrate flow: 0.061 m<sup>3</sup>/Mg Rinsewater flow: 1.4 m<sup>3</sup>/Mg

|                | Concentration, mg/La |            |                              |  |
|----------------|----------------------|------------|------------------------------|--|
| Pollutant      | Spent<br>concentrate | Rinsewater | Rinse<br>process<br>effluent |  |
| TSS            | 310                  | 360        | 29                           |  |
| Oil and grease | 17                   | 43         | 9                            |  |
| рН             | <1                   | 6.9        | 8.3                          |  |
| Dissolved iron | 39,000               | 52         | 0.45                         |  |

aExcept pH values, given in pH units.

### II.6.3.18 Subcategory 18 - Hydrochloric Acid Pickling [8]

## Continuous Strip Pickling

Plant 091. This plant pickles wire in a continuous mode. Spent pickle liquor and rinses are neutralized with lime, oxidized, clarified, and filtered through pressure sand filters prior to discharge to a receiving stream. Clarifier sludge is dewatered by vacuum filtration prior to disposal.

Tables 6-100 and 6-101 present conbentional and toxic pollutant data respectively, for this plant.

#### Batch Pickling

Plant U-2. The waste pickle liquors and rinse waters from the batch pickling operations are neutralized in a batch treatment tank by sodium carbonate prior to sanitary sewer discharge.

Table 6-102 presents conventional pollutant data for the above batch hydrochloric acid pickling plant.

## II.6.3.19 Subcategory 19 - Cold Rolling [7]

#### Recirculating Mills

Plant 101. The cold mill wastes at this plant originate at twelve different cold mill operations. All wastes are collected in a holding tank and are treated in an ultrafiltration

TABLE 6-99. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT, 092, FOUND IN THE SULFURIC ACID PICKLING SUBCATEGORY, BATCH SUBDIVISION [8]

Concentration, µg/L Raw rinse Process Percent Toxic pollutant wastewater effluent removal Metals and inorganics 10 74 39 Arsenic 10 99 Cadmium 4,000 99 Chromium 16,300 360 95<sub>a</sub> 740 40 Copper 38 39 Cyanide \_a <10 Lead ND 1,400 76<sub>a</sub> Nickel 330 ND <10 Silver 99 3,900 12 Zinc Phthalates 97 Bis(2-ethylhexyl) phthalate 1,100 26 99 <10 ND Butyl benzyl phthalate 99 Di-n-butyl phthalate 54 ND Diethyl phthalate ND ND ND Dimethyl phthalate ND Phenols 2,4-Dichlorophenol ND ND 99 26 ND 2,4-Dinitrophenol ND ND 2-Nitrophenol 99 4-Nitrophenol 39 ND ND Phenol ND 99 11 ND 2,4,6-Trichlorophenol p-Chloro-m-cresol ND ND 4,6-Dinitro-o-cresol ND ND Polycyclic aromatics ND ND Acenapthene ND Acenaphthylene ND ND ND Benzo(a)pyrene Chrysene ND ND Fluoranthene ND ND ND Fluorene ND ND Pyrene ND Halogenated aliphatics \_a Chloroform ND 10 Dichlorobromomethane <10 ND 99 59 27 11 Methylene chloride Tetrachloroethylene ND ND ND ND Trichloroethylene

aProcess effluent concentration exceeds rinse water concentration.

TABLE 6-100. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 091, HYDROCHLORIC ACID PICKLING SUBCATEGORY, CONTINUOUS WIRE PICKLING SUBDIVISION [8]

|                               | Concentrate | Rinses |
|-------------------------------|-------------|--------|
| Raw wastewater flow, m3/Mg:   | 0.076       | 1.3    |
| Treated effluent flow, m3/Mg: | 0.076       | 1.3    |

|                | Concentrate          |          | Rinses             |                      |          |                    |
|----------------|----------------------|----------|--------------------|----------------------|----------|--------------------|
|                | Concentration, mg/La |          |                    | Concentration, mg/La |          |                    |
| Parameter      | Raw<br>wastewater    | Effluent | Percent<br>removal | Raw<br>wastewater    | Effluent | Percent<br>removal |
| Dissolved iron | 56,000               | 21,000   | 63                 | _b                   | 0.3      | _c                 |
| TSS            | 2,900                | 9.8      | >99                | 24,000               | 0.83     | >99                |
| Oil and grease | 1                    | 1.7      | _d                 | _b                   | 0.51     | -c                 |
| рН             | <1                   | 8.3-8.5  | NA                 |                      | 8.3-8.5  |                    |

aExcept pH values, given in pH values.

TABLE 6-101. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 091, THE HYDROCHLORIC ACID PICKLING SUBCATEGORY, CONTINUOUS STRIP PICKLING SUBDIVISION [8]

|                        | Concentration, µg/L |         |            |  |  |  |
|------------------------|---------------------|---------|------------|--|--|--|
| Toxic pollutant        | Concentrate         | Rinse   | Discharge  |  |  |  |
| Metals and inorganics  |                     |         |            |  |  |  |
| Cadmium                | 260                 | 30      | 20         |  |  |  |
| Chromium               | 37,000              | 1,700   | 40         |  |  |  |
| Copper                 | 22,000              | 610     | 30         |  |  |  |
| Cyanide                | 8                   | 58      | 21         |  |  |  |
| Lead                   | 1,600,000           | 24,000  | 190        |  |  |  |
| Nickel                 | 22,000              | 610     | 30         |  |  |  |
| Zinc                   | 61,000              | 290,000 | 130        |  |  |  |
| Phenols                | _                   |         | 10         |  |  |  |
| 2,4-Dichlorophenol     | 5                   | . 5     | ND<br>ND   |  |  |  |
| 4,6-Dinitrophenol      | 5                   | ND      | ND<br>ND   |  |  |  |
| 2,4-Dimethylphenol     | 5<br>5              | 5<br>ND | ND<br>5    |  |  |  |
| Pentachlorophenol      |                     | 10      | ND.        |  |  |  |
| Phenol                 | ND<br>5             | ND      | ND         |  |  |  |
| 2,4,6-Trichlorophenol  | <b>N</b> Q          | 70      | ИD         |  |  |  |
| 4,6-Dinitro-o-cresol   | עא                  | 76      | ND         |  |  |  |
| Aromatics              |                     | ND      | 5          |  |  |  |
| Benzene                | MD                  | MD      | э          |  |  |  |
| Polycyclic aromatics   | _                   | _       | _          |  |  |  |
| Acenaphthene           | 5                   | 5       | 5          |  |  |  |
| Acenaphthylene         | .5                  | 5       | 5<br>ND    |  |  |  |
| Anthracene             | иD                  | 5       | 10         |  |  |  |
| Benzo(a)pyrene         | 5                   | 5<br>5  | ND         |  |  |  |
| Chrysene               | .5                  | 11      | 10         |  |  |  |
| Fluoranthene           | 10                  |         | ND         |  |  |  |
| Fluorene               | ND                  | 5       |            |  |  |  |
| Naphthalene            | סוא                 | 5       | NTD<br>NTD |  |  |  |
| Phenanthrene           | ND                  | .5      | 10         |  |  |  |
| Pyrene                 | 5                   | 12      | 10         |  |  |  |
| Halogenated aliphatics | **                  | •       | _          |  |  |  |
| Chloroform             | 10                  | , 8     | .5         |  |  |  |
| Methylene chloride     | 10                  | 15      | 21         |  |  |  |
| Tetrachloroethylene    | _5                  | . 8     | ND         |  |  |  |
| Trichloroethylene      | ND                  | 65      | 10         |  |  |  |

Note: Blanks indicate no data available.

bBlanking results in negative concentration.

CUnable to perform calculation

 $<sup>^{\</sup>rm d}_{\rm Gross}$  effluent exceeds raw waste concentrate.

TABLE 6-102. PLANT SPECIFIC POLLUTANT DATA FOR PLANT U-2, HYDROCHLORIC ACID PICKLING SUBCATEGORY, BATCH PICKLING SUBDIVISION [8]

|                                                                                        | Concentrate | Rinses       |
|----------------------------------------------------------------------------------------|-------------|--------------|
| Raw wastewater flow, m <sup>3</sup> /Mg:<br>Treated effluent flow, m <sup>3</sup> /Mg: | 0.027       | 0.39<br>0.39 |

|                | Concentrate <sup>D</sup> Concentration, mg/L <sup>a</sup> | Rinses Concentration, mg/L <sup>a</sup> |                      | <del></del>        |
|----------------|-----------------------------------------------------------|-----------------------------------------|----------------------|--------------------|
| Parameter      | Raw<br>wastewater                                         | Raw<br>wastewater                       | Treated b effluent b | Percent<br>removal |
| Dissolved iron | 77,000                                                    | 190                                     | 0.5                  | 99                 |
| TSS            | 400                                                       | 0                                       | 390                  | _c                 |
| Oil and grease |                                                           | 3                                       | 5                    | <b>-</b> c         |
| рН             | <1                                                        | 1.8                                     | 8.5                  |                    |

Note: Blanks indicates data not available.

unit on a batch basis. The discharge from this treatment goes to a POTW. There is no other discharge from this plant.

Tables 6-103 and 6-104 present conventional and toxic pollutant data for the raw and treated wastewater stream at this plant.

TABLE 6-103. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 101, COLD ROLLING SUBCATEGORY, RECIRCULATING MILL SUBDIVISION [7]

Raw wastewater flow: 0.078 m<sup>3</sup>/Mg
Treated effluent flow: 0.078 m<sup>3</sup>/Mg

|                | Concentrat        | ion, mg/L <sup>a</sup> |                 |
|----------------|-------------------|------------------------|-----------------|
| Parameter      | Raw<br>wastewater | Treated<br>effluent    | Percent removal |
| TSS            | 2,200             | 200                    | 91              |
| Oil and grease | 82,000            | 140                    | 99              |
| Dissolved iron | 34                | 810                    | <b>-</b> b      |
| рH             | 6.5               | 4.1                    |                 |

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

Date: 6/23/80

Except pH values, given in pH units.

bEffluent is contractor hauled.

<sup>&</sup>lt;sup>C</sup>Effluent concentration exceeds raw influent concentration.

bTreated effluent concentration exceeds raw wastewater concentration.

TABLE 6-104. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 101, COLD ROLLING SUBCATE-GORY, RECIRCULATING MILL SUBDIVISION [7]

|                             | Concentration, µg/L |          |         |
|-----------------------------|---------------------|----------|---------|
|                             | Raw                 | Treated  | Percent |
| Toxic pollutant             | wastewater          | effluent | removal |
| Metals and inorganics       |                     |          | •       |
| Antimony                    | 150                 | 300      | _a      |
| Cadmium                     | 45                  | 20       | 56      |
| Chromium                    | 6,500               | 1,200    | 66      |
| Copper                      | 7,500               | 65       | 99      |
| Cyanide                     | 11                  | <10      | >10     |
| Lead                        | 1,600               | 90       | 94      |
| Zinc                        | 1,800               |          |         |
| Phthalates                  |                     |          |         |
| Bis(2-ethylhexyl) phthalate |                     | <10      |         |
| Butyl benzyl phthalate      |                     | ND       |         |
| Di-n-butyl phthalate        |                     | <10      |         |
| Di-n-octyl phthalate        |                     | <10      |         |
| Diethyl phthalate           |                     | 23       |         |
| Dimethyl phthalate          |                     | 22       |         |
| Phenols                     |                     |          |         |
| 2-Chlorophenol              | 36,000              | ND       | >99     |
| 2,4-Dimethylphenol          | 25,000              | ND       | >99     |
| 2-Nitrophenol               | 70,000              | 210      | >99     |
| Pentachlorophenol           | ND                  | <10      | ~ "     |
| Phenol                      | 540                 | 540      | -       |
| 4,6-Dinitro-o-cresol        | ND                  | ND       | -       |
| Aromatics                   |                     |          |         |
| Ethylbenzene                | 390                 | 10       | 97      |
| Toluene                     | 110                 | 60       | 45      |
| Halogenated aliphatics      |                     |          | . 05    |
| Carbon tetrachloride        | 110                 | ND       | >99     |
| Chloroform                  | 80                  | 43       | 46      |
| Methyl chloride             | 1 000               | <10      | > 00    |
| Tetrachloroethylene         | 1,200               | 16       | >99     |
| 1,1,1-Trichloroethane       | 420                 | <10      | >99     |

Note: Dashes indicate negligible removal. Blanks indicate no data available.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

# Direct Application Mills

Plant 105. This mill uses waste oil handling tanks and oil skimming. Discharge from this process goes to central treatment lagoons where additional oil and solids are removed.

Tables 6-105 and 6-106 present pollutant data for this facility.

TABLE 6-105. PLANT SPECIFIC POLLUTANT DATA FOR PLANT 105, COLD ROLLING SUBCATEGORY, DIRECT APPLICATION MILL SUBDIVISION [7]

Raw wastewater flow: 0.49 m<sup>3</sup>/Mg Treated effluent flow: 0.49 m<sup>3</sup>/Mg

|                | Concentrat        | ion, mg/La          |                 |
|----------------|-------------------|---------------------|-----------------|
| Parameter      | Raw<br>wastewater | Treated<br>effluent | Percent removal |
| TSS            | 290               | 300                 | _b              |
| Oil and grease | 1,900             | 1,400               | 26              |
| рН             | 7.2               | 3.3                 |                 |
| Dissolved iron | 23                | 170                 | _p              |

aExcept pH values, given in pH units.

## Combination Mills

Plant YY-Z. This facility uses primary settling, oil skimming, chemical treatment, and final settling in a clarifier. Other wastes are combined with cold mill wastes before being treated in a central treatment system.

Conventional pollutant data are given in Table 6-107. No toxic pollutant data are currently available on these mills.

## II.6.3.20 Subcategory 20 - Hot Coating - Galvanizing [16]

Plant 111. In this plant wiper waters are collected and recycled via hot rolling mills, with a small continuous bleed-off to the treatment system. Pickling rinses and spent HCl concentrations are combined with wastes from nail and fence galvanizing, treated with lime, aerated, clarified and pressures and filtered prior to discharge.

bTreated effluent concentration exceeds raw wastewater concentration.

TABLE 6-106. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 105, THE COLD ROLLING SUBCATEGORY DIRECT APPLICATION MILL SUBDIVISION [7]

|                        | Concentrat |             |                      |
|------------------------|------------|-------------|----------------------|
| _ , , , , , ,          | Raw        | Treated     | Percent              |
| Toxic pollutant        | wastewater | effluent    | removal              |
| Metals and inorganics  |            |             |                      |
| Antimony               | 16         | 290         | _a                   |
| Arsenic                | 30         | 31          | _a<br>_a<br>_a<br>_a |
| Cadmium                | 140        | 200         | <b>_</b> d           |
| Chromium               | 170        | 240         | _a                   |
| Copper                 | 240        | 450         |                      |
| Cyanide                | 15         | 13          | 13 <sub>a</sub>      |
| Lead                   | 420        | 600         |                      |
| Nickel                 | 350        | 500         | _a                   |
| Selenium               | 26         | 76          | _a<br>_a<br>_a<br>_a |
| Silver                 | 180        | 250         | -a                   |
| Zinc                   | 200        | <b>6</b> 80 | ~ ~                  |
| Phenols                |            |             | _                    |
| Phenols                | 53         | 54          | _a                   |
| Aromatics              |            |             |                      |
| 1,2-Dichlorobenzene    | 11         | ND          | >99                  |
| 1,3-Dichlorobenzene    | 17         | ND          | >99                  |
| 1,5 Diemioropembene    |            | ,           |                      |
| Halogenated aliphatics |            |             | a                    |
| Carbon tetrachloride   | 33         | 43          | _                    |
| Chloroform             | 39         | 67          | _a<br>_a             |
| 1,1-Dichloroethane     | 14         | 93          |                      |
| Tetrachloroethylene    | 82         | 71          | 13 <sub>a</sub>      |
| 1,1,1-Trichloroethane  | 140        | 190         |                      |
|                        |            |             |                      |

Note: Blanks indicate no data available.

Treatment influent and effluent pollutant concentrations are given in Tables 6-108 and 6-109.

# II.6.3.21 Subcategory 21 - Hot Coating-Terme Plating [9]

## Plant 113

Wastewaters from this continuous terme plating line are currently discharged without treatment. A combined chemical treatment plant is currently under construction.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-107. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT YY-2, COLD ROLLING SUBCATEGORY, COMBINATION MILL SUBDIVISION [7]

Raw wastewater flow: 0.58 m<sup>3</sup>/Mg Treated effluent flow: 0.58 m<sup>3</sup>/Mg

|                | Concentration, mg/La |                     |                 |  |  |
|----------------|----------------------|---------------------|-----------------|--|--|
| Parameter      | Raw<br>wastewater    | Treated<br>effluent | Percent removal |  |  |
| TSS            | 260                  | 16                  | 94              |  |  |
| Oil and grease | 620                  | 6                   | 99              |  |  |
| рН             | 7.1                  | 8.2                 |                 |  |  |

aExcept pH values, given in pH units.

TABLE 6-108. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 111, HOT COATING-GALVANIZING SUBCATEGORY [9]

Raw wastewater flow: 5.9 m<sup>3</sup>/Mg Treated effluent flow: 5.9 m<sup>3</sup>/Mg

|                     | Concentration, mg/La |                  |                 |  |  |  |
|---------------------|----------------------|------------------|-----------------|--|--|--|
| Parameter           | Raw<br>wastewater    | Treated effluent | Percent removal |  |  |  |
| Oil and grease      | 20                   | 4                | 80              |  |  |  |
| pH                  | 7.4                  | 8.4              |                 |  |  |  |
| TSS                 | 67                   | 11               | 84              |  |  |  |
| Hexavalent chromium | 0.002                | 0.006            | _b              |  |  |  |

aExcept pH values, given in pH units.

Raw wastewater concentrations are given in Table 6-110 and 6-111.

bEffluent concentration exceeds raw wastewater concentration.

TABLE 6-109. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 111, HOT COATING-GALVANIZING SUBCATEGORY [9]

|                             | Concentrat | ion, µg/L |                 |
|-----------------------------|------------|-----------|-----------------|
|                             | Raw        | Treated   | Percent         |
| Toxic pollutant             | wastewater | effluent  | removal         |
| Metals and inorganics       |            |           |                 |
| Chromium                    | 140        | 40        | 71              |
| Copper                      | 60         | 30        | 50 <sub>a</sub> |
| Cyanide                     | 7          | 21        | _a              |
| Lead                        | 200        | 180       | 10              |
| Nickel                      | 30         | 20        | 33              |
| Silver                      | <20        | 20        | -               |
| Zinc                        | 3,200      | 120       | 96              |
| Phthalates                  |            |           | _               |
| Bis(2-ethylhexyl) phthalate | 86         | 130       | _a              |
| Butyl benzyl phthalate      | ND         | ND        | <b>_</b> a      |
| Di-n-butyl phthalate        | ND         | 18        | <b>_</b> a      |
| Di-n-octyl phthalate        | ND         | ND        | <b>-</b> a      |
| Diethyl phthalate           | 5          | 10        | <b>-</b> "      |
| Dimethyl phthalate          | 5          | 5         | -               |
| Phenols                     |            |           | _               |
| Pentachlorophenol           | ND         | 5         | _a              |
| Aromatics                   |            |           | 2               |
| Benzene                     | ND         | 5         | _a              |
| 1,3-Dichlorobenzene         | ND         | ND        | -               |
| Polycyclic aromatics        |            |           | _               |
| Fluoranthene                | ND         | 10        | _a              |
| Halogenated aliphatics      |            |           |                 |
| Chloroform                  | 15         | 5         | 67              |
| Methylene chloride          | 120        | 21        | 83              |
| Tetrachloroethylene         | 13         | ND        | >99             |
| 1,1,1-Trichloroethane       | 67         | ND        | >99             |
| Trichloroethylene           | 46         | 10        | 78              |

Note: Blanks indicate no data available.
Dashes indicate negligible removal.

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-110. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 113, HOT COATING-TERNE PLATING SUBCATEGORY [9]

Raw wastewater flow: 4.2 m<sup>3</sup>/Mg Treated effluent flow: 4.2 m<sup>3</sup>/Mg

|                     | Concentrat        | ion, mg/La          |                 |
|---------------------|-------------------|---------------------|-----------------|
| Parameter           | Raw<br>wastewater | Treated<br>effluent | Percent removal |
| Oil and grease      | 0                 | 4                   | _b              |
| рН                  | 6.5               | 6.5                 |                 |
| TSS                 | 11                | 11                  | 0               |
| Hexavalent chromium |                   | 0.002               |                 |

aExcept pH values, given in pH units.

# II.6.3.22 Subcategory 22 - Combination Acid Pickling [8]

# Batch Type

Plant 122-2. The pickling wastes from this plant are combined with wastes from approximately 20 other sources and then undergo equalization and neutralization, flocculation with polymers, and clarification with oil skimming. Sludge formed in the treatment process is dewatered in mechanical centrifuges. The discharge from this system goes to a receiving stream.

Tables 6-112 and 6-113 present conventional and toxic pollutant data for this facility.

Plant I. Plant I utilizes lime neutralization of spent pickling solutions, mixing with acid rinses, and sedimentation in a lagoon to treat wastewater generated by the strip pickling process.

Conventional data for this plant are given in Table 6-114. No toxic pollutant data were available for this plant.

bTreated effluent concentration exceeds raw wastewater concentration.

TABLE 6-111. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 113, HOT COATING-TERN PLATING SUBCATEGORY [9]

|                       | Concentration, µg/L                  |          |         |
|-----------------------|--------------------------------------|----------|---------|
|                       | Raw                                  | Treated  | Percent |
| Toxic pollutant       | wastewater                           | effluent | removal |
| Metals and inorganics |                                      |          |         |
| Antimony              | <6                                   |          |         |
| Arsenic               | <2                                   | 8        | _a      |
| Beryllium             | <8                                   | 0        | _       |
| Cadmium               | <80                                  |          |         |
| Chromium              | 2,700                                | 2 700    | _       |
|                       |                                      | 2,700    | _       |
| Copper                | 40                                   | 40       | -       |
| Cyanide               | 3                                    | 3        | -       |
| Lead                  | 670                                  | 670      | -       |
| Mercury               | 0.7                                  | 0.1      | 85      |
| Nickel                | 230                                  | 590      | -       |
| Selenium              | 2                                    |          |         |
| Silver                | 25                                   | 25       | -       |
| Thallium              | 50                                   |          |         |
| Zinc                  | 93                                   | 93       | -       |
| Phenols               |                                      |          |         |
| 2,4-Dichlorophenol    | 3                                    |          |         |
| Pentachlorophenol     | 7                                    |          |         |
| Phenol                | 11                                   |          |         |
| 2,4,6-Trichlorophenol | -3                                   |          |         |
| p-Chloro-m-cresol     | 3<br>3                               |          |         |
| p-diroro-m-cresor     | J                                    |          |         |
| Aromatics             | •                                    |          |         |
| Benzene               | 7                                    |          |         |
| 2,4-Dinitrotoluene    | 0.003                                |          |         |
| 2,6-Dinitrotoluene    | 3<br>3<br>7                          |          |         |
| Ethylbenzene          | 3                                    |          |         |
| Toluene               | 7                                    |          |         |
| Polycyclic aromatics  |                                      |          |         |
| Acenaphthene          | 3                                    |          |         |
| Anthracene            | 7                                    |          |         |
| Benzo(a)pyrene        | 3                                    |          |         |
| Benzo(b)fluoranthene  | 3                                    |          |         |
| Benzo(k)fluoranthene  | 3                                    |          |         |
| Chrysene              | 7                                    |          |         |
| Fluoranthene          | 7                                    |          |         |
| Fluorene              | 7<br>3<br>3<br>7<br>7<br>7<br>3<br>7 |          |         |
| Phenanthrene          | 7                                    |          |         |
| Pyrene                | 7                                    |          |         |

(continued)

TABLE 6-111 (continued)

|                            | Concentrat        | Concentration, µg/L |                    |
|----------------------------|-------------------|---------------------|--------------------|
| Toxic pollutant            | Raw<br>wastewater | Treated effluent    | Percent<br>removal |
| Halogenated aliphatics     |                   |                     |                    |
| Chloroform                 | 53                |                     |                    |
| l,l-Dichloroethylene       | 3                 |                     |                    |
| 1,2-Trans-dichloroethylene | 9                 |                     |                    |
| Methylene chloride         | 830               |                     |                    |
| Tetrachloroethylene        | 14                |                     |                    |
| 1,1,1-Trichloroethane      | 3                 |                     |                    |
| Pesticides and metabolites |                   |                     |                    |
| Isophorone                 | 3                 |                     |                    |

Note: Blanks indicate no data available.

TABLE 6-112. PLANT SPECIFIC POLLUTANT DATA FOR PLANT 122-2, COMBINATION ACID PICKLING SUBCATEGORY, BATCH-TYPE SUBDIVISION [8]

Raw wastewater flow: 0.84 m<sup>3</sup>/Mg Treated effluent flow: 1.30 m<sup>3</sup>/Mg

| Concentration, mg/La |                   |                     |                 |  |  |  |  |  |  |  |
|----------------------|-------------------|---------------------|-----------------|--|--|--|--|--|--|--|
| Parameter            | Raw<br>wastewater | Treated<br>effluent | Percent removal |  |  |  |  |  |  |  |
| TSS                  | 460               | 17                  | 96              |  |  |  |  |  |  |  |
| Dissolved iron       | 360               | 0.83                | 99              |  |  |  |  |  |  |  |
| Oil and grease       | 7                 | 4.5                 | 35              |  |  |  |  |  |  |  |
| Fluoride             | 37                | 19                  | 49              |  |  |  |  |  |  |  |
| pН                   | 9                 | 7.6                 |                 |  |  |  |  |  |  |  |

aExcept pH values, given in pH units.

<sup>&</sup>lt;sup>a</sup>No organic sampling conducted.

<sup>&</sup>lt;sup>b</sup>Concentration level needs further evaluation.

TABLE 6-113. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 122-2, COMBINATION ACID PICKLING SUBCATEGORY, BATCH-TYPE SUBDIVISION [8]

|                        | Concentrat        |                  |                 |
|------------------------|-------------------|------------------|-----------------|
| Toxic pollutant        | Raw<br>wastewater | Treated effluent | Percent removal |
| Metals and inorganics  |                   |                  |                 |
| Arsenic                | 10                | ND               | >99             |
| Chromium               | 60,000            | 180              | 99              |
| Copper                 | 1,700             | 50               | 97              |
| Cyanide                | 71                | 35               | 51              |
| Lead                   | 600               | 50               | 92              |
| Nickel                 | 37,000            | 1,400            | 96              |
| Zinc                   | 300               | 40               | 87              |
| Halogenated aliphatics |                   |                  |                 |
| Chloroform             | 20                | <10              | 50              |
| Tetrachloroethylene    | 24                | ND               | >99             |

Note: Blanks indicate no data available.

TABLE 6-114. PLANT SPECIFIC POLLUTANT DATA FOR PLANT I, COMBINATION ACID PICKLING SUBCATEGORY, CONTINUOUS TYPE SUBDIVISION [8]

Raw wastewater flow: 7.6 m<sup>3</sup>/Mg Treated effluent flow: 7.6 m<sup>3</sup>/Mg

|                | Concentrati |          |                 |
|----------------|-------------|----------|-----------------|
|                | Raw         | Treated  | Percent         |
| Parameter      | wastewater  | effluent | removal         |
| TSS            | 560         | 130      | 76              |
| Fluoride       | 33          | 9.1      | 72 <sub>b</sub> |
| Nitrate        | 26          | 32       | _p              |
| Oil and grease | 0.7         | 1.5      | _p              |
| Dissolved iron | 62          | 24       | 61              |
| рН             | 6.5         | 6.2      |                 |
| Copper         | 0.15        | ND       | >99             |
| Chromium       | 17.1        | 1.8      | 89              |
| Nickel         | 6.0         | 5.2      | 13              |
| Zinc           | 0.75        | 0.24     | 68              |

aExcept pH values, given in pH units.

bEffluent concentration exceeds raw wastewater concentration.

# II.6.3.23 Subcategory 23 - Scale Removal [9]

## Kolene Scale Removal

Plant 131. Treatment at this plant consists of chromium reduction, neutralization with lime and other wastes, settling in a classifier, and final settling in a polishing lagoon. Sludges generated are dewatered by vacuum filters.

Tables 6-115 and 6-116 give raw and treated wastewater pollutant concentrations.

TABLE 6-115. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 131, SCALE REMOVAL SUBCATEGORY, KOLENE SCALE REMOVAL SUBDIVISION [9]

Raw wastewater flow: 0.75 m<sup>3</sup>/Mg Treated effluent flow: 0.75 m<sup>3</sup>/Mg

|                     | Concentrat        |                     |                    |  |  |
|---------------------|-------------------|---------------------|--------------------|--|--|
| Parameter           | Raw<br>wastewater | Process<br>effluent | Percent<br>removal |  |  |
| TSS                 | 120               | 50                  | 58                 |  |  |
| Hexavalent chromium | 120               | 1                   | 99                 |  |  |
| рН                  | 12.6              | 9.4                 |                    |  |  |

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

# Hydride Scale Removal

Plant 132. This facility treats its wastewater by neutralization, flocculation with polymers, and clarification with oil skimming. The sludges are dewatered in cyclones.

Tables 6-117 and 6-118 present pollutant concentrations at this facility.

# II.6.3.24 Subcategory 24 - Continuous Alkaline Cleaning [9]

#### Mill 156

This mill utilizes a complex central treatment system. The wastes from the alkaline cleaning line comprising less than 1% of the total flow to the central treatment system. The alkaline cleaning solutions and rinses are combined with wastes from other sources and then undergo equilization, neutralization, and

TABLE 6-116. PLANT SPECIFIC TOXIC POLLUTANT DATA FOR PLANT 131, THE SCALE REMOVAL SUBCATEGORY, KOLENE SCALE REMOVAL SUBDIVISION [9]

|                        | Concentrat | ion, µg/L |         |
|------------------------|------------|-----------|---------|
|                        | Raw        | Treated   | Percent |
| Toxic pollutant        | wastewater | effluent  | removal |
| Metals and inorganics  |            |           |         |
| Antimony               | 21         | 200       | _a      |
| Arsenic                | 30         | <10       | 67      |
| Cadmium                | 140        | 20        | 85      |
| Chromium               | 370,000    | 15,000    | 96      |
| Copper                 | 130        | 61        | 53      |
| Nickel                 | 770        | 280       | 63      |
| Selenium               | 27         | ND        | >99     |
| Thallium               | 65         | 50        | 23      |
| Zinc                   | 180        | 34        | 81      |
| Halogenated aliphatics |            |           |         |
| Chloroform             | ND         | 140       | _a      |

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-117. PLANT SPECIFIC CONVENTIONAL POLLUTANT DATA FOR PLANT 132, SCALE REMOVAL SUBCATEGORY, HYDRIDE SCALE REMOVAL SUBDIVISION [9]

Raw wastewater flow: 0.24 m<sup>3</sup>/Mg Treated effluent flow: 0.24 m<sup>3</sup>/Mg

|                | Concentrati       |                     |                    |
|----------------|-------------------|---------------------|--------------------|
| Parameter      | Raw<br>wastewater | Treated<br>effluent | Percent<br>removal |
| TSS            | 490               | 17                  | >99                |
| Dissolved iron | 0.45              | 0.83                | _b                 |
| рН             | 12.4              | 7.6                 |                    |

<sup>&</sup>lt;sup>a</sup>Except pH values, given in pH units.

bEffluent concentration exceeds raw wastewater concentration.

TABLE 6-118. PLANT SPECIFIC TOXIC METAL CONCENTRATION DATA FOR PLANT 132, THE SCALE REMOVAL SUBCATEGORY, HYDRIDE SCALE REMOVAL SUBDIVISION [9]

|                       | Concentrat        |         |                    |
|-----------------------|-------------------|---------|--------------------|
| Toxic pollutant       | Raw<br>wastewater | Treated | Percent<br>removal |
| Metals and inorganics |                   |         |                    |
| Cadmium               | <10               | <10     | -                  |
| Chromium              | 15,000            | 180     | 99                 |
| Copper                | 670               | 50      | 93                 |
| Cyanide               | ND                | 35      | , a<br>_a          |
| Lead                  | 25                | 50      | _a                 |
| Nickel                | 8,700             | 1,400   | 84                 |
| Silver                | 20                | 20      | _                  |
| Zinc                  | 75                | 40      | 47                 |

Note: Blanks indicate not sampled.

Dashes indicate negligible removal.

primary clarification in a thickener. From the clarifier the wastes enter a high-density-sludge (HDS) unit where the solids and metals are settled out. The overflow from the HDS unit is then filtered. The filtrate is discharged to a final polishing lagoon where additional settling and temperature equalization is carried out prior to discharge to a receiving stream.

Pollutant concentrations for the raw and treated wastewater are presented in Table 6-119.

# II.6.4 Pollutant Removability [1-9]

The iron and steel industry generates a wide variety of waste-waters from its subcategories. Pollutant concentrations and waste loads differ significantly not only within the industry but also within subcategories, creating problems in the selection of the treatment technology to be used. Central treatment facilities often combine waste streams from several subcategories, increasing the selection dilemma. This stream combining is a direct result of many subcategories being represented on a single plant site.

Wastewater from this industry is generally low in organic concentrations due to the limited use of organic materials. Concentrations of these organics are generally less than 0.1 mg/L and are often less than 0.01 mg/L. Only the byproduct recovery cokemaking subcategory has concentrations that are usually

<sup>&</sup>lt;sup>a</sup>Treated effluent concentration exceeds raw wastewater concentration.

TABLE 6-119. PLANT SPECIFIC POLLUTANT DATA FOR PLANT 156, CONTINUOUS ALKALINE CLEANING SUBCATEGORY [9]

Raw wastewater flow: 0.28 m<sup>3</sup>/Mg Treated effluent flow: 0.28 m<sup>3</sup>/Mg

|                                                                           | Concentration<br>mg/L                                       |                                                   |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|--|--|
| Parameter                                                                 | Raw<br>waste                                                | Eirluent<br>waste                                 |  |  |
| TSS Oil and grease Dissolved iron pH Chromium Lead Zinc Pentachlorophenol | 11<br>9.0<br>0.34<br>7.7<br>0.055<br>0.075<br>0.30<br>0.029 | 1<br>4.0<br>0.045<br>7.5<br>0.03<br>0.075<br>0.13 |  |  |

aExcept pH values, given in pH units.

greater than this. This is the direct result of the recovery of the organic byproducts. Biological treatment methods are often used to reduce these toxic organic concentrations.

Metal concentrations in this industry vary considerably. Individual subcategories may release significant concentrations of particular metals used within their processes. An example of this is the hot coating subcategories, which may release large concentrations of lead, chromium, and zinc. Metal cocentrations are generally reduced by settling, chemical addition, neutralization, or filtration.

Treatment technologies used in the iron and steel industry vary between subcategories. However, several methods are more prevalent than others. Scale pits and settling ponds are used in 17 of the subcategories. This treatment is used at most facilities because of the high concentration of solids normally present in the wastewater. Clarification and sludge thickening are also used to reduce the solids concentration and volume. Chemical addition is used both as a pH adjustment and as a flocculant aid. Common chemicals used include lime, polymers, alum, and ferric sufate. Dissolved metals may be precipitated with this treatment method, reducing the metal concentration in the final effluent.

Filtration is also a common treatment method that may be used as a solids removal mechanism or as a sludge thickening process. Several filtration methods are currently in use including pressure, sand, deep bed, and vacuum filters.

Recycling of treated water is a very common practice in this industry. Twenty-three of twenty-four subcategories studied used this technology to reduce effluent volume and control cost. Nine subcategories have facilities practicing 100% recycle, and several other subcategories recycle over 80% of their fume scrubber and rinsewater streams. Wastewater is generally treated in some manner before recycling.

Generally, more than one technology is used at each facility. Settling is normally a preliminary step to another treatment method and may also be present more than once in a treatment scheme. Chemical addition and filtration treatments are often used in conjunction with other treatment technologies.

Table 6-120 presents treatment technologies currently used in this industry, by subcategory. The data are based on available information from 308 questionnaires and from plant sampling visits in each subcategory.

Removal efficiency data may be found in the wastewater characterization section (II.6.2) and in the plant specific section (II.6.3) of this industry description.

TABLE 6-120. TREATMENT TECHNOLOGIES CURRENTLY IN USE IN THE IRON AND STEEL INDUSTRY [1-9]

|                                            |     |   |    |    |    |     |    |    |    |    |    |    | tego |    |      |    |    |    |    |    |    |    |    |   |
|--------------------------------------------|-----|---|----|----|----|-----|----|----|----|----|----|----|------|----|------|----|----|----|----|----|----|----|----|---|
| Treatment technology                       | _1_ | 2 | 3  | 4  | _5 | _6_ | 7  | 8  | 9  | 10 | 11 | 12 | 13   | 14 | _15_ | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 2 |
| Settling, scale pit, or lagoon             | Х   | X | х  |    |    | х   |    |    |    |    | х  | х  | х    | х  | х    | х  | x  | х  | х  | х  | х  | x  | x  |   |
| Clarifier                                  | X   |   | Х  | Х  |    |     | Х  | X  | Х  | X  | Х  | Х  | X    | X  | Х    | Х  | X  |    |    |    |    | X  |    | 2 |
| Thickener                                  |     | Х | X  | х  | х  | х   | х  |    | х  | Х  | X  | X  | X    | X  | X    | Х  | х  |    |    |    |    | X  |    |   |
| Centrifuge                                 |     |   |    |    |    |     |    |    |    |    |    | •• |      |    |      |    |    |    |    |    |    | X  |    | 2 |
| Settling cone                              |     |   |    |    |    |     |    |    |    |    |    |    | X    | X  |      |    |    |    |    |    |    | X  |    | , |
| Chemical addition - lime                   | х   |   | X  | x  |    |     |    | X  |    |    | х  | х  | X    | X  | Х    | X  | Х  | X  | Х  | х  | Х  | X  | Х  |   |
| - polymer                                  |     |   | X  | •• |    | x   | x  |    | Х  | x  | x  | X  | x    | x  | ••   | X  | X  | X  | X  | X  | х  | X  | X  |   |
| - ferric sulfate                           |     |   | •• |    |    | ••  | •• | •• | •• | •• | •• | x  | x    | x  | х    | x  | •• | •• | •• | •• | •• | •• | •• |   |
| - alum                                     |     |   |    |    |    |     |    |    |    |    |    | ** | x    | X  | X    | •• | х  |    | Х  |    |    |    |    |   |
| - sulfur dioxide                           |     |   |    |    |    |     |    |    |    |    |    |    | •    | ^  | **   |    | •• |    | •• |    |    |    | Х  |   |
| - chromium reduction                       |     |   |    |    |    |     |    |    |    |    |    |    |      |    |      |    |    |    |    | х  | X  |    | x  |   |
| -alkaline chlorination                     | ¥   |   | Х  | v  |    |     |    |    |    |    |    |    |      |    |      |    |    |    |    | Λ  | ^  |    | X  |   |
| pH adjustment                              | X   |   | Λ  | X  |    |     |    |    |    |    |    |    |      |    |      |    | x  | Х  | х  | х  | х  | х  | x  | 3 |
| Gas flotation                              | X   |   |    | Λ  |    |     |    |    |    |    |    |    |      |    |      |    | X  | Λ  | X  | Λ  | Λ  | Λ  | *  | • |
| Filtration                                 | Λ   |   |    |    |    |     |    |    |    |    |    | х  | х    | х  | х    | х  | X  |    | X  |    |    |    |    |   |
| Filtration - pressure                      |     |   | Х  | v  |    |     |    |    |    |    |    | X  | X    | X  | X    | X  | Λ  |    | Λ  |    |    |    | x  |   |
| - sand                                     |     |   | Λ  | Λ  |    |     |    |    |    |    | х  | X  | Λ    | X  | Λ    | X  |    |    |    |    |    |    | X  |   |
| - mixed media                              | х   |   |    |    |    |     |    |    |    |    | Λ  | Λ  |      | Λ  | х    | Λ  |    |    | х  |    |    |    | Λ  | 2 |
| - flat bed                                 | Λ   |   |    |    |    |     |    |    |    |    |    | х  |      |    | Λ    |    |    |    | Λ  |    |    |    |    | • |
| - deep bed                                 |     |   | х  |    |    |     |    |    |    |    |    | X  | х    |    |      |    |    |    |    |    |    |    |    |   |
| - carbon                                   |     |   | X  | v  |    |     |    |    |    |    |    | ^  | Λ    |    |      |    |    |    |    |    |    |    |    |   |
| - vacuum                                   | х   |   | X  | Λ  |    | v   | Х  |    |    |    |    |    | x    | x  | х    | x  | х  | Х  |    | х  | х  | х  | х  | , |
| - vacuum<br>Ultrafiltration                | ^   |   | Λ  |    |    | ^   | Λ  |    |    |    |    |    | Λ    | Λ  | Λ    | Λ  | Λ  | Λ  | х  | Λ  | Λ  | Λ  | X  | 1 |
| Oltrafiltration<br>Activated carbon column | х   |   |    |    |    |     |    |    |    |    |    |    |      |    |      |    |    |    | X  |    |    |    | X  |   |
|                                            | А   |   | v  |    |    |     |    |    |    |    |    | х  | v    | х  | х    | x  | x  |    | X  | х  | х  | х  | X  | , |
| Oil skimming                               |     |   | X  |    |    |     |    |    |    |    |    | X  | X    | X  | X    |    | ^  |    | Λ  | ^  | Λ  | Λ  | Λ  | • |
| API separators                             |     |   |    |    |    |     |    |    |    |    |    |    |      |    |      | X  |    |    |    |    |    |    |    |   |
| Lamella separator                          |     |   |    |    |    |     | X  |    |    |    |    | Х  | Х    |    |      |    | ., | •• | •• | ., | •  | v  |    |   |
| Aeration                                   | Х   |   |    |    |    |     |    |    |    |    |    |    |      |    |      |    | X  | X  | X  | Х  | X  | Х  |    |   |
| Activated sludge                           | Х   |   |    |    |    |     |    |    |    |    |    |    |      |    |      |    |    |    |    |    |    |    |    |   |
| Biological oxidation                       | X   |   |    |    |    |     |    |    |    |    |    |    |      |    |      |    |    |    |    |    |    |    |    |   |
| Free still                                 | X   |   |    |    |    |     |    |    |    |    |    |    |      |    |      |    |    |    |    |    |    |    |    |   |
| Fixed still                                | Х   |   |    |    |    |     |    |    |    |    |    |    |      |    |      |    |    |    |    |    |    |    |    |   |
| Deep well injection                        | Х   |   |    |    |    |     |    |    |    |    |    |    |      |    |      |    |    | X  |    |    |    |    |    |   |
| Cooling tower                              |     |   |    | X  |    |     |    |    |    |    |    | X  | X    | X  | X    | X  | X  |    |    |    |    |    |    |   |
| Partial recycle                            | X   |   |    | X  |    | Х   | X  | Х  |    | X  | X  | X  | X    | X  | X    | X  | X  | X  | X  | X  | X  | X  |    |   |
| Complete recycle                           |     | Х | Х  |    | X  |     |    | X  | X  |    |    | X  | X    | X  |      | X  |    |    |    |    |    |    |    |   |
| Contractor hauled                          |     |   |    |    |    |     |    |    |    |    |    | Х  | X    | X  | X    |    | Х  | X  | X  |    |    | Х  |    |   |

<sup>&</sup>lt;sup>a</sup>In development stage.

#### 11.7 LEATHER TANNING AND FINISHING INDUSTRY

#### II.7.1 INDUSTRY DESCRIPTION

# II.7.1.1 General Description [1]

The leather tanning and finishing industry in the United States is included within the U.S. Department of Commerce, Bureau of Census Standard Industrial Classification (SIC) Code 3100, Leather and Leather Products. The part of the industry discussed in this report is identified as SIC 3111, Leather Tanning and Finishing.

Leather tanning is a general term encompassing the numerous processing steps included in converting animal skins or hides into leather. There are three primary hide or skin types used to manufacture leather, namely, cattle hides, sheepskins, and pigskins. Other skins utilized in smaller quantities include goatskin, horse hide, deerskin, and elkskin.

There are approximately 188 tanneries producing leather products in the United States. These tanneries are located in four general regions: the New England states, the Mid-Atlantic states, the Midwest, and the Pacific Coast. Of these, about 75% are privately owned.

Table 7-1 summarizes pertinent information regarding the total number of subcategories, the number of subcategories studied by the Effluent Guidelines Division, and the number and type of dischargers in the leather tanning and finishing industry.

TABLE 7-1. INDUSTRY SUMMARY [1, 2]

Industry: Leather Tanning and Finishing Total Number of Subcategories: 9
Number of Subcategories Studied: 7

Number of Dischargers in Industry:

· Direct: 18

Indirect: 170

· Zero: 1

Best practicable technology (BPT) limitations for the seven categories are listed in Table 7-2.

TABLE 7-2. BPT LIMITATIONS FOR THE LEATHER TANNING AND FINISHING INDUSTRY [1] (kg/Mg)

| Subcategory                              | Daily<br>maximum | 30-day<br>average | Daily<br>maximum | 30-day<br>average |                 |
|------------------------------------------|------------------|-------------------|------------------|-------------------|-----------------|
|                                          | B(               | DD <sub>5</sub>   | T                | SS                |                 |
| Hair pulp/chrome tan/retan-wet finish    | 7.0              | 3.5               | 11.2             | 5.6               |                 |
| Hair save/chrome tan/retan-wet finish    | 8.2              | 4.1               | 13.4             | 6.7               |                 |
| Hair save/nonchrome tan/retan-wet finish | 6.0              | 3.0               | 9.6              | 4.8               |                 |
| Retan-wet finish                         | 2.6              | 1.3               | 4.2              | 2.1               |                 |
| No beamhouse                             | 5.0              | 2.5               | 8.0              | 4.0               |                 |
| Through-the-blue                         | 4.0              | 2.0               | 6.6              | 3.3               |                 |
| Shearling                                | 20.8             | 10.4              | 33.6             | 16.8              |                 |
| <del>-</del>                             | Total            | chromium          | Oil an           | d grease          | pH <sup>a</sup> |
| Hair pulp/chrome tan/retan-wet finish    | 0.24             | 0.12              | 2.0              | 1.0               | 6.0 - 9.0       |
| Hair save/chrome tan/retan-wet finish    | 0.28             | 0.14              | 2.2              | 1.1               | 6.0 - 9.0       |
| Hair save/nonchrome tan/retan-wet finish | 0.20             | 0.10              | 1.7              | 0.83              | 6.0 - 9.0       |
| Retan-wet finish                         | 0.086            | 0.043             | 0.70             | 0.35              | 6.0 - 9.0       |
| No beamhouse                             | 0.17             | 0.083             | 1.4              | 0.69              | 6.0 - 9.0       |
| Through-the-blue                         | 0.14             | 0.07              | 1.1              | 0.56              | 6.0 - 9.0       |
| Shearling                                | 0.70             | 0.35              | 5.8              | 2.9               | 6.0 - 9.0       |

a In pH units.

## II.7.1.2 Subcategory Description

The primary criteria for subcategorizing the leather tanning and finishing industry are (1) the type or condition of animal hide processed, (2) the method of hair removal, (3) the type of tanning agent used, and (4) the extent of finishing performed. Also taken into consideration are plant size, age, location, wastewater characteristics, and water usage.

The seven subcategories that were derived, based on the above criteria, are defined as follows:

- 1. <u>Hair pulp/chrome tan/retan-wet finish</u> facilities that primarily process raw or cured cattle or cattle-like hides into finished leather by chemically dissolving the hair (hair pulp); tanning with chrome; and retanning and wet finishing.
- 2. Hair save/chrome tan/retan-wet finish facilities that primarily process raw or cured cattle or cattle-like hides into finished leather by chemically loosening and mechanically removing the hair; tanning with chrome; and retanning and wet finishing.

- 3. Hair save/nonchrome tan/retan-wet finish facilities that process raw or cured cattle or cattle-like hides into finished leather by chemically loosening and mechanically removing the hair; tanning, primarily with vegetable tannins, alum, syntans, oils, or other chemicals; and retanning and wet finishing.
- 4. Retan-wet finish facilities that process previously unhaired and tanned hides or splits into finished leather through retanning and wet finishing processes including coloring, fatliquoring, and mechanical conditioning.
- 5. No beamhouse facilities that process previously unhaired and pickled cattle hides, sheepskins or pigskins into finished leather by tanning with chrome or other agents, followed by retanning and wet finishing.
- 6. Through-the-blue facilities that process raw or cured cattle or cattle-like hides into the blue-tanned state only, by chemically dissolving or loosening the hair and tanning with chrome, with no retanning or wet finishing.
- 7. Shearling facilities that process raw or cured sheep or sheep-like skins into finished leather by retaining the hair on the skin; tanning with chrome or other agents; and retanning and wet finishing.

The following paragraphs discuss the subcategory processes in detail.

#### Hair Pulp/Chrome Tan/Retan-Wet Finish

Tanneries in this subcategory primarily process brine-cured or green salted cattle hides into finished leather. Various amounts of water are used in performing the three wet processing operations, namely, beamhouse, tanyard, and retan-wet finish. Water use for individual subprocesses typically employed is described in the following paragraphs.

Soak and Wash. The purpose of this operation is to remove salt, restore the moisture content of the hides, and remove any foreign material such as dirt and manure. Brine-cured hides are soaked and washed simply to remove salt, while green salted hides require the removal of manure and dirt as well as salt. The quantity of manure and dirt varies with the season of the year and the origin of the hide. Industry data estimate the wastewater volume from this subprocess to be about 20% of the total wastewater flow.

<u>Fleshing</u>. Fleshing follows the soak and wash operation if this was not done previously. Fleshings are isolated as a solid waste and, when handled properly, do not make a significant contribution to the total waste loads of a cattle hide tannery.

Unhairing. Pulping to remove hair involves the addition of lime and sharpeners (e.g., sodium sulfhydrate) in relatively high concentrations. The process dissolves the proteinaceous hair enough to dissipate it in the unhairing solution. As reported by various tanneries, this segment of beamhouse operations generates between 20 and 38% of the total tannery flow, an average of 32% for those facilities reporting such information.

Bating and Pickling. The bating subprocess delimes, reduces swelling, peptizes the fibers, and removes protein degradation products. Major chemical additions are ammonium sulfate to reduce pH to an acceptable level and enzyme to condition the protein matter.

Following the bating process, hides are prepared for tanning by pickling. Pickling solutions contain primarily sulfuric acid and salt, although small amounts of wetting agent and biocide are sometimes added. Since protein degradation products, lime, and other waste material are removed through bating, the quantities of  $BOD_5$ , suspended solids, and nitrogen are relatively low. Principal waste constituents are the acid and salt. Bate and pickle wastewater volumes, reported as a combined total by several tanneries, range from 9 to 50% of the plant flow and average 26% for the combined process flow.

Tanning. Chrome tanning employs a chromium sulfate or a chrome tanning solution as the tanning agent. Other chemical additives include sodium formate and soda ash. The chromium must be in the trivalent form and must be dissolved in an acidic medium to accomplish desired results.

For those plants reporting data, the median and average flows associated with the tanning process were found to be 4.4 and 6.6% of total plant water use.

Retanning, Coloring and Fatliquoring. The chrome-tanned hides normally remain in the same drums for these three subprocesses. Retanning increases the penetration of tanning solution into the hides after splitting and uses either chrome, vegetable, or synthetic tanning agents. Because retanning uses lower concentrations of chemicals, the wastewater strength is not high and does not represent a significant portion of the total waste flow.

The most variable process in the tannery is coloring. There are hundreds of different kinds of dyes, both synthetic and vegetable based. Synthetic dyes are the most widely used in the industry and usually require the addition of acid to facilitate dye uptake in the leather. The fatliquoring operation can be performed either before or after coloring. Ultimate use of the leather product dictates the type and amount of oil required for this subprocess.

Drying by the pasting method requires a small amount of water, first to prepare the mixture and then to wash it off. Even though the volume is very small, pollutants associated with the starch can be present in relatively high concentrations. Several tanneries report the reuse of paste mixtures, which minimizes the amount of material entering the waste stream.

Process effluent from wet finishing (retan, color, and fatliquoring) is considered high-volume, low-strength wastewater, compared to the waste streams associated with beamhouse and tanyard operations. Because wet finishing imparts color to the process water, recycling is not normally practiced. The wastewater volumes from the combined subprocesses, reported as a percentage of total tannery flow, are highly variable, ranging from 12 to 30%.

Finishing. Because leather finishing operations are basically dry, they contribute the lowest wastewater flow of any tannery process. There is some wet processing, such as wetting the hides to facilitate handling in the staking or tacking operations, but most leather finishers do not have a contaminated discharge resulting from their processing activities.

#### Hair Save/Chrome Tan/Retan-Wet Finish

In the hair save unhairing operation, the hair is loosened for subsequent machine removal. The depilatory chemicals utilized are the same as those characteristic of hair pulping, but are present in lower concentrations.

The second step in the hair save operation is machine removal of hair from the hide. Removed hairs require washing only if they are to be baled and sold; otherwise they are handled as solid wastes.

The average water consumption of hair save operations is approximately 20% greater than for hair pulp tanneries. The higher water use is associated with machine removal and washing of the hair.

## Hair Save/Nonchrome Tan/Retan-Wet Finish

The principal difference between this subcategory and the previous one is the tanning operation. Cattle hides leaving the

beamhouse are bated and pickled in a similar manner but are tanned with such agents as alum, zirconium, and other metal salts, as well as syntams, gluteraldehyde, and formaldehyde. Vegetable tannings accomplish the major portion of nonchrome tanning.

Spent solutions from the vegetable tanning process are quite different from chrome solutions. The reaction rate of vegetable tannings with the hides is much slower than that associated with chrome. Because of the longer contact time, the process normally proceeds in vats with some type of gentle agitation. Process solution conservation is prevalent due to the cost of these tanning agents.

#### Retan-Wet Finish

These tanneries receive previously tanned hides or splits for retanning and finishing. Either chrome, vegetable, or synthetic tanning agents can be used for retanning. Wastewater sources for the wet finishing steps are coloring, fatliquoring, and drying. Without the beamhouse and tanyard operations, flow and waste loads per unit of production decrease. The average flow for a retan-wet finish facility is less than one-half of the volume characteristic of tanneries with beamhouse and tanyard processes.

## No Beamhouse

These tanneries primarily include plants that tan unhaired pigskins and pickled sheepskins. They may also receive pickled and unhaired cattle hides, which are subjected to tanyard and retanwet finish processes.

Unhaired, pickled sheepskins require fleshing if this has not previously been done. Previously fleshed skins usually require refleshing after tanning. Pigskins are not subjected to this operation.

Grease removal is necessary for both sheepskins and pigskins and follows the soak and wash step. Utilizing the same drums, degreasing proceeds by one of two methods: (1) hot water with detergent, or (2) solvent addition. In either case, the grease is separated and recovered as a by-product having some commercial value. For pigskins, the total amount of grease removed from the skin can approach 10% of the skin weight. The quantity entering the waste stream is usually a small part of the total. In solvent degreasing, the solvent is recovered for reuse.  $BOD_5$ , COD, and suspended solids are other constituents in waste streams generated by this operation.

Prior to tanning pigskins, the tanneries must remove the embedded portion of the hair from the skins. The pickling step follows to prepare the skins for tanning.

Sheepskins and pigskins may be tanned with chrome or vegetable tannins, although the majority of tanneries utilize the chrome tanning method. The conventional practice is to tan pigskins completely, thus eliminating the need for a retan operation. Tanned sheepskins are retanned in a manner similar to cattle hides. The wet finishing operations for both types of skins are equivalent to those previously described.

Elimination of the beamhouse results in lower average flow and waste loads per unit of production than is typical; however, the no-beamhouse segment generates higher flows and waste loads than tanneries which only retan and wet finish.

## Through-the blue

Facilities in this segment process raw or cured cattle hides through the blue-tanned state only. The remaining steps to produce finished leather are performed by other tanneries.

Unhairing of the hides may use either the hair pulp or the hair save method. Hair pulping results in the higher waste loads, while hair save uses more water. Following bating and pickling, the unhaired hides are chrome tanned to the blue stage.

Average wastewater flows for through-the-blue tanneries are lower than those for no-beamhouse tanneries, but greater than for facilities that only retan and wet finish.

#### Shearling

Tanneries in this subcategory process raw or cured sheepskins into finished leather with the hair (wool) intact. The major processing operations include tanyard and retan-wet finish.

Prior to the tanning operation, the skins are soaked and washed to cleanse them of foreign matter. This step requires a substantial amount of water for shearlings. The shearling hides are fleshed after washing. Degreasing follows, using either of the two methods described in the no-beamhouse subcategory; however, grease recovery is not normally practiced by shearling tanneries.

Unlike unhaired sheepskins, shearling hides are pickled in the manner characteristic of cattle hide processing, i.e., prior to tanning. They do not, however, require liming and bating. Tanning may be accomplished with chrome or vegetable tannins,

although the chrome method is generally preferred. The retanning and wet finishing steps for shearlings follow.

Because shearling hides are processed with the hair intact, average water consumption is more than four times the volume per unit of production observed for the no-beamhouse process, which essentially employs the same processing steps.

## II.7.1.3 Wastewater Flow Characterization

The volume of water utilized in the leather tanning and finishing industry fluctuates. Processing techniques within each subcategory of the industry may differ from tannery to tannery. Most tanneries have combined processes that fall under several different subcategories, and all process wastewater is generally discharged to a common sewer. Wastewater flows are tabulated in Table 7-3.

| Subcategory                 | Total number<br>of plants<br>reporting flow | Average<br>flow, L/kg | Total number operating below average flow |
|-----------------------------|---------------------------------------------|-----------------------|-------------------------------------------|
| Hair pulp/chrome tan/retan- |                                             |                       |                                           |
| wet finish                  | 31                                          | 38                    | 16                                        |
| Hair save/chrome tan/retan- |                                             |                       |                                           |
| wet finish                  | 12                                          | 46                    | 6                                         |
| Hair save/nonchrome tan/    |                                             |                       |                                           |
| retan-wet finish            | 16                                          | 33                    | 8                                         |
| Retan-wet finish            | 8                                           | 14                    | 4                                         |
| No beamhouse                | 14                                          | 28                    | 7                                         |
| Through-the-blue            | 2                                           | 23                    | 1                                         |
| Shearling                   | 3                                           | 116                   | 2                                         |

TABLE 7-3. SUMMARY OF SUBCATEGORY FLOWS [1]

#### 11.7.2 WASTEWATER CHARACTERIZATION [1]

Water is used extensively in the leather tanning and finishing industry. Some of its purposes for use are listed below:

- (1) for soaking and washing unprocessed hides.
- (2) as a medium which allows chemicals to react with hides/skins.
- (3) as a carrier for dyes and pigments which impart the desired color to the final product.
- (4) for cleaning processing areas and equipment.

## II.7.2.l Hair Pulp/Chrome Tan/Retan-Wet Finish

The primary constituents of the soak and wash waste stream are  $BOD_5$ , COD, suspended solids, and dissolved solids. For a cattle hide tannery with this operation preceding hair pulping and chrome tanning, typical ranges for  $BOD_5$  and suspended solids range from 7 to 22 and 8 to 43 kg/Mg of hide (lb/1,000 lb of

hide), respectively. Because the incoming hides are generally either brine-cured or green-salted, the salt must be removed in preparation for unhairing. This removal results in relatively high total solids values, ranging from 143 to 267 kg/Mg of hide (1b/1,000 lb of hide).

The liming and unhairing process is one of the principal contributors to the plant effluent. Spent unhairing liquors contain very high concentrations of proteinaceous organic matter, dissolved and suspended inorganic solids, and sulfides (mostly in the dissolved form) in a highly alkaline solution. Most sulfides found in tannery wastewater come from spent unhairing liquors, although some potentially significant amounts, depending upon the specific processes and formulations, carry over into spent tanning and retanning liquors. The BOD<sub>5</sub> content of the waste from this operation may range from 53 to 67 kg/Mg of cattle hide processes. Concurrently, the estimated total nitrogen levels range from 11 to 15 kg/Mg (lb/1,000 lb) of raw material.

In the bating of unhaired hides, lime reacts with ammonium sulfate to produce calcium sulfate, which enters the plant effluent. The total nitrogen content of the waste stream varies from 5 to 8 kg/Mg of hide, with ammonia constituting two-thirds. The pickling step which follows generates relatively low levels of pollutant including  $BOD_5$ , suspended solids, and nitrogen.

The chrome-tanning operation generates signficant wastes because it is the major source of chromium in the total plant effluent; however, the organic content of the spent tanning solution, including  $BOD_5$  and suspended solids, is generally low.

The wet finishing operations, which include retanning, coloring and fatliquoring, generate high-volume, low-strength wastewaters compared to the effluents from beamhouse and tanyard processes. The temperature of the retan, color, and fatliquor waste streams is high, typically exceeding 37.7°C (100°F). Use of high temperatures in retanning ensures maximum chromium uptake, thereby reducing its discharge to the total waste stream.

Since this subcategory represents the largest portion of the leather tanning industry, considerable data are available for characterizing its wastewaters, particularly for classical parameters. Table 7-4 summarizes the classical parameters which were employed to characterize the raw loads associated with this industry segment. The values for the selected wastewater constituents represent subcategory averages. Table 7-5 summarizes the toxic pollutant present. Constituents are characterize by pollutant type, times found, and concentration.

TABLE 7-4. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE HAIR PULP/CHROME TAN/RETAN-WET FINISH SUBCATEGORY [1]

|                  |              | Concentratio | n, mg/L |
|------------------|--------------|--------------|---------|
|                  |              | Range of     |         |
|                  | Number of    | individual   |         |
| Pollutant        | data points  | data points  | Mean    |
| BOD <sub>5</sub> | 205          | 210 - 4,300  | 1,600   |
| COD              | 170          | 180 - 27,000 | 4,600   |
| TSS              | 210          | 25 - 36,000  | 2,400   |
| TKN              | 58           | 90.0 - 630   | 330     |
| Total phenols    | 15           | 0.140 - 110  | 1.0     |
| Sulfides         | 170          | 0.800 - 200  | 64      |
| Oil and grease   | <b>7</b> 5   | 15 - 10,000  | 400     |
| Total chromium   | 180          | 3.00 - 350   | 76      |
| Ammonia          | 1 <b>6</b> 8 | 17.0 - 380   | 100     |

## II.7.2.2 Hair Save/Chrome Tan/Retan-Wet Finish

The principal difference between this subcategory and the previous one is the method of removing hair from cattle hides. Although water use is greater for machine removal and washing of hair, the waste loads associated with the hair save process are substantially less than those for hair pulp operations. The proteinaceous hair does not dissolve totally in the unhairing solution for the hair save process. This results in a lower  $BOD_5$  content in the waste stream, ranging from 17 to 58 kg/Mg of raw material. The total nitrogen and sulfide content also decrease correspondingly. The remaining tannery operations essentially are the same as for subcategory one, thereby contributing similar waste loads.

Tables 7-6 and 7-7 summarize the raw wastewater characteristics for this subcategory in terms of classical parameters and toxic pollutants. Classical pollutants have been normalized based on production and are presented as subcategory averages.

## II.7.2.3 Hair Pulp/Nonchrome Tan/Retan-Wet Finish

The tanning of cattle hides by nonchrome methods distinguishes this segment from the previous one. The most significant difference between the raw waste loads of the two subcategories occurs in the total chromium content. The use of nonchrome tanning agents reduces the average chromium level. The small amount of chromium present in the effluent from nonchrome tanneries, generally originates in the retanning operations which may require chromium salts.

TABLE 7-5. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE HAIR PULP/CHROME TAN/RETAN-WET FINISH SUBCATEGORY [1]

|                                                | Number<br>of | Number   | Concentration    | , μg/L     |
|------------------------------------------------|--------------|----------|------------------|------------|
| Toxic pollutants                               | samples      | detected | Range            | Mean       |
| Metals and inorganics                          |              |          |                  |            |
| Chromium                                       | 3            | 3        | 43,000 - 180,000 | 80,000     |
| Copper                                         | 3            | 3        | 50 - 380         | 173        |
| Cyanide                                        | 2            | 2        | 20 - 60          | 40         |
| Lead                                           | 3            | 3        | 1,100 - 2,400    | 1,700      |
| Nickel                                         | 3            | 3        | 20 - 60          | 40         |
| Zinc                                           | 3            | 3        | 200 - 580        | 430        |
| Ethers Bis(2-chloroisopropyl) ether            | 3            |          |                  | <b>N</b> D |
| Phthalates                                     |              |          |                  |            |
| Bis(2-ethylhexyl) phthalate                    | 3            | 1        |                  | 51         |
| Butyl benzyl phthalate                         | 3            |          |                  | ND         |
| Di-n-butyl phthalate                           | 3            |          |                  | ND         |
| Diethyl phthalate                              | 3            |          |                  | ND         |
| Dimethyl phthalate                             | 3            | 1        |                  | 120        |
| Nitrogen compounds                             | _            | _        |                  |            |
| Benzidine                                      | 3            | 1        |                  | 27         |
| 3,3'-Dichlorobenzidine                         | 3            |          |                  | ND         |
| 1,2-Diphenylhydrazine                          | 3            |          |                  | ND         |
| N-nitrosodiphenylamine                         | 3            |          |                  | ND         |
| Phenols 2,4-Dichlorophenol                     | 3            |          |                  | ND         |
| 2,4-Dimethylphenol                             | 3            | 1        |                  | Present    |
| Pentachlorophenol                              | 3            | 1        |                  | ND         |
| Phenol                                         | 3            | 3        | 3,000 - 4,000    | 3,700      |
| 2,4,6-Trichlorophenol                          | 3            | 2        | 880 - 5,900      | 3,400      |
|                                                | 3            | 2        | 3,900            | 3,400      |
| Arematics Benzene                              | 3            | 3        | 10 - 20          | 15         |
| Chlorobenzene                                  | 3            | 3        | 10 - 20          | NTD.       |
| 1,2-Dichlorobenzene                            | 3            | 1        |                  | 260        |
| 1,3-Dichlorobenzene                            | 3            | •        |                  | ND         |
| 1,4-Dichlorobenzene                            | 3            | 1        |                  | 54         |
| Ethylbenzene                                   | 3            | 2        | 88               | 88         |
| Hexachlorobenzene                              | 3            | -        | •                | ND         |
| Nitiobenzene                                   | 3            | 1        |                  | 430        |
| Toluene                                        | 3            | 3        | 150 - 400        | 280        |
| 1,2,4-Trichlorobenzene                         | 3            | J        | •••              | ND         |
| Polycyclic aromatic hydrocarbor                | ns           |          |                  |            |
| Acenaphthene                                   | 3            | 1        |                  | 32         |
| Acenaphthylene                                 | 3            | 1        |                  | 16         |
| Chrysene                                       | 3            |          |                  | ND         |
| Fluoranthene                                   | 3            |          |                  | ND         |
| Fluorene                                       | 3            |          |                  | <b>N</b> D |
| Naphthalene                                    | 3            | 2        | 24 - 67          | 46         |
| Phenanthrene/anthracene<br>Pyrene              | 3<br>3       | 1        |                  | 94<br>ND   |
| •                                              | 3            |          |                  | ND         |
| Halogenated aliphatics<br>Chlorodibromomethane | 3            |          |                  | ND         |
| Chloroform                                     | 3            | 1        |                  | 20         |
| Dichlorobromomethane                           | š            | 3        | 10               | 10         |
| 1,1-Dichloroethane                             | 3            | 1        | 10               | 20         |
| 1,2-Dichloroethane                             | 3            | •        |                  | ND         |
| 1,2-Trans-dichloroethylene                     | 3            | 1        |                  | 30         |
| 1,1,2,2-Tetrachloroethane                      | 3            | i        |                  | 10         |
| 1,1,1-Trichloroethane                          | 3            | i        |                  | Present    |
| 1,1,2-Trichloroethane                          | 3            | i        |                  | 10         |
| Trichlorofluoromethane                         | 3            | 1        |                  | ND<br>ND   |
| Pesticides and metabolites                     |              |          |                  |            |
| Chlordane                                      | 3            |          |                  | ND         |
| Isophorone                                     | 3            |          |                  | ND         |
|                                                |              |          |                  |            |

Note: ND = not detected.

Date: 6/23/80

TABLE 7-6. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE HAIR SAVE/CHROME TAN/RETAN-WET FINISH SUBCATEGORY [1]

|                |                       | Concentration, mg/L                   |         |  |  |
|----------------|-----------------------|---------------------------------------|---------|--|--|
| Pollutant      | Number of data points | Range of<br>individual<br>data points | Mean    |  |  |
| BOD.           | 101                   | 140 - 2.800                           | 980     |  |  |
| COD            | 30                    | 700 - 5,700                           | 2,600   |  |  |
| TSS            | 82                    | 94.0 - 8,600                          | . 1,900 |  |  |
| TKN            | 56                    | 63 0 - 3,600                          | 140     |  |  |
| Total phenols  | 24                    | 0 440 - 6.80                          | 2.      |  |  |
| Sulfides       | 70                    | 0.030 - 300                           | 20      |  |  |
| Oil and grease | 30                    | 49.0 - 620                            | 240     |  |  |
| Total chromium | 56                    | 0 006 - 390                           | 31      |  |  |
| Ammonia        | 31                    | 0 400 - 660                           | 90      |  |  |

TABLE 7-7. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE HAIR SAVE/CHROME TAN/RETAN-WET FINISH SUBCATEGORY [1]

|                                         | Number        |                    |                  | - 45  |
|-----------------------------------------|---------------|--------------------|------------------|-------|
| Toric mollutants                        | of<br>samples | Number<br>detected | Concentration    | Mean  |
| Toxic pollutants                        | - empies      | GE LEC LEG         | Range            | mean  |
| Metals and inorganics                   |               |                    |                  |       |
| Chromium                                | 2             | 2                  | 31,000 - 150,000 | 90,50 |
| Cyanide                                 | 2             | 2                  | 20 - 50          | 3 9   |
| Lead                                    | 2             | 2                  | 100 - 1,300      | 70    |
| Nickel                                  | 2             | 2                  | 5 - 40           | 2:    |
| Zinc                                    | 2             | 2                  | 240 - 400        | 31    |
| Ethers Bis(2-chloroisopropyl) ether     | 2             |                    |                  | N     |
| Phthalates                              |               |                    |                  |       |
| Bis(2-ethylhexyl) phthalate             | 2             | 1                  |                  | 3     |
| Butyl benzyl phthalate                  | 2             | •                  |                  | Ň     |
| Di-n-butyl phthalate                    | 2             |                    |                  | N     |
| Diethyl phthalate                       | 2             |                    |                  | N     |
| Dimethyl phthalate                      | 2             |                    |                  | N     |
| itrogen compounds                       |               |                    |                  |       |
| Benzidine                               | 2             |                    |                  | N     |
| 3,3'-Dichlorobenzidine                  | 2             |                    |                  | N     |
| 1,2-Diphenylhydrazine                   | 2             |                    |                  | N     |
| N-nitrosodiphenylamine                  | 2             |                    |                  | N     |
| Phenols                                 |               |                    |                  |       |
| 2,4-Dichlorophenol                      | 2             | 1                  |                  | 11    |
| 2,4-Dimethylphenol                      | 2             | -                  |                  | - N   |
| Pentachlorophenol                       | 2             | 1                  |                  | 6,20  |
| Phenol                                  | 2             | 2                  | 252 - 5,500      | 2,90  |
| 2,4,6-Trichlorophenol                   | 2             | ī                  | 202 0,           | 4,80  |
| Aromatics                               | _             | _                  |                  | -,    |
| Benzene                                 | 2             | 1                  |                  | 1     |
| Chlorobenzene                           | 2             | 1                  |                  | î     |
| 1.2-Dichlorobenzene                     | 2             | 1                  |                  | Ň     |
| 1,3-Dichlorobenzene                     | 2             |                    |                  | 1     |
|                                         | 2 2           |                    |                  | N     |
| 1,4-Dichlorobenzene                     | 2             | 1                  |                  | 15    |
| Ethylbenzene                            | 2             | 1                  |                  | 1.    |
| Hexachlorobenzene                       | 2             |                    |                  | 1     |
| Nitrobenzene                            | 2             | 2                  | 10 - 150         | Ě     |
| Toluene 1,2,4-Trichlorobenzene          | 2             | 2                  | 10 - 150         |       |
|                                         | _             |                    |                  | -     |
| Polycyclic aromatic hydrocarbor         | 18 2          |                    |                  |       |
| Acenaphthene                            | 2             |                    |                  | ,     |
| Acenaphthylene<br>Chrysene              | 2             |                    |                  | i     |
| Fluoranthene                            | 2             | 1                  |                  | •     |
| Fluorene                                | 2             | •                  |                  |       |
| Naphthalene                             | 2             | 1                  |                  | - 4   |
|                                         | 2             | i                  |                  | 7     |
| Phenanthrene/anthracene<br>Pyrene       | 2             | 1                  |                  |       |
| • • • • • • • • • • • • • • • • • • • • | •             | •                  |                  |       |
| Halogenated aliphatics                  | 2             | 2                  | 10 - 41          | :     |
| Chloroform                              |               | 2                  | 10 - 41          | i     |
| Dichlorobromomethane                    | 2             |                    |                  |       |
| 1,1-Dichloroethane                      | 2             |                    |                  | 1     |
| 1,2-Dichloroethane                      | 2             |                    |                  | ,     |
| 1,1,2,2-Tetrachloroethane               | 2             |                    |                  | 1     |
| 1,1,1-Trichloroethane                   | 2             | 1                  |                  | 1     |
| 1,1,2-Trichloroethane                   | 2             |                    |                  | 1     |
| Trichlorofluoromethane                  | 2             |                    |                  | 1     |
| Pesticides and metabolites              |               |                    |                  |       |
| Chlordane                               | 2             |                    |                  | 1     |
|                                         | 2             |                    |                  | 1     |

Note: ND = not detected.

Lesser variations occur for the classical parameters, such as  $BOD_5$  and suspended solids. Table 7-8 presents these values along with the waste loads for chromium and phenols. Table 7-9 summarizes the presence of other toxic pollutants and their respective levels for hair pulp/nonchrome tan/retan-wet finish tanneries.

TABLE 7-8. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE NONCHROME TAN/RETAN-WET FINISH SUBCATEGORY [1]

|                  |             | Concentration  | n, mg/L |
|------------------|-------------|----------------|---------|
|                  |             | Range of       |         |
|                  | Number of   | individual     |         |
| Pollutant        | data points | data points    | Mean    |
| BOD <sub>5</sub> | 48          | 1.00 - 7,800   | 1,200   |
| COD              | 40          | 1,100 - 75,000 | 5,100   |
| TSS              | 55          | 28.0 - 8,200   | 1,700   |
| TKN              | 21          | 130 - 1,200    | 200     |
| Total phenols    | 16          | 0.280 - 100    | 1.2     |
| Sulfides         | 29          | 0.100 - 330    | 68      |
| Oil and grease   | 32          | 2.00 - 1,300   | 340     |
| Total chromium   | 30          | 0.250 - 110    | 11      |
| Ammonia          | 20          | 23 - 680       | 90      |

Tables 7-10 and 7-11 characterize the tannery wastewaters for conventional and toxic pollutants, respectively.

## II.7.2.4 Retan-Wet Finish

The tanneries in this industry segment limit their operations to retan and wet finish hides or splits that have been unhaired and tanned. The absence of the beamhouse process results in lower organic and sulfide loadings for this subcategory.

#### II.7.2.5 No Beamhouse

These tanneries consist only of tanyard and retan-wet finish operations with no beamhouse. Since unhairing operations are absent from these tanneries, the raw waste loads, including  $BOD_5$ , suspended solids and sulfide, are lower. Tanyard operations increase conventional pollutant levels beyond those typical for strictly retan-wet finish facilities. Tables 7-12 and 7-13 present the average values for conventional and toxic pollutants in no-beamhouse tanneries.

#### II.7.2.6 Through-the-Blue

Hair removal and chrome tanning of cattle hides are the basic operations of the through-the-blue tanneries. Relatively high organic loads, as well as the nitrogen and sulfide contents, reflect beamhouse operations; total chromium levels result from

TABLE 7-9. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE NONCHROME TAN/RETAN-WET FINISH SUBCATEGORY [1]

| Toxic pollutants samples  Metals and inorganics Chromium 4 Copper 4 Cyanide 3 Lead 4 Nickel 4 Zinc 4  Sthers Bis(2-chloroisopropyl) ether 4 Phthalates Bis(2-ethylhexyl) phthalate 4 Butyl benzyl phthalate 4 Din-butyl phthalate 4 Dinethyl phthalate 4 Dinethyl phthalate 4 Dinethyl phthalate 4 Nitrogen compounds Benzidine 3,3'-Dichlorobenzidine 4 1,2-Diphenylhydrazine 4 N-nitrosodiphenylamine 4 Phenols 2,4-Dimethylphenol 4 2,4-Dimethylphenol 4 2,4-Dimethylphenol 4 Phenol 4 Aromatics Benzene 4 Chlorobenzene 4 1,3-Dichlorobenzene 4 1,2-Dichlorobenzene 4 1,2-Dichlorobenzene 4 1,2-Dichlorobenzene 4 1,2-Dichlorobenzene 4 1,2-Trichlorobenzene 4 1,2-Trichlorobenzene 4 Nitrobenzene 4 Phexachlorobenzene 4 1,2,4-Trichlorobenzene 4 Phexachlorobenzene 4 Nitrobenzene 4 Nitrobenzene 4 Nitrobenzene 4 Nitrobenzene 4 Nitrobenzene 4 Phexachlorobenzene 4 Nitrobenzene 4 Ni | detected  4 4 4 4 4 4 4 4 3 3 3           | Concentration Range  430 - 10,000 100 - 740 60 - 100 100 - 200 40 - 95 300 - 700  10 - 2,900 51 - 25,00  10 - 10 49 - 200 19 - 20 10 - 120 | Mean  5,100 380 80 140 61 490 NE Present Present NI               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Chromium Copper Cyanide Lead Nickel Zinc  Sthers Bis(2-chloroisopropyl) ether Phthalates Bis(2-ethylhexyl) phthalate Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Di-n-butyl phthalate Dinethyl phthala | 4<br>2<br>4<br>4<br>4<br>1<br>1<br>1      | 100 - 740<br>60 - 100<br>100 - 200<br>40 - 95<br>300 - 700<br>10 - 2,900<br>51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                   | 380<br>80<br>140<br>61<br>490<br>NE<br>Present<br>Present<br>NI<br>NI<br>NI<br>NI<br>1,500<br>0 9,000 |
| Chromium Copper Cyanide Lead Nickel Zinc Cthers Bis(2-chloroisopropyl) ether Chthalates Bis(2-ethylhexyl) phthalate Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Compounds Compoun | 4<br>2<br>4<br>4<br>4<br>1<br>1<br>1      | 100 - 740<br>60 - 100<br>100 - 200<br>40 - 95<br>300 - 700<br>10 - 2,900<br>51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                   | 380<br>80<br>140<br>61<br>490<br>NE<br>Present<br>Present<br>NI<br>NI<br>NI<br>NI<br>1,500<br>0 9,000 |
| Copper Cyanide Cyanide Lead Nickel Zinc Cthers Bis(2-chloroisopropyl) ether Chthalates Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate Di-n-butyl phthalate Diethyl phthalate Diethyl phthalate Compounds Benzidine Citrogen compounds Benzidine Citrogen compounds Citrogen compoun | 2<br>4<br>4<br>4<br>1<br>1<br>1<br>3<br>3 | 100 - 740<br>60 - 100<br>100 - 200<br>40 - 95<br>300 - 700<br>10 - 2,900<br>51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                   | 380<br>80<br>140<br>61<br>490<br>NE<br>Present<br>Present<br>NI<br>NI<br>NI<br>NI<br>1,500<br>0 9,000 |
| Cyanide Lead Anickel Zinc  Sthers Bis(2-chloroisopropyl) ether Phthalates Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate Din-n-butyl phthalate Dinethyl phthalate Dinethyl phthalate Dinethyl phthalate Dinethyl phthalate Anitrogen compounds Benzidine 3,3'-Dichlorobenzidine 1,2-Diphenylhydrazine An-nitrosodiphenylamine Phenols 2,4-Dichlorophenol 2,4-Dimethylphenol Pentachlorophenol Aromatics Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 4 1,2-Dichlorobenzene 4 1,2-Dichlorobenzene 4 1,2-Dichlorobenzene 4 1,2-A-Trichlorobenzene 4 Nitrobenzene 4  | 4<br>4<br>4<br>1<br>1<br>1<br>3<br>3      | 10 - 200<br>40 - 95<br>300 - 700<br>10 - 2,900<br>51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                             | 140<br>61<br>490<br>NE<br>NE<br>Present<br>Present<br>NI<br>NI<br>NI<br>NI<br>1,500<br>0 9,000        |
| Lead Nickel 4 Zinc 4  Sthers Bis(2-chloroisopropyl) ether 4 Phthalates Bis(2-ethylhexyl) phthalate 4 Butyl benzyl phthalate 4 Diethyl phthalate 4 Nitrogen compounds Benzidine 4 3,3'-Dichlorobenzidine 4 1,2-Diphenylhydrazine 4 N-nitrosodiphenylamine 4 Phenols 2,4-Dichlorophenol 4 2,4-Dimethylphenol 4 Pentachlorophenol 4 Pentachlorophenol 4 Pentachlorobenzene 4 1,2-Dichlorobenzene 4 1,2-Dichlorobenzene 4 1,3-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,2-Dichlorobenzene 4 1,2-Tichlorobenzene 4 Nitrobenzene 4 Nitrobenzene 4 Phexachlorobenzene 4 Nitrobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthylene 4 Chrysene 4 Fluoranthene 5 Fluoranthene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4<br>4<br>4<br>1<br>1<br>1<br>3<br>3      | 10 - 2,900<br>51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                 | NI<br>490<br>NI<br>Present<br>Present<br>NI<br>NI<br>NI<br>NI<br>1,500<br>0 9,000                     |
| Nickel Zinc  Sthers Bis(2-chloroisopropyl) ether Phthalates Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate Din-butyl phthalate Dinethyl phthal | 2<br>4<br>3<br>3<br>3                     | 10 - 2,900<br>51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                 | A90 NI NI Present Present NI NI NI NI NI 1,500 0 9,000                                                |
| Zinc  Ethers  Bis(2-chloroisopropyl) ether  Phthalates  Bis(2-ethylhexyl) phthalate  Butyl benzyl phthalate  Di-n-butyl phthalate  Diethyl phthalate  Diethyl phthalate  Diethyl phthalate  Diethyl phthalate  Diethyl phthalate  Diethyl phthalate  Astrogen compounds  Benzidine  3,3'-Dichlorobenzidine  1,2-Diphenylhydrazine  N-nitrosodiphenylamine  Phenols  2,4-Dichlorophenol  2,4-Dimethylphenol  Pentachlorophenol  Aromatics  Benzene  Chlorobenzene  1,2-Dichlorobenzene  1,3-Dichlorobenzene  1,4-Dichlorobenzene  4 1,4-Dichlorobenzene  4 1,4-Dichlorobenzene  4 1,2-A-Trichlorobenzene  4 Nitrobenzene  Toluene  1,2,4-Trichlorobenzene  4 Polycyclic aromatic hydrocarbons  Acenaphthene  Acenaphthene  Acenaphthene  Acenaphthylene  Chrysene  Fluoranthene  Fluoranthene  Fluoranthene  Phenanthrene/anthracene  Pyrene  Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>1<br>2<br>4<br>3<br>3<br>3           | 10 - 2,900<br>51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                 | NI NI Present Present NI NI NI NI 1,500 0 9,000                                                       |
| Bis(2-chloroisopropyl) ether  Phthalates  Bis(2-ethylhexyl) phthalate  Butyl benzyl phthalate  Di-n-butyl phthalate  Diethyl phthalate  Diethyl phthalate  Diethyl phthalate  Diethyl phthalate  Asirogen compounds  Benzidine  3,3'-Dichlorobenzidine  1,2-Diphenylhydrazine  N-nitrosodiphenylamine  Phenols  2,4-Dichlorophenol  2,4-Dichlorophenol  4  2,4-Dimethylphenol  Pentachlorophenol  4  Aromatics  Benzene  Chlorobenzene  1,2-Dichlorobenzene  1,3-Dichlorobenzene  1,4-Dichlorobenzene  4  1,4-Dichlorobenzene  4  1,2-A-Trichlorobenzene  4  Nitrobenzene  Toluene  1,2,4-Trichlorobenzene  4  Polycyclic aromatic hydrocarbons  Acenaphthene          | 2<br>4<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NI N                                                              |
| Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate Di-n-butyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate  Asirogen compounds Benzidine 3,3'-Dichlorobenzidine 1,2-Diphenylhydrazine N-nitrosodiphenylamine  Phenols 2,4-Dichlorophenol 4,2,4-Dimethylphenol Pentachlorophenol 4,2-Dichlorophenol 4,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 4,3-Dichlorobenzene 1,4-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Trichlorobenzene 4,2-Trichlorobenzene 4,2-Trichlor | 2<br>4<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NE Present Present NE                                             |
| Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate Di-n-butyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate  Asirogen compounds Benzidine 3,3'-Dichlorobenzidine 1,2-Diphenylhydrazine N-nitrosodiphenylamine  Phenols 2,4-Dichlorophenol 4,2,4-Dimethylphenol Pentachlorophenol 4,2-Dichlorophenol 4,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 4,3-Dichlorobenzene 1,4-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Trichlorobenzene 4,2-Trichlorobenzene 4,2-Trichlor | 2<br>4<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NE Present Present NE                                             |
| Butyl benzyl phthalate D1-n-butyl phthalate D2-n-butyl phthalate D4-n-butyl phthalate D4-n-bu | 2<br>4<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | Present Present NI NI NI NI NI 1,500 0 9,000                                                          |
| D1-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>4<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | Present NI NI NI NI NI 1,500 0 9,000 10 NI 120 NI                                                     |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>4<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NI<br>NI<br>NI<br>NI<br>NI<br>1,500<br>0 9,000                                                        |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4<br>3<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NI<br>NI<br>NI<br>NI<br>NI<br>1,500<br>0 9,000                                                        |
| Benzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>3<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NI<br>NI<br>NI<br>1,500<br>0 9,000<br>10<br>NI<br>120<br>NI                                           |
| 3,3'-Dichlorobenzidine 1,2-Diphenylhydrazine N-nitrosodiphenylamine 2,4-Dichlorophenol 2,4-Dimethylphenol 4 Pentachlorophenol 4 Chlorobenzene 4 1,2-Dichlorobenzene 4 1,3-Dichlorobenzene 4 1,4-Dichlorobenzene 4 Hexachlorobenzene 4 Hexachlorobenzene 4 Nitrobenzene 4 Nitrobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthylene Chrysene 4 Fluoranthene Fluorene Naphthalene Phenanthrene/anthracene Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4<br>3<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NI<br>NI<br>NI<br>1,500<br>0 9,000<br>10<br>NI<br>120<br>NI                                           |
| 1,2-Diphenylhydrazine N-nitrosodiphenylamine  Phenols 2,4-Dichlorophenol 4,2,4-Dimethylphenol Pentachlorophenol 4 Pentachlorophenol 4 Pentachlorophenol 4 Phenol 4 Aromatics Benzene 4 Chlorobenzene 1,2-Dichlorobenzene 4 1,3-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,2-Trichlorobenzene 4 Nitrobenzene 4 1,2,4-Trichlorobenzene 4 1 | 4<br>3<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NI<br>NI<br>1,500<br>0 9,000<br>10<br>NI<br>120<br>NI                                                 |
| N-nitrosodiphenylamine  2,4-Dichlorophenol 2,4-Dimethylphenol 4 Pentachlorophenol 4 Phenol 4 Aromatics Benzene 4 Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,2-Trichlorobenzene 4 Nitrobenzene 4 1,2,4-Trichlorobenzene  | 4<br>3<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NI<br>NI<br>1,500<br>0 9,000<br>10<br>NI<br>120<br>NI                                                 |
| N-nitrosodiphenylamine  Phenols  2,4-Dichlorophenol 4,24-Dimethylphenol 4 Pentachlorophenol 4 Phenol  Aromatics Benzene 4 Chlorobenzene 1,2-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Dichlorobenzene 4,4-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,2-Trichlorobenzene 4 1,2,4-Trichlorobenzene 4 1,2,4-Trich | 4<br>3<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NI<br>NI<br>1,500<br>0 9,000<br>10<br>NI<br>120<br>NI                                                 |
| 2,4-Dichlorophenol 2,4-Dimethylphenol 4 Pentachlorophenol 4 Phenol 4 Aromatics Benzene Chiorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,2-Trichlorobenzene 4 1,2,4-Trichlorobenzene 4 1,2,4-Trichlorobenzene 4 1,2,4-Trichlorobenzene 4 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene Acenaphthylene 4 Chrysene Fluoranthene Fluorene Naphthalene Phenanthrene/anthracene Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>3<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NI<br>1,500<br>0 9,000<br>10<br>NI<br>120<br>NI                                                       |
| 2,4-Dimethylphenol 4 Pentachlorophenol 4 Phenol 4 Aromatics Benzene 4 Chlorobenzene 4 1,2-Dichlorobenzene 4 1,3-Dichlorobenzene 4 1,4-Dichlorobenzene 4 Ethylbenzene 4 Mitrobenzene 4 Nitrobenzene 4 Toluene 4 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthene 4 Acenaphthylene 4 Fluoranthene 5 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>3<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | NI<br>1,500<br>0 9,000<br>10<br>NI<br>120<br>NI                                                       |
| Pentachlorophenol         4           Phenol         4           Aromatics         Benzene         4           Chlorobenzene         4         1,2-Dichlorobenzene         4           1,3-Dichlorobenzene         4         1,4-Dichlorobenzene         4           Ethylbenzene         4         4         4           Hexachlorobenzene         4         4           Nitrobenzene         4         4           Toluene         4         4           1,2,4-Trichlorobenzene         4         4           Polycyclic aromatic hydrocarbons         Acenaphthene         4           Acenaphthylene         4         4           Chrysene         4         4           Fluoranthene         4         4           Naphthalene         4         4           Phenanthrene/anthracene         4         4           Pyrene         4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4<br>3<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | 1,500<br>0 9,000<br>10<br>NI<br>120<br>NI                                                             |
| Phenol 4  Aromatics Benzene 4 Chlorobenzene 4 1,2-Dichlorobenzene 4 1,3-Dichlorobenzene 4 1,4-Dichlorobenzene 4 Ethylbenzene 4 Hexachlorobenzene 4 Mitrobenzene 4 Toluene 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthylene 4 Chrysene 4 Fluoranthene 4 Fluorene Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4<br>3<br>3<br>3                          | 51 - 25,00<br>10 - 10<br>49 - 200<br>19 - 20                                                                                               | 0 9,000<br>10<br>NI<br>120<br>NI                                                                      |
| Aromatics Benzene 4 Chlorobenzene 4 1,2-Dichlorobenzene 4 1,4-Dichlorobenzene 4 1,4-Dichlorobenzene 4 Ethylbenzene 4 Hexachlorobenzene 4 Nitrobenzene 4 Nitrobenzene 4 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthene 4 Acenaphthylene 4 Chrysene 5 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3<br>3<br>3                               | 10 - 10<br>49 - 200<br>19 - 20                                                                                                             | 10<br>NI<br>120<br>NI                                                                                 |
| Benzene 4 Chlorobenzene 4 1,2-Dichlorobenzene 4 1,3-Dichlorobenzene 4 1,4-Dichlorobenzene 4 Ethylbenzene 4 Hexachlorobenzene 4 Toluene 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthylene 4 Chrysene 4 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                         | <b>49 - 200</b><br><b>19 - 20</b>                                                                                                          | NI<br>120<br>NI                                                                                       |
| Chlorobenzene 4 1,2-Dichlorobenzene 4 1,3-Dichlorobenzene 4 1,4-Dichlorobenzene 4 Ethylbenzene 4 Hexachlorobenzene 4 Nitrobenzene 4 Toluene 4 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthene 4 Chrysene 5 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                         | <b>49 - 200</b><br><b>19 - 20</b>                                                                                                          | NI<br>120<br>NI                                                                                       |
| 1,2-Dichlorobenzene 4 1,3-Dichlorobenzene 4 1,4-Dichlorobenzene 4 Ethylbenzene 4 Hexachlorobenzene 4 Nitrobenzene 4 Toluene 4 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthene 4 Chrysene 4 Fluoranthene 4 Fluoranthene 4 Naphthalene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                         | 19 - 20                                                                                                                                    | 120<br>N                                                                                              |
| 1,3-Dichlorobenzene       4         1,4-Dichlorobenzene       4         Ethylbenzene       4         Hexachlorobenzene       4         Nitrobenzene       4         Toluene       4         1,2,4-Trichlorobenzene       4         Polycyclic aromatic hydrocarbons       Acenaphthene         Acenaphthylene       4         Chrysene       4         Fluoranthene       4         Fluoranthene       4         Naphthalene       4         Phenanthrene/anthracene       4         Pyrene       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                         | 19 - 20                                                                                                                                    | N                                                                                                     |
| 1,4-Dichlorobenzene 4 Ethylbenzene 4 Hexachlorobenzene 4 Nitrobenzene 4 Toluene 4 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthylene 4 Chrysene 4 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                                                                                                                            |                                                                                                       |
| Ethylbenzene 4 Hexachlorobenzene 4 Nitrobenzene 4 Toluene 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Chrysene 4 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                                                            | 2.0                                                                                                   |
| Hexachlorobenzene 4 Nitrobenzene 4 Toluene 4 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthylene 4 Chrysene 4 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                         | 10 - 120                                                                                                                                   | 2                                                                                                     |
| Nitrobenzene 4 Toluene 4 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthylene 4 Chrysene 4 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                         |                                                                                                                                            | 58                                                                                                    |
| Toluene 4 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthylene 4 Chrysene 4 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                            | N                                                                                                     |
| 1,2,4-Trichlorobenzene 4 Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthylene 4 Chrysene 4 Fluoranthene 5 Haphthalene 4 Phenanthrene/anthracene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                                                                                            | N                                                                                                     |
| Polycyclic aromatic hydrocarbons Acenaphthene 4 Acenaphthylene 4 Chrysene 4 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                         | 10 - 15                                                                                                                                    | 13                                                                                                    |
| Acenaphthene 4 Acenaphthylene 4 Chrysene 4 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                            | N                                                                                                     |
| Acenaphthylene 4 Chrysene 4 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                                                                                                                                            |                                                                                                       |
| Chrysene 4 Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                            | N                                                                                                     |
| Fluoranthene 4 Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                                                                                                                            | N                                                                                                     |
| Fluorene 4 Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                                                                                            | N                                                                                                     |
| Naphthalene 4 Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                                                                                                                            | N                                                                                                     |
| Phenanthrene/anthracene 4 Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                                                                                                                            | N                                                                                                     |
| Pyrene 4 Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                         | 6 - 59                                                                                                                                     | 3:                                                                                                    |
| Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                         |                                                                                                                                            |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                                                            | N                                                                                                     |
| Chloroform A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                            |                                                                                                       |
| CHIOLOIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                         |                                                                                                                                            | 2                                                                                                     |
| Dichlorobromomethane 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                         |                                                                                                                                            | 1                                                                                                     |
| l,l-Dichloroethane 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                                                                                                                            | N                                                                                                     |
| 1,2-Dichloroethane 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                                                                                                                            | N                                                                                                     |
| 1,2-Trans-dichloroethylene 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                            | N                                                                                                     |
| 1,1,2,2-Tetrachloroethane 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                         |                                                                                                                                            | 1                                                                                                     |
| Tetrachloroethylene 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ī                                         |                                                                                                                                            | 2                                                                                                     |
| 1,1,1-Trichloroethane 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                         |                                                                                                                                            | N                                                                                                     |
| 1,1,2-Trichloroethane 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                                                                                                                            | N                                                                                                     |
| Trichloroethylene 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                                                                                                            | N                                                                                                     |
| Trichlorofluoromethane 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                                                                                                                            | N                                                                                                     |
| Pesticides and metabolites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                                                                                                                                            |                                                                                                       |
| a-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                                                                                                                                            |                                                                                                       |
| β-BHC }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                                                                                                                            |                                                                                                       |
| Chlordane 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                                                                                                                            | N                                                                                                     |
| Isophorone 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                            | N<br>N                                                                                                |

Note: ND = not detected.

TABLE 7-10. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUT-ANTS FOR THE RETAN-WET FINISH SUBCATEGORY [1]

| Pollutant      |                          | Concentration, mg/L                   |       |  |
|----------------|--------------------------|---------------------------------------|-------|--|
|                | Number of<br>data points | Range of<br>individual<br>data points | Mean  |  |
| BOD.           | 30                       | 200 - 1,600                           | 780   |  |
| COD            | 9                        | 1,200 - 4,800                         | 3,100 |  |
| TKN            | 9                        | 110 - 480                             | 210   |  |
| Total phenols  | 8                        | 0.230 - 17.0                          | 3.9   |  |
| Sulfides       | 7                        | 0.160 - 2.40                          | 1.1   |  |
| Oll and grease | 29                       | 58 - 850                              | 270   |  |
| Total chromium | 24                       | 1.60 - 380                            | 53    |  |
| Ammonia        | 9                        | 58.0 - 160                            | 110   |  |

TABLE 7-11. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE RETAN-WET FINISH SUBCATEGORY [1]

|                                                 | Number   | Mumbar             |                        |                   |
|-------------------------------------------------|----------|--------------------|------------------------|-------------------|
| Toxic pollutants                                | samples_ | Number<br>detected | Concentration<br>Range | , µg/L<br>Mean    |
| Metals and inorganics                           |          |                    |                        |                   |
| Chromium                                        | 3        | 3                  | 16,000 - 130,000       | 89,000            |
| Copper                                          | 3        | š                  | 160 - 330              | 250               |
| Cyanide                                         | 2        | ĭ                  | 100 550                | 30                |
| Lead                                            | 3        | 3                  | 100 - 3,500            | 1,300             |
| Nickel                                          | 3        | 3                  | 6 - 100                | 4:                |
| Zinc                                            | 3        | 3                  | 150 - 280              | 198               |
| Ethers Bis(2-chloroisopropyl) ether             | 3        |                    |                        | NE                |
| Phthalates                                      |          |                    |                        |                   |
| Bis(2-ethylhexyl) phthalate                     | 3        |                    |                        | NI                |
| Butyl benzyl phthalate                          | 3        |                    |                        | NI                |
| Di-n-butyl phthalate                            | 3        | 1                  |                        | Present           |
| Diethyl phthalate                               | 3        | ī                  |                        | Present           |
| Dimethyl phthalate                              | 3        |                    |                        | NE                |
| Nitrogen compounds                              |          |                    |                        |                   |
| Benzidine                                       | 3        |                    |                        | NI                |
| 3,3'-Dichlorobenzidine                          | 3        |                    |                        | NI.               |
| 1,2-Diphenylhydrazine                           | š        |                    |                        |                   |
| N-nitrosodiphenylamine                          | 3        | 1                  |                        | NE<br>250         |
| Phenols                                         |          | -                  |                        | 230               |
| 2,4-Dichlorophenol                              | 3        |                    |                        |                   |
| 2,4-Dimethylphenol                              | 3        |                    |                        | MD                |
| Pentachlorophenol                               | 3        |                    |                        | ND                |
| Phenol                                          | 3        | 2                  |                        | ND                |
| 2,4,6-Trichlorophenol                           | 3        | 2                  | 3,200<br>570           | 3,200             |
| •                                               | 3        | 2                  | 570                    | 570               |
| Aromatics<br>Benzene                            | _        |                    |                        |                   |
|                                                 | 3        | 2                  |                        | 10                |
| Chlorobenzene                                   | 3        |                    |                        | ND                |
| 1,2-Dichlorobenzene                             | 3        |                    |                        | ND                |
| 1,3-Dichlorobenzene                             | 3        |                    |                        | ND                |
| 1,4-Dichlorobenzene                             | 3        |                    |                        | ND                |
| Ethylbenzene                                    | 3        | 3                  | 10 - 150               | 80                |
| Hexachlorobenzene                               | 3        |                    |                        | ND                |
| Nitrobenzene<br>Toluene                         | 3        | _                  |                        | ND                |
| 1,2,4-Trichlorobenzene                          | 3<br>3   | 3                  | 10 - 11                | 10                |
|                                                 | -        |                    |                        | ND                |
| olycyclic aromatic hydrocarboni<br>Acenaphthene |          | _                  |                        |                   |
| Acenaphthylene                                  | 3        | 1                  |                        | Present           |
| Chrysene                                        | 3        |                    |                        | ND                |
| Fluoranthene                                    | 3        |                    |                        | ND                |
| Fluorene                                        | 3        |                    |                        | ND                |
| Naphthalene                                     | 3        | 1                  |                        | ND                |
| Phenanthrene/anthracene                         | 3        | 2                  | 110 140                | Present           |
| Pyrene                                          | 3        | 4                  | 110 - 140              | 120<br><b>N</b> D |
| dalogenated aliphatics                          | •        |                    |                        | ND                |
| Chloroform                                      | 3        | 2                  | 10 10                  |                   |
| Dichlorobromomethane                            | 3        | 2                  | 10 - 10                | 10                |
| 1,1-Dichloroethane                              | 3        |                    |                        | ND                |
| 1,2-Dichloroethane                              | 3        |                    |                        | ND                |
| 1.2-Trans-dichloroethylene                      | 3        |                    |                        | ND                |
| 1,1,2,2-Tetrachloroethane                       | 3        |                    |                        | ND                |
| Tetrachloroethylene                             | 3        |                    |                        | ND                |
| 1,1,1-Trichloroethane                           | 3        |                    |                        | ND                |
| 1,1,2-Trichloroethane                           | 3        |                    |                        | ND                |
| Trichloroethylene                               | 3        |                    |                        | NTD<br>NTD        |
| Trichlorofluoromethane                          | 3        |                    |                        | ND<br>ND          |
| esticides and metabolites                       | -        |                    |                        | n <i>U</i>        |
| 8-BHC                                           | 3        |                    |                        | ND                |
| Chlordane                                       | 3        |                    |                        |                   |
| Isophorone                                      | 3        |                    |                        | ND                |
| TCDD                                            | 3        | 1                  |                        | MD                |
|                                                 | 3        | 1                  |                        | ND                |

Note: ND = not detected.

Date: 6/23/80

TABLE 7-12. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUT-ANTS FOR THE NO BEAMHOUSE SUBCATEGORY [1]

| Pollutant        |                       | Concentration Range of    | on, mg/L |
|------------------|-----------------------|---------------------------|----------|
|                  | Number of data points | indıvidual<br>data points | Mean     |
| BOD <sub>5</sub> | 130                   | 20 - 20,000               | 1,000    |
| COD              | 64                    | 140 - 38,000              | 1,700    |
| TSS              | 124                   | 120 - 37,000              | 632      |
| IKN              | 12                    | 22.0 - 160                | 168      |
| Fotal phenols    | 20                    | 0.112 - 9.90              | 1.       |
| Sulfides         | 13                    | 0.090 - 6.40              | 3.       |
| Oll and grease   | 32                    | 85.0 - 1,200              | 340      |
| Total chromium   | 66                    | 2.80 - 1,900              | 68       |
| Ammonia          | 22                    | 6.20 - 99.0               | 36       |

TABLE 7-13. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE NO BEAMHOUSE SUBCATEGORY [1]

| N                                     | of     | Number   | Concentration           | u <b>a</b> /I |
|---------------------------------------|--------|----------|-------------------------|---------------|
| Toxic pollutants s                    | amples | detected | Concentration,<br>Range | μg/L<br>Mean  |
|                                       |        |          |                         |               |
| fetals and inorganics Chromium        | 3      | 3        | 16,000 - 170,000        | 74,000        |
| Copper                                | 3      | 3        | 140 - 260               | 190           |
| Cyanide                               | 3      |          |                         | NI            |
| Lead                                  | 3      | 3        | 60 - 1,600              | 790           |
| Nickel                                | 3      | 3        | 6 - 30                  | 15            |
| Zinc                                  | 3      | 3        | 96 - 2,600              | 1,000         |
| thers Bis(2-chloroisopropyl) ether    | 3      |          |                         | N             |
| hthalates                             |        |          |                         |               |
| Bis(2-ethylhexyl) phthalate           | 3      |          |                         | N             |
| Butyl benzyl phthalate                | 3      |          |                         | N             |
| Di-n-butyl phthalate                  | 3      |          |                         | N             |
| Diethyl phthalate                     | 3      |          |                         | N.            |
| Dimethyl phthalate                    | 3      |          |                         | N             |
| itrogen compounds                     |        |          |                         |               |
| Benzidine                             | 3      |          |                         | N             |
| 3,3'-Dichlorobenzidine                | 3      |          |                         | N             |
| 1,2-Diphenylhydrazine                 | 3      |          |                         | N             |
| N-nitrosodiphenylamine                | 3      |          |                         | N             |
| henols                                |        |          |                         |               |
| 2,4-Dichlorophenol                    | 3      |          |                         | N             |
| 2,4-Dimethylphenol                    | 3      |          |                         | N             |
| Penatchlorophenol                     | 3      | 2        | 3,400 - 3,700           | 3,60          |
| Phenol                                | 3      | 1        |                         | 6,20          |
| 2,4,6-Trichlorophenol                 | 3      | 3        | 2,400 - 4,200           | 3,30          |
| romatics                              |        |          |                         | _             |
| Benzene                               | 3      | 2        | 10 - 150                | 8             |
| Chlorobenzne                          | 3      |          |                         | N             |
| 1,2-Dichlorobenzene                   | 3      | 1        |                         | 3             |
| 1,3-Dichlorobenzene                   | 3      |          |                         | Ņ             |
| l,4-Dichlorobenzene                   | 3<br>3 | 1 2      | 10 150                  | 1 8           |
| Ethylbenzene<br>Hexachlorobenzene     | 3      | 2        | 10 - 150                | N             |
| Nitrobenzene                          | 3      |          |                         | N             |
| Toluene                               | 3      | 2        | 10 - 150                | 8             |
| 1,2,4-Trichlorobenzene                | 3      | -        | 10 - 130                | N             |
| olycyclic aromatic hydrocarbons       |        |          |                         |               |
| Acenaphthene                          | 3      |          |                         | N             |
| Acenaphthylene                        | 3      |          |                         | N             |
| Chrysene                              | 3      |          |                         | N             |
| Fluoranthene                          | 3      |          |                         | N             |
| Fluorene                              | 3      |          |                         | N             |
| Naphthalene                           | 3      | 2        | 5 - 49                  | 2             |
| Phenanthrene/anthracene               | 3      | 2        | 111 - 130               | 12            |
| Pyrene                                | 3      |          |                         | N             |
| alogenated aliphatics                 |        |          |                         |               |
| Chloroform                            | 3      | 3        | 2 - 18                  | 1             |
| Dichlorobromomethane                  | 3      | 1        |                         | ]             |
| 1,1-Dichloroethane                    | 3      |          |                         | 1             |
| 1,2-Dichloroethane                    | 3      |          |                         |               |
| 1,2-Trans-dichloroethylene            | 3      |          |                         | 1             |
| 1,1,2,2-Tetrachloroethane             | 3      |          |                         | 1             |
| Tetrachloroethylene                   | 3      | 1        |                         | 4             |
| 1,1,1-Trichloroethane                 | 3      |          |                         | 1             |
| 1,1,2-Trichloroethane                 | 3      |          |                         | 1             |
| Trichloroethylene                     | 3<br>3 | 1        |                         | ]             |
| Trichlorofluoromethane                | 3      |          |                         |               |
| Pesticides and metabolites<br>α-BHC . |        |          |                         |               |
| 8-BHC                                 | 3      |          |                         | ŀ             |
| Chlordane                             | 3      |          |                         | ,             |
|                                       | 3      |          |                         |               |

Note ND = not detected

chrome tanning procedures. Average raw waste loads for the major parameters are presented in Table 7-14. Table 7-15 identifies the toxic pollutants and their respective concentrations.

TABLE 7-14. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE THROUGH-THE-BLUE SUBCATEGORY [1]

|                |             | Concentration   | n, mg/L |  |
|----------------|-------------|-----------------|---------|--|
|                |             | Range of        |         |  |
|                | Number of   | individual      |         |  |
| Pollutant      | data points | data points     | Mean    |  |
| BOD            | 8           | 1.300 - 11.000  | 2,500   |  |
| COD            | 5           | 10,500 - 33,000 | 6,400   |  |
| rss            | 8           | 1,200 - 14,000  | 3,900   |  |
| TKN            | 5           | 960 - 1,800     | a       |  |
| Total phenols  | 1           | 9.60            | _*      |  |
| Sulfides       | 4           | 137 - 680       | 118     |  |
| oil and grease | 9           | 67.0 - 6,200    | 560     |  |
| Total chromium | 4           | 230 - 400       | 100     |  |
| Ammonia        | 4           | 400 - 610       | _ a     |  |

a Mean reported in reference was outside range of data.

## II.7.2.7 Shearling

Tanneries in this subcategory tan and wet finish sheepskins with wool intact. Subprocessing operations eliminate the need for a beamhouse; however, the amount of foreign matter which must be removed from the wool creates higher organic waste loads than those of no-beamhouse tanneries. The absence of grease recovery during the degreasing step is responsible for the higher oil and grease loads. Chrome tanning is prevalent for shearling processing and results in significant levels of total chromium in the untreated wastewater. Tables 7-16 and 7-17 summarize the conventional and toxic pollutants found at shearling tanneries.

#### II.7.3 PLANT SPECIFIC DESCRIPTION [1]

Tables 7-18 through 7-27 present toxic pollutant and conventional pollutant data for leather tanning and finishing process plants. The data presented are based on information from six plants in five subcategories. An end-of-pipe treatment system was used for each tannery. The treatment system used by each site is listed on each table. No additional information is currently available on an individual plant basis.

#### II.7.4 POLLUTANT REMOVABILITY

## II.7.4.l Industry Application

The leather tanning and finishing industry utilizes two general systems to minimize the quantity of pollutants discharged by tanneries. They are (1) in-plant process control and (2) end-of-pipe effluent treatment systems. End-of-pipe treatment approaches include preliminary treatment and primary treatment,

TABLE 7-15 WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE THROUGH-THE-BLUE SUBCATEGORY [1]

|                                            | Number        |                    |                                   |
|--------------------------------------------|---------------|--------------------|-----------------------------------|
| Toxic pollutants                           | of<br>samples | Number<br>detected | Concentration, μg/L<br>Range Mean |
| TOXIC POTTUCANCS                           | Bampies       | detected           | Range Mean                        |
| Metals and inorganics                      | ,             | 1                  | 550.000                           |
| Chromium                                   | 1<br>1        | 1                  | 550,000                           |
| Copper<br>Lead                             | 1             | 1                  | 100                               |
| Nickel                                     | i             | i                  | 160                               |
| Zinc                                       | i             | 1                  | 980                               |
| Ethers                                     |               | •                  | 300                               |
| Bis(2-chloroisopropyl) ether               | 1             |                    | ND                                |
| Phthalates<br>Bis(2-ethylhexyl) phthalate  | 1             |                    | <b>N</b> D                        |
| Butyl benzyl phthalate                     | ī             |                    | ND                                |
| Di-n-butyl phthalate                       | ī             |                    | <b>N</b> D                        |
| Diethyl phthalate                          | ī             |                    | <b>N</b> D                        |
| Dimethyl phthalate                         | ī             |                    | ND                                |
| Nitrogen compounds                         |               |                    |                                   |
| Benzidine                                  | 1             |                    | ND                                |
| 3,3'-Dichlorobenzidine                     | 1             |                    | ND                                |
| 1,2-Diphenylhydrazine                      | 1             |                    | <b>N</b> D                        |
| N-nitrosodiphenylamine                     | ī             |                    | <b>N</b> D                        |
| Phenols                                    |               |                    |                                   |
| 2,4-Dichlorophenol                         | 1             |                    | ND                                |
| 2,4-Dimethylphenol                         | 1             | 1                  | Present                           |
| Pentachlorophenol                          | 1             |                    | ND                                |
| Phenol                                     | 1             | 1                  | Present                           |
| 2,4,6-Trichlorophenol                      | 1             | 1                  | Present                           |
| Aromatics                                  | ,             |                    | <b></b>                           |
| Benzene                                    | 1             |                    | ND<br>ND                          |
| Chlorobenzene                              | i             | ,                  | ND<br>ND                          |
| l,2-Dichlorobenzene<br>l,3-Dichlorobenzene | 1             | 1 .                | Present                           |
| 1,4-Dichlorobenzene                        | 1             | 1                  | Present                           |
| Ethylbenzene                               | i             | i                  | Present                           |
| Hexachlorobenzene                          | i             | 1                  | NE                                |
| Nitrobenzene                               | i             |                    | NE                                |
| Toluene                                    | i             | 1                  | Present                           |
| 1,2,4-Trichlorobenzene                     | i             | 1                  | NE                                |
| Polycyclic aromatic hydrocarbo             | ns            |                    |                                   |
| Acenaphthene                               | 1             |                    | NI                                |
| Acenaphthylene                             | 1             | 1                  | Present                           |
| Chrysene                                   | 1             |                    | NI                                |
| Fluoranthene                               | 1             |                    | NI                                |
| Fluorene                                   | 1             | 1                  | Present                           |
| Naphthalene                                | 1             | 1                  | Present                           |
| Phenanthrene/anthracene                    | 1             | 1                  | Present                           |
| Pyrene                                     | 1             |                    | NI                                |
| Halogenated aliphatics Chloroform \        | 1             | 1                  | Present                           |
| Dichlorobromomethane                       |               | 1                  | NI                                |
| l,l-Dichloroethane                         | 1<br>1        |                    | NI                                |
| 1,2-Dichloroethane                         | i             |                    | NI                                |
| 1,2-Trans-dichloroethylene                 | i             |                    | NI                                |
| 1,1,2,2-Tetrachloroethane                  | i             |                    | NI                                |
| Tetrachloroethylene                        | i             |                    | NI                                |
| 1,1,1-Trichloroethane                      | i             | 1                  | Present                           |
| 1,1,2-Trichloroethane                      | i             | -                  | NI                                |
| Trichloroethylene                          | i             |                    | NI                                |
| Trichlorofluoromethane                     | i             |                    | N                                 |
| Pesticides and metabolites                 |               |                    |                                   |
| α-BHC                                      | 1             |                    | N                                 |
| β-BHC '                                    |               |                    |                                   |
| Chlordane<br>Isophorone                    | 1<br>1        |                    | Presen<br>N                       |
|                                            |               |                    | N                                 |

Note: ND = not detected.

Date: 6/23/80

TABLE 7-16. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUT-ANTS FOR THE SHEARLING SUBCATEGORY [1]

| Pollutant      | Number of<br>data points | Range of individual data points | n, mg/L<br>Mean |
|----------------|--------------------------|---------------------------------|-----------------|
| BOD.           | 24                       | 100 - 3.900                     | 350             |
| COD            | 19                       | 370 - 31,500                    | 900             |
| ŤSS            | 25                       | 120 - 7,600                     | 390             |
| TKN            | 7                        | 39.0 - 750                      | 53              |
| Sulfides       | 10                       | 0.080 - 68.0                    | 0.              |
| Oll and grease | 12                       | 56.0 - 1,200                    | 150             |
| Total chromium | 16                       | 0.020 - 140                     | 13              |
| Ammonia        | 7                        | 8.70 - 35.0                     | 13              |

TABLE 7-17. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOR THE SHEARLING SUBCATEGORY [1]

|                                           | Number of Mumber                     |          | Concentration, | µg/L      |
|-------------------------------------------|--------------------------------------|----------|----------------|-----------|
| Toxic pollutants                          | samples                              | detected | Range          | Mean      |
| Metals and inorganics                     |                                      |          |                |           |
| Chromium                                  | 2                                    | 2        | 2,000 - 53,000 | 36,500    |
| Copper                                    | 2                                    | 2        | 35 - 120       | 78        |
| Cyanide<br>Lead                           | 2 2                                  | 2<br>2   | 10             | 10        |
| Nickel                                    | 2                                    | 2        | 20 - 27        | 75<br>24  |
| Zinc                                      | 2                                    | 2        | 190 - 500      | 340       |
| thers Bis(2-chloroisopropyl) ether        | 2                                    |          |                | NI        |
| Phthalates                                |                                      |          |                |           |
| Bis(2-ethylhexyl) phthalate               | 2                                    | 1        |                | 93        |
| Butyl benzyl phthalate                    | 2                                    |          |                | N         |
| Di-n-butyl phthalate<br>Diethyl phthalate | 2 2                                  |          |                | NI        |
| Dimethyl phthalate                        | 2                                    |          |                | NI<br>NI  |
| itrogen compounds                         | -                                    |          |                | ***       |
| Benzidine                                 | 2                                    |          |                | NE        |
| 3,3'-Dichlorobenzidine                    | 2                                    |          |                | NI        |
| 1,2-Diphenylhydrazine                     | 2                                    |          |                | NI        |
| N-nitrosodiphenylamine                    | 2                                    |          |                | NI        |
| henols                                    |                                      |          |                |           |
| 2,4-Dichlorophenol                        | 2                                    |          |                | NI        |
| 2,4-Dimethylphenol Pentachlorophenol      | 2 2                                  |          |                | NI        |
| Phenol                                    | 2                                    | 1<br>1   |                | 400<br>91 |
| 2,4,6-Trichlorophenol                     | 2                                    | •        |                | NI.       |
| romatics                                  | _                                    |          |                |           |
| Benzene                                   | 2                                    | 2        | 5 - 10         | 8         |
| Chlorobenzene                             | 2                                    | _        |                | NI        |
| 1,2-Dichlorobenzene                       | 2                                    | 1        |                | 61        |
| 1,3-Dichlorobenzene                       | 2                                    | _        |                | N         |
| 1,4-Dichlorobenzene<br>Ethylbenzene       | 2 2                                  | 2        | 19 - 20        | 20        |
| Hexachlorobenzene                         | 2                                    |          |                | NI<br>NI  |
| Nitrobenzene                              | 2                                    |          |                | NI        |
| Toluene                                   | 2                                    | 2        | 9 - 10         | 10        |
| 1,2,4-Trichlorobenzene                    | 2                                    |          |                | ND        |
| olycyclic aromatic hydrocarbon            |                                      |          |                |           |
| Acenaphthene                              | 2                                    |          |                | NI        |
| Acenaphthylene<br>Chrysene                | 2 2                                  |          |                | ND<br>ND  |
| Fluoranthene                              | 2                                    |          |                | ND        |
| Fluorene                                  | 2                                    |          |                | NI        |
| Naphthalene                               | 2                                    | 2        |                | 26        |
| Phenanthrene/anthracene<br>Pyrene         | 2 2                                  | 1        |                | 36        |
|                                           | 2                                    |          |                | N         |
| alogenated aliphatics<br>Chloroform       | •                                    | •        |                |           |
| Dichlorobromomethane                      | 2                                    | 2        | 12 - 20        | 16<br>ND  |
| 1,1-Dichloroethane                        | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |          |                | NE        |
| 1,2-Dichloroethane                        | 2                                    |          |                | ND        |
| 1,2-Trans-dichloroethylene                | 2                                    |          |                | NI        |
| 1,1,2,2-Tetrachloroethane                 | 2                                    | 1        |                | 18        |
| Tetrachloroethylene 1,1,1-Trichloroethane | 2                                    |          |                | NI        |
| 1,1,2-Trichloroethane                     | 5                                    |          |                | ND<br>ND  |
| Trichloroethylene                         | 2                                    |          |                | ND        |
| Trichlorofluoromethane                    | 2                                    |          |                | ND        |
| esticides and metabolites                 |                                      |          |                |           |
| a-BHC 1                                   | 2                                    |          |                | ND        |
| p-bnc                                     |                                      |          |                |           |
| Chlordane<br>Isophorone                   | 2 2                                  |          |                | ND        |
| OHE                                       | 2                                    |          |                | ND        |

Note: ND = not detected.

TABLE 7-18. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN THE HAIR PULP/CHROME TAN/RETAN-WET FINISH SUBCATEGORY FOR PLANT 47 [1]

Treatment type: Activated sludge

|                  | Concentrat | Percent  |         |
|------------------|------------|----------|---------|
| Pollutant        | Influent   | Effluent | removal |
| BOD <sub>5</sub> | 1,500      | 49       | 97      |
| COD              | 6,000      | 560      | 91      |
| TSS              | 6,400      | 230      | 96      |
| TKN              | 750        | 280      | 63      |
| Sulfides         | 19         | 17       | 9       |
| Oil and grease   | 250        | 35       | 86      |
| pН               | 8.6        | 7.6      |         |
| Ammonia          | 440        | 240      | 46      |

aExcept pH, given in pH units.

TABLE 7-19. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE HAIR SAVE/NONCHROME TAN/RETAN-WET FINISH SUBCATEGORY FOR PLANT 47 [1]

Treatment type: Activated sludge

|                            | Concentrat |          |                 |  |
|----------------------------|------------|----------|-----------------|--|
| Pollutant                  | Influent   | Effluent | removal         |  |
| Metals and inorganics      |            |          |                 |  |
| Chromium                   | 6,400      | 170      | 97              |  |
| Copper                     | 200        | 25       | 88              |  |
| Cyanide                    | 100        | 400      | ~~a             |  |
| Lead                       | 100        | 50       | 50              |  |
| Nickel                     | 60         | 30       | 50              |  |
| Zinc                       | 460        | 59       | 87              |  |
| <b></b>                    | 400        | 33       | 0,              |  |
| Phthalates                 |            |          | _a              |  |
| Bis(2-ethylhexyl) phthala  | te ND      | 26       | <b>-</b> "      |  |
| Phenols                    |            |          |                 |  |
| Pentachlorophenol          | 2,900      | 200      | 93              |  |
| Phenol                     | 850        | ND       | >99             |  |
| 2,4,6-Trichlorophenol      | 1,700      | 38       | 98              |  |
| •                          | 1,700      | 30       | 70              |  |
| Aromatics                  |            |          | _b              |  |
| Benzene                    | <10        | <10      | _               |  |
| 1,2-Dichlorobenzene        | 49         | ND       | >99             |  |
| l,4-Dichlorobenzene        | 19         | ND       | >99             |  |
| Ethylbenzene               | 43         | <10      | 98 <sub>b</sub> |  |
| Toluene                    | <10        | <10      | -"              |  |
| Polycyclic aromatic        |            |          |                 |  |
| hydrocarbons               |            |          |                 |  |
| Naphthalene                | 19         | ND       | >99             |  |
| Phenanthrene/anthracene    | 7.6        | ND       | >99             |  |
| Phenanchiene/anchiacene    | 7.0        | ND       | , , ,           |  |
| Halogenated aliphatics     |            |          | b               |  |
| Chloroform                 | ND         | ND       | -2              |  |
| 1,1,2,2-Tetrachloroethane  | <10        | ND       | >99             |  |
| Pesticides and metabolites |            |          |                 |  |
|                            |            |          | þ               |  |
| α-BHC }                    | ND         | ND       | -10             |  |
| β-BHC <sup>3</sup>         |            |          |                 |  |

Note: ND = not detected.

<sup>&</sup>lt;sup>a</sup>Negative removal.

bNegligible removal.

TABLE 7-20. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN THE HAIR SAVE/CHROME TAN/RETAN-WET FINISH SUBCATEGORY FOR PLANTS 248 and 320 [1]

Treatment type: Extended aeration, activated sludge

|                | Concentrat | Percent   |         |
|----------------|------------|-----------|---------|
| Pollutant      | Influent   | Effluent  | removal |
|                |            | Plant 248 |         |
| BOD,           | 1,200      | 920       | 26      |
| COD            | 2.600      | 1,800     | 31      |
| TSS            | 1,100      | 560       | 49      |
| TKN            | 250        | 190       | 26      |
| Sulfides       | 50         | 30        | 40      |
| Oll and grease | 170        | 91        | 47      |
| pH             | 11.0       | 10.5      |         |
| Ammonia        | 98         | 60        | 39      |
|                |            | Plant 320 |         |
| BOD.           | 2,000      | 300       | 86      |
| COD            | 4.000      | 890       | 87      |
| TSS            | 2,250      | 130       | 94      |
| TKN            | 290        | 160       | 43      |
| Sulfides       | 16         | 6         | 63      |
| Oil and grease | 550        | 17        | 97      |
| pR             | 8.4        | 7.6       |         |
| Ammonia        | 150        | 123       | 18      |

aExcept pH, given in pH units.

TABLE 7-21. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE HAIR SAVE/CHROME TAN/RETAN-WET FINISH SUBCATEGORY FOR PLANTS 248 and 320 [1]

Treatment type Extended aeration, activated sludge

|                                |          | Plant 248  |                 | Plant 320 |            |                  |  |  |
|--------------------------------|----------|------------|-----------------|-----------|------------|------------------|--|--|
|                                |          | tion, µg/L | Percent         |           | tion, µg/L | Percent          |  |  |
| Pollutant                      | Influent | Effluent   | removal         | Influent  | Effluent   | removal          |  |  |
| Hetals and inorganics          |          |            |                 |           |            |                  |  |  |
| Chromium                       | 31,000   | 20,000     | 35              | 170,000   | 1,700      | 99               |  |  |
| Copper                         | 57       | 37         | 35              | 220       | 8          | 96               |  |  |
| Cyanide                        | 20       | 40         |                 | 50        | 40         | 20               |  |  |
| Lead                           | 100      | 30         | 70_             | 3,100     | <b>6</b> 0 | 98               |  |  |
| Nickel                         | 5        | 34         | ~~a             | 75        | 30         | 60               |  |  |
| Zinc                           | 230      | 140        | 39              | 2,100     | 170        | 92               |  |  |
| Phthalates                     |          |            | _               |           |            |                  |  |  |
| Bis(2-ethylhexyl) phthalate    | MD       | MD         | .*              | 32        | 6          | 83               |  |  |
| Phenols                        |          |            |                 |           |            | a                |  |  |
| Pentachlorophenol              | 9,500    | 3,100      | 67              | ND        | 12         | - '              |  |  |
| Phenol                         | 480      | 435        | 9               | 5,500     | 1,400      | 75 <b>a</b>      |  |  |
| 2 4 6-Trichlorophenol          | 10,500   | 4,300      | 59              | ND        | 12         | -*               |  |  |
| Aromatics                      |          |            |                 |           |            |                  |  |  |
| Benzene                        | ND       | NTD        | -p              | < 10      | <10        | _b               |  |  |
| 1,2-Dichlorobenzene            | 215      | 69         | 68              | ND        | <10        | ءُ -             |  |  |
| l,4-Dichlorobenzene            | 99       | 21         | 79 <sub>b</sub> | ND        | <10        | - 4              |  |  |
| Ethylbenzene                   | ND       | ND         | Ξ̈́ь            | >100      | <10        | 99               |  |  |
| Toluene                        | <10      | <10        |                 | >100      | <10        | 99               |  |  |
| Polycyclic aromatic hydrocarbo | ns       |            |                 |           |            | _                |  |  |
| Naphthalene                    | 49       | 15         | 69              | ND        | 2 3        | .*               |  |  |
| Phenanthrene/anthracene        | 56       | <10        | 98              | 2 9       | 1 4        | 52               |  |  |
| Halogenated aliphatics         |          |            |                 |           |            |                  |  |  |
| Bromoform                      | 41       | <10        | 98 <sub>b</sub> | <10       | ND         | >99 <sub>b</sub> |  |  |
| 1,1,2,2-Tetrachloroethane      | ND       | ND         | -"              | ND        | ND         | -0               |  |  |
| Pesticides and metabolites     |          |            |                 |           |            |                  |  |  |
| σ-ВНС<br>В-ВНС                 | ND       | ND         | -p              | ND        | ND         | -p               |  |  |

Note ND = not detected

<sup>&</sup>lt;sup>a</sup>Negative removal

bNegligible removal

TABLE 7-22. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN THE SHEARLING SUBCATEGORY FOR PLANT 253 [1]

Treatment type: Activated sludge

|                  | Concentrat | Percent  |         |
|------------------|------------|----------|---------|
| Pollutant        | Influent   | Effluent | removal |
| BOD <sub>5</sub> | 1,000      | 27       | 97      |
| COD              | 2,400      | 490      | 79      |
| TSS              | 770        | 110      | 86      |
| TKN              | 49         | 27       | 45      |
| Sulfides         | 0.16       | 0.13     | 17      |
| Oil and grease   | 410        | 25       | 94      |
| Hq               | 5.2        | 7.7      |         |
| Ammonia          | 11         | 17       | _D      |

aExcept pH, given in pH units.

TABLE 7-23. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE SHEARLING SUBCATEGORY FOR PLANT 253 [1]

Treatment type: Activated sludge

|                                  |          | tion, µg/L | Percent          |
|----------------------------------|----------|------------|------------------|
| Pollutant                        | Influent | Effluent   | removal          |
| Metals and inorganics            |          |            |                  |
| Chromium                         | 53,000   | 2,200      | 96               |
| Copper                           | 120      | 7          | 94               |
| Cyanide                          | 10       | <10        | > 0              |
| Lead                             | 80       | 30         | 63               |
| Nickel                           | 27       | 19         | 30               |
| Zinc                             | 500      | 68         | 86               |
| Phthalates                       |          |            |                  |
| Bis(2-ethylhexyl) phthalate      | 93       | 34         | 63               |
| Phenols                          |          |            |                  |
| Pentachlorophenol                | 400      | 130        | 68               |
| Phenol                           | 91       | ND         | >99              |
| 2,4,6-Trichlorophenol            | ND       | ND         | ND               |
| Aromatics                        |          |            |                  |
| Benzene                          | 5        | <b>N</b> D | >99<br>_a        |
| 1,2-Dichlorobenzene              | ND       | <b>N</b> D | _                |
| 1,4-Dichlorobenzene              | 20       | ND         | >99 <sub>a</sub> |
| Ethylbenzene                     | NTD      | <b>N</b> D | -                |
| Toluene                          | 9        | ND         | >99              |
| Polycyclic aromatic hydrocarbons |          |            |                  |
| Naphthalene                      | 35       | <b>N</b> D | >99              |
| Phenanthrene/anthracene          | 36       | 6          | 83               |
| Halogenated aliphatics           |          |            |                  |
| Chloroform                       | 12       | 10         | 16               |
| 1,1,2,2-Tetrachloroethane        | 18       | ND         | >99              |
| Pesticides and metabolites       |          |            |                  |
| α-BHC                            | ND       | ND         | _a               |
| β-BHC <sup>3</sup>               | ND       | ND         |                  |

Note: ND = not detected.

Date: 6/23/80

II.7-22

<sup>&</sup>lt;sup>b</sup>Negative removal.

<sup>&</sup>lt;sup>a</sup>Negligible removal.

TABLE 7-24. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN THE HAIR PULP/CHROME TAN/RETAN-WET FINISH SUBCATEGORY FOR PLANT 184 [1]

Treatment type: Aerated lagoons

|                  | Concentrat | Percent  |         |
|------------------|------------|----------|---------|
| Pollutant        | Influent   | Effluent | removal |
| BOD <sub>5</sub> | 1,900      | 20       | 99      |
| COD              | 5,500      | 220      | 96      |
| TSS              | 2,900      | 160      | 95      |
| TKN              | 500        | 100      | 79      |
| Sulfides         | 200        | 0.4      | 99      |
| Oil and grease   | 720        | 17       | 98      |
| рH               | 8.4        | 6.8      |         |
| Ammonia          | 260        | 64       | 76      |

aExcept pH, given in pH units.

TABLE 7-25. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE HAIR PULP/CHROME TAN/RETAN-WET FINISH SUBCATEGORY FOR PLANT 184 [1]

Treatment type: Aerated lagoon

|                                 | Concentra  | tion, µg/L | Percent         |
|---------------------------------|------------|------------|-----------------|
| Pollutant                       | Influent   | Effluent   | removal         |
| Metals and inorganics           |            |            |                 |
| Chromium                        | 160,000    | 1,100      | 99              |
| Copper                          | 50         | 5          | 90 <sub>a</sub> |
| Cyanide                         | 60         | 150        | - a             |
| Lead                            | 1,100      | 80         | 93              |
| Nickel                          | 60         | 30         | 50              |
| Zinc                            | 500        | 49         | 90              |
| Phthalates                      |            |            |                 |
| Bis(2-ethylhexyl) phthalate     | 51         | 2          | 96              |
| Phenols                         |            |            | a               |
| Pentachlorophenol               | ND         | ND         | -               |
| Phenol                          | 4,400      | <b>N</b> D | >99             |
| 2,4,6-Trichlorophenol           | 880        | ND         | >99             |
| Aromatics                       |            |            | _               |
| Benzene                         | <10        | <10        | _a              |
| 1,2-Dichlorobenzene             | 260        | ND         | >99             |
| 1,4-Dichlorobenzene             | 54         | ND         | >99             |
| Ethylbenzene                    | 88         | ND         | >99             |
| Toluene                         | >100       | <10        | 99              |
| Polycyclic aromatic hydrocarbon | ns         |            |                 |
| Naphthalene                     | 24         | ND         | >99<br>_a       |
| Phenanthrene/anthracene         | ND         | ND         | _a              |
| Halogenated aliphatics          |            |            |                 |
| Chloroform                      | ND         | ND         | _a              |
| 1,1,2,2-Tetrachloroethane       | ND         | ND         | _a              |
| Pesticides and metabolites      |            |            |                 |
| α-BHC ,                         |            |            | a               |
| β-BHC }                         | <b>N</b> D | ND         |                 |

Note: ND = not detected.

<sup>&</sup>lt;sup>a</sup>Negligible removal.

TABLE 7-26. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN THE RETAN-WET SUBCATEGORY FOR PLANT 247 [1]

Treatment type: Physical/chemical

|                  | Concentrat | Percent  |         |
|------------------|------------|----------|---------|
| Pollutant        | Influent   | Effluent | removal |
| BOD <sub>5</sub> | 620        | 6.7      | 99      |
| COD              | 1,900      | 28       | 99      |
| TSS              | 520        | 7.7      | 98      |
| TKN              | 180        | 4.4      | 98      |
| Sulfides         | 0.5        | 0.3      | 40      |
| Oil and grease   | 180        | 15       | 91      |
| рH               | 4.3        | 4.4      | -       |
| Ammonia          | 110        | 1.5      | 99      |

aExcept pH, given in pH units.

TABLE 7-27. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE RETAN-WET FINISH SUBCATEGORY FOR PLANT 247 [1]

Treatment type: Physical/chemical

|                                 | Concentra  | tion, µg/L | Percent    |
|---------------------------------|------------|------------|------------|
| Pollutant                       | Influent   | Effluent   | removal    |
| Metals and inorganics           |            |            |            |
| Chromium                        | 16,000     | <20        | >99        |
| Copper                          | 260        | <8         | 97         |
| Cyanide                         | <10        | <10        | a          |
| Lead                            | 300        | 8          | 97         |
| Nickel                          | 6          | 4          | 33         |
| Zinc                            | 150        | 61         | 61         |
| Phthalates                      |            |            |            |
| Bis(2-ethylhexyl) phthalate     | ND         | ND         | _a         |
| Phenols                         |            |            | a          |
| Pentachlorophenol               | ND         | ND         | -          |
| Phenol                          | 3,200      | 60         | 98         |
| 2,4,6-Trichlorophenol           | 570        | <10        | 99         |
| Aromatics                       |            |            |            |
| Benzene                         | <10        | <10        | _a         |
| 1,2-Dichlorobenzene             | ND         | ND         | _a<br>a    |
| 1,4-Dichlorobenzene             | ND         | ND         | <b>-</b> ª |
| Ethylbenzene                    | >100       | 12         | 92         |
| Toluene                         | 11         | <10        | 99         |
| Polycyclic aromatic hydrocarbon | ns         |            | _          |
| Naphthalene                     | ND         | 8.5        | _a         |
| Phenanthrene/anthracene         | 130        | 7.3        | 95         |
| Halogenated aliphatics          |            |            | _          |
| Chloroform                      | <10        | <10        | -a         |
| 1,1,2,2-Tetrachloroethane       | <b>N</b> D | <b>N</b> D | _a         |
| Pesticides and metabolites      |            |            |            |
| $\alpha$ -BHC $\frac{1}{2}$     | ND         | ND         | _a         |
| β-BHC <sup>3</sup>              | מא         | MD         | _          |

Note: ND = not detected.

Date: 6/23/80

II.7-24

<sup>&</sup>lt;sup>a</sup>Negligible removal.

secondary treatment, and advanced waste treatment. Preliminary treatment includes in-plant controls, preliminary treatment of segregated streams, and primary treatment of combined streams by coagulation-sedimentation. Secondary treatment is intended for use to remove biodegradable organic material. Advanced waste treatment includes technologies that remove certain pollutants and produce an effluent of high clarity and extremely low content of conventional, nonconventional, and toxic pollutants.

Current treatment employed in the tanning industry ranges from no treatment to several types of secondary treatment. Twelve percent of the industry dischargers have no pretreatment; yet, all the direct dischargers have at least primary treatment and some form of secondary treatment. Eighteen plants discharge their wastewaters directly to surface waters. One-hundred and seventy indirect dischargers discharge to municipal treatment plants.

### II.7.4.2 Treatment Methods

#### In-Plant Control

<u>Process Changes</u>. Process changes are difficult to make because of the numerous tanning methods employed. Substitution of effluents from one process for make-up water in another is generally feasible at some points within a tannery. Before tanneries can make this change, however, they must establish the quantity and pollutant content of water required for each operation.

Substitution of Process Ingredients. Chemical ingredients of low pollution potential can often be substituted for problem pollutants. A number of process chemical substitution opportunities exist.

<u>Water Conservation and Reuse</u>. Conscientious use of water helps to reduce both the volume of wastes and the amount of water used. One plant in the industry currently employs a comprehensive water conservation program. Through implementation of this program, the total use of water has decreased nearly 50%.

Water may also be conserved by reusing it in another process. The water, however, must be filtered or treated. Batch washing reduces water consumption by approximately one-fifth.

Automatic Monitoring Devices. Automatic monitoring equipment for detecting abnormal levels of selected constituents guards against the failure of established precautionary measures. In addition to indicating loss of materials, automatic sensing devices also can operate recovery equipment.

Date: 6/23/80 II.7-25

Recovery and Reuse of Process Chemicals. The most efficient method of eliminating pollutants from tannery wastes and of reducing the volume of effluent is through reuse of water and chemical agents and through recovery of materials that are normally used. Four plants in the industry are currently using this approach. These facilities use recycle systems to reduce the amounts of tanning liquor discharged into the waste streams.

## Preliminary Treatment

Screening. The principal function of screening is to remove objectionable material that has a potential for damaging plant equipment and clogging pumps or sewers. Much of the screening employed in this industry has been ineffective due to poorly operated screens, or screens with openings that are too large, or both.

<u>Carbonation of Beamhouse Waste Stream</u>. Carbonation is effective in the treatment of alkaline wastes. Four tanneries in the United States have operated flue gas or carbon dioxide carbonation systems. Carbonation is attractive for tannery pretreatment facilities. The effectiveness of flue gas carbonation of beamhouse waste streams is optimal when the pH is lowered to the isoelectric point. The introduction of only flue gas can limit the degree of treatment possible.

#### Secondary Treatment

Activated Sludge Systems. The activated sludge process is one of the most controllable and flexible of all secondary treatment systems. It is applicable to almost all treatment situations and plays a very important role in this industry for treatment of toxic pollutants. With proper design and operation, high organic removals are possible. Designs based on solids retention time (SRT) afford optimum residence time for solids with minimal hydraulic retention. However, pilot studies are required to establish appropriate design parameters defining the relative rate of biological growth and decay with a given wastewater.

Activated sludge systems, including various modifications, have been and can be effective in organic reductions to low  $BOD_5$  concentrations even under low temperature conditions. Removals of suspended solids prior to final effluent discharge and maintenance of a large quantity of active biomass in the aeration basin, especially during winter months to compensate for lower rates of organism activity, appear to depend on conservative design and diligent operation of the final clarifier.

### Physical-Chemical Processes

Chappel Process. The Chappel process is a patented physical-chemical process for treating wastewater streams. The

Date: 6/23/80 II.7-26

basis for this process is the assumption that all waste streams contain components that flocculate or settle in the proper environment.

Activated Carbon. The use of activated carbon in treating industrial wastewaters has been generally successful depending on the application, the soundness of engineering, the degree of proper operation and maintenance, and the performance criteria established for the system. A relatively new application of powdered activated carbon (PAC) is being tested and evaluated in combined carbon-biological systems because of the ability of activated carbon to improve the performance of biological systems. This concept is now undergoing extensive testing, using powdered carbon material in activated sludge systems. The carbon is metered into the system with the influent at a concentration normally less than 100 mg/L. It is recirculated and purged along with the biological solids at a rate that maintain an equilibrium concentration of 1,000 to 2,000 mg/L. Since the powdered carbon is added directly to the activated sludge process, this eliminates the need for carbon-adsorption beds or columns.

Other treatment technologies may also be in current use in the leather tanning and finishing industry.

#### II.7.5 REFERENCES

- Development Document for Proposed Effluent Limitations Guidelines, New Source Performance Standards, and Pretreatment Standards for the Leather Tanning and Finishing Point Source Category. U.S. Environmental Protection Agency, Effluent Guidelines Division, Washington, D.C., July 1979.
- 2. Effluent Guidelines and Standards for Leather Tanning and Finishing. U.S. Environmental Protection Agency, 40 CFR 425; 39FR 12958, April 9, 1974.
- 3. NRDC Consent Decree Industry Summary. Leather Tanning and Finishing Industry.

Date: 6/23/80 II.7-27

#### II.8.3 COIL COATING

#### II.8.3.1 Industry Description

# II.8.3.1.1 General Description [1]

The coil coating industry consists of approximately 70 plants processing approximately 4 billion square meters of painted coil each year. Facilities vary in size and corporate structure, ranging from independent shops to captive operations. Independent shops obtain untreated coil, conversion coating chemicals, and paints, and produce a wide variety of coated coil. Typically, the annual production at these plants is low compared to that from the captive coating operations. The captive coil coating operation is usually an integral part of a large corporation engaged in many other kinds of metal production and finishing.

The coil coating sequence, regardless of basis material or conversion coating process used, consists of three functional steps: cleaning, conversion coating, and painting. Basically, there are three types of cleaning operations used in coil coating, and they can be used alone or in combinations. These are: mild alkaline cleaning, strong alkaline cleaning, and acid cleaning. There are four basic types of conversion coating operations, and the use of one precludes the use of the others on the same coil. These are: chromating, phosphating, use of complex oxides, and no-rinse conversion coating. Some of these conversion coating operations are designed for use on specific basis materials. The painting operation is performed by roll coating and is independent of the basis material and conversion coating. Some specialized coatings are supplied without conversion-coating the basis material. For example, Zincrometal is a specialized coating consisting of two coats of special paints that do not require conversion coating. In this process, coils are cleaned and dryed, and then receive two coats of the special paints.

The selection of basis material, conversion coating, and paint formulation is an art based upon experience. The variables that are typically involved in the selection are appearance, color, gloss, corrosion resistance, abrasion resistance, process line capability, availability of raw materials, customer preference, and cost. Some basis materials inherently work better with certain conversion coatings, and some conversion coatings work better with certain paint formulations. On the whole, however, the choice of which combination to use on a basis material is limited only by plant and customer preferences.

The following subsections describe the coil coating processes in more detail.

Cleaning. Coil coating requires that the basis material be clean. A thoroughly clean coil assures efficient conversion coating and a resulting uniform surface for painting. The soils, oils, and oxide coatings found on a typical coil originate from rolling mill operations and storage conditions prior to coil coating. Such substances can stop the conversion coating reaction, cause a coating void on part of the basis material, and cause the production of a nonuniform coating. Cleaning operations must chemically and physically remove these interfering substances without degrading the surface of the basis material. Excessive cleaning can roughen a basically smooth surface to a point where a paint film will not provide optimum protective properties.

Aluminum and galvanized steel are prone to develop an oxide coating that acts as a barrier to chemical conversion coatings. However, these oxide films are easier to remove than rust and therefore require a less vigorous cleaning process. A mild alkaline cleaner is usually applied with power spray equipment to remove the oxide coating and other interfering substances. The cleaning solutions normally used consist of combinations of sodium carbonates, phosphates, silicates, and hydroxides. These compounds give the solution its alkaline character and emulsify the removed soils. Soap and detergents may be added to the solution to lower the surface and interfacial tension. A good cleaning solution also rinses easily. Solutions may be made stronger with the addition of more sodium hydroxide.

Steel, unless adequately protected with a film of oil subsequent to rolling mill operations, has a tendency to form surface rust rather quickly. This rust on the surface of the metal prevents proper conversion coating. A traditional method of removing rust is an acid applied by power spray equipment. The spraying action cleans both by physical impingement and the etching action of the acid. The power spray action is followed by a brush scrub which further removes soil loosened by the acid. The brush scrub is followed by a strong alkaline spray wash which removes all traces of the acid and neutralizes the surface.

A spray rinse follows the alkaline cleaning step. Spray rinsing is conducive to the fast line speeds which make coil coating an economical coating procedure. The spray rinse physically removes alkaline cleaning residues and soil by both the physical impingement of the water and the diluting action of the water. The rinse water is usually maintained at approximately 66°C (150°F) to keep the coil warm for the subsequent conversion coating reactions and to help the rinsing action. The rinsing action prevents contamination of the conversion coating bath with cleaning residues which are dragged out on the strip and that could be subsequently deposited in the conversion coating solutions. The

rinsing step also keeps the surface of the metal wet and active, which permits faster conversion coating film formation.

The no-rinse conversion coating and the Zincrometal processes require a coil that is clean, warm, and dry. For these processes, a squeegee roll and forced air drying are used to assure a clean, dry coil following alkaline cleaning and rinsing.

Conversion Coatings. The basic objective of the conversion coating process is to provide a corrosion-resistant film that is integrally bonded chemically and physically to the base metal and that provides a smooth and chemically inert surface for subsequent application of a variety of paint films. The conversion coating processes effectively render the surface of the basis material electrically neutral and immune to galvanic corrosion. Conversion coating on basis material coils does not involve the use of applied electric current to coat the basis material. The coating mechanisms are chemical reactions that occur between solution and basis material.

Four types of conversion coatings are normally used in coil coating:

- Chromate conversion coatings
- · Phosphate conversion coating
- · Complex oxides conversion coatings
- No-rinse conversion coatings

Chromate conversion coatings, phosphate conversion coatings, and complex oxide conversion coatings are applied in basically the same manner. No-rinse conversion coatings are roll applied and use quite different chemical solutions than phosphating, chromating, or complex oxides solutions. However, the dried film is used as basis for paint application similar to phosphating, chromating, and complex oxide conversion coatings films.

Chromate conversion coatings can be applied to both aluminum and galvanized surfaces but are generally applied only to aluminum surfaces. These coatings produce an amorphous layer of chromium chromate complexes and aluminum ions. The coatings offer unusually good corrosion-inhibiting properties but are not as abrasion resistant as phosphate coatings. Scratched or abraded films retain a great deal of protective value because the hexavalent chromium content of the film is slowly leached by moisture, providing a self-healing effect. Under limited applications, these coatings can serve as the finished surface without being painted. If further finishing is required, it is necessary to select an organic finishing system that has good adhesive properties. Chromate conversion coatings are extremely smooth, electrically neutral, and quite resistant to chemical attack.

Chromate conversion coatings for aluminum are carried out in acidic solutions. These solutions usually contain one chromium salt, such as sodium chromate, or chromic acid and a strong oxidizing agent such as hydrofluoric acid or nitric acid. The final film usually contains both products and reactants and water of hydration. Chromate films are formed by the chemical reaction of hexavalent chromium with a metal surface in the presence of "accelerators", such as cyanides, acetates, formates, sulfate, chlorides, fluorides, nitrates, phosphates, and sulfamates.

Chromate conversion coating requires that the basis material be alkaline-cleaned and spray-rinsed with warm water. The cleaning and rinsing assures a clean, warm, wet surface on which the conversion coating process takes place. Once the film is formed, it is rinsed with water followed by a chromic acid sealing rinse. This latter rinse seals the free pore area of the coating by forming a chromium chromate gel. Also, the sealing rinse more thoroughly removes precipitated deposits that may have been formed by hard water in previous operations. The coil is then subjected to a forced air drying step to assure a uniformly dry surface for the following painting operation.

Phosphate conversion coatings provide a highly crystalline, electrically neutral bond between a base metal and paint film. The most widespread use of phosphate coatings is to prolong the useful life of paint finishes. Phosphate coatings are primarily used on steel and galvanized surfaces but also can be applied to aluminum. Basically, there are three types of phosphate coatings: iron, zinc, and manganese. Manganese coatings are not used in coil coating operations because they are relatively slow in forming and, as such, are not amenable to the high production speeds of coil coaters.

The remaining two phosphate coatings are applied by spraying or immersing the coil, with the major difference between them being the weight and thickness of the dried coating. Iron phosphate coatings are the thinnest and lightest and generally the cheapest. Iron phosphate solutions are applied chiefly as a base for paint films. Spray application of iron phosphating solutions is most commonly used. The coating weights range from 0.22 to  $0.86 \, \mathrm{g/m^2}$ .

Zinc phosphate coatings are quite versatile and can be used as a base for paint or oil, as an aid to cold forming, to increase wear resistance, and to provide rustproofing. Zinc phosphate coatings can be applied by spray or immersion with applied coating weights ranging from 1.08 to 10.8  $g/m^2$  for spray coating and from 1.61 to 43.1  $g/m^2$  for immersion coating.

Phosphate coatings are formed in the metal surface, incorporating metal ions dissolved from the surface. This creates a coating that is integrally bonded to the base metal. In this respect, phosphate coatings differ from electrodeposited coatings, which are superimposed on the metal. Most metal phosphates are insoluble in water but soluble in mineral acids. Phosphating solutions consist of metal phosphates dissolved in carefully balanced solutions of phosphoric acid. As long as the acid concentration of the bath remains above a critical point, the metal ions remain in solution. Accelerators speed up film formation and prevent the polarization effect of hydrogen on the surface of the metal. Accelerators commonly used include nitrites, nitrates, chlorates, and peroxides. Cobalt and nickel nitrite accelerators are the most widely used and develop a coarse crystalline structure. The peroxides are relatively unstable and difficult to control, while chlorate accelerators generate a fine sludge that may cause dusty or powdery deposits.

After phosphating, the coil is passed through a recirculating hot water spray rinse. The rinsing action removes excess acid and unreacted products, thereby stopping the conversion coating reaction. Insufficient rinsing could cause blistering under the subsequent paint film from the galvanic action of the residual acid and metal salts.

The basis material is then passed through an acid sealing rinse comprised of up to 0.1% by volume of phosphoric acid, chromic acid, and various metallic conditioning agents, notably zinc. This solution seals the free pore area of the coating by forming a chromium chromate gel. Also, this acidic sealing rinse more thoroughly removes precipitated deposits formed by hard water in the previous rinses. Modified chromic acid rinses have found extensive use in the industry. These rinses are prepared by reducing chromic acid with an organic reductant to form a mixture of trivalent chromium and hexavalent chromium in the form of a complex chromium chromate.

Complex oxide conversion coatings can be applied to aluminum and galvanized surfaces but are generally applied to only galvanized surfaces. The nature of the film and the chemical and physical reactions of its formation are a function and a reinforcement of the naturally occurring protective oxide coating that is found on galvanized surfaces. The physical properties of the complex oxide conversion coating film are comparable to those of chromate conversion coating films and phosphate conversion coating films.

Complex oxide film is formed in a basic solution while the films described earlier are formed in an acidic solution. Complex oxide conversion coating reactions do not contain either hexavalent or trivalent chromium ions. However, the sealing rinse

contains much greater quantities of hexavalent and trivalent chromium ions than do the sealing rinses associated with phosphate conversion coatings and chromate conversion coatings.

Recent developments in chromate conversion coating solutions have resulted in a solution that can be applied to cold rolled steel, galavanized steel, or aluminum without the need for any rinsing after the coating has formed on the basis material. The basis material must first be alkaline cleaned, thoroughly rinsed, and forced-air dried prior to conversion coating. The conversion coating solution is applied with a roll mechanism used in roll coating paint. Once the solution is roll coated onto the basis material, the coil is forced-air dried at approximately 66°C. The no-rinse solutions are formulated in such a way that once a film is formed and dried, there are no residual or detrimental products left on the coating that could interfere with normal coil coating paint formulations.

Although no-rinse conversion coatings currently represent a small proportion of the conversion coating techniques that are used, they offer several advantages, including fewer process steps in a physically smaller process line, higher line speeds, application of a very uniform thickness by roll coating rather than spray or dip coating, and reduction of waste treatment requirements because of the reduced use of chromium compounds. Disadvantages include roll coating mechanism wear possibly reducing quality, the closer coordination of entire line that is needed, difficulty in adaptation, and the hazardous organic acids content of the no-rinse conversion coating chemicals.

Painting. Roll coating of paint is the final process in a coil coating line. Roll coating is an economical method to paint large areas of metal with a variety of finishes and produces a uniform and high quality coating. The reverse roll procedure for coils is used by the coil coating industry, and allows both sides of the coil to be painted simultaneously.

The paint formulations used in the coil coating industry have high pigmentation levels (providing hiding power), adhesion, and flexibility. Most coatings of this type are thermosetting and are based on vinyl, acrylic, and epoxy functional aromatic polyethers, and some reactive monomer or other resin with reactive functions, such as melamine formaldehyde resins. Also, a variety of copolymers of butadiene with styrene or maleic anhydride are used in coating formulations. These coatings are cured by oxidation mechanisms during baking similar to those that harden drying oils.

After paint application, all coils are cured in an oven. Curing temperatures depend upon basis material, conversion coating, paint formulation, and line speed. Typical temperatures range from about 93°C to a maximum of about 371°C. Upon leaving the oven, the coils are quenched with water to induce rapid cooling prior to rewinding.

The quench is necessary for all basis materials, conversion coatings, and paint formulations. A coil that is rewound when too warm will develop internal and external stresses, causing a possible degradation of the appearance of the paint film and of the forming properties of the coil. The volume of water used in the quench often has the largest flow rate of all of the coil-coating processes. However, the water is often circulated to a cooling tower for heat dissipation and reuse.

The finished coils are used in a variety of industries. building products industry utilizes prefinished coils to fabricate exterior siding, window and door frames, storm windows and storm gutters, and various other trim and accessory building products. The food and beverage industries utilize various types of coils and finishes to safely and economically package and ship a wide variety of food and beverage products. Until recently, the automotive and appliance industries have made limited use of prefinished coils. These industries have relied on post assembly finishing of their products. Recently, the automotive industry has begun using a cold rolled steel coil coated on one side with a finish called Zincrometal. This coating is applied to the under surfaces of the exterior automobile sheet metal to protect them from corrosion. The appliance industry uses prefinished coils in constructing certain models of refrigerator exteriors to provide a finished product that minimizes the costly and laborintensive painting operation after forming.

Coil coating operations are located throughout the country, usually in well established industrial centers. Compared to some other industries, coil coating operations are not physically large. Coil coating operations use large quantities of water and are often a significant contributor to municipal waste treatment systems or surface waters. In addition, the curing ovens from coil coating operations are a source of air pollution in the form of reactive hydrocarbons.

Table 8.3-1 presents an industry summary of the coil coating industry.

Industry: Coil Coating
Total number of subcategories: 3 Number of subcategories studied: 3

Number of Dischargers in industry:

• Direct: 36 • Indirect: 54

• Zero dischargers: 0

### II.8.3.1.2 Subcategory Description

The primary purpose of subcategorization is to establish groupings within the coil coating industry such that each group has a uniform set of effluent limitations. While subcategorization is based on wastewater characteristics, a review of the other subcategorization factors reveals that the basis material used and the processes performed on these basis materials are the principal factors affecting the wastewater characteristics of plants in the coil coating industry. The coil coating industry is therefore divided into the following three subcategories:

Coil Coating on steel

Coil coating on zinc coated steel (galvanized)

Coil coating on aluminum or aluminized steel

The following subsections describe the above subcategories.

Subcategory 1 - Coil Coating on Steel. The coil coating on steel subcategory consists of approximately 31 plants, of which eight facilities coat steel alone. The remaining plants coat a combination of steel coils and coil from the other subcategories. Approximately 470 x 106 m2 of coated steel are produced each year. Operations used at these facilities include acid cleaning, strong alkaline cleaning, phosphating, no-rinse conversion coating, roll coating, and Zincrometal coating. Table 8.3-2 presents water usage data for the general operations at steel coating facilities.

TABLE 8.3-2. SUMMARY OF WATER USAGE RATES FOR THE COIL COATING INDUSTRY BY SUBCATEGORY [1]

|                    | Number     | Water u      | ise, L/m² |        |  |  |  |  |
|--------------------|------------|--------------|-----------|--------|--|--|--|--|
| Operation          | of points  | Range        | Mean      | Median |  |  |  |  |
|                    |            | steel        |           |        |  |  |  |  |
| Cleaning           | 9          | 0.30 - 7.3   | 2.3       | 1.5    |  |  |  |  |
| Conversion coating | 8          | 0.041 - 0.76 | 0.43      | 0.41   |  |  |  |  |
| Paintinga          | 20         | 0.29 - 5.1   | 2.1       | 2.1    |  |  |  |  |
| All operations     | 13         | 0.37 - 13    | 4.5       | 4.7    |  |  |  |  |
|                    | galvanized |              |           |        |  |  |  |  |
|                    |            |              |           |        |  |  |  |  |
| Cleaning           | 10         | 0.17 - 4.4   | 1.1       | 0.83   |  |  |  |  |
| Conversion coating | 10         | 0.025 - 0.84 | 0.40      | 0.50   |  |  |  |  |
| All operations     | 12         | 0.65 - 8.4   | 3.7       | 2.0    |  |  |  |  |
|                    | aluminum   |              |           |        |  |  |  |  |
|                    |            |              |           |        |  |  |  |  |
| Cleaning           | 12         | 0.21 - 2.0   | 0.97      | 0.97   |  |  |  |  |
| Conversion coating | 12         | 0.18 - 1.8   | 0.56      | 0.47   |  |  |  |  |
| All operations     | 15         | 0.39 - 6.3   | 2.9       | 2.4    |  |  |  |  |
|                    |            |              |           |        |  |  |  |  |

<sup>&</sup>lt;sup>a</sup>Painting water usage listed under steel is for all basis materials.

Subcategory 2 - Coil Coating on Zinc Coated Steel (Galvanized). The coil coating on galvanized steel subcategory consists of 15 plants with an annual production of approximately 600 x 10 m². Only three facilities produce coated galvanized steel alone. Five plants also coat steel coils, and seven facilities coat steel and aluminum along with galvanized steel. Operations used at the galvanized coating facilities include mild alkaline cleaning, phosphating, chromating, complex oxide treatment, no-rinse conversion coating, roll coating, and Zincrometal coating. Table 8.3-2 above also presents water usage data for the general operations at galvanized coating facilities.

Subcategory 3 - Coil Coating on Aluminum. This subcategory consists of 32 facilities producing  $470 \times 10^6 \text{ m}^2$  of product annually. Fifteen facilities coat only aluminum coils, eleven coat steel coils with the aluminum, and seven coat all three types of basis metal. The aluminum coating facilities use mild alkaline cleaning, phosphating, chromating, complex oxide treatment, no-rinse conversion coating, and roll coating. Table 8.3-2 above also gives water usage information for the general processes in this industry.

# II.8.3.2 Wastewater Characterization [1]

Water is used in virtually all coil coating operations. It provides the mechanism for removing undesirable compounds from the basis material, is the medium for the chemical reactions that occur on the basis material, and cools the basis material following baking. Water is the medium that permits the high degree of automation associated with coil coating and the high quality of the finished product. The nature of coil coating operations, the large amount basis material processed, and the quantity and type of chemicals used produces a large volume of wastewater that requires treatment before discharge.

Wastewater generation occurs for each basis material (steel, galvanized and aluminum) and for each functional operation (cleaning, conversion coating, and painting). The wastewater generated by the three functional operations may (1) flow directly to a municipal sewage treatment system or surface water, (2) flow directly to an on-site waste treatment system and then to a municipal sewage treatment system or surface water, (3) be reused directly or following intermediate treatment, or (4) undergo a combination of the above processes.

Coil coating operations that produce wastewater are characterized by the pollutant constituents associated with respective basis materials. The constituents in the raw wastewaters include ions of the basis material, oil and grease found on the basis material, components of the cleaning and conversion coating solutions, and the paints and solvents used in roll coating the basis materials. The following tables present wastewater characterization data for each subcategory. These data are the result of verification sampling at a number of plants in each subcategory. Screening samples were generally first analyzed to determine what compounds should be analyzed. The pollutants that have been chosen were found in a concentration greater than 0.010 mg/L.

Tables 8.3-3 through 8.3-10 present raw wastewater characterization data for each general process in each subcategory and for the wastewater in each subcategory when combined into a single representative stream as a whole. Table 8.3-11 presents raw wastewater flow data for each subcategory.

TABLE 8.3-3. CONVENTIONAL AND NONTOXIC POLLUTANT CONCENTRATIONS FOR THE RAW WASTEWATER IN THE COIL COATING INDUSTRY, BY SUBCATEGORY [1]

|                      | Number     | Number          | Concentra                   |              |            |
|----------------------|------------|-----------------|-----------------------------|--------------|------------|
| Pollutant            | of points  | detected        | Range                       | Mean         | Median     |
|                      |            |                 | steel                       |              |            |
| Conventional         |            |                 |                             |              |            |
| TSS                  | 13         | 13              | 17 - 2,900                  | 490          | 150        |
| TDS                  | 6          | 6               | 700 - 15,000                | 5,700        | 1,700      |
| Total phosphorus     | 8          | 8               | 5.8 - 120                   | 52           | 43         |
| Total phenols        | 12         | 12              | <0.010 - 0.21               | 0.047        | 0.020      |
| Oil and grease       | 12         | 12              | 2.1 - 1,400                 | 510          | 340        |
| ontoxic inorganic    |            |                 |                             |              |            |
| Aluminum             | 13         | 12              | 0.020 - 1.9                 | 0.66         | 0.6        |
| Barium               | 2          | 1               | 0.53                        | 0.53         | 0.5        |
| Boron                | 2          | 1               | 0.25                        | 0.25         | 0.2        |
| Calcium              | 2          | 2               | 16 - 70                     | 43           | 4:         |
| Cobalt               | 2          | 1               | 0.31                        | 0.31         | 0.3        |
| Iron                 | 13         | 13              | 0.78 - 21                   | 10           | 10         |
| Magnesium            | 2          | 2               | 4.4 - 21                    | 13           | 1:         |
| Manganese            | 13         | 13              | 0.25 - 1.3                  | 0.60         | 0.5        |
| Molybdenum           | 2          | 2               | <0.010 - 0.066              | 0.038        | 0.03       |
| Sodium               | 2          | 2               | 310 - 500                   | 400          | 40         |
| Strontium            | 1          | 1               | 0.33                        | 0.33         | 0.3        |
| Tin                  | 2          | 1               | 0.33                        | 0.33         | 0.3        |
| Titanium             | 2          | 1               | 0.042                       | 0.042        | 0.04       |
| Vanadium             | 2          | 1               | 0.031                       | 0.031        | 0.03       |
| Yttrium              | 2          | 1               | 0.021                       | 0.021        | 0.02       |
| Fluorides            |            |                 |                             |              |            |
|                      |            |                 | galvanized                  |              |            |
| Conventional         |            |                 |                             |              |            |
| TSS                  | 12         | 12              | 35 - 570                    | 190          | 110        |
| TDS                  | -3         | 3               | 170 - 1,600                 | 740          | 430        |
| Total phosphorus     | 5          | 5               | 8.7 - 56                    | 26           | ì          |
| Total phenols        | <b>1</b> 1 | ğ               | <0.010 - 0.071              | 0.026        | <0.01      |
| Oil and grease       | 12         | 12              | 2.3 - 870                   | 200          | 5          |
| ontoxic inorganic    |            |                 |                             |              |            |
| Aluminum             | 12         | 11              | 0.29 - 5.3                  | 2.2          | 1.         |
| Barium               | **         | ••              | 0.25 - 5.5                  | •••          | ••         |
| Boron                |            |                 |                             |              |            |
|                      |            |                 |                             |              |            |
| Calcium              |            |                 |                             |              |            |
| Cobalt               | 11         | 11              | 0.40 - 17                   | 4.6          | 2.         |
| Iron                 | 11         | **              | 0.40 - 17                   | 4.0          |            |
| Magnesium            | 12         | 12              | <0.010 - 0.81               | 0.17         | 0.1        |
| Manganese            | 12         | 12              | (0.010 - 0.01               | 0.17         | 0.1        |
| Molybdenum           |            |                 |                             |              |            |
| Sodium               |            |                 |                             |              |            |
| Strontium            |            |                 |                             |              |            |
| Tin                  |            |                 |                             |              |            |
| Titanium             |            |                 |                             |              |            |
| Vanadium             |            |                 |                             |              |            |
| Yttrium              | 12         | 12 <sup>6</sup> | 0.21 - 9.4                  | 3.7          | 2.         |
| Fluorides            | 12         | 1.6             |                             | 3.,          |            |
|                      |            |                 | aluminum                    |              |            |
| Conventional         |            |                 | 2.4.000                     | 240          |            |
| TSS                  | 15         | 15              | 3.4 - 880                   | 240          | 8          |
| TDS                  | 3          | 3               | 910 - 1,300                 | 1,100        | 1,10<br>7. |
| Total phosphorus     | , 5        | 5<br>11         | 1.7 - 12                    | 6.7          | 0.02       |
| Total phenols        | 15<br>15   | 14              | <0.010 - 0.071<br>1.3 - 730 | 0.028<br>130 | 5          |
| Oil and grease       | 13         | 14              | 1.3 - /30                   | 130          | •          |
| Hontoxic inorganic   |            | 16              | 4.3 - 680                   | 190          | 11         |
| Aluminum             | 15         | 15              | 4.3 - 680                   | 190          | 11         |
| Barium               |            | 15              | 9.0                         | 9.0          | 9.         |
| Boron                | 15         | 13              | 3.0                         | 3.0          | ,          |
| Calcium              |            |                 |                             |              |            |
| Cobalt               |            |                 | 0 10 - 10                   | 3.6          | 3.         |
| Iron                 | 15         | 15<br>1         | 0.18 - 10<br>20             | 20           | 2          |
| Magnesium            | 1          | •               | 20                          |              | -          |
| Manganese            |            | •               | 0.050                       | 0.050        | 0.05       |
| Molybdenum           | 1          | 1               | 170                         | 170          | 17         |
| Sodium               | 1          | 1               | 1/0                         | 170          | 1,         |
| Strontium            | 1          | 1               | 0.060                       | 0.060        | 0.06       |
| Tin                  | 1          | 1               | 0.000                       | 0.000        | 0.00       |
| Titanium             |            |                 |                             |              |            |
| Vanadium             |            |                 |                             |              |            |
|                      |            |                 |                             |              |            |
| Yttrium<br>Pluorides | 15         | 15              | 2.4 - 240                   | 67           | 2          |

TABLE 8.3-4. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTEWATER FOR THE COIL COATING INDUSTRY, BY SUBCATEGORY [1]

|                                           | Number |          |                 |        |        | Number |          |                 |        |        | Number |          |              |          |        |
|-------------------------------------------|--------|----------|-----------------|--------|--------|--------|----------|-----------------|--------|--------|--------|----------|--------------|----------|--------|
|                                           | of     | Number   | Concentrati     |        |        | of     | Number   | Concentra       |        |        | of     | Number   | Concentra    | tion, µg | J/L    |
| Toxic pollutant                           | points | detected | Range           | Mean   | Median | points | detected | Range           | Mean   | Median | points | detected | Range        | Mean     | Median |
|                                           |        |          | steel           |        |        |        |          | galvanized      |        |        |        |          | aluminum     |          |        |
| etals and inorganics                      |        |          |                 |        |        |        |          |                 |        |        |        |          |              |          |        |
| Antimony                                  | 1      | 1        |                 | 1,000  | 3,000  |        |          |                 |        |        |        |          |              |          |        |
| Arsenic                                   | 2      | 1        | 75              | 75     |        |        |          |                 |        |        |        |          |              |          |        |
| Cadmium                                   | 13     | 7        | 10 - 39         | < 10   | < 10   | 14     | H        | <10 - 200       | 55     | 45     | 15     |          | 110          | <10      | <10    |
| Chromium                                  | 13     | 13       | 40 - 330,000    | 62,000 | 6. +00 | 11     | 11       | 49 - 130,000    | 46 000 | 58,000 | 1°     | 15       | 1,800 27,000 | 71,000   | 43,000 |
| Copper                                    | 13     | 13       | 11 - 140        | 52     | 51     | 12     | 12       | <10 - 60        | 21     | -10    | 15     | 13       | <10 - 480    | 80       | 43,00  |
| Cyanide                                   | 12     | 7        | <10 - 55        | 21     | 12     | 12     | 7        | <10 - 160       | 89     | 82     | 15     | 12       | <10 - 10,000 | 4,800    | 570    |
| Lead                                      | 13     | 10       | 11 - 1,500      | 300    | 140    | 12     | 12       | <10 - 2,100     | 680    | 420    | 15     | A        | 54 - 200     | 120      | 120    |
| Mercury                                   | 2      | 2        | <10             | 10     |        |        |          | ,               |        |        |        |          | 34 100       | 120      | 120    |
| Nickel                                    | 13     | 9        | <10 ~ 2,100     | 620    | 390    | 12     | 6        | <10 - 3,200     | 760    | 400    |        |          |              |          |        |
| Silver                                    | 2      | í        | 20              | 20     | 370    |        | ·        | 10 3,100        | ,,,,   | 400    |        |          |              |          |        |
| Zinc                                      | 13     | 13       | 1,500 - 340,000 | 40,000 | 7,600  | 12     | 12       | 2,300 - 150,000 | 51,000 | 25,000 | 15     | 15       | 12 - 15,000  | 2 200    |        |
|                                           | • •    | .,       | 1,300 - 340,000 | 40,000 | ,,000  | 12     |          | 2,300 - 130,000 | 31,000 | 23,000 | .,     | 1,       | 12 - 15,000  | 2,200    | 200    |
| Phthalates                                |        |          |                 |        |        |        |          |                 |        |        |        |          |              |          |        |
| Bis(2-ethylhexyl) phthalate               | 12     | 11       | <10 - 620       | 98     | 35     | 13     | 11       | <10 - 1,100     | 250    | 180    | 14     | 13       | <10          | <10      | <10    |
| Butyl benzyl phthalate                    | 12     | 2        | <10 - 300       | 150    | 150    | 11     | 4        | <10 - 32        | <10    | <10    | 14     | 2        | <10          | <10      | <10    |
| Di-n-butyl phthalate                      | 12     | 10       | <10             | < 10   | <10    | 11     | 8        | <10 - 160       | 29     | <10    | 14     | 6        | <10 - 12     | <10      | <10    |
| Diethyl phthalate                         | 12     | 10       | <10 - 600       | 140    | 56     | 11     | 11       | <10 - 390       | 85     | 48     | 14     | 11       | <10 - 200    | 79       | 5      |
| Dimethyl phthalate                        |        |          |                 |        |        | 11     | 1        | <10 - 390       | <10    | <10    | 14     | 4        | <10 - 14     | <10      | <10    |
| Di-n-octyl phthalate                      | 12     | 4        | <10 - 180       | 59     | 29     | 11     | 1        | <10             | <10    | <10    | 14     | 3        | <10          | <10      | <10    |
|                                           |        |          |                 |        |        |        |          |                 |        |        |        |          |              |          | •••    |
| Phenols                                   |        |          |                 |        |        |        |          |                 |        |        |        |          |              |          |        |
| 2,4-Dimethylphenol                        | 5      | 1        | 21              | 21     | 21     | 2      | 0        |                 |        |        |        |          |              |          |        |
| Phenol                                    | 5      | 1        | 16              | 16     | 16     | 4      | 0        |                 |        |        |        |          |              |          |        |
| Aromatics                                 |        |          |                 |        |        |        |          |                 |        |        |        |          |              |          |        |
| Benzene                                   | 1      | 1        |                 | <10    | <10    |        |          |                 |        |        | 2      | 1        | <10          | <10      |        |
| Ethylbenzene                              | î      | î        |                 | <10    | <10    |        |          |                 |        |        | •      | •        | 10           | <10      |        |
| Toluene                                   | 5      | i        | <10             | <10    | <10    | 4      | 0        |                 |        |        | 5      | 1        | <10          | <10      | <10    |
|                                           |        |          |                 |        |        |        |          |                 |        |        |        |          |              |          | _      |
| Polycyclic aromatic hydrocarbons          | 12     | 1        | <10             | <10    | <10    |        |          | <10             | <10    | <10    |        |          |              |          |        |
| Acenaphthylene                            |        |          |                 |        |        | 11     | 1        |                 |        |        |        |          |              |          |        |
| Anthracene                                | 12     | 11       | <10 - 1,400     | 340    | 64     | 11     | 6        | <10 - 250       | 49     | <10    | 14     | 4        | <10          | <10      | <10    |
| Benz (a) anthrecene                       | 12     | 5        | <10 - 160       | 69     | 56     | 11     | 6        | <10 - 25        | <10    |        |        |          |              |          |        |
| Benzo(a)pyrene                            | 12     | 1        | <10             | <10    | <10    | 11     | 2        | <10             | <10    |        |        |          | <10          | <10      | <10    |
| Benzo(b) fluoranthene                     | 12     | 1        | 35              | 35     | 35     | 11     | 1        | <10             | <10    | <10    | 14     | 4        | <10          | <10      | <10    |
| Benzo(ghi)perylene                        |        |          |                 |        |        | 11     | 0        |                 |        |        | 14     | 1        | <10          | <10      | <10    |
| Benzo(k)fluoranthene                      | 12     | 1        | 35              | 35     | 35     | 11     | 1        | <10             | <10    | <10    | 14     | 1        | <10          | <10      | <10    |
| Chrysene                                  | 12     | 5        | <10 - 160       | 59     | 23     | 11     | 6        | <10 - 25        | <10    | <10    | 14     | 1        |              |          |        |
| Dibenz (ah) anthracene                    |        |          |                 |        |        | 11     | 0        |                 |        |        |        |          |              |          |        |
| Fluoranthene                              | 12     | 6        | <10 - 130       | 45     | 40     | 11     | 4        | <10             | <10    |        |        |          | <10          | <10      | <10    |
| Fluorene                                  | 12     | 4        | <10 - 300       | 90     | 30     | 11     | 6        | <10 - 78        | 24     | <10    | 14     | 1        | <10          | <10      | <10    |
| Indeno(1,2,3-cd)pyrene                    |        |          |                 |        |        | 11     | 0        |                 |        |        | 14     | 1        |              |          |        |
| Naphthalene                               | 12     | 6        | <10 - 25        | <10    | < 10   | 11     | 4        | <10 - 35        | <10    | <10    |        |          | <10          | <10      | <10    |
| Phenanthrene                              | 12     | 11       | <10 - 1,400     | 340    | 64     | 11     | 6        | 10 - 71         | 18     | <10    | 14     | 6        | <10          | <10      | <10    |
| Pyrene                                    | 12     | 4        | <10 - 50        | 21     | 16     | 11     | 4        | <10             | <10    | <10    | 14     | 4        |              |          |        |
| Halogenated aliphatics                    |        |          |                 |        |        |        |          |                 |        |        |        |          |              |          |        |
| 1,1-Dichloroethane                        | 7      | 1        | 18              | 18     | 18     | 3      | 0        |                 |        |        |        |          |              |          |        |
| 1,1-Dichloroethylene                      | ,      | •        | 10              |        | ••     | 9      | 3        | <10 240         | 85     | 15     |        |          |              |          |        |
| 1,7-Trans-dichloroethylene                |        |          |                 |        |        | 9      | 4        | <10 - 82        | 25     |        |        |          |              |          |        |
| Methylene chloride                        |        | 1        |                 | <10    | - 10   | ,      | •        |                 | , ,    | -10    | 1      | 1        |              | <10      | <10    |
| Methylene Chloride<br>Tetrachloroethylene | 1      | ì        |                 | <10    | 10     |        |          |                 |        |        | 1      | i        |              | <10      |        |
|                                           | A      | 6        | -10             |        |        | 11     |          | 410 - 1 300     | 260    |        |        | 1        |              | <10      | <10    |
| 1,1,1-Trichloroethane                     | e<br>A | -        | <10             | <10    | <10    |        | 6        | <10 - 1,300     |        |        | 1      | 1        |              |          |        |
| Trichloroethylene                         | в      | 6        | <10             | <10    | <10    | 11     | 5        | <10 - 1,300     | 310    | <10    | 1      | 1        |              |          |        |
| Pesticides and metabolites                |        |          |                 |        |        |        |          |                 |        |        |        |          |              |          |        |
|                                           |        | 1        | 600             | 600    | 600    | 11     | 3        | <10 - 93        | 35     | <10    |        |          |              | <10      | <10    |

TABLE 8.3-5. CONVENTIONAL AND NONTOXIC INORGANIC POLLUTANT CONCENTRATIONS IN THE RAW WASTEWATER FOR CLEANING OPERATIONS IN THE COIL COATING INDUSTRY, BY SUBCATEGORY [1]

|                    | Number    | Number   | Concentra        | tion, mg/ | 'L <sup>a</sup> |
|--------------------|-----------|----------|------------------|-----------|-----------------|
| Pollutant          | of points | detected | Range            | Mean      | Median          |
|                    |           |          | steel            |           |                 |
| Conventional       |           |          |                  |           |                 |
| TSS                | 9         | 9        | 52 <b>- 44</b> 0 | 220       | 260             |
| TDS                | 4         | 4        | 1,100 - 17,000   | 9,200     | 9,300           |
| Total phosphorus   | 7         | 7        | 11 - 78          | 46        | 4.2             |
| Total phenols      | 8         | 5        | 0.019 - 0.27     | 0.11      | 0.020           |
| Oil and grease     | 9         | 9        | 9.8 - 1,700      | 520       | 260             |
| Minimum pH         | 9         | 9        | 6.8 - 10.9       | 8.7       | 8.5             |
| Maximum pH         | 9         | 9        | 7.4 - 11.9       | 10.0      | 10.6            |
| Fluorides          | 9         | 9        | 0.18 - 3.4       | 1.3       | 0.98            |
| Nontoxic inorganic |           | _        |                  |           |                 |
| Aluminum           | 9         | 7        | 0.27 - 0.85      | 0.45      | 0.34            |
| Iron               | 9         | 9        | 0.93 - 80        | 25        | 5.2             |
| Manganese          | 9         | 9        | 0.26 - 1.7       | 0.80      | 0.63            |
|                    |           |          | galvanized       |           |                 |
| Conventional       |           |          |                  |           |                 |
| TSS                | 10        | 10       | 19 - 630         | 250       | 160             |
| TDS                | 1         | 1        | 200              | 200       | 200             |
| Total phosphorus   | 9         | 9        | 9.4 - 56         | 33        | 33              |
| Total phenols      | ģ         | ź        | 0.010 - 0.079    | 0.037     | 0.02            |
| Oil and grease     | 10        | 10       | 10 - 970         | 260       | 110             |
| Minimum pH         | 10        | 10       | 2.2 - 9.4        | 6.4       | 7.6             |
| Maximum pH         | 10        | 10       | 7.4 - 11.9       | 10.2      | 10.6            |
| Fluorides          | 10        | 10       | 0.16 - 16        | 2.5       | 1.              |
| Nontoxic inorganic |           |          |                  |           |                 |
| Aluminum           | 10        | 9        | 0.41 - 4.9       | 2.4       | 1.3             |
| Iron               | 10        | 10       | 0.19 - 18        | 4.8       | 1.0             |
| Manganese          | 10        | 9        | 0.012 - 0.73     | 0.19      | 0.16            |
|                    |           |          | aluminum         |           |                 |
| Conventional       |           |          |                  |           |                 |
| TSS                | 12        | 12       | 6 - 970          | 180       | 4.9             |
| Total phosphorus   | 9         | 6        | 0.69 - 100       | 63        | 9(              |
| Total phenols      | 12        | 11       | 0.010 - 0.16     | 0.047     | 0.020           |
| Oil and grease     | 12        | 9        | 1.0 - 2,800      | 530       | 7!              |
| Minimum pH         | 12        | 12       | 7.1 - 11.0       | 9.4       | 10.0            |
| Maximum pH         | 12        | 12       | 8.4 - 11.9       | 10.6      | 11.2            |
| Fluorides          | 12        | 9        | 0.43 - 9.5       | 2.0       | 0.8             |
| Nontoxic inorganic |           |          |                  |           |                 |
| Aluminum           | 12        | 12       | 8.6 - 940        | 400       | <b>2</b> 50     |
| Iron               | 12        | 12       | 0.077 - 0.69     | 0.35      | 0.28            |
| Manganese          | 12        | 9        | 0.021 - 15       | 5.0       | 1.3             |

aExcept pH, which is given in pH units.

TABLE 8.3-6. CONCENTRATONS OF TOXIC POLLUTANTS FOUND IN THE RAW WASTEWATER FOR CLEANING OPERATIONS IN THE COIL COATING INDUSTRY, BY SUBCATEGORY [1]

|                                  | Number |          |              |          |        | Number |          |               |           |        | Number |          |             |        |       |
|----------------------------------|--------|----------|--------------|----------|--------|--------|----------|---------------|-----------|--------|--------|----------|-------------|--------|-------|
|                                  | of     | Number   | Concentra    | tion, µg | /L     | of     | Number   | Concentr      | ation, pg |        | of     | Number   | Concentra   | stion, | ug/L  |
| Toxic pollutants                 | points | detected | Range        | Mean     | Median | points | detected | Range         | Mean      | Median | Points | detected | Range       | Mean   | Media |
|                                  |        |          | steel        |          |        |        |          | galvanized    |           |        |        |          | alumınum    |        |       |
| Metals and inorganics            |        |          |              |          |        |        |          |               |           |        |        |          |             |        |       |
| Cadmium                          | 9      | 2        | 3 - 6        | 4        | 4      | 10     | 2        | 6 - 120       | 45        | 40     | 12     | 3        | 3 - 21      | 9      | 3     |
| Chromium                         | 9      | в        | 28 - 620     | 240      | 180    | 10     | 9        | 59 - 610      | 310       | 270    | 12     | 9        | 28 - 6,000  | 1,300  | 180   |
| Copper                           | 9      | 9        | 21 - 180     | 70       | 59     | 10     | 9        | 9 - 57        | 30        | 20     | 12     | 9        | 9 - 210     | 84     | 75    |
| Cyanide                          | 8      | 5        | 9 - 120      | 44       | 24     | 10     | 4        | 12 - 43       | 22        | 17     | 12     | 9        | 5 - 260     | 40     | 10    |
| Lead                             | 9      | 3        | 180 - 1,100  | 540      | 460    | 10     | 9        | 180 - 2,600   | 1,600     | 2,000  | 12     | 5        | 60 - 220    | 140    | 170   |
| Nickel                           | 9      | 5        | 3 - 210      | 69       | 39     | 10     | 1        | 150           | 150       | 150    |        |          |             |        |       |
| Zinc                             | 9      | 9        | 220 - 42,000 | 10,000   | 3,200  | 10     | 10       | 690 - 120,000 | 63,000    | 85,000 | 12     | 10       | 13 - 14,000 | 1,600  | 210   |
| Phthalates                       |        |          |              |          |        |        |          |               |           |        |        |          |             |        |       |
| Bis(2-ethylhexyl) phthalate      | 9      | 7        | 5 - 150      | 45       | 20     | 10     | 9        | 14 - 340      | 120       | 74     | 12     | 10       | 1 - 450     | 1 30   | 15    |
| Butyl benzyl phthalate           | 9      | 1        | 360          | 360      | 360    | 10     | 1        | 13            | 13        | 13     | 12     | 2        | 5 - 12      | 8      | 8     |
| Di-n-butyl phthalate             | 9      | 5        | 5 - 30       | 12       | 5      | 10     | 7        | 2 - 170       | 44        | 25     |        |          |             |        |       |
| Diethyl phthalate                | 9      | 6        | 5 - 210      | 72       | 32     | 10     | 8        | 5 - 420       | 140       | 86     | 12     | 7        | 20 - 450    | 170    | 80    |
| Dimethyl phthalate               |        |          |              |          |        |        |          |               |           |        | 12     | 2        | 2 - 5       | 3      | 3     |
| Di-n-octyl phthalate             | 9      | 3        | 5            | 5        | 5      | 10     | 1        | 5             | 5         | 5      |        |          |             |        |       |
| Polycyclic aromatic hydrocarbons | ,      |          |              |          |        |        |          |               |           |        |        |          |             |        |       |
| Acenaphthylene                   | 9      | 1        | 5            | 5        | 5      |        |          |               |           |        |        |          |             |        |       |
| Anthracene                       | 9      | 7        | 2 - 280      | 69       | 10     | 10     | 3        | 10 - 250      | 93        | 20     | 12     | 2        | 5           | 5      | 5     |
| Benz (a) anthracene              | 9      | 2        | 1 - 30       | 16       | 16     | 10     | 4        | 5 - 27        | 15        | 14     |        |          |             |        |       |
| Benzo (a) pyrene                 |        |          |              |          |        |        |          |               |           |        | 12     | 3        | 1 - 2       | 2      | 2     |
| Chrysene                         | 9      | 2        | 1 - 30       | 16       | 16     | 10     | 4        | 5 - 27        | 15        | 14     |        |          |             |        |       |
| Fluoranthene                     | 9      | 1        | 68           | 68       | 68     | 10     | 3        | 5             | 5         | 5      |        |          |             |        |       |
| Fluorene                         | 9      | 1        | 1            | 1        | 1      | 10     | 4        | 5 - 85        | 35        | 26     | 12     | 1        | 5           | 5      |       |
| Naphthalene                      | 9      | 2        | 5 - 20       | 12       |        | 10     | 2        | 5 - 38        | 21        | 21     | 12     | 3        | 2 - 5       | 3      |       |
| Phenanthrene                     | 9      | 7        | 2 - 280      | 69       | 10     | 10     | 3        | 10 - 47       | 26        | 20     | 12     | 2        | 5           | 5      |       |
| Pyrene                           |        |          |              |          |        | 10     | 3        | 5             | 5         | 5      |        |          |             |        |       |
| Halogenated aliphatics           |        |          |              |          |        |        |          |               |           |        |        |          |             |        |       |
| 1,1,1-Trichloroethane            | 6      | 5        | 2 - 4        | 3        |        | 10     | 4        | 1 - 6         | 4         | 4      |        |          |             |        |       |
| Trichloroethylene                | 6      | 4        | 1 - 22       | 7        | 3      | 10     | 2        | 1 - 2         | 1         | 1      |        |          |             |        |       |
| Pesticides and metabolites       |        |          |              |          |        |        |          |               |           |        |        |          |             |        |       |
| Isophorone                       | 9      | 1        | 18           | 18       | 18     | 10     | 1        | 47            | 47        | 47     |        |          |             |        |       |

TABLE 8.3-7. CONVENTIONAL AND NONTOXIC INORGANIC POLLUTANT CONCENTRATIONS IN THE RAW WASTEWATER FOR THE CONVERSION COATING OPERATION IN THE COIL COATING INDUSTRY, BY SUBCATEGORY [1]

|                          | Number    | Number     | Concentrat               | ration, mg/la |        |  |  |  |  |  |  |
|--------------------------|-----------|------------|--------------------------|---------------|--------|--|--|--|--|--|--|
| Pollutant                | of points | detected   | Range                    | Mean          | Median |  |  |  |  |  |  |
|                          |           |            | steel                    |               |        |  |  |  |  |  |  |
| Conventional             |           |            |                          |               |        |  |  |  |  |  |  |
| TSS                      | 8         | 8          | 27 - 250                 | 130           | 130    |  |  |  |  |  |  |
| TDS                      | 3         | 3          | 3,300 - 3,500            | 3,400         | 3,400  |  |  |  |  |  |  |
| Total phosphorus         | 6         | 6          | 9.7 - 71                 | 41            | 43     |  |  |  |  |  |  |
| Total phenols            | 7         | 4          | 0.001 - 0.23             | 0.067         | 0.018  |  |  |  |  |  |  |
| Oil and grease           | 7         | 6          | 2 - 18                   | 7.6           | 6.6    |  |  |  |  |  |  |
| Minimum pH               | 8         | 8          | 3.3 - 11.4               | 5.8           | 4.3    |  |  |  |  |  |  |
| Maximum pH               | 8         | 8          | 5.1 - 11.5               | 7.7           | 7.5    |  |  |  |  |  |  |
| Fluorides                | 8         | 8          | 1.1 - 74                 | 31            | 27     |  |  |  |  |  |  |
| Nontoxic inorganic       |           |            |                          |               |        |  |  |  |  |  |  |
| Aluminum                 | 8         | 5          | 0.20 - 10.6              | 3.0           | 1.2    |  |  |  |  |  |  |
| Iron                     | 8         | 8          | 3.3 - 77                 | 19            | 9.2    |  |  |  |  |  |  |
| Manganese                | 8         | 8          | 0.11 - 1.5               | 0.61          | 0.49   |  |  |  |  |  |  |
|                          |           | galvanized |                          |               |        |  |  |  |  |  |  |
| Conventional             |           |            |                          |               |        |  |  |  |  |  |  |
| TSS                      | 10        | 10         | 68 - 450                 | 250           | 190    |  |  |  |  |  |  |
| TDS                      | 1         | 1          | 2,500                    | 2,500         | 2,500  |  |  |  |  |  |  |
| Total phosphorus         | 7         | 7          | 3.8 - 66                 | 33            | 25     |  |  |  |  |  |  |
| Total phenols            | 10        | 7          | 0.005 - 0.067            | 0.021         | 0.020  |  |  |  |  |  |  |
| Oil and grease           | 10        |            | 1.3 - 110                | 19            | 11     |  |  |  |  |  |  |
| Minimum pH               | 10        | 10         | 2.4 - 11.1               | 4.5           | 3.4    |  |  |  |  |  |  |
| Maximum pH               | 10        | 10         | 3.3 - 12.0<br>1.5 - 71   | 8.2<br>16     | 8.6    |  |  |  |  |  |  |
| Fluorides                | 10        | 10         | 1.5 - /1                 | 10            | 1.1    |  |  |  |  |  |  |
| Nontoxic inorganic       | ••        | ^          | 1 2 10 6                 | 2.6           | 2.3    |  |  |  |  |  |  |
| Aluminum                 | 10        | 9          | 1.3 - 10.6<br>0.84 - 21  | 3.6<br>6.6    | 5.1    |  |  |  |  |  |  |
| Iron                     | 10<br>10  | 10<br>10   | 0.035 - 1.3              | 0.25          | 0.12   |  |  |  |  |  |  |
| Manganese                | 10        |            |                          | 0.25          |        |  |  |  |  |  |  |
|                          |           |            | aluminum                 |               |        |  |  |  |  |  |  |
| Conventional             |           |            |                          |               |        |  |  |  |  |  |  |
| TSS                      | 12        | 12         | 4.2 - 1,200              | 160           | 55     |  |  |  |  |  |  |
| Total phosphorus         | 2         | 2          | 13 - 16                  | 15<br>0.029   | 0.01   |  |  |  |  |  |  |
| Total phenols            | 12        | 8<br>9     | 0.004 - 0.14 $0.20 - 60$ | 9.4           | 2.0    |  |  |  |  |  |  |
| Oil and grease           | 12<br>12  | 12         | 1.6 - 5.4                | 3.0           | 2.     |  |  |  |  |  |  |
| Minimum pH<br>Maximum pH | 12        | 12         | 3.7 - 6.7                | 5.2           | 5.     |  |  |  |  |  |  |
| Fluorides                | 12        | 12         | 18 - 510                 | 210           | 3.     |  |  |  |  |  |  |
| Nontoxic inorganic       |           |            |                          |               |        |  |  |  |  |  |  |
| Aluminum                 | 12        | 12         | 11 - 410                 | 160           | 11     |  |  |  |  |  |  |
| Iron                     | 12        | 12         | 0.83 - 87                | 21            | 7.     |  |  |  |  |  |  |
| Manganese                | 12        | 12         | 0.049 - 12               | 1.4           | 0.3    |  |  |  |  |  |  |

a Except pH, which is given in pH units.

TABLE 8.3-8. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE RAW WASTEWATER OF CONVERSION COATING OPERATIONS IN THE COIL COATING INDUSTRY, BY SUBCATEGORY [1]

|                                          | Number |          |                   |                  |          | Number |          |                  |           |         | Number |          |                  |         |        |
|------------------------------------------|--------|----------|-------------------|------------------|----------|--------|----------|------------------|-----------|---------|--------|----------|------------------|---------|--------|
|                                          | of     | Number   | (oncentra         | tion, ug/        | ١.       | of     | Number   | Concentra        | tion, pg/ | L.      | of     | Number   | Concentrat       |         |        |
| Toxic pollutant                          | points | detected | Range             | Mean             | Med : an | point. | detected | Range            | Me ar     | Median  | Points | detected | Range            | Mean    | Media  |
|                                          |        |          | steel             |                  |          |        |          | galvanized       |           |         |        |          | #I nurum         |         |        |
| Metals and inorganics                    |        |          |                   |                  |          |        |          |                  |           |         |        |          |                  |         |        |
| Cadmium                                  | 8      | 3        | 1 - 73            | 27               | 6        | 10     | 5        | 8 - 110          | 42        | 10      | 12     | 3        | 3 - 19           | 10      |        |
| Chromium                                 | 8      | 8        | 280 - 920,000     | 320, <b>0</b> 00 | 71,000   | 10     | 10       | 3,400 - 790,000  | 290,000   | 120,000 | 12     | 12       | 15,000 - 970,000 | 270,000 | 120,00 |
| Copper                                   | 8      | 6        | 29 - 160          | 54               | 32       | 10     | 8        | 4 - 140          | 31        | 18      | 12     | 10       | 11 - 980         | 190     | 5      |
| Cyanide                                  | 7      | 1        | 92                | 92               | 92       | 10     | 5        | 120 - 470        | 290       | 200     | 12     | 9        | 17 - 7,500       | 3,200   | 2.60   |
| Lead                                     | 8      | 3        | 10 - 3,600        | 1,400            | 480      | 10     | 10       | 5 ~ 1,300        | 560       | 500     | 12     | 2        | 170 - 400        | 290     | 29     |
| Nickel                                   | 8      | 4        | 120 - 19,000      | 3,100            | 6,800    | 10     | 6        | 33 - 31,000      | 7,600     | 4,400   | 12     | 4        | 18 - 260         | 120     | 11     |
| Zinc                                     | 8      | 8        | 530 - 140,000     | 54,000           | 51,000   | 10     | 10       | 33,000 - 710,000 | 220,000   | 75,000  | 12     | 12       | 16 - 43,000      | 8,800   | 54     |
| Phthalates                               |        |          |                   |                  |          |        |          |                  |           |         |        |          |                  |         |        |
| Bis(2-ethylhexyl) phthalate              | 7      | 5        | 5 - 110           | 31               | 14       | 10     | 9        | 10 - 1,200       | 240       | 43      | 12     | 9        | 2 - 300          | 52      | 2      |
| Butyl benzyl phthalate                   |        |          |                   |                  |          | 10     | 3        | 5                | 5         | 5       |        |          |                  |         |        |
| Di-n-butyl phthalate                     | 7      | 3        | 4 - 14            |                  | 5        | 10     | 3        | 5 - 20           | 10        | 5       | 12     | 2        | 5                | 5       | _      |
| Diethyl phthalate                        | 7      | 6        | 10 - 1 <b>8</b> 0 | 120              | 130      | 10     | 9        | 15 - 300         | 86        | 51      | 12     | 9        | 2 - 200          | 76      | 5      |
| Dimethyl phthalate                       |        |          |                   |                  |          |        |          |                  |           |         | 12     | 1        | 110              | 110     | 11     |
| Di-n-octyl phthalate                     | 7      | 1        | 760               | 760              | 760      |        |          |                  |           |         | 12     | 1        | 2                | 2       |        |
| Polycyclic aromatic hydrocarbons         |        |          |                   |                  |          |        |          |                  | •         |         |        |          |                  |         |        |
| Acenaphthylene                           | 7      | 1        | 5                 | 5                | 5        | 10     | 1        | 3                | 3         | 3       |        |          |                  |         |        |
| Anthracene                               | 7      | 3        | 5                 | 5                | 5        | 10     | 3        | 5 - 290          | 99        | 5       |        |          |                  |         |        |
| Benz (a) anthracene                      |        |          |                   |                  |          | 10     | 1        | 5                | 5         | 5       |        | 4        | 2 - 5            | •       |        |
| Benzo (a) pyrene                         |        |          |                   |                  |          |        |          |                  |           |         | 12     | 2        | 2 - 3            | 2       |        |
| Chrysene                                 |        |          |                   |                  |          | 10     | 1        | 5                | 5         | 5       |        |          |                  |         |        |
| Fluoranthene                             | 7      | 1        | 5                 | 5                | 5        | 10     | 1        | 23               | 23        | 23      |        |          |                  |         |        |
| Fluorene                                 | 7      | 2        | 5                 | 5                | 5        | 10     | 1        | 5                | 5         | 5       |        |          |                  |         |        |
| Naphthalene                              | 7      | 4        | 5                 | 5                | 5        | 10     | 5        | 5 - 15           | 7         | 5       |        | 3        | 2 - 5            | •       |        |
| Phenanthrene                             | 7      | 3        | 5                 | 5                | 5        | 10     | 3        | 5 - 290          | 99        | 5       |        | 4        | 2 - 5            | •       |        |
| Pyrene                                   |        |          |                   |                  |          | 10     | 1        | 11               | 11        | 11      |        |          |                  |         |        |
| Malogenated aliphatics                   |        |          |                   |                  |          |        |          |                  |           |         |        |          |                  |         |        |
| 1,1-Dichloroethane                       | 7      | 1        | 77                | 77               | 77       | 10     | 4        | 16 - 140         | 52        | 52      |        |          |                  |         |        |
| 1,1-Dichloroethylene                     |        |          |                   |                  |          | 10     | 1        | 2                | 2         | 2       |        |          |                  |         |        |
| 1,2-Trans-dichloroethylene               |        |          |                   |                  |          | 10     | 2        | 1 - 15           | 8         | 8       |        |          |                  |         |        |
| 1,1,1-Trichloroethane                    | 8      | 3        | 0.1 - 43          | 15               | 1        |        |          |                  |           |         |        |          |                  |         |        |
| Trichloroethylene                        | 8      | 3        | 1 - 88            | 35               | 14       | 10     | 2        | 29 - 110         | 71        | 71      |        |          |                  |         |        |
| Pesticides and metabolites<br>Isophorone |        |          |                   |                  |          | 10     | 1        | 516              | 516       | 516     |        |          |                  |         |        |

TABLE 8.3-9. CONVENTIONAL AND NONTOXIC INORGANIC POLLUTANT CONCENTRATIONS IN THE RAW WASTEWATER FOR PAINT-ING OPERATIONS FOR THE COIL COATING INDUSTRY [1]

|                    | Total industry |          |               |            |                |  |  |  |  |  |
|--------------------|----------------|----------|---------------|------------|----------------|--|--|--|--|--|
|                    | Number         | Number   | Concentra     | ation, mg/ | L <sup>a</sup> |  |  |  |  |  |
| Pollutant          | of points      | detected | Range         | Mean       | Median         |  |  |  |  |  |
| Conventional       |                |          |               |            |                |  |  |  |  |  |
| TSS                | 20             | 18       | 0.010 - 24    | 6.9        | 5.0            |  |  |  |  |  |
| TDS                | 3              | 3        | 99 - 1,100    | 440        | 130            |  |  |  |  |  |
| Total phosphorus   | 18             | 11       | 0.25 - 15     | 3.2        | 0.78           |  |  |  |  |  |
| Total phenols      | 20             | 15       | 0.003 - 0.040 | 0.016      | 0.015          |  |  |  |  |  |
| Oil and grease     | 20             | 15       | 1.0 - 26      | 7.1        | 5.0            |  |  |  |  |  |
| Minimum pH         | 20             | 20       | 4.9 - 8.0     | 6.8        | 6.8            |  |  |  |  |  |
| Maximum pH         | 20             | 20       | 7.2 - 9.0     | 7.9        | 7.7            |  |  |  |  |  |
| Fluorides          | 20             | 20       | 0.15 - 11     | 1.6        | 0.85           |  |  |  |  |  |
| Nontoxic inorganic |                |          |               |            |                |  |  |  |  |  |
| Aluminum           | 20             | 8        | 0.46 - 1.4    | 0.96       | 1.0            |  |  |  |  |  |
| Iron               | 20             | 20       | 0.018 - 1.6   | 0.37       | 0.14           |  |  |  |  |  |
| Manganese          | 20             | 15       | 0.002 - 0.78  | 0.18       | 0.021          |  |  |  |  |  |

a Except pH, which is given in pH units.

TABLE 8.3-10. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE RAW WASTEWATER FOR PAINTING OPERATIONS IN THE COIL COATING INDUSTRY [1]

|                                  |           | Tot      | al industry   |             |                  |
|----------------------------------|-----------|----------|---------------|-------------|------------------|
|                                  | Number    | Number   | Concentr      | ation, µ    |                  |
| Toxic pollutant                  | of points | detected | Range         | Mean        | Median           |
| Metals and inorganics            |           |          |               |             |                  |
| Cadmium                          | 20        | 37       | 8 - 270       | 97          | 14               |
| Chromium                         | 20        | 15       | 4 - 440       | 57          | 13               |
| Copper                           | 20        | 7        | 4 - 17        | 8           | 6                |
| Cyanide                          | 20        | 17       | 5 - 200       | 39          | 21               |
| Lead                             | 20        | 2        | 32 - 64       | 48          | 48               |
| Nickel                           | 20        | 11       | 190           | 190         | 190              |
| Zinc                             | 20        | 20       | 14 - 5,000    | 610         | 150              |
| Phthalates                       |           |          |               |             |                  |
| Bis(2-ethylhexyl) phthalate      | 18        | 14       | 3 - 880       | 94          | 17               |
| Butyl benzyl phthalate           | 18        | 2        | 5 <b>-</b> 15 | 10          | 10               |
| Di-n-butyl phthalate             | 18        | 16       | 2 - 20        | 6           | 5                |
| Diethyl phthalate                | 18        | 15       | 10 - 330      | 78          | 50               |
| Dimethyl phthalate               | 18        | 2        | 2 - 4         | 3           | 3                |
| Di-n-octyl phthalate             | 18        | 1        | 5             | 5           | 5                |
| Polycyclic aromatic hydrocarbons |           |          |               |             |                  |
| Anthracene                       | 16        | 2        | 5             | 5           | 5                |
| Benzo(a)pyrene                   | 18        | 1        | 5             | 5           | 5                |
| Benzo(b)fluoranthene             | 18        | 1        | 5             | 5<br>5<br>5 | 5                |
| Benzo(ghi)perylene               | 18        | 1        | 5             | 5           | 5                |
| Benzo(k)fluoranthene             | 18        | 1        | 5             | 5           | 5                |
| Fluoranthene                     | 18        | 1        | 5             | 5           | 5<br>5<br>5<br>5 |
| Naphthalene                      | 18        | 3        | 2 - 5         | 4           | 5                |
| Phenanthrene                     | 18        | 2        | 5             | 5           | 5                |
| Halogenated aliphatics           |           |          |               |             |                  |
| 1,1-Dichloroethylene             | 6         | 1        | 36            | 36          | 36               |
| 1,2-Trans-dichloroethylene       | 6         | 1        | 43            | 43          | 43               |
| 1,1,1-Trichloroethane            | 9         | 4        | 1 - 3,100     | 900         | 250              |
| Trichloroethylene                | 9         | 5        | 0.1 - 3,100   | 730         | 5                |

TABLE 8.3-11. WASTEWATER FLOW FOR THE COIL COATING INDUSTRY [1]

|                    | Number    |                | m³/day |        |
|--------------------|-----------|----------------|--------|--------|
| Operation          | of points | Range          | Mean   | Median |
|                    |           | steel          |        |        |
| Cleaning           | 9         | 7.7 - 650      | 170    | 130    |
| Conversion coating | 8         | 14 <b>-</b> 75 | 38     | 44     |
| All operations     | 13        | 9 - 890        | 440    | 500    |
|                    |           | galvanized     |        |        |
| Cleaning           | 10        | 15 - 330       | 105    | 98     |
| Conversion coating | 10        | 1.8 - 75       | 36     | 45     |
|                    |           | aluminum       |        |        |
| Cleaning           | 12        | 11 - 160       | 83     | 85     |
| Conversion coating | 12        | 15 - 60        | 39     | 45     |
|                    |           | total industr  | У      |        |
| Painting           | 20        | 36 - 1,100     | 320    | 250    |

Wastewaters from the coil coating on steel subcategory generally have higher levels of phosphorus than that from the other subcategories because of the use of concentrated phosphate alkaline cleaners. Oil and grease in this subcategory are also found in larger concentrations than the other basis materials wastewater because of the increased raw material protection needed to inhibit rust. This can often cause an increase in the number of hydrocarbons found in this wastewater. Suspended solids may be greater because of the adhering dirts in the oil.

Coil coating on galvanized steel generally produces significant suspended solids concentrations in wastewater. Another pollutant problem is the high concentration of dissolved zinc and iron in the wastewater as a result of the dissolved metals from the cleaning operation. Significant concentrations of hexavalent chromium are generally expected in all three subcategory wastewaters.

Wastewaters from the coil coating on aluminum subcategory contain higher levels of cyanide and fluorides than the other subcategories as a result of chromating solutions containing cyanide ions and hydrofluoric acid. Aluminum wastewater is also more acidic and contains more dissolved aluminum. This is due to the acidic nature of the chromating solutions that dissolve more aluminum than the phosphating solutions.

Painting wastewater generally consists of quench water. Wastewater from this operation is generally less toxic than wastewater from the other general operations; normally only the following pollutants are expected to exceed 0.010 mg/L: oil and grease, fluorides, TSS, iron, zinc, bis(2-ethylhexyl) phthalate, and diethyl phthalate.

### II.8.3.3 Plant Specific Information

A limited amount of individual plant specific data for the coil coating industry is available. Data available in the reference documents on the influent and effluent streams from the sedimentation treatment system for the plants discussed in the following subsections are summarized in Table 8.3-12. These data are assumed to be screening data because of the lack of definition in the reference document. All three subcategories are represented by these facilities.

# II.8.3.3.1 Plant 11055

This site uses the chromating and phosphating processes to coat cold rolled steel, galvanized steel, and aluminum. The data presented is the analysis of the clarifier influent and effluent at the site.

### II.8.3.3.2 Plant 15436

This facility coats only aluminum basis material by a chromating process. Approximately 1.6 x  $10^7$  m² of aluminum material is cleaned and coated and 2.6 x  $10^7$  m² is painted. The plant uses water at 0.48 L/m² of product. Treatment consists of clarification followed by discharge to surface waters.

#### II.8.3.3.3 Plant 36058

This plant produces coil-coated metal from all three subcategories. Chromating and phosphating processes are used to clean and coat 2.0 x  $10^4$  m² of aluminum,  $4.7 \times 10^6$  m² of galvanized steel, and  $1.9 \times 10^7$  m² of steel. Water usage at the site is approximately 19.5 L/m² for each subcategory. Treatment consists of clarification, chemical reduction, pH adjustment, and skimming prior to surface discharge, although the treatment sequence is not indicated.

#### II.8.3.3.4 Plant 01057

This aluminum coil coating facility uses a chromating process. Treatment consists of lagooning and sedimentation.

TABLE 8.3-12. PLANT SPECIFIC INFORMATION ON COIL COATING PLANTS USING SEDIMENTATION [1]

|                       | Concenti        | ration  | Percen |
|-----------------------|-----------------|---------|--------|
| Parameter             | Raw             | Treated | remova |
|                       | Plant           | 11055   |        |
| Oil and grease, mg/L  | 210             | 6.4     | 97     |
| rss, mg/L             | 1,100           | 31      | 97     |
| Aluminum, µg/L        | 1,900           | ND      | >99    |
| Chromium, total, µg/L | 35 <b>,</b> 000 | 180     | >99    |
| Copper, µg/L          | 6               | 15      | _a     |
| Iron, μg/L            | 15,000          | ND      | >99    |
| Lead, µg/L            | 1,500           | 110     | 93     |
| Nickel, µg/L          | 150             | 120     | 20     |
| Zinc, µg/L            | 340,000         | 500     | >99    |
|                       | Plant           | 15436   |        |
| Dil and grease, mg/L  | 170             | 2.000   | 99     |
| rss, mg/L             | 710             | 52      | 93     |
| Aluminum, µg/L        | 130,000         | 11,000  | 92     |
| Chromium, total µg/L  | 50,000          | 2,800   | 94     |
| Copper, µg/L          | 14              | 17      | _a     |
| Iron, µg/L            | 5,000           | 900     | 82     |
| Lead, µg/L            | 150             | 40      | 73     |
| Nickel, µg/L          | ND              | ND      |        |
| Zinc, µg/L            | 120             | 210     | _a     |
|                       | Plant           | 36058   |        |
| Oil and grease, mg/L  | 710             | ND      | >99    |
| rss, mg/L             | 250             | 120     | 52     |
| Aluminum, μg/L        | 71,000          | 130     | 82     |
| Chromium, total, µg/L | 95              | 120     | _a     |
| Copper, µg/L          | 110             | 15      | 77     |
| Iron, µg/L            | 14,000          | 2,400   | 83     |
| Lead, µg/L            | 130             | ND      | >99    |
| Nickel, µg/L          | ND              | ND      |        |
| Zinc, µg/L            | 7,600           | 720     | 96     |
|                       | Plant           | 01057   |        |
| Dil and grease, mg/L  | 3.8             | 3.6     | 5      |
| rss, mg/L             | 7.1             | 2.7     | 62     |
| Aluminum, μg/L        | 4,300           | 3,300   | 23     |
| Chromium, total, µg/L | 1,800           | 3,300   | >99    |
| Copper, µg/L          | ND              | ND      | 733    |
| Iron, µg/L            | 250             | 130     | 48     |
| Lead, µg/L            | ND              | ND      | 40     |
| Nickel, μg/L          | ND<br>ND        | ND      |        |
| Zinc, µg/L            | 210             | 34      | 84     |
| μ9/ μ                 | 210             |         |        |

Note: ND means not detected.

<sup>&</sup>lt;sup>a</sup>Negative removal.

# II.8.3.4 Pollutant Removability [1]

This section describes the treatment techniques currently in use to recover or remove wastewater pollutants normally found at coil coating facilities. The treatment processes can be divided into six categories: recovery techniques, oil removal, dissolved inorganics removal, cyanide destruction, trace organics removal, and solids removal.

Recovery of process chemicals in coil coating plants is applicable to chromating baths and sealing rinses. Recovery techniques currently in use include ion exchange and election-chemical chromium regeneration.

Other possible recovery processes that are not currently in use include evaporation and insoluble starch xanthate. Ion exchange columns are used at four facilities within the coil coating industry. The wastewater stream is filtered to remove solids and then flows through a column of ion exchange resin which retains copper, iron, and trivalent chromium. The stream then passes through an anion exchanger which retains hexavalent chromium. Several columns may be necessary to achieve the desired levels. By regenerating the exchange resin the life expectancy of the column is extended. In some regeneration procedures, hexavalent chromium is removed by conversion to sodium dichromate with sodium hydroxide. The sodium dichromate is then passed through a cation exchanger which converts it to chromic acid for reuse. The cation exchanger can be regenerated with sulfuric acid.

Electrochemical chromium regeneration oxidizes trivalent chromium to hexavalent chromium by electro oxidation. This system can be used with the wastewater or the drag-out sludge from a settling basin. One coil coating operation presently uses this technique for chromic acid regeneration. This system offers relatively low energy consumption, operation at normal bath temperatures, elimination of metallic sludges, and regeneration of chromic acid.

Oils occuring in wastewaters from the coil coating industry generally come from cutting fluids, lubricants, and preservative coatings used in metal fabrication operations. Oil skimming is the only current method used in this industry to remove this oil. Oil flotation has been suggested for this industry to achieve low oil concentrations or to remove emulsified oils but is not in current practice.

Oil skimming as a pretreatment method is effective in removing naturally floating waste material. It can also improve the performance of subsequent downstream treatments. Many coil coating plants employ this treatment process.

The dissolved inorganic pollutants for the coil coating category are hexavalent chromium, chromium (total), copper, lead, nickel, zinc, cadmium, iron, and phosphorus. Removal of these inorganics is often a major step toward detoxifying wastewater. Chromium reduction, which can be carried out chemically or electrochemically, is frequently a preliminary step. The next major step in the classic treatment system is chemical precipitation, which is often accomplished by the addition of lime, sodium sulfide, sodium hydroxide, sodium carbonate, or ammonia. These additives result in the precipitation of metal hydroxides.

Cyanide destruction in coil coating facilities is necessary to reduce the cyanide concentration in wastewater from the plating and cleaning baths. Cyanide is generally destroyed by oxidation. Alkaline chlorination is the standard technique used in the coil coating industry, but oxidation by ozone, hydrogen peroxide, or electrochemically have been suggested for use. These alternate techniques, however, have not been demonstrated at this time.

Plant sampling data show that organic compounds tend to be removed in standard wastewater treatment equipment. Oil separation not only removes oil but also removes organics that are more soluble in the oil than in water. Clarification also removes organic solids by adsorption on inorganic solids. Carbon adsorption to remove organics has been demonstrated in the electroplating industry but is not presently used in the coil coating industry.

Sedimentation by means of clarification is the most common technique used for the removal of precipitates. The major advantage of sedimentation is the simplicity of the process. Sedimentation is used in 55 coil coating plants in various forms, including ponds, lagoons, slant tube clarifiers, and Lamella clarifiers.

Granular bed filters are used in 10 coil coating plants to remove residual solids from the clarifier effluent. Chemicals may be added upstream to enhance the solids removal. Pressure filtration is also used in this industry to reduce the solids concentration in clarifier effluent and to remove excess water from the clarifier sludge. Other sludge dewatering technologies used include vacuum filtration, centrifugation, and sludge bed drying.

Table 8.3-12, presented in section II.8.3.3 of this report, gives the available pollutant removability data.

## II.8.3.5 References

- Development Document for Effluent Limitations Guidelines and Standards for the Coil Coating Point Source Category. EPA 440/1-79/071a, U.S. Environmental Protection Agency, Effluent Guidelines Division, Washington, DC, August 1979.
- 2. NRDC Consent Decree Industry Summary Coil Coating Industry.

#### II.8.6 FOUNDRIES

### II.8.6.1 Industry Description

### II.8.6.1.1 General Description [1]

The foundry industry comprises facilities that pour or inject molten metal into a mold to produce intricate metal shapes that cannot be readily formed by other methods.

The foundry industry in the United States employs over 400,000 workers in 4,400 foundries that produce over 17,230 Mg (19 million tons) of product annually. This production includes cast pieces made of iron, steel, aluminum, brass, and copper, as well as other metals. Included in this industry are Standard Industrial Classification (SIC) Codes 3321, 3322, 3324, 3325, 3361, 3362, and 3369.

The basic foundry process is essentially the same regardless of the method of melting, molding, or finishing. A raw material charge is melted in a furnace, from which the molten metal is withdrawn as needed. The mold for the product is a sand cast or a set of metal die blocks which are locked together to make a complete cavity. The molten metal is ladled into the mold, and then the mold is cooled until the metal solidifies into the desired shape. The rough product is further processed by removing excess metal, quenching, cleaning and chemical treatment.

Table 8.6-1 presents industry summary data for the foundry industry including the number of subcategories and the number and type of wastewater dischargers.

### TABLE 8.6-1. INDUSTRY SUMMARY [2]

Industry: Foundries

Total number of subcategories: 9
Number of subcategories studied: 6
Number of dischargers in industry:

Direct: 1,050Indirect: 498

· Zero: 450

No BPT limitations are currently listed for this industry by the EPA in the available references.

### II.8.6.1.2 Subcategory Description [1]

The foundry industry includes a number of foundry types as well as processes within these foundry types. Plants are capable of casting one or more metals on a site and each site may utilize one or more processes that can generate wastewater.

The following subcategories have been selected to describe the foundry industry based on the type of metal cast, the type of process, plant size, geographical location, age, wastewater characteristics and treatability, process water usage, and method of effluent disposal.

- (1) Iron and steel foundries
- (2) Aluminum casting
- (3) Zinc casting
- (4) Copper casting
- (5) Magnesium casting
- (6) Lead casting
- (7) Tin casting
- (8) Titanium casting
- (9) Nickel casting

Iron and Steel Foundries. Iron is the world's most widely used metal. When alloyed with carbon, it has a wide range of useful engineering properties. Four general classes of iron are produced in foundries: gray, ductile, malleable, and steel. The same general processes are used with all four classes of metal in the production of products ranging from cooking utensils and pipe fittings to steel railroad car wheels.

Aluminum Casting. Aluminum is a light metal with good tensile strength. It is easily cast, extruded, or pressed, and it weighs half as much as a similar product made from steel. Establishments that are engaged in producing castings and die castings of aluminum and its alloys produce household and hospital utensils, and machinery castings.

Zinc Casting. Zinc, with a lower melting point than most metals, is generally die cast, making its process different from other foundry subcategories. Because it is not as strong as most metals, it is usually alloyed with metals such as copper, aluminum, or magnesium. Common products from this subcategory are zinc castings.

Copper Casting. Copper is second only to aluminum in importance among the nonferrous metals. It is often alloyed with tin, lead, and zinc to produce brass and bronze. Copper castings are

produced by several methods which include centrifugal molds, green sand molds, and die casting. Products include bushings and bearings, propellers, and other cast products.

Magnesium Casting. Most magnesium is generally cast in sand molds. This is to prevent metal-mold reactions, which may occur because of the reactive nature of molten magnesium. Inhibitors such as sulfur, boric acid, or ammonium fluorosilicate are often mixed with the sand to prevent these reactions.

Lead Casting. Lead foundries produce lead castings such as lead wheel balancing weights and sash balances, as well as white metal castings.

Other Subcategories. The remaining three subcategories, Tin Casting, Titanium Casting, and Nickel Casting, have been recommended for Paragraph 8 exclusion under the NRDC Consent Decree. This recommendation is based on the low number of plants and low production by these subcategories.

# II.8.6.1.3 Subcategory Operations

Several of the above subcategories may be divided into separate operation types. These operations are presented below with a brief description of each.

Aluminum Casting. The aluminum foundry industry can be subdivided into five operations which represent different processes within the foundry. These include investment casting, melting furnace scrubbers, casting quench operations, die casting operations, and die lube operations. Investment (also known as precision or lost wax) casting operations use molds that are produced by surrounding an expendable pattern with a ceramic slurry that hardens at room temperature. The pattern, normally a wax, is then melted or burned out of the hard mold. These molds provide very close tolerances. After the molten metal is poured into the mold and solidifies, the mold is broken away. Thus, a new mold is needed for each casting. Process wastewaters include those resulting from mold backup, hydroblast (of castings), and dust collection (used in conjunction with hydroblasting and the handling of the investment material and castings).

A second operation inherent to the aluminum foundry industry involves the use of wet scrubbers to remove noxious materials from melting furnace gases. The wastewater sources resulting from this process are either the discharges from wastewater scrubber equipment packages or the discharge from treatment systems separate from the scrubber system.

The third operation type, cast quenching, is practiced more frequently in nonferrous than in ferrous foundries. Ordinarily, it is used to promote the rapid cooling and solidification of casting material or to produce certain metal grain structures that are obtainable only through sudden thermal changes. In these cases, the casting is quenched in a water bath which may be plain water or may contain an additive to promote some special condition. The only wastewaters considered in association with this operation are those which are discharged from the casting quench tanks.

Theoretically, the fourth operation type, die casting, does not produce a process wastewater. However, in most die casting operations major sources of wastewater include contact mold cooling water, die surface cooling sprays, casting machine hydraulic systems using water, and leakage from various noncontact cooling systems which are subsequently contaminated by dirt, oil, and grease.

Die lube operations involve the application of lubricants to die casting molds to prevent the casting from sticking to the die. The lubricants used are dependent on the temperature of the metal, the operating temperature of the die, and the alloy to be cast. The lubricants, generally organic compounds, may enter the waste stream through leaks in mold machinery.

Copper and Copper Alloy Casting. The copper and copper alloy foundry industry can be subdivided into three operation types which represent various processes within the plant: dust collection, mold cooling and casting quench, and continuous casting. Mold cooling is commonly used in casting operations which employ permanent molds. In such an operation, it is often necessary to force cool the mold with water which subsequently becomes contaminated with materials picked up from the mold surface.

Continuous casting is used in operations where a slab or billet is "worked" to produce a final product. Such slabs are continuously cast by pouring molten metal into a water-cooled mold at a controlled rate and withdrawing a solid piece from the bottom of the mold. This piece is then cut into lengths for further processing. Wastewaters result from the cooling of the molds and castings used in and produced from continuous casting equipment.

Dust collection and casting quench operations are similar to those used in aluminum foundries.

Ferrous Foundries. Ferrous (iron and steel) foundries have five operations that can produce wastewater in some form. These include dust collection, melting furnace scrubber, slag quenching, casting quench and mold cooling, and sand washing operations. Slag quenching is commonly used to rapidly cool and fragmentize

slag (a mixture of nonmetallic fluxes introduced with the "charge" to remove impurities from the molten metal) to an easily handled bulk material. The quench water is a waste product that must be handled.

The reclamation and reuse of sand is a major operation in foundries which use sand as a molding media. In this operation, water
is used to "wash" impurities, primarily "spent" binders and sand,
from the casting sand prior to its reuse in the molding operations. The sand and binders become "spent" as a result of the
heat present in the casting process. Additionally, sand can be
"washed" using a number of dry and thermal methods. These latter
methods have the advantage of not producing a wastewater stream.

Dust collection, melting furnace scrubber, casting quench and mold cooling operations are similar to those described for aluminum and copper/copper alloy foundries.

Magnesium Casting. Magnesium foundries generate wastewater in grinding scrubber and dust collection operations. Because of the violent reaction of fine magnesium particles with air, wet scrubbers are used to control the dust from the grinding operations.

Zinc Casting. Zinc foundry operations include casting quench operations and melting furnace scrubber operations similar to those described above.

## II.8.6.1.4 Wastewater Flow Characterization [1]

Table 8.6-2 presents wastewater flow characterization for the foundry industry by subcategory. Also presented in this table is the degree of process water recycle, and the number of plants surveyed with central wastewater treatment facilities for all of the processes at that plant. The discharge flow represents all processes within the subcategory.

# II.8.6.2 Wastewater Characterization [1]

Each type of operation in the foundry industry can produce different types of pollutants in the wastewater stream. Also because each subcategory operation often involves different processes, subcategory pollutant concentrations may vary. The character of wastewater for each subcategory is given in Tables 8.6-3 through 8.6-12. Operations within each subcategory have been combined to give an overall view of the subcategory. More detailed information on each operation is provided in the section of this report dealing with each specific plant.

TABLE 8.6-2. WASTEWATER FLOW CHARACTERIZATION BY SUBCATEGORY [1]

|                          | Respondents,  | Discharge i      | Elow. m³/d |      | Amount of recycle, | Central treatment facilities, | Operation treatment facility |
|--------------------------|---------------|------------------|------------|------|--------------------|-------------------------------|------------------------------|
|                          | no. of plants | Range            | Average    |      | 1                  | no. of plants                 | no. of plants                |
| Iron and steel foundries | 283           |                  |            |      | 0 - 100            | 82                            | 178                          |
| Aluminum casting         | 30            | 0.15 - 2.0 x 10° | 170        | 7.3  | 0 - 100            | 7                             | 18                           |
| linc casting             | 14            | 10.3 - 280       | 99         | 11.4 | 0 - 100            | 6                             | 1                            |
| Copper casting           | 21            | 1.2 - 6.7 x 10°  | 1,800      | 420  | 0 - 100            | 7                             | 14                           |
| Magnesium casting        | 2             | 0.01 - 3.2       | 1.6        | 1.6  | 0 - 100            | . 0                           | 2                            |
| Lead casting             | 0             |                  |            |      |                    |                               |                              |

TABLE 8.6-3. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR THE IRON AND STEEL FOUNDRIES [1]

|                | Number  | of times | Conce   | mg/L <sup>a</sup> |        |
|----------------|---------|----------|---------|-------------------|--------|
| Pollutant      | Sampled | Detected | Maximum | Average           | Median |
| TSS            | 23      | 23       | 8,900   | 2,700             | 1,100  |
| Total phenols  | 20      | 19       | 31      | 2.9               | 0.59   |
| Sulfides       | 9       | 9        | 10      | 2.1               | 1.0    |
| Oil and grease | 18      | 16       | 200     | 29                | 10     |
| рН             | 21      | 21       | 11      | 7.7               | 7.5    |

<sup>&</sup>lt;sup>a</sup>Except pH values, which are given in pH units.

TABLE 8.6-4. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR ALUMINUM CASTING [1]

|                  | Number  | of times | Concentration, mg/L |         |        |
|------------------|---------|----------|---------------------|---------|--------|
| <u>Pollutant</u> | Sampled | Detected | Maximum             | Average | Median |
| TSS              | 8       | 8        | 1,700               | 540     | 100    |
| Total phenols    | 4       | 4        | 66                  | 17      | 0.07   |
| Oil and grease   | 8       | 8        | 8,500               | 1,200   | 20     |
| pH               | 8       | 8        | 8.6                 | 7.3     | 7.2    |

aExcept pH values, which are given in pH units.

TABLE 8.6-5. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR ZINC CASTING [1]

|                | Number  | of times | Concentration, mg/La |         |        |  |
|----------------|---------|----------|----------------------|---------|--------|--|
| Pollutant      | Sampled | Detected | Maximum              | Average | Median |  |
| TSS            | 3       | 3        | 3,800                | 1,300   | 92     |  |
| Total phenols  | 3       | 3        | 1.4                  | 0.52    | 0.11   |  |
| Oil and grease | 3       | 3        | 17,000               | 5,700   | 70     |  |
| pH             | 3       | 3        | 7.4                  | 6.8     | 7.4    |  |

aExcept pH values, which are given in pH units.

TABLE 8.6-6. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR COPPER CASTING [1]

|                | Number  | of times |         | ntration, |        |
|----------------|---------|----------|---------|-----------|--------|
| Pollutant      | Sampled | Detected | Maximum | Average   | Median |
| TSS            | 2       | 2        | 610     | 230       | 230    |
| Oil and grease | 3       | 2        | 38      | 23        | 30     |
| рН             | 3       | 3        | 8.3     | 7.7       | 7.8    |

aExcept pH values, which are given in pH units.

TABLE 8.6-7. WASTEWATER CHARACTERIZATION OF CONVENTIONAL POLLUTANTS FOR MAGNESIUM CASTING [1]

|                  | Number o | of times | Conce   | mg/L <sup>a</sup> |        |
|------------------|----------|----------|---------|-------------------|--------|
| <u>Pollutant</u> | Sampled  | Detected | Maximum | Average           | Median |
| TSS              | 1        | 1        |         |                   | 8.3    |
| Total phenols    | ī        | ī        |         |                   | 1.1    |
| Oil and grease   | 1        | 1        |         |                   | 6      |
| рН               | 2        | 2        | 9.8     | 8.7               | 8.7    |

aExcept pH values, which are given in pH units.

TABLE 8.6-8. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOUND IN IRON AND STEEL FOUNDRIES [1]

|                             | Number  | of times |              |                 |
|-----------------------------|---------|----------|--------------|-----------------|
| Toxic pollutant             | Sampled | Detected | Range, µg/L  | Median, µg/I    |
| Metals and inorganics       |         |          |              |                 |
| Antimony                    | 8       | 5        | ND - 900     | 50              |
| Arsenic                     | 8       | 4        | ND - 160     | 2               |
| Beryllium                   | 16      | 9        | ND - BDL     | BDL             |
| Cadmium                     | 10      | 3        | ND - 740     | ND              |
| Chromium                    | 10      | 8        | ND - 700     | 35              |
| Copper                      | 17      | 15       | ND - 4,400   | 300             |
| Cyanide                     | 22      | 12       | ND - 370     | 6               |
| Lead                        | 17      | 14       | ND - 140,000 | 320             |
| Mercury                     | 21      | 13       | ND - 3.6     | 0.1             |
| Nickel                      | 17      | 13       | ND - 910     | 40              |
| Selenium                    | 10      | 1        | ND - BDL     | ND              |
| Silver                      | 4       | 2        | ND - 30      | ND a            |
| Thallium                    | 4       | 2        | ND - BDL     | ND a            |
| Zinc                        | 17      | 11       | ND - 170,000 | 590             |
| Ethers                      |         |          |              |                 |
| Bis(2-chloroethyl) ether    | 3       | 1        | ND - BDL     | ND              |
| Bis(2-chloroethoxy)methane  | 3       | 2        | ND - 20      | BDL             |
| Phthalates                  |         |          |              |                 |
| Bis(2-ethylhexyl) phthalate | 10      | 7        | ND - 1,200   | 5.5             |
| Butyl benzyl phthalate      | 8       | 6        | ND - 200     | 16              |
| Di-n-butyl phthalate        | 10      | 6        | ND - 200     | 6 <sup>a</sup>  |
| Diethyl phthalate           | 9       | 5        | ND - 39      | 1               |
| Dimethyl phthalate          | 9       | 4        | ND - 2,200   | ND              |
| Di-n-octyl phthalate        | 2       | 2        | BDL - 41     | 41 <sup>a</sup> |
| Nitrogen compounds          |         |          |              |                 |
| Benzidine                   | 1       | 0        |              | ND              |
| N-nitrosodiphenylamine      | 6       | 5        | ND - 1,400   | 12              |
| N-nitroso-di-n-propylamine  | 1       | 1        |              | BDL             |

TABLE 8.6-8 (continued).

| Toxic pollutant  Sampled  Phenols  2-Chlorophenol  2,4-Dichlorophenol  2,4-Dimethylphenol  2-Nitrophenol  4-Nitrophenol  Pentachlorophenol  Phenol  2,4,6-Trichlorophenol  p-Chloro-m-cresol  4,6-Dinitro-o-cresol  Aromatics  Benzene  Chlorobenzene  2,4-Dinitrotoluene  2,4-Dinitrotoluene  Ethylbenzene  Hexachlorobenzene  Nitrobenzene  Toluene  1,2,4-Trichlorobenzene  Polycyclic aromatic | 4 5 6 4 6 3 4 4 5 2                       | ND - 200<br>ND - 2,200<br>ND - 1,100<br>ND - 40<br>ND - 40<br>ND - 130<br>ND - 20,000<br>ND - 80<br>ND - 170<br>ND - 38 | BDL 20 11 a 13 a 21 a 100 ND BDL 14 a                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 2-Chlorophenol 7 2,4-Dichlorophenol 7 2,4-Dimethylphenol 9 2-Nitrophenol 6 4-Nitrophenol 4 Pentachlorophenol 9 2,4,6-Trichlorophenol 7 p-Chloro-m-cresol 6 4,6-Dinitro-o-cresol 6 Aromatics Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                              | 5<br>6<br>4<br>3<br>4<br>6<br>3<br>4<br>4 | ND - 2,200<br>ND - 1,100<br>ND - 40<br>ND - 40<br>ND - 130<br>ND - 20,000<br>ND - 80<br>ND 170<br>ND - 38               | 20<br>11<br>10 <sup>a</sup><br>13 <sup>a</sup><br>21 <sup>a</sup><br>100<br><b>N</b> D<br>BDL |
| 2,4-Dichlorophenol 7 2,4-Dimethylphenol 9 2-Nitrophenol 6 4-Nitrophenol 4 Pentachlorophenol 9 2,4,6-Trichlorophenol 7 p-Chloro-m-cresol 6 4,6-Dinitro-o-cresol 6  Aromatics Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                              | 5<br>6<br>4<br>3<br>4<br>6<br>3<br>4<br>4 | ND - 2,200<br>ND - 1,100<br>ND - 40<br>ND - 40<br>ND - 130<br>ND - 20,000<br>ND - 80<br>ND 170<br>ND - 38               | 20<br>11<br>10<br>13<br>13<br>21<br>100<br>ND<br>BDL                                          |
| 2,4-Dichlorophenol 7 2,4-Dimethylphenol 9 2-Nitrophenol 6 4-Nitrophenol 4 Pentachlorophenol 6 Phenol 9 2,4,6-Trichlorophenol 7 p-Chloro-m-cresol 6 4,6-Dinitro-o-cresol 6  Aromatics Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                     | 6<br>4<br>3<br>4<br>6<br>3<br>4<br>4      | ND - 1,100<br>ND - 40<br>ND - 40<br>ND - 130<br>ND - 20,000<br>ND - 80<br>ND 170<br>ND - 38                             | 11<br>10 <sup>a</sup><br>13 <sup>a</sup><br>21 <sup>a</sup><br>100<br>ND<br>BDL               |
| 2,4-Dimethylphenol 9 2-Nitrophenol 6 4-Nitrophenol 4 Pentachlorophenol 6 Phenol 9 2,4,6-Trichlorophenol 7 p-Chloro-m-cresol 6 4,6-Dinitro-o-cresol 6  Aromatics Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                          | 4<br>3<br>4<br>6<br>3<br>4<br>4           | ND - 40<br>ND - 40<br>ND - 130<br>ND - 20,000<br>ND - 80<br>ND 170<br>ND - 38                                           | 10 <sup>a</sup><br>13 <sup>a</sup><br>21 <sup>a</sup><br>100<br><b>N</b> D<br>BDL             |
| 2-Nitrophenol 6 4-Nitrophenol 4 Pentachlorophenol 6 Phenol 9 2,4,6-Trichlorophenol 7 p-Chloro-m-cresol 6 4,6-Dinitro-o-cresol 6  Aromatics Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                               | 3<br>4<br>6<br>3<br>4<br>4                | ND - 40<br>ND - 130<br>ND - 20,000<br>ND - 80<br>ND 170<br>ND - 38                                                      | 13 <sup>a</sup><br>21 <sup>a</sup><br>100<br>ND<br>BDL                                        |
| 4-Nitrophenol 4 Pentachlorophenol 6 Phenol 9 2,4,6-Trichlorophenol 7 p-Chloro-m-cresol 6 4,6-Dinitro-o-cresol 6  Aromatics Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                               | 4<br>6<br>3<br>4<br>4                     | ND - 130<br>ND - 20,000<br>ND - 80<br>ND 170<br>ND - 38                                                                 | 13 <sup>a</sup><br>21 <sup>a</sup><br>100<br>ND<br>BDL                                        |
| Pentachlorophenol 6 Phenol 9 2,4,6-Trichlorophenol 7 p-Chloro-m-cresol 6 4,6-Dinitro-o-cresol 6  Aromatics Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                               | 6<br>3<br>4<br>4<br>5                     | ND - 20,000<br>ND - 80<br>ND 170<br>ND - 38                                                                             | 21°<br>100<br>ND<br>BDL                                                                       |
| Phenol 9 2,4,6-Trichlorophenol 7 p-Chloro-m-cresol 6 4,6-Dinitro-o-cresol 6  Aromatics Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                   | 3<br>4<br>4<br>5                          | ND - 80<br>ND 170<br>ND - 38                                                                                            | ND<br>BDL                                                                                     |
| p-Chloro-m-cresol 6 4,6-Dinitro-o-cresol 6  Aromatics Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                                                    | 4<br>4<br>5                               | ND - 80<br>ND 170<br>ND - 38                                                                                            | BDL                                                                                           |
| p-Chloro-m-cresol 6 4,6-Dinitro-o-cresol 6  Aromatics Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                                                    | 4<br>4<br>5                               | ND - 38                                                                                                                 | BDL<br>14 <sup>a</sup>                                                                        |
| Aromatics  Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                                                                                               | <b>4</b><br>5                             | ND - 38                                                                                                                 | 14 <sup>a</sup>                                                                               |
| Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                                                                                                          |                                           | ND - 100                                                                                                                |                                                                                               |
| Benzene 10 Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                                                                                                          |                                           | ND - 100                                                                                                                |                                                                                               |
| Chlorobenzene 2 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                                                                                                                     |                                           | NI) - 100                                                                                                               | NDa                                                                                           |
| 2,4-Dinitrotoluene 3 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                                                                                                                                     |                                           | BDL                                                                                                                     | BDL                                                                                           |
| 2,6-Dinitrotoluene 4 Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                                                                                                                                                          | 3                                         | BDL - <50                                                                                                               | <7                                                                                            |
| Ethylbenzene 5 Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                                                                                                                                                                               | 4                                         | BDL - <50                                                                                                               | <7 <sup>a</sup>                                                                               |
| Hexachlorobenzene 1 Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                                                                                                                                                                                              | 4                                         | ND - BDL                                                                                                                | BDL                                                                                           |
| Nitrobenzene 2 Toluene 8 1,2,4-Trichlorobenzene 3                                                                                                                                                                                                                                                                                                                                                  | ì                                         | ND DDL                                                                                                                  | BDL                                                                                           |
| Toluene 8<br>1,2,4-Trichlorobenzene 3                                                                                                                                                                                                                                                                                                                                                              | 2                                         | <3 - <280                                                                                                               | <140                                                                                          |
| 1,2,4-Trichlorobenzene 3                                                                                                                                                                                                                                                                                                                                                                           | 5                                         | ND - 40                                                                                                                 | l <sup>a</sup>                                                                                |
| Polycyclic aromatic                                                                                                                                                                                                                                                                                                                                                                                | 2                                         | ND - 7                                                                                                                  | BDL                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                                                                                                         |                                                                                               |
| hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                                                                                                         |                                                                                               |
| Acenaphthene 9                                                                                                                                                                                                                                                                                                                                                                                     | 6                                         | ND - 36                                                                                                                 | BDL                                                                                           |
| Acenaphthylene 9                                                                                                                                                                                                                                                                                                                                                                                   | 6                                         | ND - 40                                                                                                                 | BDL                                                                                           |
| Anthracene 9                                                                                                                                                                                                                                                                                                                                                                                       | 7                                         | ND - <410                                                                                                               | <3                                                                                            |
| Benz(a)anthracene 7                                                                                                                                                                                                                                                                                                                                                                                | 5                                         | ND - 21                                                                                                                 | 9                                                                                             |
| Benzo(a)pyrene 4                                                                                                                                                                                                                                                                                                                                                                                   | 4                                         | BDL - <30                                                                                                               | BDL                                                                                           |
| Benzo(b)fluoranthene 3                                                                                                                                                                                                                                                                                                                                                                             | 3                                         | BDL - <36                                                                                                               |                                                                                               |
| Benzo(k)fluoranthene 2                                                                                                                                                                                                                                                                                                                                                                             | 2                                         | BDL - 6                                                                                                                 | 6<br>6                                                                                        |
| Chrysene 9                                                                                                                                                                                                                                                                                                                                                                                         | 4                                         | ND - 21                                                                                                                 | ND                                                                                            |
| Fluoranthene 10                                                                                                                                                                                                                                                                                                                                                                                    | 7                                         | ND - <390                                                                                                               | l <sup>a</sup>                                                                                |
| Fluorene 8                                                                                                                                                                                                                                                                                                                                                                                         | 6                                         | ND - <620                                                                                                               | 44_                                                                                           |
| Naphthalene 10                                                                                                                                                                                                                                                                                                                                                                                     | 5                                         | ND - 93                                                                                                                 | NDa                                                                                           |
| Phenanthrene 9                                                                                                                                                                                                                                                                                                                                                                                     | 7                                         | ND - <410                                                                                                               | /3                                                                                            |
| Pyrene 10                                                                                                                                                                                                                                                                                                                                                                                          | 6                                         | ND - <1,100                                                                                                             | `3<br>6                                                                                       |

TABLE 8.6-8 (continued).

|                            | Number | of times |             |                 |
|----------------------------|--------|----------|-------------|-----------------|
| Toxic pollutant            |        | Detected | Range, µg/L | Median, µg/L    |
| Polychlorinated biphenyls  |        |          |             |                 |
| and related compounds      |        |          |             |                 |
| Aroclor 1016, 1232         |        |          |             |                 |
| 1248, 1260                 | 10     | 4        | ND - 270    | <b>N</b> D      |
| Aroclor 1221, 1254, 1424   | 10     | 3        | ND - 330    | <b>N</b> D      |
| Halogenated aliphatics     |        |          |             |                 |
| Carbon tetrachloride       | 8      | 6        | ND - 20     | BDL             |
| Cloroform                  | 10     | 3        | ND - 80     | ND              |
| Dichlorobromomethane       | 3      | 1        | ND - 37     | ND              |
| 1,2-Trans-dichloroethylene | 1      | 1        |             | <11             |
| Methylene chloride         | 10     | 6        | ND - 470    | BDL             |
| Tetrachloroethylene        | 10     | 4        | ND - 370    | ND              |
| 1,1,1-Trichloroethane      | 10     | 6        | ND - 60     | BDL             |
| 1,1,2-Trichloroethane      | 3      | 2        | ND - 20     | BDL             |
| Trichloroethylene          | 7      | 3        | ND - 180    | ND              |
| Pesticides and metabolites |        |          |             | _               |
| Aldrin                     | 6      | 3        | ND - BDL    | nd <sup>a</sup> |
| α-BHC                      | 7      | 0        |             | ND              |
| β-внс                      | 7      | 2        | ND - 30     | ND              |
| δ-BHC                      | 8      | 1        | ND - 20     | ND              |
| ү-внс                      | 6      | 3        | ND - 20     | ND <sup>a</sup> |
| Chlordane                  | 5      | 0        |             | ND              |
| 4,4'-DDE                   | 5      | 2        | ND - 20     | ND              |
| 4,4'-DDD                   | 5      | 1        | ND - BDL    | ND              |
| 4,4'-DDT                   | 9      | 3        | ND - 20     | ND              |
| Dieldrin                   | 7      | 6        | ND - 20     | BDL             |
| α-Endosulfan               | 5      | 4        | ND - BDL    | BDL             |
| β-Endosulfan               | 5      | 2        | ND - BDL    | ND              |
| Endosulfan sulfate         | 4      | 2        | ND - BDL    | ND a            |
| Endrin                     | 5      | 4        | ND - 9      | BDL             |
| Endrin aldehyde            | 5      | 2        | ND - 20     | ND              |
| Heptachlor                 | 7      | 2        | ND - 20     | ND              |
| Heptachlor epoxide         | 6      | 0        |             | ND              |
| Isophorone                 | 6      | 1        | ND - BDL    | ND              |

and BDL.

TABLE 8.6-9. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOUND IN ALUMINUM CASTING FOUNDRIES [1]

|                             | Number  | of times |              |                          |
|-----------------------------|---------|----------|--------------|--------------------------|
| Toxic pollutant             | Sampled |          | Range, µg/L  | Median, µg/L             |
| Metals and inorganics       |         |          |              | _                        |
| Chromium                    | 8       | 4        | ND - <100    | $\mathtt{ND}^\mathtt{a}$ |
| Copper                      | 1       | 1        |              | <b>4</b> 50              |
| Cyanide                     | 9       | 7        | ND - 14      | 5                        |
| Lead                        | 9       | 4        | ND - 2,000   | 50                       |
| Mercury                     | 9       | 5        | ND - 0.9     | BDL                      |
| Nickel                      | 9       | 4        | ND - 300     | <b>N</b> D               |
| Selenium                    | 9       | 2        | ND - <40     | ND                       |
| Zinc                        | 9       | 9        | 90 - 8,800   | 810                      |
| Ethers                      | . '     |          |              |                          |
| Bis(2-chloroethyl) ether    | 1       | 1        |              | 9                        |
| Phthalates                  |         |          |              |                          |
| Bis(2-ethylhexyl) phthalate | 9       | 7        | ND - 820,000 | 680                      |
| Butyl benzyl phthalate      | 3       | 3        | BDL - 690    | BDL                      |
| Di-n-butyl phthalate        | 9       | 9        | BDL - 5,400  | 74                       |
| Diethyl phthalate           | 7       | 6        | ND - 730     | 91                       |
| Dimethyl phthalate          | 4       | 3        | ND - 35      | 29 <sup>a</sup>          |
| Di-n-octyl phthalate        | 3       | 3        | BDL - 4      | BDL                      |
| Nitrogen compounds          |         |          |              |                          |
| N-nitroso-di-n-propylamine  | 2       | 2        | 34 - 210     | 120                      |
| Phenols                     | -       |          |              |                          |
| 2-Chlorophenol              | 3       | 3        | BDL - 53     | 53                       |
| 2,4-Dichlorophenol          | 7       | 7        | BDL - 5,700  | <b>2</b> 2               |
| 2,4-Dimethylphenol          | 7       | 7        | BDL - 91     | 41                       |
| 2-Nitrophenol               | 5       | 5        | BDL - 330    | 29                       |
| Pentachlorophenol           | 3       | 3        | BDL - 1,600  | BDL                      |
| Phenol                      | 6       | 5        | ND - 26,000  | 570                      |
| 2,4,6-Trichlorophenol       | 8       | 7        | ND - 380     | 250                      |
| 4,6-Dinitrophenol           | 4       | 2        | ND - 140     | ND <sup>a</sup>          |
| p-Chloro-m-cresol           | 6       | 5        | ND - 280     | 71                       |
| 4,6-Dinitro-o-cresol        | · 5     | 5        | BDL - 70     | 61                       |

TABLE 8.6-9 (continued)

|                              | Number  | of times |              |                  |
|------------------------------|---------|----------|--------------|------------------|
| Toxic pollutant              | Sampled | Detected | Range, µg/L  | Median, µg/I     |
| Aromatics                    |         |          |              | •                |
| Benzene                      | 9       | 9        | BDL - 84     | BDL              |
| Chlorobenzene                | 1       | 1        |              | 250              |
| Ethylbenzene                 | 4       | 3        | ND - 78      | BDL              |
| Toluene                      | 8       | 7        | ND - 540     | BDL              |
| Polycyclic aromatic hydrocar | bons    |          |              |                  |
| Acenaphthene                 | 5       | 3        | ND - 200     | BDL              |
| Acenaphthylene               | 7       | 3        | ND - 47      | ND_              |
| Anthracene                   | 4       | 4        | BDL - <470   | <10 <sup>a</sup> |
| Benz(a)anthracene            | 3       | 2        | ND - <13,000 | <13,000          |
| Benzo(a)pyrene               | 4       | 3        | ND - 53      | 37 <sup>a</sup>  |
| Chrysene                     | 4       | 3        | ND - 43,000  | <b>6,9</b> 00    |
| Fluoranthene                 | 7       | 6        | ND - 320     | 2                |
| Fluorene                     | 7       | 5        | ND - 800     | BDL              |
| Naphthalene                  | 5       | 4        | ND - 160     | 11,              |
| Phenanthrene                 | 4       | 4        | BDL - <470   | <10 <sup>a</sup> |
| Pyrene                       | 7       | 7        | BDL - 250    | BDL              |
| Polychlorinated biphenyls    |         |          |              |                  |
| and related compounds        |         |          |              |                  |
| Aroclor 1016, 1232,          |         |          |              |                  |
| 1248, 1260                   | 8       | 8        | BDL - 830    | 12               |
| Aroclor 1221, 1254, 1424     | 8       | 8        | BDL - 1,400  | 5                |
| Halogenated aliphatics       |         |          |              |                  |
| Bromoform                    | 1       | 1        |              | BDL              |
| Carbon tetrachloride         | 6       | 6        | BDL - 480    | BDL              |
| Chlorodibromomethane         | 1       | 1        |              | BDL              |
| Chloroform                   | 9       | 5        | ND - 450     | 4                |
| Dichlorobromomethane .       | 6       | 4        | ND - 2       | BDL              |
| 1,1-Dichloroethane           | 1       | 1        |              | 55               |
| 1,2-Dichloroethane           | 3       | 3        | BDL - 170    | 5                |

TABLE 8.6-9 (continued)

|                            | Number of times |          |             |                        |  |  |  |
|----------------------------|-----------------|----------|-------------|------------------------|--|--|--|
| Toxic pollutant            | Sampled         | Detected | Range, µg/L | Median, µg/L           |  |  |  |
| Halogenated aliphatics     |                 |          |             |                        |  |  |  |
| (continued)                |                 |          |             |                        |  |  |  |
| 1,2-Trans-dichloroethylene | 2               | 0        |             | ND                     |  |  |  |
| Methylene chloride         | 9               | 4        | ND - 2,400  | ND_                    |  |  |  |
| 1,1,2,2-Tetrachloroethane  | 2               | 2        | BDL - 18    | 18 <sup>a</sup>        |  |  |  |
| Tetrachloroethylene        | 8               | 3        | ND - 160    | ND                     |  |  |  |
| 1,1,1-Trichloroethane      | 3               | 2        | ND - 16,000 | 140                    |  |  |  |
| 1,1,2-Trichloroethane      | 1               | 1        |             | BDL                    |  |  |  |
| Trichloroethylene          | 8               | 7        | ND - 280    | BDL                    |  |  |  |
| Pesticides and metabolites |                 |          |             |                        |  |  |  |
| Aldrin                     | 2               | 2        | BDL         | BDL                    |  |  |  |
| a-BHC                      | . 7             | 6        | ND - 26     | BDL                    |  |  |  |
| 8-BHC                      | 5               | 4        | ND - 70     | BDL                    |  |  |  |
| δ−BHC                      | 8               | 8        | BDL - 2     | BDL                    |  |  |  |
| у-ВНС                      | 2               | 2        | BDL         | BDL                    |  |  |  |
| Chlordane                  | 5               | 4        | MD - 38     | BDL                    |  |  |  |
| 4,4'-DDE                   | 6               | 5        | MD - 10     | 10 <sup><b>a</b></sup> |  |  |  |
| 4,4'-DDD                   | 2               | 2        | BDL         | BDL                    |  |  |  |
| 4,4'-DDT                   | 8               | 7        | ND - BDL    | BDL                    |  |  |  |
| Dieldrin                   | 3               | 3        | BDL         | BDL                    |  |  |  |
| <pre>a-Endosulfan</pre>    | 3               | 3        | BDL         | BDL                    |  |  |  |
| β-Endosulfan               | 3               | 2        | ND - BDL    | BDL                    |  |  |  |
| Endosulfan sulfate         | 2               | 2        | BDL         | BDL                    |  |  |  |
| Endrin                     | 3               | 2        | ND - BDL    | BDL                    |  |  |  |
| Endrin aldehyde            | 2               | 2        | BDL         | BDL                    |  |  |  |
| Heptachlor                 | 4               | 3        | ND - BDL    | BDL                    |  |  |  |
| Heptachlor epoxide         | 2               | ĭ        | ND - BDL    | ND a                   |  |  |  |

and BDL.

TABLE 8.6-10. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOUND IN ZINC CASTING [1]

|                             |         | of times | Range ,       | Median,     |
|-----------------------------|---------|----------|---------------|-------------|
| Toxic pollutant             | Samples | Detected | µg/L          | µg/L        |
|                             |         | 1        | J.            |             |
| Metals and inorganics       | _       | _        |               |             |
| Chromium                    | 3       | 3        | <10           | <10         |
| Copper                      | 3       | 1        | ND-150        | ND          |
| Cyanide                     | 4       | 3        | ND-19         | 9           |
| Lead                        | 4       | 4        | <10           | <10         |
| Mercury                     | 3       | 2        | ND-0.3        | 0.          |
| Nickel                      | 3       | 2        | ND-3          | ND          |
| Selenium                    | 3       | 0        |               | ND          |
| Zinc                        | 4       | 4        | 3,700-350,000 | 41,000      |
| Phthalates                  |         |          |               |             |
| Bis(2-ethylhexyl) phthalate | 4       | 4        | 67-5,500      | 2,100       |
| Butyl benzyl phthalate      | 3       | 3        | <10-80        | <10         |
| Di-n-butyl phthalate        | 4       | 4        | <10-217       | 14          |
| Diethyl phthalate           | 3       | 2        | ND-110        | <10         |
| Dimethyl phthalate          | 2       | 2        | <10-80        | 45          |
| Di-n-octyl phthalate        | 1       | 1        |               | 2,800       |
| Phenols                     |         | •        |               |             |
| 2-Chlorophenol              | 2       | 2        | 19-210        | 120         |
| 2,4-Dichlorophenol          | 3       | 3 '      | <10-1,300     | 25          |
| 2,4-Dimethylphenol          | 4       | 4        | 32-12,000     | <b>7</b> 5  |
| 4-Nitrophenol               | 1       | 1        | ,             | 1,600       |
| 4,6-Dinitrophenol           | 2       | 2        | <10-900       | <b>4</b> 60 |
| Pentachlorophenol           | ī       | · 1      |               | <10         |
| Phenol                      | 4       | 4        | <10-30,000    | 260         |
| 2,4,6-Trichlorophenol       | 3       | 3        | 51-1,400      | 65          |
| p-Chloro-m-cresol           | 3       | 3        | 14-73         | 30          |
| _                           | •       | •        |               |             |
| Aromatics                   | •       | _        | 410 150       | 00          |
| Benzene                     | 2       | 2        | <10-150       | 80          |
| Toluene                     | 2       | 2        | <10-27        | 19          |
| 2,4-Dinitrotoluene          | 1       | 1        |               | <37         |
| 2,6-Dinitrotoluene          | 1       | 1        |               | <37         |
| Ethylbenzene                | 1       | 1        |               | <10         |
| Nitrobenzene                | 1       | 1        |               | 60          |
| 1,2,4-Trichlorobenzene      | 1       | 1        |               | 1,000       |
| Polyacrylic aromatic        |         |          |               |             |
| hydrocarbons                |         |          |               |             |
| Acenaphthene                | 3       | 2        | ND-37         | <10         |
| Acenaphthlyene              | 2       | 2        | <10-43        | 27          |
| Benzo(a)anthracene          | 1       | 1        |               | <10         |
| Chrysene                    | 1       | 1        |               | <10         |

TABLE 8.6-10 (continued).

|                                                    | Number  | of times | Range,        | Median, |
|----------------------------------------------------|---------|----------|---------------|---------|
| Toxic pollutant                                    | Samples | Detected | μg/L          | µg/L    |
| Delmanulia ananakia badaa                          |         |          |               |         |
| Polyacrylic aromatic hydro-<br>carbons (continued) |         |          |               |         |
| carbons (continued)                                |         |          |               |         |
| Anthracene                                         | 1       | 1        |               | <86     |
| Fluorene                                           | 2       | 2        | <10-46        | 28      |
| Phenanthrene                                       | 1       | 1        |               | <86     |
| Fluoranthene                                       | 3       | 3        | <10-14        | 12      |
| Naphthalene                                        | 4       | 4        | <10-3,300     | 30      |
| Pyrene                                             | 3       | 3        | <10           | <10     |
| Polychlorinated biphenyls                          |         |          |               |         |
| and related compounds                              |         |          |               |         |
| Aroclor 1016, 1232,                                | 3       | 3        | <5-54         | <5      |
| 1248, 1260                                         |         |          |               |         |
| Aroclor 1221, 1254, 1424                           | 3       | 3        | <5-43         | <5      |
| Halogenated aliphatics                             |         |          |               |         |
| Carbon tetrachloride                               | 2       | 2        | <10-29        | 15      |
| Chloroform                                         | 4       | 2        | ND-57         | <5      |
| 1,2-Trans-dichloroethylene                         | 1       | 1        |               | 43      |
| Methylene chloride                                 | 4       | 2        | ND-290        | 6       |
| Tetrachloroethylene                                | 3       | 1        | ND-132        | ND      |
| 1,1,1-Trichloroethane                              | 1       | 1        |               | 144     |
| Trichloroethylene                                  | 2       | 2        | <10-230       | 120     |
| Bromoform                                          | 1       | 1        |               | <10     |
| Dichlorobromomethane                               | 1       | 1        |               | <10     |
| Pesticides and metabolites                         |         |          |               |         |
| Aldrin                                             | 1       | 1        |               | <5      |
| α-BHC                                              | 2       | 2        | <5            | <5      |
| β-внс                                              | 1       | 1        |               |         |
| δ-BHC                                              | 4       | 4        | <5            | <5      |
| у-внс                                              | 1       | 1        |               |         |
| Chlordane                                          | 2       | 2        | <5            | <5      |
| 4,4'-DDE                                           | 4       | 4        | <5            | <5      |
| 4,4'-DDD                                           | 2       | 2        | <5            | <5      |
| 4,4'-DDT                                           | 4       | 4        | <5            | <5      |
| α-Endosulfan                                       | 2       | 2        | <5            | <5      |
| β-Endosulfan                                       | 2       | 2        | <b>&lt;</b> 5 | <5      |
| Endosulfan sulfate                                 | 1       | 1        |               | <5      |
| Endrin                                             | 1       | 1        |               | <5      |
| Endrin aldehyde                                    | 2       | 2        | <5            | <5      |
| Heptachlor                                         | 1       | 1        |               | <5      |
| Heptachlor epoxide                                 | 2       | 2        | <5            | <5      |

TABLE 8.6-11. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOUND IN MAGNESIUM CASTING [1]

| Toxic Bollutant                                 | Number<br>Sampled | of times | Pango (na/T) | Modia- /v=/7                 |
|-------------------------------------------------|-------------------|----------|--------------|------------------------------|
| Toxic Pollutant                                 | Sampled           | Detected | Range (ug/L) | Median (ug/L                 |
| Metals and inorganics                           |                   |          |              |                              |
| Copper                                          | 2                 | 2        | 20-60        | 40                           |
| Cyanide                                         | 2                 | 0        |              | ND                           |
| Lead                                            | 2                 | 2        | 30-80        | 55                           |
| Mercury                                         | 2                 | 0        |              | ND                           |
| Selenium                                        | 2                 | 0        |              | ND                           |
| Zinc                                            | 2                 | 1        | ND-1,200     | 600                          |
| Phthalates                                      |                   |          |              |                              |
| Bis(2-ethylhexyl) phthalate                     |                   |          |              |                              |
| Butyl benzyl phthalate                          | 2                 | 0        |              | ND                           |
| Di-n-butyl phthalate                            | 2                 | 1        | ND-10        | 5                            |
| Diethyl phthalate                               | 2                 | 1        | ND-40        | 20                           |
| Dimethyl phthalate                              | 2                 | 0        |              | ND                           |
| Phenols                                         |                   |          |              |                              |
| 2-Chlorophenol                                  | 1                 | 0        |              | ND                           |
| 2-Nitrophenol                                   | î                 | ĭ        |              | BDL                          |
| Pentachlorophenol                               | ì                 | ī        |              | 11                           |
| Phenol                                          | ī                 | ī        |              | 6                            |
| 2,4-Dimethylphenol                              | î                 | ō        |              | ND                           |
| Aromatics                                       |                   |          |              |                              |
| Benzene                                         | 1                 | 1        |              | BDL                          |
| 1,2-Dichlorobenzene                             | i                 | i        |              | BDL                          |
|                                                 | i                 | i        |              | BDL                          |
| 1,3-Dichlorobenzene 1,4-Dichlorobenzene         | i                 | i        |              | BDL                          |
| Hexachlorobenzene                               | î                 | i        |              | BDL                          |
| Toluene                                         | i                 | î        |              | 18                           |
| Polycyclic aromatic<br>hydrocarbons             |                   |          |              |                              |
| Acenaphthene                                    | 1                 | 1        |              | 11                           |
| Acenaphthylene                                  | 2                 | ī        | ND-32        | 16                           |
| Anthracene                                      | 2                 | 2        | BDL-<30      | <30a                         |
| Benz (a) anthracene                             | 2                 | ō        |              | ND                           |
| Benzo(a) pyrene                                 | 2                 | 0        |              | ND                           |
| Chrysene                                        | 2                 | ì        | ND-10        | 5                            |
| Fluoranthene                                    | 2                 | ō        | 10           | ***                          |
| Fluorene                                        | 2                 | 2        | BDL-3        | <sup>ND</sup> <sub>3</sub> a |
| Naphthalene                                     | ī                 | ĩ        | 222 3        | BDI.                         |
| Phenanthrene                                    | 2                 | 2        | BDL-<30      | ∠ana                         |
| Pyrene                                          | 2                 | 2        | BDL-<7       | <7 <sup>a</sup>              |
| Polychlorinated biphenyls and related compounds |                   |          |              |                              |
| Aroclor 1016, 1232,                             |                   |          |              |                              |
| 1248, 1260                                      | 2                 | 2        | BDL          | BDL                          |
| Aroclor 1221, 1254, 1424                        | 1                 | 1        |              | BDL                          |
| Halogenated aliphatics                          |                   |          |              |                              |
| Chloroform                                      | 2                 | 0        |              | ND                           |
| Dichlorobromomethane                            | ī                 | ŏ        |              | ND                           |
| Hexachloroethane                                | ī                 | i        |              | BDL                          |
| Methylene chloride                              | 2                 | 1        | ND-44        | 22                           |
| Tetrachloroethylene                             | 2                 | ō        |              | ND                           |
| Pesticides and metabolites                      |                   |          |              |                              |
| α-BHC                                           | 1                 | 1        |              | BDL                          |
| γ-BHC                                           | î                 | ī        |              | BDL                          |
| 4,4'-DDD                                        | 1                 | 1        |              | BDL                          |
| 4,4'-DDT                                        | 2                 | 2        | BDL          | BDL                          |
|                                                 | 1                 |          | BDP          |                              |
| Dieldrin                                        |                   | 1        |              | BDL                          |
| α-Endosulfan                                    | 1                 | 1        | BBT          | BDL                          |
| Endrin aldehyde<br>Heptachlor epoxide           | 2<br>1            | 2<br>0   | BDL          | BDL                          |
|                                                 |                   |          |              | ND                           |

aDetermination of median concentration involved averaging of given value and BDL.

TABLE 8.6-12. WASTEWATER CHARACTERIZATION OF TOXIC POLLUTANTS FOUND IN COPPER AND COPPER ALLOY CASTING [1]

|                                     |         | of times | Range,        | Median,               |
|-------------------------------------|---------|----------|---------------|-----------------------|
| Toxic pollutant                     | Samples | Detected | µg/L          | μg/L                  |
| Metals and inorganics               |         |          |               |                       |
| Cadmium                             | 3       | 2        | ND-100        | 100                   |
| Chromium                            | 1       | 0        |               | ND                    |
| Copper                              | 3       | 2        | ND-110,000    | 350                   |
| Cyanide                             | 3       | 1        | ND-490        | ND                    |
| Lead                                | 3       | 2        | ND-28,000     | 70                    |
| Mercury                             | 3       | 1        | ND-0.1        | ND                    |
| Nickel                              | 3       | 1        | ND-720        | ND                    |
| Selenium                            | 3       | 0        |               | ND                    |
| Zinc                                | 3       | 3        | 2,000-130,000 | 2,700                 |
| Phthalates                          |         |          |               |                       |
| Bis(2-ethylhexyl) phthalate         | 3       | 1        | ND-11         | ND                    |
| Butyl benzyl phthalate              | 3       | 2        | ND-180        | 6                     |
| Di-n-butyl phthalate                | 3       | 1        | ND-1          | ND                    |
| Diethyl phthalate                   | 2       | 2        | BDL-6         | 6 <sup>a</sup>        |
| Dimethyl phthalate                  | 2       | 2        | 15-38         | 2                     |
| Di-n-octyl phthalate                | 2       | 2        | BDL           | BDL                   |
| Nitrogen compounds                  |         |          |               |                       |
| 1,2-Diphenylhydrazine               | 1       | 1        |               | BDL                   |
| Phenols                             |         |          |               | _                     |
| 2,4-Dimethylphenol                  | 2       | 2        | BDL-36        | 36 <sup>a</sup>       |
| 2-Nitrophenol                       | 1       | 1        |               | BDL                   |
| 4-Nitrophenol                       | 1       | 1        |               | BDL                   |
| Pentachlorophenol                   | 2       | 2        | 11-17         | 14                    |
| Phenol                              | 2       | 2        | BDL-25        | 25 <sup>a</sup>       |
| 2,4,6-Trichlorophenol               | 1       | 1        |               | BDL                   |
| p-Chloro-m-cresol                   | 1       | 1        |               | BDL                   |
| 4,6-Dinitrophenol                   | 2       | 1        | ND-BDL        | ND a                  |
| 4,6-Dinitro-o-cresol                | 1       | 1        |               | BDL                   |
| Aromatics                           |         |          |               | _                     |
| Benzene                             | 2       | 1        | ND-BDL        | nd <sup>a</sup>       |
| 2,6-Dinitrotoluene                  | 1       | 1        |               | 4                     |
| Toluene                             | 2       | 1        | ND-BDL        | NDa                   |
| Polycyclic aromatic<br>hydrocarbons |         |          |               |                       |
| Acenaphthene                        | 2       | 2        | BDL-5         | 5 <sup>a</sup>        |
| Acenaphthylene                      | 3       | 2        | ND-6          | BDL                   |
| Anthracene                          | 1       | 1        |               | <21                   |
| Benz(a)anthracene                   | 1       | 1        |               |                       |
| Benzo(a)pyrene                      | 2       | 2        | BDL-6         | <29<br>6 <sup>a</sup> |
|                                     |         |          |               |                       |

TABLE 8.6-12 (continued).

|                            |         | of times | Range, | Median    |
|----------------------------|---------|----------|--------|-----------|
| Toxic pollutant            | Samples | Detected | µg/L   | μg/L      |
| Polycyclic aromatic hydro- |         |          |        |           |
| carbons (continued)        |         |          |        |           |
| Benzo(k)fluoranthene       | 1       | 1        |        | <7        |
| Benzo(b)fluoranthene       | 1       | 1        |        | <7        |
| Chrysene                   | 2       | 2        | BDL-57 | 57        |
| Fluoranthene               | 3       | 2        | ND-4   | BDL       |
| Fluorene                   | 2       | 2        | BDL    | BDL       |
| Naphthalene                | 1       | 1        |        | 11        |
| Phenanthrene               | 1       | 1        |        | <21       |
| Pyrene                     | 3       | 3        | BDL-12 | 6         |
| Polychlorinated biphenyls  |         |          |        |           |
| and related compounds      |         |          |        |           |
| Aroclor 1016, 1232,        | 3       | 0        |        | ND        |
| 1248, 1260                 |         |          |        |           |
| Aroclor 1221, 1254, 1424   | 3       | 0        |        | ND        |
| Halogenated aliphatics     |         |          |        |           |
| Bromoform                  | 1       | 1        |        | BDI       |
| Carbon tetrachloride       | 1       | 1        |        | 13        |
| Chloroform                 | 3       | 0        |        | NI        |
| Hexachlorocyclopentadiene  | 1       | 1        |        | BDI       |
| Methylene chloride         | 3       | 0        |        | NI        |
| Tetrachloroethylene        | 2       | 1        | ND-80  | 40        |
| Trichloroethylene          | 1       | 1        |        | 56        |
| 1,1,1-Trichloroethane      | 1       | 1        |        | 37        |
| Pesticides and metabolites |         |          |        |           |
| Aldrin                     | 2       | 1        | ND-BDL | NI        |
| α-BHC                      | 3       | 0        |        | NI        |
| β-ВНС                      | 3       | 1        | ND-BDL | NI        |
| δ-BHC                      | 3       | 2        | ND-BDL | BDI<br>NI |
| ү-внс                      | 2       | 1        | ND-BDL | NI        |
| Chlordane                  | 2<br>2  | 1        | ND-BDL | NI<br>NI  |
| 4,4'-DDE                   | 3       | 3        | BDL    | BDI       |
| 4,4'-DDT                   | 2       | 0        |        | NI        |
| Dieldrin                   | 1       | 0        |        | NI        |
| Endosulfan sulfate         | 3       | 1        | ND-BDL | NI        |
| Endrin aldehyde            | 2       | 2        | BDL-4  | N         |
| Heptachlor                 | 3       | 1        | ND-BDL | N         |
| Heptachlor epoxide         | 2       | 2        | BDL    | BDI       |
| Isophorone                 | 1       | 1        |        | BDI       |

aDetermination of median concentration involved averaging of given value and BDL.

## II.8.6.3 Plant Specific Descriptions [1]

The following plants have been selected to present plant-specific information on each subcategory and, when possible, each process within the subcategory. Plants were selected on the basis of the completeness of the available information. A brief description is given of each plant, its treatment system, and the toxic and conventional pollutants emitted.

# II.8.6.3.1 Iron and Steel Foundries

Plant 291C. This large foundry has a separate treatment system for melting scrubbing waters. This consists of chemical additions, clarification, and vacuum filtration of the settled materials. Clarifier overflow is recycled with makeup from non-contact cooling water.

Dust collection scrubber water, slag quench water, and sand washing wastewaters are settled and recycled with makeup from noncontact cooling water. Excess water is discharged to a Publicly Owned Treatment Works (POTW).

Plant 417A. This plant employs a heat-treated casting quench operation involving the complete recycle of all process wastewaters. The treatment system utilizes a settling channel, from which solids are removed infrequently, and a cooling tower to provide for quench water cooling.

Tables 8.6-13 and 8.6-14 present plant-specific information for each process within the iron and steel foundry industry.

#### II.8.6.3.2 Aluminum Foundries

Plant 4704. Wastewaters from mold backup, hydroblast casting cleaning, and dust collection are co-treated. Polymer is added to aid settling in a Lamella inclined-plate separator. The Lamella unit sludge is filtered through a paper filter, and the filtrate is returned to the head of the treatment system. The treated effluent is discharged to the river.

Plant 715C. This plant provides for the complete recycle of all die lubricating operation solutions. The die lubrication solutions are collected both by gravity drains connected to a holding tank and by drip pans beneath each casting machine. Wheeled tanks are used to collect and transport the die lubricant solutions collected in these pans to the die lubricant storage tanks.

A skimmer located on the holding tank provides for tramp oil removal. The die lubricant solutions are pumped from the holding tank, through a cyclonic separator, and then to a storage tank

TABLE 8.6-13. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN THE IRON AND STEEL SUBCATEGORY, PLANT 291C AND PLANT 417A [1]

|                          |       |                 |         |      |                  | Plan    | t 291C |                 |         |      |                 |         |     | Plant 41         | 17A     |
|--------------------------|-------|-----------------|---------|------|------------------|---------|--------|-----------------|---------|------|-----------------|---------|-----|------------------|---------|
|                          | Me    | lting fur       | nace    |      |                  |         |        | Slag            |         |      | Sand            |         |     | Casting          | 3       |
|                          | scru  | bber oper       | ations_ | D    | ust collec       | ctors   | quenc  | hing oper       | ations  | was  | hing oper       | ations  | que | ench opera       | ations  |
|                          |       | tration,        |         |      | ntration,        |         |        | tration,        |         |      | tration,        |         |     | itration,        |         |
|                          | mg    | /L <sup>a</sup> | Percent |      | g/L <sup>a</sup> | Percent | mg     | /L <sup>a</sup> | Percent | mg   | /L <sup>a</sup> | Percent | mo  | J/L <sup>a</sup> | Percent |
| Flow/pollutant           | Raw   | Treated         | removal | Raw  | Treated          | removal | Raw    | Treated         | removal | Raw  | Treated         | removal | Raw | Treated          | removal |
| Flow, m <sup>3</sup> /Mg | 2.1   | 2.1             |         | 0.40 | 0.40             |         | 0.42   | 0.42            |         | 0.84 | 1.05            |         | 21  | 21               |         |
| Pollutant                |       |                 |         |      |                  |         |        |                 |         |      |                 |         |     |                  |         |
| TSS                      | 1,100 | 71              | 94      | 410  | 41               | 90      |        |                 |         | 630  | 170             | 73      | 90  | 62               | 31      |
| Total phenols            | 3     | 12              | _b      |      | 0.23             |         | 2.1    | 1.7             | 19      | 0.01 | 0.022           | _b      |     |                  |         |
| Sulfides                 |       |                 |         | 1    | 0.2              | 80      | 10     | 2               | 80      |      |                 |         |     |                  |         |
| Oil and grease           | 70    | 21              | 70      | 3    | 2.7              | 10      | 200    | 39              | 81      |      | 4               |         | ND  | 9                | _b      |
| pН                       | 6.9   | 6.9             |         | 7.2  | 7.3              |         |        |                 |         | 7.0  | 6.2             |         | 8.6 | 8.6              |         |

 $<sup>^{\</sup>rm a}$ Except flow, which is given in  ${\rm m}^{\rm 3}/{\rm Mg}$ , and pH values, which are given in pH units.

b Negative removal.

TABLE 8.6-14. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE IRON AND STEEL SUBCATEGORY, PLANT 291C AND PLANT 417A [1]

|                              | *****    |              |                 |          |            | Plant            | 291C      |            |                 |       |             |                 |        | Plant 41   | 7A                                    |
|------------------------------|----------|--------------|-----------------|----------|------------|------------------|-----------|------------|-----------------|-------|-------------|-----------------|--------|------------|---------------------------------------|
|                              | Me       | lting furnac | ce              |          |            |                  |           | Slag       |                 |       | Sand        |                 |        | Castin     | 9                                     |
|                              | scr      | bber operat: | lons            | Du:      | st collect | ors              | quenci    | hing opera | tions           | was   | shing opera | tions           | qu     | ench opera | ations                                |
|                              |          | tration,     |                 | Conce    | ntration,  |                  | Conce     | ntration,  |                 | Conce | ntration,   |                 | Concer | trations,  |                                       |
|                              | 1        | g/L          | Percent         | 1        | ug/L       | Percent          |           | µg/L       | Percent         |       | ug/L        | Percent         | 1      | ıg/L       | Percent                               |
| Toxic pollutant              | Raw      | Treated      | removal         | Raw      | Treated    | removal          | Raw       | Treated    | removal         | Raw   | Treated     | removal         | Raw    | Treated    | removal                               |
| Metals and inorganics        |          |              |                 |          |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| Antimony                     | 800      | 400          | 50              | 70       | BDL        | _a               |           |            |                 | 300   | BDL         | _a              | ND     | BDL        | _a<br>_a<br>_a<br>_a<br>_a<br>_b      |
| Arsenic                      | 160      | 30           |                 | ND       | BDL        | _a               |           |            |                 | 3     | BDL         | _a              | ND     | BDL        | _a                                    |
| Beryllium                    | ND       | BDL          | 81 <sub>a</sub> | ND       | BDL        | _a               |           |            |                 | ND    | BDL         | _a              | ND     | BDL        | _a                                    |
| Cadmium                      | 740      | 840          | _b              | ND       | BDL        | a<br>_a          | 200       | BDL        | _a              | ND    | BDL         | _a              | ND     | BDL        | _a                                    |
| Chromium                     | 430      | BDL          | _a              | 7        | BDL        | _a               | 700       | BDL        | _a              | ND    | BDL         | _a              | ND     | BDL        | _a                                    |
| Copper                       | 3,400    | 220          |                 | 90       | BDL        | a                | 350       | BDL        | a               | ND    | 70          | _b              | 20     | 50         |                                       |
| Cyanide                      | 47       | 180          | 94 <sub>b</sub> | 7        | 74         | _p               | ND        | ND         | _a              | 5     | 25          | _b              | 3      | 2          | 33                                    |
| Lead                         | 100,000  |              | 03              | 30       | 10         |                  | 6,100     | 590        | 90              | 100   | 80          | 20              | ND     | 60         | ъ                                     |
| -                            |          | 8,500        | 92 <sub>c</sub> |          |            | 67 <sub>b</sub>  |           |            |                 |       |             | 20 <sub>b</sub> | ND     | 0.8        | ь                                     |
| Mercury                      | 1.1      |              | - <sub>b</sub>  | ND       | 1          | _p               | 2.1<br>40 | 2          | 5               | 0.1   |             | _a              | ND     | BDL        | a                                     |
| Nickel                       | 110      | 130          | _a              | ND       | 20         | - <u>a</u>       |           | 39         | 2<br>a          | BDL   | BDL         | ā               |        |            | a                                     |
| Selenium                     | ND       | BDL          | _a              | ND       | BDL        | -                | ND        | BDL        | -               | ND    | BDL         | -               | ND     | BDL        | -a                                    |
| Silver                       | 30       | BDL          |                 |          |            |                  |           |            |                 |       |             |                 | ND     | BDL        | -a                                    |
| Thallium                     | BDL      | BDL          | _b              |          |            | _b               |           |            |                 |       |             | ъ               | ND     | BDL        | 33<br>b<br>b<br>a<br>a<br>a<br>a<br>a |
| Zinc                         | 150,000  | 190,000      |                 | ND       | 370        | -                | 25,000    | 8,000      | 68              | ND    | 12,000      | -               | ND     | 140        | -                                     |
| Ethers                       |          |              |                 |          |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| Bis(2-chloroethyl) ether     | ND       | 8            | _b              |          |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| Bis(2-chloroisopropyl)       |          |              |                 |          |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| ether                        |          | 3            | - a             |          |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| Phthalates                   |          |              |                 |          |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| Bis(2-ethylhexyl) phthalates | 90       | 84           | 7               | 9        | 2          | 70               | 1,200     | 90         | 0.3             | 5     | 11          | _b              | ND     | 27         | _p                                    |
|                              | 74       | 41           | 45              | ND<br>ND | BDL        | a                | 20        | 27         | 93 <sub>b</sub> |       | BDL         | -               | NU     | 21         |                                       |
| Butyl benzyl phthalate       |          | 190          | 43b             |          |            | _p               | 110       | 70         | 36              | NIFO  |             | _a              | BDL    | BDL        | -a<br>a                               |
| Di-n-butyl phthalate         | ND       |              | 45<br>_b<br>_b  | ИD       | 8          | a                |           |            |                 | ND    | BDL         | ā               | ND     | BDL        | a                                     |
| Diethyl phthalate            | ND       | 30           |                 | 3        | BDL        | _ <b>a</b><br>_b | 39        | 20         | 99<br><b>a</b>  | ND    | BDL         | ъ               | ND     | BUL        | -                                     |
| Dimethyl phthalate           | 660      | 320          | 52 <sub>a</sub> | ND       | 44         | -                | ND        |            |                 | ND    | 10          | -               |        |            |                                       |
| Di-n-octyl phthalate         |          | 73           | -               | BDL      |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| Nitrogen compounds           |          |              |                 |          |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| Acrylonitrile                |          | 23           | _a              |          |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| Benzidine                    | ND       | BDL          | a               |          |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| 1,2-Diphenylhydrazıne        | ND       | BDL          | _a<br>_b        |          |            |                  | 1,400     | 180        | 87              |       |             |                 |        |            |                                       |
| N-nitrosodiphenylamine       | ND       | 190          | -p              |          |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| Phenols                      |          |              |                 |          |            |                  |           |            |                 |       |             |                 |        |            |                                       |
| 2-Chlorophenol               | ND       | 85           | _b              | ND       | BDL        | _a               | 20        | 40         | _b              | ND    | BDL         | _a              |        | BDL        |                                       |
|                              | 39       | 40           | _p<br>_p        | ND<br>ND | BDL        | a                | 20        | ND         | >99             | 110   | BDL         |                 | BDL    | BDL        | -a<br>a                               |
| 2,4-Dichlorophenol           |          | 400          | ъ               |          | BDL        | _a<br>_a         | 60        | 40         | 737             | BDL   | BDL         | _a              | BDL    | ND         | _a                                    |
| 2,4-Dimethylphenol           | ND       | 30           | _p              | ND<br>ND | BDL        | _a               | 40        | 40         | 33 <sub>c</sub> | BDL   | BDL         |                 | DUD    | 14.0       |                                       |
| 2-Nitrophenol                | ND<br>40 |              | -               | MD       | BDL        | _                | 40        | 40         | _               | BUL   |             |                 |        |            |                                       |
| 4-Nitrophenol                | 40       | 20           | 50 <sub>b</sub> |          | 1.2        | _b               | 21        | 27         | _b              | ppr   | BDL         | _a              |        |            |                                       |
| Pentachlorophenol            | 130      | 140          | b               | ND       | 12         | _b               | 21        |            |                 | BDL   |             | _a              |        |            |                                       |
| Phenol                       | 80       | 2,600        | _b<br>_b        | ND       | 3          | _b               | 100       | 88         | 17              | ND    | BDL         | -a              | BDL    | BDL        | _a                                    |
| 2,4,6-Trichlorophenol        | ND       | 72           | - b             | ND       | 2          | a                | 80        | 51         | 36<br>a         | ND    | BDL         | -               | BUL    | BDL        | -                                     |
| p-Chloro-m-cresol            | ND       | 63           | -b              | ND       | _          | -b               | 120       |            | - <u>"</u>      | BDL   |             | a               |        |            |                                       |
| 4,6-Dimitro-o-cresol         | ND       | 88           |                 | ND       | 7          |                  | 20        | 40         | -               | BDL   | BDL         | -               |        |            |                                       |

TABLE 8.6-14 (continued)

|                                                 |        |              |             |        |           | Plant 2        | 291C       |            |                |       |             |               |     | Plant 41  | 7A        |
|-------------------------------------------------|--------|--------------|-------------|--------|-----------|----------------|------------|------------|----------------|-------|-------------|---------------|-----|-----------|-----------|
|                                                 | Mel    | ting furnace | 2           |        |           |                |            | Slag       |                |       | Sand        |               |     | Castin    | 1         |
|                                                 | scru   | bber operati | ions        | Du     | st collec | tors           | quenci     | ning opera | tions          | wa    | shing opera | tions         | qı  | ench oper | ations    |
|                                                 | Concen | tration,     |             | Concer | tration,  |                | Concent    | tration,   |                | Conce | ntration,   |               |     | trations, |           |
|                                                 | b      | g/L          | Percent     |        | g/L       | Percent        | μς         | g/L        | Percent        |       | ng/L        | Percent       |     | g/L       | Percent   |
| Toxic pollutant                                 | Raw    | Treated      | removal     | Raw    | Treated   | removal        | Raw        | Treated    | removal        | Raw   | Treated     | removal       | Raw | Treated   | removal   |
| Aromatics                                       |        |              | b           |        |           | a              |            |            |                |       |             |               |     |           | a         |
| Benzene                                         | 16     | 17           | _b          | ND     | BDL       | _a             | 100        | 60         | 40             | BDL   |             |               | ND  | BDL       |           |
| Chlorobenzene                                   | BDL    |              |             |        |           |                |            |            |                |       |             |               |     |           |           |
| 2,4-Dinitrotoluene                              |        | 300          |             | <7     |           |                |            |            |                |       |             |               |     |           |           |
| 2,6-Dinitrotoluene                              |        | 300          |             | < 7    |           |                |            |            |                |       |             |               |     |           |           |
| Ethylbenzene                                    | BDL    | BDL          | _a          |        |           |                |            |            |                |       |             |               |     |           |           |
| Hexachlorobenzene                               | BDL    |              |             |        |           |                |            |            |                |       |             |               |     |           |           |
| Nitrobenzene                                    | <280   | BDL          | -a          | < 3    |           | a              |            |            | _c             |       | BDL         |               |     |           |           |
| Toluene                                         | 3      | BDL          | _a<br>b     | ND     | BDL       | <b>_a</b>      | 40         | 40         | _c             |       |             |               |     |           |           |
| 1,2,4-Trichlorobenzene                          | ND     | 570          | -10         | 7      |           |                |            |            |                |       |             |               |     |           |           |
| Polycyclic aromatic                             |        |              |             |        |           |                |            |            |                |       |             |               |     |           |           |
| hydrocarbons                                    |        |              | а           |        |           | ь              |            |            | b              |       |             | a             |     |           |           |
| Acenaphthene                                    | ND     | BDL          | _a<br>_b    | ND     | 10        |                | 20         | 27         | _р<br>-р       | ND    | BDL         | _a<br>_a<br>b |     |           |           |
| Acenaphthylene                                  | ND     | 16           |             | ND     | 10        | _p             | 40         | 57         | -              | ND    | BDL         | _b            |     |           |           |
| Anthracene                                      | 78     | 32           | 5 <u>9</u>  | 3      | 51        | -a             | ND         |            | _b             | ND    | <4          |               |     |           |           |
| Benz(a)anthracene                               | 9      | BDL          | -"          | ND     | BDL       |                | 20         | 60         |                |       | BDL         |               | BDL |           |           |
| Benzo(a)pyrene                                  |        |              |             | BDL    |           | b              |            |            |                |       |             | _a            |     | BDL       |           |
| Chrysene                                        | 4      | BDL          | _a          | ND     | 13        | - <sub>b</sub> | ND         |            | b              | ND    | BDL         | _a            | ND  | BDL       | _a<br>a   |
| Fluoranthrene                                   | 390    | 97           | 75          | ND     | 6         | 70             | 5 <b>1</b> | 72         | _b<br>_c       | ND    | BDL         |               | ND  | BDL       | _"        |
| Fluorene                                        | 620    | 9            | 99 <b>a</b> | ND     | 5         | ā              | 53         | 68         | -~             |       |             | a             |     |           | a         |
| Naphthalene                                     | ND     | 270          | -           | ND     | BDL       | - <b>b</b>     | 20         | 20         |                | ND    | BDL         | - <u>b</u>    | ND  | BDL       |           |
| Phenanthrene                                    | 78     | 32           | 53          | 3      | 51        | -b             | ND         |            |                | ND    | <4          | -             |     |           | а         |
| Pyrene                                          | 1,100  | 47           | 96          | ND     | 19        | -5             | ND         |            |                | ND    | BDL         | -a            | ND  | BDL       | _"        |
| Polychlorinated biphenyls and related compounds |        |              |             |        |           |                |            |            |                |       |             |               |     |           |           |
| Arochlor 1016, 1232,                            | 270    | 46           | 83          | BDL    | BDL       | _a             | 20         | 20         | _¢             | ND    | BDL         | _a            | ND  | BDL       | _a        |
| 1248, 1260                                      | 270    | 40           | 03          | BUL    | DUL       | _              | 20         | ••         |                |       |             |               |     |           |           |
| Aroclor 1221, 1254,<br>1424                     | 330    | 55           | 83          | ND     | BDL       | _ <b>a</b>     | 20         | 20         | - <sup>c</sup> | ND    | BDL         | _a            | ND  | BDL       | _a        |
| Halogenated aliphatics                          |        |              |             |        |           |                |            |            |                |       |             |               | BDL | BDL       | _a        |
| Carbon tetrachloride                            | ND     | BDL          | _a<br>_a    |        |           |                | 20         |            | -c             | < 20  |             | a             | ND  | BDL       | _a        |
| Chloroform                                      | ND     | 26           | _a          | ND     | 18        | _b             | 80         | 210        | _p             | ND    | BDL         | _a            | ND  | BUL       | -         |
| Dichlorobromomethane                            | ,,,,   |              |             |        |           |                | 37         | 23         | 38             |       |             |               | BDL |           |           |
| 1,2-Dichloroethane                              |        | BDL          |             |        |           |                |            |            |                |       |             |               |     |           | ontinued) |

# TABLE 8.6-14 (continued)

|                                    |        |            |          |       |            | Plant 2 | 291C   |            |         |       |             |         |       | Plant 41   | . 7A    |
|------------------------------------|--------|------------|----------|-------|------------|---------|--------|------------|---------|-------|-------------|---------|-------|------------|---------|
|                                    | Mel    | ing furnac | e        |       |            |         |        | Slag       |         |       | Sand        |         |       | Castir     | 19      |
|                                    | scrul  | ber operat | ions     | D     | ust collec | ctors   | quenc  | hing opera | tions   | was   | shing opera | itions  | q     | uench oper | ations  |
|                                    | Concen | ration,    |          | Conce | ntration,  |         | Concen | tration,   |         | Conce | ntration,   |         | Conce | ntrations, | ,       |
|                                    | μ      | g/L        | Percent  |       | μg/L       | Percent | μ      | g/L        | Percent |       | μg/L        | Percent |       | ug/L       | Percent |
| Toxic pollutant                    | Raw    | Treated    | removal  | Raw   | Treated    | removal | Raw    | Treated    | removal | Raw   | Treated     | removal | Raw   | Treated    | removal |
| Halogenated aliphatics (continued) |        |            |          |       |            |         |        |            |         |       |             |         |       |            |         |
| Methylene chloride                 | 20     | 36         | b        | ND    | 5          | b       | 470    | 230        | 51      | ND    | 10          | b       | ND    | BDL        | _a      |
| Tetrachloroethylene                | ND     | 45         | -b       | ND    | 1          | _p      | 370    | 72         | 81      | BDL   |             | -       | ND    | BDL        | -a      |
| 1,1,1-Trichloroethane              | ND     | 9          | _p       | ND    | BDL        | a       | 60     | 40         | 33      | ND    | BDL         | _a      | BDL   | BDL        | -a<br>b |
| 1,1,2-Trichloroethane              | ND     | BDI.       | -a       |       |            | -       | 20     |            |         |       |             |         |       |            | -       |
| Trichloroethylene                  | ND     | 30         | _p       |       |            |         | 180    | 20         | 89      |       |             |         | ND    | BDL        | _a      |
| Pesticides and metabolites         |        |            |          |       |            |         |        |            |         |       |             |         |       |            |         |
| Aldrin                             | BDL    | BDL,       | _a       | BDL   | BDL        | a       | ND     | BDL        | _a      |       |             |         |       | BDL        |         |
| α-BHC                              |        |            | -        |       |            | _       |        |            | -       | ND    | BDL         | a       | ND    | BDL        | _a      |
| β-BHC                              | ND     | 8          | ь        | BDL   |            |         | 20     |            |         | ND    | BDL         | a       | ND    | BDL        | a       |
| δ-BHC                              | BDL    | BDL        | _b<br>_a | ND    | BDL        | _a      | 20     | 20         | _c      | ND    | RDL         | -a      |       |            | -       |
| Y-BHC                              | BDL    | BDL        | ~a       | ND    | BDL        | -a      | 20     | 20         | _c      | ND    | BDL         | a       | ND    | BDL,       | a       |
| Chlordane                          |        |            | -        |       |            | -       |        |            | -       | ND    | BDL         | a       | ND    | BDL        | -a      |
| 4,4'-DDE                           | ND     | BDL        | _a       | BDL   |            |         | 20     |            |         | ND    | BDL         | a       |       | BDL        | -       |
| 4,4'-DDD                           |        |            | -        |       |            |         |        |            |         | BDL   |             |         |       |            |         |
| 4,4'-DDT                           | BDI,   | BDL        | _b       | ND    | BDL        | a       | 20     | 20         | C       | ND    | BDL         | a       | ND    | BDL        | _a      |
| Dieldrin                           |        | BDI.       | -        |       |            | -       | 20     |            | -       | ND    | BDL         | -a      |       |            | -       |
| α-Endosulfan                       | BDL    |            |          |       |            |         |        |            |         |       |             |         | ND    | BDL        | _a      |
| 8-Endosulfan                       | ND     | BDL        | _p       |       |            |         |        |            |         | ND    | BDL         | a       |       | BDL        | _       |
| Endosulfan sulfate                 |        |            |          | BDL   |            |         |        |            |         | BDL   |             | -       | ND    | BDL        | a       |
| Endrin                             |        |            |          |       |            |         |        |            |         | BDL   |             |         |       |            | -       |
| Endrin aldehyde                    | 9      | BDI.       | a        | ND    | BDL        | a       | 20     | 20         | _c      | ND    | BDL         | _a      |       |            |         |
| Heptachlor                         |        |            | -        | BDL   |            | -       | 20     |            | -       | ND    | BDL         | _a      | ND    | BDL        | _a      |
| Heptachlor epoxide                 |        |            |          | ND    |            |         |        |            |         | ND    | BDL         | _a      | ND    | BDL        | a       |
| Isophorone                         | ND     | BDL        | a        |       |            |         |        |            |         |       |             | _       | ND    | BDL        | _a      |

a Indeterminate removal.

bNegative removal.

<sup>&</sup>lt;sup>C</sup>Indicates negligible removal.

for reuse. A paper filter is used to remove solids from the cyclone concentrate; the filtrate goes into the storage tanks. The die lubricants collected in the pans are filtered using a paper filter prior to discharge to the storage tanks. In the storage tanks the solutions are "freshened" with makeup water or new lubricants as needed. The wheeled tanks mentioned above are then used to transport the die lubricants back to the machines. An extensive maintenance program is followed to minimize leakage of various fluids at the die casting machines which would result in contamination of the die lubricant solutions.

Plant 574C. Aluminum and zinc die casting waters are co-treated. After collection in a receiving tank where oil is skimmed, they are batch treated by emulsion breaking, flocculation, and settling before discharge. The released oil is returned to the receiving tank for skimming, and the settled wastes are vacuum filtered and dried before being landfilled. Filtrate water is returned to the receiving tank.

Tables 8.6-15 and 8.6-16 present plant-specific information on conventional and toxic pollutants for the above facilities.

## II.8.6.3.3 Copper Foundries

Plant 6809. Mold cooling and casting wastewaters are recycled through a cooling tower in this system; a portion of the process wastewater flow is "blowndown" for treatment with other nonfoundry wastewaters. The mold cooling and casting quench system blowdown represents 3% of the combined wastewater flow. These combined wastewaters are settled and skimmed in a lagoon and are then discharged.

Plant 9979. This plant is a continuous casting operation producing both copper and aluminum products. This 100% recycle operation uses a cooling tower to reduce the wastewater system heat load.

Plant 9094. This plant has requested confidentiality. No treatment technology description is available.

Tables 8.6-17 and 8.6-18 present conventional and toxic pollutant data for the above copper foundry facilities.

#### II.8.6.3.4 Magnesium Foundries

Plant 8146. This foundry uses dust collectors and magnesium grinding scrubbers from which the wastewater flow is discharged untreated. No treatment description or treated wastewater concentrations are available. Tables 8.6-19 and 8.6-20 present conventional and toxic pollutant data for this facility.

TABLE 8.6-15. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN THE ALUMINUM CASTING SUBCATEGORY, PLANT 4704, PLANT 574C, AND PLANT 715C [1]

|                |     | Plant 470        | 4       |     | Plant 574        | C        |             | Plant 715 | C       |
|----------------|-----|------------------|---------|-----|------------------|----------|-------------|-----------|---------|
|                |     | Investmen        | t       |     | Die              |          |             | Die       |         |
|                | cas | ing opera        | tions   |     | ing opera        | tions    |             | be operat | ions    |
|                |     | ntration,        |         |     | itration,        |          | Concen      |           |         |
|                | mo  | <sub>J/L</sub> a | Percent | mc  | <sub>J/L</sub> a | Percent  |             | /La       | Percent |
| Flow/pollutant | Raw | Treated          | removal | Raw | Treated          | removal_ | Raw         | Treated   | removal |
| Flow, m³/Mg    | 21  | 21               |         | 5.5 | 5.5              |          |             |           |         |
| Pollutant      |     |                  |         |     |                  |          |             |           |         |
| TSS            | 930 | 83               | 91      | 530 | 9.9              | 98       | 1,700       | 1,600     | 6       |
| Total phenols  |     |                  |         |     |                  |          | 66          | 64        | 3       |
| Sulfides       |     |                  |         |     |                  |          | 3 <b>.3</b> | <0.2      | 94      |
| Oil and grease | 18  | 10               | 44      | 20  | 12               | 40       | 8,500       | 9,900     | _b      |
| рH             | 7   | 7.1              |         | 7.2 | 9.1              |          | 6.9         | 7.1       |         |

aExcept'pH values, which are given in pH units.

b<sub>Negative removal.</sub>

TABLE 8.6-16. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE ALUMINUM CASTING SUBCATEGORY, PLANT 4704, PLANT 574C, AND PLANT 715C [1]

|                                                         |     | Plant 470  |                 |      | Plant 574 | C        | Pl       | ant 7150 |                 |
|---------------------------------------------------------|-----|------------|-----------------|------|-----------|----------|----------|----------|-----------------|
|                                                         |     | Investmen  |                 |      | Die       |          |          | Die      |                 |
|                                                         |     | ting opera | tions           | cast | ing opera | tions    |          | operati  | ons             |
|                                                         |     | ntration,  |                 |      | itration, |          | Concentr |          |                 |
|                                                         |     | g/L        | Percent         |      | J/L       | Percent  | μg/I     |          | Percent         |
| Toxic pollutant                                         | Raw | Treated    | removal         | Raw  | Treated   | removal  | Raw      | Treated  | removal         |
| Polychlorinated biphenyls and related compounds         |     |            |                 |      |           |          |          |          |                 |
| Arocler 1016, 1232,<br>1248, 1260<br>Aroclor 1221, 1254 | 10  | BDL        | 50              |      |           |          | 570      | 480      | 16              |
| 1424                                                    | 3   | BDL        | <b>-</b> p      |      |           |          | 810      | 650      | 20              |
| Halogenated aliphatics                                  |     |            |                 |      |           |          |          |          |                 |
| Carbon tetrachloride                                    | 26  | 10         | 62 <sub>a</sub> | BDL  | BDL       | _b<br>_a | 480      | 55       | 89<br>_a        |
| Chloroform                                              | ND  | 20         | _a              | 4    | 7         | _a       | 450      | 500      | _a              |
| Dichlorobromomethane                                    | BDL |            |                 |      |           |          |          |          |                 |
| 1,1-Dichloroethane                                      |     |            | <b>b</b>        |      |           |          | 5.5      |          |                 |
| 1,2-Dichloroethane                                      | 5   | BDL        | <b>-</b> p      |      |           | L.       |          |          |                 |
| <pre>1,2-Trans-dichloroethylene</pre>                   | ND  |            |                 | ND   | BDL       | _b<br>_a |          |          | _               |
| Methylene chloride                                      | 40  | 3 <b>4</b> | 15              | 2    | 39        | _a       | 2,400    | 2,500    | _a              |
| 1,1,2,2-Tetrachloroethane                               | BDL |            |                 |      |           | _        |          | 18       | -               |
| Tetrachloroethylene                                     | 10  | 94         | _a              | ND   | 30        | _a       | 160      | 210      | _a              |
| 1,1,1-Trichloroethane                                   | 140 | 46         | 67 <sub>b</sub> | ND   | 51        | _a       | 16,000   | 2,200    | 83              |
| 1,1,2-Trichloroethane                                   | BDL | BDL        | _a              |      |           | •        |          | 7        |                 |
| Trichloroethylene                                       | 69  | 78         | -"              | ND   | 21        | _a       | 280      | 140      | 50              |
| Pesticides and metabolites                              |     |            |                 |      |           |          |          |          | ь               |
| Aldrin                                                  |     |            |                 |      |           |          | BDL      | BDL      | _p              |
| α-BHC                                                   | ND  |            | _b              |      |           |          | 26       | 6        | 77              |
| E-BHC                                                   | ND  | BDL        |                 | BDL  |           |          | 70       | 55       | <sup>21</sup> b |
| €-BHC                                                   |     |            | b               |      |           | _b       | BDL      | BDL      |                 |
| Y-BHC                                                   | BDL | BDL        | _p<br>_p<br>_p  | BDL  | BDL       | - "      | 7        | <5       | 29              |
| Chlordane                                               | ND  | BDL        | -b              | BDL  |           |          | 38       | 24       | 37 <sub>b</sub> |
| 4,4'-DDE                                                | ND  | BDL        |                 | BDL  |           |          | BDL      | BDL      | _2              |
| 4,4'-DDD                                                |     |            | _p              |      |           | _b       |          |          | ь               |
| 4,4'-DDT                                                | ND  | BDL        |                 | BDL  | BDL       | -2       | BDL      | BDL      | _b<br>_b        |
| Dieldrin                                                | BDL |            |                 |      |           |          | BDL      | BDL      | - <sub>b</sub>  |
| α-Endosulfan                                            | BDL |            | _p              |      |           |          | BDL      | BDL      | _5              |
| 3-Endosulfan                                            | ИД  | BDL        |                 | BDL  |           |          |          |          |                 |
| Endosulfan sulfate                                      | BDL |            |                 |      |           |          |          |          |                 |
| Endrin                                                  | ND  |            | ь               | BDL  |           | b        |          |          |                 |
| Heptachlor                                              | ND  | BDL        | _p              | BDL  | BDI       | **       |          |          |                 |
| Heptachlor epoxide                                      | ND  | BDL        | -               |      |           |          |          |          |                 |

<sup>&</sup>lt;sup>a</sup>Negative removal.

b<sub>Indeterminate removal.</sub>

TABLE 8.6-16 (continued)

|                                                 |     | Plant 470     |                      |       | Plant 574     | <u>c</u>           | P          | lant 7150 |                  |
|-------------------------------------------------|-----|---------------|----------------------|-------|---------------|--------------------|------------|-----------|------------------|
|                                                 |     | Investmen     |                      |       | Die           |                    |            | Die       |                  |
|                                                 |     | ing opera     | tions                |       | ing opera     | tions              |            | e operati | ons              |
|                                                 |     | tration,      | D                    |       | tration,      |                    |            | ration,   | Percent          |
| Toxic pollutant                                 | Raw | /L<br>Treated | Percent<br>removal   | Raw   | /L<br>Treated | Percent<br>removal | μg/<br>Raw | Treated   | removal          |
| Metals and inorganics                           |     |               |                      |       |               |                    |            |           | h                |
| Chromium                                        | 20  | 30            | _a                   | <100  | <150          | _a                 | BDL        | BDL       | _b               |
| Copper                                          | 450 | 83            | 82 <sub>a</sub>      |       |               |                    |            |           | _                |
| Cyanide                                         | ND  | 7             | _a                   | 5     | 23            | _a                 | 8          | 10        | _a               |
| Lead                                            | 50  | BDL           | 60 <sub>b</sub>      | 200   | 150           | 25 <sub>b</sub>    | 2,000      | 2,100     | a<br>b<br>b<br>b |
| Mercury                                         | 0.2 | BDL           | -p                   | BDL   | BDL           | ۵_                 | BDL        | BDL       | ~ [              |
| Nickel                                          | 5   | BDL           | _p<br>_p             | <90   | <40           | 56                 | BDL        | BDL       | ~E               |
| Selenium                                        | ND  | BDL           | -B                   | <40   | BDL           | 50                 | BDL        | BDL       |                  |
| Zinc                                            | 490 | 100           | 80                   | 1,300 | 40            | 97                 | 1,600      | 1,500     | 6                |
| Cthers<br>Bis(2-chloroethyl) ether              |     |               |                      | 9     |               | _p                 |            |           |                  |
| Phthalates                                      |     |               |                      |       |               |                    |            |           |                  |
| Bis(2-ethylhexyl) phthalate                     | ND  | 12            | -a<br>b              | 5,500 | 32            | 96                 | 820,000    | 16,000    | 98               |
| Butyl benzyl phthalate                          | BDL | BDL           | -,D                  | 690   | BDL           | 97                 | •          | •         | _                |
| Di-n-butyl phthalate                            | 6   | BDL           | _p                   | 74    | 1             | 99                 | 5,400      | 9,300     | _a               |
| Diethyl phthalate                               | BDL |               |                      | 730   | BDL           | 97                 | 600        | 10,500    | _a               |
| Dimethyl phthalate                              | ND  | 13            | _a                   | BDL   |               |                    | 29         | •         |                  |
| Di-n-octyl phthalate                            | 4   |               |                      |       |               |                    |            |           |                  |
| itrogen compounds<br>N-nitroso-di-n-propylamine |     |               |                      | 34    |               |                    | 207        |           |                  |
| Phenols                                         |     |               |                      |       |               | h                  |            |           |                  |
| 2,4-Dichlorophenol                              | BDL |               | h                    | BDL   | BDL           | _p                 | 5,700      |           |                  |
| 2,4-Dimethylphenol                              | 5   | BDL           | _p                   | 41    | BDL           | 50                 |            |           |                  |
| 2-Nitrophenol                                   | BDL |               | <b>b</b>             |       |               |                    |            |           |                  |
| Pentachlorophenol                               | BDL | BDL           | <b>-</b> p           |       |               |                    | 1,600      |           | -                |
| Phenol                                          |     |               |                      | 16    | BDL           | <b>-</b> p         | 26,000     | 34,000    | _a               |
| 2,4,6-Trichlorophenol                           | ND  |               |                      |       |               |                    | 350        | 69        | 80               |
| p-Chloro-m-cresol                               | ND  | BDL           | -p                   | 110   | 62            | 44                 |            |           |                  |
| 4,6-Dinitro-o-cresol                            | BDL |               |                      |       |               |                    |            |           |                  |
| romatics                                        |     |               | _b                   |       |               | _b                 |            |           |                  |
| Benzene                                         | BDL | BDL           |                      | BDL   | BDL           | -                  | 84         | 50        | 40 <sub>a</sub>  |
| Chlorobenzene                                   |     |               |                      |       |               |                    | 250        | 470       | -                |
| Ethylbenzene<br>Toluene                         | BDL | BDL<br>BDL    | _p                   | ND    | ND<br>BDL     | _b                 | 540        | 180       | 67               |
| olycyclic aromatic hydrocarbons                 |     |               |                      |       |               |                    |            |           |                  |
| •                                               |     |               |                      |       |               |                    |            |           |                  |
| Acenaphthene                                    | ND  |               | <b>h</b>             | 200   | BDL           | 90                 | 18         |           |                  |
| <b>A</b> cenaphthylene                          | 2   | BDL           | <b>-</b> p           |       |               | ь                  |            | 500       | а                |
| Anthracene                                      | BDL |               |                      | <10   | BDL           | <u>_p</u>          | 470        | 3,200     | _a               |
| Benz(a) anthracene                              |     |               | h                    | ND    | BDL           |                    |            | 7,300     |                  |
| Benzo(a) pyrene                                 | ND  | BDL           | -4                   | 53    | BDL           | 62                 |            |           |                  |
| Chrysene                                        | ND  | 10            | - 4                  | 780   | 10            | 99                 |            |           |                  |
| Fluoranthrene                                   | ND  | 12            | - <u>"</u>           | 370   | BDL           | 96                 |            | 93        |                  |
| Fluorene                                        | BDL | BDL           | _b<br>_a<br>_b<br>_b | 800   | BDL           | 98                 | 32         | 10,000    | _a               |
| Naphthalene                                     | ND  | BDL           | -"                   | 160   | 3             | 98<br>98           |            |           |                  |
|                                                 | BDL |               |                      | <10   | BDL           | -n                 | 470        | 3,200     | _a               |
| Phenanthrene<br>Pyrene                          | 24  | BDL           | 17                   | 80    | BDL           | 75                 | 4,0        | 3,200     |                  |

TABLE 8.6-17. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN THE COPPER FOUNDRIES SUBCATEGORY PLANT 9979, PLANT 6809, AND PLANT 9094 [1]

|                | Plant 9979 Continuous casting operations |         |                |      |                | oling and operations | Plant 9094  Dust  collection systems |         |                              |  |                            |  |                      |  |                      |  |         |
|----------------|------------------------------------------|---------|----------------|------|----------------|----------------------|--------------------------------------|---------|------------------------------|--|----------------------------|--|----------------------|--|----------------------|--|---------|
|                | Concentration, mg/La                     |         | Concentration, |      | Concentration, |                      | Concentration,                       |         | oncentration, Concentration, |  | Concentration, Concentrati |  | Concentration, mg/La |  | Concentration, mg/La |  | Percent |
| Flow/pollutant | Raw                                      | Treated | removal        | Raw  | Treated        | removal              | Raw                                  | Treated | removal                      |  |                            |  |                      |  |                      |  |         |
| Flow, m³/Mg    | 8.8                                      | 8.8     |                | 0.76 | 0.76           |                      |                                      |         |                              |  |                            |  |                      |  |                      |  |         |
| Pollutant      |                                          |         |                |      |                |                      |                                      |         |                              |  |                            |  |                      |  |                      |  |         |
| TSS            | 18                                       | 11      | 39             | 52   | 20             | 62                   | 610                                  | 2       | >99                          |  |                            |  |                      |  |                      |  |         |
| Total phenols  |                                          |         |                |      |                |                      | 2.1                                  | 0.01    | >99                          |  |                            |  |                      |  |                      |  |         |
| Oil and grease | ND                                       | 11      | _b             | 30   | 6.2            | 79                   | 8                                    | 0.4     | 95                           |  |                            |  |                      |  |                      |  |         |
| рН             | 7.8                                      | 7.9     |                | 8.3  | 7.9            |                      | 7.1                                  | 7.7     |                              |  |                            |  |                      |  |                      |  |         |

 $<sup>^{\</sup>rm a}$ Except flow, which is given in  ${\rm m}^{\rm 3}/{\rm Mg}$  and pH values, which is given in pH units.

bNegative removal.

TABLE 8.6-18. CONCENTRTIONS OF TOXIC POLLUTANTS FOUND IN THE COPPER FOUNDRIES SUBCATEGORY, PLANT 9979, PLANT 6809, AND PLANT 9094 [1]

|                                            |                | Plant 997<br>Continuou | S                  |                | lant 6809<br>ng coolin |                    | Plant 9094<br>Dust |         |                            |  |
|--------------------------------------------|----------------|------------------------|--------------------|----------------|------------------------|--------------------|--------------------|---------|----------------------------|--|
|                                            | cast           | ing opera              | tions              |                | quench op              |                    | collection systems |         |                            |  |
|                                            | Concentration, |                        |                    | Concentration, |                        |                    | Concent            |         |                            |  |
| Movie pollutant                            | Raw            | /L<br>Treated          | Percent<br>removal | Raw Pg/        | Treated                | Percent<br>removal | Raw Pag            | Treated | Percent<br>removal         |  |
| Toxic pollutant                            | Naw            | Treaced                | 1 Ellova1          | Naw            | 110000                 | TEMOVAL            |                    |         | 100142                     |  |
| Metals and inorganics                      |                |                        |                    |                |                        |                    |                    |         |                            |  |
| Cadmium                                    | ND             | 10                     | _a                 | 100            | 40                     | 60                 | 100                | BDL     | -p                         |  |
| Chromium                                   |                |                        |                    |                |                        |                    | ND                 | BDL     | _b                         |  |
| Copper                                     | ND             | 2,400                  | _a                 | 350            | 110                    | 69                 | 110,000            | 160     | >9                         |  |
| Cyanide                                    | ND             | 1                      | _a                 | ND             | 2                      | _a                 | 49                 | 1       | 98                         |  |
| Lead                                       | 70             | 130                    | _a                 | ND             | BDL                    | ΞĎ                 | 28,000             | 81      | >99                        |  |
| Mercury                                    | ND             | BDL                    | _p                 | 0.3            | 0.9                    | _a                 | ND                 | 0.5     | _a                         |  |
| Nickel                                     | ND             | BDL                    | _b                 | ND             | <b>6</b> 0             | <u>_</u> ã         | 720                | BDL     | _b                         |  |
| Selenium                                   | ND             | BDL                    | a_                 | ND             | BDL                    | b                  | ND                 | BDL     | _b                         |  |
| Zinc                                       | 2,700          | 4,400                  | _a                 | 2,000          | 1,400                  | 30                 | 130,000            | 450     | > 9 9                      |  |
| Phthalates                                 |                |                        |                    |                |                        |                    |                    |         |                            |  |
| Bis(2-ethylhexyl) phthalate                | ND             | 320                    | _a                 | BDL            | 170                    | _a                 | 11                 | 17      | a                          |  |
| Butyl benzyl phthalate                     | 6              | 3-3                    | - "                | 20             | 20                     | _c                 | 180                | BDL     | _a<br>_b<br>_a<br>_b<br>71 |  |
| Di-n-butyl phthalate                       | ND             | 30                     |                    | ND             | 19                     | - ~                | 1                  | 11      |                            |  |
|                                            | IND            | 30                     | _a                 | BDL            | 14                     | -a<br>-a<br>-b     | 6                  | BDL     | - <u>ñ</u>                 |  |
| Diethyl phthalate                          |                |                        |                    | 15             | 93                     | - <u>"</u>         | 38                 | 11      | 71                         |  |
| Dimethyl phthalate<br>Di-n-octyl phthalate |                |                        |                    | BDL            | 93                     | -2                 | BDL                | 11      | , ,                        |  |
| DI-M-Octyl phthalate                       |                |                        |                    | 202            |                        |                    |                    |         |                            |  |
| Nitrogen compounds                         |                |                        |                    |                |                        |                    |                    |         |                            |  |
| Benzidine                                  |                |                        |                    |                |                        |                    | BDL                |         |                            |  |
| 1,2-Diphenylhydrazine                      |                |                        |                    |                |                        |                    | BDL                |         |                            |  |
| Phenols                                    |                |                        |                    |                |                        |                    |                    |         |                            |  |
| 2,4-Dimethylphenol                         | BDL            |                        |                    |                |                        |                    | 36                 |         |                            |  |
| 2-Nitrophenol                              |                |                        |                    |                |                        |                    | BDL                |         |                            |  |
| 4-Nitrophenol                              |                |                        |                    |                |                        |                    | BDL                | 6       | _a                         |  |
| Pentachlorophenol                          | 17             |                        |                    |                |                        |                    | 11                 | •       |                            |  |
|                                            | BDL            |                        |                    |                |                        |                    | 25                 | BDL     | _b                         |  |
| Phenol                                     | BUL            |                        |                    |                |                        |                    | BDL                | 222     | -~                         |  |
| 2,4,6-Trichlorophenol                      |                |                        |                    |                |                        |                    | BDL                | BDL     | _b                         |  |
| p-Chloro-m-cresol                          |                |                        |                    |                |                        |                    | BUL                | ВЪП     | -10                        |  |
| 4,6-Dinitro-o-cresol                       | BDL            |                        |                    |                |                        |                    |                    |         |                            |  |
| Aromatics                                  |                |                        |                    |                |                        |                    |                    |         |                            |  |
| Benzene                                    |                |                        |                    | ND             | BDL                    | _p                 | BDL                |         |                            |  |
| 2,6-Dinitrotoluene                         |                |                        |                    | ND             |                        |                    | 4<br>BDL           |         |                            |  |
| Toluene                                    |                | BDL                    |                    | ND             |                        |                    | PUL                |         |                            |  |
| Polycyclic aromatic                        |                |                        |                    |                |                        |                    |                    |         |                            |  |
| hydrocarbons                               |                |                        |                    |                |                        |                    |                    |         |                            |  |
| Acenaphthene                               |                | BDL                    |                    | BDL            |                        |                    | 5                  | BDL     | _b                         |  |
| Acenaphthylene                             | ND             | BDL                    | _b                 | BDL            | 19                     | _a                 | 6                  | BDL     | b                          |  |
| Anthracene                                 |                |                        | ~                  | -              |                        | -                  | <21                | BDL     | _b                         |  |
| Benz (a) anthracene                        |                |                        |                    |                |                        |                    | <29                |         | -                          |  |
| Benzo(a) pyrene                            |                | BDL                    |                    | BDL            | BDL                    | b                  | 6                  | BDL     | _b                         |  |
| Benzo(b) fluoranthene                      |                | 5.2                    |                    |                |                        | -                  | <7                 |         | -                          |  |
| Benzo(k) fluoranthene                      |                |                        |                    |                |                        |                    | <7                 |         |                            |  |
| Chrysene                                   |                |                        |                    | BDL            | 19                     | а                  | 57                 | BDL     | b                          |  |
|                                            | ND             | BDL                    | h                  | BDL            | BDL                    | <b>-</b> b         | 4                  | BDL     | _p<br>_p                   |  |
| Fluoranthrene                              | ND             |                        | _p                 | BDL            | מעם                    | -~                 | BDL                | BDL     | -ñ                         |  |
| Fluorene                                   |                | BDL                    |                    | חמם            |                        |                    | 11                 | עעט     | -5                         |  |
| Naphthalene                                |                |                        |                    |                |                        |                    | <21                | BDL     | _b                         |  |
| Phenanthrene                               |                | 227                    |                    | DDI            | BDL                    | h                  | 6                  | 12      | _a                         |  |
| Pyrene                                     |                | BDL                    |                    | BDL            | תממ                    | _b                 | •                  | 12      | -ª                         |  |
|                                            |                |                        |                    |                |                        |                    |                    |         | (continue                  |  |
|                                            |                |                        |                    |                |                        |                    |                    |         |                            |  |

TABLE 8.6-18 (continued)

|                                                             |                    | Plant 997    |          |           | Plant 6809 |          | P             | lant 9094 |                |
|-------------------------------------------------------------|--------------------|--------------|----------|-----------|------------|----------|---------------|-----------|----------------|
|                                                             |                    | Continuou    | 15       | Mold      | ing coolir | ig and   | Dust          |           |                |
|                                                             | casting operations |              |          | casting   | quench or  | erations | colle         | ction sys | tems           |
|                                                             | Concentration,     |              |          | Concen    | tration,   |          | Concent       | ration,   |                |
|                                                             | µg/L               |              | Percent  | μg,       | /L         | Percent  | μ <b>g</b> /. | t.        | Percent        |
| Toxic pollutant                                             | Raw                | Treated      | removal  | Raw       | Treated    | removal  | Raw           | Treated   | removal        |
| Polychlorinated biphenyls and related compounds             |                    |              |          |           |            |          |               |           |                |
| Aroclor 1016, 1232,<br>1248, 1260                           | ND                 | BDL          | _b       | ND        |            |          | ND            | BDL       | _b             |
| Aroclor 1221, 1254<br>1424                                  | ND                 | BDL          | _b       | ИД        |            |          | ND            | BDL       | _b             |
| Halogenated aliphatics<br>Bromoform<br>Carbon tetrachloride |                    |              |          | BDL<br>11 |            |          |               |           |                |
| Chloroform<br>Hexachlorocyclopentadiene                     | ND                 | BDL          | _p       | ND        | 230        | _a       | ND<br>BDL     | BDL       | _p             |
| Methylene chloride<br>1,1,2,2-Tetrachloroethane             | ND                 | 15<br>BDL    | .a       | ND        | 30         | _a       | ND            | BDL       | <b>-</b> b     |
| Tetrachloroethylene<br>1,1,1-Trichloroethane                |                    | BDL          |          | 80<br>37  | 93<br>44   | _a       | ND            | BDL       | _p             |
| Trichloroethylene                                           |                    |              |          | 50        | 56         | _a<br>_a |               |           |                |
| Pesticides and metabolites                                  |                    |              |          |           |            |          |               |           |                |
| Aldrin                                                      | BDL                |              |          |           |            |          | ND            | BDL       | _b             |
| α-BHC                                                       | ND                 | BDL          | _b<br>_b | ND        |            |          | ND            | BDL       | _b<br>_b<br>_b |
| β-BHC                                                       | ND                 | BDL          | _b       | ND        |            |          | ND            | BDL       | _b             |
| 6-BHC                                                       | BDL                |              | -        |           |            |          | ND            | BDL       | _b             |
| y-BHC                                                       | BDL                |              |          | BDL       |            |          | ND            | BDL       | _b             |
| Chlordane                                                   | ND                 | BDL          | _b       | BDL       |            |          |               |           | _              |
| 4,4'-DDE                                                    | <5                 |              | -        | BDL       |            |          | BDL           |           |                |
| 4,4'-DDT                                                    | ND                 | BDL          | _b       | ND        |            |          |               |           |                |
| Dieldrin                                                    |                    | BDL          | -        |           |            |          | ND            | BDL       | b              |
| 8-Endosulfan                                                |                    | BDL          |          |           |            |          |               |           | _              |
| Endosulfan sulfate                                          | ND                 | BDL          | _b       | BDL       |            |          | ND            |           |                |
| Endrin aldehyde                                             |                    | · -          | -        | BDL       |            |          | 4             |           |                |
| Heptachlor                                                  | ND                 | BDL          | _b       | BDL       |            |          | ND            | BDL       | _b             |
| Heptachlor epoxide                                          |                    | BDL          |          | BDL       |            |          | BDL           |           | _              |
| Isophorone                                                  |                    | <del>-</del> |          | BDL       | BDL        | _b       |               |           |                |

<sup>&</sup>lt;sup>a</sup>Negative removal.

bIndeterminate removal.

<sup>&</sup>lt;sup>C</sup>Indicates negligible removal.

TABLE 8.6-19. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND N THE MAGNESIUM FOUNDRIES SUBCATEGORY, PLANT 8146 [1]

|                | Grinding<br>scrubber operations | Dust collection systems  |
|----------------|---------------------------------|--------------------------|
|                | Concentration, mg/La            | Concentration, mg/La     |
| Pollutant      | Raw Treated <sup>b</sup>        | Raw Treated <sup>b</sup> |
| TSS            |                                 | 8.3                      |
| Oil and grease |                                 | 6                        |
| рН             | 9.8                             | 7.6                      |

aExcept pH, which is given in pH units.

b<sub>No</sub> treatment at this facility.

TABLE 8.6-20. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE MAGNESIUM FOUNDRIES SUBCATEGORY, PLANT 8146 [1]

|                                                    |                | inding<br>r operations |          | Oust<br>ion systems |
|----------------------------------------------------|----------------|------------------------|----------|---------------------|
|                                                    | Conce          | ntration,              | Conce    | entration,          |
| Toxic pollutant                                    | Raw            | Treateda               | Raw      | Treated             |
| Metals and inorganics                              |                |                        |          |                     |
| Copper                                             | 60             |                        | 20       |                     |
| Cyanide                                            | ND             |                        | ND       |                     |
| Lead                                               | 80             |                        | 30       |                     |
| Mercury                                            | ND             |                        | ND       |                     |
| Nickel                                             |                |                        | ND       |                     |
| Selenium<br>Zinc                                   | ND<br>1,200    |                        | ND       |                     |
| Phthalates                                         | , .            |                        |          |                     |
|                                                    | 51             |                        | 14       |                     |
| Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate | ИD             |                        | ND       |                     |
|                                                    | ND             |                        | 10       |                     |
| Di-n-butyl phthalate                               | ND             |                        | 40       |                     |
| Diethyl phthalate<br>Dimethyl phthalate            | ND             |                        | ND       |                     |
| Phenols                                            |                |                        |          |                     |
| 2-Chlorophenol                                     |                |                        | ND       |                     |
| 2,4-Dimethylphenol                                 |                |                        | ND       |                     |
| 2-Nitrophenol                                      |                |                        | <20      |                     |
| Pentachlorophenol                                  |                |                        | 11       |                     |
| Phenol                                             |                |                        | 6        |                     |
| Aromatics                                          |                |                        |          |                     |
| Benzene                                            |                |                        | BDL      |                     |
| 1,2-Dichlorobenzene                                | $\mathtt{BDL}$ |                        |          |                     |
| Hexachlorobenzene                                  | $\mathtt{BDL}$ |                        |          |                     |
| Toluene                                            |                |                        | 18       |                     |
| Polycyclic aromatic<br>hydrocarbons                |                |                        |          |                     |
| Acenaphthene                                       |                |                        | 11       |                     |
| Acenaphthylene                                     | ND             |                        | 32       |                     |
| Anthracene                                         | BDL            |                        | <30      |                     |
| Benz(a)anthracene                                  | ND             |                        | ND       |                     |
| Benzo(a)pyrene                                     | ND             |                        | ND       |                     |
| Chrysene                                           | ND             |                        | 10       |                     |
| Fluoranthrene                                      | ND             |                        | ND       |                     |
| Fluorene                                           | BDL            |                        | 3        |                     |
| Naphthalene                                        | <del>-</del>   |                        | BDL      |                     |
| Phenanthrene                                       | BDL            |                        | <30      |                     |
| Pyrene                                             | BDL            |                        | 7        |                     |
| Polychlorinated biphenyls and related compounds    |                |                        |          |                     |
| Aroclor 1016, 1232,                                |                |                        |          |                     |
| 1248, 1260                                         | BDL            |                        |          |                     |
| Aroclor 1221, 1254                                 |                |                        |          |                     |
| 1424                                               | BDL            |                        |          |                     |
| Halogenated aliphatics                             | ***            |                        |          |                     |
| Chloroform Dichlorobromomethane                    | ND             |                        | ND       |                     |
| Dadii 201 OD1 OMOME Citatie                        | ND             |                        |          |                     |
| Hexachloroethane                                   | BDL            |                        |          |                     |
| Methylene chloride<br>Tetrachloroethylene          | 44<br>ND       |                        | ND<br>ND |                     |
| Pesticides and metabolites                         |                |                        |          |                     |
| α-BHC                                              | BDL            |                        |          |                     |
| Y-BHC                                              | - <del>-</del> |                        | BDL      |                     |
| 4,4'-DDE                                           | BDL            |                        |          |                     |
| 4,4'-DDT                                           | BDL            |                        | BDL      |                     |
| Dieldrin                                           | BDL            |                        |          |                     |
|                                                    |                |                        | BDL      |                     |
| Endrin aldehyde                                    | BDL            |                        |          |                     |

<sup>&</sup>lt;sup>a</sup>No treatment at this facility.

#### II.8.6.3.5 Zinc Foundries

Plant 436-E. Zinc die casting quench wastes, aluminum die casting quench wastes, cutting and machining collants, and impregnating wastes are co-treated in a batch-type system. The zinc casting quench waste is actually the effluent from a system that recycles the quench tank contents through a settling and skimming operation and back to the quench tanks. The zinc casting quench wastes represent approximately 25% of the total treatment volume. After undergoing a sulfuric acid-and-alum emulsion break, neutralization, flocculation, and solids separation, the treated effluent is discharged to a land-locked swamp.

Plant 462-G. This plant has requested confidentiality. No treatment technology description is available. However, raw and treated data are presented.

Tables 8.6-21 and 8.6-22 present conventional and toxic pollutant data for the two zinc foundries described.

## II.8.6.3.6 Lead Foundries

There are no plant-specific data in the available source documents concerning the lead foundry subcategory.

# II.8.6.4 Pollutant Removability [1]

Two conventional pollutants represent the major wastewater pollutant concerns in the foundry industry. Suspended solids are present in high concentrations in nearly every wastewater source emanating from the foundry processes. Oil and grease are also present in many of these sources. Primary treatment technologies are generally used to reduce the amounts of these pollutants emitted. Metals may also be present in the wastewater streams and can be removed by chemical precipitation.

The most common treatment method used to reduce the high solids content in the wastewater is sedimentation. Wastewaters from foundry processes are treated by lagooning, clarification with chemical addition, cyclone separation, dragout chambers, and Lamella inclined-plate separators.

Chemicals used for clarification include polymers, lime and alum. Sulfuric acid and alum are also used as emulsion breakers. Settled sludges are dewatered by filtration or other techniques and are generally hauled away by waste disposal contractors. Ultrafiltration is used at a few plants to trap high molecular weight organics prior to discharge to a POTW.

TABLE 8.6-21. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN THE ZINC FOUNDRIES SUBCATEGORY, PLANT 462G AND PLANT 436E [1]

|                |                                                                                          |                  | Plant   | Plant 436E        |                       |            |                                     |                  |         |
|----------------|------------------------------------------------------------------------------------------|------------------|---------|-------------------|-----------------------|------------|-------------------------------------|------------------|---------|
|                |                                                                                          | Melting          |         |                   | Casting               |            | Casting                             |                  |         |
|                | $\frac{\text{furnace scrubbers}}{\text{Concentration,}} \overline{\text{Concentration}}$ |                  |         | Concen            | nch opera<br>tration, | tions      | quench operations<br>Concentration, |                  |         |
|                | n                                                                                        | g/L <sup>a</sup> | Percent | mg/L <sup>a</sup> |                       | Percent    | mo                                  | g/L <sup>a</sup> | Percent |
| Pollutant      | Raw                                                                                      | Treated          | removal | Raw               | Treated               | removal    | Raw                                 | Treated          | removal |
| TSS            | 430                                                                                      | 310              | 28      | 40                | 32                    | 20         | 92                                  | 8.0              | 91      |
| Total phenols  | 91                                                                                       | 14               | 85      | 0.048             | 0.009                 | 81         | 0.11                                | 0.38             | _p      |
| Oil and grease | 760                                                                                      | 860              | _b      | 22                | 29                    | <b>-</b> b | 70                                  | 4.2              | 94      |
| рн             | 4.7                                                                                      |                  |         | 7.4               |                       |            | 5.7                                 | 9.1              |         |

<sup>&</sup>lt;sup>a</sup>Except pH values, which are given in pH units.

b Negative removal.

TABLE 8.6-22. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE ZINC FOUNDRIES SUBCATEGORY, PLANT 462G AND PLANT 436E [1]

| Toxic pollutant  Metals and inorganics Chromium Copper Cyanide Lead | furn Concentr µg/L Raw  BDL ND 8      |                   | ers<br>Percent<br>removal | quen           | Casting ch operat ration, L Treated | Percent              | Concent |         |                      |
|---------------------------------------------------------------------|---------------------------------------|-------------------|---------------------------|----------------|-------------------------------------|----------------------|---------|---------|----------------------|
| Metals and inorganics<br>Chromium<br>Copper<br>Cyanide<br>Lead      | Concentrug/L<br>Raw<br>BDL<br>ND<br>8 | ation,<br>Treated | Percent                   | Concent<br>µg/ | ration,<br>L                        | Percent              | Concent | ration, |                      |
| Metals and inorganics<br>Chromium<br>Copper<br>Cyanide<br>Lead      | Pg/L<br>Raw<br>BDL<br>ND<br>8         | Treated           |                           | ha/            | L                                   |                      | _ µg    |         | Damaont              |
| Metals and inorganics<br>Chromium<br>Copper<br>Cyanide<br>Lead      | Raw<br>BDL<br>ND<br>8                 | Treated           |                           |                |                                     |                      |         | /T      |                      |
| Metals and inorganics<br>Chromium<br>Copper<br>Cyanide<br>Lead      | BDL<br>ND<br>8                        |                   | removal                   | Raw            | Treated                             |                      |         |         | Percent              |
| Chromium<br>Copper<br>Cyanide<br>Lead                               | ND<br>8                               | 5 7               |                           |                |                                     | removal              | Raw     | Treated | removal              |
| Copper<br>Cyanide<br>Lead                                           | ND<br>8                               | 5 7               |                           |                |                                     |                      |         |         |                      |
| Cyanide<br>Lead                                                     | 8                                     | 5 7               |                           | BDL            | BDL                                 | _a                   | BDL     | BDL     | _a                   |
| Cyanide<br>Lead                                                     |                                       | J • /             | b                         | ND             | 79                                  | _b                   | 150     | 50      | 67                   |
| Lead                                                                | DDT                                   | 7.3               | <b>-</b> 9                | 9              | 79                                  |                      | ND      | 4       | _b                   |
|                                                                     | $\mathtt{BDL}$                        | BDL               | _a                        | BDL            | BDL                                 | _b<br>_a<br>_b<br>_a | BDL     | BDL     | _a<br>_b<br>_b<br>_a |
| Mercury                                                             | 0.3                                   | 0.5               | _p                        | 0.3            | 0.8                                 | _p                   | ND      | 0.3     | _b                   |
| Nickel                                                              | ND                                    | BDL               | ~b                        | ND             | BDL                                 | -a                   | 30      | 120     | b                    |
| Selenium                                                            | ND                                    | 9.9               | <b>-</b> b                | ND             | 9.5                                 | _p                   | ND      | BDL     | a                    |
| Zinc                                                                | 19,000                                | 11,000            | 42                        | 3,700          | 2,300                               | 38                   | 350,000 | 36,000  | 90                   |
| Phthalates                                                          |                                       |                   |                           |                |                                     |                      |         |         |                      |
| Bis(2-ethylhexyl) phthalate                                         | 5,500                                 | 5,500             | _c                        | 170            | 180                                 | _b                   | 47      | 15      | 68                   |
| Butyl benzyl phthalate                                              | 80                                    | 49                | 3 <b>9</b>                | <10            | <10                                 | -c                   | <10     |         | -                    |
| Di-n-butyl phthalate                                                | <10                                   | 70                | _b                        | 17             | 110                                 | _p                   | <10     | <10     | _c<br>_b             |
| Diethyl phthalate                                                   | 110                                   | 180               | _p                        | <10            | <10                                 | _c                   | ND      | 29      | - 10                 |
| Dimethyl phthalate                                                  | 80                                    | 130               | _p                        | <10            | <10                                 | _b<br>_c<br>_c       |         |         |                      |
| Phenols                                                             |                                       |                   |                           |                |                                     |                      |         |         |                      |
| 2-Chlorophenol                                                      |                                       |                   |                           |                |                                     |                      | 19      |         |                      |
| 2,4-Dichlorophenol                                                  | 1,300                                 | 220               | 77                        | <10            | <10                                 | С                    | 25      |         |                      |
| 2,4-Dimethylphenol                                                  | 12,000                                | 490               | 96                        | 42             | <10                                 | 76                   | 110     |         |                      |
| 4-Nitrophenol                                                       | 12,000                                | ,,,,              | , ,                       |                | 110                                 | , 0                  | 1,600   |         |                      |
| Pentachlorophenol                                                   |                                       |                   |                           | <10            |                                     |                      | -,      |         |                      |
| Phenol                                                              | 30,000                                | 2,300             | 92                        | 53             | <10                                 | 81                   | <10     | 230     | _b                   |
| 2,4,6-Trichlorophenol                                               | 1,400                                 | 600               | 57                        | 65             | 27                                  | 58                   | 51      |         | -                    |
| r-Chloro-m-cresol                                                   | 1,.00                                 | 000               | 3,                        | 0.5            | 2,                                  | 30                   | 14      |         |                      |
| Aromatics                                                           |                                       |                   |                           |                |                                     |                      |         |         |                      |
| Benzene                                                             | <10                                   | <10               | _c                        |                |                                     |                      |         |         |                      |
| 2,4-Dinitrotoluene                                                  | <37                                   | <17               | 54                        |                |                                     |                      |         |         |                      |
| 2,6-Dinitrotoluene                                                  | <37                                   | <17               | 54                        |                |                                     |                      |         |         |                      |
| Ethylbenzene                                                        | <10                                   | 11,               | 51                        |                |                                     |                      |         |         |                      |
| Nitrobenzene                                                        | 60                                    |                   |                           |                |                                     |                      |         |         |                      |
| Toluene                                                             | <10                                   | <10               |                           |                |                                     |                      |         |         |                      |
| 1,2,4 Trichlorobenzene                                              | 1,000                                 | 110               | _c                        |                |                                     |                      |         |         |                      |
| Polycyclic aromatic<br>hydrocarbons                                 |                                       |                   |                           |                |                                     |                      |         |         |                      |
| Acenaphthene                                                        | 37                                    | 39                | _b                        | <10            | <10                                 | _c                   | ND      |         |                      |
| Acenaphthylene                                                      | 43                                    | <10               | 77                        |                |                                     |                      | <10     |         |                      |
| Anthracene                                                          | < 86                                  |                   | • •                       |                |                                     |                      | 0       | <10     |                      |
| Benz(a)anthracene                                                   | <10                                   |                   |                           |                |                                     |                      |         |         |                      |
| Chrysene                                                            | <10                                   |                   |                           |                |                                     |                      |         |         |                      |
| Fluoranthene                                                        | 12                                    | 26                | _b                        | 14             | 33                                  | _b                   | <10     |         |                      |
| Fluorene                                                            | 46                                    |                   |                           |                |                                     |                      | <10     |         |                      |
| Naphthalene                                                         | 3,300                                 | <10               | >99                       | <10            | <10                                 | _c                   | <10     |         |                      |
| Fhenanthrene                                                        | <86                                   | -120              |                           |                |                                     |                      |         | <10     |                      |
| Pyrene                                                              | <10                                   | 17                | _b                        | <10            | 20                                  | _b                   | <10     |         |                      |

TABLE 8.6-22 (continued)

|                                                    |                     |         |                | Plant 436E             |         |                           |      |         |          |
|----------------------------------------------------|---------------------|---------|----------------|------------------------|---------|---------------------------|------|---------|----------|
|                                                    |                     | bers    |                |                        |         | Casting quench operations |      |         |          |
|                                                    | Concentration, ug/L |         |                | Concentration,<br>µg/L |         |                           |      | ration, |          |
|                                                    |                     |         | Percent        |                        |         | Percent                   | ug/L |         | Percent  |
| Toxic pollutant                                    | Raw                 | Treated | removal        | Raw                    | Treated | removal                   | Raw  | Treated | remova   |
| Polychlorinated biphenyls<br>and related compounds |                     |         |                |                        |         |                           |      |         |          |
| Aroclor 1016, 1232,<br>1248, 1260                  | <5                  |         |                | <5                     |         |                           |      |         |          |
| Aroclor 1221, 1254<br>1424                         | <5                  |         |                | <5                     | <5      | _c                        |      |         |          |
| Halogenated aliphatics                             |                     |         |                |                        |         |                           |      |         |          |
| Carbon tetrachloride                               | <20                 |         |                |                        |         |                           |      |         |          |
| Chloroform                                         | ND                  | <10     | _b<br>_b<br>_c | ND                     | <10     | _p<br>_p                  | <10  |         |          |
| Methylene chloride                                 | ND                  | <10     | -ъ             | ND                     | <10     | ъ                         | 11   | 800     | _ъ       |
| Tetrachloroethylene                                | ND                  | <10     | -ъ             | ND                     | 31      | _p                        |      |         | -        |
| Trichloroethylene                                  | <10                 | <10     | <u>_</u> c     |                        |         | -                         |      |         |          |
| Pesticides and metabolites                         |                     |         |                |                        |         |                           |      |         |          |
| Aldrin                                             |                     |         |                | <5                     |         |                           |      |         |          |
| a-BHC                                              |                     |         |                | <5                     |         |                           |      |         |          |
| 8-BHC                                              |                     |         |                | <5                     | <5      | _c                        |      |         |          |
| δ-BHC                                              |                     |         |                | <5                     |         |                           |      |         |          |
| Y-BHC                                              | <5                  | <5      | _c             | <5                     | <5      | _c                        | <5   |         | -        |
| Chlordane                                          |                     |         | -              |                        |         | -                         | <5   | <5      | -2       |
| 4.4'-DDE                                           | <5                  | <5      | c              | <5                     |         |                           | <5   | <5      | -c<br>-c |
| 4,4'-DDD                                           | <5                  | <5      | - c            |                        |         |                           | <5   | <5      | _c       |
| 4.4'-DDT                                           | <5                  | <5      | -c<br>-c       | <5                     |         |                           | <5   |         |          |
| q-Endosulfan                                       |                     |         |                |                        |         |                           | <5   |         |          |
| β-Endosulfan                                       |                     |         |                |                        |         |                           | <5   | <5      | _c       |
| Endrin                                             |                     |         |                |                        |         |                           | <5   |         | -        |
| Endrin aldehyde                                    | <5                  |         |                |                        |         |                           | <5   |         |          |
| Heptachlor '                                       |                     |         |                | <5                     | <5      | _c                        |      |         |          |
| Heptachlor epoxide                                 |                     |         |                | <5                     |         | -                         |      |         |          |

a Indeterminate removal.

b Negative removal.

CIndicates negligible removal.

Oil skimming is also used at foundry facilities to remove the oil and grease that results from housekeeping and from machinery leaks.

Another common control method used extensively in the foundry industry is the recycling of wastewater. Most processes have facilities that recycle 100% of the wastewater and can be classified as zero dischargers. Processes can also recycle less than 100% of the wastewater; these normally treat the non-recycled wastewater before discharge.

Tables 8.6-13 through 8.6-20 (Sections II.8.6.3.1 through II.8.6.3.5) present pollutant removability data for each foundry subcategory. This information is the result of a screening program. No data are currently available concerning the treatability of wastewater emanating from the magnesium or lead foundry subcategories.

#### II.8.6.5 REFERENCES

- Foundry Industry (Contractor's Draft Report). Contract 68-01-4379, U.S. Environmental Protection Agency, Washington, D.C., May 1979.
- 2. NRDC Consent Decree Industry Summary Foundries.

#### II.8.10 PORCELAIN ENAMELING

# II.8.10.1 Industry Description

# II.8.10.1.1 General Description [1, 2]

The porcelain enameling industry consists of approximately 130 plants enameling approximately 200 million square meters of steel, iron, aluminum, and copper each year (each coat of multiple coats is considered in this total). Porcelain enameling is the application of glass-like coatings to the metals mentioned above. The purpose of the coating is to improve resistance to chemicals, abrasion, and water, and to improve thermal stability, electrical resistance, and appearance. The coating applied to the metal, called a "slip," is composed of one of many combinations of frits (glassy raw materials), clays, coloring oxides, water, and special additives such as suspending agents. These vitreous inorganic coatings are applied to the metal by a variety of methods such as spraying, drying, and flow coating and are bonded to the metal at temperatures over 500°C.

Several processes are used in the porcelain enameling industry regardless of the metal being coated. These processes, discussed below, include preparation of the enamel slip, surface preparation of the base material, and enamel application and firing to fuse the coating to the metal.

Enamel Slip Preparation. The preparation of the enamel slip includes ball milling the frit and raw materials to the appropriate consistency. Frit is the glassy raw material that makes up the backbone of porcelain enameling. Most frit is manufactured outside the operation but some plants do include captive operations. Other raw materials, such as clay, gums, or opacifiers, are mixed into the frit by the ball mill, which then releases this mixture to the coating operation.

Base Material Surface Preparation. In order for the porcelain enamel to form a good bond with the workpiece, the base metal to be coated must be properly prepared. Depending on the type of metal being finished, one or more preparation processes are performed. Solvent cleaning removes oil, greases, and fingerprints from the metal by exposing it to nonflammable solvents such as trichloroethylene or 1,1,2-trichloroethane at their boiling points. This process may also be combined with water to provide a two-phase cleaning system for solvent-soluble and water-soluble contaminants.

Alkaline cleaning removes oils and soils from the workpieces by the detergent nature of the solution. Soaking, spraying, and electrolytic alkaline cleaning are the common methods used, with the electrolytic process providing the cleanest surface. If

aluminum is the metal being coated, a stronger alkaline solution is often used as a mild etch that removes the surface oxides.

Acid treatment is used to remove rust, scale, and oxides from the base and may be carried out in the form of acid cleaning, pickling, or etching. Each option involves a slightly stronger acid solution. Generally, sulfuric acid is used for this treatment, although other acids may be employed.

Nickel deposition is a common step when enameling steel in order to improve the bonding of the enamel to the metal. Nickel is normally deposited after the part has been acid treated and rinsed. Neutralization normally follows acid pickling and nickel deposition to remove the last traces of acid left on the metal. Chromate cleaning and grit blasting may also be used to prepare the base metal prior to the coating process. When used, grit blasting is normally the sole preparation step because it cleans the metal and roughens the surface, providing a good base for bonding.

Enamel Application and Firing. Once the workpiece has undergone the proper base metal preparation and the enamel slip has been prepared, the next step is the actual application of the porcelain enamel. Included among the application methods are air spraying, electrostatic spraying, dip coating, flow coating, powder coating, and silk screening. After each coating is applied the part is fired in a furnace to achieve a fusion between the enamel coating and the base metal or substrate.

Air spraying is the most widely used method for enamel application. In this process the enamel is atomized and propelled by air onto the base metal to form an enamel coating. Overspraying is a common problem with this technique since the atomized particles may not adhere to the part. Spray booths to collect this oversprayed enamel are necessary. A modification of this technique is the electrostatic spray coating method where the atomized particles are charged at 70,000 to 100,000 volts and directed toward the grounded part. This charge increases the adhering efficiency but does not eliminate the need for the spray booth collectors. Other advantages such as edging and the coating of both sides at once are also seen.

Dip coating consists simply of dipping the workpiece in an enamel bath and allowing it to drain. Flow coating floods the piece with enamel and then recycles the unused, recovered enamel. Powder coating is the dusting of a red hot cast iron workpiece with porcelain enamel in the form of a dry powder. The glass powder melts as it strikes the hot surface. Silk screening is used to apply a decorative pattern on a porcelain enameled piece.

Porcelain enameling plants are located primarily in the states of Wisconsin, Illinois, Indiana, Michigan, Ohio, Pennsylvania, Kentucky, and Tennessee. Seventy-seven percent of the facilities discharge to POTW's, 21% to streams or rivers, and 2% to both. Approximately 10% of the plants recycle, with an average recycle of 9.6 m³/hr, which represents 46% of the average process water usage rate of 20.8 m³/hr. Average plant production is approximately 1.5 x  $10^6$  m²/yr.

Table 8.10-1 presents an industry summary of the number of subcategories and the number and type of dischargers for this industry.

## TABLE 8.10-1. INDUSTRY SUMMARY [2]

Industry: Porcelain Enameling
Total Number of Subcategories: 4
Number of Subcategories Studied: 4
Number of Dischargers in Industry:

Direct: 30Indirect: 100

· Zero: 0

# II.8.10.1.2 Subcategory Descriptions [1]

The porcelain enameling industry consists of four subcategories, porcelain enameling on: steel, iron, aluminum, and copper. This subcategorization was chosen on the basis of the base metals used. Other possible subcategories (dependent on wastewater characterization, manufacturing processes, products, water use, etc.) were considered, but all were found to be directly related to the base metal used. In addition to the four subcategories selected, steel and aluminum base metals may be further divided into two segments, sheet and strip, to account for the significant water saving potential of continuous operations relative to individual sheet processing. However, because only two porcelain enameling facilities treat strip, no separate division is necessary at this time.

In general, only 10% of the porcelain enameling facilities enamel more than one type of base metal. Over 70% of the plants enamel solely on steel, 10% on aluminum, and 8% on iron. Less than 1% of the plants enamel copper, strip steel, or strip aluminum separately.

Subcategory 1 - Porcelain Enameling on Steel. Steel is by far the most widely used base metal for porcelain enameling with

an average yearly production usage of  $1.9 \times 10^8 \text{ m}^2$  (2.1 x  $10^9 \text{ ft}^2$ ) for 1976. This figure represents the area of enamel applied. For multiple coats, the area for each coat is considered. Among the products which use porcelain enameled steel are the following: cooking and heating equipment such as ranges, home laundry equipment (washers and dryers), refrigerators, freezers, dishwashers, water heaters, process vessels, architectural panels, plumbing fixtures, and various appliance parts.

Several processes are used when enameling on steel. The parts to be coated are first alkaline cleaned and rinsed to remove soils. An acid treatment step and rinse follow in which sulfuric acid, ferric sulfate in conjunction with sulfuric acid, or muriatic acid are used for oxide removal. A nickel deposition step and rinse ensues, followed by a neutralization operation which removes any remaining traces of acid.

Following surface preparation and drying, the part is ready for the enamel application. Steel parts are either sprayed, dipped, or flow coated. The enamel slip can be applied in a single coating operation (referred to as direct-on), or a ground coat and a cover coat may be applied separately. For the direct-on process, corners and edges are usually reinforced (precoated) to ensure coverage. For either case, each coat is fired at a temperature of approximately 820°C (1,500°F). Total thickness of sheet steel enamels involving a ground coat and cover coat is in the range of 0.13 to 0.20 mm (5 to 9 mils).

When the direct-on process is utilized, surface preparation requirements are more critical to ensure effective enamel adhesion. The acid etch is often deeper and the nickel deposition is always thicker. Typically, the nickel coating is 0.10 to 0.20 g/ft² for direct-on coating as compared to 0.03 to 0.07 g/ft² for two-coat applications. A few porcelain enamelers prefer to omit the nickel deposition step. While the nickel enhances the enamel bonding, product quality requirements may not require nickel deposition. The omission of the nickel step necessitates the utilization of a heavy acid etch to ensure a clean, properly conditioned surface for enamel bonding.

Subcategory 2 - Porcelain Enameling on Cast Iron. Cast iron is porcelain enameled primarily for plumbing fixtures for the sanitary products industry. It is also used for cookware and for various appliance parts such as grates for gas ranges. The average yearly production for 1976 is estimated at 1.0 x  $10^7$  m<sup>2</sup> (1.1 x  $10^8$  ft<sup>2</sup>). This figure represents the areas of enamel applied. For multiple coats, the area for each coat is considered.

The porcelain enameling of cast iron is a process in which water is not generally used for metal preparation but is sometimes used for coating application. The casting to be coated is blasted

with sand or a combination of grit and sand to produce a smooth, velvety surface. The parts are then brushed off and any rough edges are removed by grinding.

The ground coat is then applied by spraying, dipping, or flow coating. If only one coat is required, a heavy ground coat is applied. If there is to be a ground coat and a top coat, a thin layer of enamel is used for the ground coat. The ground coat is then fired. The firing period is longer than for sheet steel because of the greater mass of the enameled body, and firing temperature is reduced to avoid excessive baking. When the cast is removed from the furnace and still red hot, the top coat is applied by powder coating. The enamel in powder form is dusted on the hot part and fuses to the surface. Total thickness of dry process coatings is approximately 0.50 mm (20 mils).

Subcategory 3 - Porcelain Enameling on Aluminum. Porcelain enameling on aluminum finds use in the cookware and housewares industry. It is also used for panels and signs. The estimated yearly production for 1976 is  $4.7 \times 10^6 \text{ m}^2$  (5.0 x  $10^7 \text{ ft}^2$ ). This figure represents the area of enamel applied. For multiple coats, the area for each coat is considered.

Although all aluminum parts can be coated in a similar fashion, the surface preparation can vary from company to company. The choice of surface preparation methodology is based upon the alloy type of the base metal and the cleanliness requirements involved. Pure aluminum requires only a cleaning step. A heat treatable alloy may require a pickling step in addition to cleaning. Porcelain enameling on a high magnesium alloy could necessitate a chromate cleaning process. This chromate coating retards the oxidation of the magnesium in this high strength alloy.

Nearly all aluminum parts are first treated in an alkaline solution. In some cases this is only a cleaner for removing grease and soils; sometimes it is a mild etchant to remove a layer of metal and its oxides. Frequently, this is all the surface preparation that is necessary. Any further preparation steps are to remove residual oxides (example: chemical deoxidizing with nitric acid) or to impart a thin protective layer on the metal (alkaline chromate treatment). The users of such processes were limited in the plants studied [1].

Aluminum does not require a ground coat. Enamel is generally applied by spraying, with firing accomplished by heating to 450°C to 550°C (850°F to 1,040°F) for 2 to 10 minutes.

Subcategory 4 - Porcelain Enameling on Copper. Porcelain enameling on copper represents a very small part of the porcelain enameling category. It is not practiced by many firms and the ones involved with it do it on a small scale. Enameled copper is

used mostly for ornamental purposes, such as jewelry, decorative ware, and metal sculpture.

Since it is essential to remove all the oil and grease on the copper before coating, the part is first alkaline cleaned, degreased, or annealed. After cleaning, the part is then typically pickled for oxide removal.

The enamel application involves two processes: a ground coat or backing coat, and a cover coat to prevent the copper base from being taken into solution with the enamel and causing discoloration. This ground coat is applied by either spraying or dipping. The cover coat can be applied by powder coating or with silk screening to achieve patterns.

Other Subdivisions - In addition to the above subcategories, porcelain enameling on continuous strip is a subdivision within this industry. However, because there are only two plants in the United States producing this product, a separate subcategory is not necessary. These plants start with coils of steel, aluminum, or aluminized steel, porcelain enamel them, and either recoil them for sale to metal fabricators or shear them into pieces for use as architectural panels or chalkboards. The estimated production for 1976 is 2.0 x  $10^6$  m² (2.2 x  $10^7$  ft²). This figure represents the area of enamel applied. For multiple coats, the area for each coat is considered.

The surface preparation operations for strip are dependent upon whether the basis material is steel or aluminum. The surface preparation steps for steel strip are minimal in comparison to porcelain enameling on steel sheets since precleaned strip steel is used. Steel strip is nickel immersion plated prior to the enameling step. Surface preparation for aluminum involves only cleaning. The enamel for either basis material is applied by means of spray guns which are aimed at the surface of the moving strip. Two coats are normally applied, the strip being fired after each coat.

## II.8.10.2 Wastewater Characterization [1]

This section presents water uses and discharges, and waste constituents emanating from the porcelain enameling category. Published literature, data collection portfolio (dcp) responses, and sampling data have been used to obtain the relevant information. The majority of the waste constituent data result from a sampling program in which plants were sampled downstream of the porcelain enameling process but prior to any treatment for a 3-day sampling period.

Table 8.10-2 presents wastewater flow data on a subcategory and stream basis for the porcelain enameling industry.

TABLE 8.10-2. WASTEWATER FLOWS FROM THE PORCELAIN ENAMELING INDUSTRY [1]

|                                                                                                        | Number<br>of             | Wastewater                                                            |                  | n <sup>3</sup> /day               |
|--------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------|------------------|-----------------------------------|
| Stream                                                                                                 | points                   | Range                                                                 | Median           | Mean                              |
| P/E on steel Alkaline cleaning Acid treatment Nickel deposition Neutralization Coating Total raw waste | 15<br>15<br>9<br>5<br>15 | 9.4 - 120<br>5.7 - 44<br>19 - 30<br>1.0 - 15<br>1.9 - 300<br>20 - 410 |                  | 45<br>20<br>23<br>11<br>70<br>150 |
| P/E on iron<br>Coating                                                                                 | 7                        | 0.64 - 7.2                                                            | 1.2              | 2.9                               |
| P/E on aluminum<br>Alkaline cleaning<br>Coating<br>Total raw waste                                     | 8<br>8<br>8              | 19 - 220<br>4.8 - 55<br>68 - 220                                      | 170<br>30<br>200 | 130<br>29<br>160                  |
| P/E on copper<br>Acid pickling<br>Coating<br>Total raw waste                                           | 2<br>3<br>3              | 7.3<br>0.64 - 1.3<br>1.3 - 7.9                                        | 0.64<br>7.9      | 7.3<br>0.85<br>5.7                |

Note: Blanks indicate insufficient data available.

Subcategory 1 - Porcelain Enameling on Steel. Wastewater from porcelain enameling on steel is generated by base metal surface preparation, enamel application, ball milling, and related operations. The constituents in the wastewater include the base material being coated (iron), as well as the components of the surface treatment solutions and enamels being applied.

Water rinses are used in surface preparation operations such as acid pickling, alkaline cleaning, and nickel deposition to remove any process solution film left from the previous bath. A water rinse may also follow the neutralization step. Another common water use is in the ball milling process, which uses water as the vehicle for the enamel ingredients, as a cooling medium, and for cleaning up the equipment. Coating application processes normally employ wet spray booths to capture oversprayed enamel particles. Water wash spray booths use a water curtain into which the enamel particles are blown and captured.

The major sources of waste generated by this subcategory are the process solutions used in basis material preparation, the base metal being coated, and the enamel being prepared. Alkaline cleaning solution varies with the type of soil being removed. Wastewaters from this operation contain constituents of the

cleaning solution as well as oil and greases. Wastewater also contain iron but in lesser concentrations than those from the acid pickling process. Alkaline cleaning wastes enter the wastestream in three ways: during the rinse step, from the cleaning bath overflow, and in the batch dump of the spent alkaline bath.

Acid treatment is typically sulfuric acid with lesser amounts of hydrochloric, phosphoric, and nitric acids being used. Acid solutions develop a high metallic content due to the dissolution of the steel itself during the pickling operation. As a result, the baths are frequently dumped, putting large amounts of iron into the wastestream. Also present in significant concentrations are phosphorus and manganese. The stream has a low pH as well.

Nickel deposition can place large amounts of nickel and iron into the wastestream by batch dumping and dragout. The neutralization step eases the pH burden and adds little additional loading of any pollutant.

The introduction of enamel into the wastestream results in an increase in the concentration of metals, but these metals (antimony, titanium, zirconium, tin, cobalt, and manganese) are in solid form while the metals generated by surface preparation are normally in dissolved form. These solid metals increase the suspended solids concentration of the stream. Other metals that may be found in the enamel preparation and application wastestream in significant amounts include aluminum, copper, iron, lead, nickel, and zinc. Table 8.10-3 presents pollutant sampling data for the processes used in the porcelain enameling on steel industry. The not detected values have been excluded from the calculation of the ranges, medians, and averages throughout this section.

#### Subcategory 2 - Porcelain Enameling on Iron

There are two different types of cast iron porcelain enameling: wet process and dry process. The dry process uses no water and does not produce wastewater. Wet process enameling of cast iron employs water for ball milling and enamel application. These processes are very similar to the ones described for the steel subcategory. Surface preparation involves sand or grit blasting and uses water only in an air scrubber operation. Ball milling uses water as a vehicle for the enamel slip ingredients, as cooling water, and for equipment cleanup. Coating application uses water as a trap for the excess enamel particles during the spray step. Wastewater constituents in significant concentrations in the streams emanating from this subcategory include suspended solids, aluminum, iron, copper, lead, manganese, nickel, titanium, zinc, and cobalt. All of these metals are the result of the enamel carryover via spray booth blowdown or ball mill washdown.

Table 8.10-4 presents wastewater characterization data for the streams in this subcategory.

TABLE 8.10-3. WASTEWATER CHARACTERIZATION OF THE PORCELAIN ENAMELING ON STEEL SUBCATEGORY [1]

| Pollutant   Samples   detected   Range, mg/L   mg   | Pollutant   Samples   detected   Range, mg/L   mg/L   mg/L   samples   detected   Range, mg/L   mg   |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Conventional parameters   Total phosphorus   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conventional parameters TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mq/L    |
| TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| Total phenois 13 1 0.006 - 0.69 0.018 0.081 9 4 0.015 - 0.043 0.027 0.02 0.01 and greese 5 0 12 - 63 166 12 4 0 2 - 17 4 2 6 6 pH 14 0 2 - 11 8.35 7.6 14 0 2 - 3 4 2 3 2 2 6 PH 14 0 0 2 - 3 4 2 3 2 2 6 PH 15 0.001 PH 15 0 0.014 - 11 0.72 0.6 PH 15 0 0.015 1.5 PH 15 0 0.016 PH 15 0 0.017 PH 15 0  | Total phenols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1     |
| Onl and grease 5 0 12 - 63 16 32 4 0 2 - 17 4 2 6 PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oll and grease 5 0 12 - 63 16 32 4 0 2 - 17 4 pH 14 0 2 - 11 8.35 7 6 14 0 2 - 3 4 2 PH 10 14 0 0.26 - 1.8 0 94 0.91 15 0 0 14 - 1 1 0 PH 10 14 0 0.26 - 1.8 0 94 0.91 15 0 0 14 - 1 1 0 PH 10 10 PH 1 | 9 9     |
| PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 0.02  |
| Fluorides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fluorides 15 0 0.26 - 1.8 0 94 0.91 15 0 0 14 - 1 1 0  Toxic pollutants  Hetals and inorganics  Antimony 15 15 0 0 15 15  Arsenic 15 15 0 0 15 15  Beryllium 15 15 0 0 15 15  Cadmium 15 12 0.005 - 0.084 0 018 0.036 15 15  Chromium 14 10 0.004 - 0.01 0.006 0.006 15 0 0.011 - 3.1 0.  Copper 15 2 0.002 - 0.22 0 071 0.040 15 0 0.006 - 0.38 0.0  Cyanide 5 5 5 0 0 15 11 0.05 - 0.1 0 0  Mickel 13 9 0.014 - 0.063 0.021 0.030 15 3 0.60 - 11 2  Selenium 15 14 0.003 0.003 15 3 0.60 - 11 2  Selenium 15 14 0.003 0.003 15 15  Zinc 14 2 0.013 - 0.81 0.029 0.10 15 0 0.017 - 0.25 0 0  Organics  Toluene 3 3 3 0 0 3 3 3  1,2-Dichlorobenzene  Chloroform  Dichlorobromomethane  1,1,2,2-Tetrachloroethane  Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| Retails and inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Toxic pollutants Hetals and inorganics  Antimony 15 15 15 0 15 15  Arsenic 15 15 0 15 15  Beryllium 15 15 0 0 15 15  Cadmium 15 15 0 0.005 - 0.084 0 018 0.036 15 15  Chromium 14 10 0.004 - 0.01 0.006 0.006 15 0 0.011 - 3.1 0.  Copper 15 2 0.002 - 0.22 0 071 0.040 15 0 0.006 - 0.38 0.0  Cyanide 5 5 5 0 8 4  Lead 15 15 0 0.014 - 0.063 0.021 0.030 15 13 0.05 - 0.1 0 0  Mickel 13 9 0.014 - 0.063 0.021 0.030 15 3 0.60 - 11 2  Selenium 15 14 0.014 - 0.063 0.021 0.030 15 3 0.60 - 11 2  Selenium 15 14 0.013 - 0.81 0.029 0.10 15 0 0.017 - 0.25 0 0  Organics  Toluene 3 3 3 0 0 3 3 3  1.2-Dickhorobenzene Chloroform Dichlorobromomethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ## Netals and inorganics  ## Antisony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arsenic 15 15 15 0 15 15 15 0 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Beryllium 15 15 15 0.005 - 0.084 0.018 0.036 15 15 Chromium 15 12 0.005 - 0.084 0.018 0.036 15 15 0 0.011 - 3.1 0. Copper 15 2 0.002 - 0.22 0.071 0.040 15 0 0.006 - 0.38 0.0 Cyanide 5 5 5 0 8 0 15 11 0.05 - 0.1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| Cadalum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cadmium 15 12 0.005 - 0.084 0 018 0.036 15 15 Chromium 14 10 0.004 - 0.01 0.006 0.006 15 0 0.011 - 3.1 0. Copper 15 2 0.002 - 0.22 0 071 0.040 15 0 0.006 - 0.38 0.0 Cyanide 5 5 5 0 0 0.00 - 0.38 0.0 Cyanide 15 15 0 0.00 - 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| Chromium 14 10 0 0.004 - 0.01 0.006 15 0 0.011 - 3.1 0.32 0.7 Copper 15 2 0.002 - 0.22 0.71 0.040 15 0 0.006 - 0.38 0.064 0.07 Copper 15 2 0.002 - 0.22 0.71 0.040 15 0 0.006 - 0.38 0.064 0.07 Copper 15 15 2 0.002 - 0.22 0.71 0.040 15 0 0.006 - 0.38 0.064 0.07 Copper 15 15 15 0 0.06 - 0.38 0.064 0.07 Copper 15 15 15 0 0.06 - 0.38 0.064 0.07 Copper 15 15 15 0 0.06 - 0.38 0.064 0.07 Copper 15 15 15 0 0.06 - 0.08 0.003 15 15 15 0 0.06 - 0.08 0.003 15 15 15 0 0.06 - 0.08 0.003 15 15 15 0 0.06 - 0.08 0.003 15 15 0 0.06 - 0.08 0.003 15 15 0 0.06 - 0.08 0.003 15 15 0 0.06 - 0.08 0.003 15 15 0 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chromium 14 10 0.004 - 0.01 0.006 0.006 15 0 0.011 - 3.1 0. Copper 15 2 0.002 - 0.22 0.071 0.040 15 0 0.006 - 0.38 0.0 Cyanide 5 5 5 0 8 4  Lead 15 15 0 0.014 - 0.063 0.021 0.030 15 11 0.05 - 0.1 0.0 Wickel 13 9 0.014 - 0.063 0.021 0.030 15 3 0.60 - 11 2 Selenium 15 14 0.003 0.003 15 15  Zinc 14 2 0.013 - 0.81 0.029 0.10 15 0 0.017 - 0.25 0.0 Organics Toluene 3 3 3 0 3 3 3 1,2-Dichlorobenzene Chloroform Dichlorobromomethane 1,1,2,2-Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| Copper 15 2 0.002 - 0.22 0 071 0.040 15 0 0.006 - 0.38 0.064 0 095 Cyunide 5 5 5 0 8 4 0.006 - 0.38 0.064 0 095 Cyunide 5 5 5 0 8 4 0.006 - 0.38 0.064 0 095 Cyunide 15 15 0 0 8 4 0.006 - 0.38 0.064 0 095 Cyunide 15 15 0 0 15 11 0.05 - 0.1 0 072 0.07 0.07 0.07 0.07 0.07 0.07 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Copper 15 2 0.002 - 0.22 0 071 0.040 15 0 0.006 - 0.38 0.0 Cyande 5 5 0 0 0.006 - 0.38 0.0 Cyande 5 5 0 0 15 11 0.05 - 0.1 0 0 Mickel 13 9 0.014 - 0.063 0.021 0.030 15 3 0.60 - 11 2 Selenium 15 14 0.003 0.003 15 15 2 0.60 - 11 2 Selenium 15 14 0.003 0.003 15 15 0 0.017 - 0.25 0 0 Organics Toluene 3 3 3 0 0.013 - 0.81 0.029 0.10 15 0 0.017 - 0.25 0 0 Organics Toluene 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| Cyande                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cyanide 5 5 5 0 0 8 4 Lead 15 15 0 15 0 15 11 0.05 - 0.1 0 0 Mickel 13 9 0.014 - 0.063 0.021 0.030 15 3 0.60 - 11 2 Selenium 15 14 0.003 0.003 15 15 2 0.60 - 11 2 Zinc 14 2 0.013 - 0.81 0.029 0.10 15 0 0.017 - 0.25 0 0 Organics Toluene 3 3 3 0 0.014 - 0.014 0.029 0.10 15 0 0.017 - 0.25 0 0 Organics Toluene 14 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0 |         |
| Léad   15   15   0   0   15   11   0   0.05 - 0.1   0   0.72   0   0.07     Mickel   13   9   0   0.014 - 0.063   0.021   0.030   15   3   3   0.60 - 11   2.4   4     Selenium   15   14   0   0.003   0.003   15   15   15     Zinc   14   2   0.013 - 0.81   0.029   0.10   15   0   0.017 - 0.25   0.91   0.1     Organica   Toluene   3   3   0   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lead 15 15 0 0 15 11 0.05 - 0.1 0 0 Mickel 13 9 0.014 - 0.063 0.021 0.030 15 3 0.60 - 11 2 Selenium 15 14 0.003 0.003 15 15 2inc 14 2 0.013 - 0.81 0.029 0.10 15 0 0.017 - 0.25 0 0 Organics Toluene 3 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| Mickel   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mickel 13 9 0.014 - 0.063 0.021 0.030 15 3 0.60 - 11 2 Selenium 15 14 0.003 0.003 15 15 5 0.60 - 11 2 Zinc 14 2 0.013 - 0.81 0.029 0.10 15 0 0.017 - 0.25 0 0 Organics Toluene 3 3 3 0 3 3 3 1 2 0 3 3 1 1 2 0 0.017 - 0.25 0 0 Organics Toluene 1,1,2,2-Tetrachlorosethane 1,1,2,2-Tetrachlorosethane 1,1,2,2-Tetrachlorosethane Tetrachlorosethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Selenium   15   14   2   0.003   0.003   15   15   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| 2   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zinc 14 2 0.013 - 0.81 0.029 0.10 15 0 0.017 - 0.25 0 0 Organics Toluene 3 3 3 0 3 3 1,2-Dichlorobenzene Chloroform Dichlorobromomethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| Organics Toluene 1,2-Dichlorobenzene Chloroform Dichlorobramomethane 1,1.2,2-Tetrachloroethane Tetrachloroethylene  Nontoxic inorganics Aluminum 15 3 0.081 - 0.92 0.15 0.23 15 5 0.054 - 0.52 0.22 0.2 1ron 12 0.010 - 8.3 1.6 2.9 15 0.180 - 10,000 1,300 2.66 Manganese 13 3 0.066 - 0.36 0.16 0.19 15 0 0.15 15 15 0 0.15 15 15 0 0.017 - 0.38 0.036 0.12    Nickel deposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Organics Toluene 3 3 0 3 3 1,2-Dichlorobenzene Chloroform Dichlorobrommethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| Toluene 3 3 3 0 0 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Toluene 3 3 3 0 3 3 1,2-Dichlorobenzene Chloroform Dichlorobromomethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 01    |
| 1, 2-Dichlorobenzene Chloroform Dichlorobromomethane 1, 1, 2, 2-Tetrachloroethane Tetrachloroethylene  Nontoxic inorganics Aluminum 15 3 0.081 - 0.92 0.15 0.23 15 5 0.054 - 0.52 0.22 0.2 Iron 12 0 0.10 - 8.3 1.5 2.9 15 0 180 - 10.000 1.300 2.60 Manganese 13 3 0.066 - 0.36 0.16 0.19 15 0 0.57 - 53 3 4 1 Titanium 15 15 0 0.057 - 53 3 4 1  Conventional parameters TSS 7 0 2 - 77 4 20 3 0 0.017 - 0.38 0.036 0.12  Nickel deposition Neutralization  Conventional parameters TSS 7 0 2 - 77 4 20 3 0 8.0 - 9.0 9 0 8.7 Total phosphorus 6 0 1.1 - 8.3 4.4 4.5 4 1 0.04 - 7.5 0.38 2.6 Total phenols 6 1 0.008 - 0.042 0.029 0.028 3 0 0.004 - 0.04 0.004 0.011 Oil and grease 4 0 1 - 18 4.9 72 3 0 3 - 3.8 3 3 3.4 pit 8 0 2.0 - 6.2 2.7 3.3 4 0 8.4 - 9.0 9 0 8.7 Fluorides 9 0 0.27 - 0.80 0.50 0.51 4 0 0.32 - 1.1 0.42 0.55  Conce pollutants Retais and inorganics Matismy 9 9 0 0 019 - 0 13 0.044 0.060 4 2 0.012 - 0.032 0.022 Copper 9 0 0.008 - 0.079 0.019 0.032 4 3 0.012 - 0.032 0.022 Copper 9 0 0.008 - 0.079 0.019 0.032 4 3 0.012 - 0.032 0.022 Copper 9 0 0.008 - 0.079 0.019 0.032 4 3 0.012 - 0.032 0.022 Copper 9 0 0.008 - 0.079 0.019 0.032 4 3 0.012 - 0.032 0.022 Copper 9 0 0.008 - 0.079 0.019 0.032 4 3 0.012 - 0.032 0.022 Copper 9 0 0.008 - 0.079 0.019 0.032 4 3 0.0075 - 9.4 0.17 2.5 Selenium 9 9 0 0.008 - 0.079 0.019 0.032 4 3 0.0075 - 9.4 0.17 2.5 Selenium 9 9 0 0.008 - 0.079 0.019 0.032 4 3 0.0075 - 9.4 0.075 0.032 0.032 Selenium 9 9 0 0.008 - 0.079 0.019 0.032 4 3 0.0075 - 9.4 0.075 0.032 0.032 Selenium 9 9 0 0.008 - 0.079 0.019 0.032 4 3 0.0075 - 9.4 0.075 0.032 0.032 Selenium 9 9 0 0.008 - 0.079 0.019 0.032 4 3 0.0075 - 9.4 0.075 0.032 0.032 Selenium 9 9 0 0.008 - 0.079 0.019 0.032 4 3 0.0075 - 9.4 0.075 0.032 0.032 Selenium 9 9 0 0.008 - 0.079 0.019 0.032 4 3 0.0075 - 9.4 0.075 0.032 0.032 Selenium 9 9 0 0.008 - 0.079 0.019 0.032 4 3 0.0075 - 9.4 0.075 0.032 0.032 Selenium 9 9 0 0.008 - 0.079 0.019 0.032 4 3 0.0075 - 9.4 0.075 0.032 0.032 Selenium 9 9 0 0.008 - 0.079 0.019 0.032 4 3 0.0075 - 9.4 0.075 0.032 0.032                | 1,2-Dichlorobenzene Chloroform Dichlorobromomethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| Chloroform Dichlorobromomethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene  lontoxic inorganics  Aluminum 15 3 0.081 - 0.92 0.15 0.23 15 5 0.054 - 0.52 0.22 0.2  Iron 12 0 0.10 - 8.3 1.5 2.9 15 0 180 - 10,000 1,300 2,60  Ranganese 13 3 0.066 - 0.36 0.16 0.19 15 0 0.57 - 53 3 4 1  Titanium 15 15 0 0.15 15  Cobalt 15 14 0.001 0.001 15 0 0.017 - 0.38 0.036 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chloroform Dichlorobromomethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
| Dichlorobromomethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene  Nontoxic inorganics  Aluminum 15 3 0.081 - 0.92 0.15 0.23 15 5 0.054 - 0.52 0.22 0.2  Iron 12 0 0.10 - 8.3 1.6 2.9 15 0 180 - 10,000 1.300 2,60  Manganese 13 3 0.066 - 0.36 0.16 0.19 15 0 0.57 - 53 34 1  Titanium 15 15  Cobalt 15 14 0.001 0.001 15 0 0.017 - 0.38 0.036 0.12  Nickel deposition Meutralization  Nonventional parameters  TSS 7 0 2 - 77 4 20 3 0 8.0 - 9.0 9 0 8.7  Total phosphorus 6 0 1.1 - 8.3 4.4 4.5 4 1 0.04 - 7 5 0.38 2.6  Total phenols 6 1 0.008 - 0.042 0.029 0.028 3 0 0.004 - 0.024 0.004 0.011 01 and grease 4 0 1 - 18 4.9 7 2 3 0 3 - 1.8 3 3 3.4  Fluorides 9 0 0.27 - 0.80 0.50 0.51 4 0 0.32 - 1.1 0.42 0.55  Nonic pollutants  Retais and inorganics  Antimony 9 9 0 0.27 - 0.80 0.50 0.51 4 0 0.32 - 1.1 0.42 0.55  Nonic pollutants  Retais and inorganics  Antimony 9 9 0 0.019 - 0.13 0.044 0.060 4 2 0.012 - 0.032 0.022  Copper 9 0 0.008 - 0.079 0.019 0.032 4 3 0 0.012 - 0.032 0.022  Copper 9 0 0.008 - 0.079 0.019 0.032 4 3 0 0.012 - 0.032 0.022  Copper 9 0 0.008 - 0.079 0.019 0.032 4 3 0 0.014 0.046  Cyanide 4 4 0 0.005 - 0.017 0.015  Evaluated 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5                                                                                                            | Dichlorobromomethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 1.1.2.2-Tetrachloroethylene   Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1,2,2-Tetrachloroethane Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
| Tetrachloroethylene    Controxic inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| Solution    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| Aluminum 15 3 0.081 - 0.92 0.15 0.23 15 5 0.054 - 0.52 0.22 0.22 Iron 12 0 0.10 - 8.3 1.6 2.9 15 0 180 - 10.000 1.300 2.60 Manganese 13 3 0.066 - 0.36 0.16 0.19 15 0 0.57 - 53 3 4 1 1 5 Cobelt 15 15 0 0.001 0.001 15 15 0 0.017 - 0.38 0.036 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Montovic inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| Tron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 0.2   |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALCENTING 13 3 0.001 0.32 0.13 0.23 13 0.001 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| Titanium 15 15 16 0.001 0.001 15 15 0 0.017 - 0.38 0.036 0.12    Mickel deposition   Meutralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Nickel deposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •       |
| Nickel deposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Total phosphorus 6 0 1.1 - 8.3 4.4 4.5 4 1 0.04 - 7 5 0.38 2.6 Total phosphorus 6 0 1.1 - 8.3 4.4 4.5 4 1 0.04 - 7 5 0.38 2.6 Total phosphorus 6 1 0.008 - 0.042 0.029 0.028 3 0 0.004 - 0.024 0.004 0.011 and grease 4 0 1 - 18 4.9 7.2 3 0 3 - 3.8 3.3 3.4 pH 8 0 2.0 - 6.2 2.7 3.3 4 0 8.4 - 9.0 9 0 8.9 pH 8 0 2.0 - 6.2 2.7 3.3 4 0 8.4 - 9.0 9 0 8.9 pH 8 0 2.0 - 6.2 2.7 3.3 4 0 8.4 - 9.0 9 0 8.9 pH 8 0 2.0 - 6.2 2.7 3.3 4 0 8.4 - 9.0 9 0 8.9 pH 9 0 0.27 - 0.80 0 50 0.51 4 0 0.32 - 1.1 0 42 0.55 Toxic pollutants  Hetals and inorganics  Antimony 9 9 0 0.27 - 0.80 0 50 0.51 4 0 0.32 - 1.1 0 42 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| TSS 7 0 2 - 77 4 20 3 0 8.0 - 9.0 9 0 8.7 Total phosphorus 6 0 1.1 - 8.3 4.4 4.5 4 1 0.04 - 7 5 0.38 2.6 Total phosphorus 6 1 0.008 - 0.042 0.029 0.028 3 0 0.004 - 0.024 0.004 0.013 0.1 and grease 4 0 1 - 18 4.9 7 2 3 0 3 - 3.8 3 3 3.4 pH 8 0 2.0 - 6.2 2.7 3.3 4 0 8.4 - 9.0 9 0 0.27 - 0.80 0.50 0.51 4 0 0.32 - 1.1 0.42 0.55 Toxic pollutants    Netals and inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nickel deposition Neutralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| Total phosphorus 6 0 1.1 - 8.3 4.4 4.5 4 1 0.04 - 7 5 0.38 2.6 Total phenols 6 1 0.008 - 0.042 0.029 0.028 3 0 0.004 - 0.024 0.004 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 8.7   |
| Total phenols 6 1 0.008 - 0.042 0.029 0.028 3 0 0.004 - 0.024 0.004 0.011 Oli and grease 4 0 1 - 18 4.9 7.2 3 0 3 - 3.8 3 3 3.4 pH 8 0 2.0 - 6.2 2.7 3.3 4 0 8.4 - 9.0 9 0 8.9 Fluorides 9 0 0.27 - 0.80 0.50 0.51 4 0 0.32 - 1.1 0.42 0.55  Tokic pollutants  Hetals and inorganics  Antimony 9 9 0 0 4 4 Arsenic 9 9 9 0 0 4 4 Cadaium 9 9 0 0 019 - 0 13 0.044 0.060 4 2 0.012 - 0.032 0.022  Copper 9 0 0.008 - 0.079 0.019 0.032 4 3 0.012 - 0.032  Copper 9 0 0.008 - 0.079 0.019 0.032 4 3 0.012 - 0.032  Cyanide 4 4 0 0.005 - 9 4 0 0.005 - 9 4 0.005  Lead 9 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 0 2 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 0 4 4 0.005 - 0.012 - 0.013 0.014 0.015  Selenium 9 0 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0.17 2.5  Selenium 9 0 0 0.012 - 0.013 0.014 0.015  Selenium 9 0 0 2 9 - 280 8 7 73 4 0 0.0075 - 9 4 0.17 2.5  Selenium 9 0 0 2 9 - 280 8 7 73 4 0 0.0075 - 9 4 0.17 2.5  Selenium 9 0 0 0.014 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 2.6   |
| Oil and grease 4 0 1 - 18 4.9 72 3 0 3 - 3.8 3 3 3.4 pH 8 0 2.0 - 6.2 2.7 3.3 4 0 8.4 - 9.0 9.0 8.9 Fluorides 9 0 0.27 - 0.80 0 50 0.51 4 0 0.32 - 1.1 0 42 0.55 Toxic pollutants  Hetals and inorganics  Antimony 9 9 0 0 4 4 0 0 4 4 0 0 0 4 4 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total phosphotus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| pH 8 0 2.0 - 6.2 2.7 3.3 4 0 8.4 - 9.0 9 0 8.9 Fluorides 9 0 0.27 - 0.80 0 50 0.51 4 0 0.32 - 1.1 0 42 0.55 70xic pollutants  Metals and inorganics  Antimony 9 9 0 0 4 4 0 0.00 4 4 0 0.00 4 4 0 0.00 4 4 0 0.00 4 4 0 0.00 4 4 0 0.00 4 4 0 0.00 4 4 0 0.00 4 4 0 0.00 4 0 0.00 4 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 6 0 0.00 | Total prices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| Fluorides 9 0 0.27 - 0.80 0 50 0.51 4 0 0.32 - 1.1 0 42 0.55  Poxic pollutants  Metals and inorganics  Antimony 9 9 0 0 4 4 0 0 0.32 - 1.1 0 42 0.55  Antimony 9 9 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | off and disease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 8.9   |
| Hetals and inorganics         Antimony         9         0         4         4         0           Arsenic         9         9         0         4         4         0           Beryllium         9         9         0         4         4         0           Cadmium         9         9         0         0.012 - 0.032         0.022           Chromium         9         0         0.019 - 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 0.55  |
| Antimony 9 9 0 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Poxic pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| Antimony 9 9 0 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |
| Beryllium 9 9 0 0 019 - 0 13 0 044 0 060 4 2 0.012 - 0.032 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Camaum 9 9 0 0 019 - 0 13 0 044 0 060 4 2 0.012 - 0.032 0.022 Copper 9 0 0 008 - 0 079 0 019 0 032 4 3 9 014 0 014 Cyanide 4 4 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Cropper 9 0 008 - 0 079 0 019 0 032 4 3 0 0 014 0 014 Cyanide 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |
| Cypnet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Lead 9 9 0 29 - 280 8 7 73 4 0 0.075 - 9 4 0 17 2 5 Selenium 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | copper , 0 0 000 0 01, 0 012 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| Lead 9 9 0 29-280 87 73 4 0 0.075-94 0 17 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cyanide 4 4 4 0 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| Selenium 9 9 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lead 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| Selenzum 9 9 0 4 4 0 0.01 0.025 0.012 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nickel 9 0 2 9 - 280 8 7 73 4 0 0.075 - 9 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
| 2inc 9 0 0.036 - 0.27 0.073 0.10 4 0 0.011 - 0.025 0.012 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26TEILTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zinc 9 0 0.036 - 0.27 0.073 0.10 4 0 0.011 - 0.025 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 0 015 |

TABLE 8.10-3 (continued)

|                                                  | Number<br>of<br>samples | Number<br>not<br>detected | Range mg/L <sup>a</sup>   | Median<br>mg/L | Average<br>mg/L | Number<br>of<br>samples | Number<br>not<br>detected |                            | Median<br>mg/L | Average<br>mg/L |
|--------------------------------------------------|-------------------------|---------------------------|---------------------------|----------------|-----------------|-------------------------|---------------------------|----------------------------|----------------|-----------------|
|                                                  |                         |                           | lickel depositio          | n              |                 |                         |                           | Neutralization             |                |                 |
| c pollutants<br>ganics                           |                         |                           |                           |                |                 |                         |                           |                            |                |                 |
| Johnes<br>Toluene                                |                         |                           |                           |                |                 |                         |                           |                            |                |                 |
| 1.2-Dichlorobenzene                              |                         |                           |                           |                |                 | 4                       | 4                         |                            |                |                 |
| Chloroform                                       |                         |                           |                           |                |                 |                         |                           |                            |                |                 |
| Dichlorobromomethane                             |                         |                           |                           |                |                 |                         |                           |                            |                |                 |
| 1 1 2 2-Tetrachloroethane                        |                         |                           |                           |                |                 |                         |                           |                            |                |                 |
| letrachloroethylene                              |                         |                           |                           |                |                 |                         |                           |                            |                |                 |
| oxic inorganics                                  |                         |                           |                           |                |                 |                         |                           |                            |                |                 |
| பாராபா                                           | 9                       | 6                         | 0 19 - 0 13               | 0 28           | 0 27            | 4                       | 3                         |                            | 0 34           | 0 3             |
| on                                               | 9                       | 0                         | 57 - 1,100                | 170            | 400             | 4                       | 0                         | 16-44                      | 3 5            | 13              |
| nganese                                          | 9                       | 0                         | 0 27 - 7 6                | 14             | 28              | 4                       | 0                         | 0 24 - 0 25                | 0 032          | 0 089           |
| tanıum                                           | 9                       | 9                         |                           |                | 0               | 4                       | 4                         |                            |                | (               |
| balt                                             | G                       | c                         | 0.010 - 0 37              | 0 049          | 0 12            | 4                       | 4                         |                            |                | ,               |
|                                                  |                         |                           | Coating                   |                |                 |                         |                           | Total raw wast             | e              |                 |
| entional parameters                              |                         |                           |                           |                |                 |                         |                           |                            |                |                 |
| 5                                                | 15                      | 0                         | 360 - 320,00              | 0 14.000       | 40,000          | 12                      | 0                         | 66 - 16,000                | 1,700          | 3,60            |
| tal phosphorus                                   | 13                      | 0                         | 0 49 - 9.8                | 1.5            | 2 8             | 6                       | 0                         | 3.6 - 13                   | 6.1            | 6.              |
| tal phenols                                      | 15                      | 5                         | 0 010 - 0 028             | 0 017          | 0 018           | 12                      | 1                         | 0 006 - 0 29               | 0 019          | 0 04            |
| l and grease                                     | 9                       | Ú                         | 2 - 98                    | 12             | 27              | 4                       | 0                         | 3.8 - 38                   | 34             | 2               |
| •                                                | 15                      | 0                         | 7 - 12.5                  | 8 6            | 8 8             | 12                      | 0                         | 2 - 12 5                   | 58             | 6               |
| uorides                                          | 15                      | 0                         | 15 - 115                  | 46             | 50              | 14                      | 0                         | 1.3 - 30                   | 7 <b>7</b>     | 11              |
| c pollutants                                     |                         |                           |                           |                |                 |                         |                           |                            |                |                 |
| tals and inorganics                              |                         |                           |                           |                |                 |                         |                           |                            |                |                 |
| Antimony                                         | 15                      | 7                         | 1.6 - 1,000               | 3.9            | 130             | 14                      | 7                         | 0.098 - 22                 | 2 7            | 5.              |
| Arsenic                                          | 15                      | 10                        | 0 25 - 3.5                | 0.42           | 15              | 14                      | 9                         | 0.005 - 2.5                | 0.056          | 0 9             |
| Beryllium                                        | 15                      | 10                        | 0.035 ~ 0.12              | 0.059          | 0.065           | 14                      | 9                         | 0.001 - 0 008              | 0 005          | 0 00            |
| Cadmium                                          | 15                      | 6                         | 0 097 - 9 6               | 0 76           | 2 5             | 14                      | 3                         | 0.0 - 0.59                 | 0.032          | 0 08            |
| Chromium                                         | 15                      | 0                         | 0 005 - 37                | 0.21           | 2.8             |                         | 0                         | 0.022 - 0 84               | 0.075          | 0 1             |
| Copper                                           | 15                      | 0                         | 0.26 - 55                 | 3 0            | 7.2             | 14                      | 0                         | 0.034 - 2.2                | 0.40           | 0 5             |
| Cyanide                                          | 9                       | 8                         | 0.055                     | 0 055          | 0 055           | 4                       | 4                         |                            |                |                 |
| Lead                                             | 15                      | 2                         | 0.18 - 11                 | 2 3            | 3 3             |                         | 1                         | 0 004 - 0.69               | 0.19           | 0 2             |
| Nickel                                           | 15                      | 0                         | 1 8 - 360                 | 22             | 44              | 12                      | 0                         | 1.4 - 32                   | 6 9            | 2.              |
| Selenium                                         | 15                      | 5                         | 0.12 - 17                 | 0 79           | 4.0             | 14                      | 4                         | 0.001 - 13                 | 0 042<br>6 8   | 2.              |
| Zinc                                             | 15                      | 0                         | 1 1 - 1,300               | 58             | 170             | 13                      | 0                         | 0.078 - 45                 | 0.0            | •               |
| ganics                                           |                         |                           |                           |                | _               | •                       | -                         |                            |                |                 |
| Toluene                                          | 30                      | 3                         |                           |                | 0               | 2                       | 2                         |                            |                |                 |
| 1,2-Dichlorobenzene                              | 3                       | 3                         |                           |                | 0               |                         |                           |                            |                |                 |
| Chloroform                                       | 3                       | 3                         |                           |                | 0               |                         |                           |                            |                |                 |
| Dichlorobromomethane                             | 3                       | 3                         |                           |                |                 |                         |                           |                            |                |                 |
| 1,1,2,2-Tetrachloroethane<br>Tetrachloroethylene | 3                       | 3<br>3                    |                           |                | 0               |                         |                           |                            |                |                 |
| •                                                | •                       | •                         |                           |                | ·               |                         |                           |                            |                |                 |
| oxic inorganics                                  | 15                      | •                         | 5 2 - 1,500               | 100            | 230             | 14                      | 0                         | 0.45 - 210                 | 18             | 3               |
| un inum                                          | 15<br>15                | 0                         | 2 6 - 620                 | 24             | 230             |                         | 0                         | 53 - 670                   | 160            | 30              |
| On .                                             | 15<br>15                | 0                         | 2 6 - 620<br>1 8 - 400    | 29             | 79              |                         | 0                         | 0 53 - 61                  | 6 4            | ı               |
| nganese                                          |                         |                           |                           |                |                 |                         |                           |                            |                | ıî              |
|                                                  |                         |                           |                           |                |                 |                         |                           |                            |                | 3               |
| tanıum<br>balt                                   | 15<br>15                | 0                         | 5 8 - 1,600<br>0 31 - 350 | 100<br>13      | 310<br>52       |                         | 0<br>0                    | 0 17 - 1.200<br>0 19 - 9 2 | 14<br>2 4      |                 |

Note Blanks, when not associated with a number of samples indicate no data available

<sup>&</sup>lt;sup>a</sup>Exc~pt pH values, given in pH units

TABLE 8.10-4. WASTEWATER CHARACTERIZATION OF THE PORCELAIN ENAMELING ON CAST IRON SUBCATEGORY [1]

|                         |               |                 | Coating                  |                 |                  |
|-------------------------|---------------|-----------------|--------------------------|-----------------|------------------|
|                         | Number        | Number          |                          | W- 44           | <b></b>          |
| Pollutant               | of<br>samples | not<br>detected | Range, mg/L <sup>a</sup> | Median,<br>mg/L | Average,<br>mg/L |
| rollucane               | Samples       | detected        | Range, mg/L              | mg/ L           | mg/ L            |
| Conventional parameters |               |                 |                          |                 |                  |
| TSS                     | 7             | 0               | 6,600 - 81,000           | 19,000          | 27,000           |
| Total phosphorus        | 7             | 1               | 0.49 - 2.1               | 0.93            | 1.1              |
| Total phenols           | 6             | 0               | 0.008 - 0.038            | 0.017           | 0.020            |
| Oil and grease          | 3             | 0               | 1.0 - 9.5                | 3.7             | 4.7              |
| Н                       | 7             | 0               | 7.9 - 11.4               | 9.4             | 9.4              |
| Fluorides               | 7             | 0               | 2.0 - 115                | 23              | 41               |
| Toxic pollutants        |               |                 |                          |                 |                  |
| Metals and inorganics   |               |                 |                          |                 |                  |
| Antimony                | 7             | 6               |                          | 6.0             | 6.0              |
| Arsenic                 | 7             | 4               | 1.9 - 2.8                | 2.4             | 2.4              |
| Beryllium               | 7             | 3               | 0.002 - 0.12             | 0.036           | 0.049            |
| Cadmium                 | 7             | 3               | 0.014 - 9.6              | 0.59            | 2.7              |
| Chromium                | 7             | 0               | 0.0 - 1.1                | 0.21            | 0.43             |
| Copper                  | 7             | Ō               | 0.001 - 8.8              | 0.42            | 2.6              |
| Cyanide                 | 3             | 2               |                          | 0.009           | 0.009            |
| Lead                    | 7             | 0               | 0.49 - 880               | 7.6             | 170              |
| Mercury                 | ì             | Ö               |                          | 0.001           | 0.001            |
| Nickel                  | 7             | 3               | 0.25 - 67                | 33              | 33               |
| Selenium                | 7             | 0               | 0.43 - 160               | 9.3             | 29               |
| Silver                  | ì             | 1               |                          |                 | 0                |
| Thallium                | ī             | ī               |                          |                 | 0                |
| Zinc                    | 7             | ī               | 0.68 - 650               | 9.0             | 127              |
| Nontoxic inorganics     |               |                 |                          |                 |                  |
| Aluminum                | 7             | 0               | 0.38 - 1,200             | 240             | 340              |
| Barium                  | 1             | ì               |                          |                 | 0                |
| Boron                   | ī             | 0               |                          | 0.157           | 0.157            |
| Iron                    | 6             | 1               | 18 - 150                 | 38              | 56               |
| Magnesium               | 1             | 0               |                          | 3.1             | 3.1              |
| Manganese               | 7             | 0               | 0.003 - 65               | 2.2             | 15               |
| Molybdenum              | 1             | 0               |                          | 0.037           | 0.037            |
| Tin                     | 1             | 0               |                          | 0.033           | 0.033            |
| Titanium                | 7             | 3               | 0.022 - 100              | 37              | 44               |
| Gold                    | 1             | 1               |                          |                 | 0                |
| Sodium                  | ī             | ī               |                          |                 | 0                |
| Calcium                 | ī             | ī               |                          |                 | 0                |
| Cobalt                  | 7             | 0               | 0.044 - 95               | 8.9             |                  |

Note: Blanks indicate insufficient data available.

Date: 6/23/80

II.8.10**-**11

aExcept pH values, given in pH units.

# Subcategory 3 - Porcelain Enameling on Aluminum

Wastewaters from this subcategory come from surface preparation, enamel application, ball milling, and related operations. Constituents of this wastewater include aluminum and components of the surface preparation solutions and the enamels being applied.

Water is used in this subcategory as solution makeup and for rinsing in the surface preparation process, as the vehicle for the coating in the application process (normally done by spray coating), and for cooling and cleanup in the ball milling operation.

The surface preparation process contributes pollutants to the wastewater by the continuous overflow of the cleaning bath (if a continuous process), by the batch dumping of spent solutions, and by the rinsing steps directly following the process. Generally, significant quantities of dirt and grease are removed during this cleaning process. Also entering the wastestream is a considerable amount of aluminum. When an alkaline cleaning process is used the wastewater contains significant concentrations of suspended solids, phosphorus, and aluminum. Acids used to deoxidize the surface normally remove a larger amount of aluminum than alkaline treatments and therefore increase the dissolved aluminum concentration. The enamel preparation and application steps contribute significant amounts of suspended solids and metals, particularly cadmium, lead, titanium, zinc, aluminum, barium, iron, selenium, and antimony due to use of these metals in the enamel itself. There are also high levels of fluorides and phosphorus.

Table 8.10-5 presents conventional and toxic pollutant concentrations for the porcelain enameling on aluminum subcategory.

#### Subcategory 4 - Porcelain Enameling on Copper

Wastewater from this subcategory is generated as in the previous subcategories; by surface preparation, enamel application, ball milling, and related operations. Wastewater constituents generally consist of copper and the components used to form the enamel.

Water is used to rinse the workpieces after various operations, as a constituent of the enamel slip, in spray booths, and in cleaning, cooling and air scrubbing. Pollutants such as dirt and greases enter the wastestream from the surface preparation and rinsing steps. Acid pickling adds dissolved copper to the wastestream. Enamel preparation and application may add high concentrations of aluminum, titanium, manganese, nickel, zinc, and cobalt, as well as fluorides, antimony, copper, lead, and iron.

Table 8.10-6 gives conventional and toxic pollutant concentrations for the porcelain enameling on copper subcategory on a stream basis.

TABLE 8.10-5. WASTEWATER CHARACTERIZATION OF THE PORCELAIN ENAMELING ON ALUMINUM SUBCATEGORY [1]

|                             | Number<br>of | Number<br>not | . а                                        | Median,                               | Average     |
|-----------------------------|--------------|---------------|--------------------------------------------|---------------------------------------|-------------|
| Pollutant                   | samples      | detected      | Range, mg/L <sup>a</sup> Alkaline cleaning | mg/L                                  | mg/L~       |
|                             | <del></del>  |               | Alkaline cleaning                          | · · · · · · · · · · · · · · · · · · · | <del></del> |
| Conventional parameters     | 0            | ^             | 1 0 100                                    | 17                                    | 4.0         |
| TSS<br>Total phosphorus     | 8<br>8       | 0<br>0        | 1.0 - 180<br>0.41 - 24                     | 17<br>9. <b>4</b>                     | 40<br>8.5   |
| Total phenols               | 8            | 1             | 0.005 - 0.016                              | 0.007                                 | 0.008       |
| Oil and grease              | 8            | 4             | 3 - 11                                     | 6.7                                   | 6.9         |
| pH                          | 8            | ō             | 6.3 - 10.4                                 | 8.8                                   | 8.          |
| Fluorides                   | 8            | Ö             | 0.72 - 0.98                                | 0.91                                  | 0.8         |
| Toxic pollutants            |              |               |                                            |                                       |             |
| Metals and inorganics       |              |               |                                            |                                       |             |
| Antimony                    | 8            | 8             |                                            |                                       |             |
| Arsenic                     | 8            | 8             |                                            |                                       |             |
| Beryllium                   | 8            | 8             |                                            |                                       |             |
| Cadmium                     | 8            | 7             |                                            | 0.003                                 | 0.00        |
| Chromium                    | 8            | 6             | 0.007 - 0.018                              |                                       | 0.01        |
| Copper                      | 8            | 6             | 0.021 - 0.056                              |                                       | 0.03        |
| Cyanide                     | 8            | 6             | 0.015 - 0.18                               |                                       | 0.09        |
| Lead                        | 8            | 6             | 0.040 - 4.3                                |                                       | 2.          |
| Nickel                      | 8            | 8             |                                            |                                       |             |
| Selenium                    | 8            | 8             |                                            |                                       |             |
| Zinc                        | 8            | 1             | 0.019 - 0.54                               | 0.17                                  | 0.2         |
| Organics                    |              | _             |                                            |                                       |             |
| Bis(2-ethylhexyl) phthalate | 8            | 8             |                                            |                                       |             |
| Di-n-octyl phthalate        | 8            | 8             |                                            |                                       |             |
| Toluene                     | 3            | 3             |                                            |                                       |             |
| Nontoxic inorganics         | _            | •             |                                            |                                       | _           |
| Aluminum                    | 8            | 1             | 0.68 - 26                                  | 4.5                                   | 6.          |
| Barium                      | 8            | 8             |                                            |                                       |             |
| Iron                        | 8            | ō             | 0.013 - 0.33                               | 0.059                                 | 0.09        |
| Manganese                   | 8            | 5             | 0.019 - 0.18                               | 0.14                                  | 0.1         |
| Titanium                    | 8            | 8             |                                            |                                       |             |
| Cobalt                      | 8            | 8             |                                            |                                       |             |
|                             |              |               | Coating                                    |                                       |             |
| Commentional parameters     |              |               |                                            |                                       |             |
| Conventional parameters TSS | 8            | 0             | 55 - 650                                   | 320                                   | 33          |
| Total phosphorus            | 8            | Ō             | 0.38 - 65                                  | 1.3                                   | 9.          |
| Total phenols               | 8            | 3             | 0.005 - 0.018                              | 0.008                                 | 0.03        |
| Oil and grease              | 8            | 5             | 2.3 - 4.7                                  | 3.3                                   | 3.          |
| pH                          | 8            | 0             | 7.0 - 10                                   | 9.0                                   | 8.          |
| Fluorides                   | 8            | 0             | 0.92 - 1.9                                 | 0.94                                  | 1.          |
| Coxic pollutants            |              |               |                                            |                                       |             |
| Metals and inorganics       |              |               |                                            |                                       |             |
| Antimony                    | 8            | 6             | 0.21 - 0.36                                |                                       | 0.2         |
| Arsenic                     | 8            | 8             |                                            |                                       |             |
| Beryllium                   | 8            | 8             | <b>.</b> = :                               |                                       |             |
| Cadmium                     | 8            | 1             | 0.29 - 54                                  | 5.0                                   |             |
| Chromium                    | 8            | 0             | 0.008 - 0.039                              | 0.027                                 | 0.0         |
| Copper                      | 8            | 2             | 0.005 - 0.18                               | 0.030                                 | 0.05        |
| Cyanide                     | 8            | 7             |                                            | 0.002                                 | 0.0         |
| Lead                        | 8            | 0             | 3.5 - 38                                   | 9.1                                   | •           |
| Nickel                      | 8            | 8             |                                            |                                       | _           |
| Selenium                    | 8            | 4             | 0.53 - 7.1                                 | 0.65                                  | 2           |
| Zinc                        | 8            | 0             | 0.15 - 2.0                                 | 0.66                                  | 0.          |
|                             |              |               |                                            |                                       | (continue   |
|                             |              |               |                                            |                                       | ,           |

TABLE 8.10-5 (continued)

|                                        | Number<br>of | Number<br>not | , a                      | Median,      | Average, |
|----------------------------------------|--------------|---------------|--------------------------|--------------|----------|
| Pollutant                              | samples      | detected      | Range, mg/L <sup>a</sup> | mg/L         | mg/L     |
|                                        |              |               | Coating                  | <del></del>  |          |
| Toxic pollutants (continued)           |              |               |                          |              |          |
| Organics                               |              |               |                          |              |          |
| Bis(2-ethylhexyl) phthalate            | 8            | 8             |                          |              | 0        |
| Di-n-octyl phthalate                   | 8            | 8             |                          |              | 0        |
| Toluene                                | 3            | 3             |                          |              | 0        |
| Nontoxic inorganics                    |              |               |                          |              |          |
| Aluminum                               | 8            | 0             | 0.25 - 2.1               | 0.36         | 0.62     |
| Barium                                 | 8            | 0             | 0.11 - 1.4               | 0.36         | 0.59     |
| Iron                                   | 8            | 0             | 0.11 - 0.94              | 0.19         | 0.33     |
| Manganese                              | 8            | 6             | 0.003 - 0.011            |              | 0.007    |
| Titanium<br>Cobalt                     | 8<br>8       | 0<br>7        | 3.1 - 30                 | 6.0<br>0.029 | 10       |
| Copair                                 | 8            | ,             |                          | 0.029        | 0.029    |
|                                        |              |               | Total raw waste          |              |          |
| Conventional parameters                |              |               |                          |              |          |
| TSS                                    | 8            | 0             | 12 - 190                 | 93           | 105      |
| Total phosphorus                       | 8            | 0             | 0.88 - 24                | 9.5          | 9.3      |
| Total phenols                          | 8            | 0             | 0.0 - 0.015              | 0.007        | 0.007    |
| Oil and grease                         | 8            | 3             | 1.7 - 11                 | 4.5          | 5.8      |
| pH                                     | 8            | 0             | 6.3 - 10.4               | 8.8          | 8.7      |
| Fluorides                              | 8            | U             | 0.74 - 0.98              | 0.92         | 0.89     |
| Toxic pollutants Metals and inorganics |              |               |                          |              |          |
| Antimony                               | 8            | 6             | 0.15 - 0.26              |              | 0.21     |
| Arsenic                                | 8            | 8             |                          |              | 0        |
| Beryllium                              | 8            | 8             |                          |              | 0        |
| Cadmium                                | 8            | 1             | 0.007 - 5.2              | 2.3          | 2.2      |
| Chromium                               | 8            | 0             | 0.001 - 0.013            | 0.006        | 0.006    |
| Copper                                 | 8            | 2             | 0.0 - 0.13               | 0.046        | 0.048    |
| Cyanide                                | 8            | 6<br>0        | 0.005 - 0.14             |              | 0.073    |
| Lead<br>Nickel                         | 8<br>8       | 0<br>8        | 0.15 - 12                | 3.1          | 3.9      |
| Selenium                               | 8            | 4             | 0.11 - 0.63              | 0.44         | 0.40     |
| Zinc                                   | 8            | Ō             | 0.12 - 0.53              | 0.33         | 0.30     |
| Organics                               | _            | _             |                          |              |          |
| Bis(2-ethylhexyl) phthalate            | 8            | 8             |                          |              | 0        |
| Di-n-octyl phthalate<br>Toluene        | 8<br>3       | 8<br>3        |                          |              | 0        |
|                                        | •            | •             |                          |              | v        |
| Nontoxic inorganics Aluminum           | 8            | 0             | 0.077 - 10               | 2.7          | 3.8      |
| Arcum<br>Barium                        | 8            | 0             | 0.077 - 10               | 0.039        | 0.10     |
| Iron                                   | 8            | ŏ             | 0.017 - 0.71             | 0.17         | 0.10     |
| Manganese                              | 8            | 3             | 0.002 - 0.13             | 0.018        | 0.046    |
| Titanium                               | 8            | 0             | 0.093 - 6.1              | 2.1          | 2.6      |
| Cobalt                                 | 8            | 1             | 0.006                    | 0.006        | 0.006    |

Note: Blanks indicate insufficient data available.

Date: 6/23/80

 $<sup>^{\</sup>mathbf{a}}\mathbf{E}\mathbf{x}\mathbf{cept}$  pH values, given in pH units.

TABLE 8.10-6. WASTEWATER CHARACTERIZATION OF THE PORCELAIN ENAMELING ON COPPER SUBCATEGORY [1]

|                           | Number<br>of | Number<br>not | _                        | Median, | Average  |
|---------------------------|--------------|---------------|--------------------------|---------|----------|
| Pollutant                 | samples      | detected      | Range, mg/L <sup>a</sup> | mg/L    | mg/Lª    |
|                           |              |               | Acid pickling            |         |          |
| Conventional parameters   |              |               |                          |         |          |
| TSS                       | 2            | 0             | 14 - 24                  |         | 19       |
| Total phosphorus          | 2            | ì             |                          | 0.52    | 0.5      |
| Total phenols             | 2            | ī             |                          | 0.006   | 0.00     |
| Oil and grease            | ī            | Ō             |                          | 200     | 20       |
| рН                        | 2            | 0             | 6.2 - 6.6                |         | 6.4      |
| Fluorides                 | 2            | 0             | 0.11 - 0.12              |         | 0.1      |
| oxic pollutants           |              |               |                          |         |          |
| Metals and inorganics     |              |               |                          |         |          |
| Antimony                  | 2            | 2             |                          |         |          |
| Arsenic                   | 2            | 2             |                          |         |          |
| Beryllıum                 | 2            | 2             |                          |         |          |
| Cadmium                   | 2            | 2             |                          |         |          |
| Chromium                  | 2            | 0             | 0.008 - 0.009            |         | 0.00     |
| Copper                    | 2            | 0             | 9.7 - 12                 |         | 1        |
| Cyanide                   | 2            | 2             |                          |         |          |
| Lead                      | 2            | 2             |                          |         |          |
| Nickel                    | 2            | 2             |                          |         |          |
| Selenium                  | 2            | 2             |                          |         |          |
| Zinc                      | 2            | 0             | 0.049 - 0.22             |         | 0.2      |
| Organics                  |              |               |                          |         |          |
| 1,2-Dichlorobenzene       |              |               |                          |         |          |
| Toluene                   | 2            | 2             |                          |         |          |
| Chloroform                | 2            | 2             |                          |         |          |
| Dichlorobromomethane      | 2            | 2             |                          |         |          |
| 1,1,2,2-Tetrachloroethane | 2            | 2             |                          |         |          |
| Tetrachloroethylene       | 2            | 2             |                          |         |          |
| ontoxic inorganics        |              |               |                          |         |          |
| Aluminum                  | 2            | 0             | 0.050 - 0.17             |         | 0.3      |
| Iron                      | 2            | 0             | 0.15 - 51                |         |          |
| Manganese                 | 2            | 0             | 0.010 - 0.019            |         | 0.0      |
| Titanium                  | 2            | 2             |                          |         |          |
| Cobalt                    | 2            | 2             |                          |         |          |
|                           |              |               | Coating                  |         |          |
| onventional parameters    |              |               |                          |         |          |
| TSS                       | 3            | 0             | 14,000 - 94,000          | 31,000  | 46,0     |
| Total phosphorus          | 1            | 0             |                          | 1.0     | 1        |
| Total phenols             | 3            | 3             |                          |         |          |
| Oil and grease            | 3            | 0             | 2.0 - 98                 | 10      |          |
| рН                        | 3            | 0             | 7.6 - 10.1               | 8.7     | 8        |
| Fluorides                 | 3            | 0             | 46 - 66                  | 56      |          |
| oxic pollutants           |              |               |                          |         |          |
| Metals and inorganics     |              | _             |                          |         | _        |
| Antimony                  | 3            | 0             | 1.6 - 3.5                | 2.4     | 2        |
| Arsenic                   | 3            | 2             |                          | 0.42    | 0.       |
| Beryllium                 | 3            | 1             | 0.035 - 0.059            |         | 0.0      |
| Cadmium                   | 3            | 0             | 0.097 - 0.26             | 0.22    | 0.       |
| Chromium                  | 3            | 0             | 0.20 - 0.63              | 0.30    | 0.       |
| Copper                    | 3            | 0             | 4.7 - 7.1                | 5.9     | 5        |
| Cyanide                   | 3            | 2             |                          | 0.055   | 0.0      |
| Lead                      | 3            | 0             | 2.3 - 4.8                | 4.8     | 4        |
| Nickel                    | 3            | 0             | 38 - 49                  | 40      |          |
| Selenium                  | 3            | 0             | 0.51 - 0.81              | 0.77    | 0.       |
| Zinc                      | 3            | 0             | 58 - 200                 | 82      | 1        |
|                           |              |               |                          |         | (continu |
|                           |              |               |                          |         | Concinu  |

TABLE 8.10-6 (continued)

|                                   | Number<br>of | Number<br>not |                          | Median,           | Average,        |
|-----------------------------------|--------------|---------------|--------------------------|-------------------|-----------------|
| Pollutant                         | samples      | detected      | Range, mg/L <sup>a</sup> | mg/L <sup>a</sup> | mg/L            |
|                                   |              |               | Coating                  |                   |                 |
| Toxic pollutants (continued)      |              |               |                          |                   |                 |
| Organics                          |              |               |                          |                   |                 |
| l,2-Dichlorobenzene               | 1            | 1             |                          |                   | 0               |
| Toluene                           | 3            | 3             |                          |                   | 0               |
| Chloroform                        | 3            | 0             | 0.00                     | 0.00              | 0.00            |
| Dichlorobromomethane              | 3            | 1             | 0.00                     |                   | 0.00            |
| 1,1,2,2-Tetrachloroethane         | 3            | 1             | 0.00                     |                   | 0.00            |
| Tetrachloroethylene               | 3            | 1             |                          |                   | 0               |
| Nontoxic inorganics               |              |               |                          |                   |                 |
| Aluminum                          | 3            | 0             | 100 - 200                | 180               | 160             |
| Iron                              | 3            | 0             | 15 - 29                  | 16                | 20              |
| Manganese                         | 3            | 0             | <b>64 - 120</b>          | 85                | 89              |
| Titanium                          | 3            | 0             | 120 - 560                | 220               | 300             |
| Cobalt                            | 3            | 0             | 48 - 64                  | 51                | 54              |
|                                   |              | <del> </del>  | Total raw waste          |                   |                 |
| <b></b>                           |              |               |                          |                   |                 |
| Conventional parameters           | 2            | ^             | 1 100 04 000             | 2 500             | 22 000          |
| TSS                               | 3<br>1       | 0<br>0        | 1,100 - 94,000           | 2,500<br>0.080    | 33,000<br>0.080 |
| Total phosphorus<br>Total phenols | 3            | 2             |                          | 0.080             | 0.080           |
| Oil and grease                    | 2            | 0             | 2 - 190                  | 0.000             | 95              |
| pH                                | 3            | 0             | 6.2 - 10.1               | 8.1               | 7.8             |
| Fluorides                         | 3            | ő             | 3.8 - 56                 | 5.4               | 22              |
| Toxic pollutants                  |              |               |                          |                   |                 |
| Metals and inorganics             |              |               |                          |                   |                 |
| Antimony                          | 3            | 0             | 0.13 - 2.4               | 0.28              | 0.92            |
| Arsenic                           | 3            | 2             |                          | 0.42              | 0.42            |
| Beryllium                         | 3            | 1             | 0.005 - 0.035            |                   | 0.020           |
| Cadmium                           | 3            | 0             | 0.008 - 0.22             | 0.021             | 0.083           |
| Chromium                          | 3            | 0             | 0.023 - 0.63             | 0.032             | 0.23            |
| Copper                            | 3            | 0             | 7.1 - 12                 | 9.3               | 9.3             |
| Cyanide                           | 3            | 2             |                          | 0.004             | 0.004           |
| Lead                              | 3            | 0             | 0.19 - 4.8               | 0.38              | 1.8             |
| Nickel                            | 3            | 0             | 3.1 - 49                 | 3.2               | 18              |
| Selenium                          | 3            | 0             | 0.041 - 0.81             | 0.062             | 0.30            |
| Zinc                              | 3            | 0             | 4.8 - 200                | 6.6               | 69              |
| Organics                          |              |               |                          |                   |                 |
| l,2~Dichlorobenzene<br>Toluene    | 3            | 2             |                          |                   |                 |
| Chloroform                        | 3            | 3<br>0        | 0.00                     | 0.00              | 0               |
| Dichlorobromomethane              | 3            | 0             | 0.00<br>0.00             | 0.00<br>0.00      | 0.00            |
| 1,1,2,2-Tetrachloroethane         | 2            | 0             | 0.00                     | 0.00              | 0.00            |
| Tetrachloroethylene               | 3            | 1             | 0.00                     |                   | 0.00            |
| Nontoxic inorganics               | -            | -             | 2.00                     |                   | 0.50            |
| Aluminum                          | 3            | 0             | 8.1 - 200                | 15                | 73              |
| Iron                              | 3            | ŏ             | 1.4 - 48                 | 29                | 26              |
| Manganese                         | 3            | ŏ             | 5.2 - 120                | 6.9               | 43              |
| Titanium                          | 3            | ŏ             | 9.7 - 560                | 18                | 190             |
| Cobalt                            | 3            | Ō             | 3.9 - 64                 | 4.1               | 24              |

Note: Blanks, when not associated with a number of samples, indicate no data avilable.

aExcept pH values, given in pH units.

# II.8.10.3 Plant Specific Description [1]

Only a limited amount of information is available on specific plants within this industry. This section describes the treatment practice and wastewater composition at five plants: three that enamel on steel, one on aluminum, and one on strip steel. The major treatment operation employed is a settling technique. Treatment operations are not necessarily listed in this narrative in the same order that they are used at the plants. Wastewater composition data were obtained from verification sampling.

# Porcelain Enameling on Steel

Plant 33617. This facility produces approximately  $1.56~\mathrm{x}$   $10^7~\mathrm{m}^2/\mathrm{yr}$  of porcelain enameled steel and uses  $0.009~\mathrm{m}^3$  of water/ $\mathrm{m}^2$  of product for this production. Average process water flow rate is  $23~\mathrm{m}^3$  of water/hr. The mixed wastestream (combined with other process wastes) is treated by several treatment methods including settling, pH adjustment by lime and/or acid, equalization, inorganic coagulation, clarification, sedimentation lagooning, ultrafiltration, and contract removal of the oil sludge. Discharged water is released to a surface stream.

Plant 40063. This plant produces 370 m²/hr of porcelain enameled steel and uses 0.031 m³ of water/m² of product in the process. Average process water flow rate is 11.7 m³ of water/hr. The treatment facility treats only the process wastewater and consists of equalization, pH adjustment with lime, polyelectrolyte coagulation, clarification, vacuum filtration, and sludge landfill. Discharge is to a surface waterway.

Plant 47033. This plant produces  $1.4 \times 10^6 \, \text{m}^2/\text{yr}$  of porcelain enameled steel and minor amounts of other products. Process water used per square meter of product is  $0.06 \, \text{m}^3$ , and the flow rate is  $44.7 \, \text{m}^3/\text{hr}$ . The unmixed wastestream is discharged to a municipal treatment works after undergoing equalization, settling, pH adjustment with caustic, and contract removal of the sludge.

Table 8.10-7 gives the water use for each process in the production of porcelain enameled steel for the above plants. Pollutant concentrations for the raw and treated effluents are presented in Table 8.10-8.

# Porcelain Enameling on Aluminum

Plant 33077. This facility produces 4.5 m<sup>2</sup>/yr of porcelain enameled aluminum and uses 0.11 m<sup>3</sup> of process water/m<sup>2</sup> of product. The mixed wastewater stream is treated by equalization, settling, pH adjustment with lime and/or acid, polyelectrolyte coagulation, clarification, and contractor removal of the resulting sludge prior to discharge to a surface stream. Water use for

TABLE 8.10-7. WATER USE IN THE PORCELAIN

ENAMELING ON STEEL SUBCATEGORY [1]

(m³ of water/m² product)

|                                                                                                       | Plant                                                          | identifi                                                 | cation                                         |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| Process                                                                                               | 33617                                                          | 40063                                                    | 47033                                          |
| Alkaline cleaning<br>Acid treatment<br>Nickel deposition<br>Neutralization<br>Ball milling<br>Coating | 0.00094<br>0.00014<br>0.00033<br>0.00011<br>0.00004<br>0.00066 | 0.0032<br>0.0026<br>0.0027<br>0.0016<br>0.0173<br>0.0112 | 0.103<br>0.0376<br>0.0208<br>0.0056<br>0.00102 |

<sup>&</sup>lt;sup>a</sup>Use of dip coating and spray coating in a dry booth.

TABLE 8.10-8. CONCENTRATIONS OF POLLUTANTS FOUND IN PORCELAIN ENAMELING ON STEEL FACILITIES [1]

| Pollutant                                          | Raw<br>wastewater,<br>mg/L | Treated effluent, mg/L | Percent<br>removal | Raw<br>wastewater,<br>mg/L | Treated effluent, mg/L | Percent<br>removal | Raw<br>wastewater,<br>mg/L | mg/L        | Percent<br>removal |
|----------------------------------------------------|----------------------------|------------------------|--------------------|----------------------------|------------------------|--------------------|----------------------------|-------------|--------------------|
|                                                    |                            | ant 33617              |                    |                            | ant 40063              |                    | P]                         | lant 47033  |                    |
| Conventional parameters<br>TSS<br>Total phosphorus | 1,660<br>14                | 16<br>1.5              | 99<br>89           | 3,600<br>12                | 13<br>1.0              | 99+<br>92          | 190<br>3.4                 | 90<br>2.2   | 53<br>35           |
| Total phosphorus                                   | 14                         | 1.5                    | 69                 | 12                         | 1.0                    | 72                 | 3.4                        |             |                    |
| Toxic pollutants                                   |                            |                        |                    |                            |                        |                    |                            |             |                    |
| Metals and inorganics                              |                            |                        |                    |                            |                        |                    |                            |             | 89                 |
| Antimony                                           | ND                         | ND                     |                    | 10                         | ND                     | 100                | 31                         | 3.3         | 69                 |
| Arsenic                                            | 0.062                      | ND                     | 100                | 6.9                        | ND                     | 100                | ND OF                      | NTD<br>0.12 | 66                 |
| Cadmium                                            | 0.005                      | ND                     | 100                | ND                         | ND                     |                    | 0.35                       | 0.12        |                    |
| Chromium                                           | 0.570                      | ND                     | 100                | ND                         | ND                     |                    | 0.028                      |             |                    |
| Copper                                             | 0.560                      | 0.009                  | 98                 | 0.63                       | 0.003                  | 99+                | 0.15                       | 0.031       | . /9               |
| Lead                                               | 0.28                       | ND                     | 100                | ND                         | ND                     |                    | ND                         | ND          | 23                 |
| Nickel                                             | 10.80                      | 1.04                   | 90                 | 5.5                        | ND                     | 100                | 1.0                        | 0.77        | 23                 |
| Selenium                                           | ND                         | ND                     |                    | 30                         | ND                     | 100                | ND                         | ND          |                    |
| Zinc                                               | 2.78                       | 0.032                  | 99                 | 16                         | 0.044                  | 99+                | 1.4                        | 0.23        | 84                 |
| Nontoxic inorganics                                |                            |                        |                    |                            |                        |                    |                            |             |                    |
| Aluminum                                           | 24                         | ND                     | 100                | 28                         | 0.35                   | 99                 | 4.9                        | 0.55        | 89                 |
| Cobalt                                             | 4.1                        | 0.08                   | 98                 | 4.7                        | ND                     | 100                | 2.1                        | 0.26        | 88                 |
| Iron                                               | 150                        | 0.85                   | 99                 | 110                        | 0.57                   | 99                 | 29                         | 9.7         | 67                 |
| Manganese                                          | 6.0                        | 0.35                   | 94                 | 210                        | 0.012                  | 99+                | 3.3                        | 0.43        | 87                 |
| Titanium                                           | 2.0                        | ND                     | 100                | 125                        | ND                     | 100                | 3.3                        | 0.22        | 93                 |

Note: Blanks indicate insufficient data available.

this production consists of 0.14, 0.014, and 0.014  $\rm m^3$  of water/ $\rm m^2$  of product for surface preparation, ball milling, and coating, respectively. Table 8.10-9 presents pollutant concentrations for the raw and treated effluents.

Treatment involves sedimentation.

## Porcelain Enameling on Strip Steel

<u>Plant 36077</u>. This plant produces 9.7 x  $10^5$  m²/yr of strip steel and uses 0.006 m³ of process water/m² of product. The unmixed wastewater stream is settled before discharging to a surface stream. Amounts of water used for the production process are 0.0021, 0.0021, and 0.0018 m³/m² for ball milling, coating application, and cooling, respectively. Rinse from the nickel deposition step is recycled. Table 8.10-9 presents pollutant concentrations for the raw and treated wastewater at this plant.

TABLE 8.10-9. CONCENTRATIONS OF POLLUTANTS FOUND IN PORCELAIN ENAMELING ON ALUMINUM AND STRIP STEEL [1]

| Pollutant                               | Raw<br>wastewater,<br>mg/L | Treated effluent, mg/L | Percent<br>removal | Raw<br>wastewater,<br>mg/L | Treated effluent, mg/L | Percent<br>removal |
|-----------------------------------------|----------------------------|------------------------|--------------------|----------------------------|------------------------|--------------------|
|                                         | Alumin                     | um plant 33            | 3077               | Strip st                   | eel plant 3            | 86077              |
| Conventional parameters                 |                            |                        |                    |                            |                        |                    |
| TSS                                     | 66                         | 5                      | 92                 | 22,000                     | <b>34</b> 0            | 98                 |
| Total phosphorus                        | 80                         | 3.6                    | 96                 |                            |                        |                    |
| Toxic pollutants  Metals and inorganics |                            |                        |                    |                            |                        |                    |
| Antimony                                | ND                         | ND                     |                    | 17                         | ND                     | 100                |
| Arsenic                                 | ND                         | ND                     |                    | ND                         | ND                     |                    |
| Cadmium                                 | <b>2</b> 0                 | 0.9                    | 96                 | 8.0                        | 2.0                    | 75                 |
| Chromium                                | 0.06                       | 0.006                  | 90                 | ND                         | ND                     |                    |
| Copper                                  | 0.020                      | ND                     | 100                | 3.0                        | 0.20                   | 93                 |
| Lead                                    | 30                         | 0.5                    | 98                 | 40                         | 3.0                    | 93                 |
| Nickel                                  | ND                         | ND                     |                    | 30                         | 1.0                    | 97                 |
| Selenium                                | 3.8                        | 0.084                  | 98                 | 0.72                       | ND                     | <b>10</b> 0        |
| Zinc                                    | 0.70                       | 0.070                  | 90                 | 400                        | 5.0                    | 99                 |
| Nontoxic inorganics                     |                            |                        |                    |                            |                        |                    |
| Aluminum                                | 1.0                        | 0.20                   | 80                 | 200                        | 10                     | <b>9</b> 5         |
| Cobalt                                  |                            |                        |                    | 30                         | 0.3                    | 99                 |
| Iron                                    | 0.30                       | ND                     | 100                | 20                         | 2.0                    | 90                 |
| Manganese                               | 0.008                      | ND                     | 100                | 5.0                        | 0.3                    | 94                 |
| Titanium                                | 20                         | 0.4                    | 98                 | 100                        | 10                     | 90                 |

Note: Blanks indicate insufficient data available.

## II.8.10.4 Pollutant Removability [1]

Treatment technologies used in the porcelain enameling industry are generally chosen to remove the major wastewater components: suspended solids and toxic metals. Table 8.10-10 presents a summary of the treatment and disposal techniques used by this industry. Usually more than one treatment method is used at each facility.

Some type of settling technique is used in a large portion of the plants, with a settling tank the most common technique. pH adjustment by chemical addition is another common treatment that is used to neutralize the alkaline or acid wastes. Coagulants are sometimes used to aid settling. Once the settling nears

Treatment involves sedimentation.

TABLE 8.10-10. TREATMENT METHODS IN CURRENT USE IN THE PORCELAIN ENAMELING INDUSTRY [1]

|                           | Ni<br>the                       | umber of | plants us:<br>by subcate | ing    | Total                                          |
|---------------------------|---------------------------------|----------|--------------------------|--------|------------------------------------------------|
| Treatment method          | Steel                           | Iron     | Aluminum                 | Copper | _plants                                        |
| Skimming                  | 2                               |          |                          |        | 2                                              |
| Settling tank             | 35                              | 8        | 6                        | 1      | 50                                             |
| Clarifier                 | 16                              | · ·      | 6<br>2                   | -      | 18                                             |
| Sedimentation lagoon      | īĭ                              |          | _                        |        | īĭ                                             |
| Tube/plate settler        | 3                               |          |                          |        | 3                                              |
| Equalization              | 24                              | 2        | 2                        |        | 28                                             |
| pH adjustment-lime        | 15                              | 2<br>1   | 2 2                      |        | 18                                             |
| pH adjustment-caustic     | 7                               | -        | -                        |        | 7                                              |
| pH adjustment-acid        | 6                               |          | 1                        |        | 7                                              |
| pH adjustment-carbonate   | ì                               |          | 1<br>1                   |        | 2                                              |
| pH adjustment-final       | 6                               |          | -                        |        | 6                                              |
| Coagulant-polyelectrolyte | 10                              | 1        | 1                        |        | 12                                             |
| Coagulant-inorganic       | 3                               | ī        | -                        |        | 4                                              |
| Chromium reduction        | 2                               | -        | 1                        |        | 3                                              |
| Emulsion breaking         | ī                               |          | -                        |        | ì                                              |
| Chlorination              | ī                               |          |                          |        | ī                                              |
| Ultrafiltration           | 1<br>2<br>5<br>5<br>3<br>2<br>1 |          |                          |        | 2                                              |
| Pressure filtration       | 5                               |          |                          |        | 5                                              |
| Vacuum filtration         | 5                               |          |                          |        | 5                                              |
| Filtration                | 3                               |          |                          |        | 3                                              |
| Aeration                  | 2                               |          |                          |        | 2                                              |
| Trickling filter          | ์<br>โ                          | 1        |                          |        | 2                                              |
| Centrifugation sludge     | ī                               | -        |                          |        | ī                                              |
| Material recovery         | ī                               | 2        |                          |        | 1<br>2<br>5<br>3<br>2<br>2<br>1<br>3<br>1<br>1 |
| Air pollution control     | ī                               | -        |                          |        | ĭ                                              |
| Process reuse-oil         | ī                               |          |                          |        | î                                              |
| Contract removal-oil      | 7                               |          |                          |        | 7                                              |
| Contract removal-sludge   | 8                               |          | 1                        |        | ý<br>9                                         |
| Landfill-oil              | 2                               |          | 1                        |        | 3                                              |
| Landfill-sludge           | 17                              | 2        | -                        |        | 19                                             |
| Sludge drying bed         | 3                               | 2<br>1   |                          |        | 4                                              |
| Sludge thickening         | ì                               | 1        |                          |        | ì                                              |

completion, filtration techniques are used to concentrate the sludge, which is then landfilled or contractor hauled. Oils may be treated in a similar manner. Table 8.10-11 presents data collection portfolio (dcp) effluent characterization data from the plants within this industry. Tables 8.10-8 and 8.10-9 in the plant specific section give raw wastewater concentrations, treated effluent concentrations, and percent removal of the pollutants.

Brief descriptions of the common treatment practices and the water reuse and recycle techniques follow.

### Equalization/Neutralization

Raw waste waters are commonly collected in equalization basins to even out the flow and the pollutant contaminant load. This permits uniform and controlled operation of subsequent treatment facilities.

TABLE 8.10-11. EFFLUENT CHARACTERIZATION FOR THE PORCELAIN ENAMELING INDUSTRYA [1]

|                           | Number  |                          |         |                   | Number  |         |                   |                   |                   | Number  |              |                   |                   |
|---------------------------|---------|--------------------------|---------|-------------------|---------|---------|-------------------|-------------------|-------------------|---------|--------------|-------------------|-------------------|
|                           | of      | L                        | Mediap, | Average,          | of      |         | _                 | Median,           | Average,          | of      |              | Mediap,           | Average           |
| Pollutant                 | samples | Range, mg/L <sup>b</sup> | mg/L    | mg/L <sup>D</sup> | samples | Range,  | mg/L <sup>D</sup> | mg/L <sup>D</sup> | mg/L <sup>D</sup> | samples | Range, mg/Lb | mg/L <sup>D</sup> | mg/L <sup>D</sup> |
|                           |         | P/E on s                 | teel    |                   |         | P       | /E on i           | ron               |                   |         | P/E on al    | uminum            |                   |
| Conventional parameters   |         |                          |         |                   |         |         |                   |                   |                   |         |              |                   |                   |
| TSS                       | 37      | 1 - 1,400                | 96      | 390               | 15      |         | 1,100             | 40                | 210               | 5       | 20 - 390     | 230               | 200               |
| Total phosphorus          | 15      | 0.13 - 2,100             | 7.3     | 150               | 2       | 0.12 -  |                   |                   | 2.8               | 3       | 9.2 - 16     | 14                | 13                |
| Oil and grease            | 26      | 0.4 - 250                | 7.1     | 24                | 13      | 0.4 -   |                   | 5.2               | 17                | 4       | 1 - 44       | 7.5               | 15                |
| pН                        | 10      | 4.9 - 8.7                | 7.0     | 7.2               | 6       | 4.8 -   | 7.0               | 7.0               | 6.4               | 0       |              |                   |                   |
| Toxic pollutants          |         |                          |         |                   |         |         |                   |                   |                   |         |              |                   |                   |
| Metals and inorganics     |         |                          |         |                   |         |         |                   |                   |                   | _       |              |                   |                   |
| <b>A</b> nti <b>m</b> ony | 3       | 0.001 - 0.014            | 0.001   | 0.005             | 0       |         |                   |                   |                   | 0       |              |                   |                   |
| Arsenic                   | 4       | 0.001 - 0.15             | 0.024   | 0.050             | 0       |         |                   |                   |                   | 0       |              |                   |                   |
| Cadmium                   | 17      | 0 - 0.75                 | 0.008   | 0.060             | 0       |         |                   |                   |                   | 2       | 0.13 - 0.53  |                   | 0.33              |
| Chromium                  | 31      | 0.01 - 124               | 0.15    | 4.4               | 8       | 0.01 -  | 124               | 0.015             | 16                | 4       | 0.01 - 1.45  | 0.37              | 0.60              |
| Chromium, hexavalent      | 5       | 0 - 0.044                | 0.005   | 0.017             | 0       |         |                   |                   |                   | 0       |              |                   |                   |
| Copper                    | 27      | 0 - 6.7                  | 0.09    | 0.40              | 7       | 0.03 -  | 0.10              | 0.08              | 1.02              | 4       | 0.01 - 0.10  | 0.06              | 0.060             |
| Lead                      | 29      | 0 - 18                   | 0.20    | 1.2               | 8       | 0.06 -  | 0.48              | 0.25              | 0.24              | 4       | 0.13 - 3.6   | 0.36              | 1.4               |
| Nickel                    | 39      | 0.02 - 900               | 0.50    | 26                | 9       | 0.12 -  | 22                | 1.6               | 4.1               | 4       | 0.01 - 0.36  | 0.13              | 0.16              |
| Selenium                  | 2       | 0.001 - 0.020            |         |                   |         |         |                   |                   |                   |         |              |                   |                   |
| Zinc                      | 38      | 0 - 6.9                  | 0.20    | 0.94              | 7       | 0.15 -  | 2.3               | 0.20              | 0.50              | 2       | 0.43 - 0.77  |                   | 0.60              |
| Nontoxic inorganics       |         |                          |         |                   |         |         |                   |                   |                   |         |              |                   |                   |
| Iron                      | 32      | 0.17 - 200               | 9.3     | 23                | 8       | 0.17 -  | 150               | 1.7               | 37                | 0       |              |                   |                   |
|                           |         | P/E on co                | pper    |                   |         | P/      | E indus           | try               |                   |         |              |                   |                   |
|                           |         |                          |         |                   |         |         |                   |                   |                   |         |              |                   |                   |
| Conventional parameters   |         |                          |         |                   |         |         |                   |                   |                   |         |              |                   |                   |
| TSS                       | 0       |                          |         |                   | 49      |         | 1,400             | 124               | 370               |         |              |                   |                   |
| Total phosphorus          | 1       |                          | 0.125   | 0.125             | 20      | 0.12 -  | 2,100             | 8.3               | 110               |         |              |                   |                   |
| Oil and grease            | 0       |                          |         |                   | 36      | 0.4 -   | 250               | 8.0               | 22                |         |              |                   |                   |
| pH                        | 0       |                          |         |                   | 16      | 4.8 -   | 8.7               | 7.0               | 6.9               |         |              |                   |                   |
| Toxic pollutants          |         |                          |         |                   |         |         |                   |                   |                   |         |              |                   |                   |
| Metals and inorganics     |         |                          |         |                   |         |         |                   |                   |                   |         |              |                   |                   |
| Antimony                  | 0       |                          |         |                   | 3       | 0.001 - |                   | 0.001             | 0.005             |         |              |                   |                   |
| Arsenic                   | 0       |                          |         |                   | 4       | 0.001 - |                   | 0                 | 0.050             |         |              |                   |                   |
| Cadmium                   | 1       |                          | 0.010   | 0.010             | 19      | 0 -     | 0.75              | 0.009             | 0.09              |         |              |                   |                   |
| Chromium                  | 0       |                          |         |                   | 36      | 0.01 -  | 124               | 0.15              | 3.9               |         |              |                   |                   |
| Chromium, hexavalent      | 0       |                          |         |                   | 5       | 0 -     | 0.044             | 0.005             | 0.017             |         |              |                   |                   |
| Copper                    | 1       |                          | 0.010   | 0.010             | 31      | 0 -     | 6.7               | 0.08              |                   |         |              |                   |                   |
| Lead                      | ī       |                          | 0.010   | 0.010             | 34      | 0 -     | 18.4              | 0.17              | 1.1               |         |              |                   |                   |
| Nickel                    | ī       |                          | 1.0     | 1.0               | 45      | 0.01 -  | 900               | 0.71              | 22.6              |         |              |                   |                   |
| Selenium                  | -       |                          |         | 2.0               | 2       | 0.001 - |                   |                   | 0.01              |         |              |                   |                   |
| Zinc                      | 1       |                          | 0.010   | 0.010             | 41      |         | 6.9               | 0.20              | 0.91              |         |              |                   |                   |
| Nontoxic inorganics       |         |                          |         |                   |         |         |                   |                   |                   |         |              |                   |                   |
| Iron                      | 1       |                          | 14      | 14                | 33      | 0.013 - | 200               | 6.5               | 23                |         |              |                   |                   |

Note: Blanks indicate insufficient data available.

<sup>&</sup>lt;sup>a</sup>Based on historical data from the plant dcp responses.

bExcept pH values, given in pH units.

Wastes in this industry generally require pH adjustment which can be performed in mixed equalization basins or in separate neutralization reactor basins following equalization.

### Sedimentation/Settling

Sedimentation by means of clarification or simple settling is the most common technique for removal of precipitates. It is often preceded by chemical precipitation, which converts dissolved pollutants to solid form, and by coagulation, which enhances settling by coagulating suspended solids into larger, faster settling particles. Sedimentation preceded by chemical addition is often referred to as clarification. Simple sedimentation normally requires a long retention time to adequately reduce the solids content. When clarification is used retention times are reduced and removal efficiency is increased. A properly operated sedimentation system is capable of efficient removal of suspended solids, metal hydroxides, and other wastewater impurities.

### Chemical Addition/Precipitation

Chemical precipitation is used in porcelain enameling to precipitate dissolved metals and phosphates. Chemical precipitation can be utilized to permit removal of metal ions such as iron, lead, tin, copper, zinc, cadmium, aluminum, mercury, manganese, cobalt, antimony, arsenic, beryllium, molybdenum, and trivalent chromium. Removal efficiency can approach 100% for the reduction of heavy metal ions. Porcelain enameling plants commonly use lime, caustic, and carbonate for chemical precipitation and pH adjustment.

#### Granular Bed Filtration

Granular bed filters are used in procelain enameling wastewater treatment to remove residual solids from clarifier effluent. Filtration polishes the effluent and reduces suspended solids and insoluable precipitated metals to very low levels. Fine sand and coal are media commonly utilized in granular bed filtration. The filter is backwashed after becoming loaded with solids, and the backwash is returned to the treatment plant influent for removal of solids in the clarification step.

#### Sludge Concentration and Dewatering

Sludges from clarifiers can be thickened in gravity thickeners or mechanically thickened by centrifuges. Thickened sludges can be further dewatered on one of a number of dewatering operations including vacuum filters, pressure filters, and belt filter presses. Dewatered sludges are disposed generally to landfills which must be properly constructed to conform with provisions of the Resource Conservation and Recovery Act and regulations governing disposal of hazardous wastes.

### In-Plant Technology

Many facilities in this industry use in-plant technology to reduce or eliminate the waste load requiring end-of-pipe treatment and thereby improve the quality of the effluent discharge and reduce treatment costs. In-plant technology involves water reuse, process material conservation, reclamation of waste enamel, process modifications, material substitutions, improved rinse techniques, and good housekeeping practices.

Water reuse is practiced at several plants in this industry. Water that may be reused for such purposes as rinse water, makeup water, and cleanup water includes air conditioning water, acid treatment rinse water, and noncontact cooling water. Reuse of acid rinse water in alkaline rinses has been demonstrated at many electroplating plants.

Process material conservation is practiced by the recovery, reuse, or purification of the materials used in the processes. In the nickel deposition process the nickel solution is filtered to reduce its iron content, giving a longer life to the solution. Because the bath is dumped less often, the pollutant load is reduced.

The use of dry spray booths can also reduce the wastewater volume from the plant as well as increasing excess enamel recovery and reuse. Overspray is captured on filter screens and then swept up and reused in the enamel slip. Several plants use this and other, similar processes to recover the enamel raw material.

Process modifications, material substitutions, improve rinsing techniques, and good housekeeping procedures may also significantly reduce the amount and loading of the wastewater released.

#### II.8.10.5 References

- Development Document for Effluent Limitations Guidelines and Standards for the Porcelain Enameling Point Source Category. EPA-440/1-79/072a, U.S. Environmental Protection Agency, Washington, D.C., August 1979.
- NRDC Consent Decree Industry Summary Porcelain Enameling Industry.

#### II.9.2 EXPLOSIVES MANUFACTURE

#### II.9.2.1 Industry Description [1]

### II.9.2.1.1 General Description

The Explosives Manufacture point source category is covered by Standard Industrial Classification (SIC) Code 2892. This category includes the following operations:

- (1) Manufacturing operations that produce
  - (a) explosives
  - (b) blasting agents
  - (c) solid propellants
  - (d) pyrotechnics
  - (e) initiating explosive compounds.
- (2) Packaging or assembling operations in which the products listed above are converted into end-use products. These operations include the loading, assembling, and packing of ammunition and military ordnance.
- (3) Operations used to demilitarize or dispose of obsolete, offgrade, contaminated, or unsafe explosives and propellants.

The Explosives Manufacturing Industry may generally be divided into the commercial (private) sector and the military sector. On a production basis the military sector, consisting of 24 plants, has operations that are for the most part distinctly different from those used by the commercial sector, which consists of 280 plants. Operations common to both apply in only a few areas.

The major products manufactured by the commercial sector of the industry are blasting agents and dynamites. Other products manufactured in limited quantities include double-base propellants, nitroglycerin, nitroglycerin/ethylene glycol dinitrate mixtures, special grained ammonium nitrate for use in dynamites, pyrotechnics, and initiating explosives.

Production processes consist primarily of mixing, blending, and loading, assembling, and packing (LAP) operations.

The military sector manufactures explosives and propellants at separate installations. The products are then shipped to munitions loading plants for assembly into finished items. Munitions loading plants are designated LAP operations.

Most military explosives manufacturing facilities are government owned, contractor operated. Of the 24 plants, only 10 Army Ammunition Plants (AAP) were scheduled to operate in 1978, and

the level of production ranges from 10% to 70% of total plant capacity. The common explosives produced by the military include trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), cyclotetramethylenetetranitramine (HMX), nitrocelluose, and nitroglycerin. Nitroguanidine is often used by the military but is normally purchased from commercial sources. Pyrotechnics supplemental to those manufactured by the military are also purchased from commercial sources.

Water usage is minimal in the explosives industry, the major uses being equipment and facility cleanup and safety. Reuse is limited, however, due to the possibility of introduction of foreign materials that could sensitize an explosion in the processing equipment.

In 1977, over 1,686 Gg (3.7 billion pounds) of industrial explosives, blasting agents, and unprocessed explosive-grade ammonium nitrate were sold for consumption in the United States. Approximately 85% of this total was processed blasting agents and unprocessed ammonium nitrate.

Table 9.2.1 summarizes information pertinent to the commercial sector of the explosives manufacture point source category in terms of the number of subcategories and the number and type of dischargers in the industry [2]. Only the commercial sector of the Explosives Manufacturing Industry is discussed herein, because the military sector operates a limited number of plants, produces very few products in the primary subcategory for consideration, and products are manufactured for use within the military.

#### TABLE 9.2-1. INDUSTRY SUMMARY [2]

Industry: Explosives Manufacture
Total Number of Subcategories: 5

Number of Subcategories Studied by Effluent Guidelines Division: 1

Number of Dischargers in Industry:

• Direct: 180 • Indirect: 0 • Zero: 100

Best practicable control technology parameters are not currently available for the five subcategories as defined in Section II.9.2.1.2. BPT regulations previously published in the Federal Register are [3]:

| Manufacture of explosives:                    | l-day<br>maximum            | 30-day<br>average     |
|-----------------------------------------------|-----------------------------|-----------------------|
| COD, kg/Mg<br>BODs, kg/Mg<br>TSS, kg/Mg<br>pH | 7.77<br>0.72<br>0.25<br>6-9 | 2.50<br>0.24<br>0.084 |
| LAP operations:                               |                             |                       |
| Oil and grease, kg/Mg<br>TSS, kg/Mg<br>pH     | 0.11<br>0.26<br>6-9         | 0.035<br>0.088        |

# II.9.2.1.2 Subcategory Descriptions [1]

Five subcategories, based on the variety of production processes, product types, and wastewater characteristics, have been selected for the explosives industry. Factors such as plant location, size, age, solid-waste generation, air pollution control technology, and energy consumption do not have a significant impact on waste characteristics; they therefore are not included in the subcategorization criteria. The five subcategories are:

Subcategory 1 - Manufacture of Explosives
Subcategory 2 - Manufacture of Propellants
Subcategory 3 - LAP of Explosives
Subcategory 4 - Manufacture and LAP of Initiating C

Subcategory 4 - Manufacture and LAP of Initiating Compounds Subcategory 5 - Formulation and Packaging of Blasting Agents, Dynamite, and Pyrotechnics

The annual production estimate for the Explosives Manufacture Industry is presented in Table 9.2-2. Also presented is the precentage of total industry production contributed by each subcategory in 1977. As indicated by the table, 95.3% of the total industry output is represented by Subcategory 5, Formulation and Packing of Blasting Agents, Dynamite and Pyrotechnics. Due to the dominance of this subcategory in the industry, this report primarily addresses the Formulation and Packaging of Blasting Agents, Dynamite, and Pyrotechnics in terms of wastewater characteristics. Since this subcategory does not include military explosives products, only data regarding the commercial sector are reported.

Subcategory 1 - Manufacture of Explosives. The manufacture of explosives includes operations that produce explosive compounds by the mixed acid nitration of organic material. Raw materials used in this process include nitric acid or ammonium nitrate as the nitrate source and either sulfuric or acetic acid as a dehydrating agent. Examples of the organic molecules used are glycerin, ethylene glycol, toluene, resorcinol, hexamine, and

TABLE 9.2-2. ESTIMATE OF ANNUAL INDUSTRY PRODUCTION BY SUBCATEGORY [1]

| Subcategory | Subcategory title                                                        | Production <sup>b</sup> ,<br>Gg | Percent of total industry output |
|-------------|--------------------------------------------------------------------------|---------------------------------|----------------------------------|
| 1           | Manufacture of Explosives                                                | 23                              | 2                                |
| 2           | Manufacture of Propellants                                               | 10                              | 1                                |
| 3           | Load, Assemble, and Pack (LAP) Explosives                                | 16                              | 1.4                              |
| 4           | Manufacture and LAP of Ini-<br>titiating Compounds                       | 4                               | 0.3                              |
| 5           | Formulation and Packaging of Blasting Agents, Dyanmite, and Pyrotechnics | 1,090                           | 95.3                             |
|             |                                                                          | 1,143                           | 100.0                            |

a Based on 1977 industry production.

cellulose. Upon nitration, these organic molecules form, in the order presented above, the following products: trinitroglycerin (TNG) and dinitroglycerin (DNG), ethylene glycol dinitrate (EGDN), trinitrotoluene (TNT), and dinitrotoluene (DNT), trinitroresorcinol (TNR), cyclotrimethylenetrinitramine (RDX), and nitrocellulose (NC). Nitration may be accomplished on either a batch or a continuous basis. Initiating compounds, dynamite, and black powder are not included in the subcategory due to differences in process and wastewater characteristics.

Production in this subcategory creates relatively large volumes of wastewater from neutralization and washing of the final product. Wastewaters are generally low in suspended solids, contain soluble nitrate and sulfate salts, and have organic concentrations that are proportional to the solubility of the products and byproducts.

Subcategory 2 - Manufacture of Propellants. This subcategory includes the manufacture of nitrocellulose-based propellants and gas generators. Propellants are similar to explosive products in that they are mixtures of oxidant and fuel held together in a polymeric matrix. They differ in the rate at which the reaction proceeds. Explosives detonate in a chain reaction that occurs extremely rapidly while propellants simply burn, evolving large volumes of gas in a definite and controllable manner. The most

b Production excludes explosive-grade ammonium nitrate.

commonly produced commercial propellants are called smokeless powders and are designated as either single-base, double-base, or triple-base propellants. Single-base propellants are basically nitrocellulose, double-base propellants are chiefly nitrocellulose, and nitroglycerin, and triple-base propellants primarily contain nitrocellulose, nitroglycerin, and nitroguanidine. These propellants find principal use as the propelling charge in munitions, but they are also used in gas generators and rocket propulsion. Another type of propellant is the composite propellant, an intimate mixture of a fuel, usually aluminum powder, and an oxidizer, usually ammonium perchlorate, held together by a polymeric binder. Composite propellants are used principally for rocket propulsion.

Relatively large volumes of wastewater are generated as the result of water used to transport propellant between unit operations, to remove solvents from the final product, to cool and lubricate in the cutting and machining of the final product, and to clean and wash down process equipment. The presence of organic solvents often makes organic loading higher than in Subcategory 1, and the suspended solids present are generally propellant fines from the cutting and machining operations.

Subcategory 3 - LAP of Explosives. This subcategory includes facilities that obtain the necessary explosives and propellants from outside sources, then mix and pack these materials into a final product. Included in the commercial sector of this subcategory are the loading and assembly of small- to intermediate-caliber ammunition, and the manufacturers of explosive devices. The military sector of this subcategory produces large-caliber shells, bombs, grenades, and other munitions that are filled with blends of TNT and other ingredients. Propellants and small explosive devices are usually loaded dry, while explosives are normally melted down in kettles and molded as liquids. The small volumes of wastewater produced reflect the characteristics of the materials being handled and generally result from plant cleanup operations.

Subcategory 4 - Manufacture and LAP of Initiating Compounds. This subcategory includes plants that manufacture "sensitive" explosive compounds, such as trinitroresorcinol, nitromannite, isosorbide dinitrate, tetryl, tetracene, lead azide, lead styphnate, and mercury fulminate. Initiating compounds, which are produced by the mixed acid nitration of organics, are extremely sensitive materials that can be made to explode by the application of heat or a slight shock. They are very dangerous to handle and are used in comparatively small quantities to initiate the detonation of larger quantities of less sensitive explosives. Plant facilities often include a LAP operation on site to reduce the bulk shipping of these hazardous compounds. Final products include primers, detonators, detonating cords, percussion caps, and electric blasting caps. The LAP operation differs from Subcategory 3 by the small amounts of explosives used.

Wastewater from this subcategory is generated by neutralization and purification of the compounds, safety practices, and plant and equipment cleanup. Wastewater volume is generally higher per unit production than in other subcategories due to safety procedures. Pollutant loads result from the production processes and from chemical treatment of catch basins and sumps to desensitize released initiating compounds.

Subcategory 5 - Formulation and Packaging of Blasting Agents, Dynamite, and Pyrotechnics. Subcategory 5 includes operations that manufacture blasting agents, dynamite, black powder, and pyrotechnics. Processes that produce pyrophoric materials, which ignite spontaneously if not covered with water, are excluded because of the liberal use of water necessary to prevent spontaneous ignition.

Blasting agents--Blasting agents include ANFO and slurries (water gels). ANFO (ammonium nitrate/fuel oil) blasting agent compositions, also known as nitrocarbonitrates, are easily prepared and inexpensive, and they dominate the explosives market today. They are generally used in mining operations, with the major portion produced being used for bulk loading into dry bore holes. If water is present, the ANFO compositions may be placed in water-resistant containers and used.

The raw materials used to manufacture ANFO mixtures include fuel oil, explosive-grade ammonium nitrate (AN), aluminum granules, ferrophosphorus, and dinitrotoluene. The AN used is normally produced under special prilling conditions that give the prills high porosity for better absorption of the oil. Small amounts of anticaking agents are also used.

Fuel oil is received in bulk and is stored in large tanks. When needed it is pumped to the use site. The AN is received in bulk railroad hopper cars and may be transferred to a storage area or used from the hopper car. The remaining ingredients are normally received in bags or steel drums.

ANFO may be produced by dry mechanical mixing, injection of the fuel oil into the AN as it is transferred to the packaging area, or injection of the fuel oil into the AN as it is transferred into the bore hole at the use site. Packaging, when used, consists of cylindrical plastic tubes, plastic-lined bags, or metal cannisters.

Approximately 75 plants produce ANFO. Their wastewater is limited to periodic cleanup of the plant area and rainfall runoff from the unloading areas. Dry cleanup is used when possible, but AN is very hydroscopic and tends to become pasty and hard to clean in humid conditions. Heated floors are sometimes used to reduce hydroscopic effects and thereby aid in the cleanup process.

Slurries (water gels) are water-resistant, high energy blasting agents used for wet bore holes and applications requiring greater energy than that supplied by ANFO. Slurry products usually require a high explosive primer for detonation. Slurry formulation is an art and can produce a desired energy release as well as the desired explosive properties. Sensitivity relies on the type and characteristics of the raw materials used and the method of mixing. Water resistance and gel consistency are achieved by addition of cross-linking soluble gums. There are approximately 21 slurry manufacturing plants in the United States.

Raw materials are received in the same way as at ANFO plants, with sodium nitrate, aluminum granules, and organic liquid extenders also being received in bulk.

Slurries may be prepared on site or at the plant. For packaged slurries the entire formulation is prepared by premixing the liquid ingredients into a paste, then adding the solids and packaging the product. On-site production may be carried out in two ways. In one method the slurry is prepared as above but the gum crosslink agent is not added until the slurry is pumped into the bore hole. In the second method the paste is prepared, all the dry ingredients are added at the use site, and the mixture is pumped into the bore hole.

Wastewater from slurry production comes from automatic packaging machinery, periodic equipment cleanup, dust control scrubbers, and rainfall runoff.

Dynamites—Seven plants produce high explosive dynamite compositions that are used in underground mines and for blasting small-diameter bore holes. Dynamite consists of nitroglycerin or ethylene glycol dinitrate, porous filler material, and oxidizing salts such as AN. The grained AN used in dynamite is produced by controlled evaporation of high concentration AN solutions followed by crystallization in open-top agitated vessels (kettles).

Production occurs in three general steps. First, all ingredients except the nitroglycerin or ethylene glycol dinitrate are mixed in batch blenders in a building known as a dope house. The dope mixes are then transferred to the mix house where the nitroglycerin or ethylene glycol dinitrate is added in batch blenders. The mix is then sent to the packaging house and loaded into cardboard tubes by wooden tamping machines.

Plant and equipment cleanup and dust control wet scrubbers are the major sources of wastewater.

Pyrotechnics--The 45 commercial pyrotechnic plants in the United States are divided into 2 general types. The fireworks industry consists of 13 major and 25 minor plants. The flare

industry, which produces illuminating flares, distress flares, and smoke generators, consists of seven plants.

Fireworks consist primarily of black powder and metal salts, which produce the colors. The mixture is held together by a water soluble binder such as sugar or gum. The ingredients are combined in dry batches and water is added. The wet mixture is then molded and air dried. Black powder is also used for the fuse and propelling charge of the assembled device. Flares are produced similarly but may use an organic binder instead of a water soluble one. If so, an organic solvent may be necessary to clean the equipment. Fireworks production equipment is generally dry cleaned with brushes.

Ammonium Nitrate (AN). Explosive-grade ammonium nitrate plants, although they do not fall directly under this SIC code, are related to the industries of Subcategory 5 because of the extensive use of AN as a raw material in their products. Approximately 16% of all the AN produced in the United States in 1976 was used in explosives products. Ammonium nitrate is produced by several processes including the Stengel, prilling, and graining processes. The general procedure is evaporation of the water from a solution of AN by a physical process.

Wastewater from the production of AN generally is limited to plant housekeeping, air pollution control, and fugitive discharges, although some wastewater may result from the evaporation steps in the process. AN is the major pollutant in the wastewater, which allows the wastewater to be recycled, if not too contaminated, or sold as dilute fertilizer solution.

Table 9.2-3 presents a list of the common ingredients for the products described above.

### II.9.2.2 Wastewater Characterization [1]

The general nature of the wastewater sources within the explosives industry results in a wide variance of wastewater volumes. The volume of wastewater generated depends on operating methods, equipment type and condition, housekeeping practices, safety practices, product mix, and package type. Table 9.2-4 presents wastewater flowrate data for each type of production in Subcategory 5.

Wastewater does not originate from direct contact within the process with the ingredients used to produce the products; therefore, only cleanup operations normally have the potential to contribute pollutants to the wastewater stream. The materials that may possibly enter the wastewater stream include the ingredients of each type of explosive found in Table 9.2-3. Ammonium nitrate, which is used extensively in this industry, is generally found in all wastewater from Subcategory 5 facilities and contributes to the TKN, NH<sub>3</sub>-N, NO<sub>3</sub>-N, and TDS levels. Inorganic

TABLE 9.2-3. COMMON EXPLOSIVE INGREDIENTS

| Product                            | Ingredients                                                                                                                                                                                                                                                                                                     |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dynamite                           | Nitroglycerin, barium sulfate, ammonium nitrate, ammonium chloride, sodium nitrate, sodium chloride, calcium carbonate, calcium stearate, sulfur, nitrocellulose, phenolic resin or glass beads, bagasse, sawdust or wood flour, coal, cornmeal and cornstarch, inorganic salts, grain and seed hulls and flour |
| Black powder                       | Charcoal, sulfur, potassium nitrate                                                                                                                                                                                                                                                                             |
| Ammonium nitrate/fuel oil mixtures | Ammonium nitrate, ferrophosphorus, calcium silicate, dinitrotoluene, fuel oil, aluminum, coal, mineral oil                                                                                                                                                                                                      |
| Slurries (water gels)              | Ammonium nitrate, sodium nitrate, guar gum, water, crosslinking agents for gum, ethylene glycol, aluminum granules, flakes, or powders, glass microspheres, fuel oil, smokeless powder, trinitrotoluene, carbon fuel, organic amines, ferrophosphorus, silicon                                                  |
| Propellants                        | Nitrocellulose, plasticizers, density modifiers, burning rate modifiers, nitroglycerin, nitroguanidine, aluminum powder, oxidizers (e.g., ammonium perchlorate), polymeric binders                                                                                                                              |
| Pyrotechnics                       | Black powder, potassium nitrate, copper salts, barium nitrate, strontium nitrate, strontium carbonate, aluminum metal, magnesium metal, potassium chlorate, potassium perchlorate, antimony sulfide, red phosphorus, ammonium perchlorate, boron, manganese oxide, lead oxide, copper oxide, sugar, linseed oil |
| Initiating compounds               | Pentaerythritol tetranitrate (PETN),2,4,6-trinitroresorcinol (styphnic acid), nitromannite (HNM), isosorbide dinitrate, trinitrophenylmethylnitramine (tetryl), tetracene, lead azide, lead styphnate, mercury fulminate                                                                                        |

TABLE 9.2-4. SUMMARY OF WASTEWATER FLOWRATE DATA FOR SUBCATEGORY 5 [1]

|              |             |                | Wastewa      | ter volume                   |           |              |
|--------------|-------------|----------------|--------------|------------------------------|-----------|--------------|
|              |             | $m^3/d$ (gal/d | 1)           | m <sup>3</sup> /Mg of        | product ( | gal/lb)      |
| Product type | Averagea    | Minimum        | Maximum      | <b>Av</b> erage <sup>a</sup> | Minimum   | Maximum      |
| ANFO         | 0.3 (79.3)  | 0              | 3.8 (1,004)  | 0.009 (0.001)                | 0         | 0.04 (0.005) |
| Slurry       | 5.2 (1,374) | 0              | 31 (8,190)   | 0.20 (0.024)                 | 0         | 0.81 (0.097) |
| Dynamite     | 72 (19,022) | 0              | 348 (91,942) | 0.11 (0.013)                 | 0         | 2.8 (0.336)  |
| Pyrotechnics | _b          | 0              | 0.76 (201)   | _b                           | 0         | 0.13 (0.016) |

Average is based on plants reporting data only.

baverage value is not presented since only a fraction of pyrotechnics plants generate wastewater.

salts and metals are used in most Subcategory 5 product types and contribute to TDS, TSS, and nitrate levels, and to heavy metal concentrations. Small concentrations of organic materials may also be found in some industry wastewaters.

Tables 9.2-5 and 9.2-6 summarize the available verification data on toxic pollutants and on conventional and classical pollutants, respectively, for the Explosives Manufacture Industry. Since most plants have several production processes on site, the data have been collated into these processes representing wastewater production processes rather than an average plant.

# II.9.2.3 Plant Specific Description [1]

Based on the products manufactured and the quantity of information available, the four plants described below were selected for presentation of plant specific data. Final treated effluent data are not currently available for any of these sampled plants.

- Plant 03 Plant 03 produces ANFO products, slurry products, and explosive-grade ammonium nitrate. Raw wastewater from the plant is sent to an evaporative/percolative pond where the water is lagooned. The lagoon has no effluent reported.
- Plant 27 Plant 27 produces only ANFO products. Raw wastewater is collected in a clay-lined pond, then periodically applied to vegetation-covered land adjacent to the plant.
- Plant 30 Plant 30 produces dynamite, ANFO products, and NCN products. Treatment consists of an evaporative/percolative pond that has no reported effluent.
- Plant 63 Plant 63 produces solely pyrotechnic products. Very little wastewater is produced. An evaporative/percolative pond is used to hold the wastewater produced by the process. No effluent flow was reported.
- Table 9.2-7 presents toxic and conventional pollutant concentration data for the selected plants. Data are from the verification sampling phase except as noted. Each plant is divided into product lines and is usually presented as an entire plant. Treated effluent data were not available. Pollutant loading data for each plant subdivision are presented in Table 9.2-8.

### II.9.2.4 Pollutant Removability [1]

Treatment practices are limited in number in the explosives industry due to the small volumes of wastewater produced and the typical characteristics of the wastewaters from the plants. Effluent data are very limited, since most plants do not recognize any effluent discharge from plant property. No plant specific treatment data are available at this time.

TABLE 9.2-5. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTEWATER FROM THE FORMULATION AND PACKAGING OF BLASTING AGENTS, DYNAMITE, AND PYROTECHNICS [1]

| 470<br>14<br>30<br>100<br>730 | 47<br>1<br>10<br>73             | 0<br>4<br>5                               | Max  ND 940 14 110 100 ND 1,400                     |                        | mber<br>times<br>De-<br>tected<br>1<br>1<br>2<br>2 | 350<br>10<br>1,300<br>50    | 350<br>10<br>1,300<br>50                | 350<br>10<br>2,600<br>80<br>980    |                                                | mber times De- tected                   | 10<br>10<br>10<br>1,400                 | pg/L Med  10 10 10 20                      | 10<br>10                                   |
|-------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------------|------------------------|----------------------------------------------------|-----------------------------|-----------------------------------------|------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------|
| 470<br>14<br>30<br>100<br>730 | ру<br>Ме<br>47<br>1<br>10<br>73 | /L<br>d<br>0<br>4<br>5<br>0<br>0          | Max<br>ND<br>940<br>14<br>110<br>100<br>ND<br>1,400 | Ana-<br>lyzed  1 1 2 2 | De-<br>tected                                      | 350<br>10<br>1,300<br>50    | yg/L<br>Med<br>350<br>10<br>1,300<br>50 | 350<br>10<br>2,600<br>80           | Ana-<br>lyzed                                  | De-<br>tected                           | 10<br>10<br>10                          | ug/L<br>Med<br>10<br>10                    | 10<br>10                                   |
| 470<br>14<br>30<br>100<br>730 | 47<br>1<br>10<br>73             | d 0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ND<br>940<br>14<br>110<br>100<br>ND<br>1,400        | 1 1 2 2 2 2 2          | tected  1 1 2 2 2                                  | 350<br>10<br>1,300<br>50    | 350<br>10<br>1,300<br>50                | 350<br>10<br>2,600<br>80           | lyzed  1 1                                     | tected  1 1                             | 10<br>10                                | 10<br>10<br>10                             | 10<br>10                                   |
| 470<br>14<br>30<br>100<br>730 | 47<br>1<br>10<br>73             | 5<br>5<br>00                              | ND<br>940<br>14<br>110<br>100<br>ND<br>1,400        | 1 1 2 2 2              | 1<br>1<br>2<br>2<br>2                              | 350<br>10<br>1,300<br>50    | 350<br>10<br>1,300<br>50                | 350<br>10<br>2,600<br>80           | 1 1                                            | 1 1                                     | 10<br>10                                | 10<br>10                                   | 1,400                                      |
| 14<br>30<br>100<br>730        | 10<br>73                        | 4<br>5<br>00<br>10                        | 940<br>14<br>110<br>100<br>ND<br>1,400              | 2 2                    | 2 2                                                | 10<br>1,300<br>50           | 10<br>1,300<br>50                       | 10<br>2,600<br>80                  | 1                                              | 1                                       | 1,400                                   | 1,400                                      | 1,400                                      |
| 14<br>30<br>100<br>730        | 10<br>73                        | 4<br>5<br>00<br>10                        | 940<br>14<br>110<br>100<br>ND<br>1,400              | 2 2                    | 2 2                                                | 10<br>1,300<br>50           | 10<br>1,300<br>50                       | 10<br>2,600<br>80                  | 1                                              | 1                                       | 1,400                                   | 1,400                                      | 1,400                                      |
| 14<br>30<br>100<br>730        | 10<br>73                        | 4<br>5<br>00<br>10                        | 14<br>110<br>100<br>ND<br>1,400                     | 2 2 2                  | 2 2 2                                              | 1,300<br>50                 | 1,300<br>50                             | 2, <b>6</b> 00<br>80               | 1                                              | 1                                       | 1,400                                   | 1,400                                      | 1,400                                      |
| 30<br>100<br>730              | 10<br>73                        | 5<br>00<br>10                             | 110<br>100<br>ND<br>1,400                           | 2                      | 2                                                  | 50                          | 50                                      | 80                                 | 1                                              | 1                                       | 1,400                                   | 1,400                                      | 1,400                                      |
| 30<br>100<br>730              | 10<br>73                        | 00                                        | 110<br>100<br>ND<br>1,400                           | 2                      | 2                                                  | 50                          | 50                                      |                                    | 1                                              | 1                                       | 1,400                                   | 1,400                                      | 1,400                                      |
| 100<br>730                    | 10<br>73                        | 00                                        | 100<br>ND<br>1,400                                  | 2                      |                                                    | 510                         | 510                                     | 980                                |                                                |                                         |                                         |                                            |                                            |
| 730                           | 73                              | 10                                        | NTD<br>1,400                                        |                        |                                                    | 510                         | 510                                     | 980                                |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           | 1,400                                               |                        |                                                    | 510                         | 510                                     | 980                                |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     |                        |                                                    |                             |                                         |                                    |                                                |                                         |                                         |                                            |                                            |
| 68                            | €                               | 58                                        | 70                                                  | 1                      |                                                    |                             |                                         |                                    | 1                                              | 1                                       | 20                                      | 20                                         | 20                                         |
| 68                            | €                               | 68                                        | 70                                                  | 1                      |                                                    |                             |                                         |                                    | 1                                              | 1                                       | 20                                      | 20                                         | 20                                         |
| 68                            | €                               | 8                                         | 70                                                  | 1                      |                                                    |                             |                                         |                                    | 1                                              | 1                                       | 20                                      | 20                                         | 20                                         |
| 68                            | •                               | 8                                         | 70                                                  | 1                      |                                                    |                             |                                         |                                    | 1                                              | 1                                       | 20                                      | 20                                         | 20                                         |
|                               |                                 |                                           |                                                     | 1                      |                                                    |                             |                                         |                                    |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     | 1                      |                                                    |                             |                                         |                                    |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     |                        | 0                                                  |                             |                                         | ND                                 |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     |                        |                                                    |                             |                                         |                                    |                                                |                                         |                                         |                                            |                                            |
| ummonium                      | m nit                           | rate                                      | <u> </u>                                            |                        | Py                                                 | rotechni                    | cs                                      |                                    |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     |                        |                                                    |                             |                                         |                                    |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     |                        | •                                                  |                             |                                         | ND                                 |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           | ДN                                                  | 1                      | 0                                                  | 27                          | 37                                      | 37                                 |                                                |                                         |                                         |                                            |                                            |
| 30                            | -                               | 10                                        | 30                                                  | 1                      | 1                                                  | 37                          | 150                                     | 150                                |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     | 1                      | 1                                                  | 150                         | 150                                     |                                    |                                                |                                         |                                         |                                            |                                            |
| 10                            | ]                               | 0                                         | 20                                                  | 1                      | 1                                                  |                             |                                         | ND                                 |                                                |                                         |                                         |                                            |                                            |
|                               |                                 | _                                         |                                                     | 1                      | 0                                                  |                             |                                         | ND                                 |                                                |                                         |                                         |                                            |                                            |
| 2                             |                                 | 2                                         | 2                                                   |                        | _                                                  |                             |                                         | 4-                                 |                                                |                                         |                                         |                                            |                                            |
| 70                            |                                 | 70                                        | 116                                                 | 1                      | 1                                                  | 45                          | 45                                      | 45                                 |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     |                        |                                                    |                             |                                         |                                    |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     | 1                      | 1                                                  | 72                          | 72                                      |                                    |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     | 1                      | 0                                                  |                             |                                         | ND                                 |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     |                        |                                                    |                             |                                         |                                    |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     | T                      | 1                                                  | 15                          | 15                                      | 15                                 |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     |                        |                                                    |                             |                                         |                                    |                                                |                                         |                                         |                                            |                                            |
|                               |                                 |                                           |                                                     |                        | 70 70 116 1<br>1<br>1                              | 70 70 116 1 1<br>1 1<br>1 0 | 70 70 116 1 1 45  1 1 72 1 0            | 70 70 116 1 1 45 45  1 1 72 72 1 0 | 70 70 116 1 1 45 45 45  1 1 72 72 72 72 1 0 ND | 70 70 116 1 1 45 45 45  1 1 72 72 72 ND | 70 70 116 1 1 45 45 45  1 1 72 72 72 ND | 70 70 116 1 1 45 45 45  1 1 72 72 72 72 ND | 70 70 116 1 1 45 45 45  1 1 72 72 72 72 ND |

NOTE: Blanks indicate not analyzed or not reported.

a Both below minimum detection.

TABLE 9.2-6. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN RAW WASTEWATER FROM THE FORMULATION AND PACKAGING OF BLASTING AGENTS, DYNAMITE, AND PYROTECHNICS [1]

|                    |       |        | ANFO     |                   |        |       |        | Slurry                 |        |             |  |  |  |
|--------------------|-------|--------|----------|-------------------|--------|-------|--------|------------------------|--------|-------------|--|--|--|
|                    |       | mber   |          |                   |        |       | mber   |                        |        |             |  |  |  |
|                    | Ana-  | De-    | Con      | centràtic<br>mg/L | on,    | Ana-  | De-    | Concentration,<br>mg/L |        |             |  |  |  |
| Pollutant          | lyzed | tected | Av       | Med               | Max    | lyzed | tected | Av                     | Med    | Max         |  |  |  |
| BOD <sub>5</sub>   | 1     | 1      | 3,120    | 3,120             | 3,120  | 2     | 2      | 6,060                  | 6,060  | 9,870       |  |  |  |
| COD                | 1     | 1      | 2,760    | 2,760             | 2,760  | 3     | 3      | 5,880                  | 4,020  | 13,600      |  |  |  |
| TSS                | 1     | 1      | 1,130    | 1,130             | 1,130  | 3     | 3      | 935                    | 820    | 1,980       |  |  |  |
| TKN                | 1     | 1      | 13,500   | 13,500            | 13,500 | 3     | 3      | 4,690                  | 5,770  | 8,240       |  |  |  |
| Oil and grease     | 1     | 1      | 1,300    | 1,300             | 1,300  |       |        |                        |        |             |  |  |  |
| TDS                | 1     | 1      | 80,100   | 80,100            | 80,100 | 3     | 3      | 18,900                 | 18,000 | 38,000      |  |  |  |
| NH <sub>3</sub> -N | 1     | 1      | 12,000   | 12,000            | 12,000 | 3     | 3      | 3,520                  | 4,940  | 5,580       |  |  |  |
| NO <sub>3</sub> -N | 1     | 1      | 19,600   | 19,600            | 19,600 | 3     | 3      | 5,860                  | 7,780  | 9,160       |  |  |  |
|                    |       |        | Dynamite |                   |        |       | Am     | monium ni              | trate  |             |  |  |  |
| BOD <sub>5</sub>   | 2     | 2      | 6        | 6                 | 8      | 1     | 1      | 90                     | 90     | 90          |  |  |  |
| COD                | 2     | 2      | 18       | 18                | 20     | 3     | 3      | 69                     | 27     | 168         |  |  |  |
| TSS                | 1     | 1      | 8        | 8                 | 8      |       |        |                        |        |             |  |  |  |
| TKN                | 2     | 2      | 41       | 41                | 45     | 3     | 3      | 248                    | 97     | 582         |  |  |  |
| Oil and grease     |       |        |          |                   |        |       |        |                        |        |             |  |  |  |
| TDS                | 1     | 1      | 320      | 320               | 320    |       |        |                        |        |             |  |  |  |
| NH3-N              | 2     | 2      | 33       | 33                | 33     | 3     | 3      | 165                    | 83     | <b>3</b> 50 |  |  |  |
| NO3-N              | 2     | 2      | 25       | 25                | 27     | 3     | 3      | 478                    | 104    | 1,250       |  |  |  |

NOTE: Blanks indicate not analyzed or not reported.

TABLE 9.2-7. WASTEWATER CHARACTERIZATION FOR EXEMPLARY PLANTS IN THE FORMULATION AND PACKAGING OF BLASTING AGENTS, DYNAMITE, AND PYROTECHNICS INDUSTRY [1]

|                                                                       |      | Plant  |     |                                    | Plant 27 |                                              | Plant | 30    |                    | Plant 6      | 3   |
|-----------------------------------------------------------------------|------|--------|-----|------------------------------------|----------|----------------------------------------------|-------|-------|--------------------|--------------|-----|
| Pollutant                                                             | ANFO | Slurry | AN  | Plant                              | ANFO     | Dynamite                                     | ANFO  | NCN   | Plant              | Pyrotechnics |     |
| Metals and inorganics, ug/L                                           |      |        |     |                                    |          |                                              |       |       |                    |              |     |
| Antimony                                                              | ND   | 350    | ND  | 38 <sup>b</sup>                    |          |                                              |       |       |                    | ND           |     |
| Chromium                                                              |      |        |     |                                    |          |                                              |       |       |                    |              | 30  |
| Copper                                                                |      |        |     |                                    | 940      |                                              |       |       |                    | 37           | 41  |
| Cyanide                                                               |      |        |     | 26 <sup>b</sup>                    | 14       |                                              |       |       | 30,D               | 154          |     |
| Lead                                                                  | ND   | 80     | 20  |                                    | 110      | 10                                           | ND    | 20    | 30 <sup>b</sup>    | ND           |     |
| Nickel                                                                |      |        |     |                                    | 100      |                                              |       |       |                    | ND           | 30  |
| Silver                                                                |      |        |     |                                    | ND       |                                              |       |       |                    |              | _   |
| Zinc                                                                  | ND   | 980    | 116 |                                    | 1,330    | 1,450                                        | 136   | 2,740 | 1,070 <sup>b</sup> | 45           |     |
| Organics, ug/L                                                        |      |        |     |                                    |          |                                              |       |       |                    |              |     |
| Benzene<br>1,2-Dichloroethylene<br>1,2-Trans-dichloroethylene         |      |        |     |                                    |          |                                              |       |       | 36b<br>36b<br>90   |              | 23  |
| Trichlorofluoromethylene<br>Bis(2-ethylhexyl) phthalate<br>Isophorone |      |        |     | ao b                               |          |                                              |       |       | 90-                | 72           | 105 |
| 2-Nitrophenol Di-n-octyl phthalate                                    |      |        |     | 30 <sup>b</sup><br>13 <sup>b</sup> |          |                                              |       |       |                    | AVD.         | 111 |
| Phenol                                                                |      |        |     | 13                                 | 65       |                                              |       |       |                    | ND<br>15     | 130 |
| Toluene                                                               |      |        |     |                                    | 0,5      |                                              |       |       | 96 <sup>b</sup>    | 13           | 130 |
| Conventional, mg/L                                                    |      |        |     |                                    |          |                                              |       |       |                    |              |     |
| BOD                                                                   |      | 2,260  |     | 69                                 | 3,120    | 9°<br>15°<br>45°<br>33°<br>27°<br>320°<br>8° |       |       | 9                  |              |     |
| COD                                                                   |      | 4,020  | 12  | 371                                | 2,760    | 15 <sup>C</sup>                              |       |       | 130                |              |     |
| TKN                                                                   |      | 5,770  | 64  | 245                                | 13,500   | 45 <sup>C</sup>                              |       |       | 155                |              |     |
| NH <sub>3</sub> -N                                                    |      | 5,580  | 61  | 215                                | 12,000   | 330                                          |       |       | 118                |              |     |
| NO <sub>3</sub> -N                                                    |      | 7,780  | 104 | 934                                | 19,600   | 276                                          |       |       | 317                |              |     |
| TDS                                                                   |      | 38,000 |     |                                    | B0,100   | 3200                                         |       |       |                    |              |     |
| TSS                                                                   |      | 1,980  |     |                                    | 1,130    | 8.0                                          |       |       |                    |              |     |
| Oil and grease                                                        |      |        |     |                                    | 1,300    |                                              |       |       |                    |              |     |
| Influent flowrate, m³/d                                               | 0.19 | 2.4    | 340 | 371                                | 0.24     | 347                                          | 0.6   | 0.6   | 385                | 1.0          | 1.0 |

NOTE: Blanks indicate data not available.

<sup>&</sup>lt;sup>a</sup>Slurry prepared by mixing 200 mg of ANFO or NCN product per liter of distilled deionized water.

b<sub>Screening data.</sub>

<sup>&</sup>lt;sup>C</sup>Mix house and dope house effluents only; no washdown.

TABLE 9.2-8. WASTEWATER TOXIC AND CONVENTIONAL POLLUTANT LOADINGS FOR EXEMPLARY PLANTS IN THE FORMULATION AND PACKAGING OF BLASTING AGENTS, DYNAMITE, AND PYROTECHNICS INDUSTRY [1]

|                            |       | Plant 03 |      | Plant 27a | Pla      | Plant 63 |      |              |
|----------------------------|-------|----------|------|-----------|----------|----------|------|--------------|
| Pollutant                  | ANFO  | Slurry   | AN   | ANFO      | Dynamite | ANFO     | NCN  | Pyrotechnic  |
| Metals and inorganics, g/d |       |          |      |           |          |          |      |              |
| Antimony<br>Chromium       | <0.01 | 0.84     | <3.4 |           |          |          |      | <0.01        |
| Copper                     |       |          |      |           |          |          |      | 0.04<br>0.15 |
| Cyanide<br>Lead<br>Nickel  | <0.01 | 0.19     | 6.8  |           | 3.5      | <0.03    | 0.06 | <0.01        |
| Silver                     |       |          |      |           |          |          |      |              |
| Zinc                       | <0.01 | 2.4      | 39.4 | 36.9      | 503      | 0.4      | 8.2  | 0.05         |
| Organics, g/d              |       |          |      |           |          |          |      |              |
| Phenol                     |       |          |      | 0.38      |          |          |      | 0.01         |
| Conventional, kg/d         |       |          |      |           |          |          |      |              |
| BOD                        |       | 5.4      |      | 0.75      | 2.8      |          |      |              |
| COD                        |       | 9.6      |      | 0.67      | 5.2      |          |      |              |
| TKN                        |       | 13.8     |      | 3.2       | 15.5     |          |      |              |
| NH <sub>3</sub> -N         |       | 13.3     |      | 2.9       | 11.4     |          |      |              |
| NO <sub>3</sub> -N         |       | 18.6     |      | 4.7       | 8.3      |          |      |              |
| TDS                        |       | 90.8     |      | 19.2      | 110      |          |      |              |
| TSS                        |       | 4.7      |      | 0.27      |          |          |      |              |
| Oil and grease             |       |          |      |           |          |          |      |              |

NOTE: Blanks indicate data not available.

<sup>&</sup>lt;sup>a</sup>Quantities calculated based on product concentration in wastewater of 1%. Screening data.

Control and treatment practices in use today can be divided into in-plant source control and end-of-pipe treatment.

#### II.9.2.4.1 In-Plant Wastewater Source Control

Control practices within the plant can consist of wastewater reduction, recycle, or isolation. Reduction of wastewater volume is accomplished by use of dry cleaning practices and cleanup water recycle. Dry cleanup consists of dry sweeping floor areas and shovel collection of waste, equipment cleanup with brushes, and use of wet vacuum systems. The material collected can be reused if not overly contaminated with foreign material.

Cleanup water recycle deals with the dust control wet scrubber system. Because dust must be controlled for safety and industrial hygiene reasons, the pollutant load in the raw wastewater from the dust control system cannot be reduced. However, the volume of the wastewater can be reduced significantly by recirculation of the wet scrubber water. This recirculation increases the ammonium nitrate loading and can make it feasible to recycle the wastewater to an AN plant. Alternative dust collectors, such as cyclone-type collectors, can reduce or eliminate this source of wastewater and must also be considered.

Direct recycle of wastewater into the product is not applicable in this industry. However, a few plants practice concentration by evaporation and reuse the concentrated wastewater in ammonium nitrate production. Care must be taken to prevent contamination of this recycle for safety reasons. Isolation or containment of wastewater is practiced by enclosing loading and unloading areas, diking or trenching storage areas, and collecting runoff in lagoons.

#### II.9.2.4.2 End-of-Pipe Treatment

Treatment methods being used by the explosives manufacturing industry to control pollutant levels in raw wastewater streams include ponding, land application, biological oxidation in conjunction with other raw waste loads, and solids removal by filtration, settling ponds, or air flotation. Only a few of the treatment systems used have any effluent discharge and most treat a combination of wastewater sources. Table 9.2-9 shows a summary of the treatment systems used by some Subcategory 5 plants.

Ponding. Ponding is the most common form of treatment for Subcategory 5 plants. Generally, the ponds are not lined and natural percolation could be occurring. Long winter seasons create some problems for ponding because of the large inventory storage with negligible percolation or evaporation. Evaporation ponds are very effective where the natural evaporation rate from stagnant water exceeds rainfall. This would generally include states west of the Mississippi. Increased evaporation by

TABLE 9.2-9. SUMMARY OF INDUSTRY CONTROLS FOR SUBCATEGORY 5 [1]

| Control data                                                 | ANFO | Slurry          | Dynamite | Pyrotechnics    | Total |
|--------------------------------------------------------------|------|-----------------|----------|-----------------|-------|
| Total number of plants estimated                             | 75   | 23 <sup>a</sup> | 7        | 45 <sup>b</sup> | 150   |
| Number of plants studied                                     | 64   | 23              | 6        | 7 <sup>b</sup>  | 100   |
| Plants reporting no process-related wastewater               | 11   | 2 <sup>C</sup>  | 1        | 2 <sup>b</sup>  | 16    |
| Plants reporting wastewater discharge without treatment      |      | 4               | 0        | 0               | 50    |
| Plants using evaporative/percolative ponds                   | 6    | 8               | 1        | 1               | 16    |
| Plants using land application                                | 3    | 4               | 1        | 0               | 8     |
| Plants using solids separation only $^{	extsf{d}}$           | 0    | 4               | 2        | o               | 6     |
| Plants discharging to a combined wastewater treatment system | 1    | 1               | 1        | 2 <sup>e</sup>  | 5     |

Includes one plant which is reported to be inactive; includes two plants at one plant site.

b 38 plants produce fireworks only and are considered dry operations without wastewater discharge; 7 plants produce flares, distress signals, etc.

CIncludes one plant which concentrates and recirculates process wastewater.

dIncludes filtration, settling ponds or tanks, and air flotation. Settling sumps may be used at other plants prior to ponding or discharge to treatment plants.

e Includes one plant that has collected wastewater hauled by disposal firm.

mechanical methods, such as sprayers or cooling towers, may also be effective for other areas but is not in current use.

Slow-Rate Land Treatment. Land application of wastewater using spray irrigation is the second most often practiced method. Wastewater is collected in a pond and is applied to plant-covered land areas during the growing season. Mobile or stationary sprayers may be used. The amount of water applied per acre varies at each site according to the amount of wastewater produced and land area available. No negative effects have been observed on green plants in the treatment areas. Dilution may be necessary for wastewaters with very high nitrogen content.

Biological Treatment. Biological treatment is used at one plant to handle wastewater from several sources. Slurry plant wastewater is combined with explosives manufacturing plant wastewater for a combined flow of approximately 150 m³/day (40,000 gpd). The water is treated in a diffused-air, extended aeration, activated sludge treatment system. Based on verification data from this plant, cyanide and ammonia nitrogen levels were reduced more than 90% and nitrate nitrogen increased from 900 mg/L to 1,400 mg/L.

Other combined wastewater treatment systems include septic tanks, equalization and neutralization ponds a facultative ponds, and activated sludge treatment.

Solids Separation. Suspended solids are found at various levels in wastewater from slurry and dynamite plants. Dynamite wastewater has very small particles which originate from the airborne dust collected by the wet scrubbers. Slurry wastewater generally contains larger particles, such as granular aluminum or glass microspheres. Small settling ponds, air flotation, and continuous paper belt filler are three methods used to remove these solids from the wastewater. Another method uses caustic to dissolve the aluminum present, then neutralizes the treated wastewater to convert the paint grade aluminum in the raw wastewater to a settleable sludge. The sludge is then recovered and reused.

Alternative Technologies. Several potential technologies for treating industrial wastewater containing high levels of ammonium and nitrate nitrogen have been studied. These technologies include biological processes involving a variety of process configurations, and physical/chemical unit processes, such as reverse osmosis, ammonia stripping, and ion exchange. Break point chlorination and electrodialysis have also been suggested.

# II.9.2.5 References

 Technical Review of the BAT Analysis of the Explosives Industry (draft contractor's report). U.S. Environmental Protection Agency, Washington, D.C., April 1979.

- 2. NRDC Consent Decree Industry Summary Explosive Manufacturing.
- Environmental Protection Agency Effluent Guidelines and Standards for Explosives Manufacturing. 40 CFR 457; 41 FR 10180, March 9, 1976.

#### II.9.3 GUM AND WOOD CHEMICALS

#### II.9.3.1 Industry Description

# II.9.3.1.1 General Description [1]

The Gum and Wood Chemicals Industry in the United States is covered by Standard Industrial Classification (SIC) Code 2861. Within this classification are establishments primarily engaged in manufacturing hardwood and softwood distillation products, wood and gum naval stores, charcoal, natural dyestuffs, and natural tanning materials. SIC 2861 does not include establishments primarily engaged in manufacturing synthetic tanning materials and synthetic organic chemicals, or those engaged in the production of synthetic organic dyes; rather, these establishments are included within SIC Codes 2869 and 2865, respectively.

Some materials produced under SIC 2861, such as rosins, may be further processed into materials classified under different SIC codes. Those cases in which materials change classifications within the same plant are included in this description. Excluded are those cases where materials are purchased from one SIC 2861 plant for further processing in a different plant into a product with a different SIC code.

Table 9.3-1 summarizes pertinent information regarding the number of subcategories, the number of subcategories studied by Effluent Guidelines Division, and the number and type of dischargers in the Gum and Wood Chemicals Industry.

#### TABLE 9.3-1. INDUSTRY SUMMARY [1, 2]

Industry: Gum and Wood Chemicals
Total Number of Subcategories: 7
Number of Subcategories Studied: 4

Number of Dischargers in Industry:

Direct: 14Indirect: 6

· Zero: 3

Best Practicable Technology (BPT) limitations currently promulgated for each subcategory are presented in Table 9.3-2. No information regarding limitations on the sulfate turpentine subcategory is available.

TABLE 9.3-2. BPT LIMITATIONS FOR THE GUM AND WOOD CHEMICALS MANUFACTURING INDUSTRY [3]

|                                                            | BO      | D <sub>5</sub> | TS         | 5          |          |
|------------------------------------------------------------|---------|----------------|------------|------------|----------|
|                                                            | Daily   | 30-day         | Daily      | 30-day     |          |
| Subcategory                                                | maximum | average        | maximum    | average    | рН       |
| Char and charcoal briquets                                 |         | -              | rocess was | tewater po | llutants |
|                                                            | to navi | gable wate:    | rs         |            |          |
| Gum rosin and turpentine                                   | 1.42    | 0.755          | 0.077      | 0.026      | 6.0-9.0  |
| Wood rosin, turpentine, and pine oil                       | 2.08    | 1.10           | 1.38       | 0.475      | 6.0-9.0  |
| Tall oil rosin, pitch, and fatty acids                     | 0.99    | 0.53           | 0.705      | 0.243      | 6.0-9.0  |
| Essential oils                                             | 22.7    | 12.0           | 9.01       | 3.11       | 6.0-9.0  |
| Rosin-based derivatives<br>Sulfate turpentine <sup>a</sup> | 1.41    | 0.748          | 0.045      | 0.015      | 6.0-9.0  |

aNo specific limitations for this subcategory are available; however, other subcategory limitations may address portions of this subcategory.

### II.9.3.1.2 Subcategory Descriptions

The modern Gum and Wood Chemicals Industry is grouped into the following major areas:

- (1) Char and charcoal briquets
- (2) Gum rosin and turpentine
- (3) Wood rosin, turpentine, and pine oil
- (4) Tall oil rosin, fatty acids, and pitch
- (5) Essential oils
- (6) Rosin derivatives
- (7) Sulfate turpentine

Three of the seven Gum and Wood Chemicals subcategories (char and charcoal briquets, gum rosin and turpentine, and essential oils) have been submitted for exclusion under Paragraph 8 of the NRDC Consent Decree. These subcategories are described herein; however, no wastewater characterizations are presented.

Char and Charcoal Briquets. The char and charcoal industry in the United States is comprised of some 80 plants primarily concentrated in the eastern section of the country. Char is produced from the destructive distillations of softwood and hardwood (primarily the latter). Char, in turn, may be processed into charcoal briquets or activated carbon. Charcoal, in itself, is one of the more economically important products of the Gum and Wood Chemicals Industry with its wide use in the chemical and metallurgical industries (although largely replaced therein by coke) and in other areas, including use as a filter for gaseous and liquid streams.

Exclusion of revised BAT and NSPS limitations has been recommended for all specific pollutants on the basis of Paragraph 8 of the NRDC Consent Decree since the existing BAT and NSPS require no discharge of process wastewater. The only discharge of water to surface water occurs from runoff which is regulated by BPT.

Gum Rosin and Turpentine. Currently, there are only seven plants identified in the gum rosin and turpentine subcategory, all of which are located in Georgia. The two largest plants have diversified and are now producing rosin-based derivatives in conjunction with gum rosin and turpentine. In terms of product value, gum rosin and turpentine products are a minor portion of the Gum and Wood Chemicals Industry.

Exclusion of BAT, NSPS, and pretreatment standards has been recommended for all specific toxic pollutants on the basis of Paragraph 8. Of seven plants in the industry, one is an indirect discharger, and the remaining six are self-contained dischargers. These six plants operate on a seasonal basis between May and September (approximately 180 days per year). Flows of process wastewaters in this subcategory are quite low (averaging about 5.3 m³/day per plant).

The only toxic pollutants found during screening analysis of the indirect discharger were benzene, toluene,  $\delta\text{-BHC},$  and metals. However, this plant is also a rosin-based derivatives producer which is covered under the rosin derivatives subcategory of the Gum and Wood Chemicals Industry. Exclusion of the NSPS limitations is recommended since no new sources exist and most existing plants are expected to close within the next 10 years for economic reasons. Exclusion of pretreatment is recommended since only one indirect discharger exists, and the effluent from this plant will be regulated under the rosin derivatives subcategory.

Wood Rosin, Turpentine, and Pine Oil. The wood rosin, turpentine and pine oil industry consists of five plants in the United States. In a typical process, pine stumps are brought into the plant, conveyed, and washed. The water and sediment flows to a settling pond from which water is recycled back to the washing operation. Pine stumps are reduced to chips; the chips undergo an extraction process that enables them to be used as fuel (the solvent used during the extraction process is removed from the chips by steaming); and spent chips are removed from the retort and sent to the boilers as fuel. The solvent is recycled for use in the retorts.

The extract liquor is sent to a distillation column to separate the solvent from the products. The bottom stream from the first distillation column enters a second distillation column. The bottom stream from the second column is the finished wood rosin product.

The crude terpene, which has been removed in the second distillation column, is stored until a sufficient quantity has been accumulated for processing in a batch distillation column. The distillation column is charged with the crude terpene material, and the condensed material enters a separator. The terpene and pine oil products are removed from the separator.

Tall Oil Rosin, Fatty Acids, and Pitch. Twelve tall oil distillation plants, primarily located in the Southeastern United States, are currently in operation. Two additional plants are not in operation but could be made operational if economic conditions so dictated.

Crude tall oil is particularly attractive as a raw material because of its availability as a "waste" product of the kraft pulp and paper industry.

The crude tall oil is treated with dilute sulfuric acid to remove some residual lignins as well as mercaptans, disulfides, and color materials. Acid wash water is discharged to the process sewer. The stock then proceeds to the fractionation process, where the pitch is removed from the bottoms of the first column and is either sold, saponified for production of paper size, or burned in boilers as fuel. The remaining fraction of the tall oil (rosin and fatty acid) proceeds to the pale plant, where the quality of the raw materials is improved. The second column separates low-boiling-point fatty acid material, and the third column completes the separation of fatty and rosin acids.

The wastewater generated in this subcategory results from pulling a vacuum on the distillation towers. This water is generally recycled, but excess water is discharged to the plant sewer.

Essential Oils. The only essential oil being produced in this subcategory is cedarwood oil. Cedarwood oil is produced by steaming cedarwood sawdust in pressure retorts to remove the oil from the wood particles.

Exclusion of BAT, NSPS, and pretreatment standards has been recommended for all specific toxic pollutants on the basis of Paragraph 8. The subcategory includes seven plants, none of which is a direct discharger; one is an indirect discharger and the remaining six have no discharge. Flows of process wastewater in this subcategory are low (a maximum flow of 57 m³/d from the indirect discharger under full-scale production). The only toxic pollutants detected during screening of the indirect discharger were benzene and metals, and all were at low levels.

Rosin Derivatives. Rosin derivatives are not included in SIC 2861, Gum and Wood Chemicals, but in SIC 2821, Plastics and Synthetic Materials. Derivatives production is a natural extension of processing in gum and wood chemicals plants since the rosin is available in the plants. This industry description is applicable only to those derivative operations which are located within and in conjunction with gum and wood chemicals facilities. Another derivatives operation that occurs in gum and wood chemicals plants is terpene derivatives. Derivative products include ink resins, paint additives, paper size, oil additives, adhesives, wetting agents, chewing gum base, and chemical-resistant resins.

Sixteen gum and wood chemicals plants currently are producing rosin or terpene derivatives. These plants are located within all four types of rosin-producing plants.

Process operating conditions in the reaction kettle are dependent on product specifications, raw materials, and other variables. A simple ester is produced under high temperature vacuum conditions. A steam sparge is used to remove excess water of esterification, and the condensable impurities are condensed in a noncontact condenser on the vacuum leg and stored in a receiver. Noncondensables escape to the atmosphere through the reflux vent and steam vacuum jets.

Wastewater is developed from the chemical reaction and separation of product.

Sulfate Turpentine. Sulfate turpentine was originally considered to be a waste product in the kraft pulp and paper process. However, modern technology allows it to be profitably recovered by a distillation process to such an extent that sulfate turpentine is the major source of turpentines in the Gum and Wood Chemicals Industry.

During the distillation of sulfate turpentine, the first tower is usually used to strip odor-causing mercaptans from the turpentine. Subsequent fractionation breaks the turpentine into its major components:  $\alpha$ -pinene,  $\beta$ -pinene, dipentene, and sulfated pine oil.

The distillation of sulfate turpentine is an intermediate production step. The operations are usually batch reactions that take place in reaction kettles in the presence of some organic solvent and metal catalyst. The catalyst and solvent used depend on the type of products required. There are approximately 200 products produced in this area.

Wastewater usually is generated from the condensation in the distillation tower and from washdown of reactors.

#### II.9.3.1.3 Wastewater Flow Characterization

The volume of wastewater produced by the plants in the Gum and Wood Chemicals Industry ranges from 0 to 7,570 m³/d. Discharge flow rates for each subcategory are difficult to quantify because most plants have combined processes that fall under several different subcategories, and all process wastewater typically is discharged to a common sewer. Although total plant flow can be determined from this discharge pipe, a breakdown into components from each process is not possible. Wastewater flows have been tabulated in Table 9.3-3 (next page) for each plant, and grouped according to the processes within the plant.

#### II.9.3.2 Wastewater Characterization [1]

Wastewater characteristics for the Gum and Wood Chemicals Industry demonstrate that organic solvents are generally the most

TABLE 9.3-3. TABULATED WASTEWATER FLOWS BY PLANT [1]

|          |              | <del></del> | <del> </del> |                         |
|----------|--------------|-------------|--------------|-------------------------|
| Subcate- | Plant        | Discharge   | Production,  | Wastewater              |
| gories   | No.          | type        | kg/d_        | flow, m <sup>3</sup> /d |
|          |              |             |              |                         |
| G        | 009          | Indirect    | 57,700       | 273                     |
|          | 885          | Indirect    | 86,400       | 1,230                   |
| G,F      | 159          | Direct      | 45,300       | 4,470                   |
| G,C,F    | 571          | Indirect    | 218,000      | 2,200                   |
| •        | 222          | Indirect    | 465,000      | 1,750                   |
| G,D,F    | 7 <b>4</b> 3 | Direct      | 209,000      | 681                     |
| , ,      | <b>9</b> 93  | <b>-</b> b  | 467,000      | 1,360                   |
| B,F      | 485          | Indirect    | 45,400       | 19                      |
| Ċ        | 934          | Direct      | 48,200       | 587                     |
| C,F      | 242          | Direct      | 336,000      | 7,310                   |
| D,F      | 334          | Direct      | 199,000      | ,, , , , ,              |
| _ / -    | 244          | Direct      | 139,000      | 636                     |
|          | 714          | Indirect    | 192,000      | 2,020                   |
|          | 660          | Indirect    | 69,200       | 186                     |
|          | 454          | -b          | 306,800      | 447                     |
|          | 040          | -b          | 227,000      | 3,410                   |
|          | 049          | -b          | 270,000      | 1,330                   |
| D        | 759          | Direct      | •            |                         |
| D        |              |             | 164,000      | 158                     |
|          | 436          | Direct      | 152,000      | 2,270                   |
|          | 590          | <b>-</b> b  | 193,000      | 984                     |
|          |              |             |              |                         |

aB = gum rosin and turpentine; C = wood rosin, turpentine, and pine oil; D = tall oil rosin, pitch, and fatty acid; F = rosin- and terpene-based derivatives; G = sulfate turpentine.

prevalent pollutants. These solvents are used in the extraction processes across all subcategories. Some heavy metals have been listed as natural components of the raw materials (e.g., tree stumps) that are utilized in this industry.

Due to the nature of the Gum and Wood Chemicals Industry there is a great deal of overlap among the various subcategories. Although the subcategories were defined according to the principal product(s) peculiar to a set group, most of the plants within a subcategory secondarily produce products which are primary to another subcategory. The resulting overlap makes separation of available data relative to specific pollutants difficult to achieve.

bPlant discharges into the waste treatment system of another plant.

# II.9.3.2.1 Wood Rosin, Turpentine, and Pine Oil

Principal toxic pollutants observed were some organic solvents (particularly toluene), chromium, and zinc. Conventional pollutants included COD and BOD. Levels of methylene chloride and benzene in the groundwater are unusually high and probably indicate contamination.

Of the five plants that process wood stumps for their extractable components, only one has segregated wood rosin wastestreams (the remaining plants have multiprocess wastestreams). The multiprocess streams could not be used to characterize the wastewater from this subcategory; thus, Tables 9.3-4 and 9.3-5 present concentrations of toxic pollutants and conventional and classical pollutants for the wood rosin, turpentine, and pine oil subcategory based on sampling conducted at one plant.

TABLE 9.3-4. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN WOOD ROSIN, TURPENTINE, AND PINE OIL SUB-CATEGORY WASTEWATER [1] (µg/L)

| Toxic pollutant        | Intake <sup>a</sup> | Raw<br>wastewater <sup>b</sup> | Treated<br>effluent <sup>C</sup> |
|------------------------|---------------------|--------------------------------|----------------------------------|
| Metals and inorganics  |                     |                                |                                  |
| Arsenic                | <10                 | <10                            | <15 <sup>d</sup>                 |
| Chromium               | <10                 | 1,500                          | 110                              |
| Copper                 | <10                 | 33                             | <12                              |
| Lead                   | <10                 | 15_                            | <10,                             |
| Zinc                   | <10                 | 160 <sup>e</sup>               | 37 <sup>d</sup>                  |
| Monocyclic aromatics   |                     |                                |                                  |
| Ethylbenzene           | <10                 | 50 <sub>f</sub>                | <10                              |
| Toluene                | <10                 | _1                             | <10                              |
| Halogenated aliphatics |                     |                                |                                  |
| Chloroform             | 20                  | <10                            | 17                               |
| Methylene chloride     | 910                 | 190                            | 340                              |

<sup>&</sup>lt;sup>a</sup>Process makeup water-well water.

Date: 6/23/80

b Influent to equalization basin.

<sup>&</sup>lt;sup>C</sup>From aerated and settlinglagoon; average of three samples.

dBlank adjusted value is <10.

eBlank adjusted value is 130.

fIndeterminate because of high organic compound loading.

TABLE 9.3-5. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN WOOD ROSIN, TURPENTINE, AND PINE OIL SUBCATEGORY WASTEWATER [1] (mg/L)

| Pollutant        | Intake <sup>a</sup> | Raw<br>wastewater <sup>b</sup> | Treated<br>effluent |
|------------------|---------------------|--------------------------------|---------------------|
| BOD <sub>5</sub> | <10                 | 1,500                          | 22                  |
| COD              | 11                  | 1,200                          | 230                 |
| Suspended solids | <10                 | 240                            | 55                  |
| Total phenols    | 0.12                | 0.46                           | <0.06               |
| Oil and grease   | <10                 | <10                            | <11                 |

<sup>&</sup>lt;sup>a</sup>Process makeup water-well water.

# II.9.3.2.2 Tall Oil Rosin, Fatty Acids, and Pitch

Principal toxic pollutants observed were methylene chloride, benzene, copper, and chromium. Conventional pollutants included total phenols, COD, and oil and grease. Unusually high levels of methylene chloride, toluene, and benzene are probably due to contamination.

Three tall oil distillation plants currently in the industry perform only tall oil distillation and some rosin size operations. As indicated in Tables 9.3-6 and 9.3-7 (next page), one plant in this subcategory was sampled. The other tall oil distillation plants have combined processes, making their wastestreams unsuitable for characterization.

### II.9.3.2.3 Rosin Derivatives

Principal toxic pollutants observed were ethylbenzene, toluene, methylene chloride, and zinc. Conventional pollutants included COD, BOD, and oil and grease.

In one plant the rosin derivatives process wastewater was separated from that of other processes. The results of the verification analyses are shown in Tables 9.3-8 and 9.3-9 for three sampling locations.

b Influent to equalization basin.

<sup>&</sup>lt;sup>C</sup>From aerated and settling lagoon; average of three samples.

TABLE 9.3-6. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN TALL OIL ROSIN, PITCH, AND FATTY ACIDS SUBCATEGORY WASTEWATER [1] (µg/L)

| Toxic pollutants       | Intake <sup>a,b</sup> | Raw<br>wastewater <sup>a</sup> | Treated<br>effluent |
|------------------------|-----------------------|--------------------------------|---------------------|
| Metals and inorganics  |                       |                                |                     |
| _                      | 110                   | 00                             | 00                  |
| Chromium               | 110                   | 83                             | 88                  |
| Copper                 | <10                   | 150                            | 220                 |
| Lead                   | <10                   | 14                             | <10                 |
| Nickel                 | 13                    | 19                             | 43                  |
| Selenium               | <10                   | 11                             | <10                 |
| Zinc                   | <10                   | 50                             | 44                  |
| Monocyclic aromatics   |                       |                                |                     |
| Benzene                | 120                   | 120                            | 120                 |
| Ethylbenzene           | <10                   | 20                             | <10                 |
| <b>Toluene</b>         | 20                    | 20                             | 20                  |
| Halogenated aliphatics |                       |                                |                     |
| Chloroform             | 10                    | 10                             | 10                  |
| Methylene chloride     | 740                   | 710                            | 85                  |

<sup>&</sup>lt;sup>a</sup>Values not blank adjusted. See Plant 949 in Section II.9.3.3 for identification of blank values.

TABLE 9.3-7. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN TALL OIL ROSIN, PITCH, AND FATTY ACIDS SUBCATEGORY WASTEWATER [1] (mg/L)

| Pollutant        | Intake | Raw<br>wastewater | Treated effluent |
|------------------|--------|-------------------|------------------|
| BOD <sub>5</sub> | <10    | 42                | <10              |
| COD              | <10    | 1,100             | 130              |
| Suspended solids | <10    | 44                | 19               |
| Total phenols    | <0.01  | 0.55              | 0.029            |
| Oil and grease   | <10    | 48                | 13               |

Note: Blanks indicate data not available.

bProcess makeup water-well water.

TABLE 9.3-8. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN ROSIN DERIVATIVES SUB-CATEGORY RAW WASTEWATER [1] (µg/L)

|                        |        |             | , a      |
|------------------------|--------|-------------|----------|
| <b>m</b>               | Raw wa | astewater   |          |
| Toxic pollutant        | 706    | 730         | 737      |
| Metals and inorganics  |        |             |          |
| Arsenic                | 53     | 41          | <10      |
| Cadmium                | 120    | 95          | 100      |
| Chromium               | 62     | 48          | 34       |
| Copper                 | 180    | 300         | 190      |
| Lead                   | 72     | 54          | 49       |
| Nickel                 | 34     | 100         | 35       |
| Zinc                   | 38,000 | 38,000      | 38,000   |
| Phenols                | •      | •           | ,        |
| Phenol                 | 14,000 | >10,600     | 23,000   |
| Monocyclic aromatics   |        | _ , , , , , | ,        |
| Benzene                | 170    | <10         | 710      |
| Ethylbenzene           | 2,200  | 12,000      | 28,000   |
| Toluene                | 5,300  | 17,000      | >4,000   |
| Halogenated aliphatics | ,      | _ , ,       | 2, 2 2 2 |
| Chloroethane           | <10    | <10         | 520      |
| Methylene chloride     | 7,300  | 2,700       | 6,700    |
| 1,1,1-Trichloroethane  | 830    | <10         | <10      |
|                        |        |             |          |

<sup>&</sup>lt;sup>a</sup>Sample locations presented in Reference 1 in coded form; all location codes are for raw wastewater samples.

TABLE 9.3-9. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN ROSIN DERIVATIVES SUBCATEGORY RAW WASTEWATER [1] (mg/L)

| Dallast and      | Raw wa | stewater | samplea |
|------------------|--------|----------|---------|
| Pollutant        | 706    | 730      | 737     |
| BOD <sub>5</sub> | 450    | 1,260    | <10     |
| COD              | 40,000 | 31,000   | 38,000  |
| Suspended solids | 87     | 71       | 70      |
| Total phenols    | 46     | 41       | 53      |
| Oil and grease   | 146    | 92       | 62      |

<sup>&</sup>lt;sup>a</sup>Sample locations presented in Reference l in coded form; all location codes are for raw wastewater samples.

Note: Blanks indicate data not available.

effluents from other processing areas. Median concentrations of the three plants' wastewaters were used to determine the values in Tables 9.3-10 and 9.3-11 (next page), since the wastestream from one plant is very different from those of the other two. Wastestreams differ based on the types of end products manufactured by the various plants. The varying product lines of the sulfate turpentine fractionators make this subcategory very difficult to characterize.

# II.9.3.3 Plant Specific Description [1]

Tables 9.3-12 through 9.3-15 present toxic pollutant and conventional pollutant data for gum and wood chemical process plants. The data in this section are based on the most current representative information available from four of the plants contacted. Verification sampling data are used to supplement historical data obtained from the plants for the conventional pollutants, and in most cases are the sole source of quantitative information for toxic pollutant raw waste loads.

# II.9.3.4 Pollutant Removability [1]

### II.9.3.4.1 Industry Application

A matrix of the current in-place treatment technology in the Gum and Wood Chemicals Industry is shown in Table 9.3-16. Many of the direct dischargers have primary treatment in place at this time. Pretreatment processes used by indirect dischargers depend on the requirements of the receiving treatment works. Six indirect dischargers discharge their wastewater to POTW's. Six plants discharge their wastewater to the wastestreams of other industries such as pulp and paper mills. The plants that discharge to POTW's have treatment equipment to meet POTW requirements. The plants that discharge to the wastestreams of other industries pretreat by skimming the surface oil and settling solids.

### II.9.3.4.2 Treatment Methods

#### Oil Separation

Free oil removal - Oily products such as turpentine and fatty acids are a major factor in this industry. Gravity oil-water separation is used throughout the industry to recover oil for use as a fuel supplement or, in some cases, for recycle to the plant process. Oil-water separation, of course, reduces the toxicity and the oxygen demand of the wastewater by removing the oil.

A baffle separator at the effluent end of an equalization basin is the most common system used in the industry. The oil can be skimmed from the basin either manually or continously depending

TABLE 9.3-10. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN SULFATE TURPENTINE SUBCATEGORY WASTEWATER [1] (  $\mu g/L$  )

|                             | Number  |         |                                                         | Number  |             |              | Number  |             |        |
|-----------------------------|---------|---------|---------------------------------------------------------|---------|-------------|--------------|---------|-------------|--------|
|                             | of      | Int     | ake                                                     | of      | Raw wastew  | ater         | of      | Treated ef  | fluent |
| Toxic pollutants            | samples | Range   | Median                                                  | samples | Range       | Median       | samples | Range       | Median |
| Arsenic                     | 1       |         | <10,                                                    | 3       | <10-110     | <10          | 3       | <10         | <10    |
| Chromium                    | 2       | <10-120 | <10 <sub>b</sub><br>65 <sub>b</sub><br>130 <sup>b</sup> | 6       | 49-1,300    | 5 <b>4</b> 5 | 6       | 94-880      | 365    |
| Copper                      | 2       | <10-250 | 130 <sup>D</sup>                                        | 6       | 1,600-6,000 | 2,250        | 6       | 1,800-4,700 | 2,500  |
| Lead                        | 2       | <10     |                                                         | 6       | <10-21      | 11.5         | 6       | <10-19      | 13.    |
| Nickel                      | 2       | <10-36  | <10<br>23 <sup>b</sup>                                  | 6       | 140-4,100   | 370          | 6       | 46-1,100    | 325    |
| Selenium                    | 1       |         |                                                         | 3       | <10         | <10          | 3       | <10-14      | <10    |
| Zinc                        | 2       | <10     | <10<br><10 <sup>b</sup>                                 | 6       | 170-530     | 265          | 6       | 99-450      | 320    |
| Bis(2-ethylhexyl) phthalate | 1       |         | <10                                                     | 3       | <10         | <10          | 3       | <10-1,900   | <10    |
| Phenol                      | 1       |         | <10,                                                    | 3       | <10-760     | 130          | 3       | <10-850     | <10    |
| Benzene                     | 2       | <10-74  | 42b                                                     | 6       | <10-140     | <10          | 6       | <10-240     | 165    |
| Toluene                     | 2       | <10     | <10 <sup>b</sup>                                        | 6       | <10-2,200   | 960          | 6       | <10-2,000   | 635    |
| Chloroform                  | 1       |         |                                                         | 3       | 980-1,400   | 1,000        | 3       | 900-1,400   | 1,000  |
| Methylene chloride          | 2       | 400-560 | <10<br>480 <sup>b</sup>                                 | 6       | <10-16,000  | 695          | 6       | 490-2,400   | 1,800  |

<sup>&</sup>lt;sup>a</sup>Values not blank adjusted.

<sup>&</sup>lt;sup>b</sup>Value averaged from two samples.

TABLE 9.3-11. CONCENTRATIONS OF CONVENTIONAL AND CLASSICL POLLUTANTS FOUND IN SULFATE TURPENTINE SUBCATEGORY WASTEWATER [1] (mg/L)

|                  | Number  |             |                                 | Number  |              |        | Number  |             |        |
|------------------|---------|-------------|---------------------------------|---------|--------------|--------|---------|-------------|--------|
|                  | of      | Inta        | ke                              | of      | Raw wastewa  | ater   | of      | Treated ef  | fluent |
| Toxic pollutants | samples | Range       | Median                          | samples | Range        | Median | samples | Range       | Median |
| BOD <sub>5</sub> | 2       | <10         | <10,b                           | 6       | 1,200-3,400  | 2,100  | 6       | 300-4,800   | 1,500  |
| COD              | 2       | 16-18       | 17,b                            | 6       | 5,400-15,000 | 7,400  | 6       | 3,800-7 400 | 5,700  |
| TSS              | 2       | <10         | <10 <sup>D</sup>                | 6       | <10-300      | 120    | 6       | 30-520      | 160    |
| Total phenols    | 2       | 0.018-0.028 | 0 <sub>e</sub> 023 <sup>D</sup> | 6       | 0.53-4.5     | 1.2    | 6       | 1-14        | 1.8    |
| Oil and grease   | 2       | <10         | <10 <sup>D</sup>                | 6       | 160-450      | 320    | 6       | 49-506      | 375    |

<sup>&</sup>lt;sup>a</sup>Values not blank adjusted.

 $<sup>^{\</sup>mathrm{b}}\mathrm{Value}$  arranged from two samples.

# TABLE 9.3-12. WASTEWATER CHARACTERIZATION, PLANT 464 [1]

Category: Gum and Wood Chemicals

Subcategory: Wood rosin, turpentine, and pine oil
Wastewater Treatment Description: Biological treatment by aerated lagoon or settling basin.

Unique pretreatment procedure includes mixing boiler wood

ash with equalized wastewater.

|                          |                                  |                             | Concen                                      | tration |                                |            |                                |       |
|--------------------------|----------------------------------|-----------------------------|---------------------------------------------|---------|--------------------------------|------------|--------------------------------|-------|
| Pollutant                | Process makeup<br>and well water | Equalization basin influent | Equalization<br>basin effluent <sup>a</sup> | Blank   | Ash settling<br>basin effluent | Blank      | Final<br>effluent <sup>b</sup> | Blank |
| Methylene chloride, µg/L | 910                              | 190                         | 560                                         | NA      | 260                            | NA         | 340                            | 280   |
| Chloroform, µg/L         | 20                               | <10                         | 10                                          | NA      | 30                             | NA         | 17                             | 20    |
| Ethylbenzene, µg/L       | <10                              | 50<br>_c                    | 10                                          | NA      | <10                            | NA         | <10                            | <10   |
| Toluene, µg/L            | <10                              | _c                          | >400                                        | NA      | >400                           | NA         | <10                            | <10   |
| Arsenic, µg/L            | <10                              | <10                         | <10                                         | 15      | 14                             | 17         | <15                            | <10   |
| Copper, µg/L             | <10                              | 33                          | <10                                         | <10     | <10                            | <10        | <12                            | 21    |
| Chromium, µg/L           | <10                              | 1,500                       | 980                                         | <10     | 620                            | <10        | 110                            | <10   |
| Lead, µg/L               | <10                              | 15                          | 17                                          | <10     | 13                             | <10        | <10                            | <10   |
| Zinc, µg/L               | <10                              | 160                         | 89                                          | <10     | 150                            | <b>4</b> 6 | 37                             | 56    |
| Total phenols, µg/L      | 120                              | 460                         | 980                                         | <10     | 10                             | <10        | <60                            | <10   |
| Suspended solids, mg/L   | <10                              | 240                         | 220                                         | <10     | 160                            | <10        | 55                             | <10   |
| COD, mg/L                | 11                               | 1,200                       | 1,100                                       | <10     | 730                            | <10        | 230                            | <10   |
| BOD, mg/L                | <10                              | 1,500                       | 650                                         | <10     | 270                            | <10        | 22                             | <10   |
| Oil and grease, mg/L     | <10                              | <10                         | <10                                         | <10     | 18                             | <10        | <11                            | <10   |

<sup>&</sup>lt;sup>a</sup>After 15-day retention.

bafter aerated lagoon and settling basin; average of three samples.

 $<sup>^{\</sup>rm C}$ Indeterminate because of high organic compound loading. Note: Values not blank adjusted.

# TABLE 9.3-13. WASTEWATER CHARACTERIZATION, PLANT 949 [1]

| Category: Gum and W<br>Subcategory: Tall o<br>Wastewater Treatment | oil rosin, pitch,<br>Description: Pr<br>co | imary treatmen<br>agulation to e | t supple<br>nhance s | mented by use of a<br>ettling of emulsif<br>ent by aerated lage | ied                                   |                    |
|--------------------------------------------------------------------|--------------------------------------------|----------------------------------|----------------------|-----------------------------------------------------------------|---------------------------------------|--------------------|
|                                                                    |                                            |                                  |                      | ncentration                                                     |                                       |                    |
| Pollutant                                                          | Process makeup<br>and well water           | Raw<br>wastewater                | Blank                | Initial settling<br>effluent                                    | Barametric condenser<br>closed system | Treated<br>effluen |
| Methylene chloride, μg/L                                           | 740                                        | 710                              | 30                   | 780                                                             | 210                                   | 85                 |
| Chloroform, µg/L                                                   | 10                                         | 10                               | <10                  | 10                                                              | <10                                   | 10                 |
| Benzene, µg/L                                                      | 120                                        | 120                              | <10                  | 110                                                             | 30                                    | 120                |
| Ethylbenzene, µg/L                                                 | <10                                        | 20                               | <10                  | 10                                                              | <10                                   | <10                |
| Toluene, µg/L                                                      | 20                                         | 20                               | <10                  | 50                                                              | 70                                    | 20                 |
| Phenol, µg/L                                                       | <10                                        | <10                              | <10                  | <10                                                             | 7,500                                 | <10                |
| Copper, µg/L                                                       | <10                                        | 150                              | 16                   | 230                                                             | 300                                   | 220                |
| Chromium, µg/L                                                     | 110                                        | 83                               | 35                   | 97,                                                             | 280                                   | 88                 |
| Lead, µg/L                                                         | <10                                        | 14                               | <10                  | <10                                                             | 26                                    | <10                |
| Nickel, µg/L                                                       | 13                                         | 19                               | 20                   | 24                                                              | 66                                    | 43                 |
| Selenium, µg/L                                                     | <10                                        | 11                               | <10                  | <10                                                             | <10                                   | <10                |
| Zinc, µg/L                                                         | <10                                        | 50                               | 70                   | 27                                                              | 80                                    | 44                 |
| Total phenols, µg/L                                                | <10                                        | 550                              | <10                  | 100                                                             | 1,700                                 | 29                 |
| Suspended solids, mg/L                                             | <10                                        | 44                               | <10                  | 15                                                              | 170                                   | 19                 |
| COD, mg/L                                                          | <10                                        | 1,100                            | <10                  | 160                                                             | 8,400                                 | 130                |
| BOD, mg/L                                                          | <10                                        | 42                               | <10                  | 12                                                              | 176                                   | <10                |
| Oil and grease, mg/L                                               | <10                                        | 48                               | <10                  | <10                                                             | 167                                   | 13                 |

Note: Values not blank adjusted.

TABLE 9.3-14. WASTEWATER CHARACTERIZATION, PLANT 097 [1]

Category: Gum and Wood Chemicals Subcategory: Rosin Derivatives

|                             |            | Concentra  | tion       |       |
|-----------------------------|------------|------------|------------|-------|
| Pollutant                   | Sample 730 | Sample 706 | Sample 737 | Blank |
| Chloroethane, µg/L          | <10        | <10        | 520        | <10   |
| Methylene Chloride, µg/L    | 2,700      | 7,300      | 6,700      | 630   |
| 1,1,1-Trichloroethane, µg/L | <10        | 830        | <10        | <10   |
| Benzene, µg/L               | <10        | 170        | 710        | <10   |
| Ethelbenzene, µg/L          | 12,000     | 2,200      | 28,000     | <10   |
| Toluene, µg/L               | 17,000     | 5,300      | >4,000     | <10   |
| Phenol, µg/L                | >10,600    | 14,000     | 23,000     | <10   |
| Arsenic, µg/L               | 41         | 53         | ND         | <10   |
| Cadmium, µg/L               | 95         | 120        | 100        | <10   |
| Copper, µg/L                | 300        | 180        | 190        | <10   |
| Chromium, µg/L              | 48         | 62         | 34         | <10   |
| Lead, µg/L                  | 54         | 72         | 49         | <10   |
| Nickel, µg/L                | 100        | 34         | <b>3</b> 5 | <10   |
| Zinc, µg/L                  | 38,000     | 38,000     | 38,000     | <10   |
| Total phenols, µg/L         | 41,000     | 46,000     | 53,000     | <10   |
| Suspended solids, mg/L      | 71         | 87         | 70         | <10   |
| COD, mg/L                   | 31,000     | 40,000     | 38,000     | <10   |
| BOD, mg/L                   | 1,260      | 450        | <10        | <10   |
| Oil and grease, mg/L        | 92         | 146        | 62         | <10   |

Note: Values not blank adjusted.

TABLE 9.3-15. WASTEWATER CHARACTERIZATION, PLANT 610 [1]

Category: Gum and Wood Chemicals Subcategory: Sulfate Turpentine

|                                   |          | Conce      | ntratio | n        |       |
|-----------------------------------|----------|------------|---------|----------|-------|
|                                   | Plant    | Raw        |         | Treated  |       |
| Pollutant                         | influent | wastewater | Blank   | effluent | Blank |
| Methylene chloride, µg/L          | 560      | 6,620      | NA      | 2,000    | 300   |
| Benzene, µg/L                     | <10      | <53        | NA      | <77      | <10   |
| Toluene, µg/L                     | <10      | <1,000     | NA      | < 63     | <10   |
| Bis(2-ethylhexyl) phthalate, µg/L | <10      | <10        | <10     | <640     | <10   |
| Arsenic, µg/L                     | <10      | <43        | <10     | <10      | <10   |
| Copper, µg/L                      | 250      | 2,000      | 190     | 2,970    | 220   |
| Chromium, µg/L                    | 120      | 200        | 36      | 150      | 16    |
| Lead, µg/L                        | <10      | <11        | <10     | 16       | <10   |
| Nickel, µg/L                      | 36       | 170        | 13      | 230      | 16    |
| Selenium, µg/L                    | <10      | <10        | <10     | <13      | <10   |
| Zinc, µg/L                        | <10      | 240        | 30      | 360      | 30    |
| Total phenols, µg/L               | 18       | 6,330      | <10     | 5,900    | <10   |
| Suspended solids, mg/L            | <10      | 240        | <10     | 420      | <10   |
| COD, mg/L                         | 16       | 10,000     | <10     | 4,700    | <10   |
| BOD, mg/L                         | <10      | 1,500      | <10     | 440      | <10   |
| Oil and grease, mg/L              | <10      | 290        | <10     | 140      | <10   |

Note: Values not blank adjusted.

<sup>&</sup>lt;sup>a</sup>Average of three samples.

TABLE 9.3-16. SUMMARY OF IN-PLACE TREATMENT TECHNOLOGY

| and the second s |     |     |     |     |     |     |     |     |      | Pla  | ant coc | le  |     |     |     |     |     |     |     |     |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 778 | 476 | 976 | 068 | 291 | 649 | 017 | 110 | 687A | 687B | 974     | 474 | 573 | 877 | 286 | 102 | 140 | 479 | 864 | 943 | 76 |
| Type of discharger <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D   | О   | D   | 1   | 1   | 0   | 1   |     | 1    | D    | 1       | 0   | o   | D   | D   | D   | 0   | I   | υ   | 0   | D  |
| Oil separation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X   | X   | Х   |     | x   | X   | x   | Х   | X    |      | Х       | Х   | X   | x   | X   | Х   | x   | X   | ×   | X   | Х  |
| Equalization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X   |     | Х   | x   |     |     |     |     | Х    |      | Х       |     |     |     | X   | х   |     | X   | x   |     | х  |
| Air flotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X   |     |     |     |     |     |     |     |      |      |         |     |     |     |     | X   |     | X   |     |     | Х  |
| Neutralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X   |     |     | X   |     |     | X   |     |      |      | Х       |     |     |     |     | X   |     | X   | X   |     | х  |
| Nutrient addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X   |     | X   |     |     |     | X   | Х   |      |      |         |     |     |     |     |     |     |     | х   |     | X  |
| Aerated lagoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Х   |     | Х   |     |     |     | Х   | Х   |      |      |         |     |     | x   | Х   |     |     |     |     |     | ٨  |
| Chrome reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |     |     |     |     |     |     |      |      |         |     |     |     |     |     |     |     |     |     |    |
| Metals removal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |     |     |     |     |     |     |      |      |         |     |     |     |     |     |     |     |     |     |    |
| Clarification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |     |     |     |     | Х   |      | X    |         | ×   |     |     |     | Х   |     | X   |     |     |    |
| Filtration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |     |     |     |     |     |     |      |      | Х       |     |     |     |     | x   |     |     |     |     |    |
| Granular carbon adsorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |     |     |     |     |     |     |      |      |         |     |     |     |     | Х   |     |     |     |     |    |
| Chemical coagulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |     | Х   |     |     |     |     |      |      |         |     |     | X   | X   |     |     |     |     |     |    |
| Settling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Х   | X   | Х   | X   | X   | x   | Х   |     | Х    | X    |         |     | Х   | X   | Х   | x   | X   | Х   | х   | Х   | X  |
| Mixing carbonaceous fly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     | X   |     |     |     |     |     |      |      |         |     |     |     |     |     |     |     |     |     |    |
| Nonaerated pond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |     |     |     |      |      |         |     |     |     | х   |     |     |     | Х   |     |    |
| Activated sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |     |     |     |     |     |     |      |      |         |     |     |     |     |     |     |     | Х   |     |    |

 $a_{\rm D}$  - direct, O - plant discharges into the wastestream of another plant, 1 - indirect.

on the wastewater flow and the quantity of oil products produced at the plant. In this study, free oil removal was not considered part of the treatment system, and wastewater characteristics across oil-water separators were not considered.

Chemical flocculation - Wastewater from the industry typically has high concentrations of emulsified oil, the quantity of which varies from plant to plant depending on the efficiency of the oil-water separator and the pH of the wastestream. At a pH less than 3, the emulsion problem is greatly reduced; however, the pH of the wastestreams in the industry typically ranges from 3 to 9.

Two plants in the industry are currently using chemical coagulation. One plant fractionates tall oil, and the other plant has major production in the wood rosin and turpene area. These plants reduce oil and grease by 65% to 85% using coagulation and settling equipment with a polymer as a flocculation aid. The flocculated effluent generally contains from 7 to 16 mg/L of oil and grease.

Equalization. Equalization is used in the treatment system to smooth out surges in both flow and pollutant concentration. Some type of equalization will be required by the industry in general.

Air Flotation. Air flotation devices are used by plants 778 and 767. A study conducted by plant 778 reported that air flotation removed 204 kg/day (450 lb/day) of BOD, 181 kg/day (400 lb/day) oil and grease, and 236 kg/day (521 lbs/day) of COD. Plant 767 is in the process of installing the flotation equipment, and pollutant removal rates are not available at this time.

Plant 102 is using a dissolved air flotation process. A study conducted by the plant showed a reduction of TOC across the flotation unit of 2,860 kg/day (6,300 lb/day). Oils recovered from the flotation unit are used as a fuel supplement.

Neutralization. Gum and wood chemicals industrial wastestreams vary in pH from 3 to 9. Neutralization is required to adjust the pH of the stream to levels necessary for the various treatment steps. Oil emulsion breaking requires a pH of less than 3; metals precipitation requires a pH of approximately 9; and biological treatment requires a pH of approximately 7. The pH adjustment can be made with the addition of either alkalies or acids, depending on what pH is required. Alkalies commonly used are lime, caustic, or soda ash. The acid used in neutralization is usually sulfuric acid.

<u>Carbon Adsorption</u>. Presently, there is one facility using activated carbon adsorption. Plant 102 has oil-water separation, neutralization, dissolved air flotation, filtration, and finally

granular activated carbon (GAC). Before installing the GAC, carbon isotherm and pilot plant studies were performed.

Adsorption isotherms were developed by three separate laboratories using the parameter COD. The results were carbon loadings of between 0.85 and 1.2 kg COD/kg carbon (0.85 lb COD/l.2 lb carbon). The pilot plant studies revealed that the optimal conditions were flow rates of 176 to 293  $\rm m^3/m^2/day$  (3 to 5 gpm/ft²) and a contact time of 45 to 50 minutes. At these conditions, COD removals were 75% to 85%. The pilot plant results confirmed the isotherm results by yielding a carbon loading of approximately 1.0 kg COD/kg carbon (lb COD/lb carbon).

The GAC system was designed and is operating at a carbon loading of approximately 1.2 kg COD/kg carbon (1.2 lb COD/lb carbon) and 0.44 kg TOC/kg carbon (lb TOC/lb carbon). Pollutant reductions were approximately 84% COD and 79% TOC. Representative performance data for the GAC system are shown in Table 9.3-17 (next page). The performance of the entire treatment system was better than 95% removal of COD and TOC. Typical performance data for the total treatment system are shown in Table 9.3-18.

Very little data are available on adsorption of toxic pollutants in gum and wood chemicals wastewater. Carbon adsorption is not effective for removing most metals. The organics commonly identified during screening and verification were benzene, toluene, ethylbenzene, and phenol.

As indicated in Table 9.3-19, the toxic pollutants found at plant 102 were benzene, toluene, phenol, and bis(2-ethylhexyl) phthalate. The bis(2-ethylhexyl) phthalate was found only in the effluent of the carbon adsorption unit.

Evaporation. Due to the significant volumes of plant waste-water generated, evaporation is not a feasible or widely used technology in the Gum and Wood Chemicals Industry for achieving no-discharge status. However, it may be applicable for disposal of specific, high strength, low volume, process wastestreams.

#### II.9.3.5 References

- Technical Review of the Best Available Technology, Best Demonstrated Technology, and Pretreatment Technology for the Gum and Wood Chemicals Point Source Category (draft contractor's report). Environmental Science and Engineering, Inc.
- 2. NRDC Consent Decree Industry Summary Gum and Wood Chemicals Industry.
- 3. Environmental Protection Agency Effluent Guidelines and Standards for Gum and Wood Chemicals Manufacturing. 40 CFR 454; 41FR 20506, May 18, 1976.

TABLE 9.3-17 SECONDARY TREATMENT FEED AND EFFLUENT ANALYSIS AND PERFORMANCE DATA FOR PLANT 102 GRANULAR ACTIVATED CARBON SYSTEM [1]

|                                                      |          |          | Percent   | Removal |
|------------------------------------------------------|----------|----------|-----------|---------|
| Item                                                 | Influent | Effluent | reduction | kg/day  |
| Design                                               |          |          |           |         |
| $12,260 \text{ m}^3/\text{day} (3.24 \text{ MGD/d})$ |          |          |           |         |
| COD, mg/L                                            | 600      | 125      | 79        | 5,810   |
| TOC, mg/L                                            | 160      | 30       | 81        | 1,590   |
| BOD, mg/L                                            | 250      | 50       | 80        | 2,450   |
| Startup period                                       |          |          |           |         |
| $9.810 \text{ m}^3/\text{day} (2.59 \text{ MGD/d})$  |          |          |           |         |
| COD, mg/L                                            | 975      | 152      | 84        | 8,070   |
| TOC, mg/L                                            | 222      | 46       | 79        | 1,590   |
| Typical operation                                    |          |          |           |         |
| 9,810 m <sup>3</sup> /day (2.59 MGD/d)               |          |          |           |         |
| COD, mg/L                                            | 752      | 160      | 79        | 5,810   |
| TOC, mg/L                                            | 203      | 42       | 79        | 1,590   |
| Selected samples                                     |          |          |           |         |
| 9,810 m <sup>3</sup> /day (2.592 MGD)                |          |          |           |         |
| BOD, mg/L                                            | 300      | 82       | 73        | 2,130   |
| Phenols, mg/L                                        | 4.66     | 0.58     | 88        | 40      |
| Ni, mg/L                                             | 1.02     | 0.33     | 68        | 6.8     |
| Zn, mg/L                                             | 1.11     | 0.29     | 74        | 8.2     |
| Cd, mg/L                                             | 0.91     | 0.22     | 76        | 6.8     |
| Cu, mg/L                                             | 1.29     | 0.36     | 72        | 9.1     |
| Cr, mg/L                                             | 1.12     | 0.26     | 77        | 8.6     |
| TS, mg/L                                             | 1,210    | 965      | 20        | 2,400   |
| SS, mg/L                                             | 81       | 13       | 84        | 680     |
| DS, mg/L                                             | 1,130    | 952      | 16        | 1,720   |
| Chlorides, mg/L                                      | 1.82     | 0.84     | 48        | 8.6     |
| NO <sub>2</sub> , mg/L                               | 5.16     | 4.28     | 17        | 8.6     |
| Oil and grease, mg/L                                 | 28.1     | 2.2      | 92        | 254     |

TABLE 9.3-18. TYPICAL TOTAL TREATMENT SYSTEM PERFORMANCE DATA [1]

| Parameter      | Raw Waste-<br>water<br>mg/L | Primary<br>Treated<br>effluent,<br>mg/L | Secondary<br>Treated<br>effluent,<br>mg/L | Overall reduction, |
|----------------|-----------------------------|-----------------------------------------|-------------------------------------------|--------------------|
| COD            | 3,200                       | 670                                     | 143                                       | 95.5               |
| TOC            | 1,200                       | 198                                     | _<br>37                                   | 96.9               |
| BOD            | 1,600                       | 267                                     | 73                                        | 95.4               |
| TSS            | 320                         | 72                                      | 12                                        | 96.3               |
| Oil and grease | 500                         | 25                                      | 2                                         | 99.6               |

a<sub>Oil-water</sub> separation, neutralization, dissolved air flotation, filtration, and granular activated carbon at 9,810 m<sup>3</sup>/d (2.592 MGD).

TABLE 9.3-19. REMOVAL OF ORGANIC PRIORITY POLLUTANTS FOR PLANT 102 ACROSS ACTIVATED CARBON COLUMN [1] (µg/L)

|                              | Sample prior to | Sample a | fter car | bon column |
|------------------------------|-----------------|----------|----------|------------|
| Pollutant                    | carbon column   | Day l    | Day 2    | Day 3      |
| Benzene                      | 590             | 131      | 200      | 300        |
| Toluene                      | 2,500           | 180      | 400      | 1,300      |
| Phenol                       | 120             | ND       | ND       | 49         |
| <pre>Bis(2-ethylhexyl)</pre> |                 |          |          |            |
| phthalate                    | ND              | 400      | 260      | ND         |

#### II.9.5 PHARMACEUTICAL MANUFACTURING

#### II.9.5.1 INDUSTRY DESCRIPTION

#### II.9.5.1.1 General Description [1,2]

The pharmaceutical manufacturing industry produces hundreds of medicinal chemicals by means of many complex manufacturing technologies. The Pharmaceutical Manufacturing Point Source Category may be subdivided to cover the following products, processes, or activities [1]:

- Biological products covered by SIC Code 2831.
- Medicinal chemicals and botanical products covered by SIC Code 2833.
- Pharmaceutical products covered by SIC Code 2834.
- All fermentation, biological and natural extraction, chemical synthesis, and formulation products, which are considered to be pharmaceutical active ingredients by the Food and Drug Administration but are not covered by SIC Codes 2831, 2833, or 2834.
- Cosmetic preparations covered by SIC Code 2844 which function as skin treatments, excluding products which serve to enhance appearance or provide a pleasing odor.
- The portion of a product with multiple end uses which is attributable to the pharmaceutical manufacturing industry.
- Pharmaceutical research which includes biological, microbiological, and chemical research; product development; clinical, and pilot-plant activities.

Information on 436 pharmaceutical manufacturing plants is presently included in the EPA data base, representing the feedback from more than 900 308 Portfolios distributed. Most pharmaceutical manufacturing firms are located in New York, New Jersey, Pennsylvania, Indiana, Michigan, Missouri, Ohio, and California with production concentrated in the industrial areas of the east and midwest. Of the 436 plants identified in the EPA data base, approximately 80% are located in the eastern part of the United States.

Table 9.5-1 summarizes pertinent information regarding the total number of subcategories, the number of subcategories studied by EGD, and the number and type of discharges in the industry. Only 11% of the surveyed pharmaceutical plants have direct discharges, whereas the majority of the plants in the industry discharge their wastewaters to POTW's. Current Best Practicable Control Technology Currently Available (BPT) regulations pertaining to the pharmaceutical manufacturing industry are presented in Table 9.5-2.

Industry: Pharmaceutical Manufacturing
Total Number of Subcategories: 5
Number of Subcategories Studied: 5

Number of Dischargers in Industry:

- Direct: 50
- Indirect: 245
- Combined Direct and Indirect: 7
- Zero: 134ª

a No process wastewater is disposed of at 104 plants; five plants use land application, four use subsurface disposal, five use a septic system, two use ocean disposal, seven use contract disposal, and seven use evaporation to achieve zero discharge.

TABLE 9.5-2. PHARMACEUTICAL MANUFACTURING BPT REGULATIONS [4]

| Parameter                     | Subcategories | Current BPT regulation                                                                                                                                                                                                                                                                                                               |
|-------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BOD <sub>s</sub> <sup>a</sup> | A,B,C,D,E     | The allowable effluent discharge limitation for the daily average mass of BOD <sub>5</sub> in any calendar month shall be expressed in mass per unit time and shall specifically reflect not less than 90% reduction in the long-term daily average raw waste content of BOD <sub>5</sub> multiplied by a variability factor of 3.0. |
| COD <sup>a</sup>              | A,B,C,D,E     | The allowable effluent discharge limitation for the daily average mass of COD in any calendar month shall be expressed in mass per unit time and shall specifically reflect not less than 74% reduction in the long-term daily average raw waste content of COD multiplied by a variability factor of 2.2.                           |
| TSS                           | B,D,E         | The average of daily TSS values for any calendar month shall not exceed 52 mg/L.                                                                                                                                                                                                                                                     |
| рН                            | A,B,C,D,E     | The pH shall be within the range of 6.0 to 9.0 standard units.                                                                                                                                                                                                                                                                       |

To assure equity in regulating discharges from the point sources covered by this subpart of the point source category, calculation of raw waste loads of BODs and COD for the purpose of determining NPDES permit limitations (i.e., the base numbers to which the percent reductions are applied) shall exclude any waste load associated with solvents in those raw waste loads; Provided, that residual amounts of solvents remaining after the practice of recovery and/or separate disposal or reuse may be included in calculation of raw waste loads. These practices of removal, disposal or reuse include recovery of solvents from waste streams and incineration of concentrated solvent waste streams (including tar still bottoms). This regulation does not prohibit inclusion of such wastes in the raw waste loads in fact, nor does it mandate any specific practice, but rather describes the rationale for determining the permit conditions. These limits may be achieved by any one of several or a combination thereof of programs and practices.

Date: 6/23/80

# II.9.5.1.2 Subcategory Descriptions [1,2]

Under the regulation established for BPT, the Pharmaceutical Manufacturing Point Source Category was grouped into the five product or activity areas shown below. This subcategorization was based on distinct differences in manufacturing processes, raw materials, products, and wastewater characteristics and treatability.

Subcategory A - Fermentation Products

Subcategory B - Biological and Natural Extraction Products

Subcategory C - Chemical Synthesis Products

Subcategory D - Formulation Products
Subcategory E - Pharmaceutical Research

- The EPA has decided to deemphasize pharmaceutical research (Subcategory E) because this activity does not fall within SIC Codes 2831, 2833, and 2834, which were identified in the Consent Decree.
- Many plants within the industry are involved in activities associated with more than one subcategory. Table 9.5-3 indicates that 78.9% of the plants in the EPA data base are involved in formulation (Subcategory D) activities. Table 9.5-4 presents a breakdown of the industry by manufacturing subcategory, listing the number of plants and the percent of total plants for each subcategory combination. Formulation (Subcategory D) is by far the most common manufacturing operation in this industry. Many plants having either Subcategory A or C operations also have Subcategory D activities.
- Table 9.5-5 gives the number of batch, continuous, and semicontinuous operations for each subcategory and for the total industry. Batch-type operations are by far the most prevalant form of pharmaceutical production activities.

#### Subcategory A - Fermentation Products

Fermentation, the basic method used for producing most antibiotics and steroids, involves three basic processing steps: inoculum and seed preparation, fermentation, and product recovery.

Production of a fermentation pharmaceutical begins with spores from the plant master stock. The spores are activated with water, nutrients, and heat. The cultures are then propagated under laboratory conditions to produce sufficient mass for transfer to the seed tank.

Fermentation is a batch process, although most large operations are highly automated. In each batch cycle, the broth is discharged from the previous cycle, and then the fermenter is washed down with water and sterilized with live steam. Sterilized raw materials are then charged into the vessel. After optimum conditions are achieved, the microorganisms in the seed tank are drained into the fermenter, and fermentation begins.

TABLE 9.5-3. PLANTS ASSOCIATED WITH OVERALL MANUFACTURING SUBCATEGORIES [3]

| Number<br>of plants | Percent of total plants      |
|---------------------|------------------------------|
| 30                  | 6.9                          |
| 64                  | 14.7                         |
| 113                 | 25.9                         |
| 344                 | 78.9                         |
|                     | of plants<br>30<br>64<br>113 |

aExcludes subcategory E.

TABLE 9.5-4. PLANTS ASSOCIATED WITH MANUFACTURING SUBCATEGORY COMBINATIONS [3]

| Manufacturing subcategory combination <sup>a</sup> | Number<br>of plants | Percent of total plants |
|----------------------------------------------------|---------------------|-------------------------|
| COMBINACION                                        | OI PIGNES           | cocar prance            |
| A                                                  | 3                   | 0.7                     |
| В                                                  | 20                  | 4.6                     |
| С                                                  | 40                  | 9.2                     |
| D                                                  | 255                 | 58.5                    |
| AC                                                 | 3                   | 0.7                     |
| AD                                                 | 6                   | 1.4                     |
| BC                                                 | 7                   | 1.6                     |
| BD                                                 | 20                  | 4.6                     |
| CD                                                 | 41                  | 9.4                     |
| ABC                                                | 1                   | 0.2                     |
| ABD                                                | 3                   | 0.7                     |
| BCD                                                | 6                   | 1.4                     |
| ABCD                                               | 7                   | 1.6                     |
|                                                    |                     |                         |

a Excludes subcategory E.

TABLE 9.5-5. PHARMACEUTICAL INDUSTRY SUBCATEGORY AND PRODUCTION OPERATION BREAKDOWN [3]

|                             |             |      | r of ope | eration | s         |  |  |
|-----------------------------|-------------|------|----------|---------|-----------|--|--|
|                             | Subcategory |      |          |         |           |  |  |
| Parameter                   | A           | В    | С        | D       | Total     |  |  |
| Type of operation           |             |      |          |         |           |  |  |
| Batch                       | 25          | 60   | 109      | 327     | 521       |  |  |
| Continuous                  | 3           | 0    | 14       | 16      | 33        |  |  |
| Semicontinuous              | _9          | 9    | 18       | 17      | <u>53</u> |  |  |
| Number of operations        | 37          | 69   | 141      | 360     | 607       |  |  |
| Percent of total operations | 6.1         | 11.4 | 23.2     | 59.3    | 100.0     |  |  |

After a period of 12 hours to one week, depending on the fermentation process, the broth is ready for product recovery. The four common methods of product recovery are solvent extraction, direct precipitation, ion exchange, and carbon adsorption. In solvent extraction, an organic solvent is used to remove the pharmaceutical product from the aqueous broth to form a more concentrated, smaller volume solution. Direct precipitation consists of first precipitating the product from the aqueous broth, filtering the broth, and then extracting the product from the solid residues. Ion exchange and carbon adsorption involve removal of the product from the broth using a solid material (i.e., ion exchange resin or activated carbon). The product is then removed from the solid phase using an elutriant or a solvent and subsequently recovered.

#### Subcategory B - Biological and Natural Extraction

Many materials used as pharmaceuticals are derived by extraction from natural sources, which include roots and leaves of plants, animal glands, and parasitic fungi. All extractive pharmaceuticals are too complex to synthesize commercially. In addition, synthesis represents an expensive manufacturing process because extraction requires the collection and processing of very large volumes of specialized plant or animal matter to produce very small quantities of product.

The extraction process consists of a series of operating steps in which, following almost every step, there is a significant reduction in the volume of material being handled. In some processes, the volume reductions may be in orders of magnitude, and the complex final purification operations may be conducted on quantities of materials that are only a few thousandths of the amount handled in earlier steps. Therefore, neither continuous processing

methods nor conventional batch methods are suitable for extraction processing. Instead, a unique processing method has been developed which can be described as assembly-line small-scale batch. In this method, material is transported in portable containers through the plant in batches of approximately 19.8 L to 26.4 L. A continuous line of such containers is sent past a series of operating stations. At each station, operators perform specific tasks on each batch in turn. As the volume of material being handled decreases, individual batches are successively combined to maintain reasonable operating volumes, and the line moves more slowly. When the volume is reduced to a very small quantity, the containers being used also become smaller, with laboratory-size equipment used in many cases.

An extractive plant may produce one product for a few weeks, and then, by simply changing the logistical movement of pots and redefining the tasks to be conducted at each station, it can convert almost overnight to the manufacture of a different product.

# Subcategory C - Chemical Synthesis Products

Most of the compounds used today as drugs are prepared by chemical synthesis generally using a batch process. The basic equipment consists of a conventional batch reaction vessel, which is one of the most standardized equipment designs in industry. Synthetic pharmaceutical manufacture includes the use of one or several of these vessels to perform, in a step-by-step fashion, the various operations necessary to make the product. Following a definite recipe, the operator (or a programmed computer) adds reagents, increases or decreases the flow rate of cooling water, chilled water, or steam, and starts and stops pumps to withdraw the reactor contents into another similar vessel. At the appropriate steps of the process, solutions are pumped through filters or centrifuges, or pumped into solvent recovery headers or waste sewers.

Each pharmaceutical is usually manufactured in a "campaign" in which one or more process units are employed for a few weeks or months to manufacture enough compound to satisfy the projected sales demand. At the end of the campaign, another is scheduled, and the same equipment and operating personnel are used to make a completely different product, utilizing different raw materials, executing a different recipe, and generating different wastes.

# Subcategory D - Formulation Products

Although pharmaceutical active ingredients are produced in bulk form, they must be prepared in dosage form for use by the consumer. Pharmaceutical compounds can be formulated into tablets, capsules, liquids or ointments, as described below.

Tablets are formed by blending the active ingredient, filler, and binder. The mixture is placed in a tablet press machine and sometimes coated by tumbling with a coating material and drying. The filler (usually starch or sugar) is required to dilute the active medicinal to the proper concentration; binder (such as corn syrup or starch) is necessary to bind the tablet particles together. A lubricant (such as magnesium stearate) may be added for proper tablet machine operation. After the tablets have been coated and dried, they are bottled and packaged.

Capsules are produced by first forming the hard gelatin shell. These shells are produced by machines that dip rows of rounded metal dowels into a molten gelatine solution and strip the capsules from the dowels after the capsules have cooled and solidified. The active ingredient and any filler are mixed and poured into the empty gelatin capsules by a machine operation. The filled capsules are bottled and packaged.

Liquid preparations can be formulated for use by injection or oral consumption. In either case, the liquid is weighed and then dissolved in water. Injectable solutions are packaged in bottles and heated or bulk sterilized by sterile filtration and poured into sterile bottles. Oral liquid preparations are bottled directly without subsequent sterilization.

# Subcategory E - Pharmaceutical Research

Because of the high cost of a new drug and the general importance to the public health, companies are mainly interested in cures for the more common ailments. Nevertheless, many remedies for rare diseases and diagnostic agents have come from the laboratories of the pharmaceutical industry. The three areas of research in the pharmaceutical industry are chemical, microbiological, and biological.

Laboratory animals are used extensively at pharmaceutical research facilities. The types of animals used include dogs, cats, monkeys, rabbits, guinea pigs, rats, and mice. The animal colonies where the test animals are housed can be major wastewater sources. The animal cages are usually dry-cleaned and the residue washed into the plant sewer system. Collected feces and any animal carcasses are incinerated or landfilled if the waste matter is not infected. Exhaust gases from the incinerators pass through wet scrubbers, and the scrubber blowdown in subsequently discharged to the plant sewer system.

# II.9.5.2 WASTEWATER CHARACTERIZATION [1,2]

Plants in the pharmaceutical manufacturing point source category operate continuously throughout the year. Their processes are largely characterized by batch operations, which have significant

variations in pollution characteristics during any typical operating period. However, some continuous unit operations are used in the fermentation and chemical synthesis subcategories [2].

Plants in Subcategory A (Fermentation products) and Subcategory C (Chemical synthesis products) generate wastewaters with the highest pollutant concentrations. In Subcategory A, these high levels are primarily due to the spent solvents used in extraction processes and sewered fermentation beers. In Subcategory C, a myriad of organic chemicals are used as intermediates in the production of fine chemicals, and they contribute significant pollutant loads to plant wastewater effluents [2].

The major sources of process wastewaters in the pharmaceutical manufacturing point source category include product washings, product purification and separation, fermentation processes, concentration and drying procedures, equipment washdowns, barometric condensers, and pump-seal waters. Wastewaters from this point source category can be characterized as having high concentrations of BOD<sub>5</sub>, COD, TSS, and volatile organics. Wastewaters from some wet chemical syntheses may contain heavy metals (iron, copper, nickel, and silver) or cyanide and may have antibacterial constituents, which can exert a toxic effect on biological waste treatment processes. Considerations significant to the design of treatment works are the highly variable BOD<sub>5</sub> loadings, high chlorine demand, presence of surface-active agents, the possibility of nutrient deficiency, and the possibility of potentially toxic substances [2].

Table 9.5-6 presents available wastewater characterization data by overall manufacturing subcategory in terms of median pollutant loadings and concentrations. As previously shown in Table 9.5-4, nearly 30% of the pharmaceutical manufacturing plants have processes associated with more than one of the four major subcategories. For this reason, the screening data shown in Table 9.5-7 are presented in terms of pollutant concentrations by manufacturing subcategory combinations.

#### II.9.5.2.1 Subcategory A - Fermentation Products

The sources of wastewater from fermentation operations are (1) spent fermentation beers; (2) floor and equipment wash waters; (3) chemical wastes, such as spent solvents from the extraction processes; and (4) barometric condenser water. Of these, spent fermentation beer is by far the most significant waste discharge [1]. Spent beer contains residual food materials such as sugars, starches, and vegetable oils not consumed in the fermentation process. Spent beer contains a large amount of organic material, protein, and other nutrients; frequently, it also contains large amounts of nitrogen, phosphate, and other growth factors as well as salts, such as sodium chloride and sodium sulfate [2].

TABLE 9.5-6. MEDIAN POLLUTANT LOADINGS AND CONCENTRATIONS BY OVERALL MANUFACTURING SUBCATEGORY [2]

|                             |                       |                     |                       |                      | Subcated         | orv                |                        | <del></del>            |                  |          |
|-----------------------------|-----------------------|---------------------|-----------------------|----------------------|------------------|--------------------|------------------------|------------------------|------------------|----------|
|                             | A                     |                     | <del></del>           | B                    | (                |                    | - <del></del>          | D                      | E                |          |
| Flow, m <sup>3</sup> /d     | 1,50                  | 00                  | 4                     | 00                   | 2,3              | 300                | 2                      | 80                     | 18               | 0        |
|                             | Median                | value               | Media                 | n value              | Median           | value              | Mediar                 | value                  | Median           | value    |
| Pollutants                  | kg/d                  | mg/L                | kg/đ                  | mg/L                 | kg/d             | mg/L               | kg/đ                   | mg/L                   | kg/d             | mg/L     |
| Toxic pollutant metals      |                       |                     |                       |                      |                  |                    |                        |                        |                  |          |
| and inorganics:             |                       |                     |                       |                      |                  |                    |                        |                        |                  |          |
| Arsenic                     | 0.30 <sup>&amp;</sup> | 0.15 <sup>a</sup>   | NA                    | NA                   | 14 <sup>a</sup>  | 12 <sup>a</sup>    | NA                     | NA                     | NA               | NA       |
| Chromium                    | 0.09                  | 0.06                | NA _                  | NA .                 | 0.20ª            | 0.16ª              | NA                     | NA                     | NA _             | NA _     |
| Copper                      | NDa                   | NDa                 | 0 10 <sup>a</sup>     | 0.11ª                | NA               | NA                 | 0.13                   | 0.12                   | 0.19             | 0.23ª    |
| Cyanide                     | 0.015                 | 0.009               | 0.023                 | 0.23                 | 0.02ª            | 0.016 <sup>a</sup> | 0.13<br>0.03           | 0.020 <sup>a</sup>     | NA               | NA       |
| Lead                        | NDa                   | NDa                 | 0.13 <sup>a</sup>     | 0.15 <sup>a</sup>    | NA               | NA                 | 0.085                  | 0.093                  | 0.040ª           | 0.048    |
| Mercury                     | ND <sup>21</sup>      | NDa                 | NDg                   | ND <sup>a</sup>      | NA               | NA                 | 0.0005                 | 0.0003                 | 0.002            | 0.0024   |
| Selenium                    | 0.13ª                 | 0.063ª              | NA _                  | NA _                 | NA               | NA                 | NA                     | NA                     | NA _             | NA       |
| Zinc                        | ND <sup>a</sup>       | nd <sup>a</sup>     | 0.27 <sup>a</sup>     | 0.31 <sup>a</sup>    | NA               | NA                 | 0.55                   | 0.49                   | 0.52ª            | 0.62     |
| Other metals:               |                       |                     |                       | _                    |                  |                    |                        |                        |                  |          |
| Aluminum                    | nda                   | иDa                 | 0.04 <sup>a</sup>     | 0.45 <sup>a</sup>    | NA               | NA                 | NA                     | NA                     | NA               | NA       |
| Calcium                     | 140                   | 150                 | 71 <b>a</b>           | 81 <sup>a</sup>      | 280_             | 120                | 14                     | 73                     | 22               | 62       |
| Iron                        | NDa                   | nd <sup>a</sup>     | 0.50 <sup>a</sup>     | 0.57 <sup>a</sup>    | 17 <sup>a</sup>  | 2.4 <sup>a</sup>   | 0.15                   | 0.64                   | 0.20             | 0.38     |
| Magnesium                   | 9.5                   | 3.1                 | NA                    | NA                   | 64 <sup>a</sup>  | 52 <b>a</b>        | NA                     | NA                     | NA               | NA       |
| Manganese                   | 0.009 <sup>a</sup>    | 0.0044 <sup>a</sup> | NA                    | NA                   | NA_              | NA_                | NA                     | NA                     | NA               | NA       |
| Potassium                   | 67                    | 39                  | NA<br>50 <sup>a</sup> | NA_                  | 150 <sup>a</sup> | 120 <sup>a</sup>   | NA _                   | NA_                    | NA A             | NA a     |
| Sodium                      | 240                   | 190                 | 50°                   | 560 <sup>&amp;</sup> | 4,900            | 810                | 5.6 <sup>a</sup>       | 3,600 <sup>a</sup>     | 2.5ª             | 3.9ª     |
| Classical and conventional: |                       |                     |                       |                      |                  |                    |                        |                        |                  |          |
| BOD                         | 4,500                 | 2,500               | 17                    | 150                  | 2,500            | 1,900              | 210                    | 380                    | 20               | 200      |
| COD                         | 9,300                 | 5,800               | 41                    | 300                  | 7,200            | 3,500              | 350                    | 670                    | 43               | 400      |
| TSS                         |                       | 840                 |                       | 32                   |                  | 280                |                        | 49                     |                  | 50       |
| TDS                         | 4,400                 | 3,300               | 250                   | 1,000                | 6,900            | 6,700              | 360                    | <b>6</b> 60            | 100              | 480      |
| TKN                         | 520                   | 280                 | 2.9                   | 8.3                  | 240              | 800                | 5.5                    | 25                     | 5.0              | 2.7      |
| NO3-N                       | 0.0015                | ND                  | ND                    | ND                   | 0.085            | 0.13               | 0.15                   | 0.13                   | 0.02             | 0.031    |
| Phosphorous(total)          | 61                    | 43                  | 2.2                   | 3.7                  | 131              | 44                 | 1.6                    | 10                     | 0.95             | 10 a     |
| Phenol(total)               | 0.30                  | 0.18                | 0.006ª                | 0.013ª               | 2.5              | 1.2                | NA<br>180 <sup>a</sup> | NA<br>120 <sup>a</sup> | 0.053ª           | 0.29ª    |
| Hardness                    | 500                   | 330                 | NA                    | NA                   | 700 <sup>a</sup> | 570 <sup>a</sup>   |                        |                        | NA a             | NA<br>17 |
| Oil and grease              | 530                   | <b>39</b> 0         | 0.31                  | 2.1                  | 200              | 86                 | 21                     | 15                     | 3.1 <sup>a</sup> |          |
| Sulfate                     | 210                   | 130                 | 42                    | 64                   | 2,600            | 1,700              | 22 a                   | 39a                    | 32               | 72       |
| Sulfide                     | NA                    | NA                  | NA_                   | NA                   | NA               | NA                 | 0.021 <sup>a</sup>     | 0.014ª                 | NA               | NA       |
| Chloride                    | 92                    | 66                  | 410 <sup>a</sup>      | 470 <sup>a</sup>     | 1,600            | 550                | 31                     | 28                     | 19               | 47       |

Based upon single reported value.

TABLE 9.5-7. POLLUTANT CONCENTRATIONS BY MANUFACTURING SUBCATEGORY COMBINATIONS [1]  $(\mu g/L)$ 

|                                                | A <sup>a</sup> |          | Da         |          |                    | CD <sup>a</sup> |          | CE <sup>a</sup> |          |
|------------------------------------------------|----------------|----------|------------|----------|--------------------|-----------------|----------|-----------------|----------|
|                                                | Raw            | Treated  | Raw        | Treated  | AD <sup>a</sup> ,b | Raw             | Treated  | Raw             | Treated  |
| Toxic pollutant                                | wastewater     | effluent | wastewater | effluent | Effluent           | wastewater      | effluent | wastewater      | effluent |
| Metals and inorganics                          |                |          |            |          |                    |                 |          |                 |          |
| Antimony                                       | 28             | 50       | ND         | ND       | ND                 | NA              | 90       | ND              | ND       |
| Arsenic                                        | 31             | 47       | ND         | ND       | ND                 | NA              | 7,000    | ND              | ND       |
| Cadmium                                        | ND             | ND       | ND         | ND       | ND                 | ND              | ND       | 6               | ND       |
| Chromium                                       | ND             | 17       | 30         | 10       | ND                 | NA              | 9        | 6               | 7        |
| Copper                                         | 29             | 48       | 50         | 30       | ND                 | NA              | 35       | 21              | ND       |
| Cyanide                                        | ND             | ND       | ND         | ND       | ND                 | ND              | ND       | 1,000           | 32       |
| Mercury                                        | ND             | 6.4      | ND         | ND       | ND                 | ND              | ND       | ND              | ND       |
| Selenium                                       | 60             | 150      | ND         | ND       | ND                 | NA              | 310      | ND              | ND       |
| Zinc                                           | 89             | 120      | 300        | 200      | ND                 | NA              | 70       | 60              | 36       |
| Ethers                                         |                |          |            |          |                    |                 |          |                 |          |
| Bis(2-chloroethyl) ether                       | ND             | ND       | ND         | ND       | ND                 | ND              | ND       | 5               | 10       |
| Phthalates                                     |                |          |            |          |                    |                 |          |                 |          |
| Bis(2-ethylhexyl) phthalate                    | ND             | ND       | 170        | 30       | ND                 | ND              | ND       | 6               | 8        |
| Di-n-butyl phthalate                           | ND             | ND       | 20         | ND       | ND                 | ND              | ND       | ND              | ND       |
| Nitrogen compounds                             |                |          |            |          |                    |                 |          |                 |          |
| 1,2-Diphenylhydrazine                          | ND             | ND       | ND         | ND       | ND                 | ND              | ND       | 10              | ND       |
| Phenols                                        |                |          |            |          |                    |                 |          |                 |          |
| 2-Nitrophenol                                  | ND             | ND       | ND         | ND       | ND                 | 13,000          | 4,100    | ND              | ND       |
| 4-Nitrophenol                                  | 1,600          | ND       | ND         | ND       | ND                 | 3,500           | 1,100    | ND              | ND       |
| Pentachlorophenol                              | ND             | ND       | 62         | ND       | ND                 | ND              | ND       | ND              | ND       |
| Phenol                                         | 70             | ND       | ND         | ND       | ND                 | 17,000          | 17,000   | 32              | ND       |
| 2,4,6-Trichlorophenol                          | ND             | ND       | ND         | ND       | ND                 | ND              | ND       | 7               | ND       |
| Aromatics                                      |                |          |            |          |                    |                 |          |                 |          |
| Benzene                                        | ND             | ND       | 79         | ND       | 390                | ND              | ND       | 20              | ND       |
| Ethylbenzene                                   | ND             | ND       | 11         | ND       | ND                 | ND              | ND       | 71              | ND       |
| Toluene                                        | ND             | ND       | 900        | ND       | 53                 | ND              | ND       | 17,000          | 700      |
| Halogenated aliphatics                         |                |          |            |          |                    |                 |          |                 |          |
| Carbon tetrachloride                           | ND             | ND       | ND         | ND       | 300                | ND              | ND       | 6,000           | ND       |
| Chloroform                                     | ND             | ND       | 300        | 14       | 1,400              | ND              | ND       | 1,600           | ND       |
| 1,2-Dichloroethane                             | ND             | ND       | 19         | ND       | ND                 | ND              | 20       | 74              | ND       |
| 1,1-Dichloroethylene                           | ND             | ND       | ND         | ND       | ND                 | 30              | 370      | 95              | ND       |
| Methyl bromide                                 | ND             | ND       | ND         | ND       | ND                 | ND              | ND       | 15              | ND       |
| Methyl chloride                                | ND             | ND       | ND         | ND       | ND                 | ND              | ND       | 1,500           | ND       |
| Methylene chloride                             | ND             | 70       | 470        | 12       | 200,000            | ND              | ND       | 20,000          | 100      |
| Tetrachloroethylene                            | ND             | ND       | 36         | ND       | ND                 | ND              | ND       | ND              | ND       |
| 1,1,1-Trichloroethane                          | ND             | ND       | ND         | ND       | 1,300              | ND              | ND       | ND              | ND       |
| 1,1,1-Trichloroethane<br>1,1,2-Trichloroethane | ND<br>ND       | ND       | ND         | ND       | ND                 | 1,300           | 890      | ND              | ND       |
| 1,1,2-Trichtoroethane                          | ND             | ND       | ND         | ND       | ND                 | ND              | ND       | ND              | ND       |

(continued)

TABLE 9.5-7 (continued)

|                              | 1                 | A <sup>a</sup>      | 1                 | a<br>D              | ·           | C                 | <b>a</b>            | CE.               | <b>a</b>            |          |
|------------------------------|-------------------|---------------------|-------------------|---------------------|-------------|-------------------|---------------------|-------------------|---------------------|----------|
| Toxic pollutant              | Raw<br>wastewater | Treated<br>effluent | Raw<br>wastewater | Treated<br>effluent | AD Effluent | Raw<br>wastewater | Treated<br>effluent | Raw<br>wastewater | Treated<br>effluent |          |
| Conventional, mg/L           |                   |                     |                   |                     | ~           |                   |                     |                   |                     |          |
| BOD                          | NA                | 140                 | 260               | 19                  | _c<br>_c    | NA                | NA                  | 1,500             | 120                 |          |
| COD                          | NA                | 300                 | 490               | 5 <b>4</b>          | - °         | NA                | NA                  | 3,500             | 750                 |          |
| TSS                          | NA                | 97                  | 150               | 15                  | -           | NA                | NA                  | 84                | 210                 |          |
|                              | Dj                | a<br>E              | A                 | CD <sup>a</sup>     | 1           | ACE a             | A                   | DE                | BDE                 | a        |
|                              | Raw               | Treated             | Raw               | Treated             | Raw         | Treated           | Raw                 | Treated           | Raw                 | Treated  |
|                              | wastewater        | effluent            | wastewater        | effluent.           | wastewater  | effluent          | wastewater          | effluent          | wastewater          | effluent |
| Metals and inorganics        |                   |                     |                   |                     |             |                   |                     |                   |                     |          |
| Antimony                     | ND                | ND                  | 24                | ND                  | ND          | ND                | ND                  | ND                | ND                  | ND       |
| Arsenic                      | ND                | ND                  | 120               | ND                  | ND          | ND                | ND                  | ND                | ND                  | ND       |
| Cadmium                      | ND                | ND                  | 32                | ND                  | ND          | ND                | ND                  | ND                | ND                  | ND       |
| Chromium                     | 30                | 10                  | 14                | ND                  | 145         | 15                | ND                  | ND                | ND                  | ND       |
| Copper                       | 80                | 20                  | 27                | ND                  | 145         | 10                | ND                  | ND                | ND                  | ND       |
| Cyanide                      | ND                | ND                  | ND                | ND                  | 840         | 400               | ND                  | ND                | ND                  | ND       |
| Lead                         | ND                | ND                  | 46                | ND                  | 10          | ND                | ND                  | ND                | ND                  | ND       |
| Mercury                      | ND                | ND                  | ND                | ND                  | 0.8         | ND                | ND                  | ND                | ND                  | ND       |
| Nickel                       | ND                | ND                  | 89                | 56                  | 200         | 100               | ND                  | ND                | ND                  | ND       |
| Selenium                     | ND                | ND                  | ₩D                | ND                  | ND          | ND                | ND                  | ND                | ND                  | ND       |
| Thallium                     | ND                | ND                  | ND                | ND                  | ND          | ND                | ND                  | ND                | ND                  | ND       |
| Zinc                         | ND                | ND                  | 250               | 16                  | 250         | 50                | ND                  | ND                | ND                  | ND       |
| Ethers                       |                   |                     |                   |                     |             |                   |                     |                   |                     |          |
| Bis(2-chloroisopropyl) ether | ND                | ND                  | ND                | ND                  | ND          | ND                | ND                  | ND                | ND                  | ND       |
| Phthalates                   |                   |                     |                   |                     |             |                   |                     |                   | _                   |          |
| Bis(2-ethylhexyl) phthalate  | 50                | 10                  | 39                | ND                  | 100         | 200               | ND                  | 5                 | 30                  | ND       |
| Butyl benzyl phthalate       | ND                | ND                  | <b>N</b> D        | ND                  | ND          | ND                | ND                  | ND                | ND                  | ND       |
| Di-n-butyl phthalate         | 20                | ND                  | ND                | ND                  | 90          | 12                | ND                  | ND                | ND                  | ND       |
| Phenols                      |                   |                     |                   |                     |             |                   |                     |                   |                     |          |
| 2-Chlorophenol               | ND                | ND                  | ND                | ND                  | 22          | 55                | ND                  | ND                | ND                  | ND       |
| 2,4-Dichlorophenol           | ND                | ND                  | ND                | ND                  | 5           | 4                 | ND                  | ND                | ND                  | ND       |
| 2-Nitrophenol                | ND                | ND                  | ND                | ND                  | <b>6</b> 0  | 3.5               | ND                  | ND                | ND                  | ND       |
| 4-Nitrophenol                | ND                | ND                  | ND                | ND                  | ND          | ND                | ND                  | ND                | ND                  | ND       |
| Pentachlorophenol            | ND                | ND                  | ND                | ND                  | ND          | ND                | ND                  | ND                | ND                  | ND       |
| Phenol                       | ND                | ND                  | ND                | ND                  | 220         | 24                | ND                  | 11                | ND                  | ND       |
| 2,4,6-Trichlorophenol        | ND                | ND                  | ND                | ND                  | 7           | 6                 | ND                  | ND                | ND                  | ND       |

TABLE 9.5-7 (continued)

|                            | D          | E a         | A          | CD <sup>a</sup> | AC         | E <sup>a</sup> | ADI              | Е               | BDE        | a        |
|----------------------------|------------|-------------|------------|-----------------|------------|----------------|------------------|-----------------|------------|----------|
|                            | Raw        | Treated     | Raw        | Treated         | Raw        | Treated        | Raw              | Treated         | Raw        | Treated  |
| Toxic pollutant            | wastewater | effluent    | wastewater | effluent        | wastewater | effluent       | wastewater       | effluent        | wastewater | effluent |
| Aromatics                  |            |             |            |                 |            |                |                  |                 |            |          |
| Benzene                    | ND         | ND          | 820        | ND              | 2,100      | 8              | ND               | ND              | 40         | 10       |
| Chlorobenzene              | ND         | ND          | ND         | ND              | 600        | 200            | ND               | ND              | ND         | ND       |
| 1,4-Dichlorobenzene        | ND         | ND          | ND         | ND              | 5          | 1              | ND               | ND              | ND         | ND       |
| Ethylbenzene               | ND         | ND          | ND         | ND              | 86         | 3              | ND               | 11              | ND         | ND       |
| Nitrobenzene               | ND         | ND          | ND         | ND              | ND         | ND             | ND               | ND              | ND         | ND       |
| Toluene                    | ND         | ND          | 10,000     | ND              | 25         | ND             | ND               | ND              | ND         | ND       |
| Polycyclic aromatic        |            |             |            |                 |            |                |                  |                 |            |          |
| hydrocarbons               |            |             |            |                 |            |                |                  |                 |            |          |
| Acenaphthene               | ND         | ND          | МD         | ND              | ND         | ND             | ND               | ND              | ND         | ND       |
| Naphthalene                | ND         | ND          | ND         | ND              | 14         | 7              | ND               | ND              | ND         | ND       |
| Halogenated aliphatics     |            |             |            |                 |            |                |                  |                 |            |          |
| Bromoform                  | ND         | ND          | ND         | ND              | ND         | ND             | ND               | ND              | ND         | ND       |
| Carbon tetrachloride       | ND         | ND          | ND         | ND              | ND         | ND             | ND               | ND              | ND         | ND       |
| Chloroform                 | 130        | ND          | 1,200      | ND              | 210        | ND             | ND               | ND              | ND         | ND       |
| 1,2-Dichloroethane         | 15         | ND          | ND         | ND              | ND         | ND             | ND               | ND              | ND         | ND       |
| l,l-Dichloroethylene       | ND         | ND          | ND         | ND              | ND         | ND             | ND               | ND              | ND         | ND       |
| 1,3-Dichloropropene        | ND         | ND          | ND         | ND              | ND         | ND             | ND               | <b>N</b> D      | ND         | ND       |
| Methylene chloride         | 800        | 250         | 20         | ND              | 5,900      | 210            | 3,100            | 88              | 130        | 210      |
| 1,1,2,2-Tetrachloroethane  | ND         | ND          | ND         | ND              | 10         | ND             | ND               | ND              | ND         | ND       |
| Tetrachloroethylene        | ND         | ND          | ND         | ND              | ND         | ND             | ND               | ND              | ND         | ND       |
| 1,1,1-Trichloroethane      | ND         | ND          | ND         | ND              | ND         | ND             | ND               | 5               | ND         | ND       |
| 1,1,2-Trichloroethane      | 17         | ND          | ND         | ND              | ND         | ND             | ND               | ND              | ND         | ND       |
| Trichloroethylene          | ND         | ND          | ND         | ND              | 11         | ND             | ND               | ND              | ND         | ND       |
| Trichlorofluoromethane     | ND         | ND          | ND         | ND              | ND         | ND             | ND               | ND              | ND         | ИD       |
| Pesticides and metabolites |            |             |            |                 |            |                |                  |                 |            |          |
| Isophorone                 | ND         | ND          | ND         | ND              | ND         | ND             | ND               | ND              | ND         | ND       |
| Classical                  |            |             |            |                 |            |                |                  |                 |            |          |
| BOD                        | NA         | NA          | 990        | 72              | 2,000      | 70             | 1,900            | 13              | 7,500      | 4,600    |
| COD                        | NA         | 850         | 3,000      | 940             | 4,800      | 200            | 2,500            | 200             | 12,000     | 7,400    |
| TSS                        | NA         | <b>3</b> 50 | 400        | 200             | NA         | 56             | 410 <sup>a</sup> | 82 <sup>a</sup> | 4,900      | 4,000    |

TABLE 9.5-7 (continued)

|                             | CDI        | E <sup>a</sup> | ACI        | DE <sup>a</sup> | BCDI       | 3        | ABC        | DE       |
|-----------------------------|------------|----------------|------------|-----------------|------------|----------|------------|----------|
|                             | Raw        | Treated        | Raw        | Treated         | Raw        | Treated  | Raw        | Treated  |
| Toxic pollutant             | wastewater | effluent       | wastewater | effluent        | wastewater | effluent | wastewater | effluent |
| Metals and inorganics       |            |                |            |                 |            |          |            |          |
| Antimony                    | ND         | ND             | ND         | 14              | 28         | ND       | 10         | ND       |
| Arsenic                     | ND         | ND             | ND         | ND              | <20        | ND       | ND         | 10       |
| Cadmium                     | ND         | ND             | ND         | ND              | ND         | ND       | ND         | ND       |
| Chromium                    | ND         | ND             | ND         | 10              | 16         | 16       | 94         | 23       |
| Copper                      | ND         | ND             | ND         | 65              | 22         | 41       | 180        | 47       |
| Cyanide                     | ND         | ND             | ND         | 0.02            | 120        | ND       | 580        | 180      |
| Lead                        | ND         | ND             | ND         | 5               | ND         | ND       | 7.5        | 10       |
| Mercury                     | ND         | ND             | ND         | ND              | ND         | ND       | 1.3        | 0.6      |
| Nickel                      | ND         | ND             | ND         | 11              | ND         | ND       | 28         | 110      |
| Selenium                    | ND         | ND             | ND         | 10              | 16         | ND       | ND         | ND       |
| Thallium                    | ND         | ND             | ND         | ND              | ND         | ND       | 24         | ND       |
| Zinc                        | ND         | ND             | ND         | 265             | 150        | 250      | 500        | 195      |
| Ethers                      |            |                |            |                 |            |          |            |          |
| Bis(2-chloroethyl) ether    | 169        | 114            | ND         | ND              | ND         | ND       | ND         | ND       |
| Phthalates                  |            |                |            |                 |            |          |            |          |
| Bis(2-ethylhexyl) phthalate | ND         | ND             | ND         | 380             | 130        | 28       | 12         | ND       |
| Butyl bentyl phthalate      | 360        | ND             | ND         | ND              | ND         | ND       | ND         | ND       |
| Di-n-butyl phthalate        | 10         | ND             | ND         | ND              | ND         | ND       | ND         | ND       |
| Diethyl phthalate           | 31         | ND             | ND         | ND              | ND         | ND       | ND         | ND       |
| Nitrogen compounds          |            |                |            |                 |            |          |            |          |
| N-nitrosodiphenylamine      | ND         | ND             | ND         | ND              | 12         | ND       | ND         | ND       |
| Phenols                     |            |                |            |                 |            |          |            |          |
| 2-Chlorophenol              | ND         | ND             | ND         | ND              | ND         | ND       | ND         | ND       |
| 2,4-Dimethylphenol          | ND         | 8              | ND         | ND              | ND         | ND       | ND         | ND       |
| 2-Nitrophenol               | ND         | ND             | ND         | ND              | ND         | ND       | ND         | ND       |
| 4-Nitrophenol               | ND         | 10             | ND         | ND              | ND         | ND       | ND         | ND       |
| Pentachlorophenol           | ND         | ND             | ND         | ND              | ND         | ND       | ND         | ND       |
| Phenol                      | 10         | ND             | NA         | 7,100           | ND         | ND       | 230        | ND       |
| Cresols                     |            |                |            | , -             |            |          |            |          |
| 4,6-Dinitro-o-cresol        | ND         | ND             | ND         | ND              | ND         | ND       | ND         | ND       |
| Aromatics                   |            |                |            |                 |            |          |            |          |
| Benzene                     | 37         | ND             | ND         | 250             | ND         | ND       | ND         | 12       |
| Chlorobenzene               | 6          | ND             | ND         | ND              | ND         | ND       | ND         | ND       |
| 1,2-Dichlorobenzene         | ND         | ND             | ND         | ND              | ND         | ND       | ND         | ND       |
| 1,4-Dichlorobenzene         | ND         | ND             | ND         | ND              | ND         | ND       | ND         | ND       |
| 2,4-Dinitrotoluene          | 49         | ND             | ND         | ND              | ND         | ND       | NTD        | ND       |
| •                           | 41         | 9              | ND         | ND              | ND         | ND       | 7          | ND       |
| Ethylbenzene                | 370        | 160            | NA<br>NA   | 350             | ND         | ND       | 190        | >100     |

TABLE 9.5-7 (continued)

|                               | CD                | Ea                  | AC                | DE                  | BCDI                | E                | ABC                | DE                        |
|-------------------------------|-------------------|---------------------|-------------------|---------------------|---------------------|------------------|--------------------|---------------------------|
| Toxic pollutant               | Raw<br>wastewater | Treated<br>effluent | Raw<br>wastewater | Treated<br>effluent | Raw<br>wastewater   | Treated effluent | Raw<br>wastewater  | Treated<br>effluen        |
| Polycyclic aromatic compounds |                   |                     |                   |                     |                     |                  |                    |                           |
| Acenapthene                   | 104               | ND                  | ND                | ND                  | ND                  | ND               | ND                 | ND                        |
| Anthracene                    | 7                 | ND                  | ND                | ND                  | ND                  | ND               | ND                 | ND                        |
| Fluorene                      | 14                | ND                  | ND                | ND                  | ND                  | ND               | ND                 | ND                        |
| Phenanthrene                  | 7                 | <b>N</b> D          | ND                | ND                  | ND                  | ND               | ND                 | ND                        |
| Halogenated aliphatics        |                   |                     |                   |                     |                     |                  |                    |                           |
| Carbon tetrachloride          | ND                | ND                  | ND                | ND                  | ND                  | ND               | ND                 | ND                        |
| Chloroform                    | 13                | 9                   | NA                | 450                 | 51                  | 130              | 130                | 58                        |
| 1,1-Dichloroethane            | ND                | ND                  | NA                | 28                  | ND                  | ND               | ND                 | ИD                        |
| 1,2-Dichloroethane            | ND                | ND                  | ND                | 7,000               | ND                  | ND               | 14                 | 33                        |
| 1,1-Dichloroethylene          | ND                | ND                  | ND                | 10                  | ND                  | ND               | ND                 | ND                        |
| 1,2-trans-dichloroethylene    | ND                | ND                  | ИD                | 550                 | ND                  | ND               | ИD                 | ND                        |
| Methylene chloride            | 320               | 60                  | ND                | 850,000             | 63                  | 32               | 2,400              | 214                       |
| Tetrachloroethylene           | 13                | ND                  | ND                | ND                  | ND                  | ND               | ND                 | ND                        |
| 1,1,1-Trichloroethane         | 131               | 6                   | ND                | 360,000             | ND                  | ND               | ND                 | ND                        |
| 1,1,2-Trichloroethane         | 10                | ND                  | ND                | ND                  | ND                  | ND               | ND                 | ND                        |
| Trichloroethylene             | 62                | 7                   | ND                | ND                  | ND                  | ND               | ND                 | ND                        |
| Trichlorofluoromethane        | ND                | ND                  | ND                | ND                  | ND                  | ND               | ND                 | ND                        |
| Pesticides and metabolites    |                   |                     |                   |                     |                     |                  |                    |                           |
| Isophorone                    | 500               | ND                  | ND                | ND                  | ND                  | ИD               | ND                 | ND                        |
| Conventional, mg/L            |                   |                     |                   |                     | 2                   |                  |                    |                           |
| BOD                           | 600               | 29                  | NA                | NA                  | 4,100 <sup>a</sup>  | 600 a            | 5 <b>,900</b>      | 140                       |
| COD                           | 1,200             | 180                 | NA                | NA                  | 16,000 <sup>a</sup> | NA a             | 39,000             | 7,500<br>390 <sup>a</sup> |
| TSS                           | 20                | 30                  | NA                | NA                  | 250 <sup>a</sup>    | 1,000°           | 2,000 <sup>a</sup> | 390                       |

<sup>&</sup>lt;sup>a</sup>Medians derived from less than three plants.

 $<sup>^{\</sup>mathrm{b}}_{\mathrm{Wastewater}}$  undergoes no treatment prior to discharge.

CNot applicable.

Disinfectants can contribute to the pollutant load from fermentation processes. Although steam is used to sterilize most equipment, many instruments cannot withstand high temperatures. Although there is no published information indicating which disinfecting agents are used, a number of toxic pollutants including phenol, can be used for that purpose. The fermentation process occasionally creates massive discharges of contaminated wastewater, which occur whenever a plant becomes infested with a phage [1].

Wastewaters from fermentation processes are generally characterized by high BOD, COD, and TSS concentrations; large flows; and a pH range of about 4.0 to 8.0 [1].

# II.9.5.2.2 Subcategory B - Biological and Natural Extraction Products

The principal sources of wastewater from biological/natural extraction operations are (1) spent raw materials, such as waste plasma fractions, spent eggs, spent media broth, plant residues, etc.; (2) floor and equipment wash waters; (3) chemical wastes, such as spent solvents; and (4) spills [1]. Whenever possible, bad batches are recycled; if this is not feasible, the bad batches are discharged to the plant process sewer system [2].

Wastewaters from biological/natural extraction processes are generally characterized by low BOD, COD, and TSS concentrations; small flows; and a pH range of about 6.0 to 8.0 [1].

## II.9.5.2.3 Subcategory C - Chemical Synthesis Products

Primary sources of wastewater from chemical synthesis operations are (1) process wastes, such as spent solvents, filtrates, centrates, etc.; (2) floor and equipment wash waters; (3) pump seal waters; (4) wet scrubber spent waters; and (5) spills [1].

Wastewaters from chemical synthesis operations are generally characterized as having high BOD, COD, and TSS concentrations; large flows; and an extremely variable pH ranging from 1.0 to 11.0 [1].

#### II.9.5.2.4 Subcategory D - Formulation Products

Sources of wastewater from mixing/compounding/formulation operations are (1) floor and equipment wash waters, (2) wet scrubbers, (3) spills, and (4) laboratory wastes. The use of water to clean out mixing tanks can flush materials of unusual quantity and concentration into the plant sewer system. The washouts from recipe kettles, which are used to prepare the master batches of the pharmaceutical compounds, may contain inorganic salts, sugars, syrup, etc. Dust fumes and scrubbers used in connection with building

ventilation systems or, more directly, on dust and fume generating equipment, can be another source of wastewater depending on the characteristics of the material being removed from the air stream [1].

Wastewaters from mixing/compounding/formulations processes are generally characterized as having low BOD, COD, and TSS concentrations; relatively small flows; and a pH range of about 6.0 to 8.0 [1].

#### II.9.5.2.5 Subcategory E - Pharmaceutical Research

Generally, quantities of materials being discharged by research operations are relatively small compared with the volumes generated by production facilities. Research operations are frequently erratic with regard to quantity, quality, and time schedule when wastewater discharging occurs. Flammable solvents, especially volatile solvents such as ethyl ether, that can cause explosions and fires are the most common problem. The major sources of wastewater are vessel and equipment washings, animal cage wash water, and laboratory-scale production units. The wastewaters are generally characterized as having BOD<sub>5</sub> and COD concentrations similar to those in domestic sewage; pH values are between 6.0 and 8.0 [2].

#### II.9.5.3 PLANT SPECIFIC DESCRIPTIONS

Tables 9.5-8 through 9.5-21 present plant specific information for each of the subcategory combinations as follows:

A
C,E
A,C,E
A,D
A,D,E
C,D
C,D,E
A,C,D,E
A,C,D,E
B,C,D,E
A,B,C,D,E

In cases where sampling data were available for more than one plant in a particular subcategory combination, one plant was selected for inclusion in the plant specific description section based on consideration of effluent concentrations, percent removal, and amount of available data. For each of the following 14 plants, four types of information are presented: a summary of screening data, a description of the wastewater treatment plant, when available, performance results of the treatment system, and a flow diagram of the wastewater treatment plant.

Except for BOD and COD, all reported pollutant levels were obtained as a result of the screening program. The BOD and COD values were derived from data in the 308 portfolios.

It should be noted that all analysis of toxic pollutants was conducted on each sample from each plant. The screening summaries reported on Tables 9.5-8 through 9.5-21 present only those compounds which were detected. Only the influent and effluent levels are reported for each plant. Data from other locations within the plant, which may have been sampled, were omitted in order to highlight the effects of BPT-type treatment on the removal of toxic pollutants.

## II.9.5.4 POLLUTANT REMOVABILITY

Wastewaters from pharmaceutical manufacturing activities vary in quantity and quality depending upon the type of operations employed. However, in general, the wastes are readily treatable. Table 9.5-22 presents a summary of the wastewater treatment technologies identified by the industry survey and the number of plants found to be using each particular process. End-of-pipe systems in the pharmaceutical manufacturing industry rely heavily upon the use of biological treatment methods, particularly the activated sludge process. A majority of the plants that are considered to have BPT treatment in-place use activated sludge systems. One facility has installed a pure oxygen system; another plant reported using powdered activated carbon in its activated sludge unit. Other biological methods identified in the survey include trickling filters, aerated lagoons, and waste stabilization ponds. Primary treatment includes equalization to minimize shock loads to downstream units at many of the plants. finding is consistent with the fact that most pharmaceutical manufacturing operations produce wastewaters on an intermittent basis. Neutralization is required at almost two-thirds of the plants to neutralize acidic or alkaline wastes generated from the production of specific products.

Primary separation methods to remove solids were shown by the survey to be widely practiced. Physical/chemical systems also are being utilized to achieve higher levels of wastewater treatment. Thermal oxidation of strong chemical waste streams has proven successful at two pharmaceutical facilities. Another three sites reported using evaporation methods to reduce wastewater flows. Effluent polishing including polishing ponds, chemical flocculation/clarification, sand and multimedia filtration, and chlorination were identified at 22 pharmaceutical facilities.

Table 9.5-23 presents conventional pollutant removability and respective treatment for 20 plants identified in the Pharmaceutical Manufacturing Development Document [2] grouped according to manufacturing subcategory combinations. These data were from an initial verification survey for the conventional pollutants. Table 9.5-24 presents a key to the coded treatment operations listed in Table 9.5-23 and in all other tables in Section II.9.5.3.

Table 9.5-25 presents conventional pollutant removability and respective treatment for 27 plants identified in Reference 1 grouped according to manufacturing subcategory. These data were obtained from the 308 portfolios. Table 9.5-26 presents similar information for toxic pollutants; in this case the data was obtained from a toxic pollutant screening survey.

TABLE 9.5-8. SUMMARY OF SCREENING PROGRAM AT PLANT C [3] SUBCATEGORY A

| Summary                | of screening dat | a                | Was                                                                    | stewater treatmen   | t plant description |          |  |  |
|------------------------|------------------|------------------|------------------------------------------------------------------------|---------------------|---------------------|----------|--|--|
|                        | Concentr         | ation, µg/L      |                                                                        |                     |                     |          |  |  |
| Toxic pollutants       | Raw wastewater   | Treated effluent | Type of treatment: Biological                                          |                     |                     |          |  |  |
| Metals and inorganics  | _                |                  | Unit operations: Activated sludge, aerated lagoon sludge stabilization |                     |                     |          |  |  |
| Antimony               | 28 <sup>a</sup>  | 50               | Wastewater                                                             | quantity, $m^3/d =$ | 1,140 (0.30 MGD)    |          |  |  |
| Arsenic                | 31 <sup>a</sup>  | 47               |                                                                        |                     |                     |          |  |  |
| Chromium               | ND_              | 17               |                                                                        |                     |                     |          |  |  |
| Copper                 | 29 <sup>a</sup>  | 48               |                                                                        |                     |                     |          |  |  |
| Mercury                | ND               | 6.4              |                                                                        |                     |                     |          |  |  |
| Selenium               | 60 <sup>a</sup>  | 150              |                                                                        | Performance of      | treatment system    |          |  |  |
| Zinc                   | 89 <sup>a</sup>  | 120              |                                                                        | Concentr            | ation, mg/L         | Percent  |  |  |
| Phenols                |                  |                  | Pollutant                                                              | Raw wastewater      | Treated effluent    | removal  |  |  |
| 4-Nitrophenol          | 1,600            | ND               |                                                                        | _                   |                     | a        |  |  |
| Phenol                 | 70               | ND               | BOD, <sup>b</sup>                                                      | _c                  | 143                 | -d       |  |  |
| Halogenated aliphatics |                  |                  | CODD                                                                   | _c                  | 297                 | _d<br>_d |  |  |
| Methylene chloride     | ND               | 70               | TSS                                                                    | _c                  | 97                  | _a       |  |  |

Not available.

<sup>&</sup>lt;sup>a</sup>Highest value chosen.

 $<sup>^{\</sup>mathrm{b}}\mathtt{BOD}$  and COD values were obtained from data in the 308 portfolios.

<sup>&</sup>lt;sup>C</sup>Confidential.

d Intermediate.

TABLE 9.5-9. SUMMARY OF SCREENING PROGRAM AT PLANT L [3] SUBCATEGORY D

| Summary                | of screening dat | a                | Was         | stewater treatmen          | t plant description  |          |
|------------------------|------------------|------------------|-------------|----------------------------|----------------------|----------|
|                        | Concentr         | ation, ug/L      |             |                            |                      |          |
| Toxic pollutants       | Raw wastewater   | Treated effluent | Type of tre | eatment: Biologi           | cal                  |          |
|                        |                  |                  | Unit operat | ions: Equalizat            | ion, primary sedimen | ntation, |
| Metals and inorganics  |                  |                  |             | <b>a</b> ctiv <b>a</b> ted | sludge, other polis  | shing,   |
| Chromium               | 30               | 10               |             | sludge st                  | abilization, dewater | ring,    |
| Copper                 | 50               | <b>3</b> 0       |             | landfill                   |                      |          |
| Dine                   | 300              | 200              | Wastewater  | quantity, $m^3/d =$        | 300 (0.08 MGD)       |          |
| Pnthalates             |                  |                  |             |                            |                      |          |
| Bis(2-ethylhexyl)      |                  |                  |             |                            |                      |          |
| phthalate              | 170              | <b>3</b> 0       |             |                            |                      |          |
| Di-n-butyl phthalate   | 20               | ND               |             |                            |                      |          |
| Phenols                |                  |                  |             |                            |                      |          |
| Pentachlorophenol      | 62               | ND               |             |                            |                      |          |
| Aromatics              |                  |                  |             |                            |                      |          |
| Benzene                | 79               | ND               |             |                            |                      |          |
| Ethylbenzene           | 11               | <b>N</b> D       |             | Performance of             | treatment system     |          |
| Toluene                | 900              | ND               |             | Concentr                   | ation, mg/L          | Percent  |
| Halogenated aliphatics |                  |                  | Pollutant   | Raw wastewater             | Treated effluent     | removal  |
| Chloroform             | 300              | 14               |             |                            |                      |          |
| 1,2-Dichloroethane     | 19               | ND               | BOD_        | 259                        | 19                   | 92.7     |
| Methylene chloride     | <b>47</b> 0      | 12               | copª        | 489                        | 54                   | 89       |
| Tetrachloroethylene    | 36               | ND               | TSS         | 146                        | 15                   | 89.7     |



SAMPLING PROGRAM

Sample location

Influent to treatment facilities -"Raw Wastewater".

Discharge from clarifier - "treated effluent".

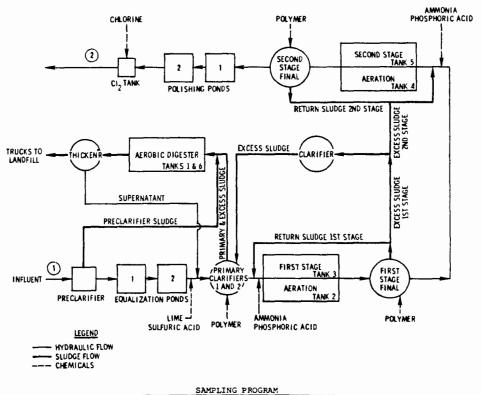
<sup>&</sup>lt;sup>a</sup>BOD and CCD values were obtained from data in the 308 portfolios.

TABLE 9.5-10. SUMMARY OF SCREENING PROGRAM AT PLANT X [3] SUBCATEGORIES A,D

| Summary                | of screening data | a                | Wastewater treatment plant description |                     |                  |         |  |
|------------------------|-------------------|------------------|----------------------------------------|---------------------|------------------|---------|--|
|                        | Concentra         | ation, µg/L      |                                        |                     |                  |         |  |
| Toxic pollutants       | Raw wastewater    | Treated effluent | Type of tre                            | eatment: None       |                  |         |  |
|                        |                   |                  | Unit operat                            | ions: Neutraliz     | ation            |         |  |
| Aromatics              |                   |                  | Wastewater                             | quantity, $m^3/d =$ | 530 (0.14 MGD)   |         |  |
| Benzene                | 390               | NA               |                                        |                     |                  |         |  |
| Toluene                | 53                | NA               |                                        |                     |                  |         |  |
| Halogenated aliphatics |                   |                  |                                        | Performance of      | treatment system |         |  |
| Carbon tetrachloride   | 300               | NA               |                                        | Concentr            | ation, mg/L      | Percent |  |
| Chloroform             | 1,400             | NA               | Pollutant                              | Raw wastewater      | Treated effluent | removal |  |
| Methylene chloride     | 200,000           | NA               |                                        |                     |                  |         |  |
| 1,1,1-Trichloroethane  | 1,300             | NA               |                                        | Not ap              | plicable.        |         |  |

Not applicable.

TABLE 9.5-11. SUMMARY OF SCREENING PROGRAM AT PLANT W [3] SUBCATEGORIES C,D


| Summary                | of screening data   | a                  | Wastewater treatment plant description                  |
|------------------------|---------------------|--------------------|---------------------------------------------------------|
|                        | Concentr            | ation, µg/L        |                                                         |
| Toxic pollutants       | Raw wastewater      | Treated effluent   | Type of treatment: Chemical precipitation and clarifier |
| Metals and inorganics  |                     | _                  | Unit operations: Equalization, neutralization,          |
| Antimony               | NA                  | 90 <u>ª</u>        | chemical precipitation, clarifier                       |
| Arsenic                | NA                  | 7,200 <sup>a</sup> | Wastewater quantity, $m^3/d = 1,700 (0.45 \text{ MGD})$ |
| Chromium               | NA                  | 9 <b>a</b>         |                                                         |
| Copper                 | NA                  | 35 <sup>a</sup>    |                                                         |
| Selenium               | NA                  | 310 <sup>a</sup>   |                                                         |
| Zinc                   | NA                  | 70 <sup>a</sup>    |                                                         |
| Phenols                |                     |                    |                                                         |
| 2-Nitrophenol          | 13,000 <sup>a</sup> | 4,100              |                                                         |
| 4-Nitrophenol          | 3,500 <sup>a</sup>  | 1,100              |                                                         |
| Phenol                 | 17, <b>0</b> 00°    | 17,000             |                                                         |
| Halogenated aliphatics |                     |                    | Performance of treatment system                         |
| 1,2-Dichlorethane      | ND                  | 20                 | Concentration, mg/L Perc                                |
| l,l-Dichlorethylene    | <b>3</b> 0          | 370                | Pollutant Raw wastewater Treated effluent remo          |
| 1,1,2-Trichloroethane  | 1,300               | 890                |                                                         |
| Trichlorofluoromethane | ND                  | 80                 | Not available.                                          |

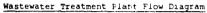
Not available.

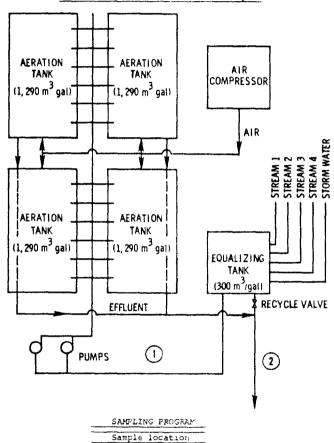
<sup>&</sup>lt;sup>a</sup>Highest value chosen.

TABLE 9.5-13. SUMMARY OF SCREENING PROGRAM AT PLANT G [3] SUBCATEGORIES A,C,D

| Summary                | of screening dat | a                | Was         | stewater treatmen | t plant description  |          |
|------------------------|------------------|------------------|-------------|-------------------|----------------------|----------|
|                        | Concentr         | ation, µg/L      |             |                   |                      |          |
| Toxic pollutants       | Raw wastewater   | Treated effluent | Type of tro | eatment: Biologic | zal                  |          |
|                        |                  |                  | Unit operat | ions: Equalizat:  | ion, neutralization, | , coarse |
| Metals and inorganics  |                  |                  |             | settleable        | e solids, removal, p | orimary  |
| Antimony               | 24               | ND               |             | sedimenta         | tion, activated slud | ige,     |
| Arsenic                | 120              | ND               |             | physical/         | chemical treatment,  | multi-   |
| Cadnuum                | 32               | ND               |             | media fil         | tration, flotation t | thicken- |
| Chromium               | 14               | ND               |             | ing, anae:        | robic digestion, slu | ıdge     |
| Copper                 | 27               | ND               |             | disposal.         |                      |          |
| Lead                   | 46               | ND               | Wastewater  | quantity, m3/d =  | 3780 (1.00 MGD)      |          |
| Nickel                 | 89               | 56               |             | •                 |                      |          |
| Zinc                   | 250              | 16               |             |                   |                      |          |
| Phthalates             |                  |                  |             |                   |                      |          |
| Bis(2-ethylhexyl)      |                  |                  |             |                   |                      |          |
| phthalate              | <b>3</b> 9       | ND               |             | Performance of    | treatment system     |          |
| Aromatics              |                  |                  |             | Concentra         | tion, mg/L           | Percent  |
| Benzene                | 820              | ND               | Pollutant   | Raw wastewater    | Treated effluent     | removal  |
| Toluene                | 10,000           | ND               |             |                   |                      |          |
| Halogenated aliphatics | •                |                  | BODa        | 987               | 72                   | 92.7     |
| Chloroform             | 1,200            | ND               | CODª        | 2,978             | 944                  | 68.3     |
| Methylene chloride     | 20               | ND               | TSS         | 398               | 196                  | 50.8     |




Sample location

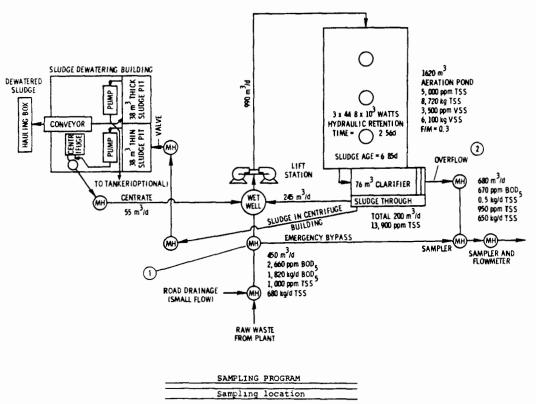

Raw waste (combined) to WWTP
 Discharge 001 - treated from WWTP

<sup>&</sup>lt;sup>a</sup>BOD and COD values were obtained from data in the 308 portfolios.

TABLE 9.5-12. SUMMARY OF SCREENING PROGRAM AT PLANT S [3] SUBCATEGORIES D, E

| Summary                | of screening dat. | a                | Wastewater treatment plant description |                     |                                         |         |  |  |
|------------------------|-------------------|------------------|----------------------------------------|---------------------|-----------------------------------------|---------|--|--|
|                        | Concentr          | ation, pg/L      |                                        |                     |                                         |         |  |  |
| Toxic pollutants       | Raw wastewater    | Treated effluent | Type of tre                            | eatment: Biologic   | cal                                     |         |  |  |
| Metals and inorganics  |                   |                  | Unit operat                            |                     | sludge, mechanical rifugation, landfil: |         |  |  |
| Chromium               | <b>3</b> 0        | 10               | WasteWater                             | quantity, $m^3/d =$ | 610 (0.16 MGD)                          |         |  |  |
| Copper                 | 80                | 20               |                                        |                     |                                         |         |  |  |
| Zinc                   | ND                | 100              |                                        |                     |                                         |         |  |  |
| Phthalates             |                   |                  |                                        |                     |                                         |         |  |  |
| Bis(2-ethylhexyl)      |                   |                  |                                        |                     |                                         |         |  |  |
| phthalate              | 50                | 10               |                                        |                     |                                         |         |  |  |
| Di-n-butyl phthalate   | 20                | ND               |                                        | Performance of      | treatment system                        |         |  |  |
| Halogenated aliphatics |                   |                  |                                        | Concentra           | tion, mg/L                              | Percent |  |  |
| Chloroform             | 130               | ND               | Pollutant                              | Raw wastewater      | Treated effluent                        | removal |  |  |
| 1,2-Dichloroethane     | 15                | ND               |                                        | ь                   |                                         |         |  |  |
| Methylene chloride     | 800               | 250              | cop <sup>a</sup>                       | - <sub>P</sub>      | 847                                     |         |  |  |
| 1,1,2-Trichloroethane  | 17                | ND               | TSS                                    | + <sup>D</sup>      | 349                                     | - "     |  |  |



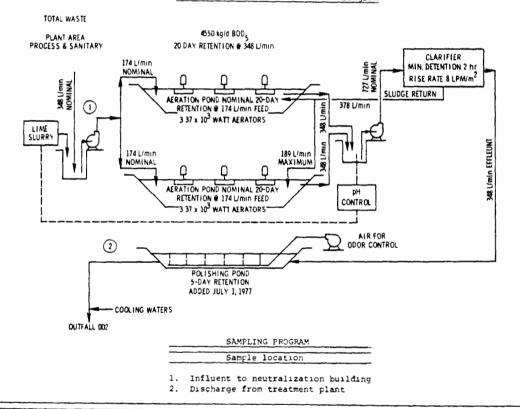



Influent to WWTP Effluent from WWTP

a COD value was obtained from data in the 308 portfolios. Unknown. c Indeterminate.

TABLE 9.5-14. SUMMARY OF SCREENING PROGRAM AT PLANT H [3] SUBCATEGORIES B,D,E

| Summary                | of screening data | A                | Wastewater treatment plant description |                   |                     |         |  |
|------------------------|-------------------|------------------|----------------------------------------|-------------------|---------------------|---------|--|
|                        | Concentr          | ation, µg/L      |                                        |                   |                     |         |  |
| Toxic pollutants       | Raw wastewater    | Treated effluent | Type of tre                            | eatment: Biologic | cal                 |         |  |
|                        |                   |                  | Unit opera                             | tions: Activated  | sludge, chemical co | on-     |  |
| Phthalates             |                   |                  |                                        | ditioning         | , centrifugation, d | ewater- |  |
| Bis(2-ethylhexyl)      |                   |                  |                                        | ing, land:        | till                |         |  |
| phthalate              | 30                | ND               | Wastewater                             | quantity, m3/d =  | 640 (0.17 MGD)      |         |  |
| Aromatics              |                   |                  |                                        | -                 |                     |         |  |
| Benzene                | 40                | 10               |                                        | Performance of    | treatment system    |         |  |
| Toluene                | 140               | ND               |                                        | Concentra         | tion, mg/L          | Percent |  |
| Halogenated aliphatics |                   |                  | Pollutant                              | Raw wastewater    | Treated effluent    | removal |  |
| Methylene chloride     | 130               | 210              |                                        |                   |                     |         |  |
| -                      |                   |                  | BOD                                    | 7,520             | 4,636               | 38.4    |  |
|                        |                   |                  | copa                                   | 12,032            | 7,418               | 38.3    |  |
|                        |                   |                  |                                        |                   |                     |         |  |

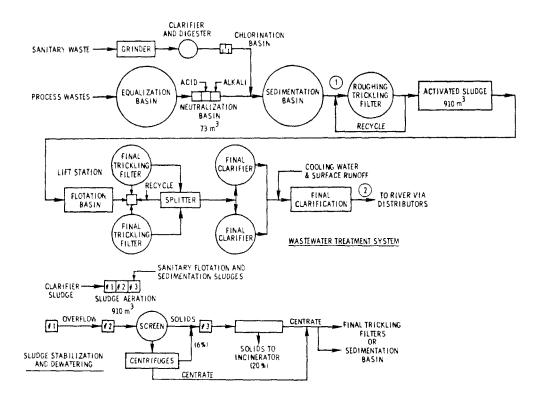



Influent to pretreatment system Effluent from pretreatment system

 $<sup>^{\</sup>mathrm{a}}$  BOD and COD values were obtained from data in the 308 portfolios.

TABLE 9.5-15. SUMMARY OF SCREENING PROGRAM AT PLANT P [3] SUBCATEGORIES C,E

| Summary                | of screening date | a                | Was              | stewater treatmen   | t plant description                     |          |
|------------------------|-------------------|------------------|------------------|---------------------|-----------------------------------------|----------|
|                        | Concentr          | ation, ug'L      |                  |                     |                                         |          |
| Toxic pollutants       | Raw wastewater    | Treated effluent | Type of tre      | atment: Biologi     | cal                                     |          |
| Metals and inorganics  |                   |                  | Unit operat      |                     | ion, neutralization dge, aerated lagoon |          |
| Cadmium                | 11                | ND               |                  |                     | pond, anaerobic di                      |          |
| Chromium               | 11                | 14               | Wastewater       | quantity, $m^3/d =$ |                                         | ,        |
| Copper                 | 41                | ND               |                  |                     | , , , , , , , , , , , , , , , , , , , , |          |
| Cyanide                | 2,000             | 63               |                  |                     |                                         |          |
| Zinc                   | 120               | 71               |                  |                     |                                         |          |
| Phthalates             |                   |                  |                  |                     |                                         |          |
| Bis(2-ethylhexyl)      |                   |                  |                  |                     |                                         |          |
| phthalate              | 11                | <b>1</b> 5       |                  |                     |                                         |          |
| Pr.enols               |                   |                  |                  |                     |                                         |          |
| Phenol                 | 64                | ND               |                  |                     |                                         |          |
| 2,4,6-Trichlorophenol  | 13                | ND               |                  |                     |                                         |          |
| Aromatics              |                   |                  |                  | Performance of      | Treatment System                        |          |
| Etnylbenzene           | 130               | ND               |                  |                     | tion, mg/L                              | Percent  |
| Toluene                | 470               | ND               | Pollutant        | Raw wastewater      | Treated effluent                        | removal  |
| Halogenated aliphatics |                   |                  |                  |                     | Trouble Criticine                       | TERROVAT |
| Carbon tetrachloride   | 11,000            | ND               | BOD <sup>a</sup> | 1.865               | 93                                      | 95.0     |
| Cnloroform             | 3,200             | ND               | CODa             | 4,240               | 946                                     | 77.7     |
| 1,2-Dichloroethane     | 17                | ND               | TSS              | 84                  | 326                                     | т, т     |




 $<sup>^{\</sup>rm a}{\rm BOD}$  and COD values were obtained from data in the 308 portfolios.

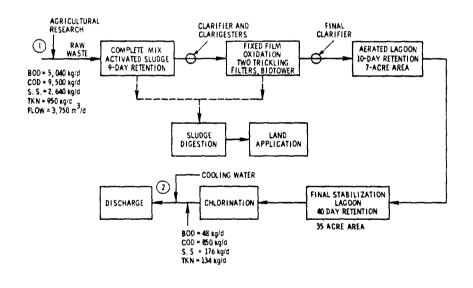
Enegative removal.

TABLE 9.5-16. SUMMARY OF SCREENING PROGRAM AT PLANT O [3] SUBCATEGORIES A,C,E

| Summar                 | of screening dat | a                | Wa         | stewater treatmen   | t plant description  |            |
|------------------------|------------------|------------------|------------|---------------------|----------------------|------------|
|                        | Concentr         | ation, ug/L      |            |                     |                      |            |
| Toxic pollutants       | Raw wastewater   | Treated effluent | Type of tr | eatment: Three-s    | tage biological      |            |
|                        |                  |                  | Unit opera | tions: Equalizat    | ion, neutralization  | , coarse   |
| Metals and inorganics  |                  |                  |            | settleabl           | e solids removal, p  | rımary     |
| Chromium               | 200              | ND               |            | sedimenta           | tion, primary chemi- | cal        |
| Co, per                | 200              | ND               |            | flocculat           | ion/clarification,   | activated  |
| Cvanide                | 1,500            | 400              |            | sludge, t           | rıcklıng filter, wa  | ste        |
| Phonols                |                  |                  |            | stabiliza           | tion ponds, flotati  | on         |
| 2-Nitro:henol          | 120              | ND               |            | thickenin           | g, centrifugation,   | centrı-    |
| Aromatics              |                  |                  |            | fugation            | dewatering, inciner  | ation,     |
| Benzene                | 4,000            | ND               |            | landfill            |                      |            |
| Ethvlbenzene           | 130              | ND               | Wastewater | quantity, $m^3/d =$ | 3780 (1.00 MGD)      |            |
| Toluene                | 50               | ND               |            |                     |                      |            |
| nalogenated aliphatics |                  |                  |            | Performance of      | treatment system     |            |
| Chloroform             | 370              | ND               |            | Concentra           | tion, mg/L           | Percent    |
| 1,2-Dichloroethane     | 12               | NE               | Pollutant  | Raw wastewater      | Treated effluent     | removal    |
| Mothylene unloride     | 11,000           | 240              |            |                     |                      |            |
| Tricrloroeth, lene     | 20               | ND               | BODa       | 2,330               | 29                   | 98.8       |
|                        |                  |                  | COD        | 4,800               | 203                  | 95.8       |
|                        |                  |                  | TSS        | <b>-</b> p          | 29                   | <u>-</u> c |



| SAMPLING      | PROGRAM |             |
|---------------|---------|-------------|
| <br>          |         |             |
| <br>Sample lo | cation  | <del></del> |


<sup>1.</sup> Sedimentation basin effluent - "Raw wastewater"

<sup>2.</sup> Final clarifier effluents DAF skimmings

cIndeterminate.

TABLE 9.5-17. SUMMARY OF SCREENING PROGRAM AT PLANT Q [3] SUBCATEGORIES A,D,E

| Summary                | of screening dat | a                | Was         | tewater treatment   | plant description                           |         |
|------------------------|------------------|------------------|-------------|---------------------|---------------------------------------------|---------|
|                        | Concentr         | ation, µg/L      |             |                     |                                             |         |
| Texic pollutants       | Raw wastewater   | Treated effluent | Type of tre | atment: Multiple    | e-stage biological                          |         |
| Metals and inorganics  |                  |                  | Unit operat |                     | sludge, trickling i<br>agoon, waste stabili |         |
| Chromium               | 16               | 10               |             | pond, pol:          | ishing pond, sludge                         | sta-    |
| Copper                 | 73               | ND               |             | bili <b>za</b> tio: | n, cropland use                             |         |
| Mercury                | 1.7              | ND               | Wastewater  | quantity, $m^3/d =$ | 4,500 (1.2 MGD)                             |         |
| Selenium               | <b>28</b> 0      | 30               |             |                     |                                             |         |
| Tnallium               | 18               | 11               |             |                     |                                             |         |
| Zinc                   | 250              | 100              |             |                     |                                             |         |
| Fntnalates             |                  |                  |             |                     |                                             |         |
| Bis(2-ethylhexyl)      |                  |                  |             |                     |                                             |         |
| phthalate              | 180              | 68               |             |                     |                                             |         |
| Phenols                |                  |                  |             |                     |                                             |         |
| Fnenol                 | ND               | 80               |             |                     |                                             |         |
| Aromatics              |                  |                  |             |                     |                                             |         |
| Benzene                | 2 <b>6</b> 0     | ND               |             |                     |                                             |         |
| Toluene                | 310              | ND               |             |                     |                                             |         |
| Halogenated aliphatics |                  |                  |             |                     |                                             |         |
| Carbon tetrachloride   | 18               | ND               |             |                     |                                             |         |
| Chloroform             | 180              | ND               |             | Performance of      | treatment system                            |         |
| l,1-Dichloroethylene   | 230              | ND               |             | Concentra           | tion, mg/L                                  | Percent |
| Methylene chloride     | 6,200            | ND               | Pollutant   | Raw wastewater      | Treated effluent                            | removal |
| Tetrachloroethylene    | 14               | NE               |             |                     |                                             |         |
| 1,1,1-Trichloroethane  | 22               | ND               | BOD_        | 1,340               | 13                                          | 99.1    |
| Trichloroethylene      | 24               | ND               | copa        | 2,520               | 197                                         | 92.1    |
| Trichlorofluoromethane | 970              | ND               | TSS         | 705                 | 44                                          | 93.8    |



SAMPLING PROGRAM
Sample location

<sup>1.</sup> Influent to wastewater treatment system

<sup>2.</sup> Discharge from treatment system

 $<sup>^{\</sup>mathrm{a}}_{\mathrm{BOD}}$  and COD values were obtained from data in the 308 portfolios.

TABLE 9.5-18. SUMMARY OF SCREENING PROGRAM AT PLANT R [3] SUBCATEGORIES C,D,E

| Summary                | of screening dat | a                | Was         | tewater treatmer              | t plant description                           |               |
|------------------------|------------------|------------------|-------------|-------------------------------|-----------------------------------------------|---------------|
|                        | Concentr         | ation, pg/L      |             |                               |                                               |               |
| Toxic pollutants       | Raw wastewater   | Treated effluent |             | atment: Blologi               |                                               |               |
| Ethers                 |                  |                  | Unit operat | sedimenta                     | tion, neutralization<br>ation, activated slud |               |
| Bis(2-chloroisopropyl) |                  |                  |             |                               | lagoon, landfill                              |               |
| ether                  | 300              | 180              | Wastewater  | quantity, m <sup>3</sup> /d = | : 38 (0.01 MGD)                               |               |
| Phthalates             |                  |                  |             |                               |                                               |               |
| Butylbenzyl phthalate  | 720              | ND               |             |                               |                                               |               |
| Di-n-butyl phthalate   | 19               | ND               |             |                               |                                               |               |
| Diethyl phthalate      | 61               | ND               |             |                               |                                               |               |
| Phenols                |                  |                  |             |                               |                                               |               |
| 2,4-Dimethyl phenol    | ND               | 15               |             |                               |                                               |               |
| Aromatics              |                  |                  |             |                               |                                               |               |
| Benzene                | 73               | ND               |             |                               |                                               |               |
| Chlorobenzene          | 12               | ND               |             |                               |                                               |               |
| 2,4-Dinitrotoluene     | 65               | ND               |             |                               |                                               |               |
| Ethylbenzene           | 82               | 17               |             |                               |                                               |               |
| Toluene                | 790              | 320              |             |                               |                                               |               |
| Polycyclic organic     |                  |                  |             |                               |                                               |               |
| compounds              |                  |                  |             |                               |                                               |               |
| Acenapthene            | 92               | ND               |             |                               |                                               |               |
| Anthracene             | 14               | ND               |             |                               |                                               |               |
| Fluorene               | 27               | ND               |             |                               |                                               |               |
| Phenanthrene           | 14               | ND               |             |                               |                                               |               |
| Halogenated aliphatics | -                |                  |             |                               |                                               |               |
| Chloroform             | 26               | 18               |             |                               |                                               |               |
| Methylene chloride     | 640              | 120              |             |                               |                                               |               |
| Tetrachloroethylene    | 26               | ND               |             | Performance of                | treatment system                              |               |
| 1.1.1-Trichloroethane  | 260              | 12               |             |                               | ition, mg/L                                   | Percent       |
| 1.1.2-Trichloroethane  | 19               | ND               | Pollutant   | Raw wastewater                | Treated effluent                              | removal       |
| Trichloroethylene      | 120              | 14               |             |                               |                                               | 2 3,,,0 7 4 2 |
| Pesticides and         | 120              |                  | BODa        | 600                           | <b>3</b> 0                                    | 95.0          |
| metabolites            |                  |                  | CODª        | 1.200                         | <b>6</b> 0                                    | 95.0          |
| Isophorone             | 1,000            |                  | TSS         | 20                            | 30                                            | _b            |

Raw waste----- Neutralization-----> Primary sedimentation-----> Aeration units (activated sludge)-----> Lagooning.

Design considerations

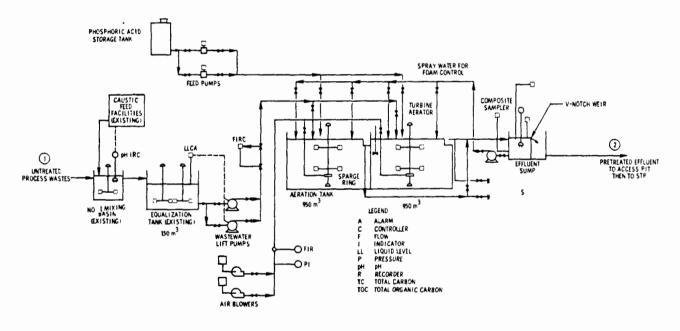
Detention time of aerators: 2 hr Detention time of lagoons: 60 d Treatment plant capacity: 110  $\rm m^3/d$ 

Solvent wastes----> Recovery

SAMPLING PROGRAM Sample location

Industrial stream influent Secondary clarifier effluent

 $<sup>^{\</sup>rm a}_{\rm BOD}$  and COD values were obtained from data in the 308 portfolios. Negative removal.


TABLE 9.5-19. SUMMARY OF SCREENING PROGRAM AT PLANT T [3] SUBCATEGORIES A,C,D,E

| Summary                | of screening data | a                | Wastewater treatment plant description            |
|------------------------|-------------------|------------------|---------------------------------------------------|
|                        | Concentr          | ation, µg/L      |                                                   |
| Toxic pollutants       | Raw wastewater    | Treated effluent | Type of treatment: None                           |
| -                      |                   |                  | Unit operations: No treatment provided            |
| Metals and inorganics  |                   |                  | Wastewater quantity, $m^3/d = 4,010 (1.06 MGD)$   |
| Antimony               | 27                | ND               |                                                   |
| Chromium               | 20                | ND               |                                                   |
| Copper                 | 130               | ND               |                                                   |
| Cyanide                | 0.04              | ND               |                                                   |
| Lead                   | 10                | ND               |                                                   |
| Nickel                 | 22                | ND               |                                                   |
| Selenium               | 20                | ND               |                                                   |
| Zinc                   | 530               | ND               |                                                   |
| Phthalates             |                   |                  |                                                   |
| Bis(2-ethylhexyl)      |                   |                  |                                                   |
| phthalate              | 760               | ND               |                                                   |
| Phenols                |                   |                  |                                                   |
| Phenol                 | 14,000            | NA               |                                                   |
| Aromatics              |                   |                  | Performance of treatment system                   |
| Toluene                | 2.0               | NA               | Concentration, mg/L Percent                       |
| Halogenated aliphatics |                   |                  | Pollutant Raw wastewater Treated effluent removal |
| Chloroform             | 1.5               | NA               |                                                   |
| 1,1-Dichloroethane     | 1.7               | NA               | (Not applicable)                                  |

(Not applicable)

TABLE 9.5-20. SUMMARY OF SCREENING PROGRAM AT PLANT E [3] SUBCATEGORIES B,C,D,E

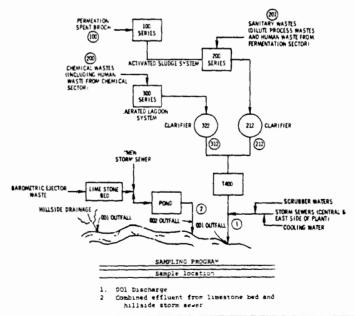
| Summary                | of screening dat | a                | Was         | tewater treatmen    | t plant description |           |
|------------------------|------------------|------------------|-------------|---------------------|---------------------|-----------|
|                        | Concentr         | ation, ug/L      |             |                     |                     |           |
| Toxic pollutants       | Raw wastewater   | Treated effluent | Type of tre | atment: Biologi     | cal                 |           |
|                        |                  |                  | Unit operat |                     | ion, neutralization | , aerated |
| Metals and inorganics  |                  |                  |             |                     | ncineration         |           |
| Antimony               | 68               | ND               | Wastewater  | quantity, $m^3/d =$ | 1,320 (0.35 MGD)    |           |
| Arsenic                | 32               | ND               |             |                     |                     |           |
| Chromium               | 16               | 16               |             |                     |                     |           |
| Copper                 | 35               | 26               |             |                     |                     |           |
| Cyanide                | 590              | 52               |             |                     |                     |           |
| Lead                   | 80               | ND               |             |                     |                     |           |
| Mercury                | ND               | 1.6              |             |                     |                     |           |
| Nickel                 | 20               | 40               |             |                     |                     |           |
| Selenium               | 30               | ND               |             |                     |                     |           |
| Thallium               | ND               | 58               |             |                     |                     |           |
| Zinc                   | 150              | 99               |             |                     |                     |           |
| Phthalates             |                  |                  |             |                     |                     |           |
| Bis(2-ethylhexyl)      |                  |                  |             |                     |                     |           |
| phthalate              | 38               | 28               |             |                     |                     |           |
| Nitrogen compounds     |                  |                  |             |                     |                     |           |
| N-nitroso-             |                  |                  |             | Performance of      | treatment system    |           |
| diphenylamined         | 34               | ND               |             |                     | tion, mg/L          | Percent   |
| Aromatics              |                  |                  | Pollutant   | Raw wastewater      | Treated effluent    | removal   |
| Toluene                | 290              | ND               |             | THE HUSCOWN CCI     | Treated elliteric   | Telloval  |
| dalogenated aliphatics |                  |                  | BOD         | 7,100               | 869 <sub>b</sub>    | 87 B      |
| Chloroform             | 860              | 1,000            | COD         | 15,700              | ь                   | 87.8      |
| Methylene chloride     | 1,100            | 32               | TSS         | 369                 | 1,790               |           |



## SAMPLING PROGRAM Sample location

- Influent to pretreatment system
- Effluent from pretreatment system

BOD and COD values were obtained from data in the 308 portfolios. Unknown.


Condeterminate.

defined the second of the second of

TABLE 9.5-21. SUMMARY OF SCREENING PROGRAM AT PLANT K [3] SUBCATEGORIES A,B,C,D,E

| Summary                | of screening dat | ·                | Wastewater treatment plant description               |
|------------------------|------------------|------------------|------------------------------------------------------|
|                        | Concentr         | ation, ug/L      |                                                      |
| Toxic pollutants       | Ran wastewater   | Treated effluent | Type of treatment:                                   |
|                        |                  |                  | Unit operations.                                     |
| Metals and inorganics  |                  |                  | * Fermentation waste treatment system - equalization |
| Culor m                | 160              | 26               | neutralization, coarse mettleable solids removal,    |
| Copper                 | 3,100            | 63               | primary sedimentation, activated sludge, anaerobic   |
| Cyanade                | 860              | 300              | digestion, centrifugation dewatering, landfull       |
| Mercury                | 9.6              | ND               | * Chemical wasts treatment system - equalization,    |
| Thellium               | 230              | ND               | neutralisation, coarse settleable solids removal,    |
| Zinc                   | 390              | 63               | primary sedimentation, primary chamical floccula-    |
| Phthalates             |                  |                  | tion/clarification, serated lagoon, anaerobic        |
| Bis(i-ethylhexyl)      |                  |                  | digestion, centrifugation dewatering landfull        |
| phthalate              | 52               | ND               | . Secondary thermal oxidation system - squalization, |
| Phenois                |                  |                  | neutralization, primary separation, thermal          |
| Pentachlorophanol      | 11               | NTD              | DEIGHTION                                            |
| Phenol                 | 3.100            | ND               | • Wastewater pretreatment system - physical/chemical |
| Aromatics              |                  |                  | treatment, hest conditioning                         |
| Benzene                | 380              | 44               | Wastewater quantity, m3/d: 3,780 (1.00 MGD)          |
| 1,2-Dichlorobensene    | 290              | NE               |                                                      |
| 1,4-Dichlorobensene    | 10               | ND               |                                                      |
| Ethylbenzene           | 1,600            | 160              |                                                      |
| Toluene                | 560              |                  |                                                      |
| Helogenated aliphatics |                  |                  |                                                      |
| Carbon tetrachloride   | 50               | ND               |                                                      |
| Chloroform             | 130              | 56               |                                                      |
| 1.2-Dichiprocthane     | 1.000            | 65               |                                                      |
| 1,1-Dichloroethylene   | 190              | 90               |                                                      |
| Methylene chloride     | 4,600            | ~~_              |                                                      |
| Trichloroeth, lene     | 2,100            | ND               |                                                      |
| Trichlorofluoromethane |                  | 280              |                                                      |

|                   |                     |                    | Performance          | of treatme          | nt system          |                   |                     |                    |
|-------------------|---------------------|--------------------|----------------------|---------------------|--------------------|-------------------|---------------------|--------------------|
|                   |                     |                    |                      | mg/L                |                    |                   |                     |                    |
|                   | Bock                |                    |                      | cort                |                    |                   | T\$5                |                    |
| Rau<br>wastewater | Treated<br>effluent | Percent<br>removal | Raw<br>wastewater    | Treated<br>effluent | Percent<br>removal | Rav<br>wastevater | Treated<br>effluent | Percent<br>removal |
| Fermentatio       |                     | atment sys         | <u>ter</u><br>24,000 | 1.450               | 94                 | 4,530             | 306                 | 93.2               |
| 12,400            | 244                 | 36                 | 24,000               | 1,450               | 94                 | 4,530             | 306                 | 93.2               |
| 5,720             | 1,140               | 80.1               | 1,740                | 4,470               | -c                 | 4,480             | 457                 | 98.8               |
| Wastevater<br>-d  | pretreatmen<br>_d   | t system           | 240,000              | 52,000              | 78.3               | ه_                | _4                  | ٠.                 |
| Secondary t       | hermal oxid         | ation syst         | en.<br>355,000       | 20                  | 99.9               | _4                | 10                  | ٠.                 |



ever, high
BCC and COD values were obtained from data in the 308 portfolios
Negative removal.
Gunknow

Indetarminate

TABLE 9.5-22. SUMMARY OF TREATMENT OPERATIONS UTILIZED IN THE PHARMACEUTICAL MANUFACTURING INDUSTRY<sup>a</sup> [3]

| Treatment operations                                                                       | Number ( | οf | plants |
|--------------------------------------------------------------------------------------------|----------|----|--------|
| Equalization                                                                               | !        | 55 |        |
| Neutralization                                                                             |          | 72 |        |
| Coarse settleable solids removal                                                           |          | 39 |        |
| Primary sedimentation                                                                      |          | 33 |        |
| Primary chemical flocculation/clarification                                                |          | 11 |        |
| Dissolved air flotation                                                                    |          | 2  |        |
| Activated sludge                                                                           |          | 45 |        |
| pure oxygen                                                                                |          | 1  |        |
| powdered activated carbon                                                                  |          | 1  |        |
| Trickling filter                                                                           |          | 8  |        |
| Aerated lagoon                                                                             |          | 19 |        |
| Waste stabilization pond                                                                   |          | 8  |        |
| Intermittent sand filtration                                                               |          | 4  |        |
| Physical/chemical treatment                                                                |          | 15 |        |
| thermal oxidation                                                                          |          | 2  |        |
| evaporation                                                                                |          | 4  |        |
| Polishing pond                                                                             |          | 9  |        |
| Multimedia filtration                                                                      |          | 7  |        |
| Activated carbon filtration                                                                |          | 2  |        |
| Other polishing such as chemical flocculation/clarification, sand filtration, chlorination |          | 13 |        |

aFrom 308 data.

TABLE 9.5-23. CONVENTIONAL POLLUTANT REMOVABILITY AT 20 PHARMACEUTICAL PLANTS [2]

|             |       | BC           | D                |         | CC          | עו                 |         | To               |                 |                 |                         |                  |
|-------------|-------|--------------|------------------|---------|-------------|--------------------|---------|------------------|-----------------|-----------------|-------------------------|------------------|
|             |       | Concentrat i | on, mg/L         |         | Concentrati | on, mg/L           |         | Concentrati      |                 |                 |                         |                  |
|             |       | Raw          | Treated          | Percent | Raw         | Treated            | Percent | Raw              | Treated         | Percent         |                         |                  |
| Subcategory | Plant | wastewater   | effluent         | removal | wastewater  | effluent           | remova! | wastewater       | effluent        | removal         | Flow, m <sup>3</sup> /d | Treatment        |
| A           | 09    | 3,200        | 26               | 99      | 6,700       | 320                | 95      | 910              | 4               | 99              | 2,100                   | P3,S4,S7         |
| n           | 20    | 1,400        | 90               | 93      | 4,400       | 1,300              | 70      | 1,900            | 380             | 80              | 950                     | S1               |
| В           | 08    | 19           | 5.8              | 70      | 77          | 48                 | 38      | 15               | 30              | a_a             | 470                     | P4.P6.S4         |
| ь           | 12    | 25           | _b               |         | 46          | _b                 | _       | 64               | _b              |                 | 89                      | M3,D1            |
| С           | 10    | 1,200        | 47               | 96      | 2,800       | 1,400              | 52      | 150              | 122             | 19              | 6,800                   | S1,S6            |
|             | 11    | 2,200        | 200              | 91      | 3,700       | 650                | 82      | 280              | 60              | 79              | 3,400                   | S1,W3,W10,D3     |
|             | 15    | 10,000       | 2,000            | 80      | 15,000      | 3,700              | 75      | 270              | 47              | 83              | 150                     | C2,P3,S1         |
| D           | 18    | <b>7</b> 50  | 59               | 92      | 1,700       | 290                | 83      | 100              | 2               | 98              | 280                     | S1,S3,S7         |
| Е           | 05    | 310          | 0.22             | 99      | 570         | 0.42               | 99      | 21               | 0.015           | 99              | 64                      | M3               |
|             | 14    | 100          | 13               | 87      | 240         | 32 <sub>C</sub>    | 84      | 240 <sub>b</sub> | 10 <sub>b</sub> | 96              | 180 <sub>b</sub>        | S1,D3            |
| AC          | 01    | _c           | _c               | 99      | _c          | _c                 | 49      | _D               | _D              | 99              | -p                      | T2,D1            |
|             | 04    | 1,300        | 160              | 88      | 3,200       | 630                | 80      | 730              | 140             | 81 <sub>a</sub> | 5,200                   | C1,C2,S1,S3,D1   |
|             | 21    | 1,300        | 66               | 95      | 3,300       | 1,100              | 65      |                  | <b>7</b> 50     | _q              | 4,600                   | S1,S3,S5,S6,W5,D |
|             | 22    | 2,400        | 14               | 99      | 5,300       | 180                | 97      |                  | 19              | _               | 1,600                   | C1,C2,P3,S1,S3   |
|             | 25    | 800          | 280 <sub>b</sub> | 65      | 5,300       | 4,100 <sub>b</sub> | 23      | 83               | NA              | _d              | 1,000                   | Sl               |
| BD          | 03    | 178          | D                |         | 416         | -17                |         |                  |                 | _a              |                         |                  |
| DE          | 05    | 360          | 3.5              | 99      | 640         | 28                 | 99      |                  | 6.2             |                 | 220                     | M3               |
|             | 24    | 90           | 8 <sub>b</sub>   | 91      | 300         | 82 <sub>b</sub>    | 73      | 60               | 29              | 52 <sub>d</sub> | 290                     | Cl,Pl,Sl,W5,Wl   |
| BDE         | 17    | 520          | _ D              |         | 870         | _E                 |         |                  |                 |                 | 2,700                   | Cl,M2,M3         |
|             | 23    | 11           | 2                | 82      | 98          | 67                 | 32      |                  |                 | _d              | 330 e                   | Cl,Sl            |
| ABCDE       | 26    | 1,200        | 48               | 96      | 2,500       | 210                | 92      | 1,600            | 150             | 91              | 4,200                   | 52               |

Note: Blanks indicate data not available.

a Negative removal. Wastewaters pass (sometimes with pretreatment) to a muncipal treatment system. Nontypical values since waste is incinerated. Indeterminate.

e Assumed average flow.

# Wastewater conditioning Cl Equalization C2 Neutralization Primary wastewater treatment Pl Surface skimming P2 Coarse settleable solids removal P3 Primary sedimentation (clarification) P4 Primary chemical flocculation/clarification (chemical precipitation) P5 Primary separation P6 Gas flotation with chemical addition P7 Multimedia filtration Secondary wastewater treatment Sl Activated sludge S2 Activated sludge with pure oxygen S3 Trickling filter S4 Aerated lagoon S5 Waste stabilization pond S6 Polishing pond S7 Other polishing Tertiary wastewater treatment T1 Activated sludge with powdered activated carbon T2 Multiple effect evaporation Sludge treatment Wl Sludge stabilization W2 Flotation thickening W3 Mechanical thickening W4 Centrifugal thickening W5 Aerobic digestion W6 Anaerobic digestion W7 Chemical conditioning W8 Chemical stabilization W9 Thermal conditioning W10 Vacuum filtration Wll Dewatering W12 Centrifugal dewatering Disposal Dl Incineration D2 Thermal oxidation D3 Landfill D4 Cropland use

TABLE 9.5-25. CONVENTIONAL POLLUTANT REMOVABILITY AT 27 PHARMACEUTICAL PLANTSa [1]

|          |                                  | ВС          |                  |                 |             |                  |                   | 175         |          |          |            |         |                             |
|----------|----------------------------------|-------------|------------------|-----------------|-------------|------------------|-------------------|-------------|----------|----------|------------|---------|-----------------------------|
|          |                                  | Concentrati |                  |                 | Concentrati |                  | _                 | Concentrati |          | _        |            |         |                             |
| Sub-     | D1 nnn                           | Raw         | Treated effluent | Percent         | Raw         | Treated          | Percent           | Raw         | Treated  | Percent  | Flo        |         |                             |
| category | Plant                            | Wastewater  | erriuent         | ramoval         | Wastewater  | effluent         | removal           | Wastewater  | effluent | removal  | L/S        | (MGD)   | Treatment                   |
| λ        | С                                | NA          | 140              | _p              | NA          | 300              | _р                | NA .        | 97       | _p       | 13         | ( 0.30) | S1,S4,W1                    |
| D        | L                                | 260         | 19               | 93              | 490         | 54               | 89                | 150         | 15       | 90       | 3.5        | (0.08)  | Cl,P3,S1,S7,                |
|          |                                  | _c          | _c               |                 | _c          | _c               |                   | _c          | _c       |          |            |         | W1,W11,D3                   |
| AD       | x                                |             |                  | _b              |             |                  | _b                |             |          | b        | 6.1        | (0.14)  | C2                          |
| CD<br>CD | W                                | NA<br>1,000 | <b>NA</b><br>150 | 86              | NA<br>2,700 | <b>NA</b><br>550 | 80                | NA<br>NA    | NA<br>90 | _b       | 20<br>39   | (0.45)  | C1,C2,P3,P4<br>C1,C2,P3,S1, |
| Œ        |                                  | 1,000       | 130              | ••              | 2,700       | 330              | 80                | NA.         | 90       |          | 39         | ( 0.90; | w2,w8,w10,                  |
|          | P                                | 1,900       | 93               | 95              | 4,200       | 950              | 77                | 84          | 330      | _a       | 3.5        | (80.0)  | C1,C2,S1,S4,<br>S6,W6       |
| DE       | s                                | NA          | NA               | _b              | NA          | 850              | ~p                | NA          | 350      | _b       | 7.0        | (0.16)  | S1,W3,W4,D3                 |
| ACD      | G                                | 990         | 72               | 93              | 3,000       | 940              | 69                | 400         | 200      | 50       | 44         | (1.00)  | M1,C1,C2,P2,                |
|          |                                  |             |                  |                 |             |                  |                   |             |          |          |            |         | P3,P7,S1,                   |
|          |                                  |             |                  |                 |             |                  | _b                |             |          | _b       |            |         | W2,W6,D6                    |
| ACE      | H                                | 1,600       | 110              | 93              | NA          | NA               | -                 | NA          | 83       | -        | 57         | (1.30)  | C1,C2,P2,P3,                |
|          |                                  |             |                  |                 |             |                  |                   |             |          |          |            |         | S1,S3,W3,<br>W7,W10,D1,     |
|          |                                  |             |                  |                 |             |                  |                   |             |          |          |            |         | D3                          |
|          | 0                                | 2,300       | 29               | 99              | 4,800       | 200              | 96                | NA          | 29       | -р       | 44         | (1.00)  | Cl,C2,P2,P3,                |
|          |                                  |             |                  |                 |             |                  |                   |             |          |          |            |         | P4,S1,S3,                   |
|          |                                  |             |                  |                 |             |                  |                   |             |          |          |            |         | S5, W2, W4,                 |
| ADE      | А                                | 2,500       | 200              | 92              | NA          | 600              | _b                | <b>10</b> 0 | 50       | 50       | 21         | ( 0 E0) | W12,D1,D3                   |
| RUL      | ^                                | 2,500       | 200              | 32              | NA.         | 600              | _                 | 100         | 30       | 30       | 21         | ( 0.50) | C1,C2,P2,P3,<br>\$4,S5,W6,  |
|          |                                  |             |                  | _               |             |                  |                   |             |          |          |            |         | D3                          |
|          | J                                | NA          | 7                | -ь              | NA          | 40               | _p                | NA          | 70       | _p       | 2 <b>2</b> | ( 0.05) | C1,C2,P2,P3,                |
|          |                                  |             |                  |                 |             |                  |                   |             |          |          |            |         | \$1,W6,D6                   |
|          | Q                                | 1,300       | 13               | 99              | 2,500       | 200              | 92                | 710         | 44       | 11       | 53         | (1.20)  | \$1,53,54,55,               |
|          | U                                | _c          | _ح               |                 | _c          | ےِ               |                   | _c          | _c       |          | 1,300      | (30.00) | \$6,W1,D4<br>C2             |
| BDE      | н                                | 7,500       | 4,600            | 39              | 12,000      | 7,400            | 38                | 4,900       | 4,000    |          | 74         | ( 0.17) | S1,W7,W12,D3                |
| CDE      | R                                | 600         | 30               | 95              | 1,200       | 60               | 95                | 20          | 30       | _d       | 0.44       | (0.01)  | Cl,C2,P3,S1,                |
|          |                                  |             |                  |                 | •-          |                  |                   |             |          |          |            | ,       | S4,D3                       |
|          | 2                                |             |                  |                 |             |                  |                   |             |          |          | 4.4        | ( 0.10) | C1,C2,M1,S7,                |
|          |                                  |             |                  |                 |             |                  |                   |             |          |          |            |         | w7,w8,w10,                  |
|          | z <sup>e</sup>                   | ***         | 28               | -p              | ***         | 290              | _b                |             | 30       | _b       |            |         | D3                          |
|          | 2                                | NA          | 26               | -               | NA          | 290              | -                 | NA          | 29       | -        |            |         | P2,M1,S7,T1,<br>W8.W10.D3   |
| ACDE     | T                                | _c          | _c               |                 | _c          | _c               |                   | _c          | _c       |          | 46         | (1.06)  | No treatment                |
|          | Y                                | NA          | NA               | -ь              | NA          | NA               | _p                | NA          | NA       | _p       | 66         | (1.50)  | P2, P3, M1, W10,            |
|          |                                  | •           | _                |                 | -           | •                |                   | -           | _        |          |            |         | D3                          |
|          | AA                               | _c          | _c               |                 | _c          | _c               | _b                | _c          | _c       | _4       | 18         | (0.40)  | No data avail               |
| BCDE     | Ð                                | 1,200       | 3 <b>3</b> 0     | 73              | NA          | NA               |                   | 120         | 250      |          | 11         | (0.26)  | C2,S1,S4,W3,<br>D6          |
|          | E                                | 7,100       | 870              | 88 <sub>b</sub> | 16,000      | NA               | - p<br>- p<br>- p | 370         | 1,800    | _đ       | 15         | ( 0.35) | C1,C2,S4,D1                 |
|          | F                                | NA.         | АМ               | ъ               | NA NA       | NA               | _b                | NA          | NA NA    | _p       | 0.40       | (0.01)  | 54                          |
| ABCDE    | В                                | 3,000       | 120              | 96              | NA          | NA               | -p                | 950         | 500      | 47       | 21         | (0.50)  | C1,C2,S1,W4,                |
|          |                                  |             |                  |                 |             |                  |                   |             |          |          |            |         | D4                          |
|          | 1                                | 1,200       | 150              | <b>8</b> 8      | 2,600       | 410              | 84                | 2,000       | 320      | 84       | 53         | (1.20)  | C2, P2, P4, S2,             |
|          |                                  |             |                  |                 |             |                  |                   |             |          |          |            |         | W3,D5,W7,<br>W10,D6         |
|          | <b>K</b> -                       |             |                  |                 |             |                  |                   |             |          |          | 44         | (1.00)  | H10,00                      |
|          | K<br>K                           | 12,000      | 240              | 98              | 24,000      | 1,500            | 94                | 4,500       | 310      | 93       |            | /       | C1,C2,P2,P3,                |
|          |                                  |             |                  |                 |             |                  |                   |             |          |          |            |         | S1,W6,W12,                  |
|          | a                                | _           |                  |                 |             |                  | _a                |             |          |          |            |         | D3                          |
|          | <b>k</b> ₫                       | 5,700       | 1,100            | 81              | 1,700       | 4,500            | -"                | 4,500       | 460      | 90       |            |         | C1,C2,P2,P3,<br>P4,S4,W8,   |
|          |                                  |             |                  |                 |             |                  |                   |             |          |          |            |         | P4,54,W8,<br>W12,D3         |
|          | ĸħ                               | NA.         | NA               | _b              | 240,000     | 52,000           | 78                | NA.         | NA       | _p       |            |         | M1,W9                       |
|          | к <sub>л</sub><br>к <sub>у</sub> | NA.         | 1                | _p              | 36,000      | 20               | 99 <sub>b</sub>   | NA.         | 10       | _p<br>_p |            |         | C1,C2,P5                    |
|          | *1                               | 37,000      | 60               | 99              | NA          | 280              | _b                | NA          | NA       | _p       |            |         | P2, P3, M1, W10,            |
|          | **                               |             |                  |                 |             |                  |                   |             |          |          |            |         | D3                          |

From 308 data.
Indeterminate.
Not applicable.
Negative removal.
Floor wash treatment.
Termentation waste treatment system.
Chemical waste treatment system.
Nastewater pretreatment system.
Secondary thermal oxidation.
Direct discharge treatment system.

TABLE 9-5.26. TOXIC POLLUTANT REMOVABILITY FOR SUBCATEGORIES AND SUBCATEGORY COMBINATIONS<sup>a</sup> [1]

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | A<br>nt C                                                                       |                                                                                                                             | nt L                                                     | Plan                                                                                                           |                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Treatment operations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sl,s4                                                 | i,wl                                                                            | C1,P3,S1,S                                                                                                                  | 7,w1,w11,D3                                              | Cl,C2,                                                                                                         | P3,P4                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concentrati                                           | Treated                                                                         | Concentrat:                                                                                                                 | ion, µg/L<br>Treated                                     | Concentrati<br>Raw                                                                                             | ion, μg/L<br>Treated                                                                                            |
| Toxic pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | wastewater                                            | effluent                                                                        | wastewater                                                                                                                  | effluent                                                 | wastewater                                                                                                     | effluent                                                                                                        |
| Metals and inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                     |                                                                                 |                                                                                                                             |                                                          |                                                                                                                |                                                                                                                 |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28 <sup>b</sup>                                       | 50                                                                              | ND                                                                                                                          | ND                                                       | NA                                                                                                             | 90 <sup>k</sup>                                                                                                 |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31 <sup>b</sup>                                       | 47                                                                              | ND                                                                                                                          | ND                                                       | ND                                                                                                             | 7,200k                                                                                                          |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND.                                                   | 17                                                                              | 30                                                                                                                          | 10                                                       | N.A                                                                                                            |                                                                                                                 |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29 <sup>b</sup>                                       | 48                                                                              | 50                                                                                                                          | 30                                                       | NA                                                                                                             | 35k                                                                                                             |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                    | 6.4                                                                             | ND                                                                                                                          | ND                                                       | ND                                                                                                             | ND                                                                                                              |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60°<br>89 <sup>b</sup>                                | 150                                                                             | ND                                                                                                                          | ND                                                       | NA<br>                                                                                                         | 310 <sup>k</sup>                                                                                                |
| Zinc<br>Phthalates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                                                    | 120                                                                             | 300                                                                                                                         | 200                                                      | NA                                                                                                             | 70                                                                                                              |
| Bis(2-ethylhexyl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                                                                 |                                                                                                                             |                                                          |                                                                                                                |                                                                                                                 |
| phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                                    | ND                                                                              | 170                                                                                                                         | 30                                                       | ND                                                                                                             | ND                                                                                                              |
| Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                    | ND                                                                              | 20                                                                                                                          | ND                                                       | ND                                                                                                             | ND                                                                                                              |
| Phenols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140                                                   | ND                                                                              | 20 €                                                                                                                        | ND                                                       | ND                                                                                                             | ND                                                                                                              |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                    | ND                                                                              | ND                                                                                                                          | ND                                                       | 13,000b                                                                                                        | 4,100                                                                                                           |
| 4-Nitrophenoi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,600                                                 | ND                                                                              | ND                                                                                                                          | ND                                                       | 3,500 <sup>b</sup>                                                                                             | 1,100                                                                                                           |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                    | ND                                                                              | 62                                                                                                                          | ND                                                       | ND,                                                                                                            | ND                                                                                                              |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70                                                    | ND                                                                              | ND                                                                                                                          | ND                                                       | 17,000 <sup>b</sup>                                                                                            | 17,000                                                                                                          |
| Aromatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                 |                                                                                                                             | _                                                        |                                                                                                                | ,                                                                                                               |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                    | ND                                                                              | 79                                                                                                                          | ND                                                       | ND                                                                                                             | ND                                                                                                              |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                                    | ND                                                                              | 11                                                                                                                          | ND                                                       | ND                                                                                                             | ND                                                                                                              |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                    | ND                                                                              | 900                                                                                                                         | ND                                                       | ND                                                                                                             | ND                                                                                                              |
| Halogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                 |                                                                                                                             |                                                          |                                                                                                                |                                                                                                                 |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                    | ND                                                                              | ND                                                                                                                          | ND                                                       | ND                                                                                                             | ND                                                                                                              |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                    | ND                                                                              | 300                                                                                                                         | 14                                                       | ND                                                                                                             | ND                                                                                                              |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                    | ND                                                                              | 19                                                                                                                          | ND                                                       | ND                                                                                                             | 20                                                                                                              |
| 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                    | ND                                                                              | ND                                                                                                                          | ND                                                       | 30                                                                                                             | 370                                                                                                             |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                    | 70                                                                              | 470                                                                                                                         | 12                                                       | ND                                                                                                             | ND                                                                                                              |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>NI</b> D                                           | ND                                                                              | 36                                                                                                                          | ND                                                       | ND                                                                                                             | ND                                                                                                              |
| l,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                    | ND                                                                              | ND                                                                                                                          | ND                                                       | ND                                                                                                             | ND                                                                                                              |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                    | ND                                                                              | ND                                                                                                                          | ND                                                       | 1,300                                                                                                          | 890                                                                                                             |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                    | ND                                                                              | ND                                                                                                                          | ND                                                       | ND                                                                                                             | 80                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                 | Œ                                                                                                                           |                                                          | DE                                                                                                             |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plan                                                  |                                                                                 | Plan                                                                                                                        | t P                                                      | Plan                                                                                                           |                                                                                                                 |
| Treatment operations: Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,C2,P3,S1,W2                                          | ,w8,W10,D3                                                                      | C1,C2,S1,                                                                                                                   | S4,S6,W6                                                 | \$1,w3,                                                                                                        | W4,D3                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concentrati                                           | on, µg/L                                                                        | Concentrati                                                                                                                 | on, μg/L                                                 | Concentration                                                                                                  | on, μg/L                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Raw                                                   | Treated                                                                         | Raw                                                                                                                         | Treated                                                  | Raw                                                                                                            | Treated                                                                                                         |
| Toxic pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | wastewater                                            | effluent                                                                        | wastewater                                                                                                                  | effluent                                                 | wastewater                                                                                                     | effluent                                                                                                        |
| Metals and inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                                                 |                                                                                                                             |                                                          |                                                                                                                |                                                                                                                 |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                    |                                                                                 |                                                                                                                             |                                                          |                                                                                                                |                                                                                                                 |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                    | ND                                                                              | 11                                                                                                                          | ND                                                       | ND                                                                                                             | ND                                                                                                              |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND                                              | ND<br>ND                                                                        | 11<br>11                                                                                                                    | ND<br>14                                                 | ND<br>30                                                                                                       | <b>N</b> D<br>10                                                                                                |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                 |                                                                                                                             |                                                          |                                                                                                                |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                    | ND                                                                              | 11                                                                                                                          | 14                                                       | 30                                                                                                             | 10                                                                                                              |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND<br>ND                                              | ND<br>ND                                                                        | 11<br>41                                                                                                                    | 14<br>ND                                                 | 30<br><b>8</b> 0                                                                                               | 10<br>20                                                                                                        |
| Copper<br>Cyanide<br>Zinc<br>Ethers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND<br>ND<br>ND<br>ND                                  | ND<br>ND<br>ND                                                                  | 11<br>41<br>2,000<br>120                                                                                                    | 14<br>ND<br>63                                           | 30<br>80<br>ND                                                                                                 | 10<br>20<br>ND                                                                                                  |
| Copper<br>Cyanide<br>Zinc<br>Ethers<br>Bis(2-chloroethyl) ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND<br>ND<br>ND                                  | ND<br>ND<br>ND                                                                  | 11<br>41<br>2,000                                                                                                           | 14<br>ND<br>63                                           | 30<br>80<br>ND                                                                                                 | 10<br>20<br>ND                                                                                                  |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND                                  | ND<br>ND<br>ND                                                                  | 11<br>41<br>2,000<br>120                                                                                                    | 14<br>ND<br>63<br>79                                     | 30<br>80<br>ND<br>ND                                                                                           | 10<br>20<br>ND<br>100                                                                                           |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND<br>ND<br>ND<br>ND                                  | ND<br>ND<br>ND<br>ND                                                            | 11<br>41<br>2,000<br>120<br>ND                                                                                              | 14<br>ND<br>63<br>79<br>ND                               | 30<br>80<br>ND<br>ND                                                                                           | 10<br>20<br>ND<br>100                                                                                           |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND<br>ND<br>ND<br>10                            | ND<br>ND<br>ND<br>ND                                                            | 11<br>41<br>2,000<br>120<br>ND                                                                                              | 14<br>ND<br>63<br>79<br>ND                               | 30<br>80<br>ND<br>ND<br>ND                                                                                     | 10<br>20<br>ND<br>100<br>ND                                                                                     |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Oi-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND<br>ND<br>ND                                  | ND<br>ND<br>ND<br>ND                                                            | 11<br>41<br>2,000<br>120<br>ND                                                                                              | 14<br>ND<br>63<br>79<br>ND                               | 30<br>80<br>ND<br>ND                                                                                           | 10<br>20<br>ND<br>100                                                                                           |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Witrogen compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND<br>ND<br>ND                                  | ND<br>ND<br>ND<br>ND                                                            | 11<br>41<br>2,000<br>120<br>ND                                                                                              | 14<br>ND<br>63<br>79<br>ND                               | 30<br>80<br>ND<br>ND<br>ND                                                                                     | 10<br>20<br>ND<br>100<br>ND                                                                                     |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>10                            | ND<br>ND<br>ND<br>ND                                                            | 11<br>41<br>2,000<br>120<br>ND                                                                                              | 14<br>ND<br>63<br>79<br>ND                               | 30<br>80<br>ND<br>ND<br>ND                                                                                     | 10<br>20<br>ND<br>100<br>ND                                                                                     |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Ntrogen compounds 1,2-Diphenylhydrazine Phenols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND<br>ND<br>ND<br>10<br>ND<br>ND<br>ND          | ND<br>ND<br>ND<br>ND<br>20<br>ND<br>ND                                          | 11<br>41<br>2,000<br>120<br>ND                                                                                              | 14<br>ND<br>63<br>79<br>ND<br>15<br>ND                   | 30<br>80<br>ND<br>ND<br>ND<br>20                                                                               | 10<br>20<br>ND<br>100<br>ND                                                                                     |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenols Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND ND ND 10 ND          | ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND                                          | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND                                                                            | 14<br>ND<br>63<br>79<br>ND<br>1.5<br>ND<br>ND            | 30<br>80<br>ND<br>ND<br>ND<br>20<br>ND                                                                         | 10<br>20<br>ND<br>100<br>ND                                                                                     |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenols Phenol 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>ND<br>ND<br>ND<br>10<br>ND<br>ND<br>ND          | ND<br>ND<br>ND<br>ND<br>20<br>ND<br>ND                                          | 11<br>41<br>2,000<br>120<br>ND                                                                                              | 14<br>ND<br>63<br>79<br>ND<br>15<br>ND                   | 30<br>80<br>ND<br>ND<br>ND<br>20                                                                               | 10<br>20<br>ND<br>100<br>ND                                                                                     |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Vitrogen compounds 1,2-Diphenylhydrazine Phenols Phenol 2,4,6-Trichlorophenol Aromatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND ND ND ND 10 ND    | ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND                                          | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND                                                                            | 14<br>ND<br>63<br>79<br>ND<br>15<br>ND<br>ND             | 30<br>80<br>ND<br>ND<br>ND<br>20<br>ND                                                                         | 10<br>20<br>ND<br>100<br>ND                                                                                     |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenols Phenol 2,4,6-Trichlorophenol Aromatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND ND ND ND 10 ND | ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND<br>ND                                    | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13                                                                | 14<br>ND<br>63<br>79<br>ND<br>15<br>ND<br>ND<br>ND       | 30<br>80<br>ND<br>ND<br>ND<br>50<br>20<br>ND<br>ND                                                             | 10<br>20<br>ND<br>100<br>ND<br>10<br>ND<br>ND<br>ND                                                             |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-chlylhexyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenols Phenol 2,4,6-Trichlorophenol Aromatics Benzene Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND N              | ND N                                        | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13                                                                | 14 ND 63 79 ND .55 ND ND ND ND ND ND ND ND               | 30<br>80<br>ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND                                                             | 10 20 ND 100 ND 10 ND                                                          |
| Copper Cyanide Zinc Cthers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenols Phenol 2,4,6-Trichlorophenol bromatics Benzene Ethylbenzene Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND ND ND ND 10 ND | ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND<br>ND                                    | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13                                                                | 14<br>ND<br>63<br>79<br>ND<br>15<br>ND<br>ND<br>ND       | 30<br>80<br>ND<br>ND<br>ND<br>50<br>20<br>ND<br>ND                                                             | 10<br>20<br>ND<br>100<br>ND<br>10<br>ND<br>ND<br>ND                                                             |
| Copper Cyanide Zinc Cthers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenols Phenol 2,4,6-Trichlorophenol Aromatics Benzene Ethylbenzene Toluene Malogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND N              | ND N                                        | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13<br>ND<br>130<br>470                                            | 14 ND 63 79 ND                                           | 30<br>80<br>ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND<br>ND<br>ND                                                 | 10 20 ND 100 ND 100 ND                                                      |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-chylhexyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenol 2,4,6-Trichlorophenol uromatics Benzene Ethylbenzene Toluene lalogenated aliphatics Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND N              | ND<br>ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND            | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13<br>ND<br>130<br>470                                            | 14 ND 63 79 ND       | 30<br>80<br>ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND<br>ND<br>ND                                                 | 10<br>20<br>ND<br>100<br>ND<br>10<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                               |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-chylhexyl) phthalate Di-n-butyl phthalate Pitrogen compounds 1,2-Diphenylhydrazine Phenol 2,4,6-Trichlorophenol bromatics Benzene Ethylbenzene Toluene Balogenated aliphatics Carbon tetrachloride Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND N              | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND            | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13<br>ND<br>130<br>470                                            | 14 ND 63 79 ND .5 ND | 30<br>80<br>ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                           | 10 20 ND 100 ND 10 ND                                                       |
| Copper Cyanide Zinc Cthers Bis(2-chloroethyl) ether Phthalates Bis(2-chloroethyl) ether Phthalates Dis(2-chloroethyl) ether Phthalate Discourable Disc | ND N              | ND N                                        | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13<br>ND<br>130<br>470<br>11,000<br>3,200<br>17                   | 14 ND 63 79 ND       | 30<br>80<br>ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                     | 10 20 ND 100 ND 10 ND                                                       |
| Copper Cyanide Zinc Cthers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Di | ND N              | ND N                                        | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13<br>ND<br>130<br>470<br>11,000<br>3,200<br>17<br>ND             | 14 ND 63 79 ND       | 30<br>80<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                         | 10 20 ND 100 ND 100 ND                                                      |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenols Phenol 2,4,6-Trichlorophenol Aromatics Benzene Ethylbenzene Toluene Halogenated aliphatics Carbon tetrachloride Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl promide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND N              | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13<br>ND<br>130<br>470<br>11,000<br>3,200<br>17<br>ND             | 14 ND 63 79 ND       | 30<br>80<br>ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                               | 10<br>20<br>ND<br>100<br>ND<br>10<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-chloroethyl) ether Phthalates Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenol 2,4,6-Trichlorophenol Aromatics Benzene Ethylbenzene Toluene Balogenated aliphatics Carbon tetrachloride Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND N              | ND N                                        | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13<br>ND<br>130<br>470<br>11,000<br>3,200<br>17<br>ND<br>ND       | 14 ND 63 79 ND       | 30<br>80<br>ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | 10 20 ND 100 ND 100 ND                                                      |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-chylhexyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenols Phenol 2,4,6-Trichlorophenol Aromatics Benzene Ethylbenzene Toluene Halogenated aliphatics Carbon tetrachloride Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl chloride Methylene chloride Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND N              | ND N                                        | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13<br>ND<br>130<br>470<br>11,000<br>3,200<br>17<br>ND<br>ND<br>ND | 14 ND 63 79 ND       | 30<br>80<br>ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | 10<br>20<br>ND<br>100<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND             |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-chloroethyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenols Phenol 2,4,6-Trichlorophenol Aromatics Benzene Ethylbenzene Toluene Balogenated aliphatics Carbon tetrachloride Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND N              | ND N                                        | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13<br>ND<br>130<br>470<br>11,000<br>3,200<br>17<br>ND<br>ND       | 14 ND 63 79 ND       | 30<br>80<br>ND<br>ND<br>ND<br>20<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | 10 20 ND 100 ND 100 ND                                                      |
| Copper Cyanide Zinc Ethers Bis(2-chloroethyl) ether Phthalates Bis(2-chloroethyl) phthalate Di-n-butyl phthalate Nitrogen compounds 1,2-Diphenylhydrazine Phenols Phenol 2,4,6-Trichlorophenol Aromatics Benzene Ethylbenzene Toluene dalogenated aliphatics Carbon tetrachloride Chloroform 1,2-Dichloroethane 1,1-Dichloroethylene Methyl chloride Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND N              | ND N                                        | 11<br>41<br>2,000<br>120<br>ND<br>11<br>ND<br>ND<br>64<br>13<br>ND<br>130<br>470<br>11,000<br>3,200<br>17<br>ND<br>ND<br>ND | 14 ND 63 79 ND       | 30<br>80<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                         | 1 2 N N 10 N N N N N N N N N N N N N N N N                                                                      |

Date: 6/23/80 II.9.5-37 (continued)

TABLE 9.5-26 (continued) ACD
Plant G Plant M

|                                   |                      |                          | Pla                  | IL M                | FIGI                    | 11.0                |                    |            |
|-----------------------------------|----------------------|--------------------------|----------------------|---------------------|-------------------------|---------------------|--------------------|------------|
| Treatment operations:             | M1,C1,C2,P2<br>W2,W6 |                          | C1,C2,P2,P<br>W7,W10 |                     | C1,C2,P2,P3<br>W2,W4,W] |                     |                    |            |
|                                   | Concentrati          |                          | Concentrat:          |                     | Concentrati             |                     |                    |            |
| Toxic pollutants                  | Raw<br>wastewater    | Treated<br>effluent      | Raw<br>wastewater    | Treated<br>effluent | Raw<br>wastewater       | Treated<br>effluent |                    |            |
| Metals and inorganics             |                      |                          |                      |                     |                         |                     |                    |            |
| Antimony<br>Arsenic               | 24<br>120            | ND<br>ND                 | ND<br>ND             | ND<br>ND            | ND<br>ND                | ND<br>ND            |                    |            |
| Cadmium                           | 32                   | ND                       | ND                   | ND                  | ND                      | ND<br>ND            |                    |            |
| Chromium                          | 14                   | ND                       | 90                   | 30                  | 200                     | ND                  |                    |            |
| Copper<br>Cyanide                 | 27<br>ND             | ND<br>ND                 | 90<br>170            | 20<br>400           | 200<br>1,500            | ND<br>400           |                    |            |
| Lead                              | 46                   | ND                       | 20                   | ND                  | ND                      | ND                  |                    |            |
| Mercury                           | ND                   | ND                       | 1.6                  | ND                  | ND                      | ND                  |                    |            |
| Nickel                            | 89                   | 56                       | 400                  | 200                 | ND                      | ND                  |                    |            |
| Zinc<br>Phthalates                | 250                  | 16                       | 500                  | 100                 | ND                      | ND                  |                    |            |
| Bis(2-ethylhexyl) phthalates      | 39                   | ND                       | 200                  | 400                 | ND                      | ND                  |                    |            |
| Di-n-butyl phthalates             | ND                   | ND                       | 180                  | 24                  | ND                      | ND                  |                    |            |
| Phenols<br>2-Chlorophenol         | ND                   | ND                       | 43                   | 110                 | ND                      | ND                  |                    |            |
| 2,4-Dichlorophenol                | ND<br>ND             | ND                       | 9                    | 7                   | ND                      | ND                  |                    |            |
| 2-Nitrophenol                     | ND                   | ND                       | ND                   | 7                   | 20                      | ND                  |                    |            |
| Phenol                            | ND                   | ND                       | 430                  | 48                  | ND                      | NL                  |                    |            |
| 2,4,6-Trichlorophenol Aromatics   | ND                   | ND                       | 14                   | 12                  | ND                      | ND                  |                    |            |
| Benzene                           | 820                  | ND                       | 160                  | 16                  | 4,000                   | ND                  |                    |            |
| Chlorobenzene                     | ND                   | ND                       | 1,200                | 400                 | ND                      | ND                  |                    |            |
| 1,4-Dichlorobenzene               | ND                   | ND                       | 10                   | 2                   | ND                      | ND                  |                    |            |
| Ethylbenzene<br>Toluene           | ND<br>10,000         | ND<br>ND                 | 42<br>ND             | 6<br>ND             | 130<br>50               | ND<br>ND            |                    |            |
| Polycyclic aromoatic              | 10,000               | 5                        | ND                   | ***                 | 30                      | ND                  |                    |            |
| hydrocarbons                      |                      |                          |                      |                     |                         |                     |                    |            |
| Naphthalene                       | ND                   | ND                       | 28                   | 14                  | ND                      | ND                  |                    |            |
| Halogenated<br>Chloroform         | 1,200                | ND                       | 70                   | ND                  | 370                     | ND                  |                    |            |
| 1,2-Dichloroethane                | ND                   | ND                       | 9,000                | 400                 | 12                      | ND                  |                    |            |
| Methylene chloride                | 20                   | <b>N</b> D               | 750                  | 180                 | 11,000                  | 240                 |                    |            |
| 1,1,2,2-Tetrachloroethane         | nd<br>nd             | <b>N</b> D<br><b>N</b> D | ND<br>21             | ND<br>ND            | 20<br>ND                | ND<br>ND            |                    |            |
| Trichloroethylene                 | ND                   | ND                       | **                   | ND                  | ND                      | ND                  |                    |            |
|                                   | Plan                 | nt A                     | Pla                  | nt J                | DE Pla                  | nt Q                | Plar               | nt U       |
| Treatment operations:             | C1,C2,P2,P3,S        | 54,55,₩6,D3              | Cl,C2,P2,P           | 3.S1.W6.D6          | S1,S3,S4,S              | 5.S6.W1.D4          | C:                 |            |
| ·                                 | Concentrati          |                          | Concentrat           |                     | Concentrat              |                     | Concentration, ug/ |            |
|                                   | Raw                  | Treated                  | Raw                  | Treated             | Raw                     | Treated             | Raw                | Treated    |
| Tox1c pollutants                  | wastewater           | effluent                 | wastewater           | effluent            | wastewater              | effluent            | wastewater         | effluent   |
| Metals and inorganics<br>Chromium | <b>N</b> D           | ND                       | ND                   | ND                  | 16                      | 10                  | ND                 | <b>N</b> D |
| Copper                            | ND                   | ND                       | ND                   | ND                  | 73                      | ND                  | ND                 | ND<br>ND   |
| Mercury                           | ND                   | ND                       | <b>N</b> D           | ND                  | 1.7                     | ND                  | ND                 | ND         |
| Selenium                          | ND                   | ND                       | ND                   | ND                  | 280                     | 30                  | ND                 | ND         |
| Thallium<br>Zinc                  | ND<br>ND             | ND<br>ND                 | ND<br>ND             | ND<br>ND            | 18<br>250               | 11<br>100           | ND<br>ND           | nd<br>nd   |
| Ethers                            |                      | 5                        | ,,,,                 |                     | 230                     | 100                 |                    | .,,        |
| Bis(2-Chloroisopropyl)            |                      |                          |                      |                     |                         |                     |                    |            |
| ether<br>Phthalates               | ND                   | ND                       | <b>4</b> 50          | ND                  | ND                      | ND                  | NA                 | 300        |
| Bis(2-ethylhexyl)                 |                      |                          |                      |                     |                         |                     |                    |            |
| phthalate                         | ND                   | ND                       | ND                   | ND                  | 180                     | 68                  | NA                 | 10         |
| Butyl benzyl phthalate            | ND                   | ND                       | 18                   | ND                  | ND                      | ND                  | ND                 | ND         |
| Phenols                           | NO                   | ND                       | ND                   | ***                 | •••                     | ***                 | ***                | 21         |
| 2-Chlorophenol 4-Nitropnenol      | <b>nd</b><br>Nd      | nd<br>Nd                 | ND<br>ND             | ND<br>15            | ND<br>ND                | ND<br>ND            | <b>NA</b><br>ND    | 31<br>ND   |
| Pentachlorophenol                 | ND                   | ND                       | 42                   | ND                  | ND                      | ND                  | ND                 | ND         |
| Phenol                            | ND                   | ND                       | ND                   | ND                  | ND                      | 80                  | AA                 | 21         |
| Aromatics                         | NO                   | No                       | ,,,,                 | <b></b>             | 250                     |                     |                    | •••        |
| Benzene<br>Chlorobenzene          | ND<br>ND             | ND<br>ND                 | ND<br>ND             | ND<br>ND            | 260<br>ND               | ND<br>ND            | ND<br>NA           | ND<br>11   |
| Ethylbenzene                      | ND                   | ND                       | ND<br>ND             | ND                  | 18                      | ND<br>ND            | NA<br>NA           | 21         |
| Nitrobenzene                      | ND                   | ND                       | ND                   | ND                  | ND                      | ND                  | ND                 | 22         |
| Toluene                           | ND                   | ND                       | ND                   | ND                  | 310                     | ND                  | ND                 | ND         |
| Date: 6/23/80                     |                      |                          | II.9.5               | -38                 |                         |                     | (                  | continued) |

|                            | TA                      | BLE 9.             | 5-26 (               | contin              | ued)                                                                                                                             |                           |             |           |  |  |  |
|----------------------------|-------------------------|--------------------|----------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|-----------|--|--|--|
|                            | ADE                     |                    |                      |                     |                                                                                                                                  |                           |             |           |  |  |  |
|                            | Plan                    | nt A               | Plar                 |                     | Plan                                                                                                                             | it Q                      | Plar        | it U      |  |  |  |
| Treatment operations:      | C1,C2,P2,P3,S4,S5,W6,D3 |                    | C1,C2,P2,P3,S1,W6,D6 |                     | \$1,53,54,55                                                                                                                     | \$1,\$3,\$4,\$5,\$6,W1,D4 |             | C2        |  |  |  |
|                            | Concentrati             | ion, ug/L          | Concentrati          | ion. ug/L           | Concentrati                                                                                                                      | on, ug/L                  | Concentrati | ion, ug/L |  |  |  |
|                            | Raw                     | Treated            | Raw                  | Treated             | Raw                                                                                                                              | Treated                   | Raw         | Treated   |  |  |  |
| Toxic pollutants           | wastewater              | effluent           | wastewater           | effluent            | wastewater                                                                                                                       | effluent                  | wastewater  | effluent  |  |  |  |
| Polycyclic aromatics       |                         |                    |                      |                     |                                                                                                                                  |                           |             |           |  |  |  |
| hydrocarbons               |                         |                    |                      |                     |                                                                                                                                  |                           |             |           |  |  |  |
| Acenapthene                | ND                      | ND                 | 2                    | ND.                 | ND                                                                                                                               | ND                        | ND          | ND        |  |  |  |
| Halogenated aliphatics     |                         |                    |                      |                     |                                                                                                                                  |                           |             |           |  |  |  |
| Bromoform                  | ND                      | ND                 | ND                   | ND                  | ND                                                                                                                               | ND                        | NA          | 12        |  |  |  |
| Carbon tetrachloride       | ND                      | ND                 | ND                   | ND                  | 18                                                                                                                               | ND                        | NA          | 490       |  |  |  |
| Chloroform                 | ND                      | ND                 | ND                   | ND                  | 180                                                                                                                              | ND                        | NA          | 700       |  |  |  |
| 1,1-Dichloroethylene       | ND                      | ND                 | ND                   | ND                  | 230                                                                                                                              | ND                        | ND          | ND        |  |  |  |
| 1,3-Dichloropropene        | ND                      | ND                 | 100                  | ND                  | ND                                                                                                                               | ND                        | N'D         | ND        |  |  |  |
| Methylene chloride         | NA                      | 72                 | 77                   | 350                 | 6,200                                                                                                                            | ND                        | NA          | 99        |  |  |  |
| Tetrachloroethylene        | ND                      | ND                 | ND                   | ND                  | 14                                                                                                                               | ND                        | ND          | ND        |  |  |  |
| 1,1,1-Trichloroethane      | ND                      | ND                 | ND                   | 10                  | 22                                                                                                                               | ND                        | NA          | 380       |  |  |  |
| Trichloroethylene          | ND                      | ND                 | ND                   | ND                  | 24                                                                                                                               | ND                        | ND          | ND        |  |  |  |
| Trichlorofluoromethane     | ND                      | ND                 | ND                   | ND                  | 970                                                                                                                              | ND                        | ND          | ND        |  |  |  |
| Pesticides and metabolites |                         |                    |                      |                     |                                                                                                                                  |                           |             |           |  |  |  |
| Isophorone                 | ND                      | ND                 | 11                   | ND                  | ND                                                                                                                               | ND                        | ND          | ND        |  |  |  |
|                            | ы                       | )E                 |                      |                     | DE                                                                                                                               |                           |             |           |  |  |  |
|                            |                         | nt H               | Plar                 | nt R                |                                                                                                                                  | nt Z                      |             |           |  |  |  |
| Treatment operations       | s1,w7,w12,D3            |                    | C1,C2,P3,S1,S4,D3    |                     | Chemical waste treat<br>ment system: C1,<br>C2,M1,S7,W7,W8,W10<br>D3<br>Floor wash treatment<br>system: P2,M1,S7<br>T1,W8,W10,D3 |                           |             |           |  |  |  |
|                            | Concentrat:             | on, g/L<br>Treated | Concentrati<br>Raw   | ion, g/L<br>Treated | Concentrat:                                                                                                                      | ion, g/L<br>Treated       |             |           |  |  |  |

|                               | Concentration, g/L |          | Concentrati | on, g/L  | Concentration, g/L |          |  |
|-------------------------------|--------------------|----------|-------------|----------|--------------------|----------|--|
|                               | Raw Treated        |          | Raw         | Treated  | Raw                | Treated  |  |
| Toxic pollutants              | wastewater         | effluent | wastewater  | effluent | wastewater         | effluent |  |
|                               |                    |          |             |          |                    |          |  |
| Ethers                        |                    |          |             |          |                    |          |  |
| Bis(2-Chloroetnyl) ether      | ND                 | ND       | 300         | 180      | 38                 | 48       |  |
| Phthalates                    |                    |          |             |          |                    |          |  |
| Bis(2-ethyinexyl) phthalate   | 30                 | ND       | ND          | ND       | ND                 | ND       |  |
| Butyl benzyl pnthalate        | ND                 | ND       | 720         | ND       | ND                 | ND       |  |
| Di-n-butyl phtnalate          | ND                 | ND       | 19          | ND       | ND                 | ND       |  |
| Diethyl phthalate             | ND                 | ND       | 61          | ND       | ND                 | ND       |  |
| Phenols                       |                    |          |             |          |                    |          |  |
| 2,4~Dimetnylinenol            | ND                 | ND       | ND          | 15       | ND                 | ND       |  |
| 4-Nitrophenol                 | ND                 | ND       | ND          | ND       | ND                 | 19       |  |
| Phenc.                        | ND                 | ND       | ND          | ND       | 19                 | ND       |  |
| Aromatics                     |                    |          |             |          |                    |          |  |
| Benzene                       | 40                 | 10       | 73          | ND       | ND                 | NL       |  |
| Chlorobenzere                 | ND                 | ND       | 12          | ND       | ND                 | ND       |  |
| 2,4~Dinitrotoluene            | ND                 | ND       | <b>6</b> 5  | ND       | 32                 | ND       |  |
| Etnylbenzene                  | ND                 | ND       | 82          | 17       | ND                 | ND       |  |
| Totuene                       | 140                | ND       | 790         | 320      | ND                 | ND       |  |
| Polycyclic aromatic compounds |                    |          |             |          |                    |          |  |
| Acenaphthene                  | ND                 | ND       | 92          | ND       | 135                | ND       |  |
| Anthracene                    | ND                 | ND       | 14          | ND       | ND                 | ND       |  |
| Fluorene                      | ND                 | ND       | 27          | ND       | ND                 | ND       |  |
| Phenanturene                  | ND                 | ND       | 14          | ND       | ND                 | ND       |  |
| Halogenated aliphatics        |                    |          |             |          |                    |          |  |
| Chloroform                    | ND                 | ND       | 26          | 18       | ND                 | ND       |  |
| Methylene shloride            | 130                | 210      | 640         | 120      | ND                 | ND       |  |
| Tetrachloroethylene           | ND                 | ND       | 26          | ND       | ND                 | ND       |  |
| , l-Trichloroethane           | ND                 | ND       | 260         | 12       | ND                 | ND       |  |
| 1,1,2-Trichloroethane         | ND                 | ND       | 19          | ND       | ND                 | ND       |  |
| Trichloroethylene             | ND                 | ND       | 120         | 14       | ND                 | ND       |  |
| Pesticides and metabolites    |                    |          |             |          |                    |          |  |
| Iscphorone                    | ND                 | ND       | 1,000       | ND       | ND                 | ND       |  |
|                               |                    |          |             |          |                    |          |  |

TABLE 9.5-26 (continued)

|                                                   | AC AC                              | DEC                  |                    |                     | RC                                                                                                                   | CDE                                                                                  |                   |                      |
|---------------------------------------------------|------------------------------------|----------------------|--------------------|---------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------|----------------------|
|                                                   | Pl                                 | nt Y                 | Plar               | t D                 | Plar                                                                                                                 |                                                                                      | Pla               | nt F                 |
| Treatment operations:                             | P3,P3,M1,W10,D3                    |                      | C2,51,54           | 1,W3,D6             | C1,C2,                                                                                                               | S4,D1                                                                                | 54                |                      |
|                                                   | Concentrat                         | ion, ug/L<br>Treated | Concentrati<br>Raw | on, µg/L<br>Treated | Concentrat:                                                                                                          | Treated                                                                              | Concentrat<br>Raw | ion, µg/L<br>Treated |
| Toxic pollutants                                  | wastewater                         | effluent             | wastewater         | effluent            | wastewater                                                                                                           | effluent                                                                             | wastewater        | effluent             |
| Metals and inorganics                             |                                    |                      |                    |                     |                                                                                                                      |                                                                                      |                   |                      |
| Antimony                                          | ND                                 | ND                   | 28                 | ND                  | 68                                                                                                                   | ND                                                                                   | ND                | ND                   |
| Arsenic                                           | ND                                 | ND                   | <20                | 30                  | 32                                                                                                                   | ND                                                                                   | ND                | ND                   |
| Chromium                                          | ND                                 | ND                   | 140                | 170                 | 16                                                                                                                   | 16                                                                                   | ND                | 12                   |
| Copper                                            | ND                                 | ND                   | 22                 | 41                  | 35                                                                                                                   | 26                                                                                   | 60                | 110                  |
| Cyanide                                           | ND                                 | ND                   | ND                 | ND                  | 590                                                                                                                  | 52                                                                                   | 120               | ND                   |
| Lead                                              | ND                                 | ND                   | ND                 | ND                  | 80                                                                                                                   | ND                                                                                   | ND                | 13                   |
| Mercury<br>Nickel                                 | ND<br>ND                           | nd<br>nd             | 0.9<br>NA          | 0.5<br>ND           | ND<br>20                                                                                                             | 1.6<br><b>4</b> 0                                                                    | nd<br>nd          | ND                   |
| Selenium                                          | ND                                 | ND<br>ND             | 16                 | 30                  | 30                                                                                                                   | ND                                                                                   | ND                | ND<br>ND             |
| Thallium                                          | ИD                                 | ND                   | ND                 | ND                  | ND                                                                                                                   | 58                                                                                   | ND                | ND,                  |
| Zinc                                              | ND                                 | ND                   | 190                | 250                 | 150                                                                                                                  | <b>9</b> 9                                                                           | 140               | 510                  |
| Phthalates                                        |                                    |                      |                    |                     |                                                                                                                      |                                                                                      |                   |                      |
| Bis(2-ethylhexyl) phthalate<br>Nitrogen compounds | ND                                 | ND                   | 130                | 44                  | 38                                                                                                                   | 28                                                                                   | 160               | 15                   |
| N-nitrosodiphenylamine<br>Phenols                 | ND                                 | ND                   | 12                 | ND                  | 34                                                                                                                   | ND                                                                                   | ND                | ND                   |
| Phenol<br>Cresols                                 | NA                                 | 280                  | 45                 | ND                  | ND                                                                                                                   | ND                                                                                   | ND                | ND                   |
| 4,6-Dinitro-o-cresol<br>Aromatics                 | ND                                 | ND                   | ND                 | 15                  | ND                                                                                                                   | ďИ                                                                                   | ND                | ND                   |
| Benzene                                           | NA                                 | 500                  | ND                 | ND                  | ND                                                                                                                   | ND                                                                                   | ND                | 10                   |
| 1,2-Dichlorobenzene<br>Toluene                    | ND<br>NA                           | ND<br>700            | 12<br>ND           | nd<br>ND            | ND<br>290                                                                                                            | ND<br>ND                                                                             | ND<br>ND          | ND<br>ND             |
| Halogenated aliphatics                            | NA                                 | 700                  | עא                 | ND                  | 290                                                                                                                  | ND                                                                                   | שא                | ND                   |
| Carbon tetrachloride                              | ND                                 | ND                   | ND                 | ND                  | ND                                                                                                                   | ND                                                                                   | ND                | 61                   |
| Chloroform                                        | NA.                                | 900                  | 51                 | ND                  | 860                                                                                                                  | 1,000                                                                                | ND                | 130                  |
| l,l-Dichloroethane                                | NA                                 | 54                   | ND                 | ND                  | ND                                                                                                                   | ND                                                                                   | ND                | ND                   |
| 1,2-Dichloroethane                                | NA                                 | 14,000               | ND                 | ND                  | ND                                                                                                                   | ND                                                                                   | ND                | ND                   |
| l,1-Dichloroethylene                              | NA                                 | 20                   | ND                 | ND                  | ND                                                                                                                   | ND                                                                                   | ND                | ND                   |
| 1,2-trans-Dichloroethylene                        | NA                                 | 1,100                | ND                 | ND                  | ND                                                                                                                   | ND                                                                                   | ND                | ND                   |
| Methylene chloride                                |                                    | 700,000              | 35                 | 31                  | 1,100                                                                                                                | 32                                                                                   | 63                | 130                  |
| 1,1,1-Trichloroethane                             | NA                                 | 720,000              | ND                 | ND                  | ND                                                                                                                   | ND                                                                                   | ND                | ND                   |
|                                                   |                                    |                      |                    |                     | CDE                                                                                                                  |                                                                                      |                   |                      |
|                                                   | Pla                                | int B                | Plan               | it I                | Plai                                                                                                                 | nt K                                                                                 | Pla               | nt V                 |
| Treatment operations:                             | C1,C2.S                            | il,₩4,D4             | C2.P2,P4,S<br>W10  |                     | system:<br>P3,51,W6<br>Chemical<br>treatmen:<br>C1,C2,P2<br>W6,W12,D<br>Wastewat:<br>treatmen:<br>M1,W9<br>Secondar: | C1,C2,P2, ,W12,D3 waste t system: ,P3,P4,S4, 3 er pre- t system: y thermal n system: | P2,P3,M1          | ,w10,D3              |
|                                                   | Concentrat                         | ion, µg/L            | Concentrat:        | ion, µg/L           | Concentrat                                                                                                           | ion, µg/L                                                                            | Concentrat        |                      |
|                                                   | Raw                                | Treated              | Raw                | Treated             | Raw                                                                                                                  | Treated                                                                              | Raw               | Treated              |
| Toxic pollutants                                  | wastewater                         | effluent             | wastewater         | effluent            | wastewater                                                                                                           | effluent                                                                             | wastewater        | effluent             |
| Metals and inorganics                             |                                    |                      |                    |                     |                                                                                                                      |                                                                                      |                   |                      |
| Antimony                                          | 22, <sup>b</sup>                   | ND                   | 20                 | ND                  | ND                                                                                                                   | ND                                                                                   | ND                | ND                   |
| Arsenic                                           | 22 <sup>b</sup><br>70 <sup>b</sup> | 20                   | ND                 | ND                  | ND                                                                                                                   | ND                                                                                   | NA                | 20                   |
| Cadmium                                           | ND                                 | ND                   | ND                 | ND                  | ND                                                                                                                   | ND                                                                                   | NA                | 40                   |
| Chromium                                          | 680b                               | 190                  | 23                 | 19                  | 160                                                                                                                  | 26                                                                                   | ND                | ND                   |
| Copper                                            | 180b                               | 31                   | 88                 | 16                  | 3,100                                                                                                                | 63                                                                                   | NA                | 100                  |
| Cyanide                                           | 580 ັ                              | 7,700                | ND                 | ND                  | 860                                                                                                                  | 300                                                                                  | NA                | 60                   |
| Lead                                              | 15 <sup>b</sup>                    | 24                   | 63                 | 20                  | ND                                                                                                                   | ND                                                                                   | ND                | ND                   |
| Mercury                                           | ND                                 | NTD                  | 1.3                | 1.3                 | 9.6                                                                                                                  | ND                                                                                   | NA<br>NA          | 400                  |
| Nickel                                            | 630 <sup>b</sup>                   | 190                  | 28<br>ND           | 37<br>ND            | ND<br>ND                                                                                                             | ND<br>ND                                                                             | na<br>Na          | 300<br>26            |
| Selenium                                          | ND<br>47,5                         | ND<br>29             | ND<br>ND           |                     | ND<br>230                                                                                                            | ND<br>ND                                                                             | ND                | ND                   |
| Thallium<br>Zinc                                  | 540 <sup>b</sup>                   | 160                  | <b>ND</b><br>500   | <b>N</b> D<br>300   | 390                                                                                                                  | 63                                                                                   | NA<br>NA          | 230                  |
| Phthalates                                        | 540                                | -00                  | 500                | 550                 | 3,0                                                                                                                  | <b>3</b> 3                                                                           | P44 1             | -50                  |
| Bis(2-ethylhexyl)                                 |                                    |                      |                    |                     |                                                                                                                      |                                                                                      |                   |                      |
| phthalate                                         | 24                                 | 33                   | ND                 | 25                  | 52                                                                                                                   | ND                                                                                   | ND                | ND                   |
| Date: 6/23/80                                     |                                    |                      | 11.9.5             | 5-40                |                                                                                                                      |                                                                                      | (0                | ontinued)            |
|                                                   |                                    |                      |                    |                     |                                                                                                                      |                                                                                      |                   |                      |

TABLE 9.5-26 (continued)

|                           |                  | ABCDE    |                                 |          |                                                                                                                                                                                                                                                |                  |                                 |          |  |  |
|---------------------------|------------------|----------|---------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------|----------|--|--|
|                           | Plan             | t B      | Plan                            | t I      | Plan                                                                                                                                                                                                                                           | t K              | Plan                            | t V      |  |  |
| Treatment operations:     | Cl,C2,Sl         | ,W4 , D4 | C2,P2,P4,S2,W3,D5,W7,<br>W10,D6 |          | Permentation waste<br>system: C1,C2,P2,<br>P3,S1,W6,W12,D3<br>Chemical waste<br>treatment system:<br>C1,C2,P2,P3,P4,S4,<br>W6,W12,D3<br>Wastewater pre-<br>treatment system:<br>M1,W9<br>Secondary thermal<br>oxidation system:<br>C1,C2,P5,D2 |                  | P2,P3,M1,W10,D3                 |          |  |  |
|                           | Concentrati      | on, µg/L | Concentrati                     | on, µg/L | Concentration, µg/L                                                                                                                                                                                                                            |                  | Concentration, µg/L Raw Treated |          |  |  |
| Toxic pollutants          | wastewater       | effluent | Wastewater                      |          | _wastewater                                                                                                                                                                                                                                    | effluent         | wastewater                      | effluent |  |  |
| *******                   |                  |          |                                 |          |                                                                                                                                                                                                                                                |                  |                                 |          |  |  |
| Phenols<br>2-Chlorophenoi | 240 <sup>b</sup> | ND       | ND                              | ND       | ND                                                                                                                                                                                                                                             | ND               | ND                              | ND       |  |  |
| 2,4-Dimethylpheno         |                  | ND       | 62                              | ND       | ND                                                                                                                                                                                                                                             | ND               | ND                              | ND       |  |  |
| 2-Nitrophenol             | 31 <sup>b</sup>  | ND<br>ND | ND                              | ND       | ND                                                                                                                                                                                                                                             | ND               | ND                              | ND       |  |  |
| Pentachlorophenol         | ND.              | ND       | ND                              | ND       | 11                                                                                                                                                                                                                                             | ND               | ND                              | 100      |  |  |
| Phenol                    | 230b             | ND       | 38                              | ND       | 3,100                                                                                                                                                                                                                                          | ND               | NA.                             | >100     |  |  |
| Aromatics                 | -30              | 110      | 30                              | ND       | 3,200                                                                                                                                                                                                                                          | 2                | 144                             | - 200    |  |  |
| Benzene                   | ND               | ND       | ND                              | ND       | 380                                                                                                                                                                                                                                            | 44               | NA                              | 24       |  |  |
| 1,2-Dichlorobenzene       | ND               | ND       | ND                              | ND       | 290                                                                                                                                                                                                                                            | ND               | ND                              | ND       |  |  |
| 1,4-Dichlorobenzene       | ND               | ND.      | ND                              | ND       | 10                                                                                                                                                                                                                                             | ND               | ND                              | ND       |  |  |
| Ethylbenzene              | ND               | ND       | 14                              | ND       | 1.600                                                                                                                                                                                                                                          |                  | ND                              | ND       |  |  |
| Toluene                   | ND               | ND       | 190                             | ND       | 560                                                                                                                                                                                                                                            | 160 <sub>f</sub> | NA                              | >200     |  |  |
| Halogenated aliphatics    |                  |          |                                 |          |                                                                                                                                                                                                                                                |                  |                                 |          |  |  |
| Carbon tetrachloride      | ND               | ND       | ND                              | ND       | 50                                                                                                                                                                                                                                             | ND               |                                 |          |  |  |
| Chloroform                | ИD               | ND       | 150                             | 90       | 130                                                                                                                                                                                                                                            | 56               | NA                              | 60       |  |  |
| 1,2-Dichloroethane        | ND               | 290      | 28                              | ND       | 3,000                                                                                                                                                                                                                                          | 65               |                                 |          |  |  |
| l,l-Dichloroethylene      | ND               | ND       | ND                              | ND       | 190                                                                                                                                                                                                                                            | 90<br>£          |                                 |          |  |  |
| Methylene chloride        | ND               | 67       | 1,400                           | ND       | 4,800                                                                                                                                                                                                                                          | -r               | NA                              | 360      |  |  |
| 1,1,1-Trichloroethane     | ND               | ND       | 27                              | 33       | ND                                                                                                                                                                                                                                             | ND               |                                 |          |  |  |
| Trichloroethylene         | ИD               | ND       | ND                              | ND       | 2,100                                                                                                                                                                                                                                          | ND               |                                 |          |  |  |
| Trichloroflyoromethane    | ND               | ND       | ND                              | ND       | 620                                                                                                                                                                                                                                            | 280              |                                 |          |  |  |

a No percent removal data is presented here due to the nature of the data. Highest value chosen.

No data available for plant AA.

#### II.9.5.5 REFERENCES

- Effluent Limitations Guidelines for the Pharmaceutical Manufac-Industry. (draft contractors report). U.S. Environmental Protection Agency, Washington, D.C., May 1979.
- Development Document for Interim Final Effluent Limitations Guidelines and Proposed New Source Performance Standards for the Pharmaceutical Manufacturing Point Source Category. EPA 440/1-75/060. U.S. Environmental Protection Agency, Washington, D.C., December 1976. 344 pp.
- 3. Supplement to the Draft Contractor's Engineering Report for the Development of Effluent Limitations Guidelines for the Pharmaceutical Industry (BATEA, NSPS, BCT, BMP, Pretreatment). U.S. Environmental Protection Agency, Washington, D.C., July 1979.
- 4. Environmental Protection Agency Effluent Guidelines and Standards for Pharmaceutical Manufacturing. 40 CFR 439; 41 FR 50676, November 17, 1976; Amended by 42 FR 6813, February, 1977.

#### II.10 NONFERROUS METALS MANUFACTURING

#### II.10.1 INDUSTRY DESCRIPTION

# II.10.1.1 General Description [1]

The nonferrous metals industry encompasses the primary smelting and refining of nonferrous metals [Standard Industrial Classification (SIC) Number 333] and the secondary smelting and refining of nonferrous metals (SIC Number 334). The industry does not include the mining and beneficiation of metal ores; rolling, drawing, or extruding metals; or scrap metal collection and preliminary grading.

Primary smelting and refining includes the final recovery of pure or usable metal from a metal ore. Some metals, such as aluminum, are produced by essentially one process, while others, e.g., copper and zinc, may be produced either pyrometallurgically or electrometallurgically. Byproducts and coproducts can often be produced as a result of the smelting or refining of the base metals.

Secondary recovery refers to processors of scrap. This scrap is generally collected from scrap dealers or industrial plants. Scrap often has a high level of impurities and generally needs classification to separate recoverable metal from nonmetallic material. Scrap metal can then be treated in a similar manner as in primary metal recovery or can be refined by other, more efficient recovery methods.

There are an estimated 800 plants in the United States involved in the primary or secondary recovery of nonferrous metals. These plants represent 61 subcategories. However, many of these subcategories are small, represented by only one or two plants, or do not discharge any wastewater. This report focuses on 296 facilities that produce the major nonferrous metals (aluminum, columbium (niobium), tantalum, copper, lead, silver, tungsten, and zinc). In 1973 these facilities produced 8,100,000 Mg (8,900,000 tons) of the listed nonferrous metals.

Nonferrous metal facilities are distributed throughout the United States. Most sites are located near ore production facilities, near adequate transportation facilities, or near adequate power supplies.

Date: 6/23/80 II.10-1

Table 10-1 presents an industry summary for the nonferrous metals industry indicating the number of subcategories and the number and type of dischargers.

TABLE 10-1. INDUSTRY SUMMARY [1, 2]

Industry: Nonferrous Metals

Total Number of Subcategories:

· Phase I Coverage: 26

· Phase II Coverage: 35

Number of subcategories studied: 12

Number of dischargers in industry:

· Direct: 129 · Indirect: 79

· Zero dischargers: 215

Table 10-2 presents best practicable technology limitations that have been promulgated and reported in the Federal Register.

BPT LIMITATIONS FOR THE NONFERROUS METALS INDUSTRY [3] TABLE 10-2.

| Parameter         | Secondary aluminum smelting                 |                                                              |                                           |                                        |                       |                                          |                                                       |                              |                          |                                         |
|-------------------|---------------------------------------------|--------------------------------------------------------------|-------------------------------------------|----------------------------------------|-----------------------|------------------------------------------|-------------------------------------------------------|------------------------------|--------------------------|-----------------------------------------|
|                   | Primary aluminum smelting, kg/MG of product | Chlorine<br>demagging,<br>kg/Mg of<br>magnesium<br>recovered | Wet<br>processing,<br>kg/Mg of<br>product | Primary<br>copper<br>smelting,<br>mg/L | copper<br>smelting, c | Primary<br>copper<br>refining, c<br>mg/L | Primary<br>copperd<br>refining<br>kg/Mg of<br>product | Secondary<br>copper,<br>mg/L | Primary<br>lead,<br>mg/L | Primary<br>lead,<br>kg/Mg of<br>product |
| COD               |                                             | 6 5                                                          | 1 0                                       |                                        |                       |                                          |                                                       |                              |                          |                                         |
| TSS               | 3 0                                         | 175                                                          | 15                                        | 50                                     | 50                    | 0.10                                     | 50                                                    | 50                           | 0 042                    | 0 42                                    |
| Oil and grease    |                                             |                                                              |                                           |                                        | 20                    | 0.04                                     | 20                                                    |                              |                          |                                         |
| Ammonia           |                                             |                                                              | 0 01                                      |                                        |                       |                                          |                                                       |                              |                          |                                         |
| (as nitrogen)     |                                             |                                                              |                                           |                                        |                       |                                          |                                                       |                              |                          |                                         |
| PH                | 6 0-9 0                                     | 7 5-9 0                                                      | 7 5-9 0                                   | 6 0-9 0                                | 6 0-9 0               | 6.0-9.0                                  | 6 0-9.0                                               | 6 0-9 0                      | 6 0-9 0                  | 6 0-9 0                                 |
| Fluor 1 <b>de</b> | 2 0                                         |                                                              | 0 4                                       |                                        |                       |                                          |                                                       |                              |                          |                                         |
| Aluminum          |                                             |                                                              | 1.0                                       |                                        |                       |                                          |                                                       |                              |                          |                                         |
| Arsenic           |                                             |                                                              |                                           | 20                                     | 20                    | 0 04                                     |                                                       |                              | 0 0008                   | 0 0016                                  |
| Cadenium          |                                             |                                                              |                                           | 1.0                                    |                       |                                          |                                                       | 1 0                          |                          | 0 008                                   |
| Copper            |                                             |                                                              | 0.3                                       | 0 5                                    | 0.5                   | 0.001                                    | 0 5                                                   |                              |                          |                                         |
| Lead              |                                             |                                                              |                                           | 1 0                                    |                       |                                          |                                                       | 1.0                          | 0.0008                   |                                         |
| Selenium          |                                             |                                                              |                                           | 10                                     | 10                    | 0.02                                     |                                                       |                              |                          | 0 08                                    |
| Zinc              |                                             |                                                              |                                           | 10                                     | 10                    | 0.02                                     | 10                                                    | 10                           | 0 008                    | 0 08                                    |

Note: Blanks indicate parameter not regulated for BPT in this subcategory.

# II.10.1.2 Subcategory Description [1]

The nonferrous metals industry is divided into 61 subcategories by the type and source of the metal to be smelted and/or refined and by similar wastewater sources. Twelve of these subcategories

II.10-2 Date: 6/23/80

Amaximum daily discharge, 30 day average may not exceed one half reported amounts.

bpH is reported in pH units

<sup>&</sup>lt;sup>C</sup>Zero discharge except for excess of monthly rainfall over monthly evaporation

 $<sup>^{\</sup>mathbf{d}}_{\mathbf{Located}}$  in a historic area of net precipitation

have been chosen for detailed study. The remainder of the sub-categories lack sufficient data to be reported, and either have been deferred to Phase II of the nonferrous metals study or are Paragraph 8 exclusion subcategories. Table 10-3 lists the subcategories studied, deferred, and excluded for this report. The following subparagraphs describe the 12 subcategories chosen for detailed study.

TABLE 10-3. SUBCATEGORIES WITHIN THE NONFERROUS METALS INDUSTRY [1, 2]

| Subcategories and SIC codes chosen for Primary aluminum (3334) Secondary aluminum (3341) Primary columbium (3339) Primary tantalum (3339) Primary copper (3331) Secondary copper (3341)                                                                                                  | detailed study: Primary lead (3332) Secondary lead (3341) Secondary silver (3341) Primary tungsten (3339) Primary zinc (3333) Primary cadmium (3339)                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subcategories and SIC codes lacking su<br>Primary beryllium<br>Primary selenium                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |
| Subcategories to be deferred to phase                                                                                                                                                                                                                                                    | TT:                                                                                                                                                                                                                                                                                                |
| Primary boron Secondary boron Primary cesium Primary cobalt Secondary cobalt Secondary columbium Primary gallium Primary germanium Primary gold Secondary precious metals Primary hafnium Indium Primary lithium Primary magnesium Secondary magnesium Primary mercury Secondary mercury | Primary nickel Secondary nickel Secondary plutonium Primary rare earths Primary rhenium Secondary rhenium Primary rubidium Primary platinum group Secondary tin Primary titanium Secondary titanium Secondary trungsten Primary uranium Secondary uranium Secondary zinc Primary zirconium Bauxite |
| Primary molybdenum  Paragraph & exclusion subcategories an                                                                                                                                                                                                                               | d SIC codes.                                                                                                                                                                                                                                                                                       |
| Paragraph 8 exclusion subcategories an Primary arsenic (3339) Primary antimony (3339) Primary barium (3339) Secondary beryllium (3341) Primary bismuth (3339)                                                                                                                            | Secondary cadmium (3341) Primary calcium (3339) Secondary tantalum (3341) Primary tin (3339) Secondary babbitt (3341)                                                                                                                                                                              |

<sup>&</sup>lt;sup>a</sup>Primary columbium and primary tantalum are studied together because of similar processes and wastewaters.

# Primary Aluminum

Aluminum metal is produced from alumina in electrolytic pots by the Hall-Heroult process. The pots are made of cast iron lined with carbon and contain an electrolytic solution composed of cryolite, calcium fluoride, and aluminum fluoride. Alumina is

Date: 6/23/80 II.10-3

<sup>&</sup>lt;sup>b</sup>Primary zinc and cadmium are studied together because simultaneous recovery is common.

added to the pots periodically and electrical current causes the reduction of alumina to aluminum metal. Molten aluminum is removed from the bottom of the pot.

The carbon-lined pot and the molten aluminum which collects in the pot serve as the cathode. The anode is a carbon rod prepared from petroleum coke and pitch. During the reduction process that produces the aluminum the anodes are oxidized, producing carbon monoxide and carbon dioxide.

The molten aluminum is tapped and conveyed to holding furnaces for subsequent degassing and alloying. Degassing with chlorine (and sometimes nitrogen and carbon dioxide) serves to remove hydrogen and to mix the aluminum to ensure a uniform alloy. At most plants the final step is casting the finished metal.

## Secondary Aluminum

In this subcategory the use of varied raw materials requires two operations: presmelting and smelting.

Presmelting varies with the raw material being recovered. With relatively pure feedstocks only sorting and perhaps oil removal by drying may be required. However, crushing, screening, and iron removal frequently are necessary.

Smelting of the cleaned, purified aluminum involves charging the furnace with scrap and flux, addition of any necessary alloying agents, "demagging" to remove magnesium, and skimming to remove waste slag.

## Primary Columbium and Tantalum

Columbium (also known as niobium) and tantalum metals are produced from purified salts which are prepared from ore concentrates and slags resulting from foreign tin production. The concentrates and slags are leached with hydrofluoric acid to dissolve the metal salts. Solvent extraction or ion exchange is used to purify the columbium and tantalum. The salts of these metals are then reduced via one of several techniques, which include aluminothermic reduction, sodium reduction, carbon reduction, and electrolysis. Owing to the reactivity of these metals, special techniques are used to purify and work the metal produced.

# Primary Copper

Smelters producing copper metal from ores use smelting and converting processes plus an optional roasting step. Roasting is used to reduce the content of sulfur and other impurities prior to smelting. Smelting converts the ore to a molten copper/iron sulfide material (matte) which is sent to a convertor. In the

Date: 6/23/80 II.10-4

convertor, air is introduced and the iron sulfide is oxidized to sulfur dioxide and iron oxide. The resulting product, called blister copper, is cast into anodes and purified by electrolytic refining.

In the copper refining process blister copper purchased from a nonassociated smelter or transferred from an associated smelter is cast into anodes and electrolytically deposited on the cathode. All impurities become concentrated in the electrolytic solution and in insoluble slimes. The slimes are processed for byproduct recovery of copper, lead, selenium, tellurium, gold and other precious metals.

### Secondary Copper

In secondary copper operations, scrap containing copper is processed to recover the copper. Low-grade copper waste such as slag is added in small amounts to copper alloy melts or is melted to produce black copper. Intermediate grade scrap is used to produce brass and bronze alloys after removal of some associated impurities. High grade scrap is dried and baled or sawed, then used to produce blister or refined copper.

# Primary Lead

Lead is produced in a two-step process involving refining and smelting. Typically, both operations are carried out at the same site, but there are also nonintegrated smelters and refiners.

In the smelting process ore concentrates are blended with recycle products and fluxes, pelletized, and sintered. The sinter is fed with flux, coke and wastes (such as slag and dust) to a blast furnace from which lead bullion is drawn for refining. Slag and matte are frequently withdrawn and processed to recover any other metals present.

In the refining process the first step is dross decopperizing. In this step lead is maintained slightly above its melting point and copper slag is skimmed off the top. Additional slagging steps are carried out to remove antimony, tin, arsenic, gold, silver, and bismuth before the lead refining process is complete.

# Secondary Lead

Scrap lead from batteries and other lead-base materials is charged to furnaces to produce soft or hard (antimonial) lead. The soft lead may be refined or oxidized to make battery paste. The hard lead may be used in the manufacture of battery plates or processed to make lead alloy.

# Secondary Silver

Wastes containing silver include materials from photography, the arts, electrical components, industry, and miscellaneous sources. These wastes are processed by a wide variety of techniques to recover the silver. Because the process is highly specific for the type of waste, no attempt to discuss the various processes will be made in this document.

# Primary Tungsten

There are several variations in the processes of this industry depending on the ore. In each process one of the intermediate products is tungstic acid. The tungstic acid is converted to ammonium tungstate, which is dried and heated to form ammonium paratungstate. This intermediate is converted to oxides in a nitrogen-hydrogen atmosphere. Finally, the oxides are reduced to tungsten metal powder at high temperature in a hydrogen atmosphere.

## Primary Zinc - Primary Cadmium

In this industry, the concentrates are roasted to remove sulfur and other volatile impurities. The product, called calcine, is processed either pyrolytically or electrolytically to recover the zinc. All of these plants also recover cadmium and send their wastes to other processers for recovery of other metals.

# Primary Beryllium

Primary beryllium production occurs at two plants within the United States; one of these plants discharges its wastewater to the environment. Because of the limited number of facilities, beryllium production will not be discussed in this document.

### Primary Selenium

Primary selenium recovery occurs at a single site which does not discharge to the environment. Consequently, this subcategory is not discussed further in this document.

### Primary Tellurium

No information is currently available for this nonferrous metal.

### Primary Silver

There are four primary silver production facilities in the United States. Of these, two discharge wastewaters. No further information on this subcategory is currently available.

# II.10.1.3 Wastewater Flow Characterization [1]

The volume of wastewater discharged in this industry varies from 0 to  $540~\text{m}^3/\text{Mg}$  (0-160,000 gal/ton) of metal is produced. In the sampled plants, daily flows varied from 0.45 to 61,000 m³/d (120 to 16 MGD).

### II.10.2 WASTEWATER CHARACTERIZATION [1]

Each metal subcategory uses different processes and emits different pollutant concentrations and types in the process wastewater. The following subparagraphs and tables present information on the wastewater streams for each of the 12 subcategories studied.

### II.10.2.1 Primary Aluminum

Process wastewater sources for this subcategory are primarily related to air pollution control. Wet air pollution controls on anode bake furnaces generate wastewater in plants utilizing prebaked anodes. Suspended solids, oil and grease, sulfur compounds, and fuel combustion products characterize this stream. Some organics may also be present due to coal tar products released by anode baking. Degassing with chlorine requires wet air pollution control methods and results in a wastewater stream. Cryolite recovery also produces a wastewater stream that has significant amounts of fluoride, suspended solids, and TOC. Other waste streams may also be produced by cooling water, cathode making, and storm water runoff.

Tables 10-4 and 10-5 present conventional and toxic verification data for the primary aluminum subcategory.

TABLE 10-4. CONVENTIONAL AND NONCONVENTIONAL POLLUTANTS
IN PRIMARY ALUMINUM RAW WASTEWATER [1]

|                | Numb     | er of    |                |             |       |
|----------------|----------|----------|----------------|-------------|-------|
|                |          | Times    | Concentr       | ation, make | g/L   |
| Pollutant      | Analyses | detected | Range          | Median      | Mean  |
| COD            | 2        | 2        | 3.4 - 5,700    |             | 2,900 |
| TOC            | 2        | 2        | 150 - 440      |             | 295   |
| TSS            | 2        | 2        | 2,300 - 11,400 |             | 6,850 |
| Total phenol   | 3        | 3        | 0.11 - 0.27    | 0.13        | 0.17  |
| Oil and grease | 2        | 2        | 4.2 - 5.5      |             | 4.85  |
| Ammonia        | 1        | 1        |                | 120         | 120   |
| Fluoride       | 3        | 3        | 2.4 - 13,000   | 190         | 4,400 |

<sup>&</sup>lt;sup>a</sup>Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

Date: 6/23/80

Concentrations were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration present in the intake; refer to Table V-6, Reference 1.

TABLE 10-5. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN PRIMARY ALUMINUM RAW WASTEWATER [1]

|                                  | Numbe    | er of             |                   |                                    | b    |
|----------------------------------|----------|-------------------|-------------------|------------------------------------|------|
| Marrie vallutant                 | Analyzaa | Times<br>detected | Concentrate Range | tion, µg/L <sup>a,</sup><br>Median | Mea  |
| Toxic pollutant                  | Analyses | detected          | Range             | Median                             | Me   |
| Metals and inorganics            |          |                   |                   |                                    |      |
| Antimony                         | 3        | 2                 | ND - 770          | 99                                 | 290  |
| Arsenic                          | 3        | 2                 | ND - 260          | 130                                | 130  |
| Asbestos                         | 1        | 1                 |                   | $2.2 \times 10^{10}$               |      |
| Beryllium                        | 3        | 2                 | ND - 76           | 33                                 | 36   |
| Cadmium                          | 3        | 3                 | 2.3 - 200         | 24                                 | 75   |
| Chromium                         | 3        | 2                 | ND - 2,200        | 86                                 | 760  |
| Copper                           | 3        | 3                 | 13 - 140          | 77                                 | 77   |
| Cyanide                          | 3        | 2                 | <0.004 - 29       | 0.022                              | 9.7  |
| Lead                             | 3        | 3                 | 0.58 - 780        | 650                                | 480  |
| Mercury                          | 3        | 2                 | <0.1 - 1.3        | 0.40                               | 0.60 |
| Nickel                           | 3        | 3                 | 500 - 770         | 660                                | 640  |
| Selenium                         | 3        | 2                 | ND - 450          | 0.20                               | 150  |
| Silver                           | 3        | 2                 | ND - <250         | 0.40                               | 83   |
| Thallium                         | 3        | ī                 | ND - <50          | ND                                 | <17  |
| Zinc                             | 3        | 2                 | ND - 540          | 25                                 | 188  |
|                                  | -        | _                 |                   |                                    |      |
| Phthalates                       | _        | _                 |                   |                                    | 00   |
| Bis(2-ethylhexyl) phthalate      | 7        | 5                 | ND - 40           |                                    | 82   |
| Butyl benzyl phthalate           | 7        | 2                 | ND - 86           |                                    | 22   |
| Di-n-butyl phthalate             | 7        | 1                 | ND - 120          |                                    | 19   |
| Diethyl phthalate                | 7        | 1                 | ND - 2.5          |                                    | 0.4  |
| Dimethyl phthalate               | 7        | 0                 |                   |                                    |      |
| Di-n-octyl phthalate             | 7        | 0                 |                   |                                    |      |
| Phenols                          |          |                   | .m. 70            | 10                                 | 12   |
| Phenol                           | 6        | 1                 | ND - 70           | 12                                 | 12   |
| Aromatics                        | _        | _                 |                   |                                    |      |
| Benzene                          | 8        | 1                 | ND - 6.0          | 0.8                                | 0.8  |
| Ethylbenzene                     | 8        | 0                 |                   |                                    |      |
| Toluene                          | 8        | 1                 | ND - 1.0          | 0.2                                | 0.2  |
| Polycyclic aromatic hydrocarbons |          |                   |                   |                                    |      |
| Acenaphthene                     | 7        | 1                 | ND - 50           | 8.4                                | 8.4  |
| Acenaphthylene                   | 7        | ī                 | ND - 30           | 7.6                                | 5.6  |
| Anthracene                       | 7        | 4                 | ND - 150          | 8.6                                | 40   |
| Benz(a)anthracene                | 7        | 3                 | ND - 180          |                                    | 38   |
|                                  | 7        | 3                 | ND - 570          |                                    | 95   |
| Benzo(a)pyrene                   | 7        | ĭ                 | ND - 260          |                                    | 37   |

TABLE 10-5 (continued)

|                                                 | Numb     | er of    |            |                         |      |
|-------------------------------------------------|----------|----------|------------|-------------------------|------|
|                                                 |          | Times    | Concentrat | tion, µg/L <sup>a</sup> | , D  |
| Toxic pollutant                                 | Analyses | detected | Range      | Median                  | Mean |
| Polycyclic aromatic hydrocarbons (continued)    |          |          |            |                         |      |
| Benzo(k)fluoranthene                            | 7        | 2        | ND - 210   |                         | 39   |
| Chrysene                                        | 7        | 2        | ND - 230   |                         | 40   |
| Dibenz(ah)anthracene                            | 7        | 1        | ND - 110   |                         | 16   |
| Fluoranthene                                    | 7        | 4        | ND - 320   | 49                      | 95   |
| Fluorene                                        | 7        | 1        | ND - 50    |                         | 7.4  |
| Indeno(1,2,3-cd)pyrene                          | 7        | 2        | ND - 350   |                         | 53   |
| Naphthalene                                     | 7        | 1        | ND - 20    |                         | 3.0  |
| Pyrene                                          | 7        | 4        | ND - 219   |                         | 70   |
| Polychlorinated biphenyls and related compounds |          |          |            |                         |      |
| Aroclor 1248                                    | 7        | 0        |            |                         |      |
| Aroclor 1254                                    | 7        | 0        |            |                         |      |
| Halogenated aliphatics                          |          |          |            |                         |      |
| Chloroform                                      | 8        | 1        | ND - 6.0   |                         | 0.8  |
| 1,2-Dichloroethane                              | 8        | 0        |            |                         |      |
| 1,1-Dichloroethylene                            | 8        | 0        |            |                         |      |
| Methylene chloride                              | 9        | 1        | ND - 15    |                         | 3.0  |
| 1,1,2,2-Tetrachloroethane                       | 8        | 0        |            |                         |      |
| Tetrachloroethylene                             | 8        | 0        |            |                         |      |
| Trichloroethylene                               | 8        | 0        |            |                         |      |
| Pesticides and metabolites                      |          |          |            |                         |      |
| Aldrin                                          | 7        | 0        |            |                         |      |
| δ-BHC                                           | 7        | 0        |            |                         |      |
| γ-BHC                                           | 7        | 1        | ND - 0.01  |                         |      |
| Chlordane                                       | 7        | 0        |            |                         |      |
| 4,4'-DDT                                        | 7        | 0        |            |                         |      |
| Dieldrin                                        | 7        | 0        |            |                         |      |
| Endrin aldehyde                                 | 7        | 0        |            |                         |      |
| Heptachlor                                      | 7        | 0        |            |                         |      |
| Heptachlor epoxide                              | 7        | 0        |            |                         |      |
| Isophorone                                      | 7        | 1        | ND - 1.5   |                         | 0.2  |

<sup>&</sup>lt;sup>a</sup>Except asbestos, which is given in Fibers/L.

ball concentrations except those for asbestos were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration present in the intake; refer to Table V-5, Reference 1.

CMaximum value.

# II.10.2.2 Secondary Aluminum

Sources of process wastewater in the secondary aluminum industry include demagging air pollution control, wet nulling of residues, and contact cooling water. Removal of magnesium (demagging) involves passage of chlorine or aluminum fluoride through the melt, causing the release of magnesium in heavy fuming. The wastestreams from the air pollution control devices contain significant levels of suspended solids and chlorides or flourides as well as moderate amounts of heavy metals. Milling streams also contain suspended solids, and contact cooling water contains oil and grease, chlorides, and suspended solids. Tables 10-6 and 10-7 present conventional and toxic pollutant concentrations found in the wastewater streams of this subcategory.

TABLE 10-6. CONVENTIONAL AND NONCONVENTIONAL POLLUTANTS IN THE RAW WASTEWATER OF THE SECONDARY ALUMINUM SUBCATEGORY [1]

|                | Numbe    | er of    |               | <u> </u>    |       |
|----------------|----------|----------|---------------|-------------|-------|
|                |          | Times    | Concer        | tration, mg | /L    |
| Pollutant      | Analyses | detected | Range         | Median      | Mean  |
| COD            | 4        | 4        | 9 - 580       | 35          | 160   |
| TOC            | 4        | 3        | ND - 140      | 4           | 36    |
| TSS            | 4        | 4        | 63 - 20,000   | 150         | 5,100 |
| Total phenol   | 4        | 4        | 0.003 - 0.025 | 0.010       | 0.012 |
| Oil and grease | 4        | 4        | 3.1 - 98      | 13          | 32    |
| Ammonia        | 2        | 2        | <0.10 - 140   |             | 70    |
| Fluoride       | 1        | 1        |               | 400         | 400   |
| Chloride       | 3        | 3        | 400 - 6,000   | 3,400       | 3,300 |

<sup>&</sup>lt;sup>a</sup>Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

### II.10.2.3 Primary Columbium - Primary Tantalum

The production of columbium and tantalum involves the processing of ore concentrates and slags to obtain columbium and tantalum salts, and the subsequent reduction of those salts to the respective metals. The ore concentrates are dissolved by hydrofluoric acid, and the insoluble gangue is removed by filtration. Waste gangue is generally settled in holding ponds. Overflow from this pond is extremely acidic and contains metals, fluorides, and suspended solids. After filtration, the digested solution is extracted with an organic solvent and the raffinate is discharged as a wastestream with high concentrations of organics, fluorides, metals, and suspended solids. The organic stream is then stripped with water to yield aqueous solutions of columbium and

<sup>&</sup>lt;sup>b</sup>Concentrations were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration present in the intake; refer to Table V-ll, Reference 1.

TABLE 10-7. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTE-WATERS OF THE SECONDARY ALUMINUM SUBCATEGORY [1]

|                                 | Numbe    | er of             | Concentration, µg/L <sup>a,b</sup> |                     |       |  |
|---------------------------------|----------|-------------------|------------------------------------|---------------------|-------|--|
| Toxic pollutant                 | Analyses | Times<br>detected | Range                              | Median              | Mean  |  |
| Metals and inorganics           |          |                   |                                    |                     |       |  |
| Antimony                        | 4        | 2                 | ND - 950                           | 150                 | 31    |  |
| Arsenic                         | 4        | 3                 | ND - 4.000                         | 32                  | 1,000 |  |
| Asbestos                        | ī        | 1                 |                                    | $7.5 \times 10^{8}$ | -,    |  |
| Beryllium                       | 4        | 4                 | <7.0 - 310                         | 97                  | 130   |  |
| Cadmium                         | 4        | 4                 | <35 - 2.000                        | 240                 | 630   |  |
| Chromium                        | 4        | 4                 | <5 - 1,200                         | 380                 | 490   |  |
| Copper                          | 4        | 4                 | <70 - 6,100                        | 575                 | 1,800 |  |
| Cyanide                         | 4        | 4                 | <0.001 ~ 0.008                     | 0.004               | 0.004 |  |
| Lead                            | ā.       | 3                 | ND - 5,600                         | 1.000               | 1,900 |  |
| Mercury                         | 4        | 3                 | ND - 6.4                           | 0.38                | 1.8   |  |
| Nickel                          | 4        | 3                 | ND - 620                           | 28                  | 170   |  |
| Selenium                        | 4        | i                 | ND - 200                           | 0                   | 50    |  |
| Silver                          | 4        | 2                 | ND - 30                            | <12                 | 14    |  |
|                                 | 3        | 1                 | ND - 540                           | ND                  | 180   |  |
| Thallium                        |          | 4                 |                                    |                     | 3,000 |  |
| Zinc                            | 4        | 4                 | <2,000 - 5,900                     | 2,200               | 3,000 |  |
| hthalates                       |          |                   |                                    |                     |       |  |
| Bis(2-ethylhexyl) phthalate     | 6        | 4                 | ND - 2,000                         | 46                  | 380   |  |
| Butyl benzyl phthalate          | 6        | 2                 | ND - 98                            |                     | 19    |  |
| Di-n-butyl phthalate            | 6        | 3                 | ND - 44                            |                     | 16    |  |
| Dimethyl phthalate              | 6        | ĭ                 | ND - 56                            | 9.5                 | 9.5   |  |
| Di-n-octyl phthalate            | 6        | î                 | ND - 25                            | 4.2                 | 4.2   |  |
|                                 | ŭ        | •                 | 23                                 |                     |       |  |
| itrogen compounds               |          |                   |                                    |                     |       |  |
| 3,3'-Dichlorobenzidine          | 6        | 1                 | ND - 2.0                           | 0.3                 | 0.3   |  |
| romatics                        |          |                   |                                    |                     |       |  |
| Benzene                         | 10       | 1                 | ND - 94                            |                     | 9.4   |  |
| Chlorobenzene                   | 10       | 0                 |                                    |                     |       |  |
| 1,4-Dichlorobenzene             | 6        | 1                 | ND - 26                            |                     | 4.3   |  |
| Ethylbenzene                    | 10       | Ō                 |                                    |                     |       |  |
| 1,2,4-Trichlorobenzene          | 6        | Ŏ                 |                                    |                     |       |  |
|                                 | ŭ        | ·                 |                                    |                     |       |  |
| olycyclic aromatic hydrocarbons | _        | _                 |                                    |                     |       |  |
| Acenaphthylene                  | 6        | 1                 | ND - 17                            |                     | 2.8   |  |
| Anthracene                      | 6        | 1                 | ND - 4.0                           |                     | 0.7   |  |
| Benzo(a)pyrene                  | 6        | 1                 | ND - 12                            |                     | 2.0   |  |
| Benzo(b)fluoranthene            | 6        | 0                 |                                    |                     |       |  |
| Benzo(gh1)perylene              | 6        | 0                 |                                    |                     |       |  |
| Benzo(k)fluoranthene            | 6        | 0                 |                                    |                     |       |  |
| Chrysene                        | 6        | 1                 | ND - 190                           |                     | 32    |  |
| Fluoranthene                    | 6        | 2                 | ND - 12                            |                     |       |  |
| Naphthalene                     | 6        | ī                 | ND - 1.0                           |                     | 0.2   |  |

TABLE 10-7 (continued)

|                                                 | Numbe    | er of             | Concentra  | tion, µg/L <sup>a,t</sup> | )<br> |
|-------------------------------------------------|----------|-------------------|------------|---------------------------|-------|
| Toxic pollutant                                 | Analyses | Times<br>detected | Range      | Median                    | Mea   |
| Polycyclic aromatic hydrocarbons (continued)    |          |                   |            |                           |       |
| Phenanthren <del>e</del>                        | 6        | 1                 | ND - 10    |                           | 1.    |
| Pyrene                                          | 6        | 1                 | ND - 24    |                           | 4.    |
| Polychlorinated biphenyls and related compounds |          |                   |            |                           |       |
| Aroclor 1248                                    | 6        | 1                 | ND - 0.3   |                           | 0.    |
| Aroclor 1254                                    | 6        | 1                 | ND - 0.9   |                           | 0.    |
| Malogenated aliphatics                          |          |                   |            |                           |       |
| Bromoform                                       | 10       | 0                 |            |                           |       |
| Carbon tetrachloride                            | 10       | 1                 | ND - 10    |                           | 1.    |
| Chlorodibromomethane                            | 10       | 0                 |            |                           |       |
| Chloroform                                      | 10       | 6                 | ND - 34    |                           | 3.    |
| Dichlorobromomethane                            | 10       | 1                 | ND - 19    |                           | 1.    |
| 1,1-Dichloroethane                              | 10       | 0                 |            |                           |       |
| 1,2-Dichloroethane                              | 10       | 0                 |            |                           |       |
| 1,2-Trans-dichloroethylene                      | 10       | 5                 | ND - 57    |                           | 1     |
| Methylene chloride                              | 10       | 1                 | ND - 93    |                           | 9.    |
| 1,1,2,2-Tetrachloroethane                       | 10       | 0                 |            |                           |       |
| Tetrachloroethylene                             | 10       | 1                 | ND - 310   |                           | 3     |
| 1,1,1-Trichloroethane                           | 10       | 0                 |            |                           |       |
| 1,1,2-Trichloroethane                           | 10       | 0                 |            |                           |       |
| Trichloroethylene                               | 10       | 5                 | ND - 530   |                           | 6     |
| esticides and metabolites                       |          |                   |            |                           |       |
| Aldrin                                          | 6        | 0                 |            |                           |       |
| α – BHC                                         | 6        | 1                 | ND - 0.1   |                           |       |
| β-BHC                                           | 6        | 1                 | ND - 0.4   |                           |       |
| γ-BHC                                           | 6        | 1                 | ND - 0.1   |                           |       |
| Chlordane                                       | 6        | 1                 | ND - 0.3   |                           | 0.    |
| 4,4'-DDE                                        | 6        | 1                 | ND - 0.01  |                           |       |
| 4,4'-DDD                                        | 6        | 0                 |            |                           |       |
| 4,4'-DDT                                        | 6        | 1                 | NTD - 0.02 |                           |       |
| Dieldrin                                        | 6        | 1                 | NTD - 0.2  |                           |       |
| α-Endosulfan                                    | 6        | 0                 |            |                           |       |
| Endrin                                          | 6        | 1                 | ND - 0.01  |                           |       |
| Endrin aldehyde                                 | 6        | 1                 | NTD - 0.4  | 0.1                       | 0.    |
| Heptachlor                                      | 6        | 1                 | NTD - 0.4  |                           |       |
| Heptachlor epoxide                              | 6        | 1                 | NTD - 0.2  |                           |       |

<sup>&</sup>lt;sup>a</sup>Except asbestos in fibers/L.

ball concentrations except those for asbestos were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the conentration present in the intake; refer to Table V-10, Reference 1.

tantalum. Precipitation of the salts is accomplished by ammonia addition and is followed by filtration. The filtrate typically contains high concentrations of ammonia as well as significant levels of fluoride, various metals, and suspended solids. Conversion of the salts to metals produces wastewater from air pollution control scrubbers and reduction leachates. These streams contain high levels of dissolved solids and significant concentration of fluoride.

Tables 10-8 and 10-9 present conventional and toxic pollutant concentration data for this subcategory.

TABLE 10-8. CONVENTIONAL AND NONCONVENTIONAL POLLUTANTS
IN THE RAW WASTEWATER OF THE PRIMARY COLUMBIUM
AND PRIMARY TANTALUM SUBCATEGORIES [1]

|                | Numb     | er of    |                | <u> </u>    |       |
|----------------|----------|----------|----------------|-------------|-------|
|                |          | Times    | Concen         | tration, mg | /L    |
| Pollutant      | Analyses | detected | Range          | Median      | Mean  |
| COD            | 3        | 3        | 140 - 6,700    | 400         | 2,400 |
| TOC            | 3        | 3        | 45 - 1,000     | 120         | 390   |
| TSS            | 3        | 3        | 570 - 8,700    | 3,900       | 4,400 |
| Total phenol   | 3        | 3        | 0.016 - 0.10   | 0.018       | 0.04  |
| Oil and grease | 3        | 3        | 5.3 - 16       | 7.3         | 9.5   |
| Ammonia        | 3        | 3        | 64 - 2,400     | 380         | 948   |
| Fluoride       | 3        | 3        | 2,200 - 13,000 | 3,500       | 9,350 |
| Chloride       | 1        | 1        |                | 120         | 120   |

<sup>&</sup>lt;sup>a</sup>Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

### II.10.2.4 Primary Copper

Both smelting and refining are practiced by the primary copper industry. Some plants engage in smelting only, others practice only refining, and some facilities practice both operations. Significant differences in wastewater characteristics associated with smelting and refining are found.

Smelting process wastewater sources include acid plant blowdown, contact cooling, and slag granulation. Acid plant blowdown results from the recovery of sulfur from the smelting operation. Contact casting cooling water used by primary copper smelters is normally recycled after cooling in towers or ponds. Furnace slag is disposed of by either dumping or granulation. Molten slag is granulated by using high pressure water jets. The wastewater from this granulation is typically high in suspended and dissolved solids and contains some toxic metals.

<sup>&</sup>lt;sup>b</sup>Concentrations were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration present in the intake; refer to Table V-19, Reference 1.

TABLE 10-9. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTEWATERS OF THE PRIMARY COLUMBIUM AND PRIMARY TANTALUM SUBCATEGORIES [1]

|                                 | Numb     | er of    | Concentration, µg/L <sup>a,b</sup> |                        |          |
|---------------------------------|----------|----------|------------------------------------|------------------------|----------|
|                                 |          | Times    | Concent                            | ration, µg/l<br>Median | Mean     |
| Toxic pollutant                 | Analyses | detected | Range                              | median                 |          |
| Metals and inorganics           |          |          |                                    |                        |          |
| Antimony                        | 3        | 2        | ND - 11,000                        | 10                     | 3,700    |
| Arsenic                         | 3        | 3        | 1 <b>80 - 14,0</b> 00              | 380                    | 4,900    |
| Asbestos                        | 3        | 1        | 1                                  | .4 x 1010              |          |
| Beryllium                       | 3        | 3        | 20 - 190                           | 89                     | 100      |
| Cadmium                         | 3        | 3        | 8.0 - 19,000                       | 48                     | 6,40     |
| Chromium                        | 3        | 3        | 3,000 - 520,000                    | 3,000                  | 180,000  |
| Copper                          | 3        | 3        | 400 - 260,000                      | 500                    | 87,00    |
| Cyanide                         | 3        | 3        | 0.002 - 0.012                      | 0.004                  | 0.00     |
| Lead                            | 3        | 3        | $3.000 - 2.7 \times 10^7$          | 3,000                  | 9.0 x 10 |
| Mercury                         | 3        | 3        | <0.1 - 36                          | 6.0                    | 14       |
| Nickel                          | 3        | 3        | 600 - 2,600                        | 2,000                  | 1,70     |
| Selenium                        | 3        | 2        | ND - 24,000                        | <10                    | 8,000    |
| Silver                          | 3        | 3        | <20 - 610                          | 60                     | 230      |
| Thallium                        | 3        | 3        | ND - <100                          | 24                     | 4:       |
| Zinc                            | 3        | 3        | 540 - 700,000                      | 6,000                  | 240,00   |
|                                 | •        | •        | 310 /00,000                        | 0,000                  |          |
| hthalates                       |          |          |                                    |                        | 150      |
| Bis(2-ethylhexyl) phthalate     | 15       | 12       | ND - 1,100                         | 22                     |          |
| Butyl benzyl phthalate          | 15       | 2        | ND - 47                            |                        | 6.       |
| Di-n-butyl phthalate            | 15       | 5        | ND - 60                            |                        | 1        |
| Diethyl phthalate               | 15       | 1        | ND - 17                            |                        | 1.       |
| Dimethyl phthalate              | 15       | 2        | ND - 39                            |                        | 4.,      |
| Di-n-octyl phthalate            | 15       | 1        | ND - 95                            |                        | 6.6      |
| henols                          |          |          |                                    |                        |          |
| Pentachlorophenol               | 8        | 1        | ND - 17                            |                        | 2.1      |
| romatics                        |          |          |                                    |                        |          |
| Benzene                         | 22       | 2        | ND - 44                            |                        | 4.4      |
| Chlorobenzene                   | 22       | 0        |                                    |                        |          |
| 2,4-Dinitrotoluene              | 15       | 1        | ND - 16                            |                        | 1.7      |
| 2,6-Dinitrotoluene              | 15       | 1        | ND - 16                            |                        | 1.1      |
| Ethylbenzene                    | 22       | 0        |                                    |                        |          |
| Nitrobenzene                    | 15       | 2        | ND - 163                           |                        | 16       |
| Toluene                         | 22       | ō        |                                    |                        |          |
| 1,2,4-Trichlorobenzene          | 15       | 2        | ND - 260                           |                        | 22       |
| olycyclic aromatic hydrocarbons |          |          |                                    |                        |          |
|                                 | 15       | 1        | ND - 17                            |                        | 1.1      |
| Acenaphthene                    | 15       | î        | ND - 2.0                           |                        | 0.2      |
| Acenaphthylene                  | 15       | î        | ND - 2.0                           |                        | 0.3      |
| Anthracene                      |          | 1        | ND - 1.0                           |                        | 0.3      |
| Benz(a)anthracene               | 15       |          |                                    |                        | 0.       |
| Benzo(a)pyrene                  | 15       | 1        | ND - 1.0                           |                        | 0.       |
| Benzo(b)fluoranthene            | 15       | 0        | 120 3 A                            |                        | 0.2      |
| Benzo(ghi)perylene              | 15       | 1        | ND - 2.0                           |                        | 0.2      |
| Benzo(k)fluoranthene            | 15       | 0        |                                    |                        | 0.3      |
| 2-Chloronaphthalene             | 15       | 1        | ND - 3.0                           |                        |          |
| Chrysene                        | 15       | 1        | ND - 45                            |                        | 3.1      |
| Dibenz(ah)anthracene            | 15       | 1        | ND - 4.0                           |                        | 0.3      |
|                                 |          |          |                                    |                        |          |

TABLE 10-9 (continued)

|                                                 | Numb     | er of    |                      |               |
|-------------------------------------------------|----------|----------|----------------------|---------------|
|                                                 |          | Times    | Concentra            | tion, µg/La,b |
| Toxic pollutant                                 | Analyses | detected | Range                | Median Mean   |
| Polycyclic aromatic hydrocarbons (continued)    |          |          |                      |               |
| Fluoranthene                                    | 15       | 1        | ND - 7.2             | 1.            |
| Fluorene                                        | 15       | 2        | ND - 2.0             |               |
| Indeno(1,2,3-cd)pyrene                          | 15       | 1        | ND - 4.0             | 1.            |
| Naphthalene                                     | 15       | i        | ND - 4.0             | o.            |
| Phenanthrene                                    | 15       | i        | <del>-</del>         | 6.            |
| Pyrene                                          | 15       | i        | ND - 2.0<br>ND - 3.0 | 0.            |
| -                                               | 13       | •        | ND = 3.0             | 0.            |
| Colychlorinated biphenyls and related compounds |          | _        |                      |               |
| Aroclor 1248                                    | 15       | 1        | ND - 32              | 2.            |
| Aroclor 1254                                    | 15       | 1        | NTD - 52             | 4.            |
| Halogenated aliphatics                          |          |          |                      |               |
| Bromoform                                       | 22       | 1        | MD - 21              | 1.            |
| Carbon tetrachloride                            | 22       | 2        | ND - 74              | 5.            |
| Chlorodibromomethane                            | 22       | 3        | ND - 81              | 5.            |
| Chloroform                                      | 22       | 7        | ND - 140             | 7.            |
| Dichlorobromomethane                            | 22       | 1        | ND - 13              | O.            |
| 1,2-Dichloroethane                              | 22       | 6        | ND - 150             | 1             |
| 1,1-Dichloroethylene                            | 22       | ī        | ND - 22              | 1.            |
| 1,2-Trans-dichloroethylene                      | 22       | 6        | ND - 480             | 4             |
| Hexachloroethane                                | 15       | 1        | ND - 23              | 1.            |
| Methylene chloride                              | 22       | 1        | ND - 88,000          | 4.00          |
| 1,1,2,2-Tetrachloroethane                       | 15       | 1        | ND - 6.0             | Ö.            |
| Tetrachloroethylene                             | 22       | 1        | ND - 65              | 3.            |
| 1,1,1-Trichloroethane                           | 22       | 2        | ND - 40              | 2.            |
| 1,1,2-Trichloroethane                           | 22       | 2        | ND - 29              | 2.            |
| Trichloroethylene                               | 22       | 3        | ND - 230             | 2             |
| esticides and metabolites                       |          |          |                      |               |
| Aldrin                                          | 15       | 1        | ND - 4.0             | 0.            |
| a -BHC                                          | 15       | ī        | ND - 0.04            | <b>.</b>      |
| B-BHC                                           | 15       | ī        | ND - 4.5             | 0.            |
| δ-BHC                                           | 15       | ī        | ND - 4.0             | Ö.            |
| y-BHC                                           | 15       | ī        | ND - 0.03            | <b>.</b>      |
| Chlordane                                       | 15       | ī        | ND - 0.8             | 0.            |
| 4,4'-DDE                                        | 15       | ī        | ND - 0.4             | •             |
| 4,4'-DDT                                        | 15       | ī        | ND - 1.0             | 0.            |
| Dieldrin                                        | 15       | ī        | ND - 0.1             | ٧.            |
| g-Endosulfan                                    | 15       | ī        | ND - 0.01            |               |
| Endosulfan sulfate                              | 15       | i        | ND - 0.03            |               |
| Endrin                                          | 15       | î        | ND - 5.4             | 0.            |
| Endrin aldehyde                                 | 15       | î        | ND - 0.2             | <b>v</b> .    |
| Heptachlor                                      | 15       | î        | ND - 0.5             |               |
| Heptachlor epoxide                              | 15       | î        | ND - 0.1             |               |
| Isophorone                                      | 15       | i        | ND - 29              | 2.            |
| Toxaphene                                       | 15       | î        | ND - 0.1             | 4.            |

<sup>&</sup>lt;sup>a</sup>Except asbestos, which is given in fibers/L.

bConcentrations were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration present in the intake; refer to Table V-18, Reference 1.

Refining operations have two principal wastestreams, waste electrolyte and cathode and anode wash water. Spent electrolyte is normally recycled. A bleed stream is treated to reduce copper and impurity concentration. Varying degrees of treatment are necessary because of the differences in the anode copper. Anode impurities, including nickel, arsenic, and traces of antimony and bismuth, may be present in the effluent if the spent electrolyte bleed stream is discharged.

Table 10-10 and Table 10-11 present conventional and toxic pollutant data for raw wastewater in this subcategory.

TABLE 10-10. CONVENTIONAL AND NONCONVENTIONAL POLLUTANTS IN RAW WASTEWATER FROM THE PRIMARY COPPER SUBCATEGORY [1]

|                | Numb     | er of    |               |             |       |
|----------------|----------|----------|---------------|-------------|-------|
|                |          | Times    | Concent       | ration, mg, | /L    |
| Pollutant      | Analyses | detected | Range         | Median      | Mean  |
| COD            | 3        | 3        | <2.0 - 730    | 24          | 252   |
| roc            | 3        | 3        | 3.5 - 7.0     | 4.9         | 5.1   |
| rss            | 3        | 3        | 5.3 - 4,400   | 18          | 1,500 |
| Total phenol   | 2        | 2        | 0.005 - 0.033 |             | 0.01  |
| Oll and grease | 1        | 1        |               | 6.0         | 6.0   |

<sup>&</sup>lt;sup>a</sup>Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

# II.10.2.5 Secondary Copper

Wastewater is generated by several processes in this subcategory. Slag milling and classification generates wastewater that is high in suspended solids, copper, lead, and zinc. Air pollution control at the site generates acidic wastewater that contains significant levels of copper. Other wastewater sources may include contact cooling, electrolyte disposal, and slag granulation.

Tables 10-12 and 10-13 present conventional and toxic pollutant data for the secondary copper recovery subcategory.

# II.10.2.6 Primary Lead

Primary lead facilities have two major processes associated with wastewater generation. The smelting process generates a major wastestream from the sintering operation. These wastewaters are typically high in dissolved solids and metals such as cadmium, lead, and zinc. Acid plant blowdown, slag granulation, and air pollution control methods are also associated with smelting operations. Refining operations also generate wastewater from air pollution equipment and from noncontact cooling water.

bConcentrations were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration present in the intake; refer to Table V-24, Reference 1.

TABLE 10-11. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTE-WATER FROM THE PRIMARY COPPER SUBCATEGORY [1]

|                                                 | Numb     | er of<br>Times | Concentr                        | ation, a µg, | /t.     |
|-------------------------------------------------|----------|----------------|---------------------------------|--------------|---------|
| Toxic pollutant                                 | Analyses | detected       | Range                           | Median       | Mean    |
|                                                 |          |                |                                 |              |         |
| Metals and inorganics Antimony                  | 3        | 3              | <50 - 3,300                     | 100          | 1,200   |
| Arsenic                                         | 3        | 3              | <2.0 - 310,000                  | 9,300        | 110,000 |
| Beryllium                                       | 3        | 3              | <2 - 7.7                        | 6.0          | 5.2     |
| Cadmium                                         | 3        | 3              | <5 - 9,600                      | 7.0          | 3,200   |
| Chromium                                        | 3        | 3              | <10 - 73                        | 51           | 45      |
| Copper                                          | 3        | 3              | 1,600 - 450,000                 | 2,300        | 150,000 |
| Cyanide                                         | 2        | 2<br>3         | <0.001 - <0.02<br><20 - 170,000 | 470          | 56,000  |
| Lead                                            | 3        | 3              | <0.5 - 48                       | 4.6          | 18      |
| Mercury                                         | 3        | 3              | <20 <b>-</b> 1,100              | 340          | 490     |
| Nickel                                          | 3        | 3              | 6.0 - 310                       | 15           | 110     |
| Selenium<br>Silver                              | 3        | 3              | 20 - 480                        | 54           | 185     |
| Thallium                                        | 3        | 3              | 21 - <100                       | <100         | 74      |
| Zinc                                            | 3        | 3              | 30 - 150,000                    | 400          | 50,000  |
| Phthalates                                      | •        | •              |                                 |              | •       |
| Bis(2-ethylhexyl) phthalate                     | 11       | 5              | ND - 78                         |              | 17      |
| Butyl benzyl phthalate                          | 11       | 1              | ND - 1.0                        |              | 0.1     |
| Di-n-butyl phthalate                            | 11       | 2              | ND - 75                         | 0.7          | 7.6     |
| Di-n-octyl phthalate                            | 11       | 1              | NTD - 3.0                       |              | 0.3     |
| Phenols                                         |          |                |                                 |              |         |
| 2,4-Dimethylphenol                              | 2        | 1              | ND - 14                         |              | 7.0     |
| Aromatics                                       |          |                |                                 |              |         |
| Benzene                                         | 11       | 1              | ND - 3.0                        |              | 0.7     |
| Chlorobenzene                                   | 11       | 1              | ND - 40                         |              | 8.4     |
| Toluene                                         | 11       | 1              | ND - 1.0                        |              | 0.2     |
| Polycyclic aromatic hydrocarbons                |          |                |                                 |              |         |
| Acenaphthylene                                  | 11       | 1              | ND - 3.0                        |              | 0.3     |
| Anthracene                                      | 11       | 4              | ND - 21                         |              | 6.1     |
| Benz(a)anthracene                               | 11       | 1              | ND - 1.0                        |              | 0.1     |
| Chrysene                                        | 11       | 0              |                                 |              | • •     |
| Fluoranthene                                    | 11       | 1              | ND - 1.0                        |              | 0.3     |
| Fluorene                                        | 11       | 1              | ND - 1.0                        | 7.0          | 7.1     |
| Phenanthrene                                    | 11       | 4              | ND - 21<br>ND - 1.0             | 7.0          | 0.4     |
| Pyrene                                          | 11       | 1              | ND - 1.0                        |              | 0.4     |
| Polychlorinated biphenyls and related compounds | 9        | 1              | NTD - 0.6                       |              | 0.1     |
| Aroclor 1248                                    | 11       | i              | ND - 0.0                        |              | 0.1     |
| Aroclor 1254                                    | 11       | 1              | ND - 0.7                        |              | 0.1     |
| Halogenated aliphatics                          | 11       | 4              | ND - 40                         |              | 8.4     |
| Carbon tetrachloride<br>Chlorodibromomethane    | 11       | 2              | ND - 13                         |              | 1.2     |
| Chloroform                                      | ii       | 4              | ND - 93                         | 5.0          | 16      |
| Dichlorobromomethane                            | 11       | 2              | ND - 14                         |              | 1.3     |
| 1,2-Dichloroethane                              | 11       | ī              | ND - 7.0                        |              | 0.6     |
| 1,1-Dichloroethylene                            | 11       | ō              |                                 |              | • • •   |
| Methylene chloride                              | 11       | ĭ              | ND - 6.8                        |              | 0.6     |
| 1,1,2,2-Tetrachloroethane                       | 11       | 4              | ND - 12                         |              | 1.9     |
| Tetrachloroethylene                             | 11       | 5              | ND - 15                         | 4.0          | 5.4     |
| 1,1,1-Trichloroethane                           | 11       | Ö              |                                 |              |         |
| 1,1,2-Trichloroethane                           | 11       | 1              | ND - 2.0                        |              | 0.2     |
| Trichloroethylene                               | 11       | 1              | ND - 9.0                        |              | 1.5     |
| Pesticides and metabolites                      |          |                |                                 |              |         |
| β-BHC                                           | 11       | 1              | ND - 0.01                       |              |         |
| Y-BHC                                           | 11       | 1              | ND - 0.04                       |              |         |
| Chlordane                                       | 11       | 1              | ND - 0.2                        |              |         |
| 4,4'-DDT                                        | 11       | 1              | ND - 0.01                       |              |         |
| 4,4'-DDT                                        | 11       | 1              | ND - 0.02                       |              |         |
| Dieldrin                                        | 11       | 1              | ND - 0.02                       |              |         |
| σ-Endosulfan                                    | 11       | 0              |                                 |              |         |
| β-Endosulfan                                    | 11       | 1              | ND - 0.01                       |              |         |
| Endosulfan sulfate                              | 11       | 0              |                                 |              |         |
| Endrin                                          | 11       | 1              | ND - 0.1                        |              |         |
| Endrin aldehyde                                 | 11       | 1              | ND - 0.4                        |              | 0.3     |
| Heptachlor                                      | 11       | 1              | ND - 0.01                       |              | 0.0     |
| Heptachlor epoxide                              | 11       | 1              | ND - 0.01                       |              | 0.0     |
| Isophorone                                      | 11       | 1              | ND - 3.0                        |              | 0       |

<sup>&</sup>lt;sup>a</sup>Concentrations were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration present in the intake; refer to Table V-23, Reference 1.

TABLE 10-12. CONVENTIONAL AND NONCONVENTIONAL POLLUTANTS IN THE RAW WASTEWATER OF THE SECONDARY COPPER SUBCATEGORY [1]

|                | Numbe    | er of    |               |            | ·     |
|----------------|----------|----------|---------------|------------|-------|
|                |          | Times    | Concent       | ration, mo | g/L   |
| Pollutant      | Analyses | detected | Range         | Median     | Mean  |
| COD            | 5        | 5        | 9.7 - 900     | 75         | 230   |
| roc            | 5        | 5        | 6.0 - 99      | 30         | 40    |
| rss            | 5        | 5        | 4.0 - 11,000  | 65         | 2,700 |
| otal phenol    | 4        | 4        | 0.0063 - 0.22 | 0.045      | 0.07  |
| oil and grease | 4        | 4        | 1.7 - 30      | 4.2        | 10    |
| Fluoride       | 1        | 1        |               | 0.29       | 0.29  |

Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported; refer to Table V-29, Reference 1.

Tables 10-14 and 10-15 present conventional and toxic pollutant data of the raw wastewater generated in this subcategory.

# II.10.2.7 Secondary Lead

The principal raw material for the secondary lead industry is scrap batteries. Wastewater is generated from battery acid streams, wash down streams, and saw cooling for cracking the batteries. These streams contain significant levels of suspended solids, antimony, arsenic, cadmium, lead, and zinc. Smelting operations for this subcategory generate wastewater from air pollution control devices and contact cooling streams.

Tables 10-16 and 10-17 present conventional and toxic pollutant data for the raw wastewater in this subcategory.

### II.10.2.8 Secondary Silver

Secondary silver is recovered from photographic and nonphotographic sources. Wastewater sources from photographic wastes include leaching and stripping, precipitation and filtration of silver, electrolysis, and pollution control. Nonphotographic scrap wastewater is generated by similar processes. These wastewater streams contain significant concentrations of chromium, copper, lead, and zinc as well as some organic priority pollutants.

Tables 10-18 and 10-19 present pollutant data for this subcategory.

### II.10.2.9 Primary Tugsten

Tungsten production involves processing ore concentrates to obtain the salt, ammonium paratungstate (APT), and subsequent reduction of APT to metallic tungsten. Wastewater is generated

TABLE 10-13. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTEWATERS FROM THE SECONDARY COPPER SUBCATEGORY [1]

|                                         | Numb     | er of    |                                        | h                      |          |
|-----------------------------------------|----------|----------|----------------------------------------|------------------------|----------|
|                                         |          | Times    | Concentrat                             | ion, µg/L <sup>b</sup> |          |
| Toxic pollutant                         | Analyses | detected | Range                                  | Median                 | Mean     |
| Metals and inorganics                   |          |          |                                        |                        |          |
| Antimony                                | 5        | 2        | ND - 11,000                            | ND                     | 2,20     |
| Arsenic                                 | 5        | 3        | ND - 4,200                             | 100                    | 94       |
| Asbestos                                | 2        | 2        | $3.3 \times 10^7 - 1.0 \times 10^{11}$ |                        | 5.0 x 10 |
| Beryllium                               | 5        | 4        | ND - 160                               | 30                     | _ ;      |
| Cadmium                                 | 5        | 5        | 5.0 - 1,200                            | 50                     | 39       |
| Chromium                                | 5        | 5        | 5.0 - 2,100                            | <240                   | 64       |
| Copper                                  | 5        | 5        | $620 - 2.1 \times 10^6$                | 40,000                 | 450,00   |
| Cyanide                                 | 4        | 4        | <0.001 - 0.026                         | 0.006                  | 0.0      |
| Lead                                    | 5        | 5        | 450 - 53,000                           | 10,000                 | 17,00    |
| Mercury                                 | 5        | 5        | ND - 0.6                               | 0.53                   | 0.3      |
| Nickel                                  | 5        | 5        | $7.0 - 3.1 \times 10^{6}$              | 3,000                  | 620,00   |
| Selenium                                | 5        | 2        | ND - 270                               | <b>N</b> D             |          |
| Silver                                  | 5        | 3        | ND - 1,600                             | ≤10                    | 3        |
| Thallium                                | 5        | 2        | ND - 53                                | _ND                    |          |
| Zinc                                    | 5        | 5        | $1,400 - 1.5 \times 10^6$              | 40,000                 | 330,0    |
| Phthalates                              | 12       | 10       | ND ~ 7,000                             | 53                     | 1,1      |
| Bis(2-ethylhexyl) phthalate             | 12       | 2        | ND - 56                                | 33                     | 5        |
| Butyl benzyl phthalate                  | 12       | 6        | ND - 390                               | 9.5                    | ~        |
| Di-n-butyl phthalate                    | 12       | 3        | ND - 83                                | 9.5                    |          |
| Diethyl phthalate                       | 12       | 0        | ND - 63                                |                        |          |
| Dimethyl phthalate Di-n-octyl phthalate | 12       | 2        | ND - 67                                | 5.8                    |          |
| Aromatics                               |          | _        |                                        |                        |          |
| Benzene                                 | 10       | 2        | ND ~ 13                                |                        | 1.       |
| Ethylbenzene                            | 10       | 1        | ND - 4.0                               |                        | 0.       |
| Hexachlorobenzene                       | 12       | 1        | ND - 5,000                             |                        | 42       |
| Nitrobenzene                            | 12       | 0        | ·                                      |                        |          |
| Toluene                                 | 10       | 1        | ND - 10                                |                        | 1.       |
| Polycyclic aromatic hydrocarbons        |          |          |                                        |                        | _        |
| Acenaphthene                            | 12       | 3        | ND - 36                                |                        | 4.       |
| Acenaphthylene                          | 12       | 4        | ND - 120                               |                        | 26       |
| Anthracene                              | 12       | 3        | ND - 3,000                             |                        | _        |
| Benzo(a)pyrene                          | 12       | 1        | ND - 1.0                               |                        | 0.       |
| Benzo(b)fluoranthene                    | 12       | 0        |                                        |                        |          |
| Benzo(k)fluoranthene                    | 12       | 0        |                                        |                        |          |
| Chrysene                                | 12       | 3        | ND - 10,000                            |                        | 84       |
| Dibenz(ah)anthracene                    | 12       | 0        |                                        |                        |          |
| Fluoranthene                            | 12       | 4        | ND - 3,000                             | 1.0                    | 26       |
| Fluorene                                | 12       | 4        | ND - 94                                |                        | 3        |
| Indeno(1,2,3-cd)pyrene                  | 12       | 0        |                                        |                        |          |

TABLE 10-13 (continued)

|                                                 | Numbe    | er of<br>Times | Concentr               | ation, µg/Lb |      |
|-------------------------------------------------|----------|----------------|------------------------|--------------|------|
| Toxic pollutant                                 | Analyses | detected       | Range                  | Median       | Mean |
| Polycyclic aromatic hydrocarbons (continued)    |          |                |                        |              |      |
| Naphthalene                                     | 12       | 4              | NTD - 5,000            |              | 550  |
| Phenanthrene                                    | 12       | 4              | ND - 3.000             |              | 260  |
| Pyrene                                          | 12       | 4              | ND - 7,000             |              | 61   |
| Polychlorinated biphenyls and related compounds |          |                |                        |              |      |
| Aroclor 1248                                    | 14       | 1              | ND - 2.0               |              | 0.5  |
| Aroclor 1254                                    | 14       | 1              | ND - 3.0               |              | 0.5  |
| Halogenated aliphatics                          |          |                |                        |              |      |
| Carbon tetrachloride                            | 10       | 2              | ND - 120               |              | 12   |
| Chloroform                                      | 10       | 6              | ND - 1,000             | 7.0          | 130  |
| Dichlorobromomethane                            | 10       | 0              |                        |              |      |
| 1,2-Dichloroethane                              | 10       | 1              | ND - 32                |              | 3.2  |
| 1,1-Dichloroethylene                            | 10       | 3              | ND - 530               |              | 57   |
| 1,2-Trans-dichloroethylene                      | 10       | 1              | ND - 5.0               |              | 0.5  |
| Methylene chloride                              | 10       | 3              | ND - 510               |              | 80   |
| 1,1,2,2-Tetrachloroethane                       | 10       | 1              | ND - 4.0               |              | 0.4  |
| Tetrachloroethylene                             | 10       | 3              | ND - 72                |              | 8.8  |
| Trichloroethylene                               | 10       | 2              | ND - 70                |              | 7.1  |
| Pesticides and metabolites                      | 1.4      | •              | <b></b> 0.2            |              |      |
| Aldrin                                          | 14       | 1              | ND - 0.2               |              |      |
| α-BHC                                           | 14       | 1              | ND - 0.2<br>ND - 0.02  |              |      |
| β-BHC                                           | 14       | 1              | ND - 0.02              |              |      |
| δ-BHC                                           | 14       | 1              | ND - 0.2<br>ND - 0.04  |              |      |
| ү-внс                                           | 14       | 1              | ND - 0.04<br>ND - 0.7  |              | 0.1  |
| Chlordane                                       | 14       | 1              | ND - 0.7               |              | 0.1  |
| 4,4'-DDE                                        | 14       | 1              | ND - 0.02<br>ND - 0.1  |              |      |
| 4,4'-DDD                                        | 14       | 1              |                        |              |      |
| 4,4'-DDT                                        | 14       | 1              | ND - 0.03<br>ND - 0.03 |              |      |
| Dieldrin                                        | 14<br>14 | 1              | ND - 0.03              |              |      |
| α-Endosulfan                                    |          | 1              | ND - 0.3               |              |      |
| β-Endosulfan                                    | 14       | 1              | ND - 0.3<br>ND - 0.4   |              |      |
| Endrin                                          | 14       | 1              | ND - 0.4<br>ND - 0.3   |              |      |
| Endrin aldehyde                                 | 14       | 1              | ND - 0.3<br>ND - 0.02  |              |      |
| Heptachlor                                      | 14       | -              | ND - 0.02              |              |      |
| Heptachlor epoxide                              | 14       | 0              | ND 0.4                 |              |      |
| Toxaphene                                       | 14       | 1              | ND - 0.4               |              |      |

<sup>&</sup>lt;sup>a</sup>Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

bExcept asbestos, which is given in fibers/L.

TABLE 10-14. CONVENTIONAL AND NONCONVENTIONAL POLLUTANTS IN THE PRIMARY LEAD SUBCATEGORY [1]

|              | Numb     | er of    |               |            |      |
|--------------|----------|----------|---------------|------------|------|
|              |          | Times    | Concent       | ration, mo | I/L  |
| Pollutant    | Analyses | detected | Range         | Median     | Mean |
| COD          | 3        | 2        | ND - 170      | 3.7        | 58   |
| TOC          | 1        | 1        |               | 3.3        | 3.3  |
| TSS          | 1        | 1        |               | 26         | 26   |
| Total phenol | 2        | 2        | 0.012 - 0.050 |            | 0.03 |
| Ammonia      | 2        | 2        | 0.43 - 3.8    |            | 2.1  |

<sup>&</sup>lt;sup>a</sup>Some numbers in this table do not represent the concentration of the of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

TABLE 10-15. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTEWATER OF THE PRIMARY LEAD SUBCATEGORY [1]

|                                  | Numb     | er of             | Concentration, b pg/L |        |        |  |
|----------------------------------|----------|-------------------|-----------------------|--------|--------|--|
| Toxic pollutant                  | Analyses | Times<br>detected | Range                 | Median | Mean   |  |
| TONIC POLITICALITY               |          |                   |                       |        |        |  |
| Metals and inorganics            |          |                   |                       | •      | 110    |  |
| Antimony                         | 3        | 2                 | ND - <330             | 3 1    |        |  |
| Arsenic                          | 3        | 3                 | 58 - 96               | 93     | 82     |  |
| Beryllium                        | 3        | 1                 | ND - 6.7              | ND     | 2.2    |  |
| Cadmium                          | 3        | 3                 | 690 - 2,700           | 1,300  | 1,600  |  |
| Chromium                         | 3        | 3                 | 9.1 - 30              | 14     | 18     |  |
| Copper                           | 3        | 3                 | 100 - 5,300           | 610    | 2,000  |  |
| Cyanide                          | 2        | 2                 | <0.02 - 0.13          |        | 0.     |  |
| Lead                             | 3        | 3                 | 7,900 - 24,000        | 10,000 | 14,000 |  |
| Mercury                          | 3        | 3                 | 0.29 - 7.5            | 0.68   | 2.     |  |
| Nickel                           | 3        | 3                 | 50 - 150              | 130    | 110    |  |
|                                  | 3        | 3                 | 3.1 - <13             | 5.4    | 7.     |  |
| Selenium                         | 3        | 2                 | ND - <20              | 7.0    | 9.     |  |
| Silver                           | 3        | 2                 | ND - <100             | 15     | 38     |  |
| Thallium                         | 3        | 3                 | 2,700 - 20,000        | 5,300  | 9,300  |  |
| Zinc                             | 3        | 3                 | 2,700 - 20,000        | 5,500  | .,     |  |
| Polycyclic aromatic hydrocarbons |          |                   |                       |        |        |  |
| Pyrene                           | 3        | 1                 | ND - 7.0              |        | 2.     |  |
| •                                |          |                   |                       |        |        |  |
| Halogenated aliphatics           | 4        | 2                 | NTD - 25              | 3.0    | 7      |  |
| Methylene chloride               | 7        | -                 | ND - 25               | •      |        |  |

TABLE 10-16. CONVENTIONAL AND NONCONVENTIONAL POLLUTANTS
IN THE SECONDARY LEAD SUBCATEGORY [1]

|                | Numbe    | er of<br>Times | Concentration, b mg/L |        |       |  |  |
|----------------|----------|----------------|-----------------------|--------|-------|--|--|
| Pollutant      | Analyses | detected       | Range                 | Median | Mean  |  |  |
| COD            | 3        | 3              | 65 - 220              | 150    | 145   |  |  |
| TOC            | 3        | 3              | 4.0 - 130             | 70     | 68    |  |  |
| TSS            | 4        | 4              | 0.06 - 3,700          | 760    | 1,300 |  |  |
| Total phenol   | 4        | 4              | <0.004 - 0.012        | 0.010  | 0.009 |  |  |
| Oil and grease | 3        | 3              | 6.4 - 40              | 35     | 27    |  |  |
| Ammonia        | 1        | 1              |                       | 12     | 12    |  |  |
| Chloride       | ı        | 1              |                       | 79     | 79    |  |  |

a Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

Date: 6/23/80

II.10-21

a Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

Concentrations were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration in the intake; refer to Table V-32, Reference 1.

Concentrations were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration in the intake; refer to Table V-38, Reference 1.

TABLE 10-17. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTEWATER OF THE SECONDARY LEAD SUBCATEGORY [1]

|                                  | Numbe    | er of<br>Times | Concentr                  | ation, µg/L <sup>a,</sup> | b       |
|----------------------------------|----------|----------------|---------------------------|---------------------------|---------|
| Toxic pollutant                  | Analyses | detected       | Range                     | Median                    | Mean    |
| Metals and inorganics            |          |                |                           |                           |         |
| Antimony                         | 4        | 4              | 1,700 - 80,000            | 38,000                    | 39,000  |
| Arsenic                          | 3        | 3              | 3,000 - 13,000            | 7,000                     | 7,700   |
| Asbestos                         | 1        | 1              |                           | 1.3 x 10 <sup>11</sup>    |         |
| Beryllium                        | 3        | 3              | 1.0 - 30                  | 3.2                       | 11      |
| Cadmium                          | 4        | 4              | 220 - 1,900               | 800                       | 930     |
| Chromium                         | 4        | 4              | 110 - 1,000               | 480                       | 520     |
| Copper                           | 4        | 4              | 220 - 8,200               | 3,200                     | 3,700   |
| Cyanide                          | 4        | 4              | 0.002 - <0.01             | 0.006                     | 0.006   |
| Lead                             | 4        | 4              | $7,000 - 1.8 \times 10^6$ | 22,000                    | 460,000 |
| Mercury                          | 4        | 4              | 0.6 - 12                  | 0.78                      | 3.5     |
| Nickel                           | 4        | 4              | 210 - 2,000               | 960                       | 1,000   |
| Selenium                         | 3        | 1              | ND - <2.0                 | ND                        | 0.67    |
| Silver                           | 3        | 3              | 90 - 250                  | 100                       | 150     |
| Thallium                         | 3        | 3              | 50 <b>-</b> 620           | 350                       | 340     |
| Zinc                             | 4        | 4              | 790 - 15,000              | 3,600                     | 5,700   |
| Phthalates                       |          |                |                           |                           |         |
| Bis(2-ethylhexyl) phthalate      | 5        | 5              | ND - 580                  | 30                        | 180     |
| Butyl benzyl phthalate           | 5        | 2              | ND - 85                   |                           | 17      |
| Di-n-butyl phthalate             | 5        | 4              | ND - 27                   | 13                        | 12      |
| Dimethyl phthalate               | 5        | 3              | ND - 13                   |                           | 2.6     |
| Di-n-octyl phthalate             | 5        | 3              | ND - 27                   | 2.0                       | 9.0     |
| Nitrogen compounds               |          |                |                           |                           |         |
| Benzidine                        | 5        | 1              | ND - 6.0                  |                           | 1.2     |
| Aromatics                        |          |                |                           |                           |         |
| Benzene                          | 10       | 1              | ND - 2.0                  |                           | 0.2     |
| Chlorobenzene                    | 10       | 1              | ND - 5.0                  |                           | 0.5     |
| Ethylbenzene                     | 10       | 1              | ND - 1.2                  |                           | 0.3     |
| Nitrobenzene                     | 5        | 2              | ND - 16                   |                           | 3.2     |
| Toluene                          | 10       | 0              |                           |                           |         |
| Polycyclic aromatic hydrocarbons |          |                |                           |                           |         |
| Acenaphthylene                   | 5        | 2              | ND - 35                   | 3.0                       | 8.6     |
| Anthracene                       | 5        | 2              | ND - 20                   |                           | 4.0     |
| Benzo(a)pyrene                   | 5        | 2              | ND - 10                   |                           | 2.0     |
| Benzo(b)fluoranthene             | 5        | 1              | ND - 5.3                  |                           | 1.6     |
| Benzo(ghi)perylene               | 5        | 0              |                           |                           |         |
| Benzo(k)fluoranthene             | 5        | 1              | NTD - 5.3                 |                           | 1.6     |
| Chrysene                         | 5        | 3              | ND - 540                  | 40                        | 140     |
| Fluoranthene                     | 5        | 3              | ND - 27                   | 1.0                       | 7.6     |
| Fluorene                         | 5        | 1              | ND - 2.0                  |                           | 0.4     |

TABLE 10-17 (continued)

|                                                 | Numb     | er of             |          | ,_a, b                                 |      |
|-------------------------------------------------|----------|-------------------|----------|----------------------------------------|------|
| Toxic pollutant                                 | Analyses | Times<br>detected | Range    | ration, μg/L <sup>a, b</sup><br>Median | Mean |
| TOATE POTITIONIE                                | maryses  | ucccccc           | Nunge    | nearan                                 |      |
| Polycyclic aromatic hydrocarbons (continued)    |          |                   |          |                                        |      |
| Indeno(1,2,3-cd)pyrene                          | 5        | 1                 | ND - 1.0 |                                        | 0.2  |
| Naphthalene                                     | 5        | 1                 | ND - 4.0 |                                        | 0.8  |
| Phenanthrene                                    | 5        | 2                 | ND - 20  |                                        | 4.6  |
| Pyrene                                          | 5        | 3                 | ND - 38  | 1.0                                    | 10   |
| Polychlorinated biphenyls and related compounds |          |                   |          |                                        |      |
| Aroclor 1248                                    | 5        | 1                 | ND - 3.1 | 1.3                                    | 1.4  |
| Aroclor 1254                                    | 5        | 1                 | ND - 2.6 | 1.8                                    | 1.3  |
| Halogenated aliphatics                          |          |                   |          |                                        |      |
| Bromoform                                       | 10       | 2                 | ND - 49  |                                        | 5.   |
| Chloroform                                      | 10       | 4                 | ND - 31  | 3.0                                    | 6.   |
| 1,2-Dichloroethane                              | 10       | 2                 | ND - 10  | 4.0                                    | 4.   |
| 1,1-Dichloroethylene                            | 10       | 2                 | ND - 10  | 2.0                                    | 3.   |
| 1,2-Trans-dichloroethylene                      | 10       | Ō                 |          |                                        |      |
| 1,1,2,2-Tetrachloroethane                       | 10       | i                 | ND ~ 4.0 |                                        | 1.   |
| Tetrachloroethylene                             | 10       | ī                 | ND ~ 5.0 |                                        | 1.   |
| 1,1,2-Trichloroethane                           | 10       | ō                 |          |                                        |      |
| Trichloroethylene                               | 10       | 1                 | ND - 6.0 |                                        | 0.   |
| Pesticides and metabolites                      |          |                   |          |                                        |      |
| Aldrin                                          | 5        | 1                 | ND - 0.1 |                                        |      |
| α-BHC                                           | 5        | ī                 | ND - 0.2 |                                        |      |
| β−ВНС                                           | 5        | ī                 | ND - 0.3 | 0.1                                    | 0.   |
| Y-BHC                                           | 5        | ī                 | ND - 0.1 |                                        |      |
| Chlordane                                       | 5        | ī                 | ND - 0.2 | 0.2                                    | 0.   |
| 4,4'-DDE                                        | 5        | ī                 | ND - 0.2 |                                        |      |
| 4,4'-DDT                                        | 5        | ī                 | ND - 0.1 |                                        |      |
| Dieldrin                                        | 5        | ĩ                 | ND - 0.2 |                                        |      |
| σ-Endosulfan                                    | 5        | ī                 | ND - 0.2 |                                        |      |
| B-Endosulfan                                    | 5        | ō                 |          |                                        |      |
| Endrin                                          | 5        | ĭ                 | ND - 4.0 |                                        | 1.   |
| Endrin aldehyde                                 | 5        | i                 | 0.6      |                                        | ō.   |
| Heptachlor                                      | 5        | î                 | ND - 0.3 | 0.1                                    | o.   |
| Heptachlor epoxide                              | 5        | i                 | ND - 0.2 | 0.1                                    | Ö.   |
| Isophorone                                      | 5        | i                 | ND - 2.7 | V. <b>-</b>                            | 1.   |
| rachitorous                                     | 3        | -                 | AD = 2., |                                        | -    |

<sup>&</sup>lt;sup>a</sup>Except asbestos, which is given in fibers/L.

ball concentrations except for asbestos were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration present in the intake; refer to Table V-37, Reference 1.

TABLE 10-18. CONVENTIONAL AND NONCONVENTIONAL POLLUTANTS IN THE RAW WASTEWATER OF THE SECONDARY SILVER SUBCATEGORY [1]

|                | Numbe    | er of    |              | h            |        |
|----------------|----------|----------|--------------|--------------|--------|
|                |          | Times    | Concent      | tration, mg/ | /L     |
| Pollutant      | Analyses | detected | Range        | Median       | Mean   |
| COD            | 3        | 3        | 220 - 12,000 | 3,000        | 5,100  |
| TOC            | 3        | 3        | 24 - 9,200   | 440          | 3,200  |
| TSS            | 3        | 3        | 110 - 1,100  | 110          | 440    |
| Total phenol   | 3        | 3        | 0.02 - 28    | 0.04         | 9.4    |
| Oil and grease | 3        | 3        | 8.0 - 110    | 17           | 45     |
| Ammonia        | 2        | 2        | 12.0 - 1,500 |              | 760    |
| Fluoride       | 1        | 1        | -            | 1.2          | 1.3    |
| Chloride       | 1        | 1        |              | 32,000       | 32,000 |

<sup>&</sup>lt;sup>a</sup>Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

during all three processes and results from the precipitation and filtration of the salt, the leaching to convert to tungstic acid, and the air pollution control methods associated with the processes. Wastewaters may be acidic and contain significant concentration of chlorides, arsenic, lead, zinc, and ammonia.

Tables 10-20 and 10-21 present pollutant data for the primary tungsten subcategory.

### II.10.2.10 Primary Zinc - Primary Cadmium

Wastewater is generated in the primary zinc and primary cadmium recovery subcategories by acid plant blowdown, which results from sulfuric acid recovery, air pollution control, leaching, anode/cathode washing, and contact cooling. The streams may contain significant concentrations of lead, arsenic, cadmium, and zinc.

Tables 10-22 and 10-23 present pollutant data for the primary zinc-primary cadmium subcategories.

### II.10.3 PLANT SPECIFIC DESCRIPTION [1]

Tables 10-24 through 10-32 provide plant specific data for the conventional and toxic metal pollutant concentrations found in the untreated and treated wastewaters for plants in the non-ferrous metals industry. Data for toxic organic pollutants are not available on an individual plant basis. The available data cover 17 plants in 10 of the 12 subcategories studied. Primary copper and primary cadmium are not reported owing to lack of

<sup>&</sup>lt;sup>b</sup>Concentrations were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration in the intake; refer to Table V-43, Reference 1.

TABLE 10-19. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTE-WATERS OF THE SECONDARY SILVER CATEGORY [1]

|                                                 | Numbe    | er of<br>Times | Concentrat                | ion, µg/La,b |         |  |
|-------------------------------------------------|----------|----------------|---------------------------|--------------|---------|--|
| Toxic pollutant                                 | Analyses | detected       | Range                     | Median       | Mean    |  |
| Metals and inorganics                           |          |                |                           |              |         |  |
| Antimony                                        | 3        | 1              | ND - 25,000               | ND           | 8,300   |  |
| Arsenic                                         | 3        | 3              | 40 - 900                  | 40           | 330     |  |
| Asbestos                                        | 1        | ĭ              | 5.8 x 108                 |              |         |  |
| Beryllium                                       | 3        | 2              | ND - <20                  | 19           | 13      |  |
| Cadmium                                         | 3        | 3              | 1,000 - 80,000            | 3,200        | 28,000  |  |
| Chromium                                        | 3        | 3              | 2,000 - 27,000            | 20,000       | 16,000  |  |
| Copper                                          | 3        | 3              | 7,400 - 70,000            | 60,000       | 46,000  |  |
| Cyanide                                         | 3        | 3              | 0.001 - 2.1               | 0.05         | 0.72    |  |
| Lead                                            | 3        | 3              | 4,000 - 50,000            | 4,200        | 19,000  |  |
| Mercury                                         | 3        | 1              | ND - 5.5                  | ND           | 1.8     |  |
| Nickel                                          | 3        | 3              | 1,100 - 800,000           | 30,000       | 280,000 |  |
| Selenium                                        | 3        | 1              | ND - 590                  | ND           | 200     |  |
| Silver                                          | 3        | 3              | <250 <b>- 4,7</b> 00      | 410          | 1,800   |  |
| Thallium                                        | 3        | 1              | ND - 510                  | ND           | 170     |  |
| Zinc                                            | 3        | 3              | $8,400 - 2.0 \times 10^6$ | 20,000       | 680,000 |  |
| Phthalates                                      |          |                |                           |              |         |  |
| Bis(2-ethylhexyl) phthalate                     | 5        | 5              | 7.0 <b>- 34</b>           | 11           | 16      |  |
| Butyl benzyl phthalate                          | 5        | 2              | ND - 53                   |              | 11      |  |
| Di-n-butyl phthalate                            | 5        | 5              | ND - 300                  | 15           | 75      |  |
| Diethyl phthalate                               | 5        | 2              | ND - 38                   |              | 7.€     |  |
| Di-n-octyl phthalate                            | 5        | 4              | ND - 58                   | 33           | 30      |  |
| Aromatics                                       |          |                |                           |              |         |  |
| Benzene                                         | 6        | 6              | 3.0 - 160                 | 66           | 75      |  |
| Chlorobenzene                                   | 6        | 1              | ND - 9.0                  | 0.5          | 2.8     |  |
| Ethylbenzene                                    | 6        | 4              | ND - 21                   |              | 9.2     |  |
| Toluene                                         | 6        | 6              | 3.0 - 55                  | 18           | 21      |  |
| Polycyclic aromatic hydrocarbons                |          |                |                           |              |         |  |
| Acenaphthene                                    | 5        | 2              | ND - 10                   |              | 2.0     |  |
| Anthracene                                      | 5        | 2              | ND - 4.0                  |              | 0.8     |  |
| Fluoranthene                                    | 5        | 0              |                           |              |         |  |
| Naphthalene                                     | 5        | 1              | ND - 1.0                  |              | 0.2     |  |
| Phenanthrene .                                  | 5        | 2              | ND - 4.0                  |              | 0.8     |  |
| Pyrene                                          | 5        | 1              | ND - 2,100                |              | 430     |  |
| Polychlorinated biphenyls and related compounds |          |                |                           |              |         |  |
| Aroclor 1248                                    | 3        | 1              | NTD - 0.5                 |              | 0.2     |  |
| Aroclor 1254                                    | 3        | 1              | ND - 0.7                  |              | 0.2     |  |
| Halogenated aliphatics                          |          |                |                           |              |         |  |
| Bromoform                                       | 6        | 1              | ND - 65                   |              | 11      |  |
| Carbon tetrachloride                            | 6        | 2              | ND - 2,300                |              | 380     |  |
| Chlorodibromomethane                            | 6        | 2              | ND - 64                   |              | .11     |  |
| Chloroform                                      | 6        | 1              | ND - 890                  | 8.5          | 160     |  |
| 1,2-Dichloroethane                              | 6        | 4              | ND - 560                  | 21           | 120     |  |
| 1,1-Dichloroethylene                            | 6        | 3              | ND - 6,100                |              | 1,100   |  |
| 1,2-Trans-dichloroethylene                      | 6        | 0              |                           |              |         |  |
| Methylene chloride                              | 6        | 4              | ND - 3,100                | 170          | 1,000   |  |
| 1,1,2,2-Tetrachloroethane                       | 4        | 2              | ND - 32                   |              | 8.0     |  |
| Tetrachloroethylene                             | 6        | 6              | ND - 109                  | 36           | 43      |  |
| 1,1,1-Trichloroethane                           | 6        | 3              | ND - 22                   |              | 7.3     |  |
| Trichloroethylene                               | 6        | 6              | ND - 900                  | 230          | 360     |  |
| Pesticides and metabolites                      |          |                |                           |              |         |  |
| Aldrin                                          | 3        | 1              | ND - 1.1                  |              | 0.4     |  |
| α-BHC                                           | 3        | 0              |                           |              |         |  |
| β-BHC                                           | 3        | 1              | ND - 0.02                 |              |         |  |
| δ-BHC                                           | 3        | 1              | ND - 1.1                  |              | 0.4     |  |
| γ-BHC                                           | 3        | 0              |                           |              |         |  |
| Chlordane                                       | 3        | 1              | ND - 0.1                  |              |         |  |
| 4,4'-DDE                                        | 3        | 1              | ND - 0.01                 |              |         |  |
| 4,4'-DDD                                        | 3        | 1              | ND - 0.1                  |              |         |  |
| 4,4'-DDT                                        | 3        | 1              | ND - 0.01                 |              |         |  |
| Dieldrin                                        | 3        | 1              | ND - 0.01                 |              |         |  |
| Endrin                                          | 3        | 1              | ND - 2.0                  |              | 0.7     |  |
|                                                 |          | ^              |                           |              |         |  |
| Endrin aldehyde<br>Heptachlor                   | 3<br>3   | 0<br>1         | ND - 0.02                 |              |         |  |

aExcept asbestos, which is given in fibers/L.

Concentrations were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration in the intake; refer to Table V-42, Reference 1.

TABLE 10-20. CONVENTIONAL AND NONCONVENTIONAL POLLUTANTS IN THE WASTEWATER OF THE PRIMARY TUNGSTEN SUBCATEGORY [1]

|                | N        | umber of       | Concentration, b mg/L |             |        |  |  |
|----------------|----------|----------------|-----------------------|-------------|--------|--|--|
| Pollutant      | Analyses | Times detected | Range                 | Median      | Mean   |  |  |
| COD            | 3        | 3              | 120 - 880             | 320         | 440    |  |  |
| TOC            | 3        | 3              | 6.0 - 270             | 27          | 100    |  |  |
| TSS            | 3        | 3              | 42 - 6,700            | 210         | 2,300  |  |  |
| Total phenol   | 3        | 3              | 0.038 - 0.089         | 0.039       | 0.05   |  |  |
| Oil and grease | 3        | 3              | 6.3 - 17              | 6.8         | 10     |  |  |
| Ammonia        | 3        | 3              | 3.9 - 1,600           | <b>90</b> 0 | 830    |  |  |
| Chloride       | 2        | 2              | 850 - 26,000          |             | 13,000 |  |  |

<sup>&</sup>lt;sup>a</sup>Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

sufficient data. When data on several plants were available, reported plants were selected based on the completeness of the data and on the overall pollutant removal efficiency.

The following subparagraphs briefly describe the selected plants.

# II.10.31 Primary Aluminum

Plant B generates wastewater by contact cooling (830  $m^3/d$ ) and by cryolite recovery (220  $m^3/d$ ). Wastewater is treated by alkaline chlorination and neutralization.

Plant D generates wastewater from air pollution control equipment  $(4,900 \text{ m}^3/\text{d})$ , paste plant waste  $(570 \text{ m}^3/\text{d})$  and anode cooling and baking. Treatment consists of settling.

### II.10.3.2 Secondary Aluminum

Plant B in this subcategory generates wastewater by processes involving dross milling (140  $\rm m^3/d$ ) and demagging air pollution control (95  $\rm m^3/d$ ). Treatment consists of sodium hydroxide neutralization and settling prior to discharge.

Plant E generates wastewater by demagging air pollution control  $(90 \text{ m}^3/\text{d})$ . Treatment consists of neutralization with soda ash.

# II.10.3.3 Primary Columbium - Primary Tantalum

Plant B in this subcategory emits wastewater from leaching wastes and powder wash (310  $\rm m^3/d$ ), gangue slurry pond overflow (53  $\rm m^3/d$ ), and ammonia stripper supernatant (76  $\rm m^3/d$ ). Treatment consists of lime addition followed by settling.

bConcentrations were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration present in the intake; refer to Table V-48, Reference 1.

TABLE 10-21. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTEWATER OF THE PRIMARY TUNGSTEN SUBCATEGORY [1]

|                                  | N        | umber of       | Concentration, µg/L <sup>b,c</sup> |        |       |
|----------------------------------|----------|----------------|------------------------------------|--------|-------|
| Toxic pollutant                  | Analyses | Times detected | Range                              | Median | Mean  |
| Metals and inorganics            |          |                |                                    |        |       |
| Antimony                         | 3        | 1              | ND - 700                           | ND     | 230   |
| Arsenic                          | 3        | 3              | 10 - 7,200                         | 210    | 2,500 |
| Asbestos                         | 1        | 1              | 6.0 x 10 <sup>9</sup>              |        |       |
| Beryllium                        | 3        | 3              | <2.0 - 29                          | <10    | 14    |
| Cadmium                          | 3        | 3              | 19 - 190                           | < 20   | 7€    |
| Chromium                         | 3        | 3              | 44 - 2,000                         | 48     | 700   |
| Copper                           | 3        | 3              | 95 - 5,000                         | 120    | 1,700 |
| Cyanide                          | 3        | 3              | 0.002 - 0.14                       | 0.013  | 0.052 |
| Lead                             | 3        | 3              | <200 - 20,000                      | 240    | 6,800 |
| Mercury                          | 3        | 3              | 0.20 - 3.00                        | 1.0    | 1.4   |
| Nickel                           | 3        | 3              | <50 - 1,000                        | 92     | 380   |
| Selenium                         | 3        | 2              | ND - 1,000                         | 20     | 340   |
| Silver                           | 3        | 3              | 76 - 270                           | 86     | 140   |
| Thallium                         | 3        | 2              | ND - 600                           | 200    | 270   |
| Zinc                             | 3        | 3              | 250 - 1,900                        | 520    | 890   |
| Phthalates                       |          |                |                                    |        |       |
| Bis(2-ethylhexyl) phthalate      | 5        | 5              | ND - 880                           | 10.0   | 180   |
| Di-n-butyl phthalate             | 5        | 3              | ND - 23                            |        |       |
| Diethyl phthalate                | 5        | 0              |                                    |        |       |
| Dimethyl phthalate               | 5        | 0              |                                    |        |       |
| Di-n-octyl phthalate             | 5        | 2              | ND - 1.0                           |        | 0.2   |
| Aromatics                        |          |                |                                    |        |       |
| Benzene                          | 9        | 1              | ND - 3.0                           |        | 0.7   |
| Chlorobenzene                    | 9        | 0              |                                    |        |       |
| Ethylbenzene                     | 9        | 1              | ND - 11                            |        | 2.3   |
| Nitrobenzene                     | 5        | 0              |                                    |        |       |
| Toluene                          | 9        | 3              | ND - 45                            | 3.0    | 1:    |
| 1,2,4-Trichlorobenzene           | 5        | 0              |                                    |        |       |
| Polycyclic aromatic hydrocarbons |          |                |                                    |        |       |
| Acenaphthene                     | 5        | 2              | ND - 100                           |        | 2     |
| Acenaphthylene                   | 5        | 2              | ND - 110                           |        | 2     |
| Anthracene                       | 5        | 2              | ND - 150                           |        | 30    |
| Benzo(a)pyrene                   | 5        | 1              | ND - 1.0                           |        | 0.3   |
| Chrysene                         | 5        | 2              | ND - 240                           |        | 4     |
| Fluoranthene                     | 5        | 1              | ND - 1.0                           |        | 0.3   |
| Fluorene                         | 5        | 2              | ND - 55                            |        | 1     |

TABLE 10-21 (continued)

|                                                 |          | umber of       | Concentra  | tion, µg/L <sup>b</sup> | , c  |
|-------------------------------------------------|----------|----------------|------------|-------------------------|------|
| Toxic pollutant                                 | Analyses | Times detected | Range      | Median                  | Mean |
| Polycyclic aromatic hydrocarbons (continued)    |          |                |            |                         |      |
| Naphthalene                                     | 5        | 2              | ND - 1,100 |                         | 220  |
| Phenanthrene                                    | 5        | 0              |            |                         |      |
| Pyrene                                          | 5        | 0              |            |                         |      |
| Polychlorinated biphenyls and related compounds |          |                |            |                         |      |
| Aroclor 1248                                    | 5        | 1              | ND - 1.0   | 0.2                     | 0.3  |
| Aroclor 1254                                    | 5        | 1              | ND - 5.4   | 0.4                     | 1.4  |
| Halogenated aliphatics                          |          |                |            |                         |      |
| Bromoform                                       | 9        | 3              | ND - 48    |                         | 9.3  |
| Chlorodibromomethane                            | 9        | 2              | NTD - 38   |                         | 4.2  |
| Chloroform                                      | 9        | 3              | ND - 1,800 |                         | 210  |
| Dichlorobromomethane                            | 9        | 0              |            |                         |      |
| 1,2-Dichloroethane                              | 9        | 1              | ND - 8.0   |                         | 2.1  |
| 1,1-Dichloroethylene                            | 9        | 3              | ND - 19    |                         | 4.3  |
| 1,2-Trans-dichloroethylene                      | 9        | 1              | NTD - 2.0  |                         | 0.2  |
| 1,1,2,2-Tetrachloroethane                       | 9        | 2              | ND - 35    |                         | 5.2  |
| Tetrachloroethylene                             | 9        | 6              | NTD - 69   |                         | 20   |
| 1,1,1-Trichloroethane                           | 9        | 2              | ND - 10    |                         | 1.1  |
| Trichloroethylene                               | 9        | 3              | ND - 19    |                         | 2.9  |
| Pesticides and metabolites                      |          |                |            |                         |      |
| Aldrin                                          | 5        | 1              | ND - 7.0   |                         | 1.4  |
| α-BHC                                           | 5        | 1              | ND - 0.6   |                         | 0.1  |
| β-BHC                                           | 5        | 1              | ND - 0.1   |                         |      |
| y-BHC                                           | 5        | 1              | ND - 0.2   |                         | 0.1  |
| Chlordane                                       | 5        | 1              | ND - 1.2   |                         | 0.2  |
| 4,4'-DDD                                        | 5        | 1              | 0          |                         |      |
| 4,4'-DDT                                        | 5        | 1              | ND - 0.1   |                         |      |
| Dieldrin                                        | 5        | 1              | ND - 0.1   |                         | 0.1  |
| α-Endosulfan                                    | 5        | 2              | ND - 15    | 0.1                     | 3.2  |
| β-Endosulfan                                    | 5        | 2              | ND - 15    |                         | 3.1  |
| Endrin                                          | 5        | 1              | ND - 0.8   |                         | 0.2  |
| Endrin aldehyde                                 | 5        | 1              | ND - 0.9   | 0.2                     | 0.3  |
| Heptachlor                                      | 5        | 1              | ND - 0.2   |                         | 0.1  |
| Heptachlor epoxide                              | 5        | 1              | ND - 0.2   |                         | 0.1  |
| Isophorone                                      | 9        | 0              |            |                         |      |

<sup>&</sup>lt;sup>a</sup>Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

bExcept asbestos, which is given in Fibers/L.

<sup>&</sup>lt;sup>C</sup>All concentrations except those for cyanide and asbestos were calculated by multiplying the concentrations of the various wastestreams by the normalized percentage of the total flow and then subtracting the concentration in the intake; refer to Table V-47, Reference 1.

TABLE 10-22. CONVENTIONAL AND NONCONVENTIONAL POLLUTANTS FOUND IN THE RAW WASTEWATER OF THE PRIMARY ZINC SUBCATEGORY [1]

|                | N        | umber of       | Concentration, mg/L |        |       |  |  |
|----------------|----------|----------------|---------------------|--------|-------|--|--|
| Pollutant      | Analyses | Times detected | Range               | Median | Mean  |  |  |
| COD            | 2        | 2              | 20 - 59             |        | 40    |  |  |
| TOC            | 2        | 2              | 7.3 - 9.3           |        | 8.3   |  |  |
| TSS            | 2        | 2              | 13 - 15             |        | 14    |  |  |
| Total phenol   | 4        | 4              | <0.002 - 0.025      | 0.007  | 0.010 |  |  |
| Oil and grease | 2        | 2              | 10 - 14             |        | 12    |  |  |

Some numbers in this table do not represent the concentration of the combined total wastewater from the plant but instead represent only one or several wastestreams. This is due to one or more of the streams not having concentration values reported.

TABLE 10-23. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW WASTEWATERS OF THE PRIMARY ZINC SUBCATEGORY [1]

|                             | N        | umber of       | Concentration, µg/La,b      |            |                       |  |
|-----------------------------|----------|----------------|-----------------------------|------------|-----------------------|--|
| Toxic pollutant             | Analyses | Times detected | Range                       | Median     | Mean                  |  |
| Metals and inorganics       |          |                |                             |            |                       |  |
| Antimony                    | 4        | 4              | <2.0 - 2,100                | 58         | 550                   |  |
| Arsenic                     | 4        | 4              | 3.0 - 3,000                 | 150        | 820                   |  |
| Asbestos                    | 2        | 2              | 3 2 x 10' - 4.3 x 10'       |            | 3.8 x 10 <sup>7</sup> |  |
| Beryllium                   | 4        | 4              | <2.0 - <20                  | 75         | 9.3                   |  |
| Cadmium                     | 4        | 4              | 350 <b>~ 44</b> ,000        | 3,400      | 13,000                |  |
| Chromium                    | 4        | 4              | <24 - 610                   | 64         | 190                   |  |
| Copper                      | 4        | 4              | 37 - 26,000                 | 1,200      | 7,100                 |  |
| Cyanide                     | 4        | 4              | 0.002 - 0.38                | 0.007      | 0.099                 |  |
| Lead                        | 4        | 4              | 280 - 18,000                | 4,400      | 6,700                 |  |
| Mercury                     | 4        | 4              | 2.9 - 52                    | 5.4        | 16                    |  |
| Nickel                      | 4        | 4              | <50 - 4,300                 | 590        | 1,400                 |  |
| Selenium                    | 4        | 4              | 24 - 1,200                  | 360        | 490                   |  |
| Silver                      | 4        | 4              | <25 - 740                   | 5 <b>8</b> | 220                   |  |
| Thallium                    | 2        | 2              | <20 - 360                   |            | 190                   |  |
| Zinc                        | 4        | 4              | $8,700 - 1.7 \times 10^{8}$ | 160,000    | 630,000               |  |
| Phthalates                  |          |                |                             |            | _                     |  |
| Bis(2-ethylhexyl) phthalate | 9        | 7              | ND - 98                     | 15         | 28                    |  |
| Butyl benzyl phthalate      | 9        | 2              | ND - 30                     |            | 3.3                   |  |
| Di-n-butyl phthalate        | 9        | 2              | ND - 26                     | 5.0        | 3.6                   |  |
| Diethyl phthalate           | 9        | 2              | ND - 18                     |            | 2.7                   |  |
| Dimethyl phthalate          | 9        | 2              | ND - 22                     |            | 2.4                   |  |
| Di-n-octyl phthalate        | 9        | 0              |                             |            |                       |  |
| Nitrogen compounds          |          |                |                             |            |                       |  |
| 3,3'-Dichlorobenzidine      | 9        | 0              |                             |            |                       |  |
| Phenols                     |          |                |                             |            | 0.9                   |  |
| Pentachlorophenol           | 9        | 1              | MD - 8.0                    |            | 0.9                   |  |
| Aromatics                   | •        | 2              | ND - 24                     |            | 2.                    |  |
| Benzene                     | 9        | 2              | ND - 2.0                    |            | 0.2                   |  |
| Ethylbenzene                | 9        | 1              | ND - 2.0<br>ND - 100        |            | 1                     |  |
| Hexachlorobenzene           | 9        | 2              |                             | 7.0        | 7.                    |  |
| Toluene                     | 9        | 2              | ND - 54                     | 7.0        | /                     |  |
| 1,2,4-Trichlorobenzene      | 9        | О              |                             |            |                       |  |

TABLE 10-23 (continued)

|                                                 | И        | umber of       | Concentrat             | ion, ug/La.b |            |
|-------------------------------------------------|----------|----------------|------------------------|--------------|------------|
| Toxic pollutant                                 | Analyses | Times detected | Range                  | Median       | Mean       |
| Polycyclic aromatic hydrocarbons                |          |                |                        |              |            |
| Acenaphthylene                                  | 9        | 2              | ND - 18                |              | 2.0        |
| Anthracene                                      | 9        | 1              | ND - 0.4               |              |            |
| Chrysene                                        | 9        | 2              | ND - 11                |              | 2.2        |
| Fluoranthene                                    | 9        | 2              | ND - 15                |              | 1.7        |
| Fluorene                                        | 9        | 2              | ND - 14                |              | 1.6        |
| Naphthalene                                     | 9        | 0              |                        |              |            |
| Phenanthrene                                    | 9        | 0              |                        |              |            |
| Pyrene                                          | 9        |                | ND - 15                |              | 3.2        |
| Polychlorinated biphenyls and related compounds |          |                |                        |              |            |
| Aroclor 1248                                    | 9        | 0              |                        |              |            |
| Aroclor 1254                                    | 9        | ō              |                        |              |            |
|                                                 | •        | •              |                        |              |            |
| Halogenated aliphatics Bromoform                | •        | •              |                        |              |            |
| Chloroform                                      | 9        | 0              | NEO - 71               |              |            |
|                                                 | 9        | 3              |                        | 53           | 16         |
| 1,1-Dichloroethane 1,2-Dichloroethane           | 9<br>9   | 2              | ND - 180               |              | 20         |
|                                                 | 9        | 2              | ND - 22<br>ND - 23     |              | 2.9        |
| 1,1-Dichloroethylene Methylene chloride         | 9        | 5              |                        |              | 2.6<br>350 |
| Tetrachloroethylene                             | 9        | 1              | ND - 2,600<br>ND - 8.0 |              | 0.9        |
| Trichloroethylene                               | 9        | 2              | ND - 8.0               | 7.2          |            |
| Trichlorofluoromethane                          | 9        | 2              | ND - 100               | 7.2          | 19<br>12   |
|                                                 | ,        | 2              | MD - 100               |              | 14         |
| Pesticides and metabolites                      |          |                |                        |              |            |
| Aldrin                                          |          |                |                        |              |            |
| σ-BHC                                           | 9        | 0              |                        |              |            |
| β-BHC                                           | 9        | 0              |                        |              |            |
| Chlordane                                       | 9        | 0              |                        |              |            |
| 4,4'-DDE                                        | 9        | 0              |                        |              |            |
| 4,4'-DDT                                        | 9        | 0              |                        |              |            |
| Dieldrin                                        | 9        | o o            |                        |              |            |
| Heptachlor                                      | 9        | 0              |                        |              |            |
| Heptachlor epoxide                              | 9        | 0              |                        |              |            |
| Isophorone                                      | 9        | 2              | ND - 18                |              | 2.0        |

<sup>&</sup>lt;sup>a</sup>Except asbestos, which is given in fibers/L.

ball concentrations except those for cyanide and asbestos were calculated by multplying the concentrations of the various wastestreams by the normalized percentages of the total flow and then subtracting the concentration in the intake; refer to Table V-52, Reference 1.

TABLE 10-24. CONCENTRATION OF POLLUTANTS IN THE RAW AND TREATED WASTEWATERS OF PLANTS IN THE PRIMARY ALUMINUM SUBCATEGORY [1]

|                                    |        | Plant B      |                    |                        | Plant D |                   |
|------------------------------------|--------|--------------|--------------------|------------------------|---------|-------------------|
| Parameter                          | Raw    | Treated      | Percent<br>removal | Raw                    | Treated | Percent<br>remova |
| Conventional, a mg/L               |        |              |                    |                        |         |                   |
| COD mg/L                           | 5,700  | 18           | 99                 | 3.8                    | 120     | _p                |
| TOC                                | 440    | 16           | 96                 | 150                    | 44      | 71                |
| TSS                                | 11,400 | 220          | 98                 | 2,300                  | 80      | 97                |
|                                    |        |              | 94                 | 0.13                   | 0.0061  | 97                |
| Total phenol                       | 0.11   | 0.0063       | 5                  | 5.5                    | 10      | 95 <sub>b</sub>   |
| Oil and grease                     | 4.2    | 4.0          |                    | 5.5                    | 10      | -                 |
| Ammonia                            | 120    | 31           | 74                 |                        |         |                   |
| Fluoride                           | 2,600  | 68           | 98                 | 190                    | 2.4     | 99                |
| Toxic inorganic, µg/L <sup>C</sup> | •      |              |                    |                        |         |                   |
| Antimony                           |        |              |                    | 770                    | 370     | 57                |
| Arsenic                            | 130    | ND           | >99                | 260                    | 35      | 87                |
| Asbestos                           | 150    |              |                    | 2.2 x 10 <sup>10</sup> |         | •                 |
| Beryllium                          | 76     | ND           | >99                | 33                     | <8.0    | 76                |
| Cadmium                            | 24     | ND           | >99                | 200                    | <80     | 60                |
| Chromium                           | 86     | ND           | >99                | 2,200                  | <100    | 95                |
| Copper                             | 140    | 10           | 93                 | 2,200                  | 24      | 69                |
| Cyanide                            | 29     | 0.022        | >99                | 7.5                    | 0.0043  | >99               |
| Lead                               | 780    | ND           | >99                | 650                    | < 260   | - 60              |
|                                    | 1.3    | מ <b>וא</b>  | >99                | <0.1                   | 0.2     | 60 <sup>P</sup>   |
| Mercury                            |        |              |                    |                        |         |                   |
| Nickel                             | 660    | ND           | >99                | 500                    | 200     | 60                |
| Selenium                           |        |              |                    | 450                    | 23      | 95                |
| Silver                             |        |              |                    | <250                   | < 100   | 60 <sub>d</sub>   |
| Thallium                           |        |              | _b                 | <50                    | <50     | _p                |
| Zinc                               | ND     | 5 <b>4</b> 0 |                    | ND                     | 890     |                   |

TABLE 10-25. CONCENTRATION OF POLLUTANTS FOUND IN THE RAW AND TREATED WASTEWATER OF PLANTS IN THE SECONDARY ALUMINUM SUBCATEGORY [1]

|                       |        | Plant B |                    |           | Plant E |                    |
|-----------------------|--------|---------|--------------------|-----------|---------|--------------------|
| Parameter             | Raw    | Treated | Percent<br>removal | Raw       | Treated | Percent<br>removal |
| Conventional, a mg/L  |        |         |                    |           |         |                    |
| COD                   | 580    | 54      | 91                 | 48        | 40      | 17 <sub>b</sub>    |
| TOC                   | 140    | 9.0     | 94                 | 3.0       | 120     | 6                  |
| TSS                   | 20,000 | 240     | 99 <sub>b</sub>    | 89        | 2.000   | _b                 |
| Total phenol          | 0.009  | 0.02    | , _p               | 0.025     | 0.011   | 56                 |
| Oil and grease        | 17     | 13      | 13                 | 98        | 7.3     | 93 <sub>c</sub>    |
| Ammonia               | 140    | 16      | 89.                | <0.10     | <0.10   | , <u>_</u> c       |
| Chloride              | 400    | 5,500   | 89 <sub>b</sub>    | 6,000     | 4,100   | 32                 |
| oxic inorganic, µg/Ld |        |         |                    |           |         |                    |
| Antimony              | ND     | ND      |                    | 300       | 60      | 80                 |
| Arsenic               | 6.0    | ND      | >99                | 4,000     | <2.0    | >99                |
| Asbestos              |        |         |                    | 7.5 x 108 |         |                    |
| Beryllıum             | 110    | 19      | 83                 | 310       | 170     | 45                 |
| Cadmium               | 440    | <18     | 96                 | 2,000     | 1,000   | 50                 |
| Chromium              | 1,200  | <41     | 97                 | 97        | 76      | 22                 |
| Copper                | 6,100  | <40     | 99                 | 210       | 200     | 22<br>5<br>b       |
| Cyanide               | 0.008  | 0.004   | 50                 | <0.001    | <0.001  | _b                 |
| Lead                  | 5,600  | 1,000   | 82                 | 2,000     | <180    | 91                 |
| Mercury               | 0.66   | 0.1     | 85                 | 6.4       | 3.5     | 45.                |
| Nickel                | 620    | <50     | 92                 | <50       | <200    | 45 <sub>b</sub>    |
| Selenium              | MD     | ND      |                    | 200       | 20      | 90                 |
| Silver                | 30     | ND      | >99                | <25       | <25     | 90 <sub>C</sub>    |
| Thallium              | 540    | ND      | >99                |           |         |                    |
| Zinc                  | 5,900  | <540    | 91                 | 2,000     | 10,000  | _b                 |

Note: Blanks indicate no data currently available.

<sup>&</sup>lt;sup>a</sup>All conventional pollutant concentrations are corrected for blanks and concentrations found in the water supply.

bNegative removal.

<sup>&</sup>lt;sup>C</sup>Except asbestos, which is given in fibers/L.

dNegligible removal.

All conventional pollutant concentrations are corrected for blanks and concentrations found in the water supply.

bNegative removal.

CNegligible removal.

d\_Except asbestos, which is given in fibers/L.

TABLE 10-26. CONCENTRATION OF POLLUTANTS FOUND IN THE RAW AND TREATED WASTEWATERS OF THE COLUMBIUM AND TANTALUM SUBCATEGORIES [1]

|                      |       | Plant B |                    |           | Plant D |                  |
|----------------------|-------|---------|--------------------|-----------|---------|------------------|
| Parameter            | Rew   | Treated | Percent<br>removal | Raw       | Treated | Percen<br>remova |
| Conventional, a mg/L |       |         |                    |           |         |                  |
| COD                  | 400   | 44      | 89                 | 6,700     | 150     | 98               |
| TOC                  | 120   | 9       | 93                 | 1,000     | 27      | 97               |
| TSS                  | 3,900 | 36      | 99                 | 8,700     | 89      | 99 <sub>b</sub>  |
| Total phenol         | 0.018 | 0.012   | 33                 | 0.016     | 0.030   |                  |
| Oil and grease       | 5.3   | 3.5     | 34                 | 16        | 4.0     | >5               |
| Ammonia              | 380   | 240     | 37                 | 64        | 27      | 58               |
| Fluoride             | 3,500 | 16      | >99                | 13,000    | 6.0     | >99              |
| oxic inorganic, pg/L |       |         |                    |           | •       |                  |
| Antimony             | ND    | NTD     |                    | 11,000    | 200     | 98               |
| Arsenic              | 380   | NTD     | >99                | 14,000    | 450     | 97               |
| Beryllium            | 89    | ND      | >99                | 190       | 20      | 89               |
| Cadmium              | 48    | 2       | 96                 | 19,000    | <200    | 99               |
| Chromium             | 3,000 | 3       | >99                | 520,000   | <240    | >99              |
| Copper               | 400   | 4       | 99                 | 260,000   | 110     | >99              |
| Cyanide              | 0.004 | 0.0017  | 58                 | 0.012     | 0.007   | 42               |
| Lead                 | 3,000 | 50      | 98                 | 2.7 x 107 | 5,000   | >99              |
| Mercury              | 5.0   | NTD     | >99                | 36        | 0.8     | 98               |
| Nickel               | 2,000 | 55      | 97 <sub>C</sub>    | 2,600     | 500     | 81               |
| Selenium             | ND    | ND      |                    | 24,000    | 4.5     | >99              |
| Silver               | 60    | ND      | >99 <sub>C</sub>   | 610       | <250    | 59 <sub>b</sub>  |
| Thallium             | ND    | ND      | _c                 | 24        | 50      |                  |
| Zinc                 | 540   | ND      | >99                | 700,000   | 6,000   | 99               |

TABLE 10-27. CONCENTRATION OF POLLUTANTS FOUND IN RAW AND TREATED WASTEWATERS OF PLANTS IN THE SECONDARY COPPER SUBCATEGORY [1]

|                       | ·_ ·· · · · · · · · · · · · · · · · · · | Plant A |                    |                   | Plant E |                    |
|-----------------------|-----------------------------------------|---------|--------------------|-------------------|---------|--------------------|
| Parameter             | Rav                                     | Treated | Percent<br>removal | Rav               | Treated | Percent<br>removal |
| Conventional, mg/L    |                                         |         |                    |                   |         |                    |
| COD                   | 36                                      | 20      | 44                 | 75                | 1,300   | _b                 |
| TOC                   | 43                                      | 21      | 51                 | 30                | 21      |                    |
| TS5                   | 4.0                                     | 3.3     | 18                 | 65                | 200     | э _ ь              |
| Total phenol          | 0.0063                                  | 0.006   | 5                  | 0.080             | 0.11    | _b                 |
| Oil and grease        | 4.7                                     | 3.7     | 21                 | 3.7               | 4.3     | _p                 |
| Fluoride              | 4.,                                     | 3.7     | 21                 | 3.7               | 0.43    | 30 <sub>b</sub>    |
| Toxic inorganic, µg/L | =                                       |         | -                  |                   |         |                    |
| Antimony              | ND                                      | ND      | _d<br>_d           | 11,000            | 4.000   | 64                 |
| Arsenic               | ND                                      | ND      | _a                 | 4,200             | 2,000   | 52                 |
| Asbestos              |                                         |         |                    | $3.3 \times 10^7$ | -,      |                    |
| Beryllıum             | 0.3                                     | ND      | >99                | 30                | 30      | _a                 |
| Cadmium               | 6.0                                     | NTD     | >99                | 1,200             | 2,300   | - b                |
| Chromium              | 140                                     | ND      | >99                | 2,100             | 2,200   | _ <b>D</b>         |
| Copper                | 15,000                                  | ND      | >99                | 2.1 x 106         | 27,000  | 99                 |
| Cyanide               | 0.026                                   | 0.015   | 42                 | 0.004             | 0.0027  | 33 <sub>b</sub>    |
| Lead                  | 450                                     | ND      | >99                | 20,000            | 26,000  | D                  |
| Mercury               | 0.07                                    | ND      | >99                | 0.53              | 0.23    | 57                 |
| Nickel                | 7,000                                   | 5.0     | >99 <sub>d</sub>   | $3.1 \times 10^6$ | 310,000 | 90 <sub>b</sub>    |
| Selenium              | ND                                      | ND      | _a                 | 220               | 2,300   | _D                 |
| Silver                | <10                                     | ND      | >99 <sub>a</sub>   | 1,600             | 250     | 84 <sub>b</sub>    |
| Thallium              | ND                                      | ND      | _a                 | 53                | 60      |                    |
| Zinc                  | 1,400                                   | 3       | >99                | 97,000            | 100.000 | _p                 |

Note: Blanks indicate no data currently available.

<sup>&</sup>lt;sup>8</sup>All conventional pollutant concentrations are corrected for blanks and concentrations found in the water supply.

bNegative removal.

CNegligible removal.

All conventional pollutant concentrations are corrected for blanks and concentrations found in the water supply.

 $<sup>{}^{\</sup>underline{b}} {\tt Effluent} \ \ {\tt concentration} \ \ {\tt exceeds} \ \ {\tt influent} \ \ {\tt concentration}.$ 

CExcept asbestos, which is given in fibers/L.

dNegligible removal.

TABLE 10-28. CONCENTRATIONS OF POLLUTANTS FOUND IN THE RAW AND TREATED WASTEWATERS OF PLANT B OF THE PRIMARY LEAD SUBCATEGORY [1]

|                       |        |         | Percent         |
|-----------------------|--------|---------|-----------------|
| Parameter             | Raw    | Treated | remova]         |
| Conventional, a mg/L  |        |         |                 |
| COD ESTABLISHED       | ND     | ND      | _p              |
| Total phenol          | 0.012  | 0.009   | 25              |
| Ammonia               | 0.43   | 0.25    | 42              |
| Toxic inorganic, µg/L |        |         |                 |
| Antimony              | 3.1    | ND      | >99             |
| Arsenic               | 96     | 19      | 80 <sub>P</sub> |
| Beryllium             | ND     | ND      | _B              |
| Cadmium               | 2,700  | 110     | 96              |
| Chromium              | 9.1    | 6.0     | 34              |
| Copper                | 5,300  | 50      | 99              |
| Cyanide               |        | <0.001  |                 |
| Lead                  | 10,000 | 1,400   | 86              |
| Mercury               | 0.29   | 0.02    | 93              |
| Nickel                | 150    | 20      | 87              |
| Selenium              | 3.1    | 2.7     | 13              |
| Silver                | 7.0    | ND      | >99             |
| Thallium              | 15     | 7.4     | 51              |
| Zinc                  | 2,700  | 970     | 64              |

bNegligible removal.

TABLE 10-29. CONCENTRATION OF POLLUTANTS IN RAW AND TREATED WASTEWATERS OF PLANTS IN THE SECONDARY LEAD SUBCATEGORY [1]

|                                    |        | Plant A |                    | Plant C                |                               |                   |  |
|------------------------------------|--------|---------|--------------------|------------------------|-------------------------------|-------------------|--|
| Parameter                          | Raw    | Treated | Percent<br>removal | Raw                    | Treated                       | Percent<br>remova |  |
| Conventional, a mg/L               |        |         |                    |                        |                               |                   |  |
| COD                                | 220    | 32      | 85                 | 150                    | 59                            | 61                |  |
| TOC                                | 130    | 19      | 85                 | 70                     | 34                            | 51                |  |
| TSS                                | 3,700  | 350     | 91                 | 1,100                  | 68                            | 94                |  |
| Total phenol                       | 0.010  | 0.009   | 10                 | 0.012                  | 0.005                         |                   |  |
| Oll and grease                     | 35     | 15      | 57                 | 6.4                    | 4.5                           | 58                |  |
| Chloride                           | 56     | 110     | 57 <sub>b</sub>    | 0.4                    | 4.5                           | 30                |  |
| Toxic inorganic, µg/L <sup>C</sup> |        |         |                    |                        |                               |                   |  |
| Antimony                           | 60,000 | 2,000   | 97                 | 80,000                 | 52                            |                   |  |
| Arsenic                            | 7,000  | 2,900   | 59                 | 13,000                 |                               | >99               |  |
| Asbestos                           | ,,,,,, | 2,500   |                    | 1.3 x 10 <sup>11</sup> | <10<br>1.3 x 10 <sup>11</sup> | >99 <sub>d</sub>  |  |
| Beryllıum                          | 1.0    | < 9     | _b                 | 3.2                    | <1.0                          | -                 |  |
| Cadmium                            | 900    | 370     | 59                 | 1,900                  | 11                            | 69                |  |
| Chromium                           | 320    | 200     | 38                 | 1,000                  | 11<br>55                      | 99                |  |
| Copper                             | 3,300  | 1,000   | 70                 | 8,200                  |                               | 95                |  |
| Cyanide                            | 0.008  | 0.002   | 75                 | 0.005                  | 25<br>0.001                   | >99               |  |
| Lead                               | 29,000 | 6,000   | 70                 | 1.8 x 106              |                               | 80                |  |
| Mercury                            | 0.81   | 12      | 79 <sub>b</sub>    | 0.3                    | 200                           | >99               |  |
| Nickel                             | 920    | 580     | 37                 | 2,000                  | <0.1                          | 67                |  |
| Selenium                           | ND     | ND      | <sup>37</sup> d    | 2,000<br>ND            | 12                            | 99 <sub>b</sub>   |  |
| Silver                             | 100    | ND      | >99                | 90                     | <10                           |                   |  |
| Thallium                           | 350    | 100     | 71                 | 620                    | <20                           | 78                |  |
| Zinc                               | 4,200  | 2,900   | 31                 | 15,000                 | 100<br>100                    | 84<br>99          |  |

Note: Blanks indicate no data currently available.

dNegligible removal.

Date: 6/23/80

<sup>&</sup>lt;sup>a</sup>All conventional pollutant concentrations are corrected for blanks and concentrations found in the water supply.

<sup>&</sup>lt;sup>a</sup>All conventional pollutant concentrations are corrected for blanks and concentrations found in the water supply.

bNegative removal.

 $<sup>^{\</sup>rm C}$ Except asbestos, which is given in fibers/L

TABLE 10-30. CONCENTRATION OF POLLUTANTS IN THE RAW AND TREATED WASTEWATERS OF PLANTS IN THE SECONDARY SILVER SUBCATEGORY [1]

|                       |         | Plant B | Plant B         |           |         |                       |  |
|-----------------------|---------|---------|-----------------|-----------|---------|-----------------------|--|
|                       | Percent |         |                 | Plant C   |         | Percent               |  |
| Parameter             | Raw     | Treated | removal         | Raw       | Treated | remova]               |  |
| Conventional, a mg/L  |         |         |                 |           |         |                       |  |
| COD                   | 230     | 5.0     | 92              | 12,000    | 30,000  | -p                    |  |
| TOC                   | 24      | 1.0     | 96              | 9,200     | 14,000  | _p                    |  |
| TSS                   | 110     | 10      | 91              | 1,100     | 120     | 89                    |  |
| Total phenol          | 0.04    | 0.01    | 75 <sub>b</sub> | 28        | 25      | ii                    |  |
| Oil and grease        | 8.0     | 10      | . [p            | 110       | 67      | 39                    |  |
| Ammonia               | 12      | 0.6     | 95              |           | •       |                       |  |
| Fluoride              |         |         | 79              |           |         |                       |  |
| Chloride              | 3,200   | 670     |                 |           |         |                       |  |
| oxic inorganic, pg/LC |         |         |                 |           |         |                       |  |
| Antimony              | ND      | 1.500   | _p<br>_p        | 25.000    | 450     | 98                    |  |
| Arsenic               | 40      | 1,300   | _₽              | 900       | 700     | 22                    |  |
| Aspestos              |         |         |                 | 5.8 x 108 |         |                       |  |
| Beryllium             | ND      | < 9     | P               | <20       | <20     | _d                    |  |
| Cadmium               | 1,000   | 2,000   | ~P              | 3,200     | 3,000   | 6                     |  |
| Chromium              | 2,000   | 8,000   | -₽              | 27,000    | 8,000   | 70                    |  |
| Copper                | 70,000  | 300,000 | - P             | 7,400     | 1,000   | 86                    |  |
| Cyanide               | 0.05    | 0.05    | ~6              | 2.1       | 1.5     | 29                    |  |
| Lead                  | 4,000   | 20,000  | -₽              | 4,200     | 3,000   | 29                    |  |
| Mercury               | ND      | 0.1     | -P              | 5.5       | 1.6     | 71.                   |  |
| Nickel                | 30,000  | 60,000  | _ <u>b</u>      | 1,100     | 4,000   | 71 <sub>b</sub>       |  |
| Selenium              | ND      | ND      | -€              | 590       | 400     | 32,                   |  |
| Silver                | 410     | 7,000   | -5              | <250      | <250    | <sup>32</sup> d<br>_b |  |
| Thallium              | ND      | ND      | *************   | 510       | 640     | _B                    |  |
| Zinc                  | 20,000  | 30,000  | D               | 8,400     | 5,000   | 40                    |  |

TABLE 10-31. CONCENTRATION OF POLLUTANTS FOUND IN RAW AND TREATED WASTEWATERS OF PLANT B IN THE PRIMARY TUNGSTEN SUBCATEORY [1]

|                       |        |         | Percent         |
|-----------------------|--------|---------|-----------------|
| Parameter             | Raw    | Treated | remova          |
| Conventional a mg, L  |        |         |                 |
| COD                   | 320    | 53      | 83              |
| TOC                   | 6.0    | 10      | -6              |
| TSS                   | 210    | 150     | 29 <sub>b</sub> |
| Total phenol          | 0.089  | 0.91    | _               |
| Oil and grease        | 6.3    | 4.6     | <sup>27</sup> b |
| Ammonia               | 3.9    | 5.2     |                 |
| Chloride              | 26,000 | 19,000  | 27              |
| Toxic inorganic, pg/L |        |         | _c              |
| Antimony              | ND     | ND      | _               |
| Alsenic               | 7,200  | 70      | 99              |
| Beryllium             | 29     | <10     | 66              |
| Cadmium               | 190    | 72      | 62              |
| Chromium              | 2,000  | < 50    | 98              |
| Copper                | 5,000  | 60      | 99              |
| Cyanide               | 0 013  | 0.0037  | 72              |
| Lead                  | 20,000 | < 200   | 99              |
| Mercury               | 1.0    |         |                 |
| Nickel                | 1,000  | 95      | 91              |
| Selenium              | 20     | ND      | >99             |
| Silver                | 270    | 10      | 96_             |
| Thallium              | 600    | 800     | ,_p             |
| Zinc                  | 1,900  | 520     | 73              |

<sup>&</sup>lt;sup>a</sup>All conventional pollutant concentrations are corrected for blanks and concentrations found in the water supply.

and conventional pollutant concentrations are corrected for blanks and concentrations found in the water supply.

bNegative removal.

Except asbestos, which is given in fibers/L.

d Negligible removal.

bNegative removal

CNegligible removal

TABLE 10-32. CONCENTRATION OF POLLUTANTS FOUND IN RAW AND TREATED WASTEWATERS FROM PLANTS IN THE PRIMARY ZINC SUBCATEGORY [1]

|                       |                     | Plant C |                    |                     | Plant E |                    |
|-----------------------|---------------------|---------|--------------------|---------------------|---------|--------------------|
| Parameter             | Raw                 | Treated | Percent<br>removal | Raw                 | Treated | Percent<br>removal |
| Conventional, a mg/L  |                     |         |                    |                     |         |                    |
| COD                   | 59                  | 17      | 71                 | 20                  | 17      | 15.                |
| TOC                   | 9.3                 | 8.3     | 11                 | 7.3                 | 8.3     | <sup>15</sup> b    |
| TSS                   | 15                  | 9.3     | 38 <sub>b</sub>    | 13                  | <1.0    | 92                 |
| Total phenol          | 0.004               | 0.009   | _ p                | 0.025               | 0.009   | 64                 |
| Oil and grease        | 14                  | 1.3     | 91                 | 10                  | 7.3     | 27                 |
| Toxic inorganic, µg/L |                     |         |                    |                     |         |                    |
| Antimony              | 67                  | 51      | 24                 | <2.0                | 2.7     | _b                 |
| Arsenic               | 12                  | 10      | 17                 | 3                   | 2.3     | 23                 |
| Asbestos              | $4.3 \times 10^{7}$ |         |                    | $3.2 \times 10^{7}$ |         |                    |
| Beryllium             | 7.0                 | 3.0     | 57                 | <2.0                | <2.0    | _a                 |
| Cadmium               | 5,000               | 36      | 99                 | 350                 | 630     | _b                 |
| Chromium              | 610                 | 160     | 74                 | <24                 | <24     | _d<br>_d           |
| Copper                | 560                 | 53      | 91.                | 37                  | 18      | 51                 |
| Cyanide               | 0.003               | 0.007   | 91 <sub>b</sub>    | 0.38                | 0.008   | 98                 |
| Lead                  | 3,000               | 250     | 92                 | 280                 | < 60    | 79                 |
| Mercury               | 6.9                 | 2.0     | 71                 | 2.9                 | 0.5     | 83,                |
| Nickel                | 4,300               | 620     | 86                 | < 50                | <50     | _(a                |
| Selenium              | 270                 | 40      | 85                 | 24                  | 27      | _p,                |
| Silver                | <25                 | 16      | 36                 | <25                 | <25     | 83<br>_b<br>_d     |
| Thallium              |                     | <50     |                    |                     |         |                    |
| Zinc                  | 100,000             | 1,200   | <b>9</b> 9         | 8,700               | 7,700   | 11                 |

Plant D generates wastewater from extraction raffinate (870  $m^3/d$ ) and digester air pollution control (870  $m^3/d$ ). Treatment consists of ammonia stripping, lime addition, and settling.

# II.10.3.4 Secondary Copper

Plant A has a sole source of raw wastewater from the furnace scrubbers in the acid plant (380  $m^3/d$ ). This wastewater is treated by lime and sodium hydroxide neutralization, and polymer addition followed by settling.

Plant E generates wastewater by the disposal of waste electrolyte and area cleaning water (110  $\rm m^3/d$ ). This wastewater is treated by settling.

<sup>&</sup>lt;sup>a</sup>All conventional pollutant concentrations are corrected for blanks and concentrations found in the water supply.

bNegative removal.

CExcept asbestos, which is given in fibers/L.

dNegligible removal.

### II.10.3.5 Primary Lead

Plant B generates wastewater from several sources. The acid plant sump combines blast furnace blowdown, and slag and material granulation (4,500  $\rm m^3/d$ ) into one stream. Other undefined process wastes (1,100  $\rm m^3/d$ ) are also treated. Treatment consists of simple settling.

# II.10.3.6 Secondary Lead

Plant A of the secondary lead subcategory generates wastewater from the battery electrolyte process (8  $m^3/d$ ) and from saw cooling during battery cracking (16  $m^3/d$ ). Treatment consists of ammoniation, lime neutralization, and settling.

Plant C of this subcategory releases wastewater from the saw wash down (11  $m^3/d$ ) and battery electrolyte processes (11  $m^3/d$ ). Treatment consists of lime addition and settling.

# II.10.3.7 Secondary Silver

Plant B treats spent plant liquor, contact cooling, and air pollution control wastewater (10  $\rm m^3/d$ ) by lime neutralization, ferrous chloride addition, and aluminum chloride addition followed by settling.

Plant C uses neutralization, polymer addition, settling, and filtration to treat slurry supernatants (3  $m^3/d$ ), film waste effluent (8  $m^3/d$ ), and sludge tank effluent (3  $m^3/d$ ).

### II.10.3.8 Primary Tungsten

Plant B in this subcategory treats tungstic acid precipitant rinsewater (130  $m^3/d$ ) by lime addition followed by settling.

### II.10.5.9 Primary Zinc

Plant C generates wastewater from air pollution control equipment, boiler blowdown, and preleaching filtrate (1,600  $\rm m^3/d$ ). Treatment consists of lime addition followed by settling.

Plant E in this subcategory uses settling to control roaster and reduction wastewater, cooling water, and scrubber wastewater  $(1,600 \text{ m}^3/\text{d})$ .

## II.10.4 POLLUTANT REMOVABILITY [1]

There are several methods for pollutant removal currently used in this industry. Some are used industry-wide; others are used only in specific applications.

Those used industry-wide include: physical-chemical methods (precipitation, coagulation and flocculation, pH adjustment, and ammonia stripping) and physical separation methods (filtration, sedimentation and centrifugation). Lime, caustic, soda ash, and calcium chloride are used as precipitants in the industry, especially for removal of the soluble metals. In the coagulation-flocculation system polymer, lime, and iron or aluminum salts are mixed into the waste stream to facilitate breakdown of colloidal suspensions. Air and steam stripping are widely practiced techniques for the reduction of volatile compounds such as ammonia, hydrogen sulfide, and organics.

The physical separation methods find wide application in this industry because of the nature of the wastes. Centrifugation may be feasible in some applications but is not suitable for abrasive or very fine particles (less than 5  $\mu$ m).

There are several potential treatment technologies that may be applicable, but are more expensive, than the methods currently used. These potential treatments are: sulfide precipitation, ultrafiltration, reverse osmosis, deep-well disposal activated carbon or activated alumina absorption, solidification, or ion exchange.

Pollutant removal data for toxic organic pollutants in subcate-gories studied are presented in Tables 10-33 through 10-42. The average removal percentage was determined by comparing the average raw wastewater concentrations found in the Wastewater Characterization section with the average treated wastewater concentrations presented in these tables. In some instances insufficient data were available to determine accurately an average concentration. Removal data for toxic metals and conventional pollutant data are presented on an individual facility basis in the plant specific section.

TABLE 10-33. REMOVABILITY OF TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATER IN THE PRIMARY ALUMINUM SUBCATEGORY [1]

|                                  | Number of |          | Treated effluent concentration, µg/L |          |           | Average                                |
|----------------------------------|-----------|----------|--------------------------------------|----------|-----------|----------------------------------------|
| Mayia mallutant                  | Samples   | Times    |                                      |          | L<br>lean | percent<br>removal                     |
| Toxic pollutant                  | Samples   | detected | Range                                | Median M | Eall      | Telloval                               |
| Phthalates                       |           |          |                                      |          |           |                                        |
| Bis(2-ethylhexyl) phthalate      | 9         | 3        | ND - 120                             |          | 17        | 79                                     |
| Butyl benzyl phthalate           | 9         | 1        | ND - 75                              |          | 9.6       | 56                                     |
| Di-n-butyl phthalate             | 9         | 4        | ND - 30                              |          | 5.0       | 74                                     |
| Diethyl phthalate                | 9         | 0        |                                      |          |           | >99<br>_a                              |
| Dimethyl phthalate               | 9         | 1        | ND - 5.0                             |          | 1.0       | _a                                     |
| Di-n-octyl phthalate             | 9         | 2        | ND - 13                              |          | 1.8       | _a                                     |
| Phenols                          |           |          |                                      |          |           |                                        |
| Phenol                           | 4         | 0        |                                      |          |           | >99                                    |
| Aromatics                        |           |          |                                      |          |           | _                                      |
| Benzene                          | 14        | 3        | ND - 33                              |          | 4.0       | _a                                     |
| 2.4-Dinitrotoluene               | 9         | 1        | ND - 7.0                             |          | 0.9       | _a                                     |
| 2,6-Dinitrotoluene               | 9         | ī        | ND - 1.0                             |          | 0.1       | _ a<br>_ a                             |
| Ethylbenzene                     | 14        | 2        | ND - 12                              |          | 0.8       | -a                                     |
| Toluene                          | 14        | ī        | ND - 6.8                             |          | 0.5       | -a                                     |
| Pelusualia amematis hudrosarbons |           |          |                                      |          |           |                                        |
| Polycyclic aromatic hydrocarbons | 9         | 5        | ND - 13                              |          | 5.0       | 40                                     |
| Acenaphthene                     | 9         | 1        | ND - 7.0                             |          | 1.9       | 66                                     |
| Acenaphthylene                   | 9         | 3        | ND - 11                              | 2.6      | 4.7       | 88                                     |
| Anthracene                       | 9         | 1        | ND - 6.0                             | 2.0      | 0.7       | 98                                     |
| Benz(a)anthracene                | 9         |          | ND - 8.0                             |          | 2.1       | 98                                     |
| Benzo(a)pyrene                   |           | 2        | ND - 6.0                             |          | 0.7       | 98                                     |
| Benzo(b)fluoranthene             | 9         | 1        |                                      |          | 0.1       | >99                                    |
| Benzo(ghi)perylene               | 9         | 1        | ND - 11                              |          | 1.1       | 97                                     |
| Benzo(k)fluoranthene             | 9         | 1        | ND - 6.0                             |          |           | 58                                     |
| Chrysene                         | 9         | 1        | ND - 140                             |          | 17        |                                        |
| Dibenz(ah)anthracene             | 9         | 0        |                                      |          |           | 100                                    |
| Fluoranthene                     | 9         | 4        | ND - 79                              | 11       | 22        | 77                                     |
| Fluorene                         | 9         | 1        | ND - 1.0                             |          | 0.2       | 97                                     |
| Indeno(1,2,3-cd)pyrene           | 9         | 1        | ND - 1.0                             |          | 0.1       |                                        |
| Naphthalene                      | 9         | 1        | ND - 1.0                             |          | 0.1       |                                        |
| Phenanthrene                     | 9         | 3        | ND - 11                              |          | 0.1       | 12                                     |
| Pyrene                           | 9         | 4        | ND - 80                              | 9.0      | 20        | 71                                     |
| Halogenated aliphatics           |           | _        |                                      |          | 22        | _a                                     |
| Chloroform                       | 14        | 3        | ND - 320                             |          | 23        | -¯a                                    |
| 1,2-Dichloroethane               | 14        | 2        | ND - 5.5                             |          | 0.4       | -a                                     |
| 1,1-Dichloroethylene             | 14        | 2        | ND - 4,000                           |          |           | _a<br>_a<br>_a<br>_a<br>_a             |
| Methylene chloride               | 14        | 7        | ND - 4,200                           | •        | 360       | -a                                     |
| 1,1,2,2-Tetrachloroethane        | 14        | 1        | ND - 1.0                             |          | 0.1       | -a                                     |
| Tetrachloroethylene              | 14        | 2        | ND - 61                              |          | 44        | -a                                     |
| Trichloroethylene                | 14        | 2        | ND - 120                             |          | 8.5       | -                                      |
| Pesticides and metabolites       |           |          |                                      |          |           | a                                      |
| Aldrın                           | 8         | 1        | ND - 0.1                             |          |           | -a                                     |
| δ-BHC                            | 8         | 1        | ND - 0.1                             |          |           | -a                                     |
| Y-BHC                            | 8         | 1        | ND - 0.01                            |          |           | -a                                     |
| Chlordane                        | 8         | 1        | ND - 0.1                             |          |           | _a<br>_a<br>_a<br>_a<br>_a<br>_a<br>_a |
| 4,4'-DDT                         | 8         | 1        | ND - 0.01                            |          |           | - a                                    |
| Dieldrin                         | 8         | 1        | ND - 0.1                             |          |           | ۾-                                     |
| Endrin aldehyde                  | 8         | 1        | ND - 0.2                             |          |           | ۾-                                     |
| Heptachlor                       | 8         | 1        | ND - 0.2                             |          |           |                                        |
|                                  |           | 1        | ND - 0.2                             |          |           | _4                                     |
| Heptachlor epoxide               | 8         | 1        | ND - 0.2                             |          |           | >99                                    |

Date: 6/23/80

II.10**-**38

<sup>&</sup>lt;sup>a</sup>Negative removal.

TABLE 10-34. REMOVAL OF TOXIC ORGANIC POLLUTANTS FROM RAW WASTE-WATER IN THE SECONDARY ALUMINUM SUBCATEGORY [1]

| Toxíc pollutant                  | Number of |          | Treated effluent    |        |      | Average         |
|----------------------------------|-----------|----------|---------------------|--------|------|-----------------|
|                                  |           | Times    | concentration, µg/L |        |      | percent         |
|                                  | Samples   | detected | Range               | Median | Mean | removal         |
| Phthalates                       |           |          |                     |        |      |                 |
| Bis(2-ethylhexyl) phthalate      | 7         | 7        | ND - 1,200          | 5.3    | 290  | 24              |
| Butyl benzyl phthalate           | 7         | 1        | ND - 2.0            |        | 0.6  | 97              |
| Di-n-butyl phthalate             | 7         | 4        | ND - 50             |        | 13   | 19              |
| Dimethyl phthalate               | 7         | ī        | ND - 3.0            |        | 0.6  | 94              |
| Di-n-octyl phthalate             | 7         | 2        | ND - 100            |        | 15   | 94<br>_a        |
| Nitrogen compounds               |           |          |                     |        |      |                 |
| 3,3'-Dichlorobenzidine           | 7         | 0        |                     |        |      | >99             |
| Aromatics                        |           |          |                     |        |      |                 |
| Benzene                          | 11        | 1        | ND - 5.0            |        | 0.7  | <sup>93</sup> a |
| Chlorobenzene                    | 11        | 1        | ND - 7.0            |        | 1.5  | _a              |
| 1,4-Dichlorobenzene              | 7         | О        |                     |        |      | $^{1}a$         |
| Ethylbenzene                     | 11        | 1        | ND - 6.0            |        | 0.5  | -a              |
| 1,2,4-Trichlorobenzene           | 7         | 1        | ND - 2.0            |        | 0.3  | <b>-</b> ª      |
| Polycyclic aromatic hydrocarbons |           |          |                     |        |      |                 |
| Acenaphthylene                   | 7         | 0        |                     |        |      | >99             |
| Benzo(a)pyrene                   | 7         | 1        | ND - 1.0            |        | 0.1  | 95 <sub>a</sub> |
| Benzo(b)fluoranthene             | 7         | 1        | ND - 2.0            |        | 0.3  | - 3             |
| Benzo(k)fluoranthene             | 7         | 1        | ND - 2.0            |        | 0.3  | _a              |
| Chrysene                         | 7         | 1        | ND - 2.5            |        | 0.4  | 99              |
| Fluoranthene                     | 7         | 0        |                     |        |      | >99             |
| Naphthalene                      | 7         | 1        | ND - 1.0            |        | 0.1  | 50              |
| Pyrene                           | 7         | 1        | ND - 1.0            |        | 0.1  |                 |
| Halogenated aliphatics           |           |          |                     |        |      |                 |
| Bromoform                        | 11        | 2        | ND - 4.7            |        | 1.0  | _a              |
| Carbon tetrachloride             | 11        | 1        | ND - 6.0            |        | 0.5  | 50              |
| Chlorodibromomethane             |           | 3        | ND - 29             |        | 4.9  | a               |
| Chloroform                       | 11        | 7        | ND - 170            |        | 32   | -a              |
| Dichlorobromomethane             | 11        | 4        | ND - 18             |        | 3.0  | -a              |
| 1,1-Dichloroethane               | 11        | 1        | ND - 7.0            |        | 0.6  | _               |
| 1,2-Dichloroethane               | 11        | 2        | ND - 20             |        | 2.3  | _a              |
| 1,2-Trans-dichloroethylene       | 11        | 3        | ND - 75             | 1.0    | 9.2  | <sup>52</sup> a |
| Methylene chloride               | 11        | 2        | ND - 200            |        | 18   | -a              |
| 1,1,2,2-Tetrachloroethane        | 11        | 1        | ND - 1.0            |        | 0.1  |                 |
| l,1,1-Trichloroethane            | 11        | 1        | ND - 5.0            |        | 0.5  | _a<br>_a        |
| 1,1,2-Trichloroethane            | 11        | 2        | ND - 8.5            |        | 2.3  | <b>-</b> a      |
| Pesticides and metabolites       |           |          |                     |        |      |                 |
| Isophorone                       | 7         | 0        |                     |        |      | >99             |

<sup>&</sup>lt;sup>a</sup>Negative removal.

TABLE 10-35. REMOVABILITY OF TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATER IN THE PRIMARY COLUMBIUM AND PRIMARY TANTALUM SUBCATEGORIES [1]

| Toxic pollutant                  | Number of |          | Treated effluent |            |      | Average            |
|----------------------------------|-----------|----------|------------------|------------|------|--------------------|
|                                  |           | Times    | concent          | ration, pg | /L   | percent<br>removal |
|                                  | Samples   | detected | Range            | Median     | Mean |                    |
| Phthalates                       |           |          |                  |            |      |                    |
| Bis(2-ethylhexyl) phthalate      | 4         | 3        | ND - 9.5         | 2.8        | 3.8  | 97                 |
| Butyl benzyl phthalate           | 4         | ő        | 112 7.3          | 2.0        | 3.0  | >99                |
| Di-n-butyl phthalate             | 4         | i        | ND - 9.0         |            | 2.2  | 82                 |
| Diethyl phthalate                | 4         | i        | ND - 2.0         |            | 0.5  |                    |
| Dimethyl phthalate               | 4         | 2        | ND - 20          |            | 5.0  | <sup>71</sup> a    |
| Di-n-octyl phthalate             | 4         | í        | ND - 2.0         |            | 0.5  | 92                 |
| DI-M-OCCYI phonarace             | -         | *        | ND - 2.0         |            | 0.5  | 32                 |
| Phenols                          |           |          |                  |            |      |                    |
| Pentachlorophenol                | 2         | 0        |                  |            |      | >99                |
| Aromatics                        |           |          |                  |            |      |                    |
| Benzene                          | 7         | 2        | ND - 40          |            | 6.9  | _a                 |
| Chlorobenzene                    | 7         | ĩ        | ND - 65          |            | 13   | _a                 |
| 2,4-Dinitrotoluene               | 4         | ō        |                  |            |      | >99                |
| 2,6-Dinitrotoluene               | 4         | ŏ        |                  |            |      |                    |
| Ethylbenzene                     | ī         | 2        | ND - 49          |            | 7.0  | _a                 |
| Nitrobenzene                     | 4         | ō        |                  |            | ,    | >99                |
| Toluene                          | 7         | 3        |                  |            |      | a                  |
| 1,2,4-Trichlorobenzene           | 4         | 3        | ND - 17          | 7.5        | 8.9  | 64                 |
| Polycyclic aromatic hydrocarbons |           |          |                  |            |      |                    |
| Acenaphthene                     | 4         | 3        | ND - 16          | 6.9        | 7.4  | _a                 |
|                                  | 4         | 1        | ND - 2.8         | 0.9        | 1.2  | ~a                 |
| Acenaphthylene<br>Anthracene     | 4         | 1        | ND - 2.8         | 1.5        | 3.8  | _a                 |
|                                  |           | 0        | ND - 12          | 1.5        | 3.8  | >99                |
| Benz(a)anthracene                | 4         | 0        |                  |            |      | >99_               |
| Benzo(a)pyrene                   | 4<br>4    | 1        | MD 2.0           |            | 0.5  | /99a               |
| Benzo(b)fluoranthene             |           |          | ND - 2.0         |            |      | _                  |
| Benzo(ghi)perylene               | 4         | 1        | ND - 1.0         |            | 0.2  | 0<br>_a            |
| Benzo(k)fluoranthene             | 4         | 1        | ND - 2.0         |            | 0.5  |                    |
| 2-Chloronaphthalene              | 4         | 0        |                  |            |      | >99                |
| Chrysene                         | 4         | 0        |                  |            |      | >99                |
| Dibenz(ah)anthracene             | 4         | 0        |                  |            |      | >99                |
| Fluoranthene                     | 4         | 0        |                  |            |      | >99<br>>99a        |
| Fluorene                         | 4         | 1        | ND - 69          |            | 17   |                    |
| Indeno(1,2,3-cd)pyrene           | 4         | 0        |                  |            |      | >99                |
| Naphthalene                      | 4         | 0        |                  |            |      | >99 <sub>a</sub>   |
| Phenanthrene                     | 4         | 1        | ND - 12          | 1.5        | 3.8  | -a                 |
| Pyrene                           | 4         | 1        | ND - 4.9         | 0.4        | 1.4  | _ "                |

TABLE 10-35 (continued)

|                                                 | Numb        | er of      |           | d effluen |       | Average          |  |
|-------------------------------------------------|-------------|------------|-----------|-----------|-------|------------------|--|
|                                                 |             | Times      | concent   | ration, µ | g/L   | percent          |  |
| Toxic pollutant                                 | Samples     | detected   | Range     | Median    | Mean  | remova           |  |
|                                                 | -1-4-4      |            |           |           |       |                  |  |
| Polychlorinated biphenyls and r<br>Aroclor 1248 | erated comp | ounas<br>O |           |           |       | >99              |  |
| Aroclor 1254                                    | 3           | Ö          |           |           |       | >99              |  |
| A10C101 1234                                    | 3           | U          |           |           |       | 799              |  |
| Halogenated aliphatics                          |             |            |           |           |       |                  |  |
| Bromoform                                       | 7           | 0          |           |           |       | >99 <sub>a</sub> |  |
| Carbon tetrachloride                            | 7           | 3          | ND - 110  |           | 21    |                  |  |
| Chlorodibromomethane                            | 7           | 1          | ND - 5.0  |           | 0.7   | 87               |  |
| Chloroform                                      | 7           | 4          | ND - 47   |           | 9.0   | _a               |  |
| Dichlorobromomethane                            | 7           | 2          | ND - 16   |           | 2.3   | >99              |  |
| 1,2-Dichloroethane                              | 7           | 3          | ND - 18   | 3.0       | 5.9   | 55               |  |
| 1,1-Dichloroethylene                            | 7           | 3          | ND - 140  |           | 21    | _a               |  |
| 1,2-Trans-dichloroethylene                      | 7           | 0          |           |           |       | >99              |  |
| Hexachloroethane                                | 4           | 0          |           |           |       | >99              |  |
| Methylene chloride                              | 7           | 2          | ND - 600  |           | 85    | 98 <sub>a</sub>  |  |
| 1,1,2,2-Tetrachloroethane                       | 7           | 2          | ND - 190  | 10        | 54    | _                |  |
| Tetrachloroethylene                             | 7           | 5          | ND - 190  | 10        | 54    | _a               |  |
| 1,1,1-Trichloroethane                           | 7           | Ō          |           |           |       | >99              |  |
| 1,1,2-Trichloroethane                           | 7           | i          | ND - 5.0  |           |       |                  |  |
| Trichloroethylene                               | 7           | 3          | ND - 190  |           | 32    | _a               |  |
| Pesticides and metabolites                      |             |            |           |           |       |                  |  |
| Aldrin                                          | 3           | 1          | ND - 0.5  |           | 0.2   | 33               |  |
| α-BHC                                           | 3           | ī          | ND - 0.01 |           | • • • |                  |  |
| β−ВНС                                           | 3           | î          | ND - 0.3  | 0.1       | 0.1   | 75               |  |
| δ-BHC                                           | 3           | î          | ND - 0.5  | 0.1       | 0.2   | 33               |  |
| y-BHC                                           | 3           | Ō          | ND 0.5    |           | 0.2   | 33               |  |
| Chlordane                                       | 3           | 1          | ND - 1.0  |           |       | _a               |  |
| 4,4'-DDE                                        | 3           | ō          | ND - 1.0  |           |       |                  |  |
| 4,4'-DDT                                        | 3           | Ö          |           |           |       | >99              |  |
| Dieldrin                                        | 3           | 1          | NTD 0 01  |           |       | 90               |  |
|                                                 | 3           |            | ND - 0.01 |           |       | 90               |  |
| α-Endosulfan                                    |             | 0          |           |           |       |                  |  |
| Endosulfan sulfate                              | 3           | 0          | MD 0 03   |           |       | <b>`</b> 00      |  |
| Endrin                                          | 3           | 1          | ND - 0.01 |           |       | >99              |  |
| Endrin aldehyde                                 | 3           | 0          |           |           |       | _a               |  |
| Heptachlor                                      | 3           | 1          | ND - 0.3  |           | 0.1   |                  |  |
| Heptachlor epoxide                              | 3           | 0          |           |           |       |                  |  |
| Isophorone                                      | 4           | 1          |           |           |       | >99              |  |
| Toxaphene                                       | 3           | 0          |           |           |       |                  |  |

<sup>&</sup>lt;sup>a</sup>Negative removal.

TABLE 10-36. REMOVABILITY OF TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATERS IN THE PRIMARY COPPER SUBCATEGORY [1]

|                                  | Numb    | er of    |                 | d efflue |      | Average          |
|----------------------------------|---------|----------|-----------------|----------|------|------------------|
|                                  |         | Times    |                 | ration,  |      | percent          |
| Toxic pollutant                  | Samples | detected | Range           | Median   | Mean | removal          |
| Phthalates                       |         |          |                 |          |      | _                |
| Bis(2-ethylhexyl) phthalate      | 5       | 5        | ND - 480        | 17       | 110  | _a               |
| Butyl benzyl phthalate           | 5       | 2        | ND - 48         |          | 9.6  | _a               |
| Di-n-butyl phthalate             | 5       | 3        | ND - 73         |          | 25   | _a               |
| Di-n-octyl phthalate             | 5       | 2        | <b>ND -</b> 190 |          | 38   | _a               |
| Phenols                          |         |          |                 |          |      |                  |
| 2,4-Dimethylphenol               | 2       | 0        |                 |          |      | > <b>9</b> 9     |
| Aromatics                        |         |          |                 |          |      |                  |
| Benzene                          | 5       | 0        | ND - 1.0        |          | 0.4  | 43 <sub>a</sub>  |
| Chlorobenzene                    | 5       | 0        | ND - 6.0        |          | 1.2  | _a               |
| Toluene                          | 5       | Ō        |                 |          |      | >99              |
|                                  |         |          |                 |          |      |                  |
| Polycyclic aromatic hydrocarbons | -       | •        |                 |          |      | ٠.٥٥             |
| Acenaphthylene                   | 5       | 0        | <b></b>         |          |      | >99              |
| Anthracene                       | 5<br>5  | 4        | ND - 17         |          | 6.2  | 0                |
| Benz(a)anthracene                | 5       | 0        | NTD 2.0         |          | 0.4  | >99 <sub>a</sub> |
| Chrysene                         | 5<br>5  | 1        | ND - 2.0        |          | 0.4  | -a               |
| Fluoranthene                     | 5       | 1        | ND - 2.0        |          | 0.4  | -a               |
| Fluorene                         | 5       | 1        | ND - 14         |          | 2.8  | -                |
| Phenanthrene                     | 5<br>5  | 1        | ND - 17         |          | 3.4  | 52               |
| Pyrene                           | 5       | 0        |                 |          |      | > <b>9</b> 9     |
| Polychlorinated biphenyls and    |         |          |                 |          |      |                  |
| related compounds                |         |          |                 |          |      | a                |
| Aroclor 1248                     | 5       | 1        | ND - 1.0        | 1.0      | 0.8  | ā                |
| Aroclor 1254                     | 5       | 1        | ND - 1.5        |          | 0.5  |                  |
| Halogenated aliphatics           |         |          |                 |          |      |                  |
| Carbon tetrachloride             | 5       | 0        |                 |          |      | >99              |
| Chlorodibromomethane             | 5       | 0        |                 |          |      | > <b>9</b> 9     |
| Chloroform                       | 5       | 0        |                 |          |      | >99              |
| Dichlorobromomethane             | 5       | 0        |                 |          |      | > <b>9</b> 9     |
| 1,2-Dichloroethane               | 5       | 0        |                 |          |      | >99              |
| 1,1-Dichloroethylene             | 5       | 2        | ND - 10         |          | 3.8  | - a              |
| Methylene chloride               | 5       | 0        |                 |          |      | >99 <sub>a</sub> |
| 1,1,2,2-Tetrachloroethane        | 5       | 1        | ND - 9.0        |          | 3.2  | - <sup>a</sup>   |
| Tetrachloroethylene              | 5       | 1        | ND - 3.0        |          | 1.0  | 81_              |
| 1,1,1-Trichloroethane            | 5       | 2        | ND - 10         |          | 3.4  | _ª               |
| 1,1,2-Trichloroethane            | 5       | 0        |                 |          |      | > <b>9</b> 9     |
| Trichloroethylene                | 5       | 1        | ND - 3.0        |          | 0.6  | 60               |
| Pesticides and metabolites       |         |          |                 |          |      | а                |
| β-BHC                            | 5       | 1        | ND - 0.2        |          |      | _a               |
| γ-BHC                            | 5       | 1        | ND - 0.01       |          |      | a                |
| Chlordane                        | 5       | 1        | ND - 0.9        |          | 0.2  | _a               |
| 4,4'-DDE                         | 5       | 1        | ND - 0.1        |          |      |                  |
| 4,4'-DDT                         | 5       | 1        | ND - 0.1        |          |      |                  |
| Dieldrin                         | 5       | 0        |                 |          |      |                  |
| α-Endosulfan                     | 5       | 1        | ND - 0.04       |          |      |                  |
| β-Endosulfan                     | 5       | 0        |                 |          |      | -                |
| Endosulfan sulfate               | 5       | 1        | ND - 0.2        |          | 0.1  | _a               |
| Endrin                           | 5       | 1        | ND - 0.1        |          |      |                  |
| Endrin aldehyde                  | 5       | ī        | ND - 0.4        |          |      | 0                |
| Heptachlor                       | 5       | ī        | ND - 0.2        |          |      |                  |
| Heptachlor epoxide               | 5       | ī        | ND - 0.1        |          |      | >99              |
| Isophorone                       | 5       | 0        |                 |          |      | >99              |

<sup>&</sup>lt;sup>a</sup>Negative removal.

TABLE 10-37. REMOVABILITY OF TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATER IN THE SECONDARY COPPER SUBCATEGORY [1]

|                                        | Numb     | er of             |                     | effluent                   | Average            |
|----------------------------------------|----------|-------------------|---------------------|----------------------------|--------------------|
| Toxic pollutant                        | Samples  | Times<br>detected | Range               | ation, µg/L<br>Median Mean | percent<br>removal |
|                                        |          |                   |                     |                            |                    |
| Phthalates Bis(2-ethylhexyl) phthalate | 13       | 2                 | NTD - 590           | 34.0 84                    | 92                 |
| Butyl benzyl phthalate                 | 13       | 3                 | ND - 23             | 3.3                        | 20                 |
| Di-n-butyl phthalate                   | 13       | ž                 | ND - 110            | 16.0 32                    | 43 <sub>a</sub>    |
| Diethyl phthalate                      | 13       | 2                 | ND - 82             | 15                         | · a                |
| Dimethyl phthalate                     | 13       | 2                 | ND - 1.3E3          | 1.0 210                    | _a                 |
| . Di-n-octyl phthalate                 | 13       | 2                 | ND - 170            | 15                         | _a                 |
| Aromatics                              |          |                   |                     |                            |                    |
| Benzene                                | 13       | 1                 | ND - 36             | 2.8                        | 85                 |
| Ethylbenzene                           | 13       | 1                 | ND - 2.0            | 0.2                        | 50                 |
| Hexachlorobenzene                      | 13       | 1                 | ND - 220            | 30                         | 93 <sub>a</sub>    |
| Nitrobenzene                           | 13       | 0                 | ND - 1.0            |                            | _a                 |
| Toluene                                | 13       | 2                 | ND - 69             | 5.6                        | •                  |
| Polycyclic aromatic hydrocarbons       |          | _                 |                     |                            |                    |
| Acenaphthene                           | 13       | 1                 | ND - 36             | 2.8                        | 39                 |
| Acenaphthylene                         | 13       | 0                 | ND - 36             | 2.8                        | >99                |
| Anthracene                             | 13       | 5                 | ND - 140            | 5.0 19                     | 93 <sub>a</sub>    |
| Benzo(a)pyrene                         | 13       | 1                 | ND - 9.0            | 1.5                        | -                  |
| Benzo(b)fluoranthene                   | 13       | 1                 | ND - 12<br>ND - 12  |                            |                    |
| Benzo(k)fluoranthene                   | 13       | 1                 | ND - 12<br>ND - 8.0 | 0.8                        | >99                |
| Chrysene                               | 13<br>13 | 2<br>0            | ND - 8.0            | 0.6                        | / 9 a              |
| Dibenz(ah)anthracene<br>Fluoranthene   | 13       | 2                 | ND - 17             | 2.0 3.9                    | 99                 |
| Fluorene                               | 13       | 3                 | ND - 100            | 2.0 3.9                    | <sup>3</sup> a     |
| Indeno(1,2,3-cd)pyrene                 | 13       | i                 | ND - 8.0            | 0.6                        | 84                 |
| Naphthalene                            | 13       | i                 | ND - 930            | 87                         | 84 <sub>a</sub>    |
| Phenanthrene                           | 13       | 5                 | ND - 140            | 5.0 19                     | 99                 |
| Pyrene                                 | 13       | 4                 | ND - 38             | 3.0 7.8                    | 99                 |
| Polychlorinated biphenyls and          |          |                   |                     |                            |                    |
| related compounds                      |          |                   |                     |                            |                    |
| Aroclor 1248                           | 13       | 1                 |                     |                            | 60                 |
| Aroclor 1254                           | 13       | 1                 |                     |                            | 60                 |
| Halogenated aliphatics                 |          |                   |                     |                            |                    |
| Carbon tetrachloride                   | 13       | 2                 | ND - 260            | 20                         | _a                 |
| Chloroform                             | 13       | 5                 | ND - 320            | 43                         | 67 <sub>a</sub>    |
| Dichlorobromomethane                   | 13       | 1                 | ND - 7.0            | 0.5                        | -"                 |
| 1,2-Dichloroethane                     | 13       | 1                 | ND - 1.0            |                            |                    |
| l,1-Dichloroethylene                   | 13       | 0                 |                     |                            | >99                |
| 1,2-Trans-dichloroethylene             | 13       | 0                 |                     |                            | >99                |
| Methylene chloride                     | 13       | 0                 |                     |                            | >99 <sub>a</sub>   |
| 1,1,2,2-Tetrachloroethane              | 13       | 2                 | ND - 14             | 2.6                        | -                  |
| Tetrachloroethylene                    | 13       | 2                 | ND - 12             | 1.7                        | 81                 |
| Trichloroethylene                      | 13       | 1                 | ND - 2.0            | 0.2                        | 97                 |
| Pesticides and metabolites             |          | •                 |                     |                            |                    |
| Aldrin<br>g-BHC                        | 13       | 0                 | ND - 0.2            |                            |                    |
| 8-BHC                                  | 13<br>13 | 1                 | ND - 0.2            |                            |                    |
| ô-BHC                                  | 13       | i                 | ND - 0.01           |                            |                    |
| Y-BHC                                  | 13       | ō                 | ND - 0.1            |                            |                    |
| Chlordane                              | 13       | 1                 | ND - 0.5            | 0.1                        | 0                  |
| 4,4'-DDE                               | 13       | i                 | ND - 0.1            | 0.1                        | Ū                  |
| 4,4'~DDD                               | 13       | î                 | ND - 0.04           | • • •                      |                    |
| 4,4'-DDT                               | 13       | ī                 | ND - 0.1            | 0.1                        |                    |
| Dieldrin                               | 13       | î                 | ND - 0.2            | - · •                      |                    |
| α-Endosulfan                           | 13       | i                 | ND - 0.6            | 0.1                        |                    |
| 8-Endosulfan                           | 13       | i                 | ND - 0.1            | ٠.٠                        |                    |
| Endrin                                 | 13       | i                 | ND - 0.1            |                            |                    |
| Endrin aldehyde                        | 13       | i                 | ND - 0.4            | 0.1                        |                    |
| Heptachlor                             | 13       | i                 | ND - 0.2            | V.1                        |                    |
| Heptachlor epoxide                     | 13       | i                 | ND - 0.1            |                            |                    |
| Toxaphene                              | 13       | ō                 |                     |                            |                    |
|                                        |          | •                 |                     |                            |                    |

<sup>&</sup>lt;sup>a</sup>Negative removal.

TABLE 10-38. REMOVABILITY OF TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATER IN THE PRIMARY LEAD SUBCATEGORY [1]

|                                              | Number of |                   | Treated effluent |                     |    | Average            |  |
|----------------------------------------------|-----------|-------------------|------------------|---------------------|----|--------------------|--|
| Toxic pollutant                              | Samples   | Times<br>detected | conce<br>Range   | ntration,<br>Median |    | percent<br>removal |  |
| Polycyclic aromatic hydrocarbons<br>Pyrene   | 1         | 0                 |                  |                     |    | >99                |  |
| Halogenated aliphatics<br>Methylene chloride | 1         | 1                 |                  | 54                  | 54 | _a                 |  |

Note: Blanks indicate insufficient data; not calculable.

<sup>&</sup>lt;sup>a</sup>Negative removal.

TABLE 10-41. REMOVABILITY OF TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATERS IN THE PRIMARY TUNGSTEN SUBCATEGORY [1]

|                                              | Numb        | er of             |                      | i effluent   | Average           |
|----------------------------------------------|-------------|-------------------|----------------------|--------------|-------------------|
| Toxic pollutant                              | Samples     | Times<br>detected | Range                | Median Mean  | percent<br>remova |
| TOXIC POTTUCANC                              | Jampies     | de tected         | Kunge                | Median Media | тешоча            |
| Phthalates                                   | _           | _                 |                      |              | a                 |
| Bis(2-ethylhexyl) phthalate                  | 2           | 2                 | 32 - 730             | 380          | -a                |
| Di-n-butyl phthalate                         | 2 2         | 2 2               | 22 - 66              | 44           | -a                |
| Diethyl phthalate                            | 2           | 2                 | ND - 16<br>ND - 230  | 8.0          | ~a                |
| Dimethyl phthalate -Di-n-octyl phthalate     | 2           | 2                 | ND - 230             | 120<br>22    | _a                |
| Aromatics                                    |             |                   |                      |              |                   |
| Benzene                                      | 4           | 2                 | ND - 17              | 7.5 8.0      | _&                |
| Chlorobenzene                                | 4           | ī                 | ND - 1.0             | 7.0          |                   |
| Ethylbenzene                                 | 4           | ī                 | ND - 1.0             | 0.3          | 86 <sub>a</sub>   |
| Nitrobenzene                                 | 2           | ī                 | ND - 5.5             | 2.8          | - a               |
| Toluene                                      | 4           | ī                 | ND - 1.0             | 0.3          | 97 <sub>a</sub>   |
| 1,2,4-Trichlorobenzene                       | 2           | ī                 | 4.0 - 55             | 4.8          | - a               |
| Polycyclic aromatic hydrocarbons             |             |                   |                      |              |                   |
| Acenaphthene                                 | 2           | 0                 |                      |              | >99               |
| Acenaphthylene                               | 2           | 0                 |                      |              | >99               |
| Anthracene                                   | 2           | 1                 | ND - 8.0             | 4.0          | 87_               |
| Benzo(a)pyrene                               | 2           | 1                 | ND - 1.0             | 0.5          | - 4               |
| Chrysene                                     | 2           | 0                 |                      |              | >99 <sub>a</sub>  |
| Fluoranthene                                 | 2           | 1                 | ND - 1.0             | 0.5          | _                 |
| Fluorene                                     | 2           | 0                 |                      |              | >99               |
| Naphthalene                                  | 2           | 2                 | ND - 32              | 16           | 93 <sub>a</sub>   |
| Phenanthrene                                 | 2           | 1                 | ND - 8.0             | 4.0          | _ a               |
| Pyrene                                       | 2           | 2                 | ND - 15              | 7.5          | -"                |
| Polychlorinated biphenyls and                |             |                   |                      |              |                   |
| related compounds                            |             |                   |                      |              | a                 |
| Aroclor 1248<br>Aroclor 1254                 | 2<br>2      | 1                 | ND - 2.4<br>ND - 1.9 | 1.2          | _a<br>_a          |
| A100101 1254                                 | 2           | •                 | ND - 1.9             | 1.0          | -                 |
| Halogenated aliphatics                       |             | _                 |                      |              |                   |
| Bromoform                                    | 4           | 0                 |                      |              | >99               |
| Chlorodibromomethane                         | 4           | 0                 |                      |              | a                 |
| Chloroform                                   | 4           | 3                 | ND - 870             | 29 230       | - a               |
| Dichlorobromomethane                         | 4           | 2                 | ND - 12              | 6.0 6.0      | - <u>-</u>        |
| 1,2-Dichloroethane                           | 4           | 3                 | ND - 29              | 7.5 11       | ā                 |
| 1,1-Dichloroethylene                         | 4           | 3                 | ND - 29              | 10 12        | - a               |
| 1,2-Trans-dichloroethylene                   | 4           | 1                 | ND - 2.0             | 0.5          | -                 |
| 1,1,2,2-Tetrachloroethane                    | 4           | 1                 | ND - 9.0             | 5.3 5.0      | 4                 |
| Tetrachloroethylene<br>1,1,1-Trichloroethane | 4           | 2                 | 3.0 - 20             | 7.0 9.3      | 54                |
| Trichloroethylene                            | 4           | 0<br>4            | ND - 88              | 41           | >99<br>_a         |
| Pesticides and metabolites                   |             | -                 |                      |              |                   |
| Aldrin                                       | 2           | 0                 |                      |              |                   |
| α-BHC                                        | 2           | 0                 |                      |              | >99               |
| β-BHC                                        | 2           | ŏ                 |                      |              | > 99              |
| γ-BHC                                        | 2           | 1                 | ND - 0.1             |              | >99               |
| Chlordane                                    |             | -                 | ND - 0.5             | 0.3          | >99 <sub>a</sub>  |
| 4,4'-DDD                                     | 2           | 1                 | ND - 0.3             | 0.3          | _a                |
| 4.4'-DDT                                     | 2<br>2<br>2 | ō                 | ND - 0.2             | 0.1          | _                 |
| Dieldrin                                     | 2           | ŏ                 |                      |              | >99               |
| σ-Endosulfan                                 | 2           | 1                 | ND - 0.6             | 0.3          | 91                |
| β-Endosulfan                                 | 2           | î                 | ND - 0.2             | 0.1          | 97                |
| Endrin                                       | 2           | ō                 | 0.2                  | 0.1          | >99               |
| Endrin aldehyde                              | 2           | ŏ                 |                      |              | >99               |
| Heptachlor                                   | 2           | ŏ                 |                      |              | >00               |
| Heptachlor epoxide                           | 2           | ŏ                 |                      |              | >99<br>a          |
|                                              | 2           | ĭ                 | ND - 6.0             | 3.0          | a                 |

aNegative removal.

TABLE 10-42. REMOVABILITY OF TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATER IN THE PRIMARY ZINC SUBCATEGORY [1]

|                                  | Numb    | er of    | Treated effluent |           |      | Average          |  |
|----------------------------------|---------|----------|------------------|-----------|------|------------------|--|
|                                  |         | Times    |                  | ration, μ |      | percent          |  |
| Toxic pollutant                  | Samples | detected | Range            | Median    | Mean | removal          |  |
| Phthalates                       |         |          |                  |           |      |                  |  |
| Bis(2-ethylhexyl) phthalate      | 11      | 5        | ND - 170         | 14        | 22   | 21               |  |
| Butyl benzyl phthalate           | 11      | 1        | ND - 0.1         |           |      |                  |  |
| Di-n-butyl phthalate             | 11      | 2        | ND - 12          | 4.0       | 1.6  | 56               |  |
| Diethyl phthalate                | 11      | ī        | ND - 0.9         |           | 0.1  | 96               |  |
| Dimethyl phthalate               | īī      | ō        |                  |           |      | 96 <sub>a</sub>  |  |
| Di-n-octyl phthalate             | 11      | i        | NTD - 1.0        |           | 0.1  | _a               |  |
| Nitrogen compounds               |         |          |                  |           |      |                  |  |
| 3,3'-Dichlorobenzidine           | 11      | 1        | ND - 2.0         |           | 0.2  | _a               |  |
| Phenols                          |         |          |                  |           |      |                  |  |
| Pentachlorophenol                | 11      | 0        |                  |           |      | >99              |  |
| Aromatics                        |         | _        |                  |           |      |                  |  |
| Benzene                          | 11      | 1        | ND - 3.0         |           | 0.4  | 85 <sub>a</sub>  |  |
| Ethylbenzene                     | 11      | 1        | <b>ND</b> - 6.0  |           |      | _                |  |
| Hexachlorobenzene                | 11      | 0        |                  |           |      | >99              |  |
| Toluene                          | 11      | 1        | ND - 5.3         | 3.0       | 0.8  | 89 <sub>a</sub>  |  |
| 1,2,4-Trichlorobenzene           | 11      | 2        | ND - 47          |           | 4.3  | _"               |  |
| Polycyclic aromatic hydrocarbons |         |          |                  |           |      |                  |  |
| Acenaphthylene                   | 11      | 1        | ND - 8.0         |           | 0.7  | 65               |  |
| Anthracene                       | 11      | 1        | ND - 9.0         | 7.0       | 1.6  |                  |  |
| Chrysene                         | 11      | 1        | ND - 0.7         |           |      |                  |  |
| Fluoranthene                     | 11      | 0        |                  |           |      | >99              |  |
| Fluorene                         | 11      | 1        | ND - 3.0         |           | 0.3  | 81 <sub>a</sub>  |  |
| Naphthalene                      | 11      | 1        | ND - 6.0         |           | 0.5  |                  |  |
| Phenanthrene                     | 11      | 1        | ND - 9.0         |           | 1.4  | _a               |  |
| Pyrene                           | 11      | 1        | ND - 8.0         |           | 0.9  | 72               |  |
| Polychlorinated biphenyls and    |         |          |                  |           |      |                  |  |
| related compounds                |         |          |                  |           |      |                  |  |
| Aroclor 1248                     | 11      | 1        | ND - 9.8         |           | 0.9  | 6<br>_a          |  |
| Aroclor 1254                     | 11      | 2        | NTD - 7.0        |           | 0.6  | -ª               |  |
| Halogenated aliphatics           |         |          |                  |           |      |                  |  |
| Bromoform                        | 11      | 2        | ND - 44          |           | 4.0  | _a               |  |
| Chloroform                       | 11      | 2        | ND - 54          |           | 5.4  | 66               |  |
| l,l-Dichloroethane               | 11      | 0        |                  |           |      | >99              |  |
| 1,2-Dichloroethane               | 11      | 0        |                  |           |      | >99              |  |
| 1,1-Dichloroethylene             | 11      | 0        |                  |           |      | >99              |  |
| Methylene chloride               | 11      | 1        | ND - 7.0         |           | 0.8  | >99<br>>99<br>_a |  |
| Tetrachloroethylene              | 11      | 2        | ND - 22          |           | 2.6  | _a               |  |
| Trichloroethylene                | 11      | 2        | ND - 19          |           | 2.0  | 89               |  |
| Trichlorofluoromethane           | 11      | 0        |                  |           |      | >99              |  |
| Pesticides and metabolites       |         |          |                  |           |      |                  |  |
| α−BHC                            | 11      | 1        | ND - 0.7         |           | 0.1  | _a               |  |
| <b>β-BHC</b>                     | 11      | 1        | ND - 0.03        |           |      |                  |  |
| Chlordane                        | 11      | 1        | ND - 1.6         |           | 0.2  | _a               |  |
| 4,4'-DDE                         | 11      | 1        | ND - 0.2         |           | 0.01 | _a               |  |
| 4,4'-DDT                         | 11      | 1        | ND - 0.4         |           | 0.03 | _a               |  |
| Dieldrin                         | 11      | 1        | ND - 0.03        |           |      | _                |  |
| Heptachlor                       | 11      | ī        | ND - 0.7         |           | 0.1  | _a               |  |
| Heptachlor epoxide               | 11      | ī        | ND - 0.7         |           | 0.1  | _a               |  |
| Isophorone                       | 11      | ō        |                  |           | _    | >99              |  |
| •                                |         | -        |                  |           |      |                  |  |

Date: 6/23/80

II.10**-**48

<sup>&</sup>lt;sup>a</sup>Negative removal.

TABLE 10-39. REMOVABILITY OF TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATERS IN THE SECONDARY LEAD SUBCATEGORY [1]

|                                  | Numb    | er of             |           | ed effluent                  | Average            |  |
|----------------------------------|---------|-------------------|-----------|------------------------------|--------------------|--|
| Toxic pollutant                  | Samples | Times<br>detected | Range     | tration, µg/L<br>Median Mean | percent<br>removal |  |
|                                  |         |                   |           |                              |                    |  |
| Phthalates                       |         |                   | NTD 00    |                              | 0.7                |  |
| Bis(2-ethylhexyl) phthalate      | 4       | 4                 | ND - 22   | 9.5 5.5                      | 97                 |  |
| Butyl benzyl phthalate           | 4       | 1                 | ND - 4.0  | 1.0                          | 94                 |  |
| Di-n-butyl phthalate             | 4       | 2                 | ND - 35   | 1.5 9.5                      | 21                 |  |
| Dimethyl phthalate               | 4       | 0                 |           |                              | > 99               |  |
| Di-n-octyl phthalate             | 4       | 1                 | ND - 2.0  | 0.5                          | 78                 |  |
| Nitrogen compounds               |         | _                 |           |                              |                    |  |
| Benzidine                        | 4       | 0                 |           |                              | >99                |  |
| Aromatics                        |         |                   |           |                              | _a                 |  |
| Benzene                          | 7       | 1                 | ND - 7.0  | 1.0                          | _                  |  |
| Chlorobenzene                    | 7       | 0                 |           |                              | >99                |  |
| Ethylbenzene                     | 7       | 1                 | ND - 4.0  | 0.6                          |                    |  |
| Nitrobenzene                     | 4       | 0                 |           |                              | >99 <sub>a</sub>   |  |
| Toluene                          | 7       | 1                 | ND - 1.0  | 0.3                          | -ª                 |  |
| Polycyclic aromatic hydrocarbons |         |                   |           |                              |                    |  |
| Acenaphthylene                   | 4       | 0                 |           |                              | >99                |  |
| Anthracene                       | 4       | 1                 | ND - 2.0  | 0.5                          | 88                 |  |
| Benzo(a)pyrene                   | 4       | 0                 |           |                              | >99                |  |
| Benzo(b)fluoranthene             | 4       | 0                 |           |                              | >99_               |  |
| Benzo(ghi)perylene               | 4       | 1                 | ND - 1.0  | 0.3                          | _a                 |  |
| Benzo(k)fluoranthene             | 4       | 0                 |           |                              | >99                |  |
| Chrysene                         | 4       | 1                 | ND - 2.0  | 0.5                          | 99                 |  |
| Fluoranthene                     | 4       | 0                 |           |                              | >99                |  |
| Fluorene                         | 4       | 0                 |           |                              | >99                |  |
| Indeno(1,2 3-cd)pyrene           | 4       | Ō                 |           |                              | >99                |  |
| Naphthalene                      | 4       | i                 | ND - 3.0  | 0.8                          | Ó                  |  |
| Phenanthrene                     | 4       | ī                 | ND - 2.0  | 0.5                          | 89                 |  |
| Pyrene                           | 4       | ō                 | 112 - 2.0 | <b>V</b> .5                  | >99                |  |
| Polychlorinated biphenyls and    |         |                   |           |                              |                    |  |
| related compounds                |         |                   |           |                              |                    |  |
| Aroclor 1248                     | 4       | 1                 | ND - 1.9  | 1.3 1.1                      | 36                 |  |
| Aroclor 1254                     | 4       | 1                 | ND - 1.6  | 1.0 0.9                      | 15                 |  |
| Jalogopated alimbation           |         |                   |           |                              |                    |  |
| Halogenated aliphatics Bromoform | 7       | 0                 |           |                              | ٠.00               |  |
|                                  |         |                   | .m. 22    |                              | >99a               |  |
| Chloroform                       | 7       | 4                 | ND - 32   | 4.6                          |                    |  |
| 1,2-Dichloroethane               | 7       | 1                 | ND - 2.0  | 0.3                          | 93 <sub>a</sub>    |  |
| 1,1-Dichloroethylene             | 7       | 2                 | ND - 17   | 2.4                          | _a                 |  |
| 1,2-Trans-dichloroethylene       | 7       | 2                 | ND - 22   | 3.1                          |                    |  |
| 1,1,2,2-Tetrachloroethane        | 7       | 0                 |           |                              | >99                |  |
| Tetrachloroethylene              | 7       | 1                 | ND - 3.0  | 0.6                          | 45 <sub>a</sub>    |  |
| 1,1,2-Trichloroethane            | 7       | 1                 | ND - 7.2  | 1.0                          | _a                 |  |
| Trichloroethylene                | 7       | 2                 | ND - 28   | 4.7                          | -"                 |  |
| Pesticides and metabolites       |         |                   |           |                              |                    |  |
| Aldrın                           | 4       | 0                 |           |                              |                    |  |
| σ-BHC                            | 4       | 1                 | ND - 0.04 |                              |                    |  |
| β-BHC                            | 4       | 1                 | ND - 0.3  | 0.1                          | 0                  |  |
| Y-BHC                            | 4       | 1                 | ND - 0.02 |                              | _                  |  |
| Chlordane                        | 4       | 1                 | ND - 31   | 9.0 4.6                      | _a                 |  |
| 4,4'-DDE                         | 4       | 1                 | ND - 0.02 |                              |                    |  |
| 4,4'-DDT                         | 4       | ī                 | ND - 0.1  |                              |                    |  |
| Dieldrin                         | 4       | ī                 | ND - 0.4  | 0.2 0.1                      |                    |  |
| σ-Endosulfan                     | 4       | ō                 |           |                              |                    |  |
| β-Endosulfan                     | 4       | ĭ                 | ND - 0.1  |                              |                    |  |
| Endrin                           | 4       | Ō                 | U.I       |                              | >99                |  |
| Endrin aldehyde                  | 4       | Ö                 |           |                              | >99                |  |
| Heptachlor                       |         |                   | MD - 0 3  |                              |                    |  |
|                                  | 4       | 1                 | ND - 0.3  | 0.1                          | 0                  |  |
| Heptachlor epoxide               | 4       | 1                 | ND - 0.1  |                              | >99                |  |
| Isophorone                       | 4       | 0                 |           |                              | >99                |  |

<sup>&</sup>lt;sup>a</sup>Negative removal.

TABLE 10-40. REMOVABILITY OF TOXIC ORGANIC POLLUTANTS FROM RAW WASTEWATER IN THE SECONDARY SILVER SUBCATEGORY [1]

|                                                    | Numb    | er of    | Treated     |             | Average          |
|----------------------------------------------------|---------|----------|-------------|-------------|------------------|
|                                                    | _       | Times    |             | tion, µg/L  | percent          |
| Toxic pollutant                                    | Samples | detected | Range       | Median Mean | removal          |
| Phthalates                                         |         |          |             |             | •                |
| Bis(2-ethylhexyl) phthalate                        | 5       | 5        | 3.4 - 120   | 17 37       | _a               |
| Butyl benzyl phthalate                             | 5       | 3        | ND - 52     | 1.0 18      | _a               |
| Di-n-butyl phthalate                               | 5       | 2        | ND - 79     | 7.0 19      | 75               |
| Diethyl phthalate                                  | 5       | 0        |             |             | >99              |
| Di-n-octyl phthalate                               | 5       | 3        | ND - 69     | 16          | <b>4</b> 7       |
| Aromatics                                          |         |          |             |             |                  |
| Benzene                                            | 9       | 5        | ND - 59     | 14          | 81               |
| Chlorobenzene                                      | 9       | 1        | ND - 4.0    | 0.4         | 86               |
| Ethylbenzene                                       | 9       | 3        | ND - 14     | 3.9         | 58               |
| Toluene                                            | 9       | 2        | ND - 19     | 2.7         | 87               |
| Polycyclic aromatic hydrocarbons                   |         |          |             |             |                  |
| Acenaphthene                                       | 5       | 0        |             |             | >99              |
| Anthracene                                         | 5       | Ö        |             |             | >99 <sub>a</sub> |
| Fluoranthene                                       | 5       | 2        | ND - 200    | 40          | _a               |
| Naphthalene                                        | 5       | ō        | •           |             | >99              |
| Phenanthrene                                       | 5       | Ŏ        |             |             | >99              |
| Pyrene                                             | 5       | 2        | ND - 180    | 36          | 92               |
| Polychlorinated biphenyls and                      |         |          |             |             |                  |
| related compounds                                  |         |          |             |             | _                |
| Aroclor 1248                                       | 2       | 1        | 0.2 - 2.6   | 1.4         | _a               |
| Aroclor 1254                                       | 2       | ī        | 0.3 - 1.9   | 1.1         | _a               |
| Halogenated aliphatics                             |         |          |             |             |                  |
| Bromoform                                          | 9       | 2        | ND - 13     | 1.4         | 87               |
| Carbon tetrachloride                               | 9       | 6        | ND - 1,700  | 19 310      | 26 <sub>a</sub>  |
| Chlorodibromomethane                               | 9       | i        | ND - 2,800  | 750         |                  |
| Chloroform                                         | 9       | 6        | ND - 2,900  | 130 440     | _a               |
| Dichlorobromomethane                               | -       |          | -,          |             | 4                |
| 1,2-Dichloroethane                                 | 9       | 4        | ND - 240    | 2.0 48      | 60               |
|                                                    | ģ       | 4        | ND - 3,400  | 390         | 65               |
| 1,1-Dichloroethylene<br>1,2-Trans-dichloroethylene | 9       | 2        | ND - 44     | 4.9         | a                |
|                                                    | 9       | 3        | ND - 790    | 160         | 84               |
| Methylene chloride                                 | 8       | 3        | ND - 25     | 5.9         |                  |
| 1,1,2,2-Tetrachloroethane                          | 9       | 6        | ND - 35     | 8.:         |                  |
| Tetrachloroethylene                                | 9       | i        | ND - 5.0    | 0.0         |                  |
| 1,1,1-Trichloroethane<br>Trichloroethylene         | 9       | 4        | ND - 330    | 51          | 86               |
| Pesticides and metabolites                         |         |          |             |             |                  |
| Aldrin                                             | 2       | 1        |             |             | >99              |
| α-BHC                                              | 2       | ī        | ND - 0.1    |             |                  |
|                                                    | 2       | i        | 0.01 - 0.04 |             |                  |
| β-BHC                                              | 2       | i        | ND - 0.03   |             | >99              |
| δ-BHC                                              | 2       | ō        |             |             |                  |
| Y-BHC                                              | 2       | 1        | ND - 0.1    | 0.          | 1                |
| Chlordane                                          | 2       | i        | ND - 0.01   | ٥.          | -                |
| 4,4'-DDE                                           | 2       | _        | ND - 0.01   |             |                  |
| 4,4'-DDD                                           | 2       | 1        |             |             |                  |
| 4,4'-DDT                                           | 2<br>2  | 1        | 0.02 - 0.03 |             |                  |
| Dieldrin                                           | 2       | 1        | ND - 0.1    | ^           | 1 06             |
| Endrin                                             | 2       | 1        | ND - 0.2    | 0.          |                  |
|                                                    | 2       | 1        | ND - 0.5    | 0.          | <b>-</b>         |
| Endrin aldehyde<br>Heptachlor                      | 2       | 1        | 0.01 - 0.04 |             |                  |

<sup>&</sup>lt;sup>a</sup>Negative removal.

## II.10.5 References

- Draft Development Document for Effluent Limitations Guidelines and Standards for the Nonferrous Metals Manufacturing Point Source Category, Effluent Guidelines Division, Office of Water and Waste Management, U.S. Environmental Protection Agency, September, 1979.
- 2. NRDC Consent Decree Industry Summary Nonferrous Metals Manufacturing Industry.
- 3. Environmental Protection Agency Effluent Guidelines and Standards for Nonferrous Metals. 40 CFR 421; 39 FR 12822, April 8, 1974; Amended by 40 FR 8514, February 27, 1975; 40 FR 48348, October 15, 1975; 41 FR 54850, December 15, 1976.

#### II.11 ORE MINING AND DRESSING

#### II.11.1 INDUSTRY DESCRIPTION [1]

## II.11.1.1 General Description

Subgroups of the metal mining industries are identified as major group 10 in the Standard Industrial Classification (SIC) Manual, which includes establishments engaged in mining ores for the production of metals, and includes all ore dressing and beneficiating operations, whether performed at mills operating in conjunction with the mines served or at mills operated separately. These include mills which crush, grind, wash, dry, sinter, or leach ore, or perform gravity separation or flotation operations.

As mined, most ores contain the valuable metals whose recovery is sought, disseminated in a matrix of less valuable rock called gangue. The purpose of ore beneficiation is the separation of the metal-bearing minerals from the gangue to yield a product that is higher in metal content. To accomplish this, the ore must generally be crushed and/or ground small enough for each particle to contain either the mineral to be recovered or mostly gangue. Separation of the particles on the basis of some difference between the ore mineral and the gangue can then yield a concentrate high in metal value, as well as waste rock (tailings) containing very little metal. The separation is never perfect, and the degree of success attained is generally described by two (1) percent recovery, and (2) grade of the concen-Widely varying results are obtained in beneficiating different ores; recoveries may range from 60% or less to greater than 95%. Similarly, concentrates may contain less than 60% or more than 95% of the primary ore mineral. In general, for a given ore and process, concentrate grade and recovery are inversely related. (Higher recovery is achieved only by including more ganque, yielding a lower grade concentrate.)

Many properties are used as the basis for separating valuable minerals from gangue, including specific gravity, conductivity, magnetic permeability, affinity for certain chemicals, solubility, and the tendency to form chemical complexes. Separation processes in general use are gravity concentration, magnetic separation, electrostatic separation, flotation, and leaching. Amalgamation and cyanidation, which are variants of leaching, deserve special mention. Solvent extraction and ion exchange are

widely applied techniques for concentrating metals from leaching solutions, and for separating them from dissolved contaminants. All of these processes are discussed in general terms in the paragraphs that follow. This discussion is not meant to be allinclusive; rather, its purpose is to discuss the primary processes in current use in the ore mining and milling industry.

Gravity-concentration processes utilize the differences in density to separate valuable ore minerals (values) from gangue. Several techniques (e.g., jigging, tabling, spirals, and sink/ float separation) are used to achieve the separation. Each is effective over a somewhat limited range of particle sizes, the upper bound of which is set by the size of the apparatus and the need to transport ore within it, and the lower bound by the point at which viscosity forces predominate over gravity and render the separation ineffective. Selection of a particular gravity-based process for a given ore will be strongly influenced by the size to which the ore must be crushed or ground to separate values from gangue, as well as by the density difference and other factors.

Ores can be leached by dissolving away either gangue or values in aqueous acids or bases, liquid metals, or other special solutions. The examples below illustrate various leaching possibilities.

- (1) Water-soluble compounds of sodium, potassium, and boron can be mined, concentrated, and separated by leaching with water and recrystallizing the resulting brines.
- (2) Vanadium and some other metals form anionic species that occur as insoluble ores. Roasting of such insoluble ores with sodium compounds converts the values to soluble sodium salts. After cooling, the water-soluble sodium salts are removed from the gangue by leaching in water.
- (3) Uranium ores are only mildly soluble in water, but they dissolve quickly in acid or alkaline solutions.
- (4) Native, finely divided gold is soluble in mercury and can be extracted by amalgamation (i.e., leaching with a liquid metal). One process for nickel concentration involves reduction of the nickel using ferrosilicon at a high temperature and extraction of the nickel metal into molten iron. This process, called skip-lading, is related to liquid-metal leaching.
- (5) Certain solution (e.g., potassium cyanide) dissolve specific metals (e.g., gold) or their compounds, and leaching with such solutions immediately concentrates the values.

In the amalgamation process, mercury is alloyed with some other metal to produce an amalgam. The process is applicable to free milling precious-metal ores, those in which the gold is free, relatively coarse, and has clean surfaces. Lode or placer gold/silver that is partly or completely filmed with iron oxides, greases, tellurium, or sulfide minerals cannot be effectively amalgamated. Hence, prior to amalgamation auriferrous ore is typically washed and ground to remove any films on the precious-metal particles. Although the amalgamation process has been used in the past extensively for the extraction of gold and silver from pulverized ores, it has largely been superseded in recent years by the cyanidation process owing to environmental considerations.

In the cyanidation process, gold and/or silver are extracted from finely crushed ores, concentrates, tailings, and low-grade mine-run rock in dilute, weakly alakaline solutions of potassium or sodium cyanide. The gold is dissolved by the solution and subsequently sorbed onto activated carbon ("carbon-in-pulp" process) or precipitated with metallic zinc. The gold particles are recovered by filtering, and the filtrate is returned to the leaching operation.

Ion exchange and solvent extraction processes are used on pregnant leach solutions to concentration values and to separate the from impurities. Ion exchange and solvent extraction are based on the same principle: polar organic molecules tend to exchange a mobile ion in their structure [typically,  $Cl^-$ ,  $NO_3$ ,  $HSO_4$ , or  $CO_3^-$  (anions) or H+ or Na+ (cations)] for an ion with a greater charge or a smaller ionic radius.

Table 11-1 presents industry summary data for the Ore Mining and Dressing point source category in terms of the total number of subcategories, the number of subcategories studies by EGD, and the number and types of dischargers [1-3].

## TABLE 11-1. INDUSTRY SUMMARY [1-3]

Industry: Ore Mining and Dressing Total Number of Subcategories: 7 Number of Subcategories Studied: 7

Number of Dischargers in Industry: Undefined

- Direct: 750 • Indirect: 0
- Zero: No definition for this industry

Table 11-2 presents current BPT limitations for each subcategory in the Ore Mining and Dressing Industry.

TABLE 11-2. BPT LIMITATION REGULATIONS FOR THE ORE MINING AND DRESSING INDUSTRY [4]

| Subcategory                                                                                     | Parameter                                                                                   | Maximum<br>for 1 day,<br>mg/L           | 30-Day<br>average,<br>mg/L                 |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|
|                                                                                                 |                                                                                             |                                         |                                            |
| Iron ore<br>Mines and mine drainage                                                             | TSS<br>Fe (dissolved)                                                                       | 30                                      | 20<br>1.0                                  |
| Physical/chemical beneficiation                                                                 | TSS Fe (dissolved) pH (= 6 to 9)                                                            | 30 2.0                                  | 20                                         |
| Magnetic/physical beneficiation                                                                 | N                                                                                           | o discharge <sup>a</sup>                |                                            |
| Aluminum ore                                                                                    |                                                                                             |                                         |                                            |
|                                                                                                 | TSS Fe Al pH (= 6 to 9)                                                                     | 30<br>1.0<br>2.0                        | 20<br>0.5<br>1.0                           |
| Base and precious metals <sup>a</sup>                                                           |                                                                                             |                                         |                                            |
| Open pit and underground mines                                                                  | TSS Cu Zn Pb Hg pH (= 6 to 9)                                                               | 30<br>0.30<br>1.5<br>0.6<br>0.002       | 20<br>0.15<br>0.75<br>0.3<br>0.001         |
| Froth flotation process                                                                         | TSS Cu Zn Pb Hg Cd pH (= 6 to 9)                                                            | 30<br>0.3<br>1.1<br>0.6<br>0.002<br>0.1 | 20<br>0.15<br>0.5<br>0.3<br>0.001<br>0.005 |
| Amalgamation process                                                                            | TSS<br>Cu<br>Zn<br>Hg<br>pH (= 6 to 9)                                                      | 30<br>0.3<br>1.0<br>0.002               | 20<br>0.15<br>0.5<br>0.001                 |
| Gravity separation <sup>b</sup>                                                                 |                                                                                             |                                         |                                            |
| <u>Uranium</u><br>Mine drainage                                                                 | TSS COD Ra 226 (dissolved) Ra 226 (total) U Zn pH (= 6 to 9)                                | 30<br>200<br>10°<br>30°<br>4<br>1.0     | 20<br>100<br>3°<br>2<br>2<br>0.5           |
| Mills using acid leach, alkaline leach, combined leaching, including mill-mine in-situ leaching | TSS<br>COD<br>A5<br>Ra 226 (dissolved)<br>Ra 226 (total)<br>NH <sub>3</sub><br>pH (=6 to 9) | 1.0<br>100<br>30°                       | 20<br>500<br>3c<br>10c<br>100              |

TABLE 11-2 (continued)

| Subcategory                                                                                                     | Parameter                        | Maximum<br>for l day,<br>mg/L         | 30-Day<br>average,<br>mg/L                |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|-------------------------------------------|
| Ferralloy                                                                                                       |                                  |                                       |                                           |
| Mine drainage from mines producing 5,000 metric ton/yr                                                          | TSS Cd Cu Zn Pb As pH (= 6 to 9) | 30<br>0.1<br>0.3<br>1.0<br>0.6<br>1.0 | 20<br>0.005<br>0.015<br>0.5<br>0.3<br>0.5 |
| Drainage from mines producing less than 5,000 metric tons/yr and mills processing less than 5,000 metric ton/yr | TSS<br>pH (= 6 to 9)             | 50                                    | 30                                        |
| Drainage from mills processing greater than 5,000 metric/ton yr using froth flotation                           | TSS Cd Cu Zn As CN pH (= 6 to 9) | 30<br>0.1<br>0.3<br>1.0<br>1.0        | 20<br>0.05<br>0.15<br>0.5<br>0.05         |
| Mercury<br>Mine drainage                                                                                        | TSS Hg N1 pH (= 6 to 9)          | 30<br>0.002<br>0.2                    | 20<br>0.001<br>0.1                        |
| Mills - gravity separation <sup>d</sup> Mills - froth separation <sup>d</sup>                                   |                                  |                                       |                                           |
| Metal ore not elsewhere classified                                                                              |                                  |                                       |                                           |
| Titanium<br>Mine drainage                                                                                       | TSS<br>Fe<br>pH (= 6 to 9)       | 3 0<br>2                              | 20<br>1                                   |
| Mill beneficiating using electrostatic, magnetic, physical, or flotation methods                                | TSS<br>Zn<br>Ni<br>pH (= 6 to 9) | 30<br>1.0<br>0.2                      | 20<br>0.5<br>0.1                          |
| Mine drainage from dredge mining                                                                                | TSS<br>Fe<br>pH (- 6 to 9)       | 3 0<br>2                              | 20<br>1                                   |

No discharge from mines and mills that employ dump, heap, in-situ leach, or vat leach process to extract copper or ore waste. No discharge from gold or silver mills that use the cyanidation process. Discharge is allowed if rainfall exceeds evaporation in the discharge area. Volume of discharge allowed is equal to the amount needed to equalize rainfall and evaporation.

 $<sup>^{\</sup>text{D}}\text{No}$  BPT regulations promulgated for this process.

Picocuries/L

dDischarge is allowed, if rainfall exceeds evaporation in the discharge area. Volume of discharge allowed is equal to the amout needed to equalize rainfall and evaporation.

## II.11.1.2 Subcategory Descriptions

Based on similarities in types of processing, technology, wastewater, end products, and other factors, the following subcategories of the Ore Mining and Dressing Industry were established [1,2]:

- Iron Ore (SIC Code 1011)
- Aluminum (SIC Code 1051)
- Base and Precious Metals (SIC Codes 1021, 1031, 1041, and 1044)
- Uranium (SIC Code 1094)
- Ferroalloy (SIC Code 1061)
- Mercury (SIC Code 1092)
- Metal Ore Not Elsewhere Classified (SIC Code 1099)

## Subcategory 1 - Iron Ore

This subcategory covers mining and/or milling operations involved in the excavation and extraction of iron ore.

# Subcategory 2 - Aluminum (Bauxite)

The bauxite mining industry is classified as SIC 1051, which includes establishments engaged in mining and milling bauxite and other aluminum ores. However, no other aluminum ores are being commercially exploited on a full-scale basis at present, and the bauxite mining industry serves as the sole representative of SIC 1051.

#### Subcategory 3 - Base and Precious Metals

This subcategory encompasses the mining and milling of copper, zinc, lead, gold, and silver, falling under SIC Codes 1021, 1031, 1041, and 1044.

#### Subcategory 4 - Uranium

The factors evaluated in consideration of subcategorization of the uranium, radium, and vanadium mining and ore dressing industry are: end product, type of processing, ore mineralogy, waste characteristics, treatability of wastewater, climate, rainfall, and location. Based upon an intensive literature search, plant inspections, NPDES permits, and communications with the industry, this category is categorized by milling process and mineralogy (and, thus, product). The milling processes of this industry involve complex hydrometallurgy. Such point discharges as might occur in milling processes (i.e., the production of concentrate) are expected to contain a variety of pollutants that need to be limited. Mining for the ores is expected to lead to a smaller set of contaminants. While mining or milling of ores for uranium

or radium produces particularly noxious radioactive pollutants, these are largely absent in an operation recovering vanadium only.

## Subcategory 5 - Ferroalloy

A tentative subcategorization of the industry was developed after collection and review of initial data, based primarily on end product (e.g., tungsten, molybdenum, manganese, etc.), with further division on the basis of process, in some cases. Further data, particularly chemical data on effluents and more complete process data for past operations, indicated that process was the dominant factor influencing wastestream character and treatment effectiveness. Examination of the industry additionally showed that size of operation could also be of great importance. Other factors, except as they are reflected in or derived from the above, are not believed to warrant industry subcategorization.

## Subcategory 6 - Mercury

The mercury industry in the United States currently is at a reduced level of activity due to depressed market prices. Two facilities were found to be operating at present, although it is thought that activity will increase with increasing demand and rising market prices. The decreased use of mercury due to stringent air and water pollution regulations in the industrial sector may be offset in the future by increased demand in dental, electrical, and other uses. Historically, little beneficiating of mercury ores has been known in the industry. Common practice for most producers (since relatively low production characterizes most operators) has been to feed the cinnabar-rich ore directly to a kiln or furnace without beneficiation. Water use in most of the operations is at a minimum.

# Subcategory 7 - Metal Ore Not Elsewhere Classified

This group of metal ores was considered on a metal-by-metal basis because of the wide diversity of mineralogies, processes of extraction, etc. Most of the metal ores in this group do not have high production figures and represent relatively few operations. For this entire group, ore mineralogies and type of process formed the basis of subcategorization. The metals ores examined under this category are ores of antimony, beryllium, platinum, tin, titanium, rare earths (including monazite), and zirconium.

#### II.11.2 WASTEWATER CHARACTERIZATION [1]

The wastewater situation evident in the mining segment of the ore mining and dressing industry is unlike that encountered in most other industries. Usually, industries (such as the milling segment of this industry) utilize water in the specific processes they employ. This water frequently becomes contaminated in the process and must be treated prior to discharge. In the mining segment, process water is not normally utilized in the actual

mining of ores, except where it is used in placer mining operations (hydraulic mining and dredging) and in dust control.

Water is a natural feature that interferes with mining activities. It enters mines by groundwater infiltration and surface runoff and comes into contact with materials in the host rock, ore, and overburden. An additional source of water in deep underground mines is the water that results from the backfilling of slopes with the coarse fraction of the mill tailings. Transportation of these sands underground is typically accomplished by sluicing. Mill wastewater is usually the source of the sluice water. The mine water then requires treatment depending on its quality before it can be safely discharged into the surface drainage network. Generally, mining operations control surface runoff through the use of diversion ditching and grading to prevent, as much as possible, excess water from entering the working area. The quantity of water from an ore mine thus is unrelated, or only indirectly related, to production quantities.

Water is used in the ore mining and dressing industry for several principal uses under three major categories:

(1) Noncontact cooling water

(2) Process water: wash water

transport water scrubber water

process and product consumed water

(3) Miscellaneous water: dust control

domestic/sanitary uses washing and cleaning drilling fluids

Noncontact cooling water is defined as cooling water that does not come into direct contact with any raw material, intermediate product, by-product, or product used in or resulting from the process. Process water is defined as that water which, during the beneficiation process, comes into direct contact with any raw material, intermediate product, by-product, or product used in or resulting from the process.

Wastewater characteristics for the Ore Mining and Dressing Industry in general reflect the diversity of the mining and milling operations associated with the various ores mined and processed. Each ore exhibits its own particular set of waste characteristics, as shown in Table 11-3. The peculiarities were, in part, criteria used to determine the various subcategories.

Table 11-3 presents available data, by subcategory, for raw waste-water pollutant concentrations for subcategories 1, 3, 4, 5, and 6 [1]. Data for subcategory 2, aluminum, have been excluded because they are extremely limited. Subcategory 7, Metal Ore Not Elsewhere Classified, has been excluded because of the small size

TABLE 11-3. RAW WASTWATER POLLUTANT CONCENTRATIONS BY SUBCATEGORY [1]

|                                   | Number      |                           |                  | Number      |                                                                    |                 |
|-----------------------------------|-------------|---------------------------|------------------|-------------|--------------------------------------------------------------------|-----------------|
| Parameter                         | of<br>mines | Range                     | Median           | of<br>mills | Range                                                              | Median          |
| - uzumetez                        |             |                           |                  | Iron Ore    |                                                                    | 77047411        |
| Conventional ma/I                 |             |                           |                  |             |                                                                    |                 |
| Conventional, mg/L<br>pH          | 8           | 7.2 - 8.4                 | 7.5b             | 6           | 7.3 - 9.5                                                          |                 |
| COD                               | 8           | 1.0 - 48                  |                  | 7           | <1.0 - 23                                                          | 8.2<br>12<br>28 |
| TSS                               | 8           | <1 - 48                   | 13b              | 7           | 12 - 55                                                            | 28              |
| TDS                               | 8           | 120 - 1,300               | 500b             | 7           | 200 - 2,400                                                        | 670             |
|                                   |             |                           |                  |             |                                                                    |                 |
| Inorganics, µg/L<br>Fe, total     | 8           | <20 - 4,500               | 900,             | 7           | 400 - 1,200,000                                                    | 210,000         |
| Fe, dissolved                     | 8           | <20 - 80                  | 30,b             | 7           | <20 - 160                                                          | 60              |
| Manganese                         | 8           | <20 - 3,200               | 400 <sup>b</sup> | 7           | 32 - 330,000                                                       | 110,000         |
|                                   |             | Subcategory 3 - Ba        |                  | ecious Met  |                                                                    |                 |
|                                   |             |                           |                  |             |                                                                    |                 |
| Conventional, mg/L<br>pH          | 7           | 3.5 - 9.6                 | 7.0              | 4           | 8.1 - 10                                                           | 8.9             |
| COD                               | 7           | 4 - 39                    | <10              | •           | 0.1                                                                | 0.9             |
|                                   | 7           | 2.3 - 31                  | 10               |             |                                                                    |                 |
| TOC                               |             |                           |                  | 4           | 110 000 - 470 000                                                  | 350,100         |
| TSS                               | 7           | 2 - 40                    | 8                | -           | 110,000 - 470,000                                                  |                 |
| TDS<br>Oil and grease             | 7<br>7      | 450 - 29,000<br><1.0 - 17 | 2,200<br>1       | 4           | 400 - 4,300<br><0.05 - 1                                           | 2,700<br><0.€   |
| OII and grease                    | ,           | 11.0 - 17                 | -                | •           | -                                                                  |                 |
| Toxic inorganics, µg/L            |             |                           |                  | _           |                                                                    |                 |
| Antimony                          | 7           | <20 - <500                | <500             | 1           |                                                                    | <500            |
| Arsenic                           | 7           | <10 - <70                 | <70              | 2           | <20 - <70                                                          | <50             |
| Copper                            | 7           | 500 - 92,000              | 5,300            | 4           | 150,000 - 910,000                                                  | 270,000         |
| Cyanide                           |             |                           |                  | 4           | <10 - 170                                                          | 10              |
| Lead                              | 7           | <50 - <500                | <100             | 4           | <10 - 21,000                                                       | 1,400           |
| Mercury                           | 7           | <0.1 - 78                 | 0.5              | 4           | 0.6 - 6.0                                                          | 2.0             |
| Nickel                            | 7           | <50 - 240                 | <100             | 1           |                                                                    | 2,800           |
| Selenium                          | 6           | <3 - 96                   | 25               | 1           |                                                                    | <3.0            |
| Silver                            |             |                           |                  | 1           |                                                                    | <100            |
| Zinc                              | 7           | <50 - 170,000             | 2,800            | 4           | 4,800 - 310,000                                                    | 8,100           |
| Other inorganics, µg/L            |             |                           |                  |             |                                                                    |                 |
| Alumanum                          |             |                           |                  | 1           |                                                                    | <500            |
| Boron                             | 7           | 10 - 2,200                | 100              |             |                                                                    |                 |
| Cobalt                            | 7           | <50 - 1,900               | 60               | 1           |                                                                    | 1,680           |
| Gold                              |             |                           |                  | 1           |                                                                    | <50             |
| Iron                              | 7           | <400 - 2,000,000          | 6,000            | 4           | 550,000 - 19,000,000                                               | 7,700,000       |
| Manganese                         | 7           | <50 - 100,000             | 1,400            | 1           |                                                                    | 31,000          |
| Molybdenum                        | 7           | <200 - <500               | <500             | 1           |                                                                    | 29,000          |
| Strontium_                        | 7           | 90 - 120,000              | 830              | 1           |                                                                    | 1,200           |
|                                   |             | Subcategory 3 - Base      | and Pred         | cious Meta  | ls, Lead/Zinc <sup>d,e</sup>                                       |                 |
|                                   |             |                           |                  |             |                                                                    |                 |
| Conventional, mg/L<br>pH          | 8           | 3.0 - 8.1                 |                  | 5           | 7.9 - 11                                                           |                 |
| COD                               | 8           | <10 - 630                 |                  | •           |                                                                    |                 |
|                                   | 8           | <1 - 11                   |                  |             |                                                                    |                 |
| TOC                               | 8           | <2 - 1,000                |                  | 3           | 21,000 - 270,000                                                   |                 |
| TSS                               | 8           | 260 - 1,700               |                  | -           | 21,000 2,0,000                                                     |                 |
| TDS                               | 8           | 0 - 29                    |                  |             |                                                                    |                 |
| Oil and grease                    | •           | 0 - 29                    |                  |             |                                                                    |                 |
| Toxic inorganics, µg/L            |             |                           |                  |             | 1 000 10 000                                                       |                 |
| Cadmium                           | 8           | <2 - 80                   |                  | 3           | 1,200 - 16,000                                                     |                 |
|                                   | 8           | <20 - 420                 |                  | 3           | 9,800 - 40,000                                                     |                 |
| Chromium                          | 8           | <20 - 2,100               |                  | 3           | 4,800 - 500,000                                                    |                 |
| Chromium<br>Copper                |             |                           |                  | 3           | 76,000 - 560,000                                                   |                 |
|                                   | 8           | 100 - 4,900               |                  |             |                                                                    |                 |
| Copper                            |             | 100 - 4,900<br><0.1 - 0.1 |                  |             |                                                                    |                 |
| Copper<br>Lead                    | 8           |                           |                  | 3           | 160,000 - 3,000,000                                                |                 |
| Copper<br>Lead<br>Mercury<br>Zinc | 8<br>4<br>8 | <0.1 - 0.1                |                  | 3           | 160,000 - 3,000,000                                                |                 |
| Copper<br>Lead<br>Mercury         | 8<br>4<br>8 | <0.1 - 0.1                |                  | 3<br>3<br>3 | 160,000 - 3,000,000<br>2,900,000 - 35,000,000<br>300,000 - 570,000 |                 |

(continued)

TABLE 11-3 (continued)

|                                 | Number     | _                  |                | Number      | _                           |              |
|---------------------------------|------------|--------------------|----------------|-------------|-----------------------------|--------------|
| Parameter                       | mines      | Range              | Median         | mills       | Range                       | Median       |
|                                 | Subcatego  | ry 3 - Base and Pr | ecious Me      | tals, Gold  | <del></del>                 |              |
| Convention, mg/L                |            |                    |                |             |                             |              |
| pHa pHa                         | 2          | 3.3 - 6.2          | 4.8            |             |                             |              |
|                                 | 3          |                    |                | ,           | 11 - 220                    | 110          |
| COD                             | 1          | 27 - 3,800         | <b>3</b> 5     | 4           | 11 - 220                    | 110          |
| TOC                             | _          | • •                | 12             | 4           | 12 - 97                     | 42           |
| TSS                             | 3          | 5 - 81             | 14             | 4           | 2 - 550,000                 | 490,000      |
| TDS                             | 3          | 530 - 4,700        | 1,200          | 4           | 460 - 4,500                 | 1,100        |
| Oll and grease                  | 3          | <0.1 - 1.0         | 1              |             |                             |              |
| Toxic inorganics, µg/L          |            |                    |                |             |                             |              |
| Antimony                        | 1          |                    | <100           |             |                             |              |
| Arsenic                         | 2          | 30 - 80            | 60             | 3           | 50 - 3,700                  | <70          |
| Beryllium                       | 1          |                    | <2.0           |             |                             |              |
| Cadmium                         | 3          | <20 - 40           | 25             | 4           | <10 - 100                   | <20          |
| Chromium                        | 1          |                    | <20            |             |                             |              |
| Copper                          | 3          | <20 - 1,700        | 56             | 4           | 30 - 200                    | 480          |
| Cyanide                         | 3          | <10 - 440          | <10            | 4           | <10 - 81,000                | 2,600        |
| Lead                            | 2          | <100 - 820         | 450            | 4           | 60 - <100                   | <10          |
| Mercury                         | ī          |                    | <0.1           | 3           | 1.1 - 4.2                   | 4.0          |
| Nickel                          | 2          | 60 - 100           | 80             | -           |                             |              |
| Silver                          | ĩ          | 00 100             | 20             |             |                             |              |
| Thallium                        | i          |                    | 50             |             |                             |              |
| Zinc                            | 3          | <10 7 300          | 2,300          | 4           | 130 - 3,100                 | 760          |
| ZINC                            | J          | <10 - 7,300        | 2,300          | 4           | 130 - 3,100                 | 760          |
| Other inorganics, ug/L          |            |                    |                |             |                             |              |
| Aluminum                        | 2          | 140 - <200         | 170            |             |                             |              |
| Barium                          | 1          |                    | <500           |             |                             |              |
| Boron                           | 1          |                    | 180            |             |                             |              |
| Calcium                         | 1          |                    | <b>87,0</b> 00 |             |                             |              |
| Iron (total)                    | 3          | 1,200 - 210,000    | 25,000         | 4           | <500 - 77,000               | 1,200        |
| Magnesium                       | 1          |                    | 80,000         |             |                             |              |
| Manganese                       | 2          | 140 - 12,000       | 6,700          |             |                             |              |
| Molybdenum                      | 1          |                    | <200           |             |                             |              |
| Potassium                       | 1          |                    | 44,000         |             |                             |              |
| Sodium                          | 1          |                    | 80,000         |             |                             |              |
| Strontium                       | ī          |                    | 780            |             |                             |              |
| Tellurium                       | ī          |                    | 100            |             |                             |              |
| Titanium                        | 1          |                    | <500           |             |                             |              |
| Vanadıum                        | i          |                    | 0              |             |                             |              |
| variad1 um                      | +          |                    | v              |             |                             |              |
| Organics, µg/L                  | 1          |                    | <10            |             |                             |              |
| Phenol                          |            |                    |                |             | f                           |              |
|                                 | Subcategor | y 3 - Base and Pre | cious Met      | als, Silver | ·                           |              |
| Conventional, mg/L              |            |                    |                |             |                             |              |
| рна                             | 1          |                    | 8.0            |             |                             |              |
| COD                             | 2          | 12 - 20            | 16             | 4           | 16 - 220                    | 41           |
| TOC                             | 2          | 16 - 17            | 17             | 4           | 12 - 29                     | 23           |
| TSS                             | 2          | <2                 | <2             | 4           | <b>2 -</b> 55 <b>0,</b> 000 | 150,000      |
| TDS                             | 2          | 500 <b>- 62</b> 0  | 560            | 4           | 470 - 1,200                 | <b>77</b> 0  |
| Oıl <b>a</b> nd g <b>rea</b> se | 2          | 2 - 4              | 3              |             |                             |              |
| TKN                             | 1          |                    | <0.2           |             |                             |              |
| Toxic inorganics, µg/L          |            |                    |                |             |                             |              |
| Antimony                        | 2          | <200               | <200           | 3           | <200 - 1,850                | <200         |
| Arsenic                         | 2          | <70                | <70            | 4           | <70 - 3,500                 | <70          |
| Beryllium                       | 2          | <2.0               | <2.0           | -           | ,                           | . •          |
| Cadmium                         | 2          | <20                | <20            | 4           | <10 - 20                    | < <b>2</b> 0 |
| Chromium                        | 2          | <100               | <100           | 4           | 30 - 780                    | 240          |
|                                 |            |                    |                | •           | 30 - 760                    | 240          |
| Copper                          | 2          | <20                | <20            |             |                             |              |
| Cyanide                         | 2          | <10                | <10            |             | .100 560                    | 43.00        |
| Lead                            | 2          | <100 - 180         | 140            | 4           | <100 - 560                  | <100         |
| Mercury                         | 2          | 0.4 - 2.0          | 1.2            | 4           | 0.8 - 130                   | 3.0          |
|                                 |            |                    |                |             |                             |              |
|                                 |            |                    |                |             | (ca                         | ntinued)     |

(continued)

TABLE 11-3 (continued)

|                                  | Number |                 |        | Number |           |        |
|----------------------------------|--------|-----------------|--------|--------|-----------|--------|
|                                  | of     |                 |        | of     |           |        |
| Parameter                        | mines  | Range           | Median | mills  | Range     | Median |
| m                                | (      | 4)              |        |        |           |        |
| Toxic inorganics, µg/L<br>Nickel |        |                 |        |        | 50 340    | 100    |
|                                  | 2      | 60 - 90         |        | 4      | 50 - 140  | 100    |
| Selenium                         | 2      | 6.8 - 126       |        | 2      | 140 - 150 | 150    |
| Silver                           | 2      | <20             |        | 3      | <20       | <20    |
| Thallium                         | 2      | <100            |        |        |           |        |
| Zinc                             | 2      | <20 - <30       |        | 3      | 20 - 370  | 170    |
| Toxic organics, µg/L             |        |                 |        |        |           |        |
| Phenol                           | 2      | <10             |        |        |           |        |
| Other inorganics, µg/L           |        |                 |        |        |           |        |
| Aluminum                         | 2      | <20             |        |        |           |        |
| Barium                           | 2      | <500 - <600     |        |        |           |        |
| Boron                            | 2      | 80 - 110        |        |        |           |        |
| Calcium                          | 2      | 45,000 - 46,000 |        |        |           |        |
| Iron (total)                     | 2      | 330 - 2,100     |        |        |           |        |
| Magnesium                        | 2      | 28,000 - 32,000 |        |        |           |        |
| Manganese                        | 2      | 430 - 6,300     |        |        |           |        |
| Molybdenum                       | 2      | <200            |        | 4      | 50 - 540  | <200   |
| Potassium                        | 2      | 8,000 - 15,000  |        | -      | 20 010    | 200    |
| Sodium                           | 2      | 7,000 - 12,000  |        |        |           |        |
| Strontium                        | 2      | 150 - 210       |        |        |           |        |
| Tellurium                        | 2      | <300            |        | 3      | <300      | <300   |
| Titanium                         | 2      | <500            |        | -      |           | 500    |
| Vanadium                         | 2      | <200            |        |        |           |        |
|                                  |        |                 |        | f      |           |        |

|                        |        |                       | 7      | lkaline process      |        | Acid process        |
|------------------------|--------|-----------------------|--------|----------------------|--------|---------------------|
|                        | Number |                       | Number |                      | Number |                     |
|                        | of     |                       | of     |                      | of     |                     |
| Parameter              | mines  | Range                 | mills  | Range                | mills  | Range               |
| Conventional, mg/L     |        |                       |        |                      |        |                     |
| COD                    | 2      | 240 - 600             | 2      | 28 ~ 56              | 1      | 64 - 630            |
| TOC                    | 2      | 16 - 25               | 2      | <1 - 450             | 2      | 6 - 24              |
| TSS                    | 1      | 300                   | 2      | 110,000 - 290,000    | 2      | 250,000 - 530,000   |
| Toxic inorganics, µg/L |        |                       |        |                      |        |                     |
| Arsenic                |        |                       | 2      | 330 - 1,400          | 2      | 130 - 2,300         |
| Copper                 |        |                       | 2      | <500 <b>- 1,</b> 100 | 2      | 680 - 1,700         |
| Lead                   |        |                       | 2      | <5 - 690             | 2      | 840 - 2,100         |
| Nickel                 |        |                       | 1      | 520                  | 1      | 1,400               |
| Zinc                   |        |                       | 1      | <500                 |        | <500                |
| Other inorganics, µg/L |        |                       |        |                      |        |                     |
| Aluminum               |        |                       | 1      | 18,000               | 2      | 740,000 - 1,600,000 |
| Calcium                | 2      | 93,000 - 120,000      | 1      | 32,000,000           | 1      | 220,000             |
| Iron                   | 2      | 230 - 470             | 2      | 920 - 1,600          | 1      | 330,000             |
| Magnesium              | 2      | 36,000 - 45,000       | 1      | 190,000              | 1      | 550,000             |
| Manganese              |        |                       | 2      | <200 - 38,000        | 2      | 110,000 - 210,000   |
| Molybdenum             | 2      | 500 - 530             | 2      | <300                 | 2      | 300 - 16,000        |
| Radium <sup>9</sup>    | 2      | 2,700,000 - 3,200,000 | 2      | 110,000 - 19,000,000 | 2      | 230,000 - 690,000   |
| Thorium                | 1      | <100                  | 1      | <100                 |        |                     |
| Titanium               |        |                       | 1      | 400                  | 1      | 3,000               |
| Uranium                | 2      | 12,000                | 2      | 3,900 - 44,000       | 2      | 31,000 - 170,000    |
| Varadium               | 2      | 500 - 1,000           | 2      | 500 - 17,000         | 2      | 120,000 - 130,000   |

(continued)

TABLE 11-3 (continued)

|                        | Number |                   |                       | Number |                 |         |
|------------------------|--------|-------------------|-----------------------|--------|-----------------|---------|
|                        | of     |                   |                       | of     |                 |         |
| Parameter              | mines  | Range             | Median                | mills  | Range           | Median  |
| Conventional, mg/L     |        |                   |                       |        |                 |         |
| pH <sup>a</sup>        | 4      | 4.5 - 7.3         | 6.8                   | 2      | 3.5 - 8.6       | 6.3     |
| COD                    |        |                   |                       | 4      | 24 - 170        | 40      |
| TSS                    |        |                   |                       | 3      | 2.30 - 500,000  | 150,000 |
| TDS                    |        |                   |                       | 5      | 210 - 2,600     | 2,300   |
| Oil and grease         | 3      | 1.0 - 14          | 2.0                   | 5      | 1 - 15          | 3.4     |
| Ammonia                | 2      | 0.12 - 0.15       | 0.14                  | 2      | 0.16 - 1.4      | 0.78    |
| Toxic inorganics, µg/L |        |                   |                       |        |                 |         |
| Arsenic                | 4      | <10 - <70         | <40                   | 5      | 10 - 100        | <70     |
| Cadmium                | 4      | <5 - 70           | <10                   | 5      | <5 - 740        | 30      |
| Chromium               |        |                   |                       | 2      | 20 - 30         |         |
| Copper                 | 4      | <20 - 3,800       | <40                   | 5      | 30 - 51,000     | 520     |
| Cyanide (total)        |        | •                 |                       | 4      | <10 - 450       | <10     |
| Lead                   | 3      | 60 - 190          | 140                   | 5      | <20 - 9,800     | <100    |
| Zinc                   | 4      | 50 - 7,000        | 90                    | 4      | <20 - 27        | 50      |
| Other inorganics, µg/L |        |                   |                       |        |                 |         |
| Calcium                |        |                   |                       | 1      |                 | 206,000 |
| Iron                   |        |                   |                       | 4      | 440 - 1,500,000 | 24,000  |
| Manganese              | 4      | 210 - 6,800       | 5,400                 | 5      | 190 - 57,000    | 50,000  |
| Molybdenum             | 4      | <100 ÷ 500        | ` <100                | 5      | 500 - 18,000    | 2,200   |
| Vanadium               | 3      | <500              | <500                  | 2      | <500            | <500    |
| <del></del>            |        | Subcategory 6 - M | ercury <sup>f,h</sup> |        |                 |         |
| Conventional, mg/L     |        |                   |                       |        |                 |         |
| рн <sup>а</sup>        | 2      | 6.5 - 8.2         | 7.4                   |        |                 |         |
| Toxic organics, µg/L   |        |                   |                       |        |                 |         |
| Antimony               | 2      | <500 - 3,800      | 2,200                 |        |                 |         |
| Arsenic                | 2      | 20                | 20                    |        |                 |         |
| Cadmium                | 1      |                   | 420                   |        |                 |         |
| Copper                 | 1      |                   | 1,300                 |        |                 |         |
| Lead                   | 1      |                   | 580                   |        |                 |         |
| Mercury                | 1      |                   | 28,000                |        |                 |         |
| Zinc                   | 1      | 140 - 1,000       | 620                   |        |                 |         |
| Other inorganics, µg/L |        |                   |                       |        |                 |         |
| Iron                   | 2      | <500 - 2,900,000  | 1,500,000             |        |                 |         |
| Manganese              | 2      | 7,000 - 50,000    | 29,000                |        |                 |         |
| Tellurium              | 1      |                   | <80                   |        |                 |         |

a<sub>Values</sub> in pH units.

bAverage value.

Flow range for seven copper mines was 1.08 x  $10^5$  to 1.1 x  $10^7$  gpd with a median of 8.65 x  $10^5$  gpd; flow range for four copper mills was 5.10 x  $10^6$  to 7.35 x  $10^7$  gpd with a median of 2.73 x  $10^7$  gpd.

 $<sup>^{</sup>m d}_{
m The\ mines\ concerned\ use\ seepage\ and\ seepage\ plus\ drill\ cooling\ water\ combined.}$ 

 $<sup>^{\</sup>mathbf{e}}$  The form of the data did not permit determination of median values.

 $<sup>{\</sup>bf f}_{\rm Median}$  values not presented for silver mines, uranium mines and mills, and mercury mills due to insufficient data.

qValues in picocuries/L.

 $<sup>^{</sup>m h}_{
m Water}$  not used; surface and groundwater, if encountered, are not discharged.

of operations involved, the diversity of this subcategory, and the lack of specific reference material pertinent to this classification.

#### II.11.3 PLANT SPECIFIC DESCRIPTION [1, 2]

Tables 11-4 through 11-13 present pollutant concentrations observed at several mines, mills, and mine/mill complexes throughout the industry. All subcategories are encompassed. Some data are screening sampling values, and other data are verification sampling values. Footnotes with each table indicate the type of data reported. The tables do not list influent flowrates because they are not clearly defined for this industry.

Plants were selected by the amount of information available, treatment process, number of streams, and removal efficiency. Some plants combine mine and mill wastewaters; this combination often depends on the location and water reuse rate of the plant.

#### II.11.4 POLLUTANT REMOVABILITY

Pollutants in the Ore Mining and Dressing industry originate from two distinct sources: particles from raw ores, and beneficiation (dressing) reagents. Pollutants from various ores generally consist of heavy metals contained in the ore. These pollutants are normally in a natural state as dissolved or suspended particles resulting from contact with rainwater and seepage water. The beneficiation or dressing process generally contributes cyanide or phenols and may result in high volumes of waste loads when combined with the natural pollutants.

In-process recycle of wastestreams after thickening or filtering is used at several plants within the industry. Water also may be recovered by dewatering tailings prior to final discharge. The recovered water may be reused as makeup or as a process control measure for additional metal recovery. In-process recycle may reduce the volume of wastewater discharged by 5% to 17%; when tailing wastewater is recovered, the wastewater volume may be reduced by up to 50%. This reduction allows for a smaller wastewater treatment system. Mine drainage also has been used as mill makeup water, which has a similar effect on the treatment system.

Several treatment methods are currently being used by the Ore Mining and Dressing industry. Settling, chemical treatment, and filtration, are techniques commonly employed. Other methods for wastewater treatment also are used but on a smaller basis.

Chemical treatment involves the addition of a chemical compound, usually lime or alum, to precipitate dissolved metals. Preliminary settling may be used to remove larger particles prior to chemical treatment, which is generally followed by sedimentation.

TABLE 11-4. WASTEWATER CHARACTERIZATION, MINE 1108 [1,2]

Subcategory: Iron Ore

Wastewater treatment description: Settling pond

Discharge method: To surface Effluent flowrate: 15.8 x 10<sup>3</sup> m<sup>3</sup>/d (4.17 x 10<sup>6</sup> gpd)

|                                               | Mine water and wastewater |                     |  |
|-----------------------------------------------|---------------------------|---------------------|--|
|                                               | characterization          |                     |  |
|                                               |                           | Settling pond       |  |
| Pollutant                                     | influent                  | effluent            |  |
| Classical pollutants                          |                           |                     |  |
| Нq                                            | 7.65                      | 7.25                |  |
| TSS, mg/L                                     | 110,000                   | <1                  |  |
| VSS, mg/L                                     | 80                        | <1                  |  |
| COD, mg/L                                     | 96                        | 4                   |  |
| TOC, mg/L                                     | 22                        | 11                  |  |
| Toxic pollutants, $\mu g/L$ , except as noted |                           |                     |  |
| Antimony                                      | <100                      | <50                 |  |
| Arsenic                                       | <10                       | <2                  |  |
| Beryllium                                     | <20                       | < 20                |  |
| Cadmium                                       | <5                        | <5                  |  |
| Chromium                                      | 500                       | 10                  |  |
| Copper                                        | 130                       | 100                 |  |
| Lead                                          | 80                        | <20                 |  |
| Mercury                                       | <0.5                      | <0.5                |  |
| Nickel                                        | 2,700<br>20               | <20<br><5           |  |
| Selenium<br>Silver                            | 20                        | <10                 |  |
| Thallium                                      | <100                      | <100                |  |
| Zinc                                          | 500                       | 30                  |  |
| Asbestos, fibers/L,                           |                           |                     |  |
| Total                                         | $2.3 \times 10^{11}$      | $4.3 \times 10^{7}$ |  |
| Chrysotile                                    | $3.8 \times 10^{10}$      | $4.1 \times 10^{6}$ |  |
| Total cyanides, mg/L                          | <0.04                     | <0.02               |  |
| Total phenols, mg/L                           | <0.004                    | 0.006               |  |
| Benzene                                       | 6.2                       | 4.2                 |  |
| Diethyl phthalate                             | 55                        | ND                  |  |
|                                               |                           |                     |  |

a Data based on screening sampling.

TABLE 11-5. WASTEWATER CHARACTERIZATION, MINE 5102<sup>a</sup> [1,2]

Subcategory: Aluminum

Wastewater treatment description: Lime neutralization, settling pond

Discharge method: To surface Effluent flowrate:  $4.16 \times 10^4 \text{ m}^3/\text{d}$  (1.1 x  $10^7 \text{ gpd}$ )

|                                               | Mine water and<br>wastewater<br>characterization |                         |  |  |
|-----------------------------------------------|--------------------------------------------------|-------------------------|--|--|
| Pollutant                                     | Treatment pond influent                          | Treatment pond effluent |  |  |
| FOIIdeant                                     | Intiuent                                         | ellineur                |  |  |
| Classical pollutants                          |                                                  |                         |  |  |
| рн                                            | 3.05                                             | 8.60                    |  |  |
| TSS, mg/L                                     | 2.8                                              | 6                       |  |  |
| VSS, mg/L                                     | 1.6                                              | 5                       |  |  |
| COD, mg/L                                     | < 2                                              | < 2                     |  |  |
| TOC, mg/L                                     | 2                                                | 4                       |  |  |
| Toxic pollutants, $\mu g/L$ , except as noted |                                                  |                         |  |  |
| Antimony                                      | <50                                              | <50                     |  |  |
| Arsenic                                       | < 2                                              | <2                      |  |  |
| Beryllium                                     | < 20                                             | < 2                     |  |  |
| Cadmium                                       | < 5                                              | < 5                     |  |  |
| Chromium                                      | 30                                               | 25                      |  |  |
| Copper                                        | 60                                               | 50                      |  |  |
| Lead                                          | < 20                                             | < 20                    |  |  |
| Mercury                                       | 37                                               | 84                      |  |  |
| Nickel                                        | 60                                               | < 20                    |  |  |
| Selenium                                      | < 5                                              | < 5                     |  |  |
| Silver                                        | <10                                              | <10                     |  |  |
| Thallium                                      | <100                                             | <100                    |  |  |
| Zinc                                          | 570                                              | <20                     |  |  |
| Asbestos, fibers/L,                           |                                                  |                         |  |  |
| Total                                         | $3.5 \times 10^{7}$                              | 1.4 x 10°               |  |  |
| Chrysotile                                    | $5.5 \times 10^{6}$                              | $2.0 \times 10^{8}$     |  |  |
| Total cyanides, mg/L                          | <0.02                                            | <0.02                   |  |  |
| Total phenols, mg/L                           | <0.002                                           | <0.002                  |  |  |
| Phenol                                        | ND                                               | 210                     |  |  |
| Bis(2-ethylhexyl)                             |                                                  | <b></b> -               |  |  |
| phthalate                                     | ND                                               | 50                      |  |  |
| Butyl benzyl phthalat                         |                                                  | 66                      |  |  |
| Di-n-butyl phthalate                          | ND                                               | 140                     |  |  |
| Diethyl phthalate                             | ND                                               | 1.9                     |  |  |
| Dimethyl phthalate                            | ND                                               | 3.1                     |  |  |

aData based on screening sampling.

# TABLE 11-6. WASTEWATER CHARACTERIZATION, MINE/MILL 2120<sup>a</sup> [1,2]

Category: Ore Mining and Dressing Subcategory: Base and Precious Metals, Copper

Wastewater treatment description: Lime precipitation, settling, pH adjustment, partial recycle to mill
Discharge method: To surface
Effluent flowrate: 2.596 x 104 m<sup>3</sup>/d (9.50 x 106 gpd)<sup>b</sup>

|                                        |                              | Plant wa                    | ater and wastewater cha                                  | aracterization             |                            |
|----------------------------------------|------------------------------|-----------------------------|----------------------------------------------------------|----------------------------|----------------------------|
| Pollutant                              | Tailings<br>pond<br>influent | Tailings<br>pond<br>recycle | Combined treatment pond effluent and surge pond overflow | Treatment<br>pond influent | Treatment<br>pond effluent |
| Classical pollutants                   |                              |                             |                                                          |                            |                            |
| На                                     | 12.00                        | 9.90                        | 11.20                                                    | 11.75                      | 3.45                       |
| TSS, mg/L                              | 164,000                      | 13                          | 3                                                        | 14                         | 4                          |
| VSS, mg/L                              | NA                           | NA                          | NA                                                       | NA.                        | NA                         |
| COD, mg/L                              | 3,210                        | 10                          | 14                                                       | 10                         | 18                         |
| TOC, mg/L                              | 12                           | 10                          | 17                                                       | 19                         | 12                         |
| Toxic pollutants, µg/L except as noted |                              |                             |                                                          |                            |                            |
| Antimony                               | <100                         | <100                        | <100                                                     | <100                       | <100                       |
| Arsenic                                | 3,600                        | <2                          | 20                                                       | 40                         | 30                         |
| Beryllium                              | 30                           | < 5                         | <5                                                       | <5                         | < 5                        |
| Cadmium                                | 120                          | <5                          | < 5                                                      | < 5                        | <5                         |
| Chromium                               | 800                          | <20                         | 400                                                      | <20                        | <20                        |
| Copper                                 | 370,000                      | <20                         | 120                                                      | 500                        | 80                         |
| Lead                                   | 18,000                       | <20                         | <20                                                      | 40                         | 40                         |
| Mercury                                | 22                           | <1                          | <1                                                       | <1                         | 1                          |
| Nickel                                 | 1,500                        | <20                         | 150                                                      | <20                        | 30                         |
| Selenium                               | 1,000                        | <5                          | <5                                                       | <5                         | < 5                        |
| Silver                                 | 1,700                        | <10                         | 40                                                       | <10                        | <10                        |
| Thallium                               | <100                         | <100                        | <100                                                     | <100                       | <100                       |
| Zinc                                   | 27,000                       | <20                         | 50                                                       | 160                        | <20                        |
| Asbestos, fibers/L,                    |                              |                             |                                                          |                            |                            |
| Total                                  | $1.3 \times 10^{13}$         | $7.8 \times 10^{7}$         | $8.6 \times 10^{6}$                                      | $2.3 \times 10^{8}$        | $2.7 \times 10^{7}$        |
| Chrysotile                             | $1.7 \times 10^{12}$         | $1.2 \times 10^7$           | $1.3 \times 10^6$                                        | $9.1 \times 10^6$          | $1.7 \times 10^6$          |
| Total cyanides, mg/L                   | <0.02                        | <0.02                       | <0.02                                                    | <0.02                      | <0.02                      |
| Total phenols, mg/L                    | 0.014                        | 0.024                       | 0.012                                                    | 0.018                      | 0.012                      |

a Data based on verification sampling.

 $<sup>^{\</sup>mathrm{b}}\mathrm{Combined}$  mine/mill operation.

TABLE 11-7. WASTEWATER CHARACTERIZATION, MINE/MILL/SMELTER/REFINERY 3107 [1,2]

Category: Ore Mining and Dressing
Subcategory: Base and Precious Metals, Lead and Zinc
Wastewater treatment description: Combined wastestreams;
stopes backfilled with sand tails, settling pond
Discharge method: To surface
Effluent flowrate: 1.36 x 104 m<sup>2</sup>/d (3.59 x 106 gpd)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plant water and wastewater characterization                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                            |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mine water                                                                                                                                                                                                                                                    | ater characters<br>Mine tailings                                                                                                                                                           | Zation<br>Smelter                                                                                          |  |  |
| Pollutant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | drainageb                                                                                                                                                                                                                                                     | wastewaterb                                                                                                                                                                                | wastewater                                                                                                 |  |  |
| Classical pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                            |  |  |
| Classical pollutants<br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.92                                                                                                                                                                                                                                                          | 8.88                                                                                                                                                                                       | 10.08                                                                                                      |  |  |
| TSS, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,600                                                                                                                                                                                                                                                         | 101.950                                                                                                                                                                                    | 18.5                                                                                                       |  |  |
| VSS, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170                                                                                                                                                                                                                                                           | 4,300                                                                                                                                                                                      | 4.5                                                                                                        |  |  |
| COD, mg/L<br>TOC, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 138                                                                                                                                                                                                                                                           | 3,150                                                                                                                                                                                      | 5                                                                                                          |  |  |
| TOC, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                          | 4.5                                                                                                        |  |  |
| Toxic pollutants, µg/L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                            |  |  |
| except as noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                            |  |  |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <100                                                                                                                                                                                                                                                          | < 525                                                                                                                                                                                      | <100                                                                                                       |  |  |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,750                                                                                                                                                                                                                                                         | 1,500                                                                                                                                                                                      | 60                                                                                                         |  |  |
| Beryllium<br>Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 5<br>145                                                                                                                                                                                                                                                    | <5<br>620                                                                                                                                                                                  | < 5<br>660                                                                                                 |  |  |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70                                                                                                                                                                                                                                                            | 935                                                                                                                                                                                        | 35                                                                                                         |  |  |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,015                                                                                                                                                                                                                                                         | 14,750                                                                                                                                                                                     | 70                                                                                                         |  |  |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,500                                                                                                                                                                                                                                                        | 154,500                                                                                                                                                                                    | 5,350                                                                                                      |  |  |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                         | 6.5                                                                                                        |  |  |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 380                                                                                                                                                                                                                                                           | 3,700                                                                                                                                                                                      | <20                                                                                                        |  |  |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                                                                                                                                                                                                                                            | 100                                                                                                                                                                                        | 17.5                                                                                                       |  |  |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                                                                                                                                                                                                                                                            | 450                                                                                                                                                                                        | 20                                                                                                         |  |  |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <100                                                                                                                                                                                                                                                          | <265                                                                                                                                                                                       | <100                                                                                                       |  |  |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85,000                                                                                                                                                                                                                                                        | 222,500                                                                                                                                                                                    | 3,500                                                                                                      |  |  |
| Asbestos, fibers/L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 7 - 1010                                                                                                                                                                                                                                                    | 1 0 - 1011                                                                                                                                                                                 | 6 3 107                                                                                                    |  |  |
| Total<br>Chrysotile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7 x 10 <sup>10</sup><br>3.93 x 10 <sup>9</sup>                                                                                                                                                                                                              | $1.8 \times 10^{11}$<br>$4.1 \times 10^{10}$                                                                                                                                               | 6.3 x 10 <sup>7</sup><br>1.1 x 10 <sup>7</sup>                                                             |  |  |
| Chrysotile Total cyanides mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.33                                                                                                                                                                                                                                                          | 3.0                                                                                                                                                                                        | <0.02                                                                                                      |  |  |
| Total phenole, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.007                                                                                                                                                                                                                                                         | 0.011                                                                                                                                                                                      | 0.072                                                                                                      |  |  |
| Total cyanides, mg/L<br>Total phenols, mg/L<br>Bis(2-ethylhexyl) phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                         | NA                                                                                                         |  |  |
| Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA.                                                                                                                                                                                                                                                           | NA.                                                                                                                                                                                        | NA<br>NA                                                                                                   |  |  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                          | <1                                                                                                         |  |  |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 163                                                                                                                                                                                                                                                           | 425                                                                                                                                                                                        |                                                                                                            |  |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1                                                                                                                                                                                                                                                            | <1                                                                                                                                                                                         | NA                                                                                                         |  |  |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3_                                                                                                                                                                                                                                                            | <1                                                                                                                                                                                         | 4                                                                                                          |  |  |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1°                                                                                                                                                                                                                                                           | <1                                                                                                                                                                                         | NA                                                                                                         |  |  |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                         | <1                                                                                                         |  |  |
| Other pollutants, ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                            |  |  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                         | NA                                                                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                            |  |  |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oro rofinory                                                                                                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ore refinery                                                                                                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                            |  |  |
| Classical pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                            |  |  |
| Classical pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.15                                                                                                                                                                                                                                                          | 2.7                                                                                                                                                                                        | 6,7                                                                                                        |  |  |
| Classical pollutants<br>pH<br>TSS, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.15<br>109                                                                                                                                                                                                                                                   | 12.5                                                                                                                                                                                       | 19                                                                                                         |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.15<br>109<br>19                                                                                                                                                                                                                                             | 12.5<br>NA                                                                                                                                                                                 | 19<br>NA                                                                                                   |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.15<br>109<br>19<br>210                                                                                                                                                                                                                                      | 12.5<br>NA<br>11                                                                                                                                                                           | 19<br>NA<br>3                                                                                              |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L CCOD, mg/L TOC, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.15<br>109<br>19                                                                                                                                                                                                                                             | 12.5<br>NA                                                                                                                                                                                 | 19<br>NA                                                                                                   |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOC, mg/L Toxic pollutants, ug/L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.15<br>109<br>19<br>210                                                                                                                                                                                                                                      | 12.5<br>NA<br>11                                                                                                                                                                           | 19<br>NA<br>3                                                                                              |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TCC, mg/L TOcic pollutants, ug/L, except as noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.15<br>109<br>19<br>210<br>2                                                                                                                                                                                                                                 | 12.5<br>NA<br>11<br>1                                                                                                                                                                      | 19<br>NA<br>3<br>2                                                                                         |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L Coxic pollutants, wg/L, except as noted Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.15<br>109<br>19<br>210<br>2                                                                                                                                                                                                                                 | 12.5<br>NA<br>11<br>1                                                                                                                                                                      | 19<br>NA<br>3<br>2                                                                                         |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOC, mg/L TOXic pollutants, wg/L, except as noted Antimony Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.15<br>109<br>19<br>210<br>2                                                                                                                                                                                                                                 | 12.5<br>NA<br>11<br>1                                                                                                                                                                      | 19<br>NA<br>3<br>2<br><500                                                                                 |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOcic pollutants, vg/L, except as noted Antimony Arsenic Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.15<br>109<br>19<br>210<br>2<br><100<br>400<br><5                                                                                                                                                                                                            | 12.5<br>NA<br>11<br>1<br><500<br>28                                                                                                                                                        | 19<br>NA<br>3<br>2<br><500<br>4<br><5                                                                      |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOC, mg/L TOX: pollutants, ug/L, except as noted Antimony Arsenic Beryllium Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.15<br>109<br>19<br>210<br>2<br><100<br>400<br><5<br>7,500                                                                                                                                                                                                   | 12.5<br>NA<br>11<br>1<br>1<br><500<br>28<br>5<br>3,050                                                                                                                                     | 19<br>NA<br>3<br>2<br><500<br>4<br><5<br>220                                                               |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOcic pollutants, vg/L, except as noted Antimony Arsenic Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.15<br>109<br>19<br>210<br>2<br><100<br>400<br><5<br>7,500                                                                                                                                                                                                   | 12.5<br>NA<br>11<br>1<br><500<br>28                                                                                                                                                        | 19<br>NA<br>3<br>2<br><500<br>4<br><5                                                                      |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOC, mg/L Except as noted Antimony Arsenic Beryllium Cadmium Chromaum Copper Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.15<br>109<br>19<br>210<br>2<br>(100<br>400<br>(5<br>7,500<br>105<br>1,800<br>24,200                                                                                                                                                                         | 12.5<br>Na<br>11<br>1<br>1<br><500<br>28<br>-5<br>3,050<br>75<br>705<br>2,750                                                                                                              | 19<br>NA<br>3<br>2<br><500<br>4<br><5<br>220<br>25<br>60<br>215                                            |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TCC, mg/L Toxic pollutants, vg/L, except as noted Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.15<br>109<br>19<br>210<br>2<br>4100<br>400<br><5<br>7,500<br>105<br>1,800<br>24,200<br>9                                                                                                                                                                    | 12.5<br>NA<br>11<br>1<br>1<br><500<br>28<br><5<br>3.050<br>75<br>705<br>2,750                                                                                                              | 19<br>NA<br>3<br>2<br><500<br>4<br><5<br>220<br>25<br>60<br>215<br>1.7                                     |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TO | 2.15<br>109<br>19<br>210<br>2<br>400<br>400<br>65<br>7,500<br>105<br>1,800<br>24,200<br>9                                                                                                                                                                     | 12.5<br>NA<br>11<br>1<br>1<br><500<br>28<br>-5<br>3,050<br>75<br>705<br>2,750<br>30<br>275                                                                                                 | 19<br>NA<br>3<br>2<br><500<br>4<br><5<br>220<br>25<br>60<br>215<br>1.7                                     |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L COC, mg/L TOC, mg/L Except as noted Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.15<br>109<br>19<br>210<br>2<br>2<br>(100<br>400<br>(5<br>7,500<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5                                                                                                                                                | 12.5<br>NA<br>11<br>1<br>1<br><500<br>28<br><5<br>3,050<br>75<br>705<br>2,750<br>30<br>275<br><5                                                                                           | 19<br>NA<br>3<br>2<br><500<br>4<br><5<br>220<br>60<br>215<br>1.7<br>75                                     |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TO | 2.15<br>109<br>19<br>210<br>2<br>2<br>(100<br>400<br>(5)<br>7,500<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5                                                                                                                                               | 12.5<br>NA<br>11<br>1<br>1<br>300<br>28<br>45<br>3,050<br>705<br>2,750<br>30<br>275<br>420                                                                                                 | 19<br>NA<br>3<br>2<br><500<br>4<br><5<br>220<br>255<br>60<br>215<br>1.7<br>75<br><20                       |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TO | 2.15<br>109<br>19<br>210<br>2<br>2<br>(100<br>400<br>(5<br>7,500<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br>(100                                                                                                                                 | 12.5<br>Na<br>11<br>1<br>1<br><500<br>28<br>-5<br>3,050<br>75<br>705<br>2,750<br>30<br>275<br><5<br><20<br>Na                                                                              | 19<br>NA<br>3<br>2<br><500<br>4<br><5<br>20<br>25<br>60<br>215<br>1.7<br>7<br>5<br><20<br>NA               |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TO | 2.15<br>109<br>19<br>210<br>2<br>2<br>(100<br>400<br>(5)<br>7,500<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5                                                                                                                                               | 12.5<br>NA<br>11<br>1<br>1<br>300<br>28<br>45<br>3,050<br>705<br>2,750<br>30<br>275<br>420                                                                                                 | 19<br>NA<br>3<br>2<br><500<br>4<br><5<br>220<br>25<br>60<br>215<br>1.7<br>75<br><5                         |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TO | 2.15<br>109<br>19<br>210<br>2<br>2<br>3<br>400<br>400<br>65<br>7,500<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br>410<br>545,000                                                                                                                   | 12.5<br>NA<br>11<br>1<br>1<br>3,050<br>28<br>-5<br>3,050<br>75<br>705<br>2,750<br>30<br>275<br>-5<br>-20<br>NA<br>86,000                                                                   | 19 NA 3 2 <500 4 <5 20 25 60 215 1.7 75 <5 <na 5,500<="" td=""></na>                                       |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L Poxic pollutants, ug/L, except as noted Antimony Arsenic Berylllum Cadmium Chromaum Chromaum Copper Lead Mercury Nickel Selenium Silver Thallium Zinc Asbestos, fibers/L, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.15<br>109<br>19<br>210<br>2<br>2<br>3<br>400<br>400<br>65<br>7,500<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br>410<br>545,000                                                                                                                   | 12.5<br>NA<br>11<br>1<br>1<br>300<br>28<br><5<br>3,050<br>75<br>705<br>2,750<br>30<br>275<br><5<br><20<br>NA<br>86,000                                                                     | 19 NA 3 2 <500 4 <5 20 25 60 215 1.7 75 <20 NA 5,500                                                       |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TO | 2.15<br>109<br>19<br>210<br>2<br>2<br>(100<br>400<br>(5,5<br>7,500<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br>(100<br>545,000<br>3.3 x 108<br>6.8 x 107c                                                                                         | 12.5<br>NA<br>11<br>1<br>1<br>3500<br>28<br>-5<br>3,050<br>75<br>705<br>2,750<br>30<br>275<br>-5<br>-20<br>NA<br>86,000                                                                    | 19 NA 3 2 2                                                                                                |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOC, mg/L TOC, mg/L Except as noted Antimony Arsenic Beryllium Cadmium Chromaum Copper Lead Mercury Nickel Selenium Silver Thallium Zinc Asbestos, fibers/L, Total Chrysotile Total cyanides, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.15<br>109<br>19<br>210<br>2<br>2<br>3<br>400<br>400<br>65<br>7,500<br>105<br>1,800<br>24,200<br>24,200<br>12.5<br>140<br>510<br>510<br>6.8 x 107<br>6.8 x 107<br>6.8 x 107<br>6.00                                                                          | 12.5<br>NA<br>11<br>1<br>1<br>1<br>1<br>1<br>3,050<br>75<br>705<br>2,750<br>30<br>275<br><5<br><20<br>NA<br>86,000<br>NA<br>NA<br>NA                                                       | 19 NA 3 2 <500 4 <55 220 25 60 215 1.7 75 <55 <20 NA 5,500 NA NA 0.035                                     |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOCAL  | 2.15<br>109<br>19<br>210<br>2<br>2<br>(100<br>400<br>(5,5<br>7,500<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br>(100<br>545,000<br>3.3 x 108<br>6.8 x 107c                                                                                         | 12.5<br>NA<br>11<br>1<br>1<br>3500<br>28<br>-5<br>3,050<br>75<br>705<br>2,750<br>30<br>275<br>-5<br>-20<br>NA<br>86,000                                                                    | 19 NA 3 2 <500 4 55 220 60 215 1.7 75 <20 NA 5,500  NA 0.035 0.032                                         |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOC, mg/L TOC, mg/L Except as noted Antimony Arsenic Beryllium Cadmium Chromaum Copper Lead Mercury Nickel Selenium Silver Thallium Zinc Asbestos, fibers/L, Total Chrysotile Total cyanides, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.15<br>109<br>19<br>210<br>2<br>2<br>3<br>4100<br>400<br>400<br>400<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br><100<br>545,000<br>3.3 x 108<br>6.8 x 107°<br><0.002                                                                             | 12.5<br>NA<br>11<br>1<br>1<br>1<br>300<br>28<br>45<br>3,050<br>75<br>705<br>2,750<br>30<br>275<br>45<br>420<br>NA<br>86,000<br>NA<br>NA<br>O.175<br>0.025                                  | 19 NA 3 2 2 < 500 4 < 5 20 25 60 215 1.7 7 75 < 5 < 20 NA 5,500 NA NA 0.035 0.032 1.6                      |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TO | 2.15<br>109<br>19<br>210<br>2<br>2<br>3<br>400<br>400<br>45<br>7,500<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br>4100<br>545,000<br>3.3 x 108<br>6.8 x 107 <sup>C</sup><br><0.002                                                                 | 12.5<br>Na<br>11<br>1<br>1<br>1<br>3,050<br>28<br>-5<br>3,050<br>75<br>705<br>2,750<br>2,750<br>2,750<br>2,750<br>2,05<br>2,00<br>Na<br>86,000<br>Na<br>Na<br>0.175<br>0.02<br>Na          | 199 NA 3 2 <500 4 <5 5 220 25 60 215 1.7 75 <5 <20 NA 5,500 NA 0.035 0.035 0.035 0.035 0.33 3 <1 3 <1      |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOCA TOCA TOCA TOCA TOCA TOCA TOCA TOCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.15<br>109<br>19<br>210<br>2<br>2<br>4100<br>400<br>400<br>65<br>7,500<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br><100<br>545,000<br>3.3 x 10 <sup>8</sup><br>6.8 x 10 <sup>7</sup> C<br><0.02<br><0.002                                        | 12.5<br>NA<br>11<br>1<br>1<br>1<br>3,050<br>75<br>705<br>2,750<br>30<br>275<br><5<br><20<br>NA<br>86,000<br>NA<br>NA<br>0.175<br>0.02<br>NA<br>NA                                          | 19 NA 3 2 <500 4 <5 20 60 215 1.7 75 <20 NA 5,500  NA 0.035 0.032 16 0.3 <11 NA                            |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TO | 2.15<br>109<br>19<br>210<br>2<br>2<br>3<br>4100<br>400<br>400<br>400<br>105<br>1,800<br>24,200<br>205<br>12.5<br>140<br><100<br>545,000<br>3.3 x 108<br>6.8 x 107°<br><0.02<br><0.02<br><0.002<br>NA<br>NA<br>NA<br>2001<br>NA                                | 12.5<br>NA<br>11<br>1<br>1<br>1<br>300<br>28<br>5<br>3.050<br>705<br>2,750<br>30<br>275<br>5<br>5<br>20<br>NA<br>86,000<br>NA<br>NA<br>NA<br>NA<br>NA                                      | 199 NA 3 2 <500 4 <55 220 25 600 215 1.7 75 <55 <20 NA 5,500 NA 0.035 0.035 0.035 0.035 0.31 16 0.31 NA NA |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOCA Except as noted Antimony Arsenic Beryllium Chadmium Chromium Chopper Lead Mercury Nickel Selenium Silver Thallium Zinc Asbestos, fibers/L, Total Chrysotile Total cyanides, mg/L Total phenols, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.15<br>109<br>19<br>210<br>2<br>2<br>2<br>2<br>2<br>2<br>3,5<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br>4100<br>545,000<br>3.3 x 10°C<br>4,002<br>4,002<br>4,002<br>4,000<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100               | 12.5<br>Na<br>11<br>1<br>1<br>1<br>3,050<br>28<br>5<br>3,050<br>7,5<br>705<br>2,750<br>2,750<br>2,750<br>2,750<br>Na<br>86,000<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na | 199 NA 3 2 <500 4 <55 200 25 60 215 1.7 75 <5 <20 NA 0.035 0.032 16 0.33 <16 NA NA NA NA NA                |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOCA TOCA TOCA TOCA TOCA TOCA TOCA TOCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.15<br>109<br>19<br>210<br>2<br>2<br>3<br>4100<br>400<br>400<br>400<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br><100<br>545,000<br>3.3 x 10 <sup>8</sup><br>6.8 x 10 <sup>7</sup> C<br><0.02<br><0.002<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | 12.5<br>NA<br>11<br>1<br>1<br>1<br>3,050<br>75<br>705<br>2,750<br>30<br>275<br><5<br><20<br>NA<br>86,000<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                               | 19 NA 3 2 2 < 500 4 < 5 220 60 215 6.7 7 75 < 50 NA 5,500 NA NA 0.035 0.032 16 0.3                         |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOCA Except as noted Antimony Arsenic Beryllium Chadmium Chromium Chopper Lead Mercury Nickel Selenium Silver Thallium Zinc Asbestos, fibers/L, Total Chrysotile Total cyanides, mg/L Total phenols, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.15<br>109<br>19<br>210<br>2<br>2<br>2<br>2<br>2<br>2<br>3,5<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br>4100<br>545,000<br>3.3 x 10°C<br>4,002<br>4,002<br>4,002<br>4,000<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100               | 12.5<br>Na<br>11<br>1<br>1<br>1<br>3,050<br>28<br>5<br>3,050<br>7,5<br>705<br>2,750<br>2,750<br>2,750<br>2,750<br>Na<br>86,000<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na | 19 NA 3 2 2                                                                                                |  |  |
| Classical pollutants pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L TOCA TOCA TOCA TOCA TOCA TOCA TOCA TOCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.15<br>109<br>19<br>210<br>2<br>2<br>3<br>4100<br>400<br>400<br>400<br>105<br>1,800<br>24,200<br>9<br>205<br>12.5<br>140<br><100<br>545,000<br>3.3 x 10 <sup>8</sup><br>6.8 x 10 <sup>7</sup> C<br><0.02<br><0.002<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | 12.5<br>NA<br>11<br>1<br>1<br>1<br>3,050<br>75<br>705<br>2,750<br>30<br>275<br><5<br><20<br>NA<br>86,000<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                               | 19 NA 3 2 2 < 500 4 < 5 220 60 215 6.7 7 75 < 50 NA 5,500 NA NA 0.035 0.032 16 0.3                         |  |  |

aData based on verification sampling.

baverage of two values.

One sample only.

TABLE 11-8. WASTEWATER CHARACTERIZATION, MINE/MILL 4401 [1,2]

Subcategory: One Fining and Dressing
Subcategory: Base and Precious Metals, Silver
Wastewater treatment description: Multiple pond settling
Discharge method: Decant to surface; recycle
Effluent flowrate: 2.93 x 10<sup>3</sup> m<sup>3</sup>/d (7.21 x 10<sup>5</sup> gpd)

|                                         | Plant               | water and wastewa   |                      | rization          |
|-----------------------------------------|---------------------|---------------------|----------------------|-------------------|
|                                         | Raw                 | Treated mine        | Tailings             | Supernatant       |
|                                         | mine                | water to recycle    | pond                 | from decant       |
| Pollutant                               | water               | or discharge        | influent             | tower             |
| Classical pollutants                    |                     |                     |                      |                   |
| рН                                      | 7.40                | 7.70                | 7.40                 | 7.80              |
| TSS, mg/L                               | 23                  | 3                   | 397,000              | 13                |
| VSS, mg/L                               | 6                   | 3                   | 62,800               | 3                 |
| COD, mg/L                               | 19                  | 4                   | 15,100               | 18                |
| TOC, mg/L                               | 16                  | 1                   | 25                   | 11                |
| Toxic pollutants, µg/L, except as noted |                     |                     |                      |                   |
| Antimony                                | <50                 | <50                 | 18,000               | 200               |
| Arsenic                                 | 20                  | 10                  | 800                  | 20                |
| Beryllium                               | <2                  | <2                  | <20                  | <2                |
| Cadmium                                 | <5                  | <5                  | <10                  | <5                |
| Chromium                                | <10                 | <10                 | 380                  | 15                |
| Copper                                  | 160                 | 100                 | 15,000               | 620               |
| Lead                                    | <20                 | 20                  | 27,000               | 30                |
| Mercury                                 | 0.5                 | <0.5                | 7.2                  | <0.5              |
| Nickel                                  | 40                  | 40                  | 390                  | 50                |
| Selenium                                | <5                  | <b>&lt;</b> 5       | <40                  | <5                |
| Silver                                  | 20                  | 30                  | 2,200                | <10               |
| Thallium                                | <100                | <100                | <100                 | <100              |
| Zinc                                    | 50                  | 30                  | 4,600                | 20                |
| Asbestos, fibers/L,                     |                     |                     |                      | _                 |
| Total                                   | $3.8 \times 10^{7}$ | $5.7 \times 10^{7}$ | $7.1 \times 10^{11}$ | $2.1 \times 10^9$ |
| Chrysotile                              | $1.1 \times 10^{7}$ | $1.1 \times 10^6$   | $1.1 \times 10^{11}$ | $1.8 \times 10^8$ |
| Total cyanides, mg/L                    | <0.02               | <0.02               | <0.02                | <0.02             |
| Total phenols, mg/L                     | 0.004               | <0.002              | <0.01                | <0.002            |
| Benzene                                 | 0.26                | ND                  | ND                   | ND                |
| Methylene chloride                      | 5.0                 | ND                  | ND                   | ND                |
| Bis(2-ethylhexyl) phthalate             | 0.1                 | 0.02                | 15                   | 8.6               |
| Tetrachloroethylene                     | 11                  | ND                  | ND                   | ŊD                |
| Toluene                                 | ND                  | 0.64                | 0.83                 | 2.1               |
| Di-n-butyl phthalate                    |                     | ND                  | 27                   | ND                |
| Diethyl phthalate                       | ND<br>ND            | ND<br>UND           | 27<br>51             | ND<br>ND          |
| Butyl benzyl phthalate                  | ND<br>ND            | ND                  | ND                   | 32                |
| Carbon tetrachloride                    | ND<br>ND            | ND<br>ND            | 1.0                  | ND                |
| carson cocraonitoriae                   | AD                  | 110                 | 1.0                  | ND                |

Data based on screening sampling.

TABLE 11-9. WASTEWATER CHARACTERIZATION, MINE/MILL 4105<sup>a</sup> [1,2]

Subcategory: Base and Precious Metals, Gold

Wastewater treatment description: Not available

Discharge method: Mill makeup Effluent flowrate: 3.79 x 10<sup>3</sup> m<sup>3</sup>/d (1.37 x 10<sup>6</sup> gpd)

|                                                                                                                                                                                                        | waste                                                                        | Plant water and wastewater characterization                                                                                                                 |                                                                                                      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Pollutant                                                                                                                                                                                              | Raw mine water                                                               | Sand plant<br>thickener<br>overflow                                                                                                                         | Tails and city sewage to creek                                                                       |  |  |  |
| Classical pollutants                                                                                                                                                                                   |                                                                              |                                                                                                                                                             |                                                                                                      |  |  |  |
| pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L Toxic pollutants, µg/L,                                                                                                                                     | 7.95<br>26<br>3.2<br>8<br>14                                                 | 9.00<br>97<br>8<br>8<br>5                                                                                                                                   | 8.65<br>60,200<br>1,290<br>700<br>18                                                                 |  |  |  |
| Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc Asbestos, fibers/L, Total Chrysotile Total cyanides, mg/L Total phenols, mg/L Tetrachloroethylene | <50 40 <2 <5 45 50 <20 6.3 <20 <5 <10 <100 50  TNTC  5.5 x 106 <0.02 0.01 ND | 100<br>5<br><20<br><5<br>50<br>280<br>20<br>540<br><20<br>5<br><10<br><100<br>420<br>5.5 x 10 <sup>8</sup><br>4.4 x 10 <sup>7</sup><br>0.90<br><0.002<br>ND | <100 200,000 30 <5 1,600 2,600 370 15 <500 150 100 <100 3,900  1.1 x 1011 2.7 x 109 6.8 <0.002 3,560 |  |  |  |

aData based on screening sampling.

b<sub>Total</sub> fibers too numerous to count.

TABLE 11-10. WASTEWATER CHARACTERIZATION, MINE/MILL 9411 [1,2]

Subcategory: Uranium

Wastewater treatment description: BaCl2 coprecipitation,

settling

Discharge method: To surface Effluent flowrate: 1.36 x 104 m<sup>3</sup>/d (3.59 x 106 gpd)

|                                                                                                                          |                                                                                | ater and<br>ewater<br>erization                |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------|
|                                                                                                                          | Raw<br>mine                                                                    | Treated mine                                   |
| Pollutant                                                                                                                | water                                                                          | water                                          |
| Classical pollutants                                                                                                     |                                                                                |                                                |
| pH TSS, mg/L VSS, mg/L COD, mg/L TOC, mg/L                                                                               | 8.05<br>280<br>28<br>37<br>8                                                   | 8.15<br>7<br>1<br>17<br><1                     |
| Toxic pollutants, μg/L, except as noted                                                                                  |                                                                                |                                                |
| Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc Asbestos, fibers/L, | 50<br>3<br><20<br><5<br>50<br>40<br>40<br>3.8<br><20<br>5<br><10<br><100<br>60 | <50 <2 <2 <5 25 <20 50 <0.5 <20 10 <10 <100 30 |
| Total Chrysotile Total cyanides, mg/L Total phenols, mg/L Bis(2-ethylhexyl) phthalate Other pollutants, pCi/L            | 2.3 x 10 <sup>9</sup> 1.1 x 10 <sup>8</sup>                                    | 5.7 x 10 <sup>8</sup> 2.7 x 10 <sup>7</sup>    |
| Total radium 226<br>Dissolved radium 226                                                                                 | 56.9 <sup>C</sup><br>60.2                                                      | < 2                                            |

a Data based on screening sampling.

bPicocuries/L.

 $<sup>^{\</sup>mathrm{C}}\mathrm{Within}$  sensitivity limits; most Ra 226 is dissolved.

dAnalysis unreliable.

TABLE 11-11. WASTEWATER CHARACTERIZATION, MINE/MILL 6102ª [1, 2]

Category: Ore Mining and pressure,
Subcategory: Ferroalloy
Wastewater treatment description: Tailings pond, recycle,
chlorination, electrocoagulation, flotation
Effluent discharge: Mine to mill treatment: 3.8 x 10<sup>3</sup> m³/d
(1.0 x 10<sup>6</sup> gpd)

Mill treatment discharge: 1.1 x 10<sup>6</sup> m³/d
(2.91 x 10<sup>6</sup> gpd)

|                                         | Plant water and wastewater characterization |                                                  |                       |  |  |
|-----------------------------------------|---------------------------------------------|--------------------------------------------------|-----------------------|--|--|
|                                         | wastewa                                     | ter characteriz                                  | Treated               |  |  |
| Pollutant                               | Mine water                                  | Mill tailings                                    | effluent              |  |  |
| Classical pollutants                    |                                             |                                                  |                       |  |  |
| Н                                       | 6.4                                         | 10.B                                             | 6.45                  |  |  |
| TSS, mg/L                               | 550                                         | 426,000                                          | 1                     |  |  |
| VSS, mg/L                               | 35                                          | 6,930                                            | 1.5                   |  |  |
| COD, mg/L                               | 33                                          | 38                                               | 5                     |  |  |
| TOC, mg/L                               | 3.5                                         | 14                                               | 3                     |  |  |
| Toxic pollutants, µg/L, except as noted |                                             |                                                  |                       |  |  |
| Antimony                                | <200                                        | <200                                             | <200                  |  |  |
| Arsenic                                 | 1.5                                         | 75.5                                             | <1                    |  |  |
| Beryllium                               | 13.5                                        | 37.5                                             | <5                    |  |  |
| Cadmium                                 | 27.5                                        | 140                                              | 10                    |  |  |
| Chromium                                | 65                                          | 2,150                                            | 25                    |  |  |
| Copper                                  | 740                                         | 9,350                                            | <20                   |  |  |
| Lead                                    | 65                                          | 5,550                                            | 60                    |  |  |
| Mercury                                 | <1                                          | 45                                               | <1                    |  |  |
| Nickel                                  | 100                                         | 1,800                                            | 75                    |  |  |
| Selenium                                | 4.5                                         | 75                                               | <5                    |  |  |
| Silver                                  | <50                                         | 450                                              | <50                   |  |  |
| Thallium                                | <100                                        | <100                                             | <100                  |  |  |
| Zinc                                    | 1,680                                       | 18,750                                           | 25                    |  |  |
| Asbestos, fibers/L,                     | 6 65 109                                    | 3 45 3012                                        | 4.2 x 106             |  |  |
| Total                                   | 6.05 x 10 <sup>9</sup>                      | 1.45 x 10 <sup>12</sup><br>3.7 x 10 <sup>8</sup> | 1.5 x 10 <sup>5</sup> |  |  |
| Chrysotile                              | 9.56 x 10 <sup>8</sup>                      | 0.32                                             | 0.048                 |  |  |
| Total cyanides, mg/L                    | <0.02<br>0.009                              | <0.004                                           | <0.002                |  |  |
| Total phenols, mg/L                     | 0.99                                        | 0.352                                            | 0.63                  |  |  |
| 1,1,1-Trichloroethane<br>Chloroform     | 0.065                                       | 0.035 <sup>D</sup>                               | 4.6                   |  |  |
| Methylene chloride                      | 2.9 <sub>b</sub> ,                          | 2.10                                             | 2.5                   |  |  |
| B-BHC                                   | <10 <sup>b</sup> ,                          | c ND                                             | ND                    |  |  |
| Diethyl phthalate                       | 0 0075                                      | 0.058 <sup>D</sup>                               | ND                    |  |  |
| Aldrin                                  | _a                                          | ND                                               | ND<br><10             |  |  |
| Y-BHC                                   | _a                                          | ND_                                              | ND                    |  |  |
| a-BHC                                   | ND                                          | <10°                                             | ND                    |  |  |
| Trichlorofluoromethane                  | ND                                          | 0.061                                            | ND                    |  |  |
| Toluene                                 | ND                                          | 0.226                                            | ND<br>0.02            |  |  |
| Dichlorobromomethane                    | ND                                          | ND                                               |                       |  |  |
| Butyl benzyl phthalate                  | ND                                          | ND                                               | 0.418                 |  |  |
| Other pollutants, ug/L                  |                                             |                                                  |                       |  |  |
| Molybdenum                              | 9,150                                       | 14.5                                             | 5.5                   |  |  |

aData based on screening sampling (average of two values except where noted).

bone sample only.

CUnconfirmed.

 $<sup>^{\</sup>mbox{\scriptsize d}}\mbox{\scriptsize Detected}$  as <10  $\mu\mbox{\scriptsize g/L}$  in one sample but not confirmed.

TABLE 11-12. WASTEWATER CHARACTERIZATION, MINE 9202ª [1,2]

Subcategory: Mercury
Wastewater treatment description: Total recycle

Discharge method: None Effluent flowrate: 0 m<sup>3</sup>/d

|                                                                                                                                                                                                                | Mine wat<br>wastewater char                                                                                                                                                      |                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                | wastewater char                                                                                                                                                                  | Decant water                                                                                                           |
|                                                                                                                                                                                                                | Tailings pond                                                                                                                                                                    | from                                                                                                                   |
| Pollutant                                                                                                                                                                                                      | influent                                                                                                                                                                         | recycle sump                                                                                                           |
| Classical pollutant                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                        |
| pH<br>TSS, mg/L<br>VSS, mg/L<br>COD, mg/L<br>TOC, mg/L                                                                                                                                                         | 8.00<br>139,000<br>4,300<br>60<br><1                                                                                                                                             | 8.30<br>1.6<br><1<br>22<br>13                                                                                          |
| Toxic pollutants, $\mu g/L$ , except as noted                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                                        |
| Antimony Arsenic Beryllium Cadmium Chromium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc Asbestos, fibers/L, Total Chrysotile Total cyanides, mg/L Total phenols, mg/L 2,4-Dimethylphenol | 53,000<br>1,100<br>90<br>560<br>460<br>850<br>1,000<br>230,000<br>1,600<br><10<br>10<br>200<br>2,400<br>1.3 x 10 <sup>12</sup><br>1.5 x 10 <sup>11</sup><br><0.05<br>0.92<br>140 | 200<br>110<br><20<br>6<br>15<br>50<br><20<br><5<br><10<br><100<br>40<br>7.7 x 108<br>5.7 x 107<br><0.02<br>0.22<br>270 |
| Phenol Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Diethyl phthalate Ethylbenzene Dimethyl phthalate                                                                                                      | 76<br>9.2<br>56<br>66<br>ND<br>ND                                                                                                                                                | 66<br>15<br>40<br>9.6<br>8.8<br>9.5                                                                                    |

aData based on screening sampling.

TABLE 11-13. WASTEWATER CHARACTERIZATION, MINE/MILL 9905 [1,2]

Category: Ore Mining and Dressing Subcategory: Metal Ore Not Elsewhere Classified Wastewater treatment description: Settling, partial recycle

Discharge method: To surface Effluent flowrate: 2.65 x 10<sup>3</sup> m<sup>3</sup>/d (7.01 x 10<sup>5</sup> gpd);

varies with precipitation

|                                                                                                                                                                                   | Plant water and                                                                                                                        |                                                                       |                                                                             |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                   | wastewater characterization                                                                                                            |                                                                       |                                                                             |  |  |
| Pollutant                                                                                                                                                                         | Mine pit<br>effluent                                                                                                                   | Raw<br>mill<br>water                                                  | Treated mill water to recycle                                               |  |  |
| Classical pollutants                                                                                                                                                              |                                                                                                                                        |                                                                       |                                                                             |  |  |
| pH<br>TSS, mg/L<br>VSS, mg/L<br>COD, mg/L                                                                                                                                         | 7.95<br><1<br><1<br>2                                                                                                                  | 7.50<br>57,900<br><1<br>47                                            | 7.65<br><1<br><1<br>4                                                       |  |  |
| TOC, mg/L                                                                                                                                                                         | 8                                                                                                                                      | 3                                                                     | 5                                                                           |  |  |
| Toxic pollutants, µg/L, except as noted                                                                                                                                           |                                                                                                                                        |                                                                       |                                                                             |  |  |
| Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc                                                                              | <50 <2 <2 <5 <10 20 <0.5 <20 <5 <10 <5 <20 <5 <20 <5 <20 <5 <20 <50 <20 <50 <20 <50 <20 <20 <50 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2 | 200 <10 <2 <5 740 880 50 <0.5 630 15 <10 <100 3,500                   | 100                                                                         |  |  |
| Asbestos, fibers/L, Total Chrysotile Total cyanides, mg/L Total phenols, mg/L Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Chloroform Methylene chloride Toluene Ethylbenzene | 1.9 x 10 <sup>6</sup> 1.4 x 10 <sup>5</sup> <0.02 0.03 12 6.3 ND ND ND ND                                                              | 7.1 x 10° 1.1 x 10° <0.02 0.01 ND | 1.5 x 10 <sup>8</sup> 1.3 x 10 <sup>6</sup> <0.02 0.01 7.4 ND 1.1 8 0.44 ND |  |  |

aData based on screening sampling.

Land quantities of sludge may be produced that may be disposed of in an abandoned mine.

Settling is used at mine/mill 1108, where the tailing-pond effluent is treated with alum, followed by polymer addition and secondary settling to reduce suspended solids from approximately 200 mg/L to an average of 6 mg/L. At mine/mill 3121, initiation of the practice of polymer addition to the tailings has greatly improved the treatment system capabilities. Mean concentrations of total suspended solids, lead, and zinc in the tailing-pond effluent were reduced by 64%, 43%, and 17%, respectively, over those previously attained as shown in Table 11-14.

TABLE 11-14. IMPROVEMENT IN TREATMENT SYSTEM CAPABILITY RESULTING FROM POLYMER ADDITION TO EFFLUENT AT MINE/MILL 3121

|          | Effluent levels attained prior to use of polymer, mg/L |             | Effluent levels attained subsequent |             |  |
|----------|--------------------------------------------------------|-------------|-------------------------------------|-------------|--|
|          |                                                        |             | to use of polymer, mg/L             |             |  |
| arameter | Mean                                                   | Range       | Mean                                | Range       |  |
|          |                                                        |             |                                     |             |  |
| SS       | 39                                                     | 15 - 80     | 14                                  | 4 - 34      |  |
| ο.       | 0.51                                                   | 0.24 - 0.80 | 0.29                                | 0.14 - 0.67 |  |
| ı        | 0.46                                                   | 0.23 - 0.86 | 0.38                                | 0.06 - 0.69 |  |
| •        |                                                        |             |                                     |             |  |

Similarly, the use of a polymer at mine 3130 reduced mean concentrations of total suspended solids, lead and zinc in treated effluent by 89%, 76%, and 41%, respectively, over those attained prior to use of polymer as shown in Table 11-15.

TABLE 11-15. IMPROVEMENT IN TREATMENT SYSTEM CAPABILITY RESULTING FROM POLYMER ADDITION TO EFFLUENT AT MINE 3130

|           | Effluent levels attained prior to use |            | Effluent levels attained subsequent to |              |  |
|-----------|---------------------------------------|------------|----------------------------------------|--------------|--|
|           |                                       |            |                                        |              |  |
|           | of polymer and secondary              |            | use of polymer and                     |              |  |
|           | settling ponda, mg/L                  |            | secondary settling ponda, mg/L         |              |  |
| Parameter | Mean                                  | Range      | Mean                                   | Range        |  |
|           |                                       |            |                                        |              |  |
| TSS       | 19                                    | 4 - 67     | 2                                      | 0.2 ~ 6.2    |  |
| Pb        | 0.34                                  | 0.11 - 1.1 | 0.08                                   | <0.05 - 0.10 |  |
| Zn        | 0.45                                  | 0.23 - 1.1 | 0.32                                   | 0.18 - 0.57  |  |

a Secondary settling pond with 0.5-hour retention time.

Filtration is used as a polishing or pretreatment step to primary treatment methods. Microscreens or granular-media filtration are used to remove solids from wastewater. Both full-scale and pilot-scale operations are currently being studied by this indus-A full-scale multimedia filtration unit is currently in operation at molybdenum mine/mill 6102. The filtration system consists of four individual filters, each composed of a mixture of anthracite, garnet and pea gravel. This system functions as a polishing step following settling, ion exchange, lime precipitation, electrocoagulation, and alkaline chlorination. Since its startup in July 1978, the filtration unit has been operating at a flow of 63 L/s (1,000 gpm) and four months of monitoring data have demonstrated significant reductions in TSS, iron, and zinc. Suspended-solids concentrations have been reduced by approximately 92%, from an average 62 mg/L to less than or equal to 5 mg/L. Zinc removals from 0.08 mg/L (influent) to 0.06 mg/L (effluent) and iron removals of 0.50 mg/L (influent) to 0.38 mg/L (effluent) have also been achieved.

Cyanide is often used in the beneficiation process for several ores and is normally present in the wastewater. Because of its toxicity, treatment methods are needed to reduce cyanide concentration. Alkaline chlorination and ozonation are two methods being used to achieve cyanide destruction.

A full-scale system has been implemented at mill 6102 for cyanide reduction. The unit is an integral part of a total treatment system employing lime precipitation, electrocoagulation-flotation, alkaline chlorination, and multimedia filtration, followed by final pH adjustment. The alkaline-chlorination system involves on-site generation of sodium hypochlorite by electrolysis of sodium chloride. The hypochlorite is injected into the wastewater following the elctrocoagulation-flotation process and immediately preceding the filtration unit. At this point in the system, some cyanide removal has already been realized incidental to the lime precipitation-electrocoagulation treatment. Operating data from the first four months show the concentration of cyanide at 0.09 mg/L prior to the electrocoagulation unit. centrations of cyanide progressively decrease from 0.04 mg/L (electrocoagulation effluent) to less than or equal to 0.01 mg/L after filtration and less than 0.01 mg/L after the final retention Mill personnel expect this removal efficiency to continue throughout the optimization period of the system. The problem of chlorine residuals elevated levels has not yet been resolved.

Ozonation tests in the laboratory showed substantial destruction of cyanide. Although the target level of less than 0.025 mg/L of cyanide was not achieved and the tests under pilot-plant conditions showed less favorable results, ozonation did result in substantial removal of manganese as well as cyanide.

Phenolic compounds are also used to dress the raw ores. The low-concentration, high-volume phenolic wastes generated lend themselves most readily to treatment by chemical oxidation or aeration. Aeration is the only treatment currently in use although phenols may be incidentally reduced by treatment of traditional parameters such as TSS. No individual plant data on the treatment systems used are currently available.

Radium 226, a product of the radioactive decay of uranium, occurs in both dissolved and insoluble forms and is found in wastewater resulting from uranium mining and milling. Coprecipitation of radium with a barium salt is typically used for wastestream removal of radium. Dosages vary from 10 mg/L to 300 mg/L depending on the characteristics of the wastestream.

At uranium mine/mill 9452, a unique mine-water treatment system exists that employs radium 226 ion exchange in addition to flocculation, barium chloride coprecipitation, settling, and uranium The mine water to be treated is pumped from an ion exchange. underground mine to a mixing tank where flocculant is added. The water is then settled in two ponds, in series, before barium chloride is added. After barium chloride addition, the water is mixed and flows to two additional settling ponds (also in series). The decant from the final pond is acidified before it proceeds to the uranium ion-exchange system. The effluent from the uranium ion exchange column is pumped to the radium 226 system. treatment for removal of radium 226, the final effluent is pumped to a holding tank for either recycle to the mill or discharge. The unique feature of this treatment approach is the radium 226 ion exchange system, which consists of two up-flow ion exchange columns operated in parallel. Each column is constructed of fiber-reinforced plastic (FRP) and contains approximately 11.3 m<sup>3</sup> (400 ft3) of resin, supported on a FRP distribution plate. Mining personnel have estimated that the theoretical life of the resin at the present loading is 50,000 years. The total treatment system at mine/mill 9452 is capable of reducing radium 226 from levels of 955 picocuries/L (total) and 93.4 picocuries/L (dissolved) to 7.18 picocuries/L (total) and less than 1 picocurie/L (dissolved). This performance represents 99.2% removal of total radium 226 and greater than 98.9% removal of dissolved radium 226.

Asbestos is often found in the ores from this industry. Although several bench-scale and pilot-scale plants have been proposed, only settling ponds are currently in use. For mill treatment systems consisting primarily of tailing ponds and settling or polishing ponds, some facilities have demonstrated reductions of 104 and 105 fibers/L. Examination of these treatment systems indicates several factors in common: high initial suspended-solids loading, effective removal of suspended solids, large systems or systems with long residence times, and/or the presence of additional settling or polishing ponds.

Other methods, which are used to a lesser extent and normally in the pilot-plant stage, include: flocculation, centrifugation, oxidation, adsorption, and solvent extraction.

## II.11.5 REFERENCES

- Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Ore Mining and Dressing Point Source Category, Volumes I and II. U.S. Environmental Protection Agency, Washington, DC, July 1978.
- Development Document for BAT Effluent Limitations Guidelines and New Source Performance Standards for the Ore Mining and Dressing Industry (draft contractor's report). Contract No. 68-01-4845, U.S. Environmental Protection Agency, Washington, DC, 25 September 1979.
- 3. NRDC Consent Decree. Industry Summary Ore Mining and Dressing.
- 4. Environment Reporter, EPA Effluent Guidelines and Standards for Ore Mining and Dressing, (40CRF440, November 6, 1975; 41FR21191, May 24, 1976; 42FR3165, January 17, 1977, 43FR29771, July 11, 1978; 44FR7953, February 8, 1979; 44FR11546, March 1, 1979), pg 135:0881.

#### II.13 PAINT AND INK FORMULATION

## II.13.1 INDUSTRY DESCRIPTION [1, 2]

The Paint and Ink Formulation Industry can be divided into two general categories: paint manufacturing and ink formulation. Each of these categories is described below. Table 13-1 summarizes information pertaining to the paint and ink formulation industry in terms of the number of subcategories and the number and types of dischargers in the industry [3].

# TABLE 13-1. INDUSTRY SUMMARY [1-3]

The Breaking of Suit 1 To 1

Industry: Paint and Ink Total Number of Subcategories: 4 Number of Subcategories Studied: 2

Number of Dischargers in Industry:

· Direct: 4

· Indirect: 1,211

· Zero: 845

The following limitations establish the quantity and quality of pollutants or pollutant properties which may be discharged by a point source resulting from the production of oil-base paint or oil-base ink (where the tank washing system uses solvents) after application of the best practicable control technology currently available: There shall be no discharge of process waste water pollutants to navigable waters [4, 5]. Appropriate BPT effluent limitations for water and/or caustic wash and solvent wash indirect dischargers are yet to be established.

## II.13.1.1 General Description of the Paint Industry [1]

Overall, the paint industry consists of an estimated 1,400 to 1,600 manufacturing sites operated by 1,150 to 1,300 companies. The two major products of the paint industry (SIC 2851) are trade sales paints, which are primarily off-the-shelf exterior and interior paints for buildings and other structures, and industrial

finishes, also called chemical coatings, which are sold to manufacturers for factory application to diverse products such as automobiles, aircraft, furniture, and machinery.

In addition to paints, the industry also produces varnishes and lacquers, which consist of film-forming binders (resins or drying oils) dissolved in volatile solvents or dispersed in water. All paints and most lacquers contain pigments and extenders such as calcium carbonate, clays, and silicates. Other common allied products produced by the paint industry are plasticols, epoxy compounds, asphaltic coatings, adhesives, sealants, paint removers and stains.

Paint manufacturers can also be classified by the percent of water base (also called latex-base) paints and the percent of solvent-base (or solvent-thinned) paints produced. Thirty-three percent of the paint plants produce 90 percent or more solvent-base paints but only 8 percent of the plants produce a like percentage of water-base paints. The "average" plant produces approximately 60 percent solvent-base paint and only 35 percent water-base paints. Generally, plants making primarily solvent-base paint produce mostly industrial coatings, while the plants dedicated to water-base products manufacture primarily trade sales products, with a high proportion of white or tint-base paints.

There is little difference in the production processes used to produce either solvent-base or water-base paints. The major production difference is the carrying agent; solvent-base paints are dispersed in an oil mixture, while water-base paints are dispersed in water with a biodegradable surfactant as the dispersing agent. The cleanup procedure also differs for each production process. Because the water-base paints contain surfactants, formulating tanks can be easily cleaned with water. Tanks used to make solvent-base paint are generally cleaned with an organic solvent, but cleaning with a strong caustic solution is also common practice.

The principal raw materials used in paint manufacture, in terms of pounds consumed, are oils, resins, pigments, and solvents. Drying oils, such as linseed oil, are used as the film-forming binder in some solvent-base paints. Semidrying oils are used in the manufacture of water-base (latex) paints.

The paint industry is a large consumer of solvents, which are used as the volatile vehicles in coatings and certain specialty products. Mineral spirits, toluene, xylene, naphtha, ketones, esters, alcohols, and glycols are the major solvents used. In addition, the industry consumes a wide variety of other additives and chemical specialties such as dryers, bactericides and fungicides, defoamers, dispersants, and thickeners.

All paints are generally made in batches. Batch size is an indicator of paint plant size. A small paint plant will produce batches of 400 to 1,900 liters (100 to 500 gallons), while a large plant will manufacture batches up to 23,000 liters (6,000 gallons). Because of the large number of color formulations generally produced, a continuous process is not feasible.

## Solvent-Base Paint Production

The three major steps involved in the solvent-base paint manufacturing process are (1) mixing and grinding of raw materials, (2) tinting and thinning, and (3) filling operations.

At most plants, the mixing and grinding of raw materials for solvent-base paints are accomplished in one production step. For high-gloss paints, the pigments and a portion of the binder and vehicle are mixed into a paste of specified consistency. The paste is fed to a grinder or mill, which disperses the pigments by breaking down particle aggregates rather than reducing the particle size. For other paints, raw materials are mixed and dispersed in a mixer.

Following the mixing and grinding of raw materials, the paint is transferred to tinting and thinning tanks in which the remaining binder and liquid, as well as various additives and tinting colors, are incorporated. The paint is then analyzed, and the composition is adjusted as necessary to obtain the correct formulation for the type of paint being produced. The finished product is then transferred to a filling operation for filtering, packaging, and labeling.

#### Water-Base Paint Production

The pigments and extending agents for water-base paints are usually received in proper particle size, and the dispersion of the pigment, surfactant, and binder into the vehicle is accomplished with a saw-toothed high-speed dispenser. In small plants, the paint is thinned and tinted in the same tank; in larger plants, the paint is transferred to special tanks for final thinning and tinting. Once the formulation is correct, the paint is transferred to a filling operation for filtering, packaging, and labeling.

## Other Manufacturing Operations

Some of the large paint plants manufacture their own synthetic resins such as the usual alkyd resin, a water-soluble alkyd resin, or an acrylic resin. For the purposes of this manual, the wastewater resulting from the manufacture of such resins is not associated with the paint industry; hence, it is not further discussed herein.

Following the production of either solvent- or water-base paints, considerable waste or "clingage" remains affixed to the sides of the preparation tanks. Three specific methods of tank cleaning are used in the paint industry: (1) solvent wash, (2) caustic wash, and (3) water wash. Solvent wash is used exclusively for cleaning tanks used for solvent-base paint formulation. When solvent washing is used in solvent-base operations, essentially no wastewater is discharged. Caustic-wash techniques may be used to clean both solvent-base and water-base paint manufacturing tanks. Water-wash techniques are also used in both the solvent-base and water-base segments of the industry. For solvent-base operations, water washing is usually used only to follow the caustic washing of solvent-base tanks. For water-base operations, water washes often constitute the only tank cleaning operation. However, periodic caustic cleaning of water-base paint is also a common practice.

Because the paint industry has simple technology and low capital investment, it includes many small companies. About 41 percent of the companies have less than 10 employees and account for less than 5 percent of industry sales. According to the Kline Guide, the four largest companies (Sherwin Williams, Du Pont, PPG Industries, and SCM-Glidden) accounted for over 30 percent of industry sales in 1974. Total paint production in 1974 was valued at \$3.67 billion (\$1.87 billion from trade sales and \$1.80 billion from industrial finishes).

Geographically, paint plants tend to be clustered around population centers, due to the expense of transporting paint long distances. Approximately 46 percent of all paint plant sites are contained in five states (California, New Jersey, New York, Illinois, and Ohio) and 87 percent in twenty states.

## II.13.1.2 General Description of the Ink Industry [2]

The printing ink industry (SIC 2893) includes establishments primarily engaged in the manufacture of printing ink; it does not include captive ink establishments that produce ink only for use within the parent plant. Captive plants are considered to be contained in SIC 27, which includes printed items manufactured as final products.

The printing ink industry consists of an estimated 460 to 500 manufacturing sites operated by approximately 200 companies. The plant sites are dispersed throughout the nation with higher concentrations in the North Central and Coastal Areas. Five states (California, Illinois, New Jersey, New York, and Ohio) contain 42 percent of the plants and ten states include 65 percent. Plants are located near population centers due to transportation costs and the need to be near customers. A large majority (71 percent) of the ink manufacturing facilities are small and employ less than 20 personnel.

## Ink Production

Ink production involves three major ingredients: the vehicle, pigment, and drying agent. The vehicle, normally water or solvent, is used to transport the pigment, which may be either an inorganic or organic compound. The drying agent may be a separate compound or the vehicle for the ink. The drying agent aids in the preliminary fixing of the ink on the surface and functions by oxidation, absorption, or evaporation.

In the ink industry, the primary plant operation is the blending of the ingredients to produce various sized batches of ink. Blending is accomplished with the use of high-speed mixers and/or a wide variety of mixing mills. The blending occurs in a series of steps, normally one or two; the number of steps depends on the dispersion characteristics of the ingredients. Ink is often custom manufactured and may be continuously produced, as in newspaper inks, or batch produced in quantities as small as five pounds.

After the ink product has been removed, the formulation tub is normally cleaned. A solvent-base solvent wash is often used to clean solvent-base ink from a tub. A caustic wash, followed by a water rinse, is also commonly used for solvent-base inks. This technique is also used for water-base inks, although a water-only wash is more common. This water can be reused or treated and released.

# Major Types of Ink

There are four major types of ink; each type has its own ingredients and characteristics. Letterpress inks are viscous tacky pastes that use an oil or varnish base and dry by oxidation of the vehicle. Lithographic inks are similar to letterpress inks but have a higher concentration of pigment to offset the thinner film used in printing this type of ink. Flexographic inks are liquids that may be solvent or water-based and dry by evaporation, absorption, or decomposition. Gravure ink is a liquid that dries by solvent evaporation and used for a variety of purposes. Varnish, an allied product of the industry, is produced by 20 percent of the ink formulation plants.

### Product Mix

Approximately half of the plants in the ink industry specialize primarily in either paste or liquid ink. The remaining half produce both types of ink, with a wide variety of fractional mix. An "average" plant, based on all plants, produces 65 percent paste ink and 35 percent liquid ink. Ink manufacturers may also be classified by the percentage of water-base ink and solvent- or oil-base ink produced. Thirty-seven percent of the plants produce

100 percent solvent- or oil-base ink, and only 3 percent produce 100 percent water-base ink.

Using this type of classification, the "average" plant would produce 60 percent oil-base ink, 25 percent solvent-base ink, and 15 percent water-base ink. Plants that manufacture primarily solvent- and oil-base ink also produce primarily paste inks; plants that manufacture primarily water-base ink produce primarily liquid inks.

# II.13.1.3 Subcategory Description

The paint and ink formulation industry is divided into the following two subcategories based on the tank cleaning techniques used: (1) water-wash and/or caustic-wash, and (2) solvent-wash (solvent-base solvent-wash).

## Water-Wash and/or Caustic-Wash Subcategory

This subcategory encompasses those facilities using either water-wash or caustic-wash operations to clean their formulation tanks. Rinse waters generated following caustic wash are sometimes less concentrated than wastewaters generated exclusively from water rinse, although the pollutants contained in these two types of wastewater are similar. Consequently, the methods of treatment and disposal are essentially the same.

## Solvent-Wash (Solvent-Base Solvent-Wash) Subcategory

This subcategory encompasses those facilities using solvent-wash operations to clean their formulation tanks. Effluent Limitations Guidelines for the solvent-base solvent-wash have already been promulgated except for existing indirect dischargers (EPA 440/1-75, 050a). Hence, solvent-base wash operations will not be considered

#### II.13.2 WASTEWATER CHARACTERIZATION

The paint industry, in total, generates approximately 5.7 million liters (1.5 million gallons) of process wastewater daily. About half of this water is actually discharged; the other half is reused by paint plants, evaporated, or drummed for disposal as a solid waste. The ink industry, on the other hand, generates about 150,000 liters (40,000 gallons) of wastewater daily, of which 75 percent is actually discharged. For the purposes of this manual, process water is defined as only that wastewater which has an opportunity to contact paint solids, such as tank or filling equipment wash water, caustic-wash rinse water, and floor wash water. Other wastewaters, such as sanitary or noncontact cooling water, are not considered to be part of the process wastewater stream.

The percentage of solvent-base and water-base paints or inks produced is the most important factor that affects the volume of process wastewater generated and discharged at both paint and ink plants. Due to their greater use of water-wash, plants producing 90 percent or more water-base paint (or ink) discharge more wastewater than plants producing 90 percent or more solvent-base paint (or ink). Additional factors influencing the amount of wastewater produced include the pressure of the rinse water and the existence or absence of floor drains. Where no troughs or floor drains exist, equipment is often cleaned by hand with rags; when wastewater drains are present, there is a greater tendency to use hoses.

## II.13.2.1 Water-Wash and/or Caustic-Wash Subcategory

Batch mixing tanks for water-base paint (or ink) that are rinsed with water generate considerable quantities of wastewater. The spent tank and equipment rinse water is usually handled in one of four ways: (1) reuse in the next compatible batch of paint (or ink) as part of the formulation, (2) reuse either with or without treatment, to clean tanks and equipment until spent (if sludge settles out, it is disposed of as a solid waste), (3) discharge with or without treatment as wastewater, and (4) disposal as a solid waste.

Plants that use caustic-rinse systems usually rinse the residue with water, although a few plants allow the caustic to evaporate from the tanks. Evaporation of caustic solution, however, can leave a residue that will interfere with some types of paint formulas. There are two major types of caustic systems commonly used by the paint and ink industries. In one type of system, caustic is maintained in a holding tank (usually heated) and is pumped into the tank to be cleaned. The caustic drains to a floor drain or sump where it is returned to the holding tank. In the second type of system, a caustic solution is prepared in the tank to be cleaned, and the tank is soaked until clean. Most plants using caustic reuse the solution until it loses some of its cleaning ability. At that time, the caustic is disposed of either as a solid waste or wastewater, with or without treatment.

The water rinse following a caustic wash is rarely reused in a subsequent batch of paints (or ink). Generally, any generated wastewater is combined with the regular clean-up water, and disposed of by one of the same methods.

### II.13.2.2 Solvent-Wash (Solvent-Base Solvent-Wash) Subcategory

Batches of solvent-base paint or ink that are rinsed with solvent ordinarily generate no wastewater. The used solvent is generally (1) used in the next compatible batch of paint (or ink) as part of the formulation, or (2) collected and redistilled, either by the plant or by an outside company, for subsequent reuse or resale, or (3) reused with or without settling to clean tanks and

equipment until spent, and then drummed for disposal. If sludge settles out, it is also drummed for disposal as a solid waste.

In addition to process wastewater generated as a result of tank and equipment cleaning, there are other sources of pollutants within the typical paint or ink plant and these include: (1) bad or spoiled batches that are not reused in other products or discharged as a solid waste, and (2) residue from spills that is discharged to the sewer or combined with other wastewater.

Tables 13-2 and 13-3 present information on the toxic and classical pollutants found in detectable concentrations for the plant water supply, raw wastewater, and treated effluents for the "water-wash and/or caustic-wash" subcategory of the paint industry. Similar data are presented in Tables 13-4 and 13-5 for the ink industry. Values for both the paint and ink industries were generated from verification and field sampling results representing 22 paint plants and 6 ink plants.

Not included in Table 13-2 are 19 toxic pollutants of concentratio less than 10 mg/L that were detected in one or more samples of the untreated wastewater. They are acrolein, 2-chloronapthalene, 3,3'-di-chlorobenzidine, 2,4-dichlorophenol, fluoranthene, bis(2-chloroethoxy) methane, 4,6-dinitro-o-cresol, diethyl phthalate, benzo(a)pyrene, anthracene, aldrin, dieldrin, 4,4'-DDE, b-endosulfan, heptachlor epoxide, a-BHC, b-BHC, q-BHC, and w-BHC.

Also not included in Table 13-2 are eight toxic pollutants found in one or more treated effluent samples above the detectable limit and eleven toxic pollutants detected once or twice at less than 10 mg/L. The pollutants found in one or more treated effluent samples above the detectable limits are arsenic, selenium, 1,2-dichloropropylene, bis(2-chloroethoxy) ether, 2,4-dinitrophenol, di-n-octyl phthalate, butyl benzyl phthalate, and dimethyl phthalate. The pollutants detected once or twice at less than 10 mg/L are chlorobenzene, chloroethane, 1,2-diphenylhydrazine, diethyl phthalate, acenaphthylene, anthracene, phenanthrene, 4,4'-DDD, b-endosulfan, endrin aldehyde, and b-BHC.

Eighteen additional toxic pollutants not reported in Table 13-2 were found in one or more tap water samples. They are chlorobenzene, arsenic, selenium, 2,4,6-trichlorophenol, 3,3'-dichlorobenzidene, 2,4-dichlorophenol, 2,4-dinitrotoluene, fluoranthene, bromoform, butyl benzyl phthalate, diethyl phthalate, benzo(b)-fluoranthene, benzo(k)fluoranthene, anthracene, endrin aldehyde, a-BHC, b-BHC, and g-BHC. Quantitative values were not available.

Not included in Table 13-4 (for the ink industry) are 21 toxic pollutants that were detected in one or two samples of untreated wastewaters at concentrations less than 10 mg/L. They are acenaphthene, 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, p-chloro-m-cresol, 1,2-dichlorobenzene, 1,4-dichlorobenzene,

TABLE 13-2. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN PAINT PLANT WASTEWATER AND INTAKE [1] (µg/L)

|                                  |                     |                   | ntreated w        | astewater |        |         |          |           | reated was        | tewater |        |           |
|----------------------------------|---------------------|-------------------|-------------------|-----------|--------|---------|----------|-----------|-------------------|---------|--------|-----------|
|                                  |                     | Number of         |                   |           |        |         |          | Number of |                   |         |        |           |
|                                  |                     |                   | Times<br>detected |           |        |         |          |           | Times<br>detected |         |        |           |
| Toxic pollutant                  | Samples<br>analyzed | Times<br>detected | above<br>m‡n      | Average   | Median | Maximum | Samples  | Times     | above<br>min      |         | M-46   | Maximum   |
| ionic politicane                 | analyzeu            | decected          | 111411            | Average   | median | MAXIMUM | analyzed | detected  | min               | Average | Median | nax Linua |
| Metals and inorganics            |                     |                   |                   |           |        |         |          |           |                   |         |        |           |
| Antimony                         | 49                  | 49                | 9                 | 72        | 25     | 1,000   | 43       | 4 3       | 4                 | 28      | 25     | 180       |
| Arsenic                          | 41                  | 41                | 22                | 120       | 52     | 800     |          |           |                   |         |        |           |
| Beryllium                        | 51                  | 51                | 9                 | 13        | <10    | 100     | 45       | 45        | 1                 | 9       | <10    | 20        |
| Cadmium                          | 51                  | 51                | 22                | 90        | 20     | 810     | 45       | 45        | 10                | 29      | 20     | 200       |
| Chromium                         | 51                  | 51                | 42                | 2,900     | 200    | 40,000  | 45       | 45        | 24                | 1,300   | 50     | 30,000    |
| Copper                           | 51                  | 51                | 50                | 2,300     | 500    | 40,000  | 45       | 45        | 36                | 2,000   | 120    | 60,000    |
| Cyanide                          | 54                  | 54                | 9                 | 73        | 20     | 310     | 48       | 48        | 10                | 51      | 20     | 530       |
| Lead                             | 51                  | 51                | 37                | 6,300     | 800    | 80,000  | 45       | 45        | 17                | 1,100   | 200    | 40,000    |
| Mercury                          | 50                  | 50                | 40                | 10,000    | 1,100  | 120,000 | 45       | 45        | 35                | 830     | 200    | 4,400     |
| Nickel                           | 51                  | 51                | 14                | 1,000     | 50     | 40,000  | 45       | 45        | 12                | 3,500   | 50     | 80,000    |
| Silver                           | 51                  | 51                | 5                 | 16        | <10    | 100     | 42       | 42        | 32                | 13,000  | 2,100  | 100,000   |
| Thallium                         | 51                  | 51                | 8                 | 17        | <10    | 200     | 45       | 45        | 3                 | 12      | <10    | 100       |
| Zinc                             | 51                  | 51                | 49                | 84,000    | 10,000 | 900,000 | 45       | 45        | 31                | 8,500   | 1,000  | 100,000   |
| Phthalates                       |                     |                   |                   |           |        |         |          |           |                   |         |        |           |
| Bis(2-ethylhexyl) phthalate      | 27                  | 9                 | 8                 | 500       | 140    | 2,800   | 23       | 7         | 2                 | 33      | <10    | 160       |
| Di-n-butyl phthalate             | 27                  | 18                | 13                | 8,000     | 260    | 69,000  | 23       | 9         | 4                 | 310     | <10    | 1,300     |
| Phenols                          |                     |                   |                   |           |        |         |          |           |                   |         |        |           |
| Pentachlorophenol                | 27                  | 6                 | 5                 | 6,000     | 750    | 27,000  | 23       | 6         | 3                 | 120     | 11     | 490       |
| Phenol                           | 27                  | 8                 | 7                 | 1,000     | 110    | 3,800   | 23       | 13        | 7                 | 140     | 16     | 1,200     |
| Aromatics                        |                     |                   |                   |           |        |         |          |           |                   |         |        |           |
| Benzene                          | 27                  | 17                | 17                | 2.000     | 440    | 9,900   | 23       | 14        | 12                | 680     | 310    | 3.800     |
| Ethylbenzene                     | 27                  | 21                | 21                | 2,600     | 1,200  | 15,000  | 23       | 15        | 13                | 5.800   | 370    | 74.000    |
| Nitrobenzene                     | 27                  | 3                 | 2                 | 100       | 110    | 180     | 23       | 17        | 17                | 1,800   | 960    | 7,200     |
| Toluene                          | 27                  | 23                | 23                | 20,000    | 2,500  | 260,000 | 23       | 10        | 8                 | 78      | 15     | 300       |
| Polycyclic aromatic hydrocarbons | l                   |                   |                   |           |        |         |          |           |                   |         |        |           |
| Naphthalene                      | 27                  | 9                 | 8                 | 3,000     | 54     | 18,000  | 23       | 7         | 4                 | 380     | 16     | 1,800     |
| Halogenated aliphatics           |                     |                   |                   |           |        |         |          |           |                   |         |        |           |
| Carbon tetrachloride             | 27                  | 8                 | 7                 | 3,800     | 14     | 30,000  | 23       | 3         | 2                 | 640     | 120    | 1,800     |
| Chlorodibromomethane             | 27                  | õ                 | 0                 | -,        |        | 0       | 23       | ō         | ō                 |         |        | Ć         |
| Chloroform                       | 27                  | 14                | 14                | 200       | 108    | 900     | 23       | 15        | 14                | 390     | 34     | 4,700     |
| Dichlorobromomethane             | 27                  | 1                 | 1                 | 27        | 27     | 27      | 23       | 0         | 0                 |         |        | C         |
| 1,1-Dichloroethane               | 27                  | 1                 | Ö                 | <10       | <10    | <10     | 23       | 2         | 1                 | 95      | 95     | 180       |
|                                  | 27                  | 5                 | 4                 | 120       | 33     | 420     | 23       | 4         | 3                 | 71      | 53     | 170       |
| 1,2-Dichloroethane               | 27                  | 5                 | 3                 | 140       | 23     | 620     | 23       | 4         | 2                 | 19      | 11     | 44        |
| 1,1-Dichloroethylene             | 27                  | 2                 | i                 | 140       | 135    | 260     | 23       | 6         | 4                 | 51      | 27     | 190       |
| 1,2-Trans-dichloroethylene       | 27                  | 3                 | 2                 | 330       | 12     | 970     | 23       | 2         | 2                 | 210     | 210    | 400       |
| 1,2-Dichloropropane              | 27                  | 17                | 17                | 34,000    | 790    | 210,000 | 23       | 19        | 19                | 5,600   | 1,700  | 31,000    |
| Methylene chloride               | 27                  | 17                | 16                | 600       | 230    | 4.900   | 23       | 8         | 7                 | 190     | 35     | 700       |
| Tetrachloroethylene              | 27                  | 15                | 14                | 150       | 82     | 930     | 23       | 14        | 10                | 89      | 29     | 560       |
| 1,1,1-Trichloroethane            | 27                  | 5                 | 2                 | 570       | <10    | 2,800   | 23       | 4         | 3                 | 930     | 810    | 2,100     |
| 1,1,2-Trichloroethane            | 27                  | 15                | <10               | 90        | 52     | 2,800   |          | 10        | 8                 | 78      | 15     | 300       |
| Trichloroethylene                | 21                  | 13                | * 10              | 90        | 52     | 250     | 23       | 10        | в                 | 78      | 15     | 300       |
| Pesticides and metabolites       | 27                  | o                 | 0                 |           |        | 0       | 23       | 2         | 2                 | 110     | 110    | 200       |

(continued)

TABLE 13-2 (continued)

|                                 |          |           | Slud              | lge     |         |           |          |           | Intake w          | ater       |        |          |
|---------------------------------|----------|-----------|-------------------|---------|---------|-----------|----------|-----------|-------------------|------------|--------|----------|
|                                 |          | Number of |                   |         |         |           |          | Number of |                   |            |        |          |
|                                 |          |           | Times<br>detected |         |         |           |          |           | Times<br>detected |            |        |          |
|                                 | Samples  | Times     | above             |         |         |           | Samples  | Times     | above             |            |        |          |
| Toxic pollutant                 | analyzed | detected  | min               | Average | Median  | Max1mum   | analyzed | detected  | ■1D               | Average    | Median | Maximu   |
| fetals and inorganics           |          |           |                   |         |         |           |          |           |                   |            |        |          |
| Antimony                        | 11       | 11        | 5                 | 1,700   | 25      | 13,000    | 20       | 20        | 2                 | 12         | <10    | 25       |
| Arsenic                         |          |           |                   | 2,      |         |           |          |           |                   |            |        |          |
| Beryllium                       | 31       | 31        | 18                | 20      | 20      | 100       | 21       | 21        | 1                 | 8          | <10    | 20       |
| Cadmium                         | 31       | 31        | 20                | 170     | 100     | 600       | 21       | 21        | 7                 | 31         | 20     | 200      |
| Chromium                        | 31       | 31        | 29                | 7,300   | 700     | 90,000    | 21       | 21        | 8                 | 43         | 20     | 200      |
| Copper                          | 31       | 31        | 31                | 7,800   | 1,000   | 80,000    | 21       | 21        | 11                | 150        | 60     | 700      |
|                                 | 31       | 31        | 4                 | 1.300   | 20      | 36,500    | 22       | 22        | 2                 | 20         | 20     | 93       |
| Cyanide                         | 31       | 31        | 29                | 11,000  | 3,000   | 80,000    | 20       | 20        | 4                 | 130        | 100    | 400      |
| Lead                            | 31       | 31        | 26                | 29,000  | 2,300   | 220,000   | 21       | 21        | 10                | 290        | 0      | 6,000    |
| Mercury                         |          |           |                   |         |         |           | 20       |           | 2                 | 41         | 20     | 200      |
| Nickel                          | 31       | 31        | 21                | 12,000  | 100     | 200,000   |          | 20        | -                 |            |        | 30       |
| Silver                          | 31       | 31        | 7                 | 23      | <10     | 100       | 21       | 21        | 1                 | <b>~10</b> | <10    |          |
| Thallium                        | 4        | 4         | 0                 | ₹200    | < 200   | <200      | 19       | 19        | 0                 | 11         | <10    | 20       |
| Zinc                            | 31       | 31        | 29                | 270,000 | 100,000 | 2,000,000 | 20       | 20        | 13                | 1,200      | 600    | 8,000    |
| hthalates                       |          |           |                   |         |         |           |          |           |                   |            |        |          |
| Bis(2-ethylhexyl) phthalate     | 7        | 6         | 4                 | 570     | 410     | 1,900     | 25       | 3         | 0                 | <10        | <10    | <10      |
| Di-n-butyl phthalate            | 7        | 5         | 4                 | 3,600   | 70      | 19,000    | 25       | 4         | 0                 | <10        | <10    | <10      |
| henols                          |          |           |                   |         |         |           |          |           |                   |            |        |          |
|                                 | 7        | 4         | 4                 | 350     | 1 30    | 1,100     | 25       | 1         | 0                 | <10        | <10    | <10      |
| Pentachlorophenol<br>Phenol     | 'n       | 4         | 3                 | 400     | 240     | 1,100     | 25       | ō         | 0                 |            |        | 0        |
|                                 |          |           |                   |         |         |           |          |           |                   |            |        |          |
| Aromatics                       | 7        | 5         | 4                 | 410     | 30      | 1,900     | 25       | 11        | 9                 | 90         | 16     | 570      |
| Benzene                         | 7        | 6         | 6                 | 18,000  | 240     | 99,000    | 25       | 3         | 2                 | 163        | 61     | 420      |
| Ethylbenzene                    |          | 0         | 0                 | 10,000  | 240     | 99,000    | 25       | i         | ō                 | <10        | <10    | <10      |
| Nitrobenzene                    | 7        |           |                   | FB 000  | 1 200   | 350.000   | 25       | 9         | ĭ                 | 310        | <10    | 2,700    |
| Toluene                         | 7        | 6         | 6                 | 59,000  | 1,300   | 350,000   | 23       | ,         | ,                 | 310        |        | •,,,,,,, |
| olycyclic aromatic hydrocarbons |          |           |                   |         |         |           |          |           | •                 |            |        | 0        |
| Naphthalene                     | 7        | 4         | 3                 | 370     | 200     | 1,100     | 25       | o         | 0                 |            |        | U        |
| alogenated aliphatics           |          |           |                   |         |         |           |          |           | _                 |            |        | ,,       |
| Carbon tetrachloride            | 7        | 2         | 0                 | <10     | <10     | <10       | 25       | 3         | 2                 | 13         | 14     | 15       |
| Chlorodibromomethane            | 7        | 0         | 0                 |         |         | 0         | 25       | 10        | 4                 | 22         | <10    | 110      |
| Chloroform                      | 7        | 2         | 2                 | 920     | 920     | 1,000     | 25       | 15        | 12                | 1 30       | 41     | 570      |
| Dichlorobromomethane            | 7        | 0         | 0                 |         |         | 0         | 25       | 13        | В                 | 26         | 15     | 86       |
| 1,1-Dichloroethane              | 7        | 0         | 0                 |         |         | 0         | 25       | 0         | 0                 |            |        | 0        |
| 1,2-Dichloroethane              | 7        | 0         | 0                 |         |         | 0         | 25       | 0         | 0                 |            |        | C        |
| 1,1-Dichloroethylene            | 7        | 0         | 0                 |         |         | 0         | 25       | 9         | 3                 | 13         | <10    | 40       |
|                                 | 7        | ő         | ō                 |         |         | 0         | 25       | 0         | 0                 |            |        | C        |
| 1,2-Trans-dichloroethylene      | 7        | ő         | ő                 |         |         | 0         | 25       | 0         | 0                 |            |        | 0        |
| 1,2-Dichloropropane             | 7        | 7         | 7                 | 170,000 | 2,600   | 900,000   | 25       | 17        | 16                | 430        | 67     | 2,200    |
| Methylene chloride              | 7        | 5         | 4                 | 2,100   | 170     | 8,200     | 25       | 2         | 1                 | 25         | 25     | 40       |
| Tetrachloroethylene             | ,        |           | 4                 | 870     | 14      | 3,200     | 25       | 11        | 6                 | 36         | 18     | 110      |
| 1,1,1-Trichloroethane           | 7        | 7         | •                 | 870     | 14      | 3,200     | 25       | 2         | ì                 | 14         | 14     | 16       |
| 1,1,2-Trichloroethane           | 7        | 0         | 0                 |         |         | _         |          | 4         | 0                 | <10        | <10    | <10      |
| Trichloroethylene               | 7        | 5         | 2                 | 45      | <10     | 130       | 25       | 4         | U                 | 10         | 110    | -10      |
| Pesticides and metabolites      |          |           |                   |         |         |           |          |           | •                 |            |        | o        |
| Isophorone                      | 7        | 0         | 0                 |         |         | 0         | 25       | 0         | 0                 |            |        | 0        |

TABLE 13-3. CONCENTRATIONS OF CLASSICAL POLLUTANTS FOUND IN PAINT PLANT WASTEWATER AND INTAKE [1] (mg/L except as noted)

|                                 |                     |                   | Untreated wa                      | stewater    |        |         |                     |                   | Treated w                         | astewater |        |         |
|---------------------------------|---------------------|-------------------|-----------------------------------|-------------|--------|---------|---------------------|-------------------|-----------------------------------|-----------|--------|---------|
|                                 |                     | Number of         |                                   |             |        |         |                     | Number of         |                                   |           |        |         |
| Pollutant                       | Samples<br>analyzed | Times<br>detected | Times<br>detected<br>above<br>min | Average     | Median | Maximum | Samples<br>analyzed | Times<br>detected | Times<br>detected<br>above<br>min | Average   | Median | Maximum |
| BOD <sub>5</sub>                | 54                  | 54                | 54                                | 9,900       | 4,900  | 66,000  | 48                  | 48                | 46                                | 5,300     | 3,500  | 32,000  |
| COD                             | 54                  | 54                | 54                                | 56,000      | 40,000 | 350,000 | 47                  | 47                | 47                                | 21,000    | 11,000 | 260,000 |
| TOC                             | 49                  | 49                | 49                                | 10,000      | 8,500  | 34,000  | 44                  | 44                | 44                                | 4,000     | 2,800  | 25,000  |
| TSS<br>Total                    | 51                  | <b>5</b> 1        | 51                                | 20,000      | 13,000 | 150,000 | 48                  | 48                | 48                                | 2,000     | 240    | 22,000  |
| phenols <sup>a</sup><br>Oil and | 54                  | 54                | 47                                | <b>29</b> 0 | 140    | 1,900   | 49                  | 49                | 43                                | 230       | 90     | 1,900   |
| grease                          | 50                  | 50                | 50                                | 1,200       | 980    | 3,400   | 43                  | 43                | 42                                | 230       | 24     | 1,700   |
| pH <sup>b</sup>                 | 53                  | 53                | 53                                |             | 7      | 12      | 46                  | 46                | 46                                |           | 7      | 11      |

|                            |                     |                   | Sludg                             | re      |         |         | Intake water        |                   |                                   |         |        |         |  |
|----------------------------|---------------------|-------------------|-----------------------------------|---------|---------|---------|---------------------|-------------------|-----------------------------------|---------|--------|---------|--|
|                            |                     | Number of         |                                   |         |         |         |                     | Number of         |                                   |         |        |         |  |
|                            | Samples<br>analyzed | Times<br>detected | Times<br>detected<br>above<br>min | Average | Median  | Maximum | Samples<br>analyzed | Times<br>detected | Times<br>detected<br>above<br>min | Average | Median | Maximum |  |
| BOD <sub>5</sub>           | 31                  | 31                | 31                                | 26,000  | 12,000  | 150,000 | 21                  | 21                | 1                                 | 3       | 2      | 6       |  |
| COD                        | 32                  | 32                | 32                                | 190,000 | 140,000 | 950,000 | 22                  | 22                | 13                                | 10      | 6      | 40      |  |
| TOC                        | 31                  | 31                | 31                                | 37,000  | 30,000  | 110,000 | 20                  | 20                | 18                                | 8       | 8      | 20      |  |
| TSS                        | 31                  | 31                | 31                                | 100,000 | 70,000  | 470,000 | 20                  | 20                | 17                                | 3       | 3      | 11      |  |
| Total phenols <sup>a</sup> | 32                  | 32                | 25                                | 630     | 200     | 6,000   | 22                  | 22                | 5                                 | 15      | 16     | 40      |  |
| Oil and grease             | 30                  | 30                | 30                                | 8,600   | 2,900   | 130,000 | 18                  | 18                | 4                                 | 1       | 1      | 5       |  |
| $p_{Hp}$                   | 29                  | 29                | 29                                |         | 7       | 12      | 20                  | 20                | 20                                |         | /      | 9       |  |

avalues in µg/L.

b<sub>Values</sub> in pH units.

TABLE 13-4. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN INK PLANT WASTEWATER AND INTAKE [2] (µg/L)

| Areacle  8 9 9 0 25 25 25 25  Reryllum 9 9 9 0 8 410 <10 1 1 1 0 10 10 -10 -10 -10 Cadatum  8 9 9 3 34 20 90 1 1 1 1 20 20  Codatum 9 9 9 38,000 20,000 200,000 1 1 1 1 20 20  Copper 9 9 9 14,000 800 100,000 1 1 1 1 60 460 460  Copper 9 9 9 14,000 800 100,000 1 1 1 1 400 400  Cyanide 10 10 8 330 110 2,000 1 1 1 1 400 400  Laad 9 9 9 170,000 50,000 900,000 1 1 1 1 400 420  Laad 9 9 9 170,000 50,000 900,000 1 1 1 1 400 420  Laad 9 9 9 0 44 50 50 1 1 1 1 50 400 420  Rercury 7 7 7 3 170 11 1,100  Rercury 9 9 0 44 50 50 1 1 1 0 10 410 410  Filthaltae 9 9 0 4 4 50 50 1 1 1 0 10 410 410  Filthaltae 9 9 0 6 2 15,000 1,000 20,000 1 1 1 1,000 1,000 1,000  Phehalate 9 5 2 170 10 770 1 1 0 0 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |           |           |        | <i>astevater</i> |        |                    |          |           | reated was | tewater |        |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|-----------|--------|------------------|--------|--------------------|----------|-----------|------------|---------|--------|---------|
| Metals and inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |           | Number of |        |                  |        |                    |          | Number of |            |         |        |         |
| Toylic pollutant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |           |           |        |                  |        |                    |          |           |            |         |        |         |
| Marie   Mari   |                             |           |           |        |                  |        |                    |          |           |            |         |        |         |
| Metals and inorganics  Antisony  9 9 9 3 310 25 2,200 1 1 1 2 25 2.25 28  Arsenic  9 9 9 0 25 25 25 25  Beryllium  9 9 9 0 8 10 10 10 1 1 0 210 210 210  Chromium  9 9 9 1 14,000 200,000 1 1 1 1 20 210  Chromium  9 9 9 14,000 200,000 1 1 1 1 20 200  Chromium  9 9 9 14,000 200,000 1 1 1 1 20 200  Chromium  9 9 9 170,000 50,000 90,000 1 1 1 1 20 200  Cadad  9 9 9 170,000 50,000 90,000 1 1 1 1 20 200  Cadad  9 9 9 170,000 50,000 90,000 1 1 1 1 20 200  Cadad  9 9 9 170,000 50,000 90,000 1 1 1 1 20 200  Cadad  9 9 9 0 44 50 50 1 1 1 55 50 50  Theilium  9 9 0 44 50 50 1 1 1 55 50 50  Theilium  9 9 0 44 50 50 1 1 1 0 210 10 10  Fitchalates  Bis(2-ethylhexyl) phthalate  9 9 0 40 4,400 1,000 20,000 1 1 1 0 0 410 410 410  Chromium  9 9 9 0 40 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | moute collusions            |           |           |        |                  | Madian | Managem            |          |           |            | Average | Median |         |
| Antemory 9 9 9 3 3 310 25 2,200 1 1 1 2 25 25 25 25 25 25 25 25 25 25 25 25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | loxic pollucane             | allalyzed | derected  | m.T.11 |                  | neutan | - IND X I III COLO | analyzed | decected  |            | Average | Hearan | A TINGE |
| Translitum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                           | _         | _         |        |                  |        |                    |          |           |            | .25     | . 25   |         |
| The company of the co | •                           |           |           | -      |                  |        |                    | 1        | 1         | 1          | < 25    | <25    | <25     |
| Cadelium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |           |           | _      |                  |        |                    |          |           | _          |         |        |         |
| Chronium 9 9 9 9 38,000 20,000 1 1 1 1 5.50 5.50 5 Copper 9 9 14,000 80 100,000 1 1 1 1 5.50 5.50 5 Copper 9 9 9 14,000 80 100,000 1 1 1 5.50 5.50 5 Copper 9 9 9 14,000 80 100,000 1 1 1 5.50 5.50 5 Copper 9 9 9 14,000 80 100,000 1 1 1 5.50 5.50 5 Copper 1 1 5.50 5 Copper 1 5.50 5 Copper 1 5.50 5 Copper 1 5 Copper 1 5 Copper 1 5 Copper |                             |           |           | _      | _                |        |                    |          | -         | _          |         |        | <10     |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |           |           |        |                  |        |                    | -        |           |            |         |        | 20      |
| Cyanide 10 10 8 330 110 2,000 1 1 1 1 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |           |           | -      |                  |        |                    | _        | _         | _          |         |        | <50     |
| Marcury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |           |           |        |                  |        |                    |          |           |            |         |        | <60     |
| Mickel 9 9 0 0 44 50 50 1 1 1 1 50 50 50 1 1 1 50 50 50 1 1 1 50 50 50 50 50 50 50 50 50 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |           |           |        |                  |        |                    |          |           |            |         |        | 30      |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |           |           |        |                  |        |                    | 1        | 1         | 1          | < 200   | <200   | < 200   |
| Silver   9   9   0   18   410   410   1   1   0   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   410   41   |                             | ,         |           | _      |                  |        |                    | _        | _         | _          |         |        |         |
| Thallium 9 9 9 0 410 410 410 1 1 1 0 410 410 410 410 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | -         | -         | -      |                  |        |                    | _        | _         |            |         |        | <50     |
| Since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |           |           | _      | -                |        |                    | _        | _         |            |         |        | <10     |
| Phthalates Bis(2-ethylhexyl) phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |           |           | _      |                  |        |                    | _        |           | _          |         |        | <10     |
| ### Bis (2-ethylhskyl) phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zinc                        | 9         | 9         | 6      | 4,400            | 1,000  | 20,000             | 1        | 1         | 1          | 1,000   | 1,000  | 1,000   |
| Chenols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hthalates                   |           |           |        |                  |        |                    |          |           |            |         |        |         |
| Pentachlorophenol 9 2 1 660 660 1,300 1 0 0 Phenol 9 5 2 1 660 660 1,300 1 0 0 Phenol 9 5 2 1 660 660 1,300 1 0 0 Phenol 9 5 2 120 120 10 540 1 0 0 0 Phenol Phenol 9 5 2 120 120 120 10 540 1 0 0 0 Phenol Phenol Phenol 9 5 2 120 120 120 120 120 1 0 0 Phenol Phen | Bis(2-ethylhexyl) phthalate | 9         |           |        | 15,000           |        |                    |          |           |            |         |        | <10     |
| Pentachlorophenol 9 2 1 660 660 1,300 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Di-n-butyl phthalate        | 9         | 5         | 2      | 170              | <10    | 770                | 1        | 1         | 0          | <10     | <10    | <10     |
| Pentachlorophenol 9 2 1 660 660 1,300 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | henols                      |           |           |        |                  |        |                    |          |           |            |         |        |         |
| Phenol 9 5 2 120 <10 540 1 0 0  Aromatics Benzene 9 6 5 370 130 1.600 1 1 1 96 96 Ethylbenzene 9 3 3 3 4.200 5.500 6.700 1 1 1 1 2.400 2.400 2.40 Toluene 9 8 7 1.400 330 6.000 1 1 1 1 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1. |                             | 9         | 2         | 1      | 660              | 660    | 1,300              | 1        | 0         | 0          |         |        | 0       |
| Benzene 9 6 5 370 130 1.600 1 1 1 1 96 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | 9         | 5         | 2      | 120              | <10    | 540                | 1        | 0         | 0          |         |        | O       |
| Benzene 9 6 5 370 130 1,600 1 1 1 1 96 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Prometics                   |           |           |        |                  |        |                    |          |           |            |         |        |         |
| Ethylbenzene 9 3 3 3 4,200 5,500 6,700 1 1 1 2,400 2,400 2,40 2,40 Toluene 9 8 7 1,400 330 6,000 1 1 1 1 1,100 1,100 1,10 1,10 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 9         | 6         | 5      | 370              | 130    | 1,600              | 1        | 1         | 1          | 96      | 96     | 96      |
| Toluene 9 8 7 1,400 330 6,000 1 1 1 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100  |                             |           |           |        |                  |        |                    |          |           |            | 2,400   | 2,400  | 2,400   |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                           |           |           |        |                  |        |                    |          |           |            | 1,100   | 1,100  | 1,100   |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |           |           |        |                  |        |                    |          |           |            |         |        |         |
| Carbon tetrachloride 9 1 1 1 96 96 96 1 0 0 Chlorodibromomethane 9 1 1 1 43 43 43 1 0 0 Chloroform 9 4 2 37 14 110 1 0 0 Chloroform 9 4 2 1 1 83 1 0 0 0 Chlorobromomethane 9 2 2 2 21 21 33 1 0 0 0 Chlorobromomethane 9 2 2 2 21 21 33 1 0 0 0 Chlorobromomethane 9 2 2 1 89 89 170 1 0 0 Chlorobromomethane 9 2 1 89 89 170 1 0 0 Chlorobromomethane 9 2 1 89 89 170 1 0 0 Chlorobromomethane 9 2 1 1 89 89 170 1 0 0 Chlorobromomethane 9 1 1 15 <10 25 1 0 0 Chlorobromomethane 9 1 1 15 <10 25 1 0 0 Chlorobromomethane 9 1 1 0 10 Chlorobromomethane 9 1 1 1 22 22 22 1 0 0 Chlorobromomethane 9 1 1 1 22 22 22 1 1 0 0 Chlorobromomethane 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | 9         | 3         | 2      | 13               | 14     | 17                 | 1        | 1         | 0          | <10     | <10    | <10     |
| Carbon tetrachloride 9 1 1 96 96 96 1 0 0 Chlorodibromomethane 9 1 1 1 43 43 43 1 0 0 0 Chloroform 9 4 2 37 14 110 1 0 0 0 Chloroform 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nupricina 2019              | •         |           |        |                  |        |                    |          |           |            |         |        |         |
| Chlorodibromomethane 9 1 1 43 43 43 1 0 0 0 Chloroform 9 4 2 37 14 110 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | ٥         | 1         | 1      | 96               | 96     | 96                 | 1        | 0         | 0          |         |        | c       |
| Chloroform 9 4 2 37 14 110 1 0 0 Dichlorobromomethane 9 0 0 0 0 1 0 0 1,1-Dichloroethane 9 2 2 2 21 21 33 1 0 0 1,2-Dichloroethylene 9 3 1 15 <10 25 1 0 0 1,2-Dichloroethylene 9 1 0 <10 <10 1 0 0 1,2-Dichloroethylene 9 1 1 0 <10 <10 1 0 0 1,2-Dichloropropane 9 1 1 22 22 1 0 0 0 1,2-Dichloropropane 9 1 1 22 22 22 1 0 0 0 1,2-Dichloropropane 9 1 1 1 22 22 22 1 0 0 0 1,2-Dichloropropane 9 1 1 1 22 22 22 1 0 0 0 1,1-Dichloroethylene 9 4 4 1,100 820 2,900 1 1 1 1 29 29 Tetrachloroethylene 9 5 5 1,300 170 3,100 1 0 0 1,1,1-Trichloroethane 9 2 2 560 560 1,000 1 0 0 1,1,2-Trichloroethane 9 1 0 <10 <10 <10 1 0 0 Trichloroethylene 9 1 0 <10 <10 <10 1 0 0 Trichloroethylene 9 1 0 <10 <10 <10 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |           |           |        |                  |        |                    |          | _         |            |         |        | c       |
| Dichlorobromomethane 9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | -         |           |        |                  |        |                    |          |           | 0          |         |        | c       |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |           |           |        | 3.               |        |                    |          | 0         | 0          |         |        | C       |
| 1,1-Dichloroethane 9 2 1 89 89 170 1 0 0 1,1-Dichloroethylene 9 3 1 15 <10 25 1 0 0 1,2-Trans-dichloroethylene 9 1 0 <10 <10 1 0 0 1,2-Dichloropopane 9 1 1 22 22 22 1 0 0 1,2-Dichlorofopane 9 1 1 1 22 22 22 1 0 0 1,1-Dichlorofopane 9 1 1 1 22 22 29 1 0 0 1,1-Dichlorofopane 9 1 1 1 22 22 29 1 0 0 1,1-Dichlorofopane 9 1 1 1 22 22 2 1 0 0 0 1,1-Dichlorofopane 9 1 1 1 22 22 2 1 0 0 0 1,1-Dichlorofopane 9 1 1 1 2 29 29  Tetrachloroethylene 9 5 5 1,300 170 3,100 1 0 0 1,1,1-Trichloroethane 9 2 2 2 560 560 1,000 1 0 0 1,1,2-Trichloroethane 9 1 0 <10 <10 <10 1 0 0  Trichloroethylene 9 4 1,800 1,200 5,000 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | -         |           | -      | 21               | 21     |                    |          |           |            |         |        | c       |
| 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | -         |           | _      |                  |        |                    | _        | -         |            |         |        | c       |
| 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | -         |           | _      |                  |        |                    | _        | Ô         | 0          |         |        | c       |
| 1,2-Trans-dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |           |           | _      |                  |        |                    |          | -         | _          |         |        | c       |
| 1,2-Dichloropropose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |           |           | -      |                  |        |                    | _        | -         | -          |         |        | ď       |
| Methylene chlorade     9     4     1,100     170     3,100     1     0     0       Tetrachloroethylene     9     5     5     1,300     170     3,100     1     0     0       1,1,1-Trichloroethane     9     2     2     560     560     1,000     1     0     0       1,1,2-Trichloroethane     9     1     0     <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |           |           |        |                  |        |                    | _        | -         |            | 29      | 29     | 29      |
| 1,1,1-Trichloroethane 9 1 0 <10 <10 1 0 0 1,1,2-Trichloroethane 9 1 0 <10 <10 1 0 0 Trichloroethylene 9 4 1,800 1,200 5,000 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |           |           | -      |                  |        |                    |          |           |            |         |        |         |
| 1,1,1-Trichloroethane 1,1,2-Trichloroethane 9 1 0 <10 <10 1 0 0 Trichloroethylene 9 4 1,800 1,200 5,000 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |           |           |        |                  |        |                    |          |           |            |         |        | Č       |
| Trichloroethylene 9 4 4 1,800 1,200 5,000 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | -         |           |        |                  |        |                    |          | -         |            |         |        | ō       |
| Trichloroethylene , Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |           |           |        |                  |        |                    |          | -         |            |         |        | Ċ       |
| Postfolder and metabolites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trichloroethylene           | 9         | 4         | 4      | 1,800            | 1,200  | 3,000              | 1        | U         | Ü          |         |        |         |
| 1 1 44,000 44,000 1 1 1 46 46 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pesticides and metabolites  |           | _         |        | 44 055           | 44 000 | 44 000             | ,        | ,         | ,          | AE      | 46     | 46      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |           |           |        |                  |        |                    |          |           |            |         |        |         |

(continued)

TABLE 13-4 (continued)

|                                  |          | Number of | Intake                     |         |        |         |
|----------------------------------|----------|-----------|----------------------------|---------|--------|---------|
|                                  | Samples  | Tires     | Times<br>detected<br>above | •       |        |         |
| Toxic pollutant                  | analyzed | detected  | min                        | Average | Median | Maximus |
| Metals and inorganics            |          |           |                            |         |        |         |
| Antimony                         | 5        | 5         | 1                          | 32      | <10    | 100     |
| Arsenic                          | 5        | 5         | 0                          | 25      | 25     | 25      |
| Beryllium                        | 6        | 6         | 0                          | 8       | <10    | 20      |
| Cadmium                          | 6        | 6         | 1                          | 12      | 14     | 20      |
| Chromium                         | 6        | 6         | 5                          | 370     | 50     | 2,000   |
| Copper                           | 6        | 6         | 5                          | 110     | 80     | 300     |
| Cyanide                          | 7        | 7         | 0                          | 20      | 50     | 40      |
| Lead                             | 6        | 6         | 4                          | 3,500   | 150    | 20,000  |
| Mercury                          | 4        | 4         | 2                          | 1       | 0      |         |
| Nickel                           | 6        | 6         | 0                          | 28      | 30     | 50      |
| Silver                           | 6        | 6         | o                          | 5       | 6      | <10     |
| Thallium                         | 5        | 5         | 0                          | <10     | <10    | <1      |
| Zinc                             | 6        | 6         | 1                          | 350     | 400    | 600     |
| Phthalates                       |          |           |                            |         |        |         |
| Bis(2-ethylhexyl) phthalate      | 7        | 2         | 1                          | 87      | 87     | 16      |
| Di-n-butyl phthalate             | 7        | 2         | 0                          | <10     | <10    | <10     |
| Phenols                          |          |           |                            |         |        |         |
| Pentachlorophenol                | 7        | 0         | 0                          |         |        |         |
| Phenol                           | 7        | 0         | 0                          |         |        | •       |
| Aromatics                        |          |           |                            |         |        |         |
| Benzene                          | 7        | 4         | 3                          | 58      | 43     | 14      |
| Ethylbenzene                     | 7        | 0         | 0                          |         |        |         |
| Toluene                          | 7        | 4         | 0                          | <10     | <10    | <1      |
| Polycyclic aromatic hydrocarbons |          |           |                            |         |        |         |
| Naphthalene                      | 7        | 0         | 0                          |         |        | ,       |
| Halogenated aliphatics           |          |           |                            |         |        |         |
| Carbon tetrachloride             | 7        | 0         | 0                          |         |        |         |
| Chlorodibromomethane             | 7        | 2         | 1                          | 42      | 42     | 7       |
| Chloroform                       | 7        | 6         | 4                          | 99      | 28     | 35      |
| Dichlorobromomethane             | 7        | 2         | 2                          | 55      | 55     | 8       |
| 1,1-Dichloroethane               | 7        | 0         | 0                          |         |        |         |
| 1,2-Dichloroethane               | 7        | 1         | 0                          | <10     | <10    | <1      |
| 1,1-Dichloroethylene             | 7        | 0         | О                          |         |        |         |
| 1,2-Trans-dichloroethylene       | 7        | 0         | 0                          |         |        |         |
| 1,2-Dichloropropane              | 7        | 0         | 0                          |         |        |         |
| Methylene chloride               | 7        | 6         | 6                          | 150     | 51     | 41      |
| Tetrachloroethylene              | 7        | 0         | 0                          |         |        |         |
| 1,1,1-Trichloroethane            | 7        | 1         | 0                          | <10     | <10    | <1      |
| 1,1,2-Trichloroethane            | 7        | 0         | 0                          |         |        |         |
| Trichloroethylene                | 7        | 1         | 0                          | <10     | <10    | <1      |
| Pesticides and metabolites       |          |           |                            |         |        |         |
| Isophorone                       | 7        | 1         | 0                          | <10     | <10    | <1      |

TABLE 13-5. CCNCENTRATIONS OF CLASSICAL POLLUTANTS FOUND IN INK PLANT WASTEWATER AND INTAKE [2] (mg/L except as noted)

|                      |                     |                   | Untreated wa                      | stewater |        |         |                     |                   | Treated w                         | astewater |        |             |
|----------------------|---------------------|-------------------|-----------------------------------|----------|--------|---------|---------------------|-------------------|-----------------------------------|-----------|--------|-------------|
|                      |                     | Number of         |                                   |          |        |         |                     | Number of         |                                   |           |        |             |
| Pollutant            | Samples<br>analyzed | Times<br>detected | Times<br>detected<br>above<br>min | Average  | Median | Maximum | Samples<br>analyzed | Times<br>detected | Times<br>detected<br>above<br>min | Average   | Median | Maximum     |
| BOD <sub>5</sub>     | 10                  | 10                | 10                                | 14,000   | 1,500  | 73,000  | 1                   | 1                 | 1                                 | 2,600     | 2,600  | 2,600       |
| COD                  | 9                   | 9                 | 9                                 | 42,000   | 3,000  | 270,000 | 1                   | 1                 | 1                                 | 4,800     | 4,800  | 4,800       |
| TOC                  | 9                   | 9                 | 9                                 | 10,000   | 520    | 66,000  | 1                   | 1                 | 1                                 | 940       | 940    | 940         |
| TSS<br>Total         | 10                  | 10                | 10                                | 990      | 740    | 2,200   | 1                   | 1                 | 1                                 | 110       | 110    | 110         |
| phenols <sup>a</sup> | 10                  | 10                | 10                                | 240      | 98     | 700     | 1                   | 1                 | 1                                 | 30        | 30     | 30          |
| Oil and              |                     |                   |                                   |          |        |         |                     |                   |                                   |           |        |             |
| grease               | 10                  | 10                | 9                                 | 620      | 110    | 2,400   | 1                   | 1                 | 1                                 | 260       | 260    | <b>2</b> 60 |
| ьHр                  | 9                   | 9                 | 9                                 |          | 9      | 13      | 1                   | 1                 | 1                                 |           | 13     | 13          |

|                                    |                     |                   | Intake v                          | ater    |        |             |
|------------------------------------|---------------------|-------------------|-----------------------------------|---------|--------|-------------|
|                                    |                     | Number of         |                                   |         |        |             |
|                                    | Samples<br>analyzed | Times<br>detected | Times<br>detected<br>above<br>min | Average | Median | Maximum     |
|                                    |                     |                   |                                   |         |        | <del></del> |
| BOD <sub>5</sub>                   | 7                   | 7                 | 0                                 | 2       | 2      | 2           |
| COD                                | 6                   | 6                 | 5                                 | 12      | 11     | 25          |
| TOC                                | 6                   | 6                 | 6                                 | 8       | 8      | 13          |
| TSS                                | 6                   | 6                 | 6                                 | 3       | 2      | 6           |
| Total phenols <sup>a</sup> Oil and | 7                   | 7                 | 3                                 | 16      | 20     | 20          |
| grease                             | 7                   | 7                 | 3                                 | 2       | 1      | 5           |
| PHp                                | 7                   | 7                 | 7                                 |         | 7      | 8           |

Values in µg/L.

 $<sup>^{\</sup>mathrm{b}}$  Values in pH units.

2,4-dimethylphenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, fluoranthene, bis(2-chloroisopropyl) ether, trichlorofluoromethane, N-nitrosodiphenylamine, butyl benzyl phthalate, dimethyl phthalate, chrysene, acenaphthylene, fluorene, phenanthrene, pyrene, and dieldrin. Also not included in Table 13-4 or 13-5 are ten toxic pollutants found in one or more of the tap water samples at less than the detectable limit. They are acenapthene, 1,2,4-trichlorobenzene, trichlorofluoromethane, butyl benzyl phthalate, diethyl and q-BHC.

### II.13.3 PLANT SPECIFIC DESCRIPTION

Production characterization and statistics concerning wastewater generation and treatment for each of the 22 paint plants and 6 ink plants are presented in Table 13-6.

Table 13-7 through 13-10 present toxic pollutant and classical pollutant data for four of the 22 paint plants representing the "water-wash and/or caustic-wash" subcategory of the paint industry. Tables 13-11 through 13-14 present similar data for four of the six plants representative of the ink industry. Unless otherwise noted, all values are generated from screening data and averaged from two or more batches based upon batch sampling. Whenever a "less-than" quantity was encountered, its numerical value was used to determine the given average. Unless all of the values used in the determination were "less-than" quantities, the "F" symbol was dropped in the final average.

TABLE 13-6. PAINT AND INK PLANT CHARACTERIZATION [1, 2]

|       |         |                 |         |           |            |            |                                           | Wa                | gtewater   |         |                 |          |                |                                                   |
|-------|---------|-----------------|---------|-----------|------------|------------|-------------------------------------------|-------------------|------------|---------|-----------------|----------|----------------|---------------------------------------------------|
|       |         |                 |         |           |            |            |                                           | 9*                | nerat Lon  |         |                 |          |                |                                                   |
|       | _       |                 |         |           |            |            |                                           |                   | Percent of |         |                 |          |                |                                                   |
|       |         | nt of           | _       |           |            |            |                                           | Liter             |            |         |                 |          |                |                                                   |
|       |         | ction           |         | ent of    | Batch or   |            |                                           | H20/              | treatment  |         | Water           | Caustic  |                | Chemicals used                                    |
| lant  |         | Solvent         |         | ments     |            | Size of    | Major a                                   |                   | process/   | Percent |                 | washer,  | ment           |                                                   |
| code  | thinned | thinned         | Organic | Inorganic | continuous | batch, gal | sources.                                  | paint             | cleaning   | reuse   | lb/in 3         | yes/no_  | typeb          | for treatment                                     |
|       | plants  |                 |         |           |            |            |                                           |                   |            |         |                 |          |                |                                                   |
| 1     | 75      | 25              | 5       | 95        | Batch      | 5,000      | Wt                                        | 0 15°             | 100        | O       | 50 <sup>4</sup> | No       | PC             | Sodium bisulfat                                   |
| 2     | 100     | 0               | 40      | 60        | Betch      | 4,000      | Wt                                        | 0.25              | 75         | 0       | 200             | Мо       | PC             | cationic polyme<br>Alum, potassius                |
| 3     | 90      | 10              | 75      | 25        | Batch      | 6,000      | Wt                                        | 0.27              | 45         | 50      | 150             | Мо       | PC             | hydroxide<br>Deerborn propri                      |
|       | 100     | 0               | 5       | 95        | Betch      | 5,500      | Wt                                        | 0.3 <sup>c</sup>  | 70         | 0       | 50 <sup>d</sup> | No       | PC             | etary Aquafloc<br>409, polymer<br>Aluminum sulfat |
| -     | -       |                 |         |           |            |            |                                           | 0.15 <sup>C</sup> | _          | 0       | 50 <sup>d</sup> | Yes      | PC             | lime<br>Sodium aluminat                           |
| 5     | 35      | 65              | 15      | 85        | Batch      | 5,700      | Wt, CR<br>Wt                              | 0.15              | 85         | 0       | 200             | No.      | PC PC          | Haico 7722<br>Alum ferric.                        |
| 6     | 100     | 0               | 15      | 85        | Batch      | 4,000      | WE                                        | 0 1               | 6.0        | O       | 200             | MO.      | r.             | polymer caustic                                   |
| 8     | 75      | 25              | 5       | 95        | Batch      | 4,800      | Wt                                        | 0.16 <sup>C</sup> | 99         | 0       | 50 <sup>d</sup> | Yes      | PC             | Ferric chloride                                   |
|       |         |                 |         |           |            |            |                                           |                   |            | _       | 60°             | Yes*     |                | Aqua Ameonia                                      |
| 9     | 75      | 25              | 35      | 65        | Batch      | 900        | Wt                                        | 0.17              | 100        | 0       |                 | Yes      | ₽C<br>GS       | Nalco 7742A                                       |
| 11    | 15      | 85              | 25      | 75        | Batch      | 6,000      | Wt.                                       | 0.3               | 100<br>100 | 0       | 150             | Yes      | Hout           | Phosphoric acid                                   |
| 12    | 10      | 90              | 20      | 80<br>55  | Betch      | 700<br>300 | CR<br>Wt                                  | 0.15              | 100        | 0       | 75              | No       | PC             | Nalco 3174                                        |
| 13    | 65      | 35              | 45      |           | Betch      |            |                                           |                   |            | 0       |                 |          | PC PC          | Naico 634                                         |
| 14    | 65      | 35              | 15      | 85        | Batch      | 750        | Wt.                                       | 0.08              | 100<br>100 | 0       | 100<br>50 d     | No<br>No | GE GE          | Mobil Floc                                        |
| 15    | 25      | 75              | 10      | 90        | Continuous |            | Wt, St                                    | 0.04              | 100        | U       |                 | MO       | <b>(46</b>     | Resin 9000                                        |
| 16    | 50      | 50              | 10      | 90        | Batch      | 1.500      | SA.                                       | 0.13              | 100        | 50      | 50 <sup>d</sup> | No       | PC             | Comm C-Floc M                                     |
| 17    | 85      | 15              |         |           | Continuous |            | WE                                        | 0.15              | 100        | 0       | 50 <sup>d</sup> | Мо       | PC             | Alum, lime, acc<br>meh, ferric<br>chlorida        |
| 18    | 65      | 35              | 10      | 90        | Betch      | 1,000      | Wt                                        | 0.25 <sup>C</sup> | 100        | 75      | 50 <sup>d</sup> | No       | PC             | Caustic, ferro                                    |
|       |         |                 |         |           |            |            |                                           | _                 |            |         |                 |          |                | Ploc 551                                          |
| 20    | 65      | 35              |         |           | Batch      | 800        | Wt.                                       | 0.03              |            | 25      | 50 <sup>4</sup> | No       | PC             | Perrous sulfate                                   |
| 24    | 100     | 0               | 15      | 85        | Batch      | 6,000      | Wt                                        | 0.7               | 100        | 0       | 125             | Tes      | PC             | Drew Amerfloc                                     |
| 25    | 40      | 60              | 5       | 95        | Batch      | 200        | Mt, CP                                    | 0.23°             | 100        | 0       | 60°C            | Yes      | PC             | Ferric floc,<br>sulfuric scid,<br>caustic         |
| 26    | 65      | 35              | 5       | 95        | Betch      | 25,000     | Wt                                        | 0.31°             | 100        | 0       | 60°             | No       | PC             | Sulfuric acid,                                    |
| 27    | 85      | 15              | 85      | 15        | Batch      | 11,000     | Wt                                        | 0.07              |            | 10      | 80              | Мо       | PC             | Amerfloc,<br>cationic polyme                      |
| 28    | 65      | 35              | 5       | 95        | Betch      | 300        | Wt                                        | 0.13 <sup>c</sup> | 100        | 0       | 50°             | Yes      | PC             | NC1, Cosan<br>C-Ploc                              |
| nk pl | lants   |                 |         |           |            |            |                                           |                   |            |         |                 |          |                |                                                   |
| 7     | 30      | 70_             | 60      | 40        |            |            | WR                                        |                   |            |         |                 | , Mo     |                |                                                   |
| 10    | 25      | 75 <sup>C</sup> | 35      | 65        |            |            | CR <sub>a</sub>                           |                   |            |         |                 | Yes      | GS             |                                                   |
| 19    | 0       | 100             | 5       | 95        |            |            | CR <sub>3</sub>                           |                   |            |         |                 | Yes      |                |                                                   |
| 21    | 35      | 65              | 15      | 85        |            |            | WR, CR,,                                  |                   |            |         |                 | No       |                |                                                   |
| 22    | 0       | 100             | 65      | 35        |            |            | CR <sub>1</sub> ,<br>CR <sub>2</sub> , SC |                   |            |         |                 | Yes      | GS,Sk,<br>Neut |                                                   |
| 23    | 20      | 80              | 65      | 35        |            |            | CR <sub>2</sub>                           |                   |            |         |                 | Yes      | GS             |                                                   |

aft = water-thinned operation, St = Solvent-thinned operation, CR = caustic rinse, CR<sub>1</sub> = primary water rinse from caustic washer, CR<sub>2</sub> = secondary water rinse to caustic washer (primary rinse is recycled to caustic), MR = water rinse of ink tubs, SC = condensate from steam tub cleaner, C = spent caustic

 $b_{PC}$  = physical chemical, GS \* gravity separation, Neut = neutralization, Sk \* skimming.

Cestimated from 308 survey

d Estimate of city water pressure

e<sub>NO</sub> discharge to treatment system

TABLE 13-7. WASTEWATER CHARACTERIZATION, PLANT 1 (PAINT) [1]

Category: Paint and Ink Pormulation
Subcategory: Water and/or caustic wash
Wastewater treatment description: Neutralization, settling and
clarification, chemical treatment (alum, polymer)
Untreated wastewater flowrate, gpd: 1,000-6,000

| Pollutant                         | Untreated<br>wastewater | Treated effluent | Sludge | Intake <sup>b</sup> |
|-----------------------------------|-------------------------|------------------|--------|---------------------|
| Metals, ug/L                      |                         |                  |        |                     |
| Silver                            | 13                      | <10              | NA     | 30                  |
| Aluminum                          | 220,000                 | 5,000            | NA     | 600                 |
| Arsenic                           | NA NA                   | NA.              | NA     | NA                  |
| Barium                            | 400                     | 330              | NA.    | 100                 |
| Beryllium                         | <10                     | <10              | NA.    | <10                 |
| Cadmium                           | <20                     | <20              | NA     | < 20                |
| Cobalt                            | 2,200                   | 320              | NA     | <50                 |
| Chromium                          | 1,200                   | 130              | NA     | 100                 |
| Copper                            | 400                     | 77               | NA     | 200                 |
| Iron                              | 46,000                  | 3,300            | NA     | 2,000               |
| Mercury                           | 59                      | 27               | NA     | 0.8                 |
| Manganese                         | 800                     | 193              | NA     | < 50                |
| Molybdenum                        | 30                      | 60               | NA     | < 50                |
| Nickel                            | 2,000                   | <50              | NA     | 200                 |
| Lead                              | 5,000                   | < 200            | NA     | 400                 |
| Antimony                          | <25                     | < 25             | NA     | <10                 |
| Tin                               | 500                     | <50              | NA     | <b>20</b> 0         |
| Titanium                          | 4,500                   | < 200            | NA     | 200                 |
| Thallium                          | <10                     | <10              | NA     | <10                 |
| Zinc                              | 1,700                   | 600              | NA     | 1,000               |
| Toxic organics, ug/L <sup>b</sup> |                         |                  |        |                     |
| Benzene                           | 300                     | ND               | N.A.   | ND                  |
| Carbon tetrachloride              | ND                      | ND               | NA     | <10                 |
| 1,2-Dichloroethane                | 25                      | ND               | NA     | ND                  |
| 1,1,1-Trichloroethane             | ND                      | <10              | NA     | ND                  |
| l,l-Dichloroethane                | ND                      | ND               | NA     | ND                  |
| 1,1,2-Trichloroethane             | ND                      | ND               | NA     | ND                  |
| Chloroform                        | 160                     | ND               | NA     | 45                  |
| l,l-Dichloroethylene              | ND                      | <10              | NA     | ND                  |
| 1,2-Trans-dichloroethylene        | ND                      | ND               | NA     | ND                  |
| 1,2-Dichloropropane               | <10                     | ND               | NA     | ND                  |
| Ethylbenzene                      | 1,300                   | 390              | NA     | ND                  |
| Methylene chloride                | 4,800                   | 110              | NA     | 690                 |
| Dichlorobromomethane              | ND                      | ND               | NA     | ND                  |
| Chlorodibromomethane              | <b>N</b> D              | ND               | NA     | ND                  |
| Isophorone                        | ND                      | ND               | NA     | ND                  |
| Naphthalene                       | ND                      | ND               | NA     | ND                  |
| Nitrobenzene                      | ND                      | ND               | NA     | ND                  |
| Pentachlorophenol                 | ND                      | ND               | NA     | ND                  |
| Phenol                            | ND                      | ND               | NA     | ND                  |
| Bis(2-ethylhexyl) phthalate       | ND                      | <10              | NA     | ND                  |
| Di-n-butyl phthalate              | ND                      | ND               | NA     | ND                  |
| Tetrachloroethylene               | 18                      | ND               | NA     | 10                  |
| Toluene                           | 2,700                   | 720              | NA     | ND                  |
| Trichloroethylene                 | 250                     | 17               | NA     | 10                  |
| Classical and others              |                         |                  |        |                     |
| pH, pH units                      | 7.0                     | 6.4              | NA     | 6                   |
| BOD, mg/L                         | 3,000                   | 2,800            | NA     | <2.4                |
| COD, mg/L                         | 51,000                  | 13,000           | NA     | < 5                 |
| TOC, mg/L                         | 10,000                  | 3,200            | NA     | <1                  |
| Oil and grease, mg/L              | 1,200                   | 150              | NA     | <1                  |
| Cyanide, µg/L                     | <107                    | <80              | NA     | < 20                |
| Total phenol, ug/L                | 55                      | 80               | NA     | 12                  |
| TS, mg/L                          | 16,000                  | 5,600            | NA     | 59                  |
| TDS, mg/L                         | 5,100                   | 3,100            | NA     | 56                  |
| TSS, mg/L                         | 11,000                  | 2,600            | NA     | 3                   |
| TVS, mg/L                         | 11,000                  | 4,300            | NA     | 30                  |
| VSS, mg/L                         | 5,300°                  | 290              | NA     | 2                   |
| Calcium, mg/L                     | 150                     | <50              | NA     | < 50                |
| Magnesium, mg/L                   | 22                      | 3                | NA     | 3                   |
| Sodium, mg/L                      | 260                     | 300              |        |                     |

anll data from 3-batch sampling except as noted.

 $<sup>^{\</sup>mathrm{b}}\mathrm{Data}$  from 1-batch sampling.

 $c_{\mbox{Value from 2-batch sampling.}}$ 

TABLE 13-8. WASTEWATER CHARACTERIZATION, PLANT 2 (PAINT) [1]

Category: Paint and Ink Formulation
Subcategory: Water and/or caustic wash
Wastewater treatment description: Settling and clarification,
chemical treatment (alum)
Untreated wastewater flowrate, gpd: 1,000-6,000

| Pollutant                   | Untreated<br>wastewater | Treated effluent | Sludge        | Intake   |
|-----------------------------|-------------------------|------------------|---------------|----------|
| Metals, ug/L <sup>b</sup>   |                         |                  |               |          |
| Silver                      | <10                     | <7               | < 8           | <10      |
| Aluminum                    | 140,000                 | 1,900            | 1,500,000     | <500     |
| Arsenic                     | NA                      | I, JOO           |               |          |
| Barium                      |                         | <37              | NA<br>19 000  | NA<br>SO |
|                             | 26,000                  | <3/              | 18,000        | < 50     |
| Beryllium                   | <10                     |                  | 27            | <10      |
| Cadmium                     | 103                     | <15              | 270           | 60       |
| Cobalt                      | 1,000                   | 40               | 2,600         | < 50     |
| Chromium                    | 1,300                   | 40               | 1,800         | 100      |
| Copper                      | 400                     | 110              | 800           | < 60     |
| Iron                        | 80,000                  | 1,400            | 270,000       | 2,000    |
| Mercury                     | <5                      | 3.5              | <5            | <0.5     |
| Manganese                   | 320                     | 630              | 4,700         | 70       |
| Molybdenum                  | 150                     | 37               | 1,600         | < 50     |
| Nickel                      | 320                     | 37               | 2,400         | ₹50      |
| Lead                        | 350                     | 150              | 2,400         | <200     |
|                             |                         | <10°             | 2,000<br><460 |          |
| Antimony                    | 15                      | <10              | <460          | 12       |
| Tin                         | 300                     | 700              | 2,000         | 200      |
| Titanium                    | 10,500                  | <140             | 40,000        | <200     |
| Thallium                    | <10                     | <10              | NA            | <10      |
| Zinc                        | 59,500                  | 8,900            | 230,000       | 2,000    |
| Toxic organics, ug/L        |                         |                  |               |          |
| Benzene                     | ND                      | ND               | NA            | ND       |
| Carbon tetrachloride        | ND                      | ND               | NA<br>NA      | ND       |
|                             | ND                      | 17               | NA<br>NA      | ND       |
| 1,2-Dichloroethane          |                         |                  |               |          |
| 1,1,1-Trichloroethane       | ND                      | ND               | NA            | ND       |
| l,l-Dichloroethane          | ND                      | <10              | NA            | ND       |
| 1,1,2-Trichloroethane       | ND                      | ND               | NA            | ND       |
| Chloroform                  | ND                      | 22               | AA            | ND       |
| 1,1-Dichloroethylene        | ND                      | ND               | NA            | ND       |
| 1,2-Trans-dichloroethylene  | ND                      | ND               | NA            | ND       |
| 1,2-Dichloropropane         | ND                      | ND               | NA            | ND       |
| Ethylbenzene                | ND                      | 4,600            | NA            | 420      |
| Methylene chloride          | 85                      | ND               | NA            | ND       |
|                             | ND                      | ND.              | NA<br>NA      | ND.      |
| Dichlorobromomethane        |                         |                  |               |          |
| Chlorodibromomethane        | ND                      | ND               | NA            | ND       |
| Isophorone                  | ND                      | ND               | NA            | ND       |
| Naphthalene                 | ND                      | ND               | NA            | ND       |
| Nitrobenzene                | 110                     | 35               | AM            | ND       |
| Pentachlorophenol           | ND                      | ND               | NA            | ND       |
| Phenol                      | 96                      | ND               | NA            | ND       |
| Bis(2-ethylhexyl) phthalate | ND                      | ND               | NA.           | ND       |
| Di-n-butyl phthalate        | 160                     | ND               | NA            | ND       |
| Tetrachloroethylene         | ND                      | 45               | NA            | ND       |
| Toluene                     | ND                      | ND               | NA<br>NA      | ND       |
| Trichloroethylene           | 210                     | 190              | NA<br>NA      | <10      |
| b                           |                         |                  |               |          |
| Classical and others        | 7.3                     | 7.2              |               | 7        |
| pH, pH units                |                         | 7.3              | 6.8           |          |
| BOD, mg/L                   | 2,500                   | 2,900            | 50,000        | <6       |
| COD, mg/L                   | 27,000                  | 7,600            | 150,000       | <5       |
| TOC, mg/L                   | 7,300                   | 1,500            | 27,000        | 3        |
| Oil and grease, mg/L        | 1,600                   | 11               | 6,200         | <1       |
| Cyanide, ug/L               | <65                     | <20              | <80           | < 20     |
| Total phenol, ug/L          | 107                     | 70               | < 80          | < 10     |
| TS, mq/L                    | 17,000                  | 8,600            | 126,000       | 1,100    |
| TDS, mg/L                   | 7,900                   | 8,500            | 35,000        | 1,100    |
| TSS, mg/L                   | 8,900                   | 50               | 74,000        | 6        |
|                             |                         | 3,700            |               | 190      |
| TVS, mg/L                   | 9,500                   | 3,700            | 55,000        | 190      |
| VSS, mg/L                   | 6,700                   |                  | 32,000        |          |
| Calcium, mg/L               | 290                     | 240              | 503           | 190      |
| Magnesium, mg/L             | 67                      | 45               | 137           | 79       |
| Sodium, mg/L                | 280                     | 300              | 270           | 160      |

anll data from 1-batch sampling except as noted.

bData for untreated wastewater from 4-batch sampling; data for treated effluent and for sludge from 3-batch sampling except as noted.

CValue from 2-batch sampling.

 $<sup>^{\</sup>rm d}$  Value from 1-batch sampling.

TABLE 13-9. WASTEWATER CHARACTERIZATION, PLANT 4 (PAINT) [1]

Category: Paint and Ink Formulation
Subcategory: Water and/or caustic wash
Wastewater treatment description: Gravity separation, chemical
treatment (alum, lime)
Untreated wastewater flowrate, gpd: 1,000-6,000

| Pollutant                                           | Untreated<br>wastewater | Treated effluent | Sludge        | Intake      |
|-----------------------------------------------------|-------------------------|------------------|---------------|-------------|
| Metals, ug/L                                        |                         |                  |               |             |
| Silver                                              | <10                     | < 8              | 23            | <10         |
| Aluminum                                            | 37,000                  | 7,700            | 700,000       | <500        |
| Arsenic                                             | NA                      | NA               | NA            | NA          |
| Barium                                              | 4,300                   | <43              | 18,000        | <50         |
| Beryllium                                           | <10                     | < 8              | 23.3          | <10         |
| Cadmium                                             | 47                      | <10              | 160           | < 20        |
| Cobalt                                              | 67                      | <43              | 100           | <50         |
| Chromium                                            | 57                      | 93               | 600           | <50         |
| Copper                                              | 500                     | 63               | 1,700         | <60         |
| Iron                                                | 12,000                  | <2,000           | 220,000       | <2,000      |
| Mercury                                             | 9<br>97                 | 2<br><50         | 40<br>670     | <0.5<br><50 |
| Manganese                                           | 57                      | <50              | 770           | <50         |
| Molybdenum<br>Nickel                                | <50                     | <50              | 230           | <50         |
| Lead                                                | 370                     | <200             |               | <200        |
| Antimony                                            | <25                     | <25              | 1,600<br><10b | <10         |
| Tin                                                 | 460                     | 100              | 2,000         | 200         |
| Titanium                                            | 330                     | 200              | 60,000        | < 200       |
| Thallium                                            | <10                     | <10              | NA            | <10         |
| Zinc                                                | 170,000                 | 1,100            | 270,000       | < 600       |
| Toxic organics, ug/L <sup>b</sup>                   |                         |                  |               |             |
| Benzene                                             | 24                      | ND               | <10           | ND          |
| Carbon tetrachloride                                | ND                      | ND               | ND            | ND          |
| 1,2-Dichloroethane                                  | ND                      | ND               | ND            | ND          |
| 1,1,1-Trichloroethane                               | 50                      | 35               | <10           | <10         |
| 1,1-Dichloroethane                                  | ND                      | ND               | ND            | ND          |
| 1,1,2-Trichloroethane                               | ND                      | ND               | ND            | ND          |
| Chloroform                                          | ND                      | ND               | ND            | ND          |
| l,l-Dichloroethylene                                | ND                      | ND               | ND            | <10         |
| 1,2-Trans-dichloroethylene                          | ND                      | ND               | ND            | ND          |
| 1,2-Dichloropropane                                 | ND                      | ND               | ND            | ND          |
| Ethylbenzene                                        | 460                     | 43               | 62            | ND          |
| Methylene chloride                                  | 4,200                   | 4,100            | 4,600         | 2,200       |
| Dichlorobromomethane                                | ND                      | ND               | ND            | ND          |
| Chlorodibromomethane                                | ND                      | ND               | ND            | ND          |
| Isophorone                                          | ND                      | ND               | ND            | ND          |
| Naphthalene                                         | 54                      | 16               | 1,100         | ND          |
| Nitrobenzene                                        | ND                      | ND<br>ND         | ND<br>ND      | ND          |
| Pentachlorophenol<br>Phenol                         | ND<br>36                | 94               | 340           | <10<br>ND   |
|                                                     | ND                      | ND               | 590           | ND          |
| Bis(2-ethylhexyl) phthalate<br>Di-n-butyl phthalate | 57                      | ND               | 250           | ND          |
| Tetrachloroethylene                                 | 270                     | 13               | 30            | ND          |
| Toluene                                             | 580                     | 150              | 180           | <10         |
| Trichloroethylene                                   | ND                      | ND               | <10           | ND          |
| Classical and others                                |                         |                  |               |             |
| pH, pH units                                        | 7.7                     | 8.8              | 8.9           | 7.1         |
| BOD, mg/L                                           | 3,300                   | 3,900            | 4,800         | < 6         |
| COD, mg/L                                           | 150,000                 | 8,000            | 120,000       | <5          |
| TOC, mg/L                                           | 13,000                  | 2,300            | 20,000        | 3           |
| Oil and grease, mg/L                                | 830                     | 16               | 3,200         | <1          |
| Cyanide, µg/L                                       | 150                     | 31               | < 20          | <20         |
| Total phenol, ug/L                                  | 1,100                   | 1,300            | 700           | < 5         |
| TS, mg/L                                            | 66,000                  | 4,800            | 200,000       | 460         |
| TDS, mg/L                                           | 52,000                  | 4,300            | 3,600         | 459         |
| TSS, mg/L                                           | 14,000                  | 480              | 190,000       | 1.2         |
| TVS, mg/L                                           | 17,000                  | 1,700            | 42,000        | 140         |
| VSS, mg/L                                           | 11,000                  | 420              | 41,000        | 1           |
| Calcium, mg/L                                       | 1,300                   | 680              | 4,300         | < 50        |
| Magnesium, mg/L                                     | 35                      | 7.5              | 120           | <1          |
| Sodium, mg/L                                        | 230                     | 230              | 250           | 240         |

<sup>&</sup>lt;sup>a</sup>All data from 4-batch sampling except as noted.

 $<sup>^{\</sup>mathbf{b}}\mathbf{verification}$  data from 1-batch sampling.

TABLE 13-10. WASTEWATER CHARACTERIZATION, PLANT 9 (PAINT) [1]

Category: Paint and Ink Formulation
Subcategory: Water and/or caustic wash
Wastewater treatment description: Neutralization, chemical
treatment (polymer)
Untreated wastewater flowrate, gpd: 500-1,000

| Pollutant                         | Untreated<br>wastewater | Treated effluent | Sludge           | Intak     |
|-----------------------------------|-------------------------|------------------|------------------|-----------|
| Metals, µg/L                      |                         |                  |                  |           |
| Silver                            | <10                     | <10              | <10              | <10       |
| Aluminum                          | 200,000                 | 1,000            | 150,000          | < 500     |
| Arsenic                           | NA                      | NA               | NA               | N         |
| Barium                            | 4,700                   | 67               | 18,000           | 7(        |
| Beryllium                         | <10                     | <10              | <10              | <10       |
| Cadmium                           | <20                     | <20              | < 20             | < 20      |
| Cobalt                            | 300                     | < 50             | 330              | < 50      |
| Chromium                          | 53                      | < 50             | 57               | < 5 (     |
| Copper                            | 700                     | 200              | 600              | < 61      |
| Iron                              | 110,000                 | 3,000            | 260,000          | < 2,00    |
| Mercury                           | 14,000                  | 600              | 115,000          | 0.        |
| Manganese                         | 5,000                   | 130              | 9,300            | < 5       |
| Molybdenum                        | 150                     | 53               | 150              | < 5       |
| Nickel                            | <50<br>300              | < 50             | 53               | < 5       |
| Lead                              |                         | < 200            | 470              | < 20      |
| Antimony                          | < 25                    | 28               | NA<br>Zoo        | <1        |
| Tin                               | 730                     | 300<br><200      | 700              | <5<br><20 |
| Titanium                          | 7,700<br><10            | <10              | 15,000           | <20<br><1 |
| Thallium<br>Zinc                  | 830                     | <600             | NA<br>1,200      | <60       |
|                                   | 830                     | 1800             | 1,200            | 100       |
| Coxic organics, vg/L <sup>b</sup> |                         |                  |                  |           |
| Benzene                           | 9,900                   | 2,400            | NA               | 1         |
| Carbon tetrachloride              | 10                      | ND               | NA               | N         |
| 1,2-Dichloroethane                | ND                      | ND               | NA               | N         |
| 1,1,1-Trichloroethane             | <b>N</b> D              | 10               | NA               | N         |
| 1,1-Dichloroethane                | <b>N</b> D              | ND               | NA               | N         |
| 1,1,2-Trichloroethane             | ND                      | ND               | AN               | <1        |
| Chloroform                        | 92                      | ND               | AN               | 22        |
| l,l-Dichloroethylene              | ND                      | <10              | AM               | N         |
| 1,2-Trans-dichloroethylene        | ND                      | ND               | AM               | N         |
| 1,2-Dichloropropane               | ND                      | ND               | AM               | N         |
| Ethylbenzene                      | 240                     | <10              | NA               | N         |
| Methylene chloride                | 310                     | ND               | NA               | 53        |
| Dichlorobromomethane              | ND                      | ND               | NA               | 7         |
| Chlorodibromomethane              | ND                      | ND               | NA               | 11        |
| Isophorone                        | ND                      | ND               | NA               | N         |
| Naphthalene                       | ND                      | ND               | NA               | N         |
| Nitrobenzene                      | ND                      | ND               | NA               | N         |
| Pentachlorophenol                 | ND                      | ND               | NA               | N         |
| Phenol                            | ND                      | 16               | NA               | N         |
| Bis(2-ethylhexyl) phthalate       | 15                      | <10              | NA               | N         |
| Di-n-butyl phthalate              | 100                     | <10              | AM               | N<br>N    |
| Tetrachloroethylene               | 4,900                   | 210<br>180       | NA<br>NA         | < 1       |
| Toluene<br>Trichloroethylene      | 1,700<br>18             | <10              | NA<br>NA         | N         |
| -                                 |                         |                  |                  |           |
| lassical and others               | 7.4                     | 7.3              | 7.2 <sup>c</sup> | 7.        |
| pH, pH units                      | 6,700                   | 2,400            | 14,800           | <2.       |
| BOD, mg/L                         | 84,000                  | 8,300            | 210,000          | ``.       |
| COD, mg/L<br>TOC, mg/L            | 20,000                  | 2,300            | 49,000           | `         |
| Oil and grease, mg/L              | 1,800                   | 50               | 3,900            | <         |
| Cyanide, ug/L                     | 160                     | 110              | <167             | < 2       |
| Total phenol, µg/L                | 170                     | 190              | 477              | `         |
| TS, mg/L                          | 30,000                  | 2,200            | 12,000           | 36        |
| TDS, mg/L                         | 10,000                  | 1,900            | 13,000           | 38        |
| TSS, mg/L                         | 20,000                  | 310              | 17,000           | ,         |
| TVS, mg/L                         | 22,000                  | 1,200            | 11,000           |           |
|                                   | 14,000                  | 250              | 9,400            | •         |
| VSS, mg/L                         | 640                     |                  |                  | < 5       |
| Calcium, mg/L                     | 25                      | < 50<br>7        | 1,300<br>34      | <:        |
| Magnesium, mg/L                   | 180                     | 250              | 220              | <15       |
| Sodium, mg/L                      | T 0 0                   | 430              | 220              | ×1:       |

aAll data from 3-batch sampling except as noted.

bData from 1-batch sampling.

 $<sup>^{\</sup>mathrm{C}}_{\mathrm{Data}}$  from 2-batch sampling.

TABLE 13-11. WASTEWATER CHARACTERIZATION, PLANT 10 (INK) [2]

Category: Paint and Ink Formulation Subcategory: Water and/or caustic rinse Wastewater treatment description: Gravity separation Untreated wastewater flowrate, gpd: 101-250

| Pollutant                         | Untreated<br>wastewater | Treated effluent | Sludge   | Intake     |
|-----------------------------------|-------------------------|------------------|----------|------------|
| Metals, µg/L <sup>b</sup>         |                         |                  |          |            |
| Silver                            | <10                     | NA               | NA       | <10        |
| Aluminum                          | 1,000                   | NA<br>NA         | NA<br>NA | <500       |
| Arsenic                           | NA                      | NA<br>NA         | NA       | NA         |
| Barium                            | 500                     | NA<br>NA         | NA.      | 70         |
| Beryllium                         | <10                     | NA.              | NA.      | <10        |
| Cadmium                           | <20                     | NA               | NA       | <20        |
| Cobalt                            | <50                     | NA               | NA       | <50        |
| Chromium                          | 8,700                   | NA               | NA       | 70         |
| Copper                            | 430                     | NA               | NA       | 80         |
| Iron                              | 2,300                   | NA               | NA       | <2,000     |
| Mercury                           | 10                      | NA               | NA       | 5.9        |
| Manganese                         | 53                      | NA               | NA       | <50        |
| Molybdenum                        | 490                     | NA               | NA       | 100        |
| Nickel                            | <50                     | NA               | NA       | <50        |
| Lead                              | 21,000                  | NA               | NA       | 400        |
| Antimony                          | < 25                    | NA               | NA       | <100       |
| Tin                               | 2,200                   | NA               | NA       | 300        |
| Titanıum                          | 2,300                   | NA               | NA       | <200       |
| Thallium                          | <10                     | NA               | NA       | <10        |
| Zinc                              | <600                    | NA               | NA       | <600       |
| Toxic organics, µg/L              |                         |                  |          |            |
| Benzene                           | 300                     | NA               | NA       | 40         |
| Carbon tetrachloride              | ND                      | NA               | NA       | ND         |
| . 1,2-Dichloroethane              | ND                      | NA               | NA       | ND         |
| 1,1,1-Trichloroethane             | ND                      | NA               | NA       | ND         |
| 1,1-Dichloroethane                | ND                      | NA               | NA       | ND         |
| 1,1,2-Trichloroethane             | <10                     | NA               | NA       | ND         |
| Chloroform                        | 110                     | NA               | NA       | 350        |
| 1,1-Dichloroethylene              | 25                      | NA               | NA       | ND         |
| 1,2-Trans-dichloroethylene        | ND                      | NA               | NA       | ND         |
| 1,2-Dichloropropane               | ND                      | NA               | NA       | ND         |
| Ethylbenzene                      | ND                      | NA               | NA       | ND         |
| Methylene chloride                | 1,600                   | NA               | NA       | 40         |
| Dichlorobromomethane              | ND                      | NA               | NA       | 87         |
| Chlorodibromomethane              | ND                      | NA               | NA       | 74         |
| Isophorone                        | ND                      | NA               | NA       | ND         |
| Naphthalene                       | ND                      | NA               | NA       | ND         |
| Nitrobenzene                      | ND                      | NA               | NA       | ND         |
| Pentachlorophenol                 | 1,300                   | NA               | NA       | ND         |
| Phenol                            | 41                      | NA               | NA       | ND         |
| Bis(2-ethylhexyl) phthalate       | ND                      | NA               | NA       | ND         |
| Di-n-butyl phthalate              | 72                      | NA               | NA       | ND         |
| Tetrachloroethylene               | ND                      | NA               | NA       | ND         |
| Toluene                           | 10                      | NA               | NA       | ND         |
| Trichloroethylene                 | ND                      | NA               | NA       | ND         |
| Classical and others <sup>b</sup> | 8.5°                    | ***              | NA       | 7.5        |
| pH, pH units                      | 400                     | NA<br>NA         | na<br>Na | <2.4       |
| BOD, mg/L                         | 1,100                   | NA<br>NA         | NA<br>NA | 16         |
| COD, mg/L                         | 230                     | NA<br>NA         |          | 13         |
| TOC, mg/L                         | 76                      | NA<br>NA         | NA<br>NA | <1<br><1   |
| Oil and grease, mg/L              | 93                      | NA<br>NA         | NA<br>AN | <20        |
| Cyanide, ug/L                     |                         |                  |          | < 20<br>8  |
| Total phenol, µg/L                | 72<br>2,200             | NA<br>NA         | NA<br>NA | 710        |
| TS, mg/L                          |                         | NA<br>AA         | NA<br>NA | 710        |
| TDS, mg/L                         | 1, <b>9</b> 00<br>270   | NA<br>NA         | AA<br>AA | 1          |
| TSS, mg/L                         | 400                     |                  |          | 98         |
| TVS, mg/L                         | 120                     | NA<br>NA         | NA<br>NA | 0.7        |
| VSS, mg/L                         | 120<br><50              | NA<br>AN         | NA<br>NA | 0.7<br><50 |
| Calcium, mg/L                     | 23                      | NA<br>NA         |          | 29         |
| Magnesium, mg/L<br>Sodium, mg/L   | 570                     | NA<br>NA         | NA<br>NA | <150       |
| Jourant, mg/L                     | 370                     | NA               | MA       | <120       |

anll data from 1-batch sampling except as noted.

bUntreated wastewater data from 3-batch sampling.

 $<sup>^{\</sup>mathrm{C}}$  Value from 2-batch sampling.

TABLE 13-12. WASTEWATER CHARACTERIZATION, PLANT 21 (INK) [2]

Category: Paint and Ink Formulation Subcategory: Water and/or caustic rinse Wastewater treatment description: None Untreated wastewater flowrate, gpd: 251-500

| Pollutant                       | Untreated<br>wastewater | Treated effluent | Sludge   | Intake |
|---------------------------------|-------------------------|------------------|----------|--------|
| Metals, µg/L                    |                         |                  |          |        |
| Silver                          | <10                     | 44.8             | ***      | <10    |
|                                 |                         | NA               | NA       |        |
| Aluminum                        | 30,000                  | NA               | NA       | <500   |
| Arsenic                         | NA                      | NA               | NA       | N/     |
| Barium                          | 20,000                  | NA               | NA       | <50    |
| Beryllium                       | <10                     | NA               | NA       | <10    |
| Cadmium                         | 80                      | ИX               | NA       | <20    |
| Cobalt                          | <50                     | NХ               | NА       | <50    |
| Chromium                        | 60,000                  | NA               | NA       | 100    |
| Copper                          | 100,000                 | NA               | NA       | 8(     |
| Iron                            | 10,000                  | NA               | NA       | <2,00  |
| Mercury                         | 1,100                   | NA               | NA.      | <0.    |
|                                 | 80                      | NA<br>NA         | NA<br>NA | 6      |
| Manganese                       |                         |                  |          |        |
| Molybdenum                      | 600,000                 | NA               | NA       | 300    |
| Nickel                          | <50                     | Ny               | NA       | <50    |
| Lead                            | 200,000                 | NA               | NA       | <20    |
| Antimony                        | 50                      | na               | NA       | <10    |
| Tin                             | 1,000                   | NA               | NA       | <50    |
| Titanium                        | 3,000                   | NA               | NA       | < 20   |
| Thallium                        | <10                     | NA               | NA       | <1     |
| Zinc                            | 10,000                  | ИX               | NA.      | <60    |
| 22770                           | 20,000                  | M                | NA       | 100    |
| Davis areasing un/I             |                         |                  |          |        |
| Toxic organics, pg/L            | 22                      |                  |          |        |
| Benzene                         | 33                      | NA               | NA       | 4      |
| Carbon tetrachloride            | ND                      | NA               | NA       | N:     |
| 1,2-Dichloroethane              | ND                      | NA               | АЯ       | N:     |
| l,l,l-Trichloroethane           | 120                     | na               | NA       | N:     |
| 1,1-Dichloroethane              | 10                      | NA               | NA       | N:     |
| 1,1,2-Trichloroethane           | ND                      | NA               | NA       | N      |
| Chloroform                      | ND                      | NA<br>NA         | NA<br>NA | 17     |
| 1.1-Dichloroethylene            | <10                     |                  |          |        |
|                                 |                         | NA               | NA       | N      |
| 1,2-Trans-dichloroethylene      | ND                      | NA               | NA       | N      |
| 1,2-Dichloropropane             | ND                      | NХ               | NA       | N      |
| Ethylbenzene                    | ND                      | NA               | NA       | N      |
| Methylene chloride              | 26                      | NA               | NA       | N      |
| Dichlorobromomethane            | ND                      | NA               | NA       | 2      |
| Chlorodibromomethane            | ND                      | NA               | NA       | N      |
| Isophorone                      | ND                      | NA               | NA<br>NA | n<br>N |
|                                 | •                       |                  |          |        |
| Naphthalene                     | ND                      | NA               | NA       | N      |
| Nitrobenzene                    | ND                      | NA               | NA       | N      |
| Pentachlorophenol               | ND                      | NA               | NA       | N      |
| Phenol                          | ND                      | NA               | NA       | N      |
| Bis(2-ethylhexyl) phthalate     | 87,000                  | NA               | NA       | N      |
| Di-n-butyl phthalate            | 770                     | NA               | AN       | N      |
| Tetrachloroethylene             | 170                     | NA               | NA       | N      |
| Toluene                         | 580                     | NA.              | NA       | N      |
| Trichloroethylene               | 19                      | NA<br>NA         | NA       | N N    |
| 11 Tourot Occul Tane            | 19                      | TACA             | nn.      |        |
|                                 |                         |                  |          |        |
| classical and others            |                         |                  | ***      | _      |
| pH, pH units                    | 9.9                     | NA               | NA       | 6.     |
| BOD, mg/L                       | 73,000                  | NA               | NA       | <2.    |
| COD, mg/L                       | 270,000                 | NA               | NA       | 6.     |
| TOC, mg/L                       | 66,000                  | NA               | NA       | 5.     |
| Oil and grease, mg/L            | 1,500                   | NA               | NA       |        |
| Cyanide, ug/L                   | 540                     | NA               | NA       | < 2    |
| Total phenol, µg/L              | 510                     | NA<br>NA         | NA       | < 2    |
|                                 |                         |                  |          |        |
| TS, mg/L                        | 51,000                  | NA               | NA       | 20     |
| TDS, mg/L                       | 51,000                  | NA               | NA       | 19     |
| TSS, mg/L                       | 275                     | NA               | NA       |        |
| TVS, mg/L                       | 78,000                  | NA               | NA       | 9      |
| VSS, mg/L                       | 220                     | NA               | NA       | •      |
| Calcium, mg/L                   | <50                     | NA               | NA<br>NA | < 5    |
|                                 |                         |                  |          | • • •  |
| Magnesium, mg/L<br>Sodium, mg/L | 1,100                   | NA               | NA       | <15    |
|                                 |                         | NA               | NA       | - 15   |

aAll data from 1-batch sampling.

Date: 6/23/80

TABLE 13-13. WASTEWATER CHARACTERIZATION, PLANT 22 (INK) [2]

Category: Paint and Ink Formulation
Subcategory: Water and/or caustic rinse
Wastewater treatment description: Gravity separation, settling
and clarification, neutralization
Untreated wastewater flowrate, gpd: 1,000+

| Pollutant                         | Untreated<br>wastewater | Treated effluent | Sludge   | Intake   |
|-----------------------------------|-------------------------|------------------|----------|----------|
| Metals, ug/L                      |                         |                  |          |          |
| Silver                            | <10                     | <10              | NA       | <10      |
| Aluminum                          | 20,000                  | 600              | NA       | 5,000    |
| Arsenic                           | NA                      | NA               | NA       | N.A      |
| Barium                            | 20,000                  | 100              | NA       | 1,000    |
| Beryllium                         | <10                     | <10              | NA       | <10      |
| Cadmium                           | 90                      | <20              | NA       | < 20     |
| Cobalt                            | 900                     | <50              | NA       | <50      |
| Chromium                          | 10,000                  | <50              | NA       | 2,000    |
| Copper                            | 10,000                  | <60              | NA       | 300      |
| Iron                              | 30,000                  | <2,000           | NA       | < 2,000  |
| Mercury                           | NA                      | NA               | NA       | N.       |
| Manganese                         | 400                     | <50              | NA       | <50      |
| Molybdenum                        | 700                     | <50              | NA       | < 2,000  |
| Nickel                            | <50                     | <50              | NA       | < 50     |
| Lead                              | 90,000                  | <200             | NA       | 20,000   |
| Antimony                          | <25                     | <25              | NA       | <10      |
| Tin                               | <50                     | <50              | NA       | <50      |
| Titanium                          | 3,000                   | 3,000            | NA       | 300      |
| Thallium                          | <10                     | <10              | NA.      | <10      |
| Zinc                              | 1,000                   | 1,000            | NA.      | <60      |
|                                   | 2,000                   | 2,000            | 146      | 100      |
| Toxic organics, wg/L <sup>b</sup> |                         |                  |          |          |
| Benzene                           | 110                     | 96               | NA       | N!       |
| Carbon tetrachloride              | ND                      | ND               | NA.      | N!       |
| 1,2-Dichloroethane                | <5                      | ND               | NA       | <        |
| 1,1,1-Trichloroethane             | ND                      | ND               | NA<br>NA | N!       |
| 1,1-Dichloroethane                | ND                      | ND               | NA.      | N:       |
| 1,1,2-Trichloroethane             | ND                      | ND               | NA       | N:       |
| Chloroform                        | <b>&lt;5</b>            | ND               | NA<br>NA | 1        |
| 1,1-Dichloroethylene              | ND                      | ND               | NA<br>NA | NI<br>NI |
| 1,2-Trans-dichloroethylene        | ND                      | ND               |          | N        |
|                                   | •                       |                  | NA       |          |
| 1,2-Dichloropropane               | ND<br>2 400             | ND               | NA       | NI       |
| Ethylbenzene                      | 3,400                   | 2,400            | NA       | N:       |
| Methylene chloride                | 22.5                    | 29               | NA       | 3        |
| Dichlorobromomethane              | ND                      | ND               | NA       | N:       |
| Chlorodibromomethane              | 21.5                    | ND               | NA       | N:       |
| Isophorone                        | 22,000                  | 46               | NA       | N        |
| Naphthalene                       | 8.5                     | <10              | NA       | N        |
| Nitrobenzene                      | ND                      | ND               | NA       | N        |
| Pentachlorophenol                 | <5                      | ND               | NA       | 8.       |
| Phenol                            | <5                      | ND               | NA       | N        |
| Bis(2-ethylhexyl) phthalate       | <10                     | <10              | NA       | <        |
| Di-n-butyl phthalate              | <5                      | <10              | NA       | <        |
| Tetrachloroethylene               | 11                      | ND               | NA       | N        |
| Toluene                           | 1,800                   | 1,100            | NA       | <1       |
| Trichloroethylene                 | ND                      | ND               | NA       | N        |
| •                                 |                         |                  |          |          |
| lassical and others               |                         |                  |          |          |
| pH, pH units                      | 12.9                    | 12.5             | NA       | 8.       |
| BOD, mg/L                         | 2,100                   | 2,600            | NA       | <2.      |
| COD, mg/L                         | 32,000                  | 4,800            | NA       | 2        |
| TOC, mg/L                         | 4,000                   | 940              | NA       | ī        |
| Oil and grease, mg/L              | 2,400                   | 260              | NA       | _        |
| Cyanide, ug/L                     | 2,000                   | 600              | NA       | <4       |
| Total phenol, µg/L                | 330                     | 30               | NA       | < 2      |
| TS, mg/L                          | 23,000                  | 5,600            | NA       | 18       |
| TDS, mg/L                         | 21,000                  | 5,500            | NA<br>NA | 18       |
| TSS, mg/L                         | 1,600                   | 110              | NA.      | 10       |
| TVS, mg/L                         | 6,300                   | 200              | NA<br>NA | 2        |
| VSS, mg/L                         | 1,000                   | 47               | NA<br>NA | •        |
| Calcium, mg/L                     | 71                      | 4 /<br><50       | NA<br>NA | <5       |
|                                   | 13                      |                  |          | < 5      |
| Magnesium, mg/L                   |                         | 9                | NA       |          |
| Sodium, mg/L                      | 3,700                   | 450              | NA       | 2,30     |

aAll data from 1-batch sampling except as noted.

 $<sup>^{\</sup>mathrm{b}}$ Untreated wastewater data from 2-batch sampling.

TABLE 13-14. WASTEWATER CHARACTERIZATION, PLANT 23 (INK) [2]

Category: Paint and Ink Formulation
Subcategory: Water and/or caustic rinse
Wastewater treatment description: Gravity separation, settling
and clarification

Untreated wastewater flowrate, gpd: 1-100

| Pollutant                             | Untreated<br>wastewater | Treated effluent | Sludge   | Intake      |
|---------------------------------------|-------------------------|------------------|----------|-------------|
| Metals, pq/L                          |                         |                  |          |             |
| Silver                                | <5                      | NA               | NA       | <1          |
| Aluminum                              | 1,000                   | NA.              | NA       | <50         |
| Arsenic                               | NA                      | NA               | NA       | NA          |
| Barium                                | 500                     | NA               | AA       | 9           |
| Beryllium                             | <5                      | NA               | NA       | <1          |
| Cadmium                               | <10                     | NA               | NA       | < 2         |
| Cobalt                                | < 30                    | NA               | AN       | <5          |
| Chromium                              | <b>20</b> 0             | NA               | NA       | < 5         |
| Copper                                | 100                     | NA               | NA       | < 6         |
| Iron                                  | <900                    | NA               | NA       | <200        |
| Mercury                               | NA                      | NA               | NA       | NA          |
| Manganese                             | <30                     | NA               | NA       | < 5         |
| Molybdenum                            | 100                     | NA               | NA       | < 5         |
| Nickel                                | <30                     | NA               | NA       | < 5         |
| Lead                                  | 4,000                   | NA               | NA       | <20         |
| Antimony                              | < 25                    | AA               | NA       | NA<br>20    |
| Tin                                   | 200<br><80              | NA<br>NA         | NA       | 30<br><20   |
| Titanium                              |                         | NA               | NA<br>NA |             |
| Thallium                              | <10                     | NA<br>NA         | na<br>Na | NA<br><60   |
| Zinc                                  | 1,000                   | NA               | NA       | <b>10</b> 0 |
| Toxic organics, µg/L                  |                         |                  |          |             |
| Benzene                               | ND                      | NA               | NA       | ND          |
| Carbon tetrachloride                  | ND                      | NA               | NA       | ND          |
| 1,2-Dichloroethane                    | ND                      | NA               | NA       | ND          |
| 1,1,1-Trichloroethane                 | ND                      | NA               | NA       | ND          |
| 1,1-Dichloroethane                    | ND                      | NA               | NA       | ND          |
| 1,1,2-Trichloroethane                 | ND                      | NA               | NA       | ND          |
| Chloroform                            | <10                     | NA               | NA.      | 41          |
| 1,1-Dichloroethylene                  | ND                      | NA               | NA       | ND          |
| 1,2-Trans-dichloroethylene            | ND                      | NA               | NA.      | ND          |
| 1,2-Dichloropropane                   | ND                      | NA               | NA.      | ND          |
| Ethylbenzene                          | <b>N</b> D              | NA.              | NA<br>NA | ND<br>15    |
| Methylene chloride                    | ND<br>ND                | NA<br>NA         | na<br>Na | ND          |
| Dichlorobromomethane                  | ND                      | NA<br>NA         | NA<br>NA | ND<br>ND    |
| Chlorodibromomethane                  | ND                      | NA<br>NA         | NA<br>NA | <10         |
| Isophorone                            | 14                      | NA<br>NA         | NA.      | ND          |
| Naphthalene                           | ND                      | NA<br>NA         | NA<br>NA | ND          |
| Nitrobenzene                          | ND                      | NA<br>NA         | NA       | ND          |
| Pentachlorophenol Phenol              | <10                     | NA<br>NA         | NA<br>NA | ND          |
| Bis(2-ethylhexyl) phthalate           | <10                     | NA<br>NA         | NA.      | ND          |
| Di-n-butyl phthalate                  | <10                     | NA               | NA.      | ND          |
| Tetrachloroethylene                   | ND                      | NA               | NA.      | ND          |
| Toluene                               | 88                      | NA               | NA.      | <10         |
| Trichloroethylene                     | ND                      | NA               | NA       | ND          |
| Classical and others                  |                         |                  |          |             |
|                                       | 12.9                    | NA               | NA       | 7.2         |
| pH, pH units                          | 48                      | NA<br>NA         | NA       | <2.4        |
| BOD, mg/L                             | 190                     | NA<br>NA         | NA       | 24          |
| COD, mg/L                             | 46                      | NA               | NA<br>NA | 13          |
| TOC, mg/L                             | <1                      | NA<br>NA         | NA<br>NA | <1          |
| Oil and grease, mg/L<br>Cyanide, ug/L | 26                      | NA               | NA.      | <20         |
| Total phenol, µg/L                    | 47                      | NA<br>NA         | NA<br>NA | `20         |
|                                       | 1,100                   | NA               | NA       | 190         |
| TS, mg/L<br>TDS, mg/L                 | 980                     | NA<br>NA         | NA<br>AK | 180         |
|                                       | 120                     | NA<br>NA         | NA<br>NA | 6           |
| TSS, mg/L<br>TVS, mg/L                | 46                      | NA<br>NA         | NA<br>NA | 60          |
|                                       | NA                      | NA               | NA       | 5           |
| VSS, mg/L                             | ×25                     |                  | NA<br>NA | 29          |
| Calcium, mg/L                         | 3                       | NA<br>NA         | NA<br>NA | 7           |
| Magnesium, mg/L<br>Sodium, mg/L       | 3,700                   | NA<br>NA         | NA<br>NA | <15         |
| augium, mu/L                          | 31100                   | AA.              | AA       |             |

All data from 1-batch sampling.

II.13-24 Date: 6/23/80

#### II.13.4 POLLUTANT REMOVABILITY

Paint and ink plants treat wastewater in several ways. Generally the plants can reduce or reuse the wastewater, or release it with or without treatment. Because a majority of the plants release the wastewater into municipal sewage systems, treatment is often a function of the municipal restrictions on the plant.

### II.13.4.1 Reduction or Reuse of Wastewater

There are two widely used general strategies for reducing the amount of wastewater that paint and ink plants discharge to the environment. The first is to reduce the amount of wastewater generated; the second is to reuse as much wastewater as possible within plant processes. The amount of wastewater generated is influenced by the water pressure used for tank and equipment cleaning, the degree of cleaning required, and the use of dry cleaning techniques.

Several methods in use by some plants reduce the water usage. Cleaning a tank with a squeegee prior to a water rinse reduces the quantity of water needed to clean the tank. High pressure hoses can also clean a tank in less time using less water. Wastewater volume can also be reduced by eliminating or sealing floor drains, assuring that water will not be used to clean the floors. The use of these methods can significantly reduce the wastewater volume of a paint or ink plant.

Reuse of wash or rinse water is common in the paint and ink industry. Wash water can be transferred directly to a second tub or can be reused as makeup water. The paint industry often uses wash water for makeup in a batch of similar color paint. Ink plants reuse the rinse water from a caustic rinse as makeup for a caustic wash. These techniques can reduce raw material costs as well as treatment costs. Generally, reuse of wastewater is more prevalent in small plants than in larger ones.

#### II.13.4.2 Treatment Systems

Less than 26 percent of all paint plants and 15 percent of all ink plants practice any types of wastewater treatment. The majority of the plants that release wastewater discharge it to municipal sewage systems. Of the plants that discharge their wastewater to a municipal sewer, less than 40 percent of the paint plants and 33 percent of the ink plants pretreated the wastewater prior to discharge.

The most common methods used by paint and ink plants for treating or pretreating wastewater prior to disposal are gravity separation, settling, and neutralization. The paint industry also uses physical/chemical treatment. Few plants from either industry use biological treatment, and those that do usually have a combined

treatment plant for wastes from other plant processes. No paint or ink plants use advanced wastewater treatment methods such as activated carbon or ultrafiltration.

## Gravity Separation or Settling

Gravity separation or settling of paint and ink wastewater removes many of the suspended solids but leaves a supernatant layer that is high in solids and other pollutants. This treatment usually requires large areas to achieve a reasonable removal of solids.

## Neutralization

Neutralization is used to adjust the pH of the wastewater stream to levels necessary for other treatment steps. The pH adjustment can be made with the addition of either alkalies or acids depending on what pH is required. This technique can often significantly reduce the dissolved metals by precipitation.

## Physical/Chemical Treatment

Physical/chemical (P/C) treatment systems take advantage of the natural tendency of paint wastewater to settle. Most plants operate the treatment on a batch basis, collecting the wastewater in a holding tank. If necessary, the pH is adjusted to an optimal level, a coagulant (lime, alum, ferric chloride, or iron salts) and/or a coagulant aid is added and mixed, and the batch is allowed to settle (l to 48 hours). The supernatant is discharged and the sludge is treated as a solid waste. P/C removes some metals and some organic priority pollutants, and achieves a reduction in conventional pollutants.

## Biological Treatment

Biological treatment has been used as a secondary treatment (usually following P/C) at several paint plants. Most of the plants pretreat the raw wastewater and then combine it with other plant wastewater. Data from this treatment indicate that biological treatment in an aerated lagoon can reduce conventional, metal, and organic pollutant concentrations to low levels. Use of this technique can be practical for paint plants in rural areas that wish to further treat P/C effluent for both conventional and toxic pollutants.

Biological treatment at ink plants is probably not feasible due to the low flow (less than 1,000 gal/d) found in most ink plants.

## Potential Wastewater Treatment Systems

Other treatment systems which have been suggested for use in the paint and ink industry, but for which no data were available,

6/22/90 II.13-26

include ultrafiltration, carbon adsorption, reverse osmosis, steam stripping, dissolved air flotation, and sand filtration.

The following tables present data on several treatment processes. Table 13-15 shows the average effluent characteristics and removal efficiencies for batch physical/chemical treatment at several paint plants. Table 13-16 presents data from one paint plant that uses an aerated lagoon as a secondary treatment. Table 13-17 presents data from an ink plant that practices gravity separation, settling and clarification, and neutralization and shows average effluent concentrations and removal efficiencies.

#### II.13.5 REFERENCES

- Technical Study Report BATEA-NSPS-PRETREATMENT, Effluent Limitations Guidelines for the Paint Manufacturing Industry (draft contractor's report). Contract 68-01-3502, U.S. Environmental Protection Agency, Washington, D.C., January 1979.
- Technical Study Report BATEA-NSPS-PRETREATMENT, Effluent Limitations Guidelines for the Ink Manufacturing Industry (draft contractor's report). Contract 68-01-3502, U.S. Environmental Protection Agency, Washington, D.C., January 1979.
- 3. NRDC Consent Decree Industry Summary Paint and Ink Formulation.
- 4. Environmental Protection Agency Effluent Guidelines and Standards for Paint Formulating. 40CFR446; 40FR31723, July 28, 1975.
- 5. Environmental Protection Agency Effluent Guidelines and Standards for Ink Formulating. 40CFR447; 40FR31723, July 28, 1975.

TABLE 13-15. EFFLUENT CHARACTERISTICS AND REMOVALS FROM PAINT PLANTS WITH BATCH PHYSICAL/CHEMICAL TREATMENT SYSTEMS [1]

|                             | Average a       | Percent |        |
|-----------------------------|-----------------|---------|--------|
| Parameter                   | concentration a | Average | Mediar |
| Classical pollutants, mg/L  |                 |         |        |
| BOD                         | 5,600           | 35      | 21     |
| COD                         | 20,000          | 68      | 74     |
| TOC                         | 3,600           | 65      | 75     |
| Oil and grease              | 110             | 90      | 97     |
| Cyanide                     | 54              | 23      | 0      |
| Total solids                | 6,100           | 68      | 80     |
| TDS                         | 4,700           | 35      | 17     |
| TSS                         | 1,300           | 82      | 98     |
| TVS                         | 2,500           | 77      | 88     |
| Metals, µg/L                |                 |         |        |
| Silver                      | <10             | 14      | 0      |
| Beryllium                   | <10             | 19      | 0      |
| Cadmium                     | 30              | 31      | 0      |
| Chromium                    | 1,500           | 43      | 32     |
| Copper                      | 2,300           | 56      | 70     |
| Mercury                     | 400             | 68      | 93     |
| Nickel                      | 4,200           | 19      | 0      |
| Lead                        | 1,300           | 54      | 68     |
| Antimony                    | 30              | 11      | 0      |
| Thallium                    | 12              | 6       | Ō      |
| Zinc                        | 7,900           | 68      | 85     |
| Toxic organics, µg/L        |                 |         |        |
| Benzene                     | 740             | 54      | 65     |
| Carbon tetrachloride        | 65              | 75      | 100    |
| 1,2-Dichloroethane          | 40              | 61      | 84     |
| 1,1,1-Trichloroethane       | 95              | 39      | 30     |
| 1,1,2-Trichloroethane       | 540             | 62      | 100    |
| Chloroform                  | 390             | 50      | 57     |
| 1,1-Dichloroethylene        | 19              | 33      | 0      |
| 1,2-Dichloropropane         | 210             | 52      | 58     |
| Ethylbenzene                | 6,200           | 65      | 79     |
| Methylene chloride          | 5,500           | 54      | 67     |
| Naphthalene                 | 440             | 47      | 66     |
| Nitrobenzene                | 35              | 89      | 100    |
| Pentachlorophenol           | 48              | 59      | 96     |
| Phenol                      | 49              | 28      | 0      |
| Bis(2-ethylhexyl) phthalate | 35              | 60      | 86     |
| Di-n-butyl phthalate        | 180             | 88      | 99     |
| Tetrachloroethylene         | 190             | 70      | 100    |
| Toluene                     | 1,900           | 54      | 70     |
|                             | 80              | 51      | 62     |
| Trichloroethylene           | 80              | 21      | 02     |

Average of concentrations when detected.

II.13**-**28

Date: 6/23/80

TABLE 13-16. BIOLOGICAL TREATMENT BY AERATED LAGOON AT ONE PAINT PLANT [1]

|                                    |                      | <b>-</b> - 7.2  |        |           |
|------------------------------------|----------------------|-----------------|--------|-----------|
| Parameter                          | Untreated wastewater | P/C<br>effluent | Lagoon | Tap water |
|                                    | Wastewater           | CITICAL         | Dagoon | Tup water |
| Classical pollutantsb              |                      |                 |        |           |
| pHc                                | 7.4                  | 7.0             | 8.3    | 7.6       |
| BOD                                | >25,000              | 23,400          | 17     | <1        |
| COD                                | 70,000               | 260,000         | 675    | 10        |
| TOC                                | 7,500                | 25,000          | 200    | 4         |
| Total phenol                       | 1.2                  | 1.1             | 0.003  | <0.002    |
| TSS                                | 46,000               | 400             | 42     | <5        |
| Metals, μg/L                       |                      |                 |        |           |
| Silver                             | <10                  | <10             | <10    | <10       |
| Arsenic                            | 440                  | <100            | < 20   | 2.8       |
| Beryllium                          | 7                    | 2               | <1     | 2         |
| Cadmium                            | 130                  | 58              | < 2    | < 2       |
| Chromium                           | 1,500                | 100             | 9      | 7         |
| Copper                             | 260                  | 120             | 7      | 16        |
| Mercury                            | 1,010                | 140             | 0.1    | 0.1       |
| Nickel                             | 450                  | <5              | < 5    | <5        |
| Lead                               | 12,000               | 98              | < 20   | < 20      |
| Antimony                           | <1,000               | 170             | 30     | <2        |
| Selenium                           | <200                 | 400             | <200   | 20        |
| Thallium                           | <200                 | 100             | < 20   | < 2       |
| Zinc                               | 60,000               | 4,200           | <60    | <60       |
| Toxic organics, µg/L               |                      |                 |        |           |
| Benzene                            | 280                  | 200             | <10    | ND        |
| <pre>1,1,1-Trichloroethylene</pre> | 120                  | 560             | 22     | <10       |
| Chloroform                         | ND                   | 23              | ND     | 37        |
| Ethylbenzene                       | 730                  | ND              | ND     | ND        |
| Methylene chloride                 | 6,300                | 31,000          | 1,000  | 740       |
| Dichlorobromomethane               | ND                   | ND              | ND     | <10       |
| Chlorodibromomethane               | ND                   | ND              | ND     | <10       |
| Pentachlorophenol                  | <10                  | <10             | ND     | ND        |
| Phenol                             | <10                  | <10             | ND     | ND        |
| Bis(2-ethylhexyl) phthalate        | ND                   | ND              | <10    | <10       |
| Di-n-butyl phthalate               | <10                  | <10             | ND     | ND        |
| Tetrachloroethylene                | 110                  | 25              | ND     | ND        |
| Toluene                            | 290                  | 200             | ND     | ND        |

a Sampling was by EPA regional Surveillance and Analysis personnel without technical contractor or Effluent Guidelines representation.

bValues in mg/L except as noted.

CValues in pH units.

TABLE 13-17. TREATED WASTEWATER CONCENTRATIONS AND PERCENT REMOVALS FROM INK PLANT 22 [2]

|                             |                   | Average     |
|-----------------------------|-------------------|-------------|
|                             | Average           | percent     |
| Parameter                   | concentration     | removal     |
|                             |                   |             |
| Classical pollutants, mg/L  | b                 |             |
| pHa                         | 12.5 <sup>b</sup> | 0.0         |
| Oil and grease              | 260               | 89          |
| BOD                         | 2,600             | 87          |
| COD                         | 4,800             | 0           |
| TOC                         | 940               | 76<br>75    |
| Total solids                | 5,600             | 73<br>73    |
| TDS                         | 5,500<br>110      | 73<br>93    |
| TSS                         | 200               | 96          |
| TVS                         | 200               | 90          |
| Metals, µg/L                |                   |             |
| Cadmium                     | 20                | 78          |
| Chromium                    | < 50              | >99         |
| Copper                      | <60               | >99         |
| Lead                        | <200              | >92         |
| Zinc                        | 1,000             | _ ~         |
| Toxic organics, µg/L        |                   |             |
| Benzene                     | 96                | 56          |
| Ethylbenzene                | 2,400             | 64          |
| Methylene chloride          | 29                | 36          |
| Chlorodibromomethane        | ND                | > <b>92</b> |
| Isophorone                  | 46                | _           |
| Naphthalene                 | <10               | >41         |
| Pentachlorophenol           | ND                | >92         |
| Bis(2-ethylhexyl) phthalate | <10               | - c         |
| Di-n-butyl phthalate        | 10                |             |
| Tetrachloroethylene         | ND                | >99         |
| Toluene                     | 1,100             | 69          |
|                             |                   |             |

NOTE: Toxic pollutants not measured in either stream are not indicated.

aValue in pH units.

b The plant's neutralization system malunctioned during sampling.

<sup>&</sup>lt;sup>C</sup>Negligible removal.

d<sub>Negative removal.</sub>

#### II.14 PETROLEUM REFINING

#### II.14.1 INDUSTRY DESCRIPTION

### II.14.1.1 General Description

The petroleum refining industry in the United States, as defined by Standard Industrial Classification (SIC) Code 2911 of the U.S. Department of Commerce, produces a wide variety of intermediates and finished products. Table 14-1 summarizes information pertaining to the petroleum refining industry in terms of the number of subcategories, number of dischargers, pollutants and toxics found in significant quantities, number of toxic pollutants detected in raw wastewater and treated effluent, and candidate treatment and control technologies. Production of crude oil or natural gas from wells, natural gasoline production, other activities associated with such production (those covered under SIC Code 1311 for example), distribution activities (such as gasoline stations), and petroleum product transportation are not within the scope of SIC Code 2911, and they are therefore excluded from this study of the petroleum refining industry. Some other activities that are outside the scope of SIC Code 2911 are included because they are inherent to such integrated refinery operations as steam generation, hydrogen production, and soap manufacture for the production of greases, or they are part of refinery pollution control such as treatment of ballast water resulting from product transportation.

A petroleum refinery is a complex combination of interdependent operations engaged in the separation of crude molecular constituents, molecular cracking, molecular rebuilding and solvent finishing to produce the products listed under SIC Code 2911. The refining operations may be divided among general categories, where each category defines a group of refinery operations. The categories are storage and transportation, crude processes, coking processes, cracking and thermal processes, hydrocarbon processing, petrochemical operations, lube manufacturing processes, treating and finishing, asphalt production, and auxiliary activities [2].

### II.14.1.2 Subcategory Description

No subcategorization has yet been developed for BAT standards or toxic pollutant wastewater characteristics [4].

Industry: Petroleum Refining

Total Number of Subcategories: 1 (5 for BPT) Number of Subcategories Studied: 1 (5 for BPT)

Number of Dischargers in Industry:

|                       | 1973 [2] | 1976 [3]  | 1976 [4]   |
|-----------------------|----------|-----------|------------|
| • Direct: • Indirect: |          | 230<br>26 | 182<br>48. |
| • Zero:               |          |           | 55b        |
| • Total:              | 247      | 256       | 285        |

Pollutants and Toxics Found in Significant Quantities:

• For direct discharge: • For indirect discharge:

| BOD <sub>5</sub> | Cyanide   | Ammonia          |
|------------------|-----------|------------------|
| COD              | Pyrenes   | Sulfides         |
| TOC              | Phthalate | Oil and grease   |
| TSS              | esters    | Phenols          |
| Oil and          |           | Chromium         |
| grease           | <b>!</b>  | Zinc             |
| Ammonia          | nitrogen  | Cyanide          |
| Phenolic         | compounds | Pyrenes          |
| Sulfides         | •         | Phthalate esters |
| Chromium         | ı         |                  |

Number of Toxic Pollutants Found in:

• Raw wastewater: 40

• Treated effluent: 32

Candidate Treatment and Control Technologies:

• Recycle/reuse

Zinc

Powdered activated carbon

• Metals removal (precipitation)

Note: Blanks indicate data not available.

Date: 6/23/80

aSix of these refineries indicate intent to connect to POTW in the near future. Some of these refineries discharge only a portion of their wastewater to the POTW.

bSix of these refineries reported no wastewater generation.

Subcategories were previously developed for BPT using linear regression analysis on both refinery throughputs and process capacities. These subcategories are listed in Table 14-2 [2]. Wastewater characterization data for the total industry and for these subcategories are presented in the following section. The size and process factors developed are listed in Reference 2.

TABLE 14-2. SUBCATEGORIZATION OF THE PETROLEUM REFINING INDUSTRY FOR BPT REFLECTING SIGNIFICANT DIFFERENCES IN WASTE-WATER CHARACTERISTICS [2]

| Subcategory   | Basic refinery operations included                                                                                                                                                                                                      |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topping       | Topping and catalytic reforming whether or not the facility includes any other process in addition to topping and catalytic process.                                                                                                    |
|               | This subcategory is not applicable to facilities which include thermal processes (coking, visbreaking, etc.) or catalytic cracking.                                                                                                     |
| Cracking      | Topping and cracking, whether or not the facility includes any processes in addition to topping and cracking, unless specified in one of the subcategories listed below.                                                                |
| Petrochemical | Topping, cracking, and petrochemical operations, whether or not the facility includes any process in addition to topping, cracking, and petrochemical operations, except lube oil manufacturing operations.                             |
| Lube          | Topping, cracking, and lube oil manufacturing processes, whether or not the facility includes any process in addition to topping, cracking, and lube oil manufacturing processes, except petrochemical operations.                      |
| Integrated    | Topping, cracking, lube oil manufacturing processes, and petrochemical operations, whether or not the facility includes any processes in addition to topping, cracking, lube oil manufacturing processes, and petrochemical operations. |

The term "petrochemical operations" shall mean the production of second generation petrochemicals (i.e., alcohols, ketones, cumene, styrene, etc.) or first generation petrochemical and isomerization products (i.e., BTX, olefins, cyclohexane, etc.) when 15% or more of refinery production is as first generation petrochemicals and isomerization products.

#### II.14.2 WASTEWATER CHARACTERIZATION

## II.14.2.1 Industry Description

## Toxic Pollutants

Table 14-3 presents the number of values, ranges and concentrations (mass loadings were not available) of toxic pollutants found during a screening study at 17 petroleum refineries. Intake water, raw wastewater, and final effluent samples were taken for three consecutive 24-hr periods [4,5]. Raw wastewater has been defined in the petroleum refining industry as the effluent from the API separator, which is considered an integral part of refinery process operations for product/raw material recovery prior to final wastewater treatment [2]. The medians were developed from individual plant data. No assumptions were made as to sample locations for combining results. If sample "names" were not the same, the results were not combined to find medians.

### Conventional Pollutants

Table 14-4 presents the number of values, ranges, and median concentrations of conventional pollutants found during the screening study.

### Wastewater Flows

It is apparent that significant reductions in the volume of wastewater discharges have occured in this industry. At a number of refineries, less wastewater than that which formed the basis of BPT effluent limitations is being discharged. Not all plants are well operated from the standpoint of wastewater generation. However, a wastewater management policy can be instituted in many cases as a first step to reduce wastewater discharge. There is a potential for even further reduction of wastewater discharge through recycle techniques (i.e., reuse of treated effluent as cooling tower makeup).

The average wastewater flow is 28.3 gal of water per barrel of feedstock throughput [4].

#### II.14.2.2 Subcategory Wastewater Characterization

### Toxic Pollutants

No data are available to characterize wastewater by subcategories in the petroleum refining industry for toxic pollutants [4].

TABLE 14-3. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND DURING A SCREENING STUDY, IN PETROLEUM REFINING WASTEWATER [4,5] (µg/L)

|                             |              | Intake   |        | API                 | separator effl | uent   |                           | DAF effluent |        |
|-----------------------------|--------------|----------|--------|---------------------|----------------|--------|---------------------------|--------------|--------|
|                             | Number       |          |        | Number              |                |        | Number                    |              |        |
|                             | of<br>values |          |        | of h                |                |        | of b                      | _            |        |
| Toxic pollutants            | values       | Range    | Median | values <sup>b</sup> | Range          | Median | of<br>values <sup>b</sup> | Range        | Median |
| Metals and inorganics       |              |          |        |                     |                |        |                           |              |        |
| Antimony                    | 17           | <1-<25   | <25    | 10                  | <1-360         | <13    | 7                         | 1-<25        | <25    |
| Arsenic                     | 18           | 3-35     | <20    | 14                  | 3-480          | <20    | 7                         | <4-<20       | 20     |
| Asbestos                    | 4            |          | ND     | 3                   | ND~3.4         | ND     |                           |              |        |
| Beryllium                   | 85           | <1-<20   | <2     | 50                  | <1-<20         | <2     | 35                        | <1-<20       | <2     |
| Cadre 1 um _                | 85           | <1-<200  | <20    | 50                  | <1-<500        | <20    | 35                        | <1-<200      | <2     |
| Chromium                    | 85           | 1~3,000  | <24    | 58                  | 1-2,000        | <240   | 38                        | <5-2,000     | 270    |
| Copper <sup>C</sup>         | 86           | 1-300    | 10     | 54                  | 2-1,400        | 32     | 35                        | 3-400        | 9      |
| Cyanide                     | 52           | 10-60    | 20     | 36                  | <5-1,500       | <60    | 20                        | 10-3,000     | 45     |
| Lead                        | 88           | <1-700   | <60    | 54                  | 2-960          | <60    | 38                        | <15~<600     | <60    |
| Mercury <sup>C</sup>        | 70           | <0.1-7   | <0.5   | 53                  | <0.1-78        | 0.8    | 20                        | <0.1-1.1     | <0.    |
| Nickel <sup>C</sup>         | 88           | <1-790   | <50    | 53                  | <1-770         | <50    | 35                        | 1~<500       | <18    |
| Selenium                    | 23           | 2-<20    | <10    | 25                  | <4-<20         | 9      | 10                        | 5~<20        | <12    |
| Silver                      | 85           | <1-<250  | <25    | 50                  | <1-<250        | <25    | 30                        | <1-<250      | <2.    |
| Thallium <sup>C</sup>       | 34           | <1-<25   | <2     | 25                  | <1-<15         | <1     | 11                        | <1-<15       | <15    |
| Zinc                        | 90           | <1-2,800 | 62     | 66                  | 24-3,400       | 280    | 38                        | 30~3,000     | 91     |
| Pthalates                   |              |          |        |                     |                |        |                           |              |        |
| Bis(2-ethylhemyl) phthalate | 6            | ND~1.100 | 550    | 6                   | ND-700         | 300    | 1                         |              | 1,100  |
| Di-n-butyl phthalate        | 5            | ND~30    | 0.4    | 3                   | MD-1.3         | MD     | 2                         |              | ND     |
| Diethyl phthalate           | 2            |          | MD     | 2                   | ND-12          | 6      |                           |              |        |
| Dimethyl phthalate          | 3            | MD~20    | MD     | 2                   |                | MD     | 1                         |              | ND     |
| Phenols                     |              |          |        |                     |                |        |                           |              |        |
| 2-Chlorophenol              | 1            |          | ND     | 1                   |                | 315    |                           |              |        |
| 2,4-Dichlorophenol          | 1            |          | ND     | 1                   |                | MD     |                           |              |        |
| 2,4-Dinitrophenol           | 3            |          | ND     | 2                   | 110-11,000     | 5,600  | 1                         |              | 2,700  |
| 2,4-Dimethylphenol          | 9            |          | MD     | 5                   | ND-1,200       | >100   | 4                         | >100-18,000  | 6,000  |
| 2-Nitrophenol               | 1            |          | <1D    | 1                   |                | 1,400  |                           |              |        |
| 4-Nitrophenol               | 4            | MD-<10   | MD     | 2                   | 20-5,800       | 2,900  | 2                         | ND-1,400     | 700    |
| Pentachlorophenol           | 1            |          | ND     | 1                   |                | ND     |                           |              |        |
| Phenol                      | 14           | MD-10    | NED    | 10                  | 13-4,900       | 250    | 5                         | ND-34,000    | 1,900  |
| 4,6-Dinitro-o-cresol        | 1            |          | MD     | 1                   | ,              | 60     |                           |              |        |
| Parachlorometa cresol       | 3            |          | MD     | 1                   |                | ND     | 2                         |              | ND     |
| Aromatics                   |              |          |        |                     |                |        |                           |              |        |
| Benzene                     | 16           | ND-14    | <1     | 12                  | ND-2,400       | >100   | 4°                        | NTD~2,000    | >100   |
| 1,2-Dichlorobenzene         | 1            |          | <0.5   |                     | -              |        | 1                         |              | ND     |
| 1,4-Dichlorobenzene         | 1            |          | <0.5   |                     |                |        | 1                         |              | ND     |
| Ethylbenzene                | 10           |          | ND     | 9                   | ND-810         | >100   | 1                         |              | >100   |
| Toluene                     | 14           | ND-<10   | ND     | 10                  | ND-12,000      | >100   | 4                         | <10-76,000   | <100   |

TABLE 14-3 (continued)

| Toxic pollutants                               | Intake       |        |        | API separator effluent |                 |           | DAF effluent              |           |               |
|------------------------------------------------|--------------|--------|--------|------------------------|-----------------|-----------|---------------------------|-----------|---------------|
|                                                | Number       |        |        | Number                 |                 |           | Number                    |           |               |
|                                                | of<br>values | Range  | Median | of<br>values           | Range           | Median    | of<br>values <sup>b</sup> | Range     | Media         |
|                                                |              |        |        |                        |                 | _         | _                         |           |               |
| Polycrylic aromatic hydrocarbons               |              |        |        | 5                      | ND-520          | 37        | 2                         | 150-390   | 270           |
| Acenaphthene                                   | 2            | ND-29  | ND     |                        |                 | 41        |                           | 130-390   | 530           |
| Acenaphthylene                                 | 5            | MD-0 2 | HD     | 4                      | ND-660          |           | 1                         |           |               |
| Anthracene                                     | 2            |        | ND     | 1                      |                 | 660       | 1                         |           | 1,800         |
| Benzo(a)pyrene                                 | 2            | ND-33  | 17     | 1                      |                 | 190<br>20 | ,                         | ND-0.3    | ND            |
| Chrysene                                       | 8            | ND-49  | ND     | 5                      | 0.1-40<br>ND-40 | 8         | 3                         | MD-0.3    | ND.           |
| Fluoranthene                                   | 8            | ND-29  | ND     | 5                      |                 |           |                           | 110 405   | 300           |
| Fluorene                                       | 4            | ND-1   | ND     | 2                      | ND-270          | 140       | 2                         | 110-495   | 700           |
| Naphthalene                                    | 11           | ND-2   | ND     | 9                      | ND-3,200        | 302       | 3                         | 106-3,700 |               |
| Phenanthrene                                   | 11           | ND-160 | ND     | 8                      | 5-1,100         | 165       | 3                         | 50-1,800  | 600           |
| Pyrene                                         | 6            | ND-140 | <0.1   | 3                      | ND-16           | 11        | 1                         |           | 5             |
| Polychlorinated biphenyls and related compound |              |        |        |                        |                 |           |                           |           |               |
| Aroclar 1016                                   | 7            |        | ND     | 5                      | ND-40           | 19        | 3                         | 7 9-<10   | <10           |
| Aroclor 1221                                   | 7            |        | MD     | 4                      | ND-<10          | <5        | 2                         |           | <10           |
| Aroclor 1232                                   | 8            |        | MD     | 6                      | ND-<10          | 0.7       | 3                         | 3 5-<10   | <10           |
| Aroclor 1242                                   | 8            | ND-0.2 | ND     | 6                      | ND-<10          | 3.2       | 4                         | 0 2-<10   | <5            |
| Aroclor 1248                                   | 4            |        | ND     | 2                      |                 | <10       | 2                         |           | <10           |
| Aroclor 1254                                   | 4            |        | ND     | 2                      |                 | <10       | 2                         |           | <10           |
| Aroclor 1260                                   | 4            |        | ND     | 2                      |                 | <10       | 2                         |           | <10           |
| Halogenated aliphatics                         |              |        |        |                        |                 |           |                           |           |               |
| Carbon tetrachloride                           | 4            | ND->50 | <5     | 1                      |                 | ND        | 2                         | ND-<10    | < 5           |
| Chloroform                                     | <b>4</b> e   | ND-70  | <8     | 9                      | ND-100          | 10        | 2<br>1                    |           | 13            |
| Dichlorobromomethane                           | ì            |        | ND     | i                      |                 | 24        |                           |           |               |
| 1,2-Dichloroethane                             | 2            |        | ND     | 2                      | ND-16           | 8         |                           |           |               |
| 1,2-Trans-dichloroethylene                     |              | ND-11  | ND     | 3                      | ND-20           | ND        |                           |           |               |
| Methylene chloride                             | 10e          | ND-130 | <85    | 3<br>7e                | ND-1.600        | >100      | 3 <sup>e</sup>            | NTD-560   | 30            |
| 1.1 2.2-Tetrachloroethane                      | 2            | ND-<10 | <5     | 2                      | ,               | ND        |                           |           |               |
| Tetrachloroethylene                            | ã.           | ND-50  | <10    | 3                      | ND->50          | ND        | 1                         |           | ND            |
| 1,1,1-Trichloroethane                          | i            | 50     | <50    | -                      |                 |           |                           |           |               |
| Trichloroethylene                              | 2            | <10-20 | <15    | 1                      |                 | ND        | 1                         |           | ND            |
| Pesticides and metabolites                     |              |        |        |                        |                 |           |                           |           |               |
| Aldrin                                         | 2            |        | ND     | 2                      | <5-12           | <8        |                           |           |               |
| α-BHC                                          | 1            |        | ND     |                        |                 |           | 1                         |           | <10           |
| β−ВНС                                          | 3            |        | ND     | 1                      |                 | <5        | 1                         |           | < 5           |
| δ-BHC                                          | 2            |        | ND     | 2                      | <5-12           | <8        |                           |           |               |
| y-BHC                                          | ī            |        | ND     | -                      |                 | -         | 1                         |           | <5            |
| Chlordane                                      | ī            |        | 2.8    |                        |                 |           |                           |           |               |
| 4 . 4 ' -DDE                                   | i            |        | ND     | 1                      |                 | 7         |                           |           |               |
| 4.4'-DDD                                       | ī            |        | ND     | •                      |                 |           | 1                         |           | <5            |
| σ-Endosulfan                                   | ī            |        | ND     | 1                      |                 | ND        | i                         |           | ō             |
| β-Endosulfan                                   | ī            |        | ND     | i                      |                 | 13        | •                         |           |               |
| Endosulfan sulfate                             | î            |        | ND     | •                      |                 |           | 1                         |           | <5            |
| Heptachlor                                     | 2            |        | ND     | 1                      |                 | <5        | i                         |           | <b>&lt;</b> 5 |
| Heptachlor epoxide                             | 2            |        | ND     | 2                      | ND-<5           | <2.5      | •                         |           | \3            |
| (sophorone                                     | 2            |        | MD     | 1                      | MU-13           | 3,600     | 1                         |           | 2,500         |

TABLE 14-3 (continued)

|                                |              | Second API<br>parator efflue | int     |              | Third API<br>parator efflu | ent    |              | Fourth API<br>arator efflu | ent           |
|--------------------------------|--------------|------------------------------|---------|--------------|----------------------------|--------|--------------|----------------------------|---------------|
|                                | Number       |                              |         | Number       |                            |        | Number       |                            |               |
| Toxic pollutants               | of<br>values | Range                        | Median  | of<br>values | Range                      | Median | of<br>values | Range                      | Median        |
| Metals and inorganics          |              |                              |         |              |                            |        |              |                            |               |
| Metals and inorganics Antimony | 2            | <1-<25                       | <13     | 1            |                            | <1     | 1            |                            | 1             |
| Avenue 4 c                     | 2            | 5-<20                        | <12     | 1            |                            | 3      | 1            |                            | 3             |
| Nahaataa <sup>Q</sup>          | -            |                              | -       | -            |                            |        |              |                            |               |
| Beryllium <sup>c</sup>         | 10           | <1-<3                        | <2      | 5            | <1-<2                      | <2     | 5            | <1-<2                      | <2            |
| Cadnium                        | 10           | <1-<20                       | <20     | Š            | <1-<20                     | <20    | 5            | <1-<20                     | <20           |
| Chronium                       | 13           | 390-1,100                    | 780     | 8            | 350-1,200                  | 640    | 8            | 840~1.900                  | 1,400         |
| Copper                         | 10           | <1-69                        | <50     | 5            | 2-25                       | 16     | 5            | 10-77                      | 38            |
| Cyanide                        | 15           | 10-210                       | 10      | 3            |                            | 10     | š            | 50-60                      | 60            |
| Lead                           | 13           | 17-2,100                     | 190     | 5            | 2-120                      | <60    | 5            | 12-80                      | <60           |
| Hercury <sup>c</sup>           | 11           | 0.1-5.0                      | 0.6     | i            | <0.1-1.0                   | 0.6    | š            | 0.2-7.0                    | 1.            |
| Nickel <sup>c</sup>            | 10           | <1-69                        | <50 · 6 | 5            | <1-120                     | <50    | 5            | <1-<50                     | <50           |
| Seleniym <sup>c</sup>          | 6            | 5-<20                        |         | 4            | 6-31                       | 15     | 3            | 4-25                       | 18            |
| Cilma <sup>C</sup>             |              |                              | 13      |              |                            |        | :            | 2-<25                      | <25           |
| Thallium <sup>C</sup><br>Zinc  | 10           | <1-<25                       | <25     | 5            | 1-<25<br><1-<2             | <25    | •            | <1-<2                      | \\\25<br>\\\1 |
| Thailium                       | 5            | <1-<15                       | 3       | •            |                            | <1     | 4            |                            | 380           |
| Zinc                           | 13           | 290-2,100                    | 380     | 8            | 150-260                    | 230    | 8            | 260-620                    | 380           |
| Pthelates                      |              |                              |         |              |                            |        |              |                            |               |
| 8is(2-ethylhexyl) phthalate    | 1            |                              | 300     | 1            |                            | 50     | 1            |                            | 600           |
| Di-n-butyl phthalate           |              |                              |         |              |                            |        |              |                            |               |
| Diethyl phthalate              | 1            |                              | MD      | 1            |                            | MD     | 1            |                            | MD            |
| Dimethyl phthalate             | 1            |                              | MD      | 1            |                            | ND     | 1            |                            | MD            |
| Phenols                        |              |                              |         |              |                            |        |              |                            |               |
| 2-Chlorophenol                 |              |                              |         |              |                            |        |              |                            |               |
| 2,4-Dichlorophenol             |              |                              |         |              |                            |        |              |                            |               |
| 2.4-Dinitrophenol              |              |                              |         |              |                            |        |              |                            |               |
| 2,4-Dimethylphenol             | 2            | ND->100                      | <50     | 1            |                            | MD     | 1            |                            | 650           |
| 2-Witrophenol                  | -            |                              | 150     | -            |                            | _      | •            |                            |               |
| 4-Nitrophenol                  |              |                              |         |              |                            |        |              |                            |               |
| Pentachlorophenol              | 1            |                              | MD      | 1            |                            | ND     | 1            |                            | 850           |
| Phenol                         | 2            | >100-160                     | >130    | î            |                            | 140    | î            |                            | 16,000        |
| 4,6-Dinitro-o-cresol           | •            | >100-100                     | -130    | •            |                            |        | •            |                            | 10,000        |
| Parachlorometa cresol          |              |                              |         |              |                            |        |              |                            |               |
| Aromatics                      |              |                              |         |              |                            |        |              |                            |               |
| Benzene                        |              |                              |         |              |                            |        |              |                            |               |
| Benzene<br>1.2-Dichlorobenzene | 1            |                              | >100    |              |                            |        |              |                            |               |
|                                |              |                              |         |              |                            |        |              |                            |               |
| 1,4-Dichlorobensene            | _            |                              |         |              |                            |        |              |                            |               |
| Ethylbenzene                   | 1            |                              | >100    |              |                            |        |              |                            |               |
| Toluene                        | 1            |                              | >100    |              |                            |        |              |                            |               |

TABLE 14-3 (continued)

|                                                 | sep          | Second API<br>parator effl | uent   | sepa         | Third API rator effl | uent   | Бера                      | Fourth API<br>rator effl |        |
|-------------------------------------------------|--------------|----------------------------|--------|--------------|----------------------|--------|---------------------------|--------------------------|--------|
|                                                 | Number       |                            |        | Number       |                      |        | Number                    |                          |        |
| Toxic pollutants                                | of<br>values | Range                      | Median | of<br>values | Range                | Median | of<br>values <sup>b</sup> | Range                    | Mediar |
| Polycrylic aromatic hydrocarbons                |              |                            |        |              |                      |        |                           |                          |        |
| Acenaphthene                                    | 2            |                            | <1,500 | 1            |                      | ND     |                           |                          | 50     |
| Acenaphthylene                                  | 1            |                            | ND     |              |                      |        |                           |                          |        |
| Anthracene                                      |              |                            |        |              |                      |        |                           |                          |        |
| Benzo(a)pyrene                                  |              |                            |        |              |                      |        |                           |                          |        |
| Chrysene                                        | 2            | 2-30                       | 16     | 1            |                      | 50     | 1                         |                          | 40     |
| Fluoranthene                                    | 2            | ND-9                       | 5      | 1            |                      | NED    | 1                         |                          | 20     |
| Fluorene                                        | 2            | ND-300                     | 150    | 1            |                      | ND     | 1                         |                          | 80     |
| Naphthalene                                     | 2            | 280-350                    | 315    | 1            |                      | MD     | 1                         |                          | MD     |
| Phenanthrene                                    | 2            | ND-90                      | 45     | 1            |                      | NTD    | 1                         |                          | 230    |
| Pvrene                                          | 1            |                            | 7      |              |                      |        |                           |                          |        |
| oolychlorinated biphenyls and related compounds |              |                            |        |              |                      |        |                           |                          |        |
| Aroclor 1016                                    | 1            |                            | 0.2    | 1            |                      | MD     | 1                         |                          | MD     |
| Aroclor 122.                                    |              |                            |        |              |                      |        |                           |                          |        |
| Aroclor 1232                                    | 1            |                            | 0.5    | 1            |                      | ND     | 1                         |                          | MD     |
| Aroclor 1242                                    | 2            | ND-0.5                     | 0.3    | 1            |                      | ND     | 1                         |                          | ND     |
| Aroclor 1248                                    |              |                            |        |              |                      |        |                           |                          |        |
| Aroclor 1254                                    |              |                            |        |              |                      |        |                           |                          |        |
| Aroclor 1260                                    |              |                            |        |              |                      |        |                           |                          |        |
| Halogenated aliphatics                          |              |                            |        |              |                      |        |                           |                          |        |
| Carbon tetrachloride                            |              |                            |        |              |                      |        |                           |                          |        |
| Chloroform                                      | 1            |                            | 10     |              |                      |        |                           |                          |        |
| Dichlorobromomethane                            |              |                            |        |              |                      |        |                           |                          |        |
| 1,2-Dichloroethane                              |              |                            |        |              |                      |        |                           |                          |        |
| 1,2-Trans-dichloroethylene                      |              |                            |        |              |                      |        |                           |                          |        |
| Methylene chloride                              | 1            |                            | 50     |              |                      |        |                           |                          |        |
| 1,1,2,2-Tetrachloroethane                       |              |                            |        |              |                      |        |                           |                          |        |
| Tetrachloroethylene                             |              |                            |        |              |                      |        |                           |                          |        |
| 1,1,1-Trichloroethane Trichloroethylene         |              |                            |        |              |                      |        |                           |                          |        |
| Pesticides and metabolites                      |              |                            |        |              |                      |        |                           |                          |        |
|                                                 |              |                            |        |              |                      |        |                           |                          |        |
| Aldran                                          |              |                            |        |              |                      |        |                           |                          |        |
| α-BHC                                           |              |                            |        |              |                      |        |                           |                          |        |
| β-ВНС<br>В ВИС                                  |              |                            |        |              |                      |        |                           |                          |        |
| δ−BHC                                           |              |                            |        |              |                      |        |                           |                          |        |
| γ-BHC<br>Chlordane                              |              |                            |        |              |                      |        |                           |                          |        |
| Chlordane<br>4.4'-DDE                           |              |                            |        |              |                      |        |                           |                          |        |
|                                                 |              |                            |        |              |                      |        |                           |                          |        |
| 4,4'~DDD                                        |              |                            |        |              |                      |        |                           |                          |        |
| o-Endosulfan                                    |              |                            |        |              |                      |        |                           |                          |        |
| β-Endosulfan                                    |              |                            |        |              |                      |        |                           |                          |        |
| Endosulfan sulfate                              |              |                            |        |              |                      |        |                           |                          |        |
| Heptachlor                                      |              |                            |        |              |                      |        |                           |                          |        |
| Heptachlor epoxide                              |              |                            |        |              |                      |        |                           |                          |        |
| Isophorone                                      |              |                            |        |              |                      |        |                           |                          |        |

TABLE 14-3 (continued)

|                               | Fifth A      | PI separator e | ffluent | Bi           | opond influ | ent     |                           | ical plant eff | luent_         |
|-------------------------------|--------------|----------------|---------|--------------|-------------|---------|---------------------------|----------------|----------------|
|                               | Number       |                |         | Number       |             |         | Number                    |                |                |
| Toxic pollutants              | of<br>values | Range          | Median  | of<br>values | Range       | Median  | of<br>values <sup>b</sup> | Range          | Median         |
| detals and inorganics         |              |                |         |              |             |         |                           |                |                |
| Antimony                      | i            |                | <1      | 1            |             | <1      | 1                         |                | <25            |
| Arsenic                       | 1            |                | 9       | 1            |             | <2      | 1                         |                | <20            |
| Asbestos                      |              |                |         |              |             |         |                           |                |                |
| Bervllium -                   | 5            | <1-2           | <2      | 5            | <1-<2       | <2      | 5                         | (2-(3          | <2             |
| Cadmium                       | 8            | 4~<20          | <15     | 5            | <1-<20      | <20     | 5                         | <1-<20         | <20            |
| Chromium                      | 8            | 1,500~4,900    | 2,100   | 8            | 5-29        | <23     | 5                         | 500-800        | 680            |
| copper                        | 5            | 45~180         | 51      | 5            | 2-41        | 7       | 5                         | <4-13          | 7              |
| Cyanade                       | 3            |                | 20      | 3            | 220-340     | 260     | 3                         | <30-<60        | <60            |
| Lead                          | 5            | 2-160          | <60     | 5            | 3-72        | <60     | 5                         | <15-<60        | <60            |
| mercury                       | 7            | <0.1-2.0       | 0.5     | 3            | 2.0-6.0     | 3.0     | 5                         | <0.1-<0.5      | 0              |
| Nickel                        | 5            | 1-190          | <50     | 5            | <1-<50      | <50     | 5                         | <15-<50        | <50            |
| Selenium                      | 4            | 7-29           | 21      | 4            | 10-22       | 19      | 1                         |                | <20            |
| SILVER                        | 5            | <1-31          | <25     | 5            | <1-<25      | <25     | 5                         | <5-<25         | <b>&lt;2</b> 5 |
| Thallium <sup>C</sup><br>Zinc | 4            | <1-6           | <3      | 4            | <1-<2       | <1      | 1                         |                | <15            |
| Zinc                          | 8            | 420-760        | 560     | 4            | 54-150      | 60      | 5                         | 4,100-6,500    | 4,800          |
| Pthalates                     |              |                |         |              |             |         |                           |                |                |
| Bis(2-ethylhemyl) phthalate   | 1            |                | NED     | 1            |             | 210     |                           |                |                |
| Di-n-butyl phthalate          |              |                |         |              |             |         |                           |                |                |
| Diethyl phthalate             | 1            |                | ND      | 1            |             | MD      |                           |                |                |
| Dimethyl phthalate            | 1            |                | NTD     | 1            |             | NTD     |                           |                |                |
| Phenols                       |              |                |         |              |             |         |                           |                |                |
| 2-Chlorophenol                |              |                |         |              |             |         |                           |                |                |
| 2,4-Dichlorophenol            |              |                |         |              |             |         |                           |                |                |
| 2,4-Dinitrophenol             |              |                |         |              |             |         |                           |                |                |
| 2 4-Dimethylphenol            | 1            |                | ND      | 1            |             | 750     | 1                         |                | <100           |
| 2-Nitrophenol                 |              |                |         |              |             |         |                           |                |                |
| 4-Nitrophenol                 |              |                |         |              |             |         |                           |                |                |
| Pentachlorophenol             | 1            |                | ND      | 1            |             | ND      |                           |                |                |
| Phenol                        | 1            |                | NTD     | 1            |             | >12,000 | 1                         |                | 40             |
| 4,6-Dinitro-o-cresol          |              |                |         |              |             |         |                           |                |                |
| Parachlorometa cresol         |              |                |         |              |             |         | 1                         |                | 10             |
| Aromatics                     |              |                |         |              |             |         |                           |                |                |
| Benzene                       |              |                |         |              |             |         | ı                         |                | 90             |
| 1,2-Dichlorobenzene           |              |                |         |              |             |         |                           |                |                |
| 1,4-Dichlorobenzene           |              |                |         |              |             |         |                           |                |                |
| Ethylbenzene                  |              |                |         |              |             |         | 1                         |                | 20             |
| Toluene                       |              |                |         |              |             |         | 1                         |                | >100           |

TABLE 14-3 (continued)

|                                              | Fifth AP     | separator | effluent |              | pond infl | uent   |              | al plant e | ffluent |
|----------------------------------------------|--------------|-----------|----------|--------------|-----------|--------|--------------|------------|---------|
|                                              | Number       |           |          | Number       |           |        | Number       |            |         |
| Towic pollutants                             | of<br>values | Range     | Median   | of<br>values | Range     | Median | of<br>values | Range      | Median  |
| Polycrylic aromatic hydrocarbons             |              |           |          |              |           |        |              |            |         |
| Acenaphthene                                 | 1            |           | ND       | 1            |           | ND     | 1            |            | ND      |
| Acenaphthylene                               |              |           |          |              |           |        | 1            |            | ND      |
| Anthracene                                   |              |           |          |              |           |        |              |            |         |
| Benzo(a)pyrene                               |              |           |          |              |           |        |              |            |         |
| Chrysene                                     | 1            |           | ND       | 1            |           | ND     | 1            |            | <0      |
| Fluoranthene                                 | 1            |           | MD       | 1            |           | ND     | 1            |            | NED     |
| Fluorene                                     | 1            |           | ND       | 1            |           | ND     |              |            |         |
| Naphthalene                                  | 1            |           | MD       | 1            |           | ND     | 1            |            | 27      |
| Phenanthrene                                 | 1            |           | ND       | 1            |           | ND     | 1            |            | 1       |
| Pyrene                                       | _            |           |          | _            |           |        | ī            |            | 1       |
| Polychlorinated biphenyls and related compon | ಭಾರತ         |           |          |              |           |        |              |            |         |
| Aroclor 1016                                 | 1            |           | ND       | 1            |           | ND     | 1            |            | 1.3     |
| Aroclor 1221                                 |              |           |          |              |           |        | 1            |            | ND      |
| Aroclor 1232                                 | 1            |           | MD       | 1            |           | ND     | ī            |            | 0.3     |
| Araclar 1242                                 | ī            |           | ND       | î            |           | 0.1    | •            |            | •       |
| Aroclor 1248                                 | •            |           | ND.      | •            |           | 0.1    |              |            |         |
| Aroclor 1254                                 |              |           |          |              |           |        |              |            |         |
| Aroclor 1260                                 |              |           |          |              |           |        |              |            |         |
| KI OC 101 1200                               |              |           |          |              |           |        |              |            |         |
| Halogenated aliphatics                       |              |           |          |              |           |        |              |            |         |
| Carbon tetrachloride                         |              |           |          |              |           |        |              |            |         |
| Chloroform                                   |              |           |          |              |           |        | 1            |            | 10      |
| Dichlorobromomethane                         |              |           |          |              |           |        |              |            |         |
| 1,2-Dichloroethane                           |              |           |          |              |           |        |              |            |         |
| ., 2-Trans-dichloroethylene                  |              |           |          |              |           |        |              |            |         |
| Methylene chloride                           |              |           |          |              |           |        | 1            |            | <100    |
| 1,1,2,2-Tetrachloroethane                    |              |           |          |              |           |        | -            |            |         |
| Tetrachloroethylene                          |              |           |          |              |           |        |              |            |         |
| 1.1.1-Trichloroethane                        |              |           |          |              |           |        |              |            |         |
| Trichloroethylene                            |              |           |          |              |           |        |              |            |         |
| Pesticides and metabolites                   |              |           |          |              |           |        |              |            |         |
| Aldrin                                       |              |           |          |              |           |        |              |            |         |
| α-BHC                                        |              |           |          |              |           |        |              |            |         |
| 8-BHC                                        |              |           |          |              |           |        |              |            |         |
| 6-BHC                                        |              |           |          |              |           |        |              |            |         |
| Y-BHC                                        |              |           |          |              |           |        |              |            |         |
| Chlordane                                    |              |           |          |              |           |        |              |            |         |
| 4.4'-DDE                                     |              |           |          |              |           |        |              |            |         |
| 4.4'-DDD                                     |              |           |          |              |           |        |              |            |         |
|                                              |              |           |          |              |           |        |              |            |         |
| α-Endosulfan                                 |              |           |          |              |           |        |              |            |         |
| β-Endosulfan                                 |              |           |          |              |           |        |              |            |         |
| Endosulfan sulfate                           |              |           |          |              |           |        |              |            |         |
| Heptachlor                                   |              |           |          |              |           |        |              |            |         |
| Heptachlor epoxide                           |              |           |          |              |           |        | 1            |            | 4.6     |
| Isophorone                                   |              |           |          |              |           |        | -            |            |         |

TABLE 14-3 (continued)

|                             |           | tower blo | rdown  |              | eated efflue | nt     |                 | inal effluent |            |
|-----------------------------|-----------|-----------|--------|--------------|--------------|--------|-----------------|---------------|------------|
|                             | Number    |           |        | Number       |              |        | Number          |               |            |
| Toxic pollutants            | of values | Range     | Median | of<br>values | Range        | Median | of<br>values    | Range         | Media      |
| Metals and inorganics       |           |           |        |              |              |        |                 |               |            |
| Antimony                    | 1         |           | <25    | 1            |              | 1      | 17              | <1-<25        | <25        |
| Arsenic                     | 1         |           | 41     | 1            |              | 6      | 18              | <4-800        | <20        |
| Ashestos -                  |           |           |        |              |              |        | 4               |               | ND         |
| Beryllíum <sup>c</sup>      | 5         | <2-<3     | <2     | 5            | <1-<2        | <2     | 85              | <1-<3         | <2         |
| Cadmı um C                  | 5         | <1-<20    | <20    | 8            | 9-<20        | <18    | 86              | <1-20         | <20        |
| Chromium                    | 5         | 44-79     | 57     | 8            | 130-1,000    | 480    | 87              | 1-1,200       | 50         |
| Copper                      | 5         | 280-510   | 400    | 8            | 26-260       | 80     | 85              | 3-300         | 6          |
| Cyanide                     | 3         | 520-830   | 830    | 3            | 80-170       | 120    | 59              | <5-320        | <30        |
| Lead                        | 5         | <15-<60   | <60    | 5            | 17~330       | <60    | 87              | 2-210         | <60        |
| Mercury                     | 5         | 0.4-0.7   | 0.5    | 9            | 0.6~9.0      | 1.2    | 73              | <0.1-12.0     | <0         |
| Nickel                      | 5         | 64-130    | 88     | 8            | 6~<50        | <47    | 89              | <1-74         | 20         |
| Selenium                    | 1         |           | <10    | 4            | <6-15        | 9      | 31              | 3-32          | 19         |
| Silver                      | 5         | <5-<250   | <25    | 5            | <1-<25       | <25    | 84              | <1-<25        | <25        |
| Thallium                    | 1         |           | <15    | 4            |              | <1     | 32              | <1-<15        | 4<br>84    |
| Zinc <sup>e</sup>           | 5         | 230-450   | 340    | 9            | 440-4,800    | 780    | 92              | <10-1,300     | 84         |
| Pthalates                   |           |           |        |              |              |        |                 |               |            |
| Bis(2-ethylhexyl) phthalate |           |           |        | 1            |              | 900    | 6               | <10-2,000     | 450        |
| Di-n-butyl phthalate        |           |           |        |              |              |        | 6               | ND-10         | ND         |
| Diethyl phthalate           |           |           |        |              |              |        | 4               | ND-30         | 1          |
| Dimethyl phthalate          |           |           |        |              |              |        | 3               | ND-3          | ND         |
| Phenols                     |           |           |        |              |              |        |                 |               |            |
| 2-Chlorophenol              |           |           |        |              |              |        | 1               |               | MD         |
| 2,4-Dichlorophenol          |           |           |        |              |              |        | 1               |               | 10         |
| 2,4-Dinitrophenol           |           |           |        |              |              |        | 3               | /10           | NTD<br>NTD |
| 2,4-Dimethylphenol          |           |           |        |              |              |        | 10              | ND~<10        | NTD<br>OTM |
| 2-Nitrophenol               |           |           |        |              |              |        | 1               | ND~<10        | ND<br>ND   |
| 4-Nitrophenol               |           |           |        |              |              |        | 4               | MD-<10        | NID<br>CIN |
| Pentachlorophenol           |           |           |        |              |              |        | 1<br>15         | WD 410        | ND         |
| Pheno1                      |           |           |        | 1            |              | ND     |                 | ND-<10        | ND         |
| 4.6-Dinitro-o-cresol        |           |           |        |              |              |        | 1               | MD 10         |            |
| Parachlorometa cresol       |           |           |        |              |              |        | 3               | NTD-10        | <10        |
| Aromatics                   |           |           |        |              |              |        | e               |               |            |
| Benzene                     |           |           |        | 1            |              | NTD    | 12 <sup>e</sup> | ND-12         | <10        |
| 1,2~Dichlorobenzene         |           |           |        |              |              |        | 2               |               | ND         |
| l,4~Dichlorobenzene         |           |           |        |              |              |        | 2               |               | ND         |
| Ethylbenzene                |           |           |        | 1            |              | ND     | 9               | ND-<10        | ND         |
| Toluene                     |           |           |        |              |              |        | 13              | ND-35         | ND         |

TABLE 14-3 (continued)

|                                                 |              | tower bl | owdown |              | ated efflu | ent    |              | nal effluent | 1        |
|-------------------------------------------------|--------------|----------|--------|--------------|------------|--------|--------------|--------------|----------|
|                                                 | Number       |          |        | Number       |            |        | Number       |              |          |
|                                                 | of<br>values | _        |        | of<br>values | _          |        | of<br>values |              |          |
| Toxic pollutants                                | values       | Range    | Median | values       | Range      | Median | values       | Range        | Media    |
| Polycrylic aromatic hydrocarbons                |              |          |        |              |            |        |              |              |          |
| Acenaphthene                                    |              |          |        |              |            |        | 7            | ND-6         | ND       |
| Acenaphthylene                                  |              |          |        |              |            |        | 5            |              | ND       |
| Anthracene                                      |              |          |        |              |            |        | 2            |              | ND       |
| Benzo(a)pyrene                                  | 1            |          | 10     |              |            |        | 2            | 1 3-3        | 2.2      |
| Chrysene                                        | 1            |          | 7      |              |            |        | 9            | ND-1 4       | ND       |
| Fluoranthene                                    | 1            |          | MD     |              |            |        | 9            | ND-<0.1      | ND       |
| Fluorene                                        |              |          |        |              |            |        | 5            |              | ND       |
| Naphthalene                                     |              |          |        | 1            |            | MD     | 11           | ND-0.1       | ND       |
| Phenanthrene                                    | 1            |          | 2      | 1            |            | ND     | 12           | ND-1         | ND       |
| Pyrene                                          | 1            |          | 10     |              |            |        | 7            | ND-7         | <0.1     |
| Polychlorinated biphenyls and related compounds |              |          |        |              |            |        |              |              |          |
| Aroclor 1016                                    |              |          |        |              |            |        | 7            | ND-<10       | <10      |
| Aroclor 1221                                    | 1            |          | 0.1    |              |            |        | 7            | ND-<10       | <10      |
| Aroclor 1232                                    |              |          |        |              |            |        | 8            | ND-<10       | <5       |
| Aroclor 1242                                    |              |          |        |              |            |        | 9            | ND-<10       | ND       |
| Aroclor 1248                                    |              |          |        |              |            |        | 4            |              | <10      |
| Aroclar 1254                                    |              |          |        |              |            |        | 4            |              | <10      |
| Aroclor 1260                                    |              |          |        |              |            |        | 4            |              | <10      |
| Halogenated aliphatics                          |              |          |        |              |            |        |              |              |          |
| Carbon tetrachloride                            | 1            |          | ND     |              |            |        | 4            | ND-<10       | <10      |
| Chloroform                                      | -            |          | NO     | 1            |            | MD     | 4<br>8*      | ND-66        | MD       |
| Dichlorobromomethane                            |              |          |        | •            |            |        | ĭ            |              | MD       |
| 1,2-Dichloroethane                              |              |          |        | 1            |            | ND     | 2            | ND-<10       | <5       |
| 1,2-Trans-dichloroethylene                      |              |          |        | -            |            |        | 3            | MD-<10       | MD       |
| Methylene chloride                              | 1            |          | 70     | oe           |            |        | 3e           | ND->100      | <70      |
| 1,1,2,2-Tetrachloroethane                       | •            |          |        | •            |            |        | 2            | WD - 100     | <10      |
| Tetrachloroethylene                             |              |          |        |              |            |        | 4            | MD-<10       | <5       |
| 1,1,1-Trichloroethane                           | 1            |          | ND     |              |            |        | Ĭ            | MD10         | MD       |
| Trichloroethylene                               | •            |          | ~~     |              |            |        | 2            | MD-<10       | ۲,       |
| Pesticides and metabolites                      |              |          |        |              |            |        |              |              |          |
| Aldrin                                          |              |          |        |              |            |        | 2            |              | MD       |
| a-BHC                                           |              |          |        |              |            |        | ī            |              | MD       |
| В-ВНС                                           |              |          | 0.7    |              |            |        | ŝ            |              | MD       |
| ô-BHC                                           |              |          | 0.7    |              |            |        | 2            |              | MD       |
| Y-BHC                                           |              |          |        |              |            |        | 1            |              | ND       |
| Chlordane                                       | 1            |          | MD     |              |            |        | i            |              | MD.      |
| 4,4'-DDE                                        |              |          | Mυ     |              |            |        |              |              |          |
| 4,4'-000                                        |              |          |        |              |            |        | 1            |              | MD       |
| g-Endosulfan                                    |              |          |        |              |            |        | 1            |              | ND<br>ND |
| B-Endosulfan                                    |              |          |        |              |            |        | 1            |              |          |
| p-Engosulran<br>Endosulfan sulfate              |              |          |        |              |            |        | 1            |              | MD       |
| Heptachlor                                      |              |          |        |              |            |        | 1            |              | ND       |
| Heptachlor epoxide                              |              |          |        |              |            |        | 2            | ND-<5        | <2.5     |
|                                                 |              |          |        |              |            |        | 2            |              | MD       |
| Isophorone                                      |              |          |        |              |            |        | 2            |              | NE       |

Note- Blanks mean compound data not available or, if in "range" column, range is not defined.
ND - Not detected in sample.

avalues are corrected for blanks when blank values are reported.

bvalues include samples which contained non-detectable quantities.

Cvalues include 3-day composite samples.

dunits of million fibers per liter.

<sup>&</sup>lt;sup>e</sup>Not all values counted because values in blanks greater than values in sample(s).

TABLE 14-4. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND DURING A SCREENING STUDY IN PETROLEUM REFINING WASTEWATER [4]

|                           |                        | Intake            |        | AP                     | I separator eff | luent  |                        | DAF effluent     |             |
|---------------------------|------------------------|-------------------|--------|------------------------|-----------------|--------|------------------------|------------------|-------------|
| Pollutant                 | Number<br>of<br>values | Range             | Median | Number<br>of<br>values | Range           | Median | Number<br>of<br>values | Range            | Median      |
| BOD <sub>5</sub> , a mg/L | 40                     | <1 - 42           | <3     | 25                     | 20 ~ 320        | 79     | 21                     | 36 - 280         | 120         |
| COD, mg/L                 | 49                     | 1 - 350           | 16     | 28                     | 91 - 860        | 330    | 21                     | 150 - 1,200      | 440         |
| TOC, mg/L                 | 48                     | 1 - 110           | 10     | 25                     | 25 - 240        | 88     | 21                     | 39 - 360         | 110         |
| TSS, mg/L                 | 51                     | <1 - 290          | 9      | 30                     | 10 - 490        | 68     | 21                     | 7 - 380          | 37          |
| Ammonia, mg/L             | 49                     | <1 - 68           | <í     | 28                     | 1 - 52          | 12     | 21                     | 5.3 - 40         | 12          |
| Cr+6 mg/L                 | 48                     | <0.02 - 0.25      | <0.02  | 27                     | <0.02 - 7       | 0.02   | 21                     | <0.02 - 0.75     | <0.02       |
| $S^{-2}$ , mg/L           | 50                     | <0.1 - 1.6        | 0.3    | 27                     | 0.02 - 7        | 4.1    | 18                     | 0.4 - 30         | 1.5         |
| Oil and grease, mg/L      | 27                     | 2 - 31            | 8      | 17                     | 24 - 150        | 51     | 12                     | 10 - 590         | 18          |
| pH                        | 44                     | 6.3 - 9.0         | 7.7    | 28                     | 5.7 - 11        | 8.6    | 17                     | 6.9 - 10.4       | 8.2         |
| Cyanides, mg/L            | 51                     | <0.005 - <0.10    | <0.02  | 32                     | <0.005 - 1.5    | 0.05   | 20                     | 0.01 - 3.0       | 0.04        |
| Phenols, mg/L             | 51                     | <0.0001 - 0.21    | <0.005 | 32                     | <0.003 - 1.3    | 2.8    | 21                     | 0.7 - 110        | 11          |
| BOD <sub>5</sub> , mg/L   | 29                     | <1 - 52           | <3     | 16                     | <15 - 280       | 90     | 19                     | 25 - <360        | <120        |
| BOD <sub>5</sub> °, mg/L  | 12                     | <1 - 35           | `4     | 16                     | 39 - 260        | 82     | 7                      | 34 - 250         | 80          |
| Flow, MGD                 | 18                     | 1.5 - 35          | 4      | 10                     | 3 - 18          | 4.1    | 4                      | 1.8 - 5.4        | 1.8         |
|                           |                        | Second API        |        |                        | Third API       |        |                        | Fourth API       | <del></del> |
|                           |                        | separator effluen | t      |                        | separator efflu | ent    | 9                      | eparator effluer | ıt          |
| BOD <sub>5</sub> a, mg/L  | 4                      | 32 - 85           | >42    | 2                      | 15 - 20         | 18     | 2                      | 70 - >80         | >75         |
| COD, mg/L                 | 6                      | 170 - 690         | 260    | 3                      | 160 - 660       | 180    | 3                      | 270 - 430        | 310         |
| FOC, mg/L                 | 6                      | 46 - 230          | 57     | 3                      | 45 - 230        | 52     | 3                      | 58 <b>- 9</b> 7  | 66          |
| rss, mg/L                 | 5                      | 36 - 200          | 64     | 3                      | 38 - 110        | 62     | 3                      | 26 - 94          | 36          |
| Ammonia, mg/L             | 6                      | 7.8 - 15          | 8.7    | 3                      | 3.0 - 8.4       | 6.2    | 3                      | 3 - 8.4          | 7.3         |
| Cr+6, mg/L                | 6                      | <0.02 - 0.05      | <0.02  | 3                      |                 | 0.02   | 3                      | <0.02 - 0.05     | <0.02       |
| $S^{-2}$ , $mg/L$         | 6                      | 0.8 - 15          | 3.6    | 3                      | 1.8 - 15        | 5.3    | 3                      | 5.1 - 9.1        | 6.8         |
| Dil and grease, mg/L      | 3                      | 84 - 250          | 140    | 3                      | 23 - 250        | 25     | 3                      | 34 - 150         | 65          |
| oH                        | 6                      | 6.3 - 8.4         | 8.2    | 3                      | 7.3 - 8.2       | 7.4    | 3                      | 7.6 - 7.8        | 7.7         |
| Cyanides, mg/L            | 6                      | 0.01 - 0.21       | 0.05   | 3                      | 0               | 0.01   | 3                      | 0.05 - 0.06      | 0.06        |
| Phenols, mg/L             | 5                      | 1 - 22            | 2.1    | 3                      | 0.27 - 1.3      | 0.69   | 3                      | 1.5 - 9.5        | 2.0         |
| BOD <sub>5</sub> C, mg/L  | 3                      | 31 - 42           | 38     | -                      |                 |        | -                      |                  |             |
| BOD5, mg/L                | 6                      | 34 - >84          | >42    | 3                      | 22 - >84        | 58     | 3                      | 55 - 100         | 60          |
| Flow, MGD                 | 3                      | 5.0 - 7.2         | 5.4    | 3                      | 0.42 - 0.46     | 0.44   | -                      |                  |             |

Date: 6/5/79 (continued)

TABLE 14-4 (continued)

|                                      |        | API separator ef | fluent |        | Biopond influen | t      |        | ical plant efflu | ient   |
|--------------------------------------|--------|------------------|--------|--------|-----------------|--------|--------|------------------|--------|
|                                      | Number |                  |        | Number |                 |        | Number |                  |        |
|                                      | of     | _                |        | of     | _               |        | of     | _                |        |
| Pollutant                            | values | Range            | Median | values | Range           | Median | values | Range            | Median |
| BOD <sub>5</sub> <sup>a</sup> , mg/L | 2      | 10 - 12          | 11     | 1      |                 | >84    |        |                  |        |
| COD, mg/L                            | 3      | 83 - 92          | 75     | 3      | 480 - 610       | 570    | 3      | 240 - 810        | 340    |
| TOC, mg/L                            | 3      | 22 - 31          | 23     | 3      | 50 - 120        | 100    | 3      | 69 - 240         | 93     |
| TSS, mg/L                            | 3      | 16 - 48          | 26     | 3      | 16 - 24         | 18     | 3      | 78 - 40          | 36     |
| Ammonia, mg/L                        | 3      | <1 - 2.0         | 1.0    | 3      | 20 - 24         | 22     | 3      | <1.0 - 2.0       | 1.1    |
| Cr+6, mg/L                           | 3      | 0.09 - 0.14      | 0.13   | 3      | 0.08 - 0.10     | 0.08   | 3      |                  | <0.02  |
| $S^{-2}$ , mq/L                      | 3      | <0.1 - 12        | 1.0    | 3      | 3.5 - 49        | 14     | 3      | 0.7 - 0.9        | 0.9    |
| Oil and grease, mg/L                 | 3      | 7 ~ 25           | 9      | 3      | 9 - 20          | 11     |        |                  |        |
| pH <sub>d</sub>                      | 3      | 7.1 - 8.1        | 8.1    | 3      | 7.4 - 7.9       | 7.7    | 3      | 6.6 - 68         | 6.7    |
| Cyanides, mg/L                       | 3      |                  | 0.02   | 3      | 0.22 - 0.34     | 0.26   | 3      | <0.02 - <0.10    | <0.05  |
| Phenols, mg/L                        | 3      | 0.214 - 0.294    | 0.246  | 3      | 83 - 120        | 110    | 3      | 0.062 - 0.073    | 0.068  |
| BOD <sub>5</sub> b, mg/L             |        |                  |        |        |                 |        | 1      |                  | 34     |
| BOD 5°, mg/L                         | 3      | 10 - 18          | 10     | 1      |                 | >84    | 2      | 74 - 140         | 110    |
| Flow, MGD                            |        |                  |        |        |                 |        | 3      | 0.8 - 0.95       | 0.9    |
|                                      |        |                  |        |        |                 |        |        |                  |        |
|                                      | Coc    | ling tower blowd | own    |        | Treated effluen | t      |        | Final effluent   |        |
| BOD <sub>5</sub> <sup>a</sup> , mg/L | 3      | 25 - 130         | 47     | 3      | 28 - 40         | 34     | 43     | <1 - 210         | <10    |
|                                      | 3      | 210 - 350        | 300    | 3      | 120 - 130       | 130    | 48     | 28 - 820         | 120    |
| COD, mg/L                            | 3      | 62 - 95          | 78     | 3      | 38 - 44         | 41     | 47     | 7 - 290          | 36     |
| TOC, mg/L                            | 3      | 64 - 80          | 76     | 3      | 18 - 28         | 20     | 47     | 2 - 110          | 21     |
| TSS, mg/L                            | 3      | 3.9 - 19         | 10     | 3      | 4.5 - 8.4       | 5.6    | 48     | <1 - 53          | 5.0    |
| Ammonia, mg/L                        | 3      | 0.05 - 0.41      | 0.09   | 3      | 4.5 - 6.4       | <0.02  | 45     | 0.01 - 0.11      | <0.02  |
| Cr <sup>+6</sup> , mg/L              | 3<br>2 | <0.1 - 1.0       | <0.05  | 3      | 0.2 - <0.5      | <0.5   | 49     | <0.1 - 2.1       | 0.02   |
| S-2, mg/L                            | 2      | VO.1 - 1.0       | \U.UJ  | 3      | 8 - 15          | 11     | 27     | 3 - 53           | 13     |
| Oil and grease, mg/L                 | 2      | 6.8 - 7.1        | 7.3    | 3      | 7.6 - 7.8       | 7.7    | 48     | 6.9 - 8.8        | 7.7    |
| pH                                   | 3      | 0.02 - 0.83      | 0.68   | 4      | 0.05 - 0.17     | 0.10   | 53     | <0.005 - 0.80    | <0.03  |
| Cyanides, mg/L                       | 4      | 0.02 - 0.03      | 0.048  | 3      | <0.001 - 0.016  | <0.001 | 49     | <0.003 - 0.000   | 0.013  |
| Phenols, mg/L                        | 3      | 36 - >160        | 42     | J      | \0.001 - 0.018  | \0.001 | 43     | (0.001 - 0.000   | 0.013  |
| BOD <sub>5</sub> c, mg/L             | 3      | 30 - 7160        | 42     |        |                 |        | 38     | <1 - 92          | 7      |
| BOD <sub>5</sub> , mg/L              |        |                  | 0.17   | 2      | 0.074 - 0.153   | 0.085  | 38     | 0.017 - 17.6     | 2.27   |
| Flow, MGD                            | 1      |                  | 0.17   | 3      | 0.0/4 - 0.153   | 0.085  | 38     | 0.017 - 17.8     | 2.21   |

aSeed from domestic sewage treatment plant.

b<sub>Seed</sub> from refinery final effluent.

<sup>&</sup>lt;sup>C</sup>No seed.

## Conventional Pollutants

Table 14-5 presents ranges and median concentrations in waste-water of conventional pollutants for the petroleum refining industry subcategories. BOD<sub>5</sub>, COD, TOC, oil and grease, ammonia as nitrogen, phenolic compounds, sulfide, chromium, and TSS have been selected as significant pollutant parameters [2,3].

Table 14-6 presents the number of plants, ranges, and median concentrations in wastewater for conventional pollutants for indirect discharges from the topping and cracking subcategories of petroleum refining. The available data were not sufficient for the other subcategories. These data tend to confirm that there are no significant differences in raw wastewater characteristics (flow, and conventional and classical pollutants) for indirect dischargers and for the petroleum refining industry as a whole, and further analysis confirmed this [3].

Table 14-7 presents ranges and median loadings in raw wastewater of conventional pollutants for the petroleum refining industry subcategories [2].

### Wastewater Flows

Table 14-8 presents the median flows for the petroleum refining industry subcategories [2,4].

#### II.14.3 PLANT SPECIFIC DESCRIPTIONS

Screening studies were undertaken to do the following (a) analyze for the presence of the 129 toxic pollutants in the plants' intake water sources, (b) analyze the plants' raw wastewaters to determine the net production of toxic pollutants as a result of refinery process operations, and (c) analyze the plants' final effluents for the presence of toxic pollutants and to determine an indication of the removal efficiencies of BPT-type wastewater treatment systems for these pollutants.

The screening studies were conducted by the Robert S. Kerr Environmental Research Laboratory (RSKERL) and Burns and Roe (B&R). The details of how the plants were selected in both studies are available in Reference 4. The combined studies sampled 17 refineries, at which intake water, raw wastewater, and final effluent samples were collected for three consecutive 24-hr periods. Preserved samples were analyzed by the following laboratories:

(1) (EPA) Robert S. Kerr Environmental Research Laboratory (RSKERL), Ada, Oklahoma -- metals, cyanides, phenolics, mercury

TABLE 14-5. RAW WASTEWATER CHARACTERIZATION BY SUBCATEGORY IN PETROLEUM REFINING [2,3] (mg/L)

|                      |          | pping<br>category | Crac)<br>subcate |        | Petroch   |       |
|----------------------|----------|-------------------|------------------|--------|-----------|-------|
| Characteristics      | Range    |                   | Range            | Median | Range     | Media |
| BOD <sub>5</sub>     | 10 - 5   | 0 23.3            | 30 ~ 600         | 138    | 50 - 800  | 144   |
| COD                  | 50 - 1   | 50 107            | 150 - 400        | 383    | 300 - 600 | 418   |
| TOC                  | 10 - 5   | 0 20              | 50 ~ 500         | 66.3   | 100 - 250 | 135   |
| TSS                  | 10 - 4   | 0                 | 10 - 100         |        | 50 - 200  |       |
| Nitrogen, ammonia as | 0.05 - 2 | 0 2.72            | 0.5 - 200        | 28.6   | 4 - 300   | 42.1  |
| Phenolic compounds   | 0 - 2    | 00 0.80           | 0 - 100          | 6.04   | 0.5 - 50  | 10.0  |
| Sulfides             | 0 - 5    | 0.240             | 0 - 400          | 1.24   | 0 - 200   | 176   |
| Oil and grease       | 10 - 5   | 0 25              | 15 - 700         | 52.8   | 20 - 250  | 44.9  |
| Notal chromium       | 0 - 3    | 0                 | 0 - 6            | 0.109  | 0 - 5     | 0.47  |
|                      | Lube     |                   | Integ            | rated  |           |       |
|                      | sub      | category          | subcate          | egory  |           |       |
| BOD 5                | 100 - 7  | 00                | 100 - 800        | 114    |           |       |
| COD                  | 400 - 7  | 00                | 300 - 600        | 261    |           |       |
| TOC                  | 100 - 4  | 00                | 50 - 500         | 51.5   |           |       |
| TSS                  | 80 - 3   | 00                | 20 - 200         |        |           |       |
| Nitrogen, ammonia as | 1 - 1    | .20               | 1 - 250          | 14.5   |           |       |
| Phenolic compounds   | 0.1 - 2  | :5                | 0.5 - 50         | 2.25   |           |       |
| Sulfides             | 0 - 4    | 0                 | 0 - 60           | 1.24   |           |       |
| Oil and grease       | 40 - 4   | 00                | 20 - 500         | 44.1   |           |       |
| Total chromium       | 0 - 2    |                   | 0 - 2            | 0.272  |           |       |

TABLE 14-6. RAW WASTEWATER CHARACTERIZATION BY SUBCATEGORY IN PETROLEUM REFINING FOR INDIRECT DISCHARGERS [3]

|                      |                        | Topping subcategory | Cracking<br>subcategory |                        |             |        |
|----------------------|------------------------|---------------------|-------------------------|------------------------|-------------|--------|
| Characteristics      | Number<br>of<br>plants | Range               | Median                  | Number<br>of<br>plants | Range       | Median |
| Flow, MGD            | 6                      | 0.006 - 0.258       | 0.127                   | 11                     | 0.80 - 4.42 | 1.34   |
| BODs, mg/L           | 1                      | 205 - 323           | _a                      | 5                      | 38 - 756    | 75     |
| COD, mg/L            | 6                      | 71 - 905            | 275                     | 7                      | 179 - 5,970 | 463    |
| Ammonia, mg/L        | 5                      | 0.617 - 127         | 34.0                    | 9                      | 3.2 - 1,130 | 21.4   |
| Phenolics, mg/L      | 6                      | <0.05 - 63.4        | <1.96                   | 11                     | 0.19 - 213  | 10.5   |
| Sulfides, mg/L       | 6                      | <0.01 - 75.3        | <0.05                   | 10                     | 0 - 51.6    | 0.9    |
| Oil and grease, mg/L | 6                      | 0.8 - 195           | 32                      | 10                     | 2 - 160     | 40     |
| Total chromium, mg/L | Ğ                      | <0.005 - 8          | <0.62                   | 9                      | 0.3 - 330   | 0.844  |

a Insufficient data.

TABLE 14-7. RAW WASTEWATER LOADINGS IN NET KILOGRAMS/1,000 m3 OF FEEDSTOCK THROUGHOUT BY SUBCATEGORY IN PETROLEUM REFINING [2]

|                   | Topping<br>subcategor | Y      | Cracking<br>subcatego | -                         | Petrochem<br>subcatego |        |
|-------------------|-----------------------|--------|-----------------------|---------------------------|------------------------|--------|
| Characteristics   | Range                 | Median | . Range <sup>b</sup>  | Median                    | Range <sup>b</sup>     | Median |
| Flow <sup>C</sup> | 8.00 - 558            | 66.6   | 3.29 - 2,750          | 93.0                      | 26.6 - 443             | 109    |
| BOD <sub>5</sub>  | 1.29 - 217            | 3.43   | 14.3 - 466            | 72.9                      | 40.9 - 715             | 172    |
| COD               | 3.43 - 486            | 37.2   | 27.7 - 2,520          | 217                       | 200 - 1,090            | 463    |
| TOC               | 1.09 - 65.8           | 8.01   | 5.43 - 320            | 41.5                      | 48.6 - 458             | 149    |
| TSS               | 0.74 - 286            | 11.7   | 0.94 - 360 ]          | 18.2                      | 6.29 - 372             | 48.6   |
| Sulfides          | 0.002 - 1.52          | 0.054  | $0.01 - 39.5^{d}$     | 18.2<br>0.94 <sup>d</sup> | 0.009 - 91.5           | 0.86   |
| Oil and grease    | 1.03 - 88.7           | 8.29   | 2.86 - 365            | 31.2                      | 12.0 - 235             | 52.9   |
| Phenols           | 0.001 - 1.06          | 0.034  | 0.19 - 80.1           | 4.00                      | 2.55 - 23.7            | 7.72   |
| Ammonia           | 0.077 - 19.5          | 1.20   | 2.35 - 174            | 28.3                      | 5.43 - 206             | 34.3   |
| Chromium          | 0.0002 - 0.29         | 0.007  | 0.0008 ~ 4.15         | 0.25                      | 0.014 - 3.86           | 0.234  |
|                   | Lube                  |        | Integrate             | ed                        |                        |        |
|                   | subcategor            | У      | subcatego             |                           |                        |        |
| Flow <sup>C</sup> | 68.6 - 772            | 117    | 40.0 - 1.370          | 235                       |                        |        |
| BOD <sub>5</sub>  | 62.9 - 758            | 217    | 63.5 - 615            | 197                       |                        |        |
| COD               | 166 - 2.290           | 543    | 72.9 - 1.490          | 329                       |                        |        |
| TOC               | 31.5 - 306            | 109    | 28.6 - 678            | 139                       |                        |        |
| TSS               | 17.2 - 312            | 71.5   | 15.2 - 226            | 59.1                      |                        |        |
| Ammonia           | 6.5 - 96.2            | 24.1   |                       |                           |                        |        |
| Phenols           | 4.58 - 52.9           | 8.29   | $0.61 - 22.6_{d}$     | 3.78.                     |                        |        |
| Sulfides          | 0.00001 - 20.0        | 0.014  | $0.52 - 7.87^{d}$     | $\frac{3.78}{2.00}$ d     |                        |        |
| Oil and grease    | 23.7 - 601            | 120    | 20.9 - 269            | 74.9                      |                        |        |
| Chromium          | 0.002 - 1.23          | 0.046  | 0.12 - 1.92           | 0.49                      |                        |        |

aAfter refinery API separator.

bProbability of occurrence less than or equal to 10% or 90% respectively.

 $<sup>^{\</sup>rm c}$ 1,000 m<sup>3</sup>/1,000 m<sup>3</sup> of feedstock throughput.

d<sub>Sulfur.</sub>

TABLE 14-8. SUBCATEGORY WASTEWATER FLOWS [2,4]

|               | Media | an flow,             | 1974 Guidelines                   |                                      |  |  |  |  |
|---------------|-------|----------------------|-----------------------------------|--------------------------------------|--|--|--|--|
|               | -     | feedstock<br>oughput | BPT flow basis, gal/bbl feedstock | BAT flow basis,<br>gal/bbl feedstock |  |  |  |  |
| Subcategory   | 1974  | 1977                 | throughput                        | throughput                           |  |  |  |  |
| Topping       | 23.3  | 7.8                  | 20                                | 10.5                                 |  |  |  |  |
| Cracking      | 32.5  | 17.3                 | 25                                | 14                                   |  |  |  |  |
| Petrochemical | 155   | 24.9                 | 30                                | 19                                   |  |  |  |  |
| Lube          | 41    | 40.1                 | 45                                | 30.5                                 |  |  |  |  |
| Integrated    | 480   | 36.0                 | 48                                | 36.5                                 |  |  |  |  |

- (2) EPA Region V Laboratory, Chicago, Illinois -- metals, mercury
- (3) Midwest Research Institute (MRI), Kansas City, Missouri -- volatile and semivolatile organics
- (4) Ryckman, Edgerley, Tomlinson, and Associates, Inc. (RETA), St. Louis, Missouri -- volatile and semivolatile organics, pesticides, cyanides, phenolics, mercury, metals, asbestos, traditional parameters
- (5) Gulf South Research Institute, Baton Rouge, Louisiana -- volatile and semivolatile organics
- (6) NUS Corporation, Pittsburgh, Pennsylvania -- volatile and semivolatile organics, pesticides

The conventional parameters for which refinery wastewater samples were analyzed include  $BOD_5$ , COD, TOC, TSS, oil and grease, ammonia, sulfides, hexavalent chromium, and pH. Each of the three consecutive 24-hr composites collected at each sampling location in a given refinery was tested for eight of these parameters. Grab samples collected at the end of each sample day were used for the oil and grease analyses. Three seeding alternatives were used in performing the  $BOD_5$  analyses. Method 1 used a seed from a domestic sewage treatment plant; Method 2 used refinery final effluent as a seed; and no seed at all was used in Method 3.

Analyses for semivolatiles, acid extractables, and base-neutrals were completed.

Pesticides were looked for in samples from 11 of the refineries, but without GC/MS verification.

Samples were collected in each 24-hr period for cyanides, phenolics, and mercury, and reported as Day 1, 2, or 3 results. RSKERL and RETA analyzed for cyanides, mercury, and phenolics, and "mercury (laboratory 2)" results are from EPA's Region V Laboratory. Samples from each 24-hr period and a 72-hr composite were analyzed for toxic pollutant metals. These analyses were performed by RSKERL, RETA, and EPA's Region V Laboratory.

Asbestos was looked for in samples from four refineries (I, L, M, and P). It is thought that asbestos contributions within a refinery may be affected by rainfall; two of the four refineries tested had dry weather, and two had significant rainfall.

Tables 14-9 through 14-25 present the analytical results on a refinery-by-refinery basis.

#### II.14.4 POLLUTANT REMOVABILITY

# II.14.4.1 Toxic Pollutants

Based on the limited data received, it appears that BPT technology (including biological treatment plus effluent polishing) provides effective removal of toxic pollutants identified as being present in petroleum refining raw wastewaters. It has been shown that after the application of BPT-type technology, effluent metals concentrations occur at the range typical of what would occur after the application of precipitation techniques. In all cases for which complete data are available, organic toxic pollutants present in the raw wastes, sometimes at levels in the low mg/L range, have been shown to be removed to levels in the low  $\mu g/L$  range (generally less than 10  $\mu g/L$ ). No data on removability of toxic pollutants other than that shown in Table 14-3 in ranges and median concentrations for intake, raw wastewater, and final effluent are available for toxic pollutants [4,5].

### II.14.4.2 Conventional Pollutants

End-of-pipe control technology in the petroleum refining industry relies heavily upon the use of biological treatment methods. These are supplemented by appropriate pretreatment to insure that proper conditions, especially sufficient oil removal and pH adjustment, are present in the feed to the biological system. When used, initial treatment most often consists of neutralization for control of pH and equalization basins to minimize shock loads on the biological systems. The incorporation of solids removal ahead of biological treatment is not as important as it is in treating municipal wastewaters.

The selection of plants was not based on a cross section of the entire industry, but rather was biased in favor of those segments of the industry that had the more efficient wastewater treatment

TABLE 14-9. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY A [4,5]

|                                            |      |      | Inta | ke    |       |          | Separ | ator e | ffluen |       |       | Fine  | l effl | ent   |       |
|--------------------------------------------|------|------|------|-------|-------|----------|-------|--------|--------|-------|-------|-------|--------|-------|-------|
|                                            | Day  | Day  | Day  |       |       | Day      | Day   | Day    |        |       | Day   | Day   | Day    |       |       |
| Pollutant                                  | 1    | 2    | 3    | Comp. | Comp. | <u> </u> |       | 3      | Comp.  | Comp. | 1     | 2     | 3      | Comp. | Comp. |
| Conventional pollutants, mg/L <sup>b</sup> |      |      |      |       |       |          |       |        |        |       |       |       |        |       |       |
| BOD-1                                      | <2   | <1   | 2    |       |       | 20       | 20    | 25     |        |       | <2    | <2    | 3      |       |       |
| BOD-2                                      | <2   | <1   | 4    |       |       | 24       | 18    | 30     |        |       |       | _     |        |       |       |
| BOD-3                                      | •    | •    | •    |       |       |          |       | •••    |        |       | <2    | <2    | 2      |       |       |
| COD                                        | 4    | 4    | 8    |       |       | 130      | 91    | 99     |        |       | 36    | 40    | 28     |       |       |
| TOC                                        | ī    | 2    | 2    |       |       | 36       | 25    | 36     |        |       | 11    | 11    | 11     |       |       |
|                                            | 5    | 4    | <1   |       |       | 490      | 390   | 260    |        |       | 44    | 30    | 42     |       |       |
| TSS                                        |      | •    | _    |       |       | <520     | 140   | 150    |        |       | <21   | 10    | <11    |       |       |
| Total phenols                              | <10  | <10  | <11  |       |       |          |       |        |        |       | 0.2   | 0.2   | 0.4    |       |       |
| Sulfide                                    | <0.1 | <0.1 | 0.2  |       |       | 9.0      | 6.9   | 8.5    |        |       |       |       |        |       |       |
| рĦ                                         | 7.9  | 9.0  | 8.8  |       |       | 8.6      | 8.5   | 9.0    |        |       | 6.9   | 7.4   | 7.0    |       |       |
| Ammonia                                    | <1.0 | 11   | 1.0  |       |       | 13       | 11    | 11     |        |       | 16    | 11    | 9.0    |       |       |
| Metals and inorganics, µg/L                |      |      |      |       |       |          |       |        |        |       |       |       |        |       |       |
| Antimony                                   |      |      |      |       | <25   |          |       |        |        | <25   |       |       |        |       | <25   |
| Arsenic                                    |      |      |      |       | <10   |          |       |        |        | 12    |       |       |        |       | <10   |
| Beryllium                                  | <2   | <2   | <2   | <2    | <3    | <^       | <2    | <2     |        | <3    | <2    | <2    | <2     | <2    | <3    |
| Cadmium                                    | <20  | <20  | <20  | <20   | <1    | ۵ نه ۲   | <20   | <20    | <20    | <1    | <20   | <20   | <20    | <20   | <1    |
| Chromium                                   | <24  | <24  | <24  | <24   | <5    | <24      | <24   | 1,220  | 30     | 32    | <24   | <24   | <24    | <24   | 5     |
| Chromium +6                                | <20  | <20  | <20  |       |       | 90       | 30    | 50     |        |       | 40    | <20   | <20    |       |       |
| Copper                                     | <4   | <4   | <4   | <4    | <5    | 26       | 23    | 39     | 23     | 17    | <4    | <4    | 6      | 5     | <5    |
| Cyanides                                   | <10  | <10  | <10  |       |       | 50       | 60    | 40     |        |       | <30   | <30   | <30    |       |       |
| Lead                                       | <60  | <60  | <60  | <60   | <15   | 149      | 109   | 224    | 114    | 64    | <60   | <60   | <60    | <60   | <15   |
| Mercury                                    | 0.1  | 0.1  | 0.1  | 0.1   | <0.5  | 0.2      | 0.2   |        | 0      | <0.5  | 0.2   | 0.2   | 0.2    | 0.3   | <0.5  |
| Nickel                                     | <50  | <50  | <50  | <50   | <15   | <50      | <50   | <50    | <>0    | 23    | <50   | <50   | <50    | <50   | <15   |
| Selenium                                   | 130  | 130  | 130  | 130   | <10   | 120      | 130   | 130    | 120    | <10   | 100   | -50   |        | -     | <10   |
| Silver                                     | <25  | <25  | <25  | <25   | <5    | <25      | <25   | 425    | <25    | <5    | <25   | <25   | <25    | <25   | <5    |
| Thallium                                   | 125  | 123  | 123  | 123   | <25   | 123      | 143   | ~*.    | 123    | <15   | 1.0   |       | 123    | -23   | <15   |
|                                            |      |      |      |       |       |          |       |        |        |       |       |       |        |       |       |
| Phthalates, µg/L                           |      |      |      |       |       |          |       |        | 0.9    |       |       |       |        | 0.7   |       |
| Di-n-butyl phthalate                       |      |      |      | O.2   |       |          |       |        | 1.3    |       |       |       |        | ND    |       |
| Diethyl phthalate                          |      |      |      | ND    |       |          |       |        | 1.3    |       |       |       |        | ND    |       |
| Phenols, µg/L                              |      |      |      |       |       |          |       |        |        |       |       |       |        | ND    |       |
| Phenol                                     |      |      |      | ND    |       |          |       |        | 13     |       |       |       |        | ND    |       |
| Aromatics, ug/L                            |      |      |      |       |       |          |       |        |        |       |       |       |        | ND    |       |
| Benzene                                    |      |      |      | ND    |       |          |       |        | >100   |       |       |       |        |       |       |
| Ethylbenzene                               |      |      |      | NTO   |       |          |       |        | >100   |       |       |       |        | ND    |       |
| Toluene                                    |      |      |      | ND    |       |          |       |        | >100   |       |       |       |        | ND    |       |
| Polycyclic aromatic hydrocarbons, ug/L     |      |      |      |       |       |          |       |        |        |       |       |       |        |       |       |
| Acenaphthene                               |      |      |      | ND    |       |          |       |        | 12     |       |       |       |        | ND    |       |
| Acenaphthylene                             |      |      |      | ND    |       |          |       |        | 37     |       |       |       |        | ND    |       |
| Anthracene/phenanthrene                    |      |      |      | <0.1  |       |          |       |        | 5      |       |       |       |        | ИО    |       |
| Naphthalene                                |      |      |      |       |       |          |       |        |        |       |       |       |        | ND    |       |
| Halogenated aliphatics, µg/L               |      |      |      |       |       |          |       |        |        |       |       |       |        |       |       |
| Chloroform                                 |      |      |      | 70    |       |          |       |        | <5     |       |       |       |        | <5    |       |
| 1,2-Trans-dichloroethylene                 |      |      |      | ND    |       |          |       |        | 20     |       |       |       |        | ND    |       |
| Methylene chloride                         |      |      |      | >100  |       |          |       |        | >100   |       |       |       |        | >100  |       |
| Tetrachloroethylene                        |      |      |      |       |       |          |       |        | >50    |       |       |       |        | <10   |       |
|                                            |      |      |      |       |       |          |       |        |        |       | 0.433 | 0.427 | 0.432  |       |       |
| Plow, MGD                                  |      |      |      |       |       |          |       |        |        |       |       |       |        |       |       |

Note: Blanks indicate data not available.

II.14-20 Date: 6/23/80

<sup>&</sup>lt;sup>a</sup>24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

bTotal phenols,  $\mu g/L$ ; pH, pH units.

CNot detected in sample.

TABLE 14-10. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY B [4,5]

|                                |          |      | Inta | ke      |                 |        |            | effluen     | t              |       |     |     | al eff | luent |      |
|--------------------------------|----------|------|------|---------|-----------------|--------|------------|-------------|----------------|-------|-----|-----|--------|-------|------|
| D. 33                          | Day<br>1 | Day  | Day  | Comp. a | a               | Day    | Day        | Day         |                |       | Day | Day | Day    | _     | _    |
| Pollutant                      |          | 2    | 3    | Comp.   | Comp.           | 1      | 2          | 3           | Comp.          | Comp. | _1_ | 2   | 3      | Comp. | Comp |
| Conventional pollutants, mg/Lb |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |
| BOD-1                          | < 3      | <3   | 2    |         |                 | 130    | 170        | 270         |                |       | 15  | 9   | 30     |       |      |
| BOD-4                          | <3       | <3   | <3   |         |                 | 140    | 110        | 220         |                |       |     | _   |        |       |      |
| BOD-3                          |          |      | •    |         |                 | •••    |            |             |                |       | 14  | 7   | 7      |       |      |
| COD                            | 9        | 9    | 9    |         |                 | 420    |            | 500         |                |       |     | 120 |        |       |      |
|                                |          |      |      |         |                 |        | 440        |             |                |       | 150 |     | 120    |       |      |
| TOC                            | 13       | 25   | 18   |         |                 | 100    | 110        | 110         |                |       | 47  | 39  | 43     |       |      |
| TSS                            | 9        | 13   | 11   |         |                 | 38     | 50         | 38          |                |       | 22  | 24  | 20     |       |      |
| Total phenols                  | <10      | <5   | <5   |         |                 | 32,000 | 34,000     | 22,000      |                |       | 64  | 48  | 45     |       |      |
| Sulfide                        | 0.2      | 0.2  | 0.4  |         |                 | 0.6    | 1.0        | 1.2         |                |       | 0.5 | 0.5 | 0.6    |       |      |
| Oil and grease                 | 19       | 7    | 6    |         |                 | 33     | 18         | 11          |                |       | 53  | 24  | 15     |       |      |
| рн                             | 8.2      | 8.Í  | 8.3  |         |                 | 9.2    |            | 9.5         |                |       | 7.2 | 7.6 | 7.4    |       |      |
| Ammonia                        | <1.0     | <1.0 | <1.0 |         |                 | 8.4    | 8.6<br>7.3 | 6.7         |                |       | 18  | 16  | 18     |       |      |
| TELENO/12 Q                    | 11.0     | 12.0 | -2.0 |         |                 | 0.4    | 7.3        | <b>U.</b> , |                |       | 10  | 10  | 10     |       |      |
| Metals and inorganics, µg/L    |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |
| Antimony                       |          |      |      |         | <25             |        |            |             |                | <25   |     |     |        |       | <25  |
| Arsenic                        |          |      |      |         | <20             |        |            |             |                | <20   |     |     |        |       | <20  |
| Beryllium                      | <1       | <1   | <1   | <1      | <3              | <1     | <1         | <1          | <1             | <3    | <1  | <1  | <1     | <1    | <3   |
| Cadmium                        | <2       | <2   | 7    | <2      | <1              | <2     | <2         | 3           | <2             | <1    | 8   | <2  | <2     | <2    | <1   |
|                                |          |      |      | _       |                 |        |            | -           |                |       |     |     | _      |       |      |
| Chromium                       | 30       | 30   | 50   | 60      | <5              | 50     | 50         | 60          | 60             | <5    | 70  | 70  | 40     | 50    | <5   |
| Chromium +6                    | <20      | <20  | <20  |         |                 | <20    | 100        | <20         |                |       | <20 | <20 | <20    |       |      |
| Copper                         | 30       | 20   | 40   | 30      | <5              | <6     | 9          | 10          | 10             | 7     | <6  | <6  | <6     | <6    | <5   |
| Cyanides                       | <20      | <20  | <20  |         |                 | 40     | 50         | 40          |                |       | <20 | <20 | <20    |       |      |
| Lead                           | 60       | 60   |      | . 70    | <15             | <20    | <20        | <20         | <20            | <15   | <20 | <20 | <20    | <20   | <15  |
| Mercury                        |          | •    |      | \ <0.5  | -13             | 120    | 120        | 120         | <0.5           | -13   | 120 | 120 | 120    |       | 123  |
|                                | _        | _    |      |         |                 | _      |            | _           |                |       | _   | _   | _      | <0.5  |      |
| Nickel                         | 6        | 6    | 20   | 20      | <15             | <5     | <5         | <5          | <5             | <15   | <5  | <5  | <5     | <5    | <15  |
| Selenium                       |          |      |      |         | <20             |        |            |             |                | <20   |     |     |        |       | <20  |
| Silver                         | <1       | <1   | <2   | <2      | <5              | <1     | <1         | <1          | <1             | <5    | <1  | <1  | <1     | <1    | <5   |
| Thallium                       |          |      |      |         | <15             | _      | _          | _           |                | <15   | _   | -   | _      | _     | <15  |
| Zinc                           | <60      | <60  | 100  | 100     | 15              | <60    | <60        | <60         | <b>&lt;6</b> 0 | 30    | <60 | <60 | <50    | <60   | 25   |
|                                |          |      |      |         |                 |        |            |             |                | •-    |     |     |        |       |      |
| Phenols, µg/L                  |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |
| 2,4-Dimethylphenol             |          |      |      |         | ND <sup>C</sup> |        |            |             | 10             | 0,000 |     |     |        |       | <10  |
| 4-Nitrophenol                  |          |      |      |         | ND              |        |            |             |                | ND    |     |     |        |       | <10  |
| Phenol                         |          |      |      |         |                 |        |            |             |                |       |     |     |        |       | <10  |
|                                |          |      |      |         | ND              |        |            |             |                | ND    |     |     |        |       |      |
| p-Chloro-m-cresol              |          |      |      |         | ND              |        |            |             |                | ND    |     |     |        |       | <10  |
| Aromatics, µg/L                |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |
| Benzene                        |          |      |      |         | ND              |        |            |             |                | ND    |     |     |        |       | <10  |
|                                |          |      |      |         | ND              |        |            |             |                | 110   |     |     |        |       |      |
| Polychlorinated biphenyls and  |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |
| related compounds, µg/~        |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |
| Aroclor 1016                   |          |      |      |         | ND              |        |            |             |                | <10   |     |     |        |       | <10  |
| Aroclor 1221                   |          |      |      |         |                 |        |            |             |                | <10   |     |     |        |       | <10  |
|                                |          |      |      |         | ND              |        |            |             |                |       |     |     |        |       |      |
| Aroclor 1232                   |          |      |      |         | ND              |        |            |             |                | <10   |     |     |        |       | <10  |
| Aroclor 1242                   |          |      |      |         | ND              |        |            |             |                | <10   |     |     |        |       | <10  |
| Aroclor 1248                   |          |      |      |         | ND              |        |            |             |                | <10   |     |     |        |       | <10  |
| Aroclor 1254                   |          |      |      |         | ND              |        |            |             |                | <10   |     |     |        |       | <10  |
| Aroclor 1260                   |          |      |      |         | ND              |        |            |             |                | <10   |     |     |        |       | <10  |
|                                |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |
| Halogenated aliphatics, µg/L   |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |
| Chloroform                     |          |      |      |         | <10             |        |            |             |                | 11    |     |     |        |       | <10  |
| Methylene chloride             |          |      |      |         | 22              |        |            |             |                | 30    |     |     |        |       | ND   |
| Pesticides and metabolites,    |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |
|                                |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |
| µg/L                           |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |
| β−BHC                          |          |      |      |         | ND              |        |            |             |                | <5    |     |     |        |       | <5   |
| γ-BHC                          |          |      |      |         | ND              |        |            |             |                | <5    |     |     |        |       | ND   |
| 4,4'-DDD                       |          |      |      |         | ND              |        |            |             |                | <5    |     |     |        |       | ND   |
| Endosulfan sulfate             |          |      |      |         | ND              |        |            |             |                | <5    |     |     |        |       |      |
| Heptachlor                     |          |      |      |         | ND<br>ND        |        |            |             |                |       |     |     |        |       | ND   |
|                                |          |      |      |         | MD              |        |            |             |                | <5    |     |     |        |       | <5   |
|                                |          |      |      |         |                 |        |            |             |                |       |     |     |        |       |      |

<sup>&</sup>lt;sup>a</sup>24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

 $<sup>^{\</sup>rm b}$ Total phenols,  $\mu g/L$ ; pH, pH units. .

Compound was not detected.

TABLE 14-11. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY C [4,5]

|      |                     |                                                                                                       | LKO                                                                                                                                                                            |                                                                                                                                                        |                                  | 5ep                                        |                                                                                                                                                                                                                                                                                                                                                                                                          | fluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |
|------|---------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|      |                     |                                                                                                       | aa                                                                                                                                                                             |                                                                                                                                                        |                                  | Day                                        |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Day                                                      |
|      |                     |                                                                                                       | Composite                                                                                                                                                                      |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | Composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4_                                                       |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| 2    | <3                  | <2                                                                                                    |                                                                                                                                                                                |                                                                                                                                                        | 150                              | 160                                        | 79                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| _    | _                   | _                                                                                                     |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| 1    | 1                   | 2                                                                                                     |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      | _                   |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     | -                                                                                                     |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            | 1 500d                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| <1.0 | <1.0                | <1.0                                                                                                  |                                                                                                                                                                                |                                                                                                                                                        | 52                               | 50                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       | 1                                                                                                                                                                              |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
|      |                     |                                                                                                       | 4                                                                                                                                                                              |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |
|      |                     |                                                                                                       | <1                                                                                                                                                                             |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
|      |                     |                                                                                                       | <1                                                                                                                                                                             |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
|      |                     |                                                                                                       | 2                                                                                                                                                                              |                                                                                                                                                        | 770                              | 820                                        | 940                                                                                                                                                                                                                                                                                                                                                                                                      | 880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
| <20  | <20                 | <20                                                                                                   |                                                                                                                                                                                |                                                                                                                                                        | 50                               | <20                                        | <20                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       | 2                                                                                                                                                                              |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
| 1    | 1                   | 1                                                                                                     |                                                                                                                                                                                | <20                                                                                                                                                    | 1,100                            | 120                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| <1   | <1                  | <1                                                                                                    | 1                                                                                                                                                                              |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
| 1.4  | 1.6                 | 1.3                                                                                                   | 1.3                                                                                                                                                                            |                                                                                                                                                        | 1.1                              | 1.2                                        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |
| 1.0  | 6.0                 | 1.0                                                                                                   |                                                                                                                                                                                | <0.1                                                                                                                                                   | <1.0                             | 6.0                                        |                                                                                                                                                                                                                                                                                                                                                                                                          | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.                                                      |
| <2   | <2                  | <2                                                                                                    | 1                                                                                                                                                                              |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
| 4    | 13                  | 4                                                                                                     | 5                                                                                                                                                                              |                                                                                                                                                        | 11                               | 8                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
|      |                     |                                                                                                       | <1                                                                                                                                                                             |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
| <1   | 3                   | <1                                                                                                    | <2                                                                                                                                                                             | <1                                                                                                                                                     | <1                               | <1                                         | <1                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       | 20                                                                                                                                                                             | <1                                                                                                                                                     | 630                              | 670                                        | 550                                                                                                                                                                                                                                                                                                                                                                                                      | 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                        |
|      |                     |                                                                                                       | 150                                                                                                                                                                            |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|      |                     |                                                                                                       | 130                                                                                                                                                                            |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|      |                     |                                                                                                       | ND <sup>C</sup>                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | 2.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       | ND.                                                                                                                                                                            |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | A17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       | עא                                                                                                                                                                             |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       | ND                                                                                                                                                                             |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|      |                     |                                                                                                       | _                                                                                                                                                                              |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      |                     |                                                                                                       | 85                                                                                                                                                                             |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |
|      |                     |                                                                                                       |                                                                                                                                                                                |                                                                                                                                                        |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|      | <20 1 <1 1.4 1.0 <2 | 2 <3 1 1 12 8 <1 <1 4 6 <0.5 <0.5 8 10 7.6 7.8 <1.0 <1.0  <20 <20 1 1 -1 4 1.4 1.6 1.0 6.0 <2 <2 4 13 | Day Day Day 1 2 3  2 <3 <2  1 1 2 8 5 <1 <1 <1 <1 4 6 4 <0.5 <0.5 <0.5 0.3 8 10 4 7.6 7.8 7.4 <1.0 <1.0 <1.0  <20 <20 <20  1 1 1 <1 <1 1.4 1.6 1.3 1.0 6.0 1.0 <2 <2 <2 4 13 4 | 1 2 3 Composite*  2 <3 <2  1 1 2 8 5 <1 <1 <1 <1 4 6 4 <0.5 <0.5 0.3 8 10 4 7.6 7.8 7.4 <1.0 <1.0 <1.0  1 4 4 51 51 51 51 51 51 51 51 51 51 51 51 51 5 | Day Day Day 1 2 3 Composite    2 | Day Day Day 1 2 3 Composite 4 4 1  2 <3 <2 | Day Day Day Composite Day Day Day 1 2 3 Composite Day 4 1 2 2 2 3 150 160 110 120 110 120 120 12 8 5 88 75 22 36 4 6 4 12,000 3,200 20 2 2 1 1 1 1 1 2 2 770 820 20 2 770 820 20 2 2 770 820 2 2 770 820 20 2 1 1 1 1 1 2 2 2 770 820 20 2 2 1 1 1 1 1 2 2 2 770 820 20 2 1 1 1 1 1 2 2 2 770 820 20 2 2 1 1 1 1 1 1 2 2 2 770 820 20 2 2 1 1 1 1 1 1 2 2 2 770 820 20 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Day Day Day Composite Day Day Day Day Day 1 2 3 Composite Day 4 1 2 3 3 Day 3 Day 3 Day 1 Day 2 3 Day 1 Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 Day 2 Day 3 Day 2 Day 3 Day 2 Day 3 Day | Day Day Day Composite Day Day Day Day Composite  2 <3 <2 |

TABLE 14-11 (continued)

|                                            |        | Trea            | ted effl | uent      |      |             |        | al efflue | nt_       |    |
|--------------------------------------------|--------|-----------------|----------|-----------|------|-------------|--------|-----------|-----------|----|
|                                            | Day    | Day             | Day      |           | Day  | Day         | Day    | Day       |           | Da |
| Pollutant                                  | 1      | 2               | 3        | Composite | 4    | 11          | 22     | 3         | Composite | 4  |
| Comments and analysis and the              |        |                 |          |           |      |             |        |           |           |    |
| Conventional pollutants, mg/L <sup>b</sup> | 20     | 3.4             | 40       |           |      | 37          | 40     | 4.5       |           |    |
| BOD-1                                      | 28     | 34              | 40       |           |      | 3 /         | 40     | 45        |           |    |
| BOD-3                                      |        |                 |          |           |      |             |        |           |           |    |
| COD                                        | 130    | 120             | 120      |           |      | 130         | 130    | 100       |           |    |
| TOC                                        | 44     | 39              | 41       |           |      | 42          | 37     | 36        |           |    |
| TSS                                        | 20     | 18              | 28       |           |      | 20          | 22     | 16        |           |    |
| Total phenols (laboratory 3)               | <1     | 14 <sup>d</sup> | <1       |           |      | 2           | 6      | 2         |           |    |
| Sulfide                                    | <0.5   | <0.5            | 0.2      |           |      | 0.5         | 0.5    | 0.4       |           |    |
| Oil and grease                             | 8      | 15              | 11       |           |      | 7           | 11     | 11        |           |    |
| рH                                         | 7.8    | 7.7             | 7.6      |           |      | 8.0         | 8.1    | 7.0       |           |    |
| Ammonia                                    | 8.4    | 5 <b>.6</b>     | 4.5      |           |      | 7.8         | 17     | 3.9       |           |    |
| Metals and inorganics, ug/L                |        |                 |          |           |      |             |        |           |           |    |
| Antimony                                   |        |                 |          | 1         |      |             |        |           | 3         |    |
| Arsenic                                    |        |                 |          | 6         |      |             |        |           | 5         |    |
| Beryllium                                  |        |                 |          | <1        |      |             |        |           | <1        |    |
| Cadmium                                    | 13     | 9               | 15       | 16        |      |             |        |           | <1        |    |
| Chromium                                   | 940    | 470             | 1,100    | 490       |      |             |        |           | 3         |    |
| Chromium +6                                | <20    | < <b>2</b> 0    | <20      | 430       |      | <20         | <20    | <20       | •         |    |
| Copper                                     | 100    | 190             | 260      | 230       |      | 120         | 120    | 120       | 10        |    |
| Cyanides (laboratory 3)                    | 100    | 190             | 200      | 230       |      | 30          | 45d    | 60        | 10        | 7  |
|                                            |        |                 |          |           |      |             | -      |           |           | ,  |
| Lead                                       |        |                 |          | 17        |      | 26          | 58     | 26        | 50        |    |
| Mercury (laboratory 1)                     | 0.8    | 1.0             | 1.0      | 1.2       |      | 1.1         | 1.4    | 1.3       | 1.3       |    |
| Mercury (laboratory 3)                     | 2.0    | 5.0             | 7.5      |           | <0.2 | 1.0         | 1.0    | 6.0       | 0.3       | 0  |
| Nickel                                     | 9      | 6               | 44       | 18        |      | 7           | 7      | 7         | 15        |    |
| Selenium                                   | 10     | <6              | 8        | 15        |      | 13          | 10     | 19        | 19        |    |
| Silver                                     |        |                 |          | <1        |      |             |        |           | <1        |    |
| Thallium                                   | <1     | <1              | <1       |           | <1   | 3           | 7      | <1        | <2        | <  |
| Zinc                                       | 930    | 440             | 930      | 780       | 519  | <b>59</b> 0 | 620    | 590       | 700       | 54 |
| Phthalates, µg/L                           |        |                 |          |           |      |             |        |           |           |    |
| Bis(2-ethylhexyl) phthalate                |        |                 |          | 900       |      |             |        |           |           | 31 |
| Phenols, µg/L                              |        |                 |          |           |      |             |        |           |           |    |
| Pheno1                                     |        |                 |          | ND        |      |             |        |           | ND        |    |
| Aromatics, µg/L                            |        |                 |          |           |      |             |        |           |           |    |
| Benzene                                    |        |                 |          | ND        |      |             |        |           | ND        |    |
| Ethylbenzene                               |        |                 |          | ND        |      |             |        |           | ND        |    |
| Polycyclic aromatic hydrocarbons, µg/L     |        |                 |          |           |      |             |        |           |           |    |
| Anthracene/phenanthrene                    |        |                 |          | ND        |      |             |        |           | ND        |    |
| Naphthalene                                |        |                 |          | ND        |      |             |        |           | ND        |    |
| Halogenated aliphatics, pg/L               |        |                 |          |           |      |             |        |           |           |    |
| Chloroform                                 |        |                 |          | ND        |      |             |        |           | ND        |    |
| 1,2-Dichloroethane                         |        |                 |          | ND        |      |             |        |           | ND        |    |
| Methylene chloride                         |        |                 |          | 7         |      |             |        |           | 20        |    |
| Flow, MGD                                  | 0.0915 | 0.0848          | 0.1526   |           |      | 0.1787      | 0,1411 | 0.2357    |           |    |

<sup>&</sup>lt;sup>a</sup>24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

b\_Total phenols, µg/L; pH, pH units.

 $<sup>^{</sup>c}\mathrm{Not}$  detected in sample.

d Average value.

TABLE 14-12. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY D [4,5]

|                                |      |              | Intak | e               |         |       | D     | AF eff1 | uent  |       |                | Fina  | l effl | uent  |      |
|--------------------------------|------|--------------|-------|-----------------|---------|-------|-------|---------|-------|-------|----------------|-------|--------|-------|------|
|                                | Day  | Day          | Day   |                 |         | Day   | Day   | Day     |       |       | Day            | Day   | Day    |       |      |
| Pollutant                      | 1    | 2            | 3     | Comp. a         | Comp. a | 1     | 2     | 3       | Comp. | Comp. | 1              | 2     | 3      | Comp. | Comp |
| Conventional pollutants, mg/Lb |      |              |       |                 |         |       |       |         |       |       |                |       |        |       |      |
| BOD-1                          | <5   | 1            | 3     |                 |         | 160   | 140   | 142     |       |       | 50             | 110   | 150    |       |      |
|                                | 20   | 4            | 6     |                 |         |       | 140   | <360    |       |       | 30             | 110   | 130    |       |      |
| BOD-2                          | 20   | 4            | ь     |                 |         | <220  |       | <360    |       |       | 40             | 62    | 90     |       |      |
| BOD-3                          | 20   |              |       |                 |         |       | 500   | 390     |       |       | 820            | 670   | 490    |       |      |
| COD                            |      | 4            |       |                 |         | 1,000 |       |         |       |       |                |       |        |       |      |
| TOC                            | 10   | 5            |       |                 |         | 300   | 150   | 100     |       |       | 290            | 220   | 150    |       |      |
| TSS                            | 24   | 32           |       |                 |         | 62    | 36    | 32      |       |       | 64             | 60    | 60     |       |      |
| Total phenols                  |      |              | 23    |                 |         | 3,700 | 5,100 | 8,000   |       |       |                |       |        |       |      |
| Sulfice                        | <0.1 | <0.1         |       |                 |         | 15    | 18    | 15      |       |       | 1.7            | 1.1   | 0.8    |       |      |
| рн                             | 7.3  | 7.4          |       |                 |         | 8.9   | 8.5   | 8.6     |       |       | 7.7            | 7.7   | 7.6    |       |      |
| Ammonia                        | <1.0 | 2.2          | 2.0   |                 |         | 36    | 29    | 40      |       |       | 36             | 42    | 39     |       |      |
| Metals and inorganics, ug/L    |      |              |       |                 |         |       |       |         |       |       |                |       |        |       |      |
| Antimony                       |      |              |       |                 | <25     |       |       |         |       | <25   |                |       |        |       | <2   |
| Arsenic                        |      |              |       |                 | <10     |       |       |         |       | <10   |                |       |        | _     | <1   |
| Beryllıum                      | <20  | <20          |       |                 | <3      | <20   |       | <2      | <2    | <3    | - <2           | <2    | <2     | <2    | <    |
| Cadmium                        | <200 | <200         |       |                 | <1      | <200  | <20   | <20     | <20   | <1    | <20            | <20   | <20    | <20   |      |
| Chromium                       | <240 | <240         | <240  | <240            | <14     | 1,020 | 681   | 479     | 719   | 730   | 1,230          | 1,160 | 875    | 1,080 | 1,00 |
| Chromium +6                    | <20  | <20          | <20   |                 |         | <20   | <20   | <20     |       |       | <20            | <20   | 30     |       |      |
| Copper                         | <40  | <40          | <40   | <40             | <5      | <40   | 15    | 6       | 7     | <5    | <4             | <4    | <4     | <4    | <    |
| Cyanides                       | <20  | <20          | <20   |                 |         | 50    | 60    | 40      |       |       | 30             | 30    | <20    |       |      |
| Lead                           | <600 | <600         | <600  | <600            | <15     | <600  | <60   | <60     | <60   | <15   | <b>&lt;6</b> 0 | <60   | <60    | <60   | <1   |
| Mercury                        | 0.1  | 0.1          | 0.1   | 0.2             | <0.5    | 0.2   | 0.1   | 0.2     | <0.5  | <0.1  | 0.2            | 0.2   | 0.2    | 0.2   | υ.   |
| Nicke)                         | <500 | <b>4</b> 500 |       |                 | <15     | <500  | <50   | <50     | <50   | <15   | <50            | <50   | <50    | <50   | <1   |
| Selenium                       |      |              |       |                 | <10     |       |       |         |       | <10   |                |       |        |       | <1   |
| Silver                         | <250 | <250         | <250  | <250            | <5      | <250  | <25   | <25     | <25   | <5    | <25            | <25   | <25    | <25   | •    |
| Thallium                       | -230 | -230         | -250  | -250            | <15     |       |       |         |       | <25   |                |       |        |       | ٧2   |
| Zinc                           | <250 | <250         | <250  | <250            | 33      | 410   | 242   | 181     | 262   | 280   | 515            | 480   | 338    | 430   | 40   |
| ZIIC                           | 1250 | -250         | -230  | -230            | 55      | 120   |       |         |       |       | •              |       |        |       |      |
| Aromatics, ug/L                |      |              |       | ир <sup>с</sup> |         |       |       |         |       |       |                |       |        |       |      |
| Benzene                        |      |              |       |                 |         |       |       |         | >100  |       |                |       |        | ND    |      |
| Ethylbenzene                   |      |              |       | ND              |         |       |       |         | >100  |       |                |       |        | ND    |      |
| Toluene                        |      |              |       | ND              |         |       |       |         | >100  |       |                |       |        | ND    |      |
| Polycyclic aromatic            |      |              |       |                 |         |       |       |         |       |       |                |       |        |       |      |
| hydrocarbons, µg/L             |      |              |       |                 |         |       |       |         |       |       |                |       |        |       |      |
| Anthracene/phenanthrene        |      |              |       | <0.1            |         |       |       |         | 140   |       |                |       |        | ND    |      |
| Benzo(a)pyrene                 |      |              |       | ИD              |         |       |       |         | ND    |       |                |       |        | 3     |      |
| Chrysene                       |      |              |       | ND              |         |       |       |         | 0.1   |       |                |       |        | 1.4   |      |
| Fluoranthene                   |      |              |       | ND              |         |       |       |         | 3     |       |                |       |        | ND    |      |
| Naphthalene                    |      |              |       | 2               |         |       |       |         | 190   |       |                |       |        | ND    |      |
| Pyrene                         |      |              |       | ND              |         |       |       |         | 11    |       |                |       |        | 7     |      |
| Polychlorinated biphenyls      |      |              |       |                 |         |       |       |         |       |       |                |       |        |       |      |
| and related compounds, µg/L    |      |              |       |                 |         |       |       |         |       |       |                |       |        |       |      |
| Aroclor 1221                   |      |              |       | ND              |         |       |       |         | ND    |       |                |       |        | < 5   |      |
| Aroclor 1242                   |      |              |       | ND              |         |       |       |         | 1.3   |       |                |       |        | ND    |      |
| Flow, MGD                      |      |              |       |                 |         |       | 0.932 |         |       |       |                | 0.97^ |        |       |      |

<sup>&</sup>lt;sup>a</sup>24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

Total phenol, ug/L; pH, pH units.

Not detected in sample

TABLE 14-13. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY E [4,5]

|                                         |       |                | I:         | ntake     |           |           |                | DAF ef    | fluent    |           |
|-----------------------------------------|-------|----------------|------------|-----------|-----------|-----------|----------------|-----------|-----------|-----------|
|                                         | Day   | Day            | Day        | A         |           | Day       | Day            | Day       |           |           |
| Pollutant                               | 11    | 2              | 3          | Composite | Composite | 1         | 2              |           | Composite | Composite |
| Conventional pollutants, $mg/L^b$       |       |                |            |           |           |           |                |           |           |           |
| BOD-1                                   | 3     | 2              | 2          |           |           | 54        | 52             | 45        |           |           |
| BOD~2                                   | 4     | 3              | 3          |           |           | 56        | 41             | 44        |           |           |
|                                         | •     | 3              | 3          |           |           | 50        | 41             | **        |           |           |
| BOD~3                                   |       |                |            |           |           |           |                |           |           |           |
| COD                                     | 43    | 59             | 39         |           |           | 160       | 160            | 150       |           |           |
| TOC                                     | 15    | 15             | 15         |           |           | 48        | 42             | 39        |           |           |
| TSS                                     | 14    | 19             | 28         |           |           | 17        | 13             | 16        |           |           |
| Total phenols                           | <11   | 15             | <10        |           |           | 6.800     | 9,900          | 11,000    |           |           |
| Sulfide                                 | <0.1  | <0.1           | <0.1       |           |           | 1.8       | 1.5            | 1.5       |           |           |
|                                         |       |                |            |           |           |           |                |           |           |           |
| pH<br>Ammonia                           | 7.7   | 7.6<br>7.8     | 7.5<br>7.8 |           |           | 7.3<br>13 | 7.1<br>12      | 7.2<br>15 |           |           |
| Moral's and sponganing staff            |       |                |            |           |           |           |                |           |           |           |
| Metals and inorganics, vg/L<br>Antimony |       |                |            |           | <25       |           |                |           |           | <25       |
|                                         |       |                |            |           |           |           |                |           |           | <10       |
| Arsenic                                 |       |                |            |           | <10       |           |                |           |           |           |
| Beryllium                               | <2    | <2             | <2         | <2        | <3        | <2        | <2             | <2        | <2        | <3        |
| Cadmium                                 | <20   | <20            | <20        | <20       | 2         | <20       | <20            | <20       | <20       | <1        |
| Chromium                                | 25    | 58             | 35         | 42        | 35        | 104       | 86             | 89        | 89        | 76        |
| Chromium +6                             | <0.02 | <0.02          | <0.02      |           |           | <0.02     | <0.02          | <0.02     | -         |           |
|                                         |       |                |            |           | •         |           | <4             |           | <4        | <5        |
| Copper                                  | 5     | 8              | 15         | 10        | 8         | <4        |                | <4        | <4        | < 5       |
| Cyanides                                | 30    | <30            | <30        |           |           | <30       | <30            | <30       |           |           |
| Lead                                    | <60   | <60            | <60        | <60       | 23        | <60       | <60            | <60       | <60       | <15       |
| Mercury                                 | <0.1  | <0.1           | <0.1       | <0.5      | <0.1      | <0.1      | <0.1           | <0.1      | <0.5      | <0.1      |
| Nickel                                  | <50   | <b>&lt;5</b> 0 | <50        | <50       | 51        | <50       | <b>&lt;5</b> 0 | <50       | <50       | 28        |
| Selenium                                |       |                |            |           | <10       |           |                |           |           | <10       |
| Silver                                  | <25   | <25            | <25        | <25       | ₹5        | <25       | <25            | <25       | <25       | <5        |
|                                         | 123   | 123            | 123        | 123       | _         | 123       | 123            | \25       | 123       | -15       |
| Thallium                                |       |                |            |           | <15       |           |                |           |           |           |
| Zine                                    | 141   | 102            | 130        | 127       | 110       | 61        | 47             | 54        | 74        | 50        |
| Phthalates, µg/L                        |       |                |            |           |           |           |                |           | С         |           |
| Di-n-butyl phthalate                    |       |                |            | 0.4       |           |           |                |           | иDC       |           |
| Phenols                                 |       |                |            |           |           |           |                |           |           |           |
| Phenol                                  |       |                |            | ND        |           |           |                |           | >100      |           |
| 2,4-Dimethylphenol                      |       |                |            | ND        |           |           |                |           | >100      |           |
| Aromatics, ug/L                         |       |                |            |           |           |           |                |           |           |           |
| Berzene                                 |       |                |            | ND        |           |           |                |           | >100      |           |
| 1,2-Dichlorobenzene                     |       |                |            | <0.5      |           |           |                |           | ND        |           |
| 1,4-Dichlorobenzene                     |       |                |            | <0.5      |           |           |                |           | ND        |           |
| Ethylbenzene                            |       |                |            |           |           |           |                |           | >100      |           |
|                                         |       |                |            | ND        |           |           |                |           |           |           |
| Toluene                                 |       |                |            | ND        |           |           |                |           | >100      |           |
| Polycyclic aromatic hydrocarbons, µg/L  |       |                |            |           |           |           |                |           |           |           |
| Acenaphthene                            |       |                |            | 1.8       |           |           |                |           | 150       |           |
| Anthracene/phenanthrene                 |       |                |            | ND        |           |           |                |           | 50        |           |
| Chrysene                                |       |                |            | ND        |           |           |                |           | 0.3       |           |
| Fluoranthene                            |       |                |            | <0.2      |           |           |                |           | ND        |           |
| Fluorene                                |       |                |            | ND        |           |           |                |           | 110       |           |
| Naphthalene                             |       |                |            | ND        |           |           |                |           | 106       |           |
| Pyrene                                  |       |                |            | <0.1      |           |           |                |           | 5         |           |
| Polychlorinated biphenyls and           |       |                |            |           |           |           |                |           |           |           |
| related compounds, uq/L                 |       |                |            |           |           |           |                |           |           |           |
| Aroclor 1242                            |       |                |            | ND        |           |           |                |           | 0.2       |           |
| Halogenated aliphat_ s, µg/L            |       |                |            |           |           |           |                |           |           |           |
| Methylene chloride                      |       |                |            |           |           |           |                |           | 10        |           |
| Tetrachloroethylene                     |       |                |            | 50        |           |           |                |           | 10        |           |
|                                         |       |                |            | 50        |           |           |                |           | ND        |           |
| Trichloroethylene                       |       |                |            | 20        |           |           |                |           | ND        |           |

TABLE 14-13 (continued)

|                                                  |          |          | nal eff  | luent      |           |
|--------------------------------------------------|----------|----------|----------|------------|-----------|
| Pollutant                                        | Day<br>1 | Day<br>2 | Day<br>3 | Composite  | Composite |
| , b                                              |          |          |          |            |           |
| Conventional pollutants, mg/L <sup>b</sup> BOD-1 | 18       | 2        | <1       |            |           |
| BOD-2                                            | 10       | -        | -1       |            |           |
| BOD-3                                            | 18       | <1       | <1       |            |           |
| COD                                              | 47       | 75       | 55       |            |           |
| TOC                                              | 10       | 7        | 13       |            |           |
| TSS                                              | 9        | 20       | 13       |            |           |
| Total phenols                                    | 13       | 11       | <10      |            |           |
| Sulfide                                          | 0.3      | 0.5      | 0.6      |            |           |
| pH                                               | 7.6      | 7.5      | 7.5      |            |           |
| Ammonia                                          | 35       | 11       | 13       |            |           |
| Metals and inorganics, pg/L                      |          |          |          |            |           |
| Antimony                                         |          |          |          |            | <25       |
| Arsenic                                          |          |          |          |            | <10       |
| Beryllium                                        | <2       | <2       | <2       | <2         | <3        |
| Cadmaum                                          | <20      | <20      | <20      | <20        | <1        |
| Chromium                                         | 42       | 52       | 44       | 42         | 36        |
| Chromium +6                                      | <0.02    | <0.02    | <0.02    |            | -         |
| Copper                                           | <4       | <4       | <4       | <4         | <5        |
| Cyanides                                         | <30      | <30      | <30      | •••        | •         |
| Lead                                             | <60      | <60      | <60      | <60        | <15       |
| Mercury                                          | 0.1      | <0.1     | 0.1      | <0.5       | 0.1       |
| Nickel                                           | <50      | <50      | <50      | <50        | <19       |
| Selenium                                         | - 50     | -50      | 1,50     | 150        | 12        |
| Silver                                           | <25      | <25      | <25      | <25        | <5        |
| Thallium                                         |          |          |          |            | <15       |
| Zinc                                             | 49       | 77       | 59       | 44         | 30        |
| Phthalates, µg/L<br>Di-n-butyl phthalate         |          |          |          | ND         | ND        |
| Phenols                                          |          |          |          |            |           |
| Phenol                                           |          |          |          | ND         | ND        |
| 2,4-Dimethylphenol                               |          |          |          |            |           |
| Aromatics, µg/L                                  |          |          |          |            |           |
| Benzene                                          |          |          |          | ИD         |           |
| 1,2-Dichlorobenzene                              |          |          |          | ND         | ND        |
| 1,4-Dichlorobenzene                              |          |          |          | ND         | ND        |
| Ethylbenzene                                     |          |          |          | ИD         |           |
| Toluene                                          |          |          |          | ND         |           |
| Polycyclic aromatic hydrocarbons, ug/L           |          |          |          |            |           |
| Acenaphthene                                     |          |          |          | .0.5       | -0.1      |
| Anthracene/phenanthrene                          |          |          |          | <0.5       | <0.1      |
| Chrysene                                         |          |          |          | <0.1       | ND        |
| Fluoranthene                                     |          |          |          | ND         | ND        |
| Fluorene                                         |          |          |          | ND         | ND<br>ND  |
| Naphthalene<br>Pyrene                            |          |          |          | ND<br><0.5 | <0.5      |
| Polychiorinated biphenyls and                    |          |          |          |            |           |
| related compounds, ug/L                          |          |          |          |            |           |
| Aroclor 1242                                     |          |          |          |            |           |
| Halogenated aliphatics, µg/L                     |          |          |          |            |           |
| Methylene chloride                               |          |          |          | 10         |           |
| Tetrachloroethylene                              |          |          |          | ND         |           |
| Trichloroethylene                                |          |          |          |            |           |

Mote: Blanks indicate data not available.

a 24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

b\_Total phenols, ug/L; pH, pH units.

CNot detected in sample.

TABLE 14-14. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY F [4,5]

|                                                                   |          |                  |          | take      |           |          |                   | Cool     | ing tower |           |
|-------------------------------------------------------------------|----------|------------------|----------|-----------|-----------|----------|-------------------|----------|-----------|-----------|
| Pollutant                                                         | Day<br>1 | Day<br>2         | Day<br>3 | Composite | Composite | Day<br>1 | Day<br>2          | Day<br>3 | Composite | Composite |
|                                                                   |          |                  |          | COMPOSITE | COMPOSICE |          |                   |          | Composite | Composito |
| Conventional pollutants, mg/L <sup>b</sup>                        |          |                  |          |           |           |          |                   |          |           |           |
| BOD-1                                                             | 40       | 40               | 42       |           |           | 25       | 130               | 47       |           |           |
| BOD-2                                                             | 50       | 52               |          |           |           | 42       | >160              | 36       |           |           |
| BOD-3                                                             |          |                  | 35       |           |           |          |                   |          |           |           |
| COD                                                               | 340      | 350              | 340      |           |           | 210      | 300               | 350      |           |           |
| TOC                                                               | 96       | 110              | 97       |           |           | 62       | 78                | 95       |           |           |
| TSS                                                               | 68       | 68               | 40       |           |           | 64       | 76                | 80       |           |           |
| Total phenols                                                     | 210      | 210              | 210      |           |           | 37       | 1                 | 57       |           |           |
| Sulfide                                                           | 1.6      | 0.9              | 0.7      |           |           |          | 1.0               | <0.1     |           |           |
| рН                                                                | 8.2      | 8.1              | 8.0      |           |           | 7.3      | 8.1               | 6.8      |           |           |
| Ammonia                                                           | 1.7      | 68               | 63       |           |           | 3.9      | 10                | 19       |           |           |
| Metals and inorganics, pg/L                                       |          |                  |          |           |           |          |                   |          |           |           |
| Antimony                                                          |          |                  |          |           | <25       |          |                   |          |           | <25       |
| Arsenic                                                           |          |                  |          |           | 27        |          |                   |          |           | 41        |
| Beryllium                                                         | <20      | <20              | <2       | <2        | <3        | <2       | <2                | <2       | <2        | <3        |
| Cadmium                                                           | <200     | <200             | <20      | <20       | <1        | <20      | <20               | <20      | <20       | <1        |
| Chromium                                                          | <240     | <240             | 72       | 58        | 60        | 50       | 60                | 79       | 57        | 44        |
| Chromium +6                                                       | <20      | <20              | <20      |           |           | 50       | 90                | 410      |           |           |
| Copper                                                            | 50       | 190              | 184      | 151       | 210       | 278      | 350               | 510      | 405       | 500       |
| Total cyanide                                                     | <30      | <30              | <30      |           |           | 520      | 830               | B30      |           |           |
| Lead                                                              | <600     | <600             | <60      | <60       | <15       | <60      | <60               | <60      | <60       | <15       |
| Mercury                                                           | <0.2     | <0.7             | <0.9     | <0.5      | 0.6       | 0.4      | 0.5               | 0.7      | <0.5      |           |
| Nickel                                                            | <500     | <500             | 57       | 62        | 58        | 64       | 101               | 134      | 88        | 77        |
| Selenium                                                          | -500     | -500             | ٥,       | •         | 12        | ••       |                   |          | **        | <10       |
| Silver                                                            | <250     | <250             | <250     | <250      | <5        | <250     | <250              | <25      | <25       | <5        |
| Thallium                                                          |          | -250             | 1230     | 1230      | <15       | -230     |                   |          |           | <15       |
| Zinc                                                              | <250     | <250             | 127      | 133       | 120       | 229      | 342               | 452      | 342       | 330       |
| ZIIIC                                                             | 1230     | 1250             | 127      | 133       | 120       | •••      | 342               | 452      | 242       | 330       |
| Polycyclic aromatic hydrocarbons, µg/L<br>Anthracene/phenanthrene |          |                  |          | 164       |           |          |                   |          | 1.8       |           |
|                                                                   |          |                  |          |           |           |          |                   |          | 6.5       |           |
| Chrysene/benz(a)anthracene                                        |          |                  |          | 49        |           |          |                   |          |           |           |
| Benzo(a)pyrene/perylene                                           |          |                  |          | 33        |           |          |                   |          | 10<br>ND  |           |
| Fluoranthene                                                      |          |                  |          | 29        |           |          |                   |          | 10        |           |
| Pyrene                                                            |          |                  |          | 140       |           |          |                   |          | 10        |           |
| Polychlorinated biphenyls and related compounds, ug/L             |          |                  |          |           |           |          |                   |          |           |           |
| Aroclor 1221                                                      |          |                  |          | ND        |           |          |                   |          | 0.1       |           |
| Halogenated aliphatics, ug/L                                      |          |                  |          |           |           |          |                   |          |           |           |
| Carbon tetrachloride                                              |          |                  |          | >50       |           |          |                   |          | ND        |           |
| Methylene chloride                                                |          |                  |          | <10       |           |          |                   |          | 70        |           |
| 1,1,1-Trichloroethane                                             |          |                  |          | >50       |           |          |                   |          | ND        |           |
| Pesticides and metabolites, pg/L                                  |          |                  |          |           |           |          |                   |          |           |           |
| β-BHC                                                             |          |                  |          | ND        |           |          |                   |          | 0.7       |           |
| Chlordane                                                         |          | _                |          | 2.8       |           |          |                   |          | ND        |           |
| Flow, MGD                                                         |          | 1.5 <sup>d</sup> |          |           |           |          | 0.17 <sup>d</sup> |          |           |           |

TABLE 14-14 (continued)

|                                                       |              |                    | inal e | ffluent        |                |
|-------------------------------------------------------|--------------|--------------------|--------|----------------|----------------|
|                                                       | Day          | Day                | Day    |                |                |
| Pollutant                                             | 1            | 2                  | 3      | Composite      | Composite      |
| Conventional pollutants, mg/L                         |              |                    |        |                |                |
| BOD-1                                                 | 18           | 36                 | 20     |                |                |
| BOD-2                                                 | 10           | 50                 |        |                |                |
| BOD-3                                                 | 18           | 36                 | 18     |                |                |
| COD                                                   | 260          | 270                | 260    |                |                |
| TOC                                                   | 110          | 75                 | 82     |                |                |
| TSS                                                   | 110          | 96                 | 100    |                |                |
| Total phenols                                         | 22           | 24                 | 26     |                |                |
| Sulfide                                               | -            | 2.0                | <0.1   |                |                |
| рH                                                    | 8.6          | 8.5                | 8.6    |                |                |
| Ammonia                                               | 3.9          | 2.8                | 3.9    |                |                |
| Metals and inorganics, µg/L                           |              |                    |        |                |                |
| Antimony                                              |              |                    |        |                |                |
| Arsenic                                               |              | _                  |        | _              | 31             |
| Beryllium                                             | <2           | <2                 | <2     | <2             | <3             |
| Cadmium                                               | <20          | <20                | <20    | <20            | <1             |
| Chromium                                              | 73           | 31                 | 29     | 45             | 7              |
| Chromium +6                                           | <0.02        | <0.02              | 0.03   |                |                |
| Copper                                                | 199          | 86                 | 84     | 125            | <b>12</b> 5    |
| Total cyanide                                         | 60           | 70                 | 80     |                |                |
| Lead                                                  | <60          | <60                | <60    | <b>&lt;6</b> 0 | <15            |
| Mercury                                               | 0.3          | 0.3                | 0.3    | 0.5            | 0.4            |
| Nickel                                                | 68           | 74                 | 71     | 64             | 58             |
| Selenium                                              |              |                    |        |                | <10            |
| Silver                                                | <25          | <b>&lt;2</b> 5     | <25    | <25            | <5             |
| Thallium                                              |              |                    |        |                | <b>&lt;1</b> 5 |
| Zinc                                                  | 1 <b>2</b> 5 | 151                | 112    | 132            | 100            |
| Polycyclic aromatic hydrocarbons, µg/L                |              |                    |        |                |                |
| Anthracene/phenanthrene <sup>d</sup>                  |              |                    |        | ND             |                |
| Chrysene/benz(a)anthracene                            |              |                    |        | 0.8            |                |
| Benzo(a)pyrene/perylene                               |              |                    |        | 1.3            |                |
| Fluoranthene                                          |              |                    |        | ND             |                |
| Pyrene                                                |              |                    |        | 10             |                |
| Polychlorinated biphenyls and related compounds, µg/L |              |                    |        |                |                |
| Aroclor 1221                                          |              |                    |        | ND             |                |
| Halogenated aliphatics, µg/L                          |              |                    |        |                |                |
| Carbon tetrachloride                                  |              |                    |        | ND             |                |
| Methylene chloride                                    |              |                    |        | <10            |                |
| 1,1,1-Trichloroethane                                 |              |                    |        | ND             |                |
| Pesticides and metabolites, µg/L                      |              |                    |        |                |                |
| β−ВНC                                                 |              |                    |        | ND             |                |
| Chlordane                                             |              |                    |        | ND             |                |
| Flow, MGD                                             |              | 0.017 <sup>d</sup> |        |                |                |

<sup>&</sup>lt;sup>a</sup>Composite sample.

 $<sup>^{\</sup>rm b}$  Total phenols,  $\mu g/L;$  pH, pH units.

CNot detected in sample.

d Average flow during 24-hr sampling period.

TABLE 14-15. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY G [4,5]

|                                                       |          |          |          | Intake                 |             |          |          |          |             | or effluen | t         |    |
|-------------------------------------------------------|----------|----------|----------|------------------------|-------------|----------|----------|----------|-------------|------------|-----------|----|
| Pollutant                                             | Day<br>1 | Day<br>2 | Day<br>3 | Composite <sup>a</sup> | Composite a | Day<br>4 | Day<br>1 | Day<br>2 | Day<br>3    | Composite  | Composite | D  |
| Politicant                                            |          |          |          | Composite              | Composite   |          |          |          |             | COMPOSITE  | COMPOSITE |    |
| Conventional pollutants, mg/L                         |          |          |          |                        |             |          |          |          |             |            |           |    |
| BOD-1                                                 | <3       | <3       | <3       |                        |             |          | 240      | 250      | 260         |            |           |    |
| BOD-2                                                 | <3       | <3       | <3       |                        |             |          | 280      | 240      | 290         |            |           |    |
| BOD-3                                                 |          |          | <3       |                        |             |          | 260      |          |             |            |           |    |
| COD                                                   | 20       | 28       | 24       |                        |             |          | 820      |          | 860         |            |           |    |
| TOC                                                   | 12       | 16       | 8        |                        |             |          | 240      |          | 220         |            |           |    |
| TSS                                                   | <1       | 18       | 16       |                        |             |          | 54       | 252      | 112         |            |           |    |
| Total phenols                                         | 10       | <1       | 8        |                        |             |          | 23,500   | 25,000   | 23,000      |            |           |    |
| Sulfide                                               | <0.1     | 0.6      | 0.3      |                        |             |          | 22       | 32       | 28          |            |           |    |
| Oil and grease                                        | 23       | 7        | 8        |                        |             |          | 130      | 56       | 110         |            |           |    |
| pH                                                    | 7.6      | 7.7      | 7.7      |                        |             |          | 10.2     | 10.3     | 10.6        |            |           |    |
| Ammon1a                                               | <1.0     | <1.0     | <1.0     |                        |             |          | 20       |          | 8.0         |            |           |    |
| Metals and inorganics µg/L                            |          |          |          |                        |             |          |          |          |             |            |           |    |
| Antimony                                              |          |          |          |                        | <1          |          |          |          |             |            | <1        |    |
| Arsenic                                               |          |          |          |                        | 5           |          |          |          |             |            | 5         |    |
| Beryllium                                             | <2       | <2       | <2       | <2                     | <1          |          | <2       | <2       | <2          | <2         | <1        |    |
| Cadmium                                               | <20      | <20      | <20      | <20                    | <1          |          | <20      | <20      | <20         | <20        | <1        |    |
| Chrowian                                              | <24      | <24      | <24      | <24                    | ~1          |          | 615      | 676      | 73          | 606        | `1        |    |
|                                                       | ~24      | 124      | 124      | 124                    | 1           |          | 820      | 790      | 1.200       | 606        | 1,000     |    |
| Chromium                                              | <0.00    | 40 OS    | <0.00    |                        | 1           |          | 0.02     | 0.02     | <0.02       |            | 1,000     |    |
| Chromium +6                                           | <0.02    | <0.02    | <0.02    | <4                     | 7           |          | 6        | 53       | <0.02<br><4 | В          | 7         |    |
| Copper                                                | <4       | <4       | <4       |                        | ,           |          |          |          |             | В          | ,         |    |
| Cyanides                                              | <10      | <10      | <10      | <20                    |             | <20      | 1,200    | 1,200    | 1,500       |            |           | 60 |
| Lead                                                  | 78       | 102      | < 60     | <60                    |             |          | 181      | 308      | <60         | 181        |           |    |
| Lead <sup>C</sup>                                     |          |          |          |                        | 2           |          | 420      | 160      | 430         |            | 278       |    |
| Mercury (laboratory 1)                                | 1.3      | 2.1      | 2.3      | 0.8                    |             |          | 1.7      | 0.9      | 1.8         | 0.3        |           |    |
| Mercury (laboratory 3)                                | 0.5      | 0.4      | <0.5     |                        |             |          | <0.2     | <0.2     | 0.2         |            |           |    |
| Nickel                                                | <50      | 52       | <50      | <50                    | <1          |          | <50      | 85       | <50         | 93         | <1        |    |
| Selenium                                              | <1       | <1       | <1       |                        | 3           |          | 9        | 10       | 6           |            | 6         |    |
| Silver                                                | <25      | <25      | <25      | <25                    | <1          |          | <25      | <25      | <25         | <25        | <1        |    |
| Thallium                                              |          |          |          |                        | <2          | <1       | <1       | <1       | <1          |            | <2        | <  |
| Zinc                                                  | 52       | 72       | 28       | 30                     |             |          | 125      | 117      | 170         | 179        |           |    |
| Zinc                                                  | <1       | <1       | <1       |                        | 36          |          | 60       | 24       | 110         |            | 66        |    |
| Phthalates, vg/L<br>Bis(2-ethylhexyl) phthalate       |          |          |          | 1,100                  |             |          |          |          |             | 700        |           |    |
| Phenols, µq/L                                         |          |          |          |                        |             |          |          |          |             |            |           |    |
| Phenol                                                |          |          |          | 10                     |             |          |          |          |             | 4,900      |           |    |
| Aromatics, µg/L                                       |          |          |          |                        |             |          |          |          |             |            |           |    |
| Benzene                                               |          |          |          |                        | <1          |          |          |          |             | 409        |           |    |
| Toluene                                               |          |          |          |                        | <1          |          |          |          |             | 96         |           |    |
| Polycyclic aromatic hydrocarbons, ug/L                |          |          |          | d                      |             |          |          |          |             |            |           |    |
| Anthracene/phenanthrene                               |          |          |          | ND <sup>d</sup>        |             |          |          |          |             | 1,100      |           |    |
| Chrysene/benz(a)anthracene                            |          |          |          | ND                     |             |          |          |          |             | 40         |           |    |
| Fluoranthene/pyrene                                   |          |          |          | ND                     |             |          |          |          |             | 40         |           |    |
| Naphthalene                                           |          |          |          | ND                     |             |          |          |          |             | 1,100      |           |    |
| Polychlorinated biphenyls and related compounds, wg/L |          |          |          |                        |             |          |          |          |             |            |           |    |
| Aroclor 1016                                          |          |          |          | ND                     |             |          |          |          |             | 1.8        |           |    |
| Aroclor 1232                                          |          |          |          | ND                     |             |          |          |          |             | ND         |           |    |
| Aroclor 1242                                          |          |          |          | ND                     |             |          |          |          |             | 0.5        |           |    |
| Ha.ogenated aliphatics ug/L<br>Methylene chloride     |          |          |          | 22                     |             |          |          |          |             | 293        |           |    |
|                                                       |          |          |          |                        |             |          |          |          |             |            |           |    |
| Pesticides and metabolites, μg/L<br>α-Endosulfan      |          |          |          | <b>N</b> D             |             |          |          |          |             | ND         |           |    |

TABLE 14-15 (continued)

|                                                    |            |            |            | AF effluent |           |           |           |            | Final     | effluent  |           |    |
|----------------------------------------------------|------------|------------|------------|-------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|----|
| Pollutant                                          | Day<br>I   | Day<br>2   | Day<br>3   | Composite a | Composite | Day<br>-4 | Day<br>1  | Day<br>2   | Day<br>3  | Composite | Composite | D. |
| Conventional pollutants, mg/L <sup>b</sup>         |            |            |            |             |           |           |           |            |           |           |           | _  |
| BOD-1                                              | 240        | 280        | 220        |             |           |           | 15        | 10         | 6         |           |           |    |
| BOD-2                                              | 270        | 280        | 260        |             |           |           | 13        | 10         |           |           |           |    |
| BOD-3                                              | 250        | 200        | 200        |             |           |           | 12        | <10        | <14       |           |           |    |
| COD                                                | 250<br>860 | 900        | 1,200      |             |           |           | 200       | 220        | 210       |           |           |    |
|                                                    | 200        |            |            |             |           |           | 60        | 64         | 56        |           |           |    |
| TOC                                                |            | 360        | 290        |             |           |           | 36        | 76         |           |           |           |    |
| TSS                                                | 64         | 152        | 176        |             |           |           | 47        | 20         | 64<br>32  |           |           |    |
| Total phenols                                      | 22,000     | 26,000     | 22,000     |             |           |           |           | 1.8        |           |           |           |    |
| Sulfide                                            | 18         | 28         | 30         |             |           |           | 2.0       |            | 2.1       |           |           |    |
| Oil and grease                                     | 190        | 250        | 220        |             |           |           | 24        | 9          | 10        |           |           |    |
| pH<br>Ammonia                                      | 9.9<br>14  | 10.2<br>12 | 10.4<br>10 |             |           |           | 8.3<br>15 | 8.0<br>15  | 8.0<br>12 |           |           |    |
| totals and inorganies is all                       |            |            |            |             |           |           |           |            |           |           |           |    |
| Metals and inorganics, µg/L<br>Antimony            |            |            |            |             | 1         |           |           |            |           |           | <1        |    |
| Arsenic                                            |            |            |            |             | <4        |           |           |            |           |           | 5         |    |
| Berrylium                                          | <2         | <2         | <2         | <2          | <1        |           | <2        | <2         | <2        | <2        | <2        |    |
| Cadmium                                            | < 20       | <20        | <20        |             | <1        |           | <20       | <20        | <20       | <20       | <1        |    |
| Chromium                                           | 526        | 414        | 73         |             | •         |           | 89        | 86         | 73        | <24       | 11        |    |
| Chromium                                           | 710        | 680        | 930        |             | 800       |           | 03        | 80         | ,3        | 124       | 1         |    |
|                                                    |            |            |            |             | 800       |           | <20       | <20        | <20       |           | 1         |    |
| Chromaum +6                                        | <20        | <20        | <20        |             | _         |           |           |            |           |           | _         |    |
| Copper                                             | <4         | <4         | <4         | 8           | 3         |           | <4        | <4         | <4        | <4        | 7         |    |
| Cyanides                                           | 1,900      | 2,000      | 3,000      |             |           | 130       | 90        | <b>7</b> 0 | 300       |           |           |    |
| Lead                                               | 159        | 115        | <60        |             |           |           | 107       | 90         | <60       | <60       |           |    |
| Lead                                               | 270        | 320        | 360        |             | 260       |           |           |            |           |           | 2         |    |
| Mercury (laboratory 1)                             | 1.1        | 1.1        | 1.0        | 0.3         | 0.4       |           |           |            |           |           |           |    |
| Mercury (laboratory 3)                             | <0.2       | 0.5        | 1          |             |           |           | 0.85      | <0.2       | 0.5       |           |           |    |
| Nickel                                             | <50        | <50        | <50        | 104         | 1         |           | 57        | 63         | <50       | <50       | <1        |    |
| Selenium                                           | 5          | 13         | 7          |             | 9         |           | 32        | 9          | 7         |           | 3         |    |
| Silver                                             | <25        | <25        | <25        | <25         | <1        |           | <25       | <25        | <25       | <25       | <1        |    |
| Thallium                                           | <1         | <1         | <1         |             | <2        | <1        | 6         | 12         | 5         |           | <2        |    |
| Zinc                                               | 93         | 94         | 64         |             |           | •         | 51        | 46         | 64        | 30        | `•        |    |
| Zinc <sup>C</sup>                                  | 44         | 87         | 92         |             | 53        |           | 31        | 40         | 64        | 30        | 36        |    |
| Phthalates, µg/L<br>Bis(2-ethylhexyl) phthalate    |            |            |            | 1,100       |           |           |           |            |           | 850       |           |    |
|                                                    |            |            |            | -,          |           |           |           |            |           |           |           |    |
| Phenols, µg/I<br>Phenol                            |            |            |            | 2,400       |           |           |           |            |           | ND        |           |    |
| Aromatics, µg/L                                    |            |            |            |             |           |           |           |            |           |           |           |    |
| Benzene                                            |            |            |            | 2,000       |           |           |           |            |           |           | <1        |    |
| Toluene                                            |            |            |            | 76,000      |           |           |           |            |           |           | <1        |    |
| Polycyclic aromatic hydrocarbons, µg/L             |            |            |            |             |           |           |           |            |           |           |           |    |
| Anthracene/phenanthrene                            |            |            |            | 600         |           |           |           |            |           | ND        |           |    |
| Chrysene/benz(a)anthracene                         |            |            |            | ND          |           |           |           |            |           | ND        |           |    |
| Fluoranthene/pyrene                                |            |            |            | ND          |           |           |           |            |           | ND        |           |    |
| Naphthalene                                        |            |            |            | 700         |           |           |           |            |           | ND        |           |    |
| olychlorinated biphenyls and                       |            |            |            |             |           |           |           |            |           |           |           |    |
| related compounds, pg/L                            |            |            |            |             |           |           |           |            |           |           |           |    |
| Aroclor 1016                                       |            |            |            | 7.9         |           |           |           |            |           | ND        |           |    |
| Arocler 1232                                       |            |            |            | 3.5         |           |           |           |            |           | ND        |           |    |
| Aroclor 1242                                       |            |            |            | 0.5         |           |           |           |            |           | ND        |           |    |
| Halogenated aliphatics, µg/L<br>Methylene chloride |            |            |            | 563         |           |           |           |            |           | 12        |           |    |
| •                                                  |            |            |            | 203         |           |           |           |            |           | 12        |           |    |
| Pesticides and me~abolites, μg/L<br>α-Endosulfan   |            |            |            | 0.1         |           |           |           |            |           | ND        |           |    |
| Flow, MGD                                          |            |            |            |             |           |           | 2.60      | 2.27       | 2.04      |           |           |    |

<sup>\*</sup>a24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

 $<sup>^{\</sup>rm b}$ Total phenols,  $\mu g/L$ ; pH, pH units.

Grab samples collected during second visit.

dNot detected in sample.

TABLE 14-16. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY H [4,5]

|                               |            |      |     | Intake    |           |       |            | Separate | or effluent  |             |
|-------------------------------|------------|------|-----|-----------|-----------|-------|------------|----------|--------------|-------------|
|                               | Day        | Day  | Day |           |           | Day   | Day        | Day      |              |             |
| Pollutant                     | 1          | 2    | 3   | Composite | Composite | 1     | 2          | ' 3      | Composite    | Composite   |
| Conventional pollutants, mg/L |            |      |     |           |           |       |            |          |              |             |
| BOD-1                         | <2         | <2   | 2   |           |           | 60    | 20         | 30       |              |             |
| BOD-2                         | <2         | <2   | 2   |           |           | 80    | <15        | 31       |              |             |
| BOD-3                         |            |      |     |           |           |       |            |          |              |             |
| COD                           | 12         |      | 23  |           |           |       | 200        | 180      |              |             |
| TOC                           | 9          |      | 14  |           |           |       | 57         | 50       |              |             |
| TSS                           | 14         | 113  | 167 |           |           | 120   | <b>6</b> 6 | 121      |              |             |
| Total phenols                 | 11         | <5   | 5   |           |           | ∠,300 | 2,200      | 1,900    |              |             |
| Sulfide                       | 0.3        | <0.1 | 0.1 |           |           | 3.7   | 4.4        | 1.2      |              |             |
| Oil and grease                | 31         | 13   | 8   |           |           | 80    | 51         | 24       | 37           | 13          |
| pH .                          | 8.2        | 8.5  | 7.9 |           |           | 7.3   |            | 8.6      |              |             |
| Ammonia                       | <1         |      | <1  |           |           |       | 7.3        | 6.2      |              |             |
| Metals and inorganics, µg/L   |            |      |     |           |           |       |            |          |              |             |
| Antimony                      |            |      |     |           | <25       |       |            |          |              | <25         |
| Arsenic                       |            |      |     |           | <20       |       |            |          |              | <20         |
| Beryllium                     | <1         | <1   | <1  | <1        | <3        | <1    | <1         | <1       | <1           | <3          |
| Cadmium                       | <2         | <2   | 8   | <2        | <1        | <2    | <2         | <2       | <2           | <1          |
| Chromium                      | 20         | 10   | 20  | 10        | <5        | 10    | 7          | 20       | 10           | <5          |
| Chromium +6                   | <20        | <20  | 400 |           |           | <20   | 20         | 40       |              |             |
| Copper                        | <6         | 9    | 10  | 7         | <5        | 30    | 20         | 30       | 30           | 7           |
| Cyanides                      | <20        | <20  | <20 |           |           | 160   | 70         | 80       |              |             |
| Lead                          | <20        | <20  | <20 | <20       | <15       | <20   | <20        | <20      | < <b>2</b> 0 | <b>41</b> 5 |
| Mercury                       |            |      |     | <0.5      |           |       |            |          | <0.5         |             |
| Nickel                        | <5         | <5   | <5  | <5        | <15       | <5    | <5         | <5       | <5           | <15         |
| Selenium                      |            |      |     |           | <20       |       |            |          |              | <20         |
| Silver                        | <1         | <1   | <1  | <1        | <5        | <1    | <1         | <1       | <1           | <5          |
| Thallium                      |            |      |     |           | <15       |       |            |          |              | <15         |
| Zinc                          | <60        | <60  | <60 | <60       | <15       | <60   | <60        | 70       | <60          | 30          |
| Phthalates, µg/L              |            |      |     | ~         |           |       |            |          |              |             |
| Bis(2-ethylhexyl) phthalate   |            |      |     | NDC       |           |       |            |          | ND           |             |
| Phenols, µg/L                 |            |      |     |           |           |       |            |          |              |             |
| 2,4-Dichlorophenol            |            |      |     | ND        |           |       |            |          | ND           |             |
| 2,4-Dimethylphenol            |            |      |     | ND        |           |       |            |          | 175          |             |
| Pheno1                        |            |      |     | ND        |           |       |            |          | 440          |             |
| Flow, MGD                     | <b>3</b> 5 |      |     |           |           | 5.04  |            |          |              |             |

TABLE 14-16 (continued)

|                               |     |            | Final | effluent   |          |
|-------------------------------|-----|------------|-------|------------|----------|
|                               | Day | Day        | Day   |            |          |
| Pollutant                     | 1   | 2          | 3     | Composite_ | Composit |
| Conventional pollutants, mg/L |     |            |       |            |          |
| BOD-1                         | <6  | <6         | 3     |            |          |
| BOD-2                         | 10  | ••         | ,     |            |          |
| BOD-3                         | <6  | <6         | 3     |            |          |
| COD                           | 40  | 36         | 48    |            |          |
| TOC                           | 20  | 18         | 21    |            |          |
| TSS                           | 8   | 10         | 8     |            |          |
|                               | <10 | 10         | 12    |            |          |
| Total phenols<br>Sulfide      | 0.2 | 0.2        |       |            |          |
|                               |     | 0.2        | 0.1   |            |          |
| Oil and grease                | 3   |            | 7.0   |            |          |
| рн                            | 7.4 | 8.4        |       |            |          |
| Ammonia                       | 6.2 | 5.0        | 5.0   |            |          |
| Metals and inorganics, µg/L   |     |            |       |            |          |
| Antimony                      |     |            |       |            | <25      |
| Arsenic                       |     |            |       |            | <20      |
| Beryllium                     | <1  | <1         | <1    | <1         | <3       |
| Cadmium                       | <2  | <2         | 20    | <2         | <1       |
| Chromium                      | 20  | 10         | 10    | 10         | <5       |
| Chromium +6                   | <20 | <20        | <20   |            |          |
| Copper                        | 10  | 10         | 9     | 7          | <5       |
| Cyanides                      | 20  | 10         | 20    |            |          |
| Lead                          | 80  | 30         | <20   | 30         | <15      |
| Mercury                       |     |            |       |            | <0.5     |
| Nickel                        | <5  | <5         | <5    | <5         | <15      |
| Selenium                      |     |            |       |            | 20       |
| Silver                        | <1  | <1         | <1    | <1         | <5       |
| Thallium                      |     |            |       |            | <15      |
| Zinc                          | <60 | <b>6</b> 0 | <60   | <60        | 25       |
| Phthalates, µg/L              |     |            |       |            |          |
| Bis(2-ethylhexyl) phthalates  |     |            |       | <10        |          |
| Bis(2-ethylnexyl) phenalaces  |     |            |       | 110        |          |
| Phenols, µg/L                 |     |            |       |            |          |
| 2,4-Dichlorophenol            |     |            |       | 10         |          |
| 2,4-Dimethylphenol            |     |            |       | ND         |          |
| Phenol                        |     |            |       | ND         |          |
| Flow, MGD                     | 1.2 |            |       |            |          |

Note: Blanks indicate data not available.

<sup>&</sup>lt;sup>a</sup>24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

 $<sup>^{\</sup>rm b}{}_{\rm Total\ phenols,\ \mu g/L;\ pH,\ pH\ units.}$ 

CNot detected in sample.

TABLE 14-17. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY I [4,5]

|                                        |            |      |      | Intake                 |           |       |       | Separator | r effluent |           |
|----------------------------------------|------------|------|------|------------------------|-----------|-------|-------|-----------|------------|-----------|
|                                        | Day        | Day  | Day  |                        |           | Day   | Day   | Day       |            |           |
| Pollutant                              | 1          | 2    | 3    | Composite <sup>a</sup> | Composite | 11    | 2     | 3         | Composite  | Composite |
| Conventional pollutants, mg/L          |            |      |      |                        |           |       |       |           |            |           |
| BOD-1ª                                 | <3         | <3   | <3   |                        |           | 88    | 76    | 55        |            |           |
| BOD~2b                                 | ٠,         | ``   | ٠,   |                        |           | 00    | 32    | 66        |            |           |
| BOD-3C                                 |            |      |      |                        |           | 77    | 32    |           |            |           |
| ထာ                                     | 4          | 5    |      |                        |           | 260   | 260   | 260       |            |           |
| TOC                                    | 5          | 4    |      |                        |           | 89    | 80    | 75        |            |           |
| TSS                                    | < <u>1</u> | <1   | 2    |                        |           | 38    | 46    | 32        |            |           |
| Total phenols                          | <1         | <1   | 4    |                        |           | 5,800 | 4,400 | 5,100     |            |           |
| Sulfide                                | 0.5        | ٠.   | 0.4  |                        |           | 0.5   | 4,400 | 0.6       |            |           |
| Oil and grease                         | 2          | 4    | 5    |                        |           | 30    | 25    | 42        |            |           |
| pH                                     | 7.8        | 8.6  | 7.6  |                        |           | 5.7   | 9.1   | 8.9       |            |           |
| Ammonia                                | <1.0       | <1.0 | 7.0  |                        |           | 3.4   | 4.5   | 5.0       |            |           |
| Andronita                              | 1.0        | 1.0  |      |                        |           | 3.4   | 4.3   | 3.0       |            |           |
| Metals and inorganics, µg/L            |            |      |      |                        |           |       |       |           |            |           |
| Antimony                               |            |      |      | <1                     |           |       |       |           | <b>1</b>   |           |
| Arsenic                                |            |      |      | <4                     |           |       |       |           | 5          |           |
| Berylliam                              | <2         | <2   | <2   | <2                     | <1        | <2    | <2    | <2        | <2         | <1        |
| Cadmium                                | <20        | <20  | <20  | <20                    | <1        | <20   | <20   | <20       | <20        | <1        |
| Chromium                               | <24        | <24  | <24  | <24                    | 1         | 98    | 91    | 102       | 98         | 3         |
| Copper                                 | <4         | 6    | 20   | 16                     | 10        | 157   | 167   | 146       | 157        | 6         |
| Total cyanide                          | <5         | <5   | <5   |                        |           | 10    | 15    | <5        |            |           |
| Lead                                   | <60        | <60  | 79   | 78                     | 2         | <60   | <60   | 90        | 168        | 2         |
| Mercury (laboratory 1), µg/L           | 1.3        | 1.1  | 1.4  |                        |           | 1.2   | 2.8   | 1.1       |            |           |
| Mercury (laboratory 3)                 | 0.7        | 0.5  | 0.7  |                        |           | <0.2  | 0.8   | 0.8       |            |           |
| Nickel                                 | <50        | <50  | <50  | <50                    | <1        | 7     | <2    | <2        | 5          | <50       |
| Selenium                               |            |      |      | 2                      |           | <4    | <4    | 7         | 4          |           |
| Silver                                 | <25        | <25  | <25  | <25                    | <1        | <25   | <25   | <25       | <25        | <1        |
| Thallium                               | <1         | <1   | <1   | <1                     |           | <1    | <1    | <1        | <2         |           |
| Zinc                                   | 69         | 52   | 836  | 25                     |           | 110   | 100   | 100       | 100        | 1,120     |
| Phthalates, µg/L                       |            |      |      |                        |           |       |       |           |            |           |
| Bis(2-ethylhexyl) phthalate            |            |      |      | 950                    |           |       |       |           | 300        |           |
| Di-n-butylphthalate                    |            |      |      | 30                     |           |       |       |           | ND         |           |
| DI-H-BucyIphchalace                    |            |      |      |                        |           |       |       |           |            |           |
| Phenols, ug/L                          |            |      |      | ND <sup>C</sup>        |           |       |       |           |            |           |
| Phenol                                 |            |      |      | ND                     |           |       |       |           | 390        |           |
| Polycyclic aromatic hydrocarbons, ug/L |            |      |      |                        |           |       |       |           |            |           |
| Naphthalene                            |            |      |      | ND                     |           |       |       |           | 290        |           |
| Flow, MGD                              | 3.53       | 3.53 | 3.53 |                        |           | 2.99  | 3.26  | 3.29      |            |           |

TABLE 14-17 (continued)

|                                                         |               |      | Final | effluent  | •         |
|---------------------------------------------------------|---------------|------|-------|-----------|-----------|
|                                                         | Day           | Day  | Day   |           |           |
| Pollutant                                               | 1             | 2    | 3     | Composite | Composite |
| Conventional pollutants, mg/L <sup>b</sup>              |               |      |       |           |           |
| BOD-1a                                                  | <12           | <12  | <12   |           |           |
| BOD-2b                                                  | 12            | 12   | 112   |           |           |
| BOD-3°                                                  | <12           | <12  |       |           |           |
| COD                                                     | 88            | 76   | 72    |           |           |
| TOC                                                     | 34            | 29   | 29    |           |           |
| TSS                                                     | 6             | 8    | 10    |           |           |
| Total phenols                                           | 18            | 14   | 12    |           |           |
| Sulfide                                                 | 0.7           |      | 0.4   |           |           |
| Oil and grease                                          | 5             | 3    | 9     |           |           |
| pН                                                      | 7.1           | 7.2  | 7.5   |           |           |
| Ammonia                                                 | <1.0          | <1.0 | 1.7   |           |           |
| Metals and inorganics, µg/L                             |               |      |       |           |           |
| Antimony                                                |               |      |       | <1        |           |
| Arsenic                                                 |               |      |       | <4        |           |
| Beryllium                                               | <2            | <2   |       | <2        | <1        |
| Cadmium                                                 | <20           | <20  |       | <20       | <1        |
| Chromium                                                | <24           | <24  |       | <24       | 1         |
| Copper                                                  | 85            | 22   |       | 71        | 3         |
| Total cyanide                                           | <b>&lt;</b> 5 | <5   | <5    |           |           |
| Lead                                                    | <60           | <60  |       | 211       | 2         |
| Mercury (laboratory 1), µg/L                            | 4.2           | 1.2  |       |           |           |
| Mercury (laboratory 3)                                  | <0.2          | <0.2 | 1.0   |           |           |
| Nickel                                                  | <50           |      |       | <50       | <1        |
| Selenium                                                | 25            | 23   |       | 16        |           |
| Silver                                                  | <25           | <25  |       | <25       | <1        |
| Thallium                                                | <1            | <1   |       | <2        |           |
| Zinc                                                    | 69            | 69   |       | 2,000     | 60        |
| Phthalates, µg/L                                        |               |      |       |           |           |
| Bis(2-ethylhexyl) phthalate                             |               |      |       | 600       |           |
| Di-n-butylphthalate                                     |               |      |       | 10        |           |
| Phenols, µq/L<br>Phenol                                 |               |      |       |           |           |
| Polycyclic aromatic hydrocarbons, $\mu g/L$ Naphthalene |               |      |       |           |           |
| Flow, MGD                                               | 2.76          | 2.27 | 2.44  |           |           |

<sup>&</sup>lt;sup>a</sup>24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

 $<sup>^{\</sup>rm b}\textsc{Total}$  phenols,  $\mu\textsc{g}/\textsc{L};$  pH, pH units.

Compound was not detected.

TABLE 14-18. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY J [4,5]

| <pre>&lt;5 16 14 10 17 .1 16 7.5 2.0 &lt;&lt;2 &lt;20 &lt;22 &lt;&lt;20</pre> | 2 40 19 3 24 <0.1 11 7.8 <1.0                         | Day<br>3<br>20<br>10<br>1<br>2<br>0.3<br>11<br>7.3<br><1.0                              | Composite                                                                                                               | Composite   | 51<br>39<br>210<br>60<br>54<br>1,000<br>0.7<br>74<br>8.9<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76<br>78<br>160<br>39<br>82<br>1,000<br>1.8<br>120<br>8.2<br>1.0 | 50<br>160<br>55<br>22<br>200<br>1.8<br>36<br>7.9<br>1.7 | Composite                                                                                                                                                                                           | Composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <5 16 14 10 17 0.1 16 7.5 2.0 <2 <2 <20 <24                                   | 2<br>40<br>19<br>3<br>24<br><0.1<br>11<br>7.8<br><1.0 | 3<br>20<br>10<br>1<br>2<br>0.3<br>11<br>7.3<br><1.0                                     | Composite                                                                                                               |             | 51<br>39<br>210<br>60<br>54<br>1,000<br>0.7<br>74<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76<br>78<br>160<br>39<br>82<br>1,000<br>1.8<br>120<br>8.2        | 50<br>160<br>55<br>22<br>200<br>1.8<br>36<br>7.9        | Composite                                                                                                                                                                                           | Composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16<br>14<br>10<br>17<br>0.1<br>16<br>7.5<br>2.0                               | 40<br>19<br>3<br>24<br><0.1<br>11<br>7.8<br><1.0      | 20<br>10<br>1<br>2<br>0.3<br>11<br>7.3<br><1.0                                          |                                                                                                                         |             | 39<br>210<br>60<br>54<br>1,000<br>0.7<br>74<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78<br>160<br>39<br>82<br>1,000<br>1.8<br>120<br>8.2              | 160<br>55<br>22<br>200<br>1.8<br>36<br>7.9              |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16<br>14<br>10<br>17<br>0.1<br>16<br>7.5<br>2.0                               | 40<br>19<br>3<br>24<br><0.1<br>11<br>7.8<br><1.0      | 20<br>10<br>1<br>2<br>0.3<br>11<br>7.3<br><1.0                                          |                                                                                                                         |             | 39<br>210<br>60<br>54<br>1,000<br>0.7<br>74<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78<br>160<br>39<br>82<br>1,000<br>1.8<br>120<br>8.2              | 160<br>55<br>22<br>200<br>1.8<br>36<br>7.9              |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16<br>14<br>10<br>17<br>0.1<br>16<br>7.5<br>2.0                               | 40<br>19<br>3<br>24<br><0.1<br>11<br>7.8<br><1.0      | 20<br>10<br>1<br>2<br>0.3<br>11<br>7.3<br><1.0                                          |                                                                                                                         | a.          | 39<br>210<br>60<br>54<br>1,000<br>0.7<br>74<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160<br>39<br>82<br>1,000<br>1.8<br>120<br>8.2                    | 160<br>55<br>22<br>200<br>1.8<br>36<br>7.9              |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14<br>10<br>17<br>0.1<br>16<br>7.5<br>2.0<br><2<br><20<br><24                 | 19<br>3<br>24<br><0.1<br>11<br>7.8<br><1.0            | 20<br>10<br>1<br>2<br>0.3<br>11<br>7.3<br><1.0                                          |                                                                                                                         |             | 210<br>60<br>54<br>1,000<br>0.7<br>74<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 160<br>39<br>82<br>1,000<br>1.8<br>120<br>8.2                    | 160<br>55<br>22<br>200<br>1.8<br>36<br>7.9              |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14<br>10<br>17<br>0.1<br>16<br>7.5<br>2.0<br><2<br><20<br><24                 | 19<br>3<br>24<br><0.1<br>11<br>7.8<br><1.0            | 10<br>1<br>2<br>0.3<br>11<br>7.3<br><1.0                                                |                                                                                                                         | a.          | 60<br>54<br>1,000<br>0.7<br>74<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39<br>82<br>1,000<br>1.8<br>120<br>8.2                           | 55<br>22<br>200<br>1.8<br>36<br>7.9                     |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10<br>17<br>0.1<br>16<br>7.5<br>2.0<br><2<br><20<br><24                       | 3<br>24<br><0.1<br>11<br>7.8<br><1.0                  | 1<br>2<br>0.3<br>11<br>7.3<br><1.0                                                      |                                                                                                                         |             | 54<br>1,000<br>0.7<br>74<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82<br>1,000<br>1.8<br>120<br>8.2                                 | 22<br>200<br>1.8<br>36<br>7.9                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17<br>0.1<br>16<br>7.5<br>2.0<br><2<br><20<br><24                             | 24<br><0.1<br>11<br>7.8<br><1.0                       | 2<br>0.3<br>11<br>7.3<br><1.0                                                           |                                                                                                                         |             | 1,000<br>0.7<br>74<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,000<br>1.8<br>120<br>8.2                                       | 200<br>1.8<br>36<br>7.9                                 |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.0<br><2<br><20<br><24                                                       | <0.1<br>11<br>7.8<br><1.0                             | 0.3<br>11<br>7.3<br><1.0                                                                |                                                                                                                         | a           | 0.7<br>74<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8<br>120<br>8.2                                                | 1.8<br>36<br>7.9                                        |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16<br>7.5<br>2.0<br><2<br><20<br><24                                          | 11<br>7.8<br><1.0                                     | 11<br>7.3<br><1.0                                                                       |                                                                                                                         |             | 74<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120<br>8.2                                                       | 36<br>7.9                                               |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.5<br>2.0<br><2<br><20<br><24                                                | 7.8<br><1.0<br><2<br><2<br><20                        | 7.3<br><1.0                                                                             |                                                                                                                         | a           | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.2                                                              | 7.9                                                     |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <2<br><20<br><24                                                              | <1.0<br><2<br><20                                     | <1.0                                                                                    |                                                                                                                         | a           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <2<br><20<br><24                                                              | <2<br><20                                             |                                                                                         |                                                                                                                         | .1          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                              | 1.7                                                     |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <20<br><24                                                                    | <20                                                   |                                                                                         |                                                                                                                         | -1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <20<br><24                                                                    | <20                                                   |                                                                                         |                                                                                                                         | -1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <20<br><24                                                                    | <20                                                   |                                                                                         |                                                                                                                         | <1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <20<br><24                                                                    | <20                                                   |                                                                                         |                                                                                                                         | 3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <24                                                                           |                                                       | < 2                                                                                     | <2                                                                                                                      | <1          | < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <2                                                               | <2                                                      | <2                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <24                                                                           |                                                       | <20                                                                                     | <20                                                                                                                     | <1          | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <20                                                              | <20                                                     | <20                                                                                                                                                                                                 | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                               | < 24                                                  | <24                                                                                     | <24                                                                                                                     | _           | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 620                                                              | 50                                                      | 52                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (20                                                                           | •                                                     |                                                                                         |                                                                                                                         | <1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                              | 16                                                      |                                                                                                                                                                                                     | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ~20                                                                           | 20                                                    | <20                                                                                     |                                                                                                                         | `*          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <20                                                              | 30                                                      |                                                                                                                                                                                                     | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5                                                                             | 10                                                    | <4                                                                                      | <4                                                                                                                      | 1           | <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,370                                                            | 33                                                      | 25                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10                                                                            | 10                                                    | <10                                                                                     | 14                                                                                                                      | 1           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,370                                                            | 10                                                      | 25                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                               |                                                       |                                                                                         | 460                                                                                                                     | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>16</b> 0                                                                   | <60                                                   | <60                                                                                     | <60                                                                                                                     | 2           | <60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 958                                                              | <60                                                     | <60                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.7,                                                                          | 0.9                                                   | 1.9                                                                                     | 0.5                                                                                                                     |             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2                                                              | 1.2                                                     | 0.5                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ).2ª                                                                          | 0.2                                                   | 2.0                                                                                     |                                                                                                                         |             | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.1                                                             | 1                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <50                                                                           | <50                                                   | <50                                                                                     | <50                                                                                                                     | 1           | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 771                                                              | <50                                                     | <50                                                                                                                                                                                                 | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                               |                                                       |                                                                                         |                                                                                                                         | 3           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                               | <4                                                      |                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <25                                                                           | <25                                                   | <25                                                                                     | <25                                                                                                                     | <1          | <25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <25                                                              | <25                                                     | <25                                                                                                                                                                                                 | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                               |                                                       |                                                                                         | 72                                                                                                                      | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | 257                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               | 34                                                    | 0.                                                                                      | /-                                                                                                                      | 54          | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250                                                              | 420                                                     | 23,                                                                                                                                                                                                 | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         | 110                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | 100                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         | 110e                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         | ND                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | ND                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         | ND                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | ND                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         | ND                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | ND                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         | ND                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | 420                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         | MT                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | N/D                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | aod.                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | 30d                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | 30d                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | 112                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         | N.                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         |                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               |                                                       |                                                                                         | ND                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                         | ИВ                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                               | 60<br>0.7<br>0.2                                      | <pre> &lt;60     &lt;60 0.7 0.2 0.2 &lt;50     &lt;50 &lt;25     &lt;1     &lt;1 </pre> | <pre>&lt;60   &lt;60   &lt;60 2.7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0   &lt;50 &lt;50 &lt;52 &lt;1   &lt;1 </pre> | <pre></pre> | Control   Cont | Color                                                            | Continue                                                | 360       460       460       2       460       958       460         10.7       0.9       1.9       0.5       0.1       1.2       1.2         10.2 <sup>d</sup> 0.2       2.0       3.0       <0.1 | Color   Colo |

TABLE 14-18 (continued)

|                                        |            |             |            | 2 effluent             |           |            |            |            | 3 effluent |           |
|----------------------------------------|------------|-------------|------------|------------------------|-----------|------------|------------|------------|------------|-----------|
|                                        | Day        | Day         | Day        | <u> </u>               |           | Day        | Day        | Day        |            |           |
| Pollutant                              | 1          | 2           | 3          | Composite              | Composite | 1          | 2          | 3          | Composite  | Composite |
| Conventional pollutants, mg/Lb         |            |             |            |                        |           |            |            |            |            |           |
| BOD-1                                  | 85         | >84         |            |                        |           | 15         | 20         |            |            |           |
| BOD-3                                  | >84        | >84         | >84        |                        |           | 58         | 22         | 32         |            |           |
| COD                                    | 310        | 690         | 660        |                        |           | 160        | 180        | 220        |            |           |
| TOC                                    | 57         | 200         | 230        |                        |           | 52         | 45         | 63         |            |           |
| TSS                                    | 64         | 196         | 108        |                        |           | 62         | 38         | 34         |            |           |
| Total phenols                          | 1,000      | 2,000       | 2,500      |                        |           | 690        | 1,300      | 270        |            |           |
| Sulfide                                | 5.5        | 2,000<br>11 | 15         |                        |           | 1.8        | 5.3        | 1.5        |            |           |
|                                        |            |             |            |                        |           |            |            |            |            |           |
| Oil and grease                         | 84         | 140         | 250        |                        |           | 25         | 23         | 54         |            |           |
| pH<br>Ammonla                          | 8.2<br>8.4 | 8.2<br>14   | 8.2<br>8.4 |                        |           | 7.4<br>3.0 | 7.3<br>6.2 | 7.3<br>4.5 |            |           |
| Anticollia                             | 0.4        | 14          | 0.4        |                        |           | 3.0        | 0.2        | 4.5        |            |           |
| Metals and inorganics, µg/I            |            |             |            |                        |           |            |            |            |            |           |
| Antimony                               |            |             |            |                        | <1        |            |            |            |            | <1        |
| Arsenic                                |            |             |            |                        | 5         |            |            |            |            | 3         |
| Beryllium                              | <2         | <2          | <2         | <2                     | <1        | <2         | <2         | <2         | <2         | <1        |
| Cadmium                                | <20        | <20         | <20        | <20                    | <1        | <20        | <20        | <20        | <20        | <1        |
| Chromium                               | 440        | 1,050       | 411        | 584                    |           | 547        | 1,010      | 350        | 626        |           |
| Chromium                               | 450        | 1,100       | 390        |                        | 780       | 830        | 1,200      | 660        |            | 570       |
| Chromium +6                            | <20        | 40          | 20         |                        |           | 20         | 20         | 40         |            |           |
| Copper                                 | <4         | 231         | <4         | 55                     | 7         | 14         | 16         | 16         | 25         | 2         |
| Cyanides                               | 10         | 10          | 10         | ••                     |           | 10         | 10         | 10         |            | _         |
| Lead                                   | 190        | 2,080       | 876        | 810                    |           | 123        | <60        | <60        | 71         |           |
| Lead                                   | 190        | 2,000       | 380        | 010                    | 870       | 123        | 100        | 100        |            | 2         |
| Mercury (laboratory 1)                 | 2.8        | 1.6         | 0.3        | 0.6                    | 0.0       | 0.2        | 0.6        | 0.9        | 1.0        | -         |
|                                        | 0.1        | 5           | <1         | 0.0                    |           | <0.1       | 1.0        |            | 1.0        |           |
| Mercury (laboratory 3)                 | <50        |             |            |                        |           |            |            | 0.6        |            | -         |
| Nickel                                 |            | 69          | <50        | 61                     | <1        | 118        | <50        | <50        | 63         | <1        |
| Selenium                               | 16         | 12          | 14         |                        | 8         | 17         | 13         | 31         |            | 6         |
| Silver                                 | <25        | <25         | <25        | <25                    | <1        | <25        | <25        | <25        | <25        | 1         |
| Thallium                               | 3          | <1          | <1         |                        | 3         | <2         | <1         | <1         |            | <2        |
| Zinc                                   | 316        | 1,400       | 790        | 658                    |           | 194        | 245        | 280        | 215        |           |
| Zinc                                   | 290        | 2,100       | 680        |                        | 740       | 150        | 210        | 280        |            | 260       |
| Phthalates, µg/I                       |            |             |            |                        |           |            |            |            |            |           |
| Bis(2-ethylhexyl) phthalate            |            |             |            | 300                    |           |            |            |            | 50         |           |
| Diethyl phthalate                      |            |             |            | ND                     |           |            |            |            | ND         |           |
| Dimethyl phthalate                     |            |             |            | ND                     |           |            |            |            | ND         |           |
| Phonology (7                           |            |             |            |                        |           |            |            |            |            |           |
| Phenols, µg/L<br>2,4-Dimethylphenol    |            |             |            | ND                     |           |            |            |            | ND         |           |
| Pentachlorophenol                      |            |             |            | ND                     |           |            |            |            | ND         |           |
| Phenol                                 |            |             |            | 160                    |           |            |            |            | ND         |           |
| Polycyclic aromatic hydrocarbons, µg/L |            |             |            |                        |           |            |            |            |            |           |
| Acenaphthene                           |            |             |            | ND                     |           |            |            |            | ND         |           |
| •                                      |            |             |            | ND <sub>d</sub><br>90d |           |            |            |            | ND<br>ND   |           |
| Anthracene/phenanthrene                |            |             |            | 304                    |           |            |            |            | 50         |           |
| Chrysene/benz(a)anthracene             |            |             |            | 30                     |           |            |            |            |            |           |
| Fluoranthene/pyrene                    |            |             |            | ND                     |           |            |            |            | ND         |           |
| Fluorene<br>Naphthalene                |            |             |            | ND<br>350              |           |            |            |            | ND<br>ND   |           |
| Hannerstelle                           |            |             |            | 330                    |           |            |            |            | ND         |           |
| Polychlorinated biphenyls and          |            |             |            |                        |           |            |            |            |            |           |
| related compounds, µg/L                |            |             |            |                        |           |            |            |            |            |           |
| Aroclor 1016                           |            |             |            | 0.5                    |           |            |            |            | ND         |           |
| Aroclor 1232                           |            |             |            | 0.5                    |           |            |            |            | ND         |           |
| Aroclor 1242                           |            |             |            | 0.5                    |           |            |            |            | DM         |           |
|                                        |            |             |            |                        |           |            |            |            |            |           |

TABLE 14-18 (continued)

|                                        |       |             |            | 4 effluent |           |            |            |             | 5 effluent |           |
|----------------------------------------|-------|-------------|------------|------------|-----------|------------|------------|-------------|------------|-----------|
| W-11                                   | Day   | Day         | Day        |            |           | Day        | Day        | Day         |            |           |
| Pollutant                              | 1     | 2           | 3          | Composite  | Composite | 1          |            | 3           | Composite  | Composite |
| Conventional pollutants, mg/Lb         |       |             |            |            |           |            |            |             |            |           |
| BOD-1                                  | >80   | 70          |            |            |           | 10         | 12         |             |            |           |
| BOD-3                                  | 100   | 55          | 60         |            |           | 10         | 10         | 18          |            |           |
| COD                                    | 310   | 270         | 430        |            |           | 83         | 75         | 92          |            |           |
| TOC                                    | 66    | 58          | 97         |            |           | 23         | 22         | 31          |            |           |
| TSS                                    | 36    | 26          | 94         |            |           | 26         | 16         | 48          |            |           |
| Total phenols                          | 9,500 | 2,000       | 1,500      |            |           | 294        | 214        | 246         |            |           |
| Sulfide                                | 6.8   | 9.1         | 5.1        |            |           | <0.1       | 1.0        | 12          |            |           |
| Oil and grease                         | 65    | 34          | 150        |            |           | 70.1       |            |             |            |           |
|                                        | 7.7   |             |            |            |           |            | 9          | 25          |            |           |
| pH<br>Ammonia                          | 7.7   | 7.3<br>7.3  | 7.6<br>8.4 |            |           | 8.1<br>2.0 | 8.1<br>1.0 | 7.1<br><1.0 |            |           |
| Metals and inorganics, µg/L            |       |             |            |            |           |            |            |             |            |           |
| Antimony                               |       |             |            |            | 1         |            |            |             |            | <1        |
| Arsenic                                |       |             |            |            | 3         |            |            |             |            | -,1       |
| Beryllium                              | <2    | <2          | <2         | <2         | <1        | <2         | <2         | <2          | <2         | <1        |
| Cadmium                                | <20   | <20         | <20        | <20        | <1        |            |            |             |            |           |
| Chromium                               |       |             |            |            | <1        | <20        | <20        | <20         | <20        | 7         |
| Chromium<br>Chromium <sup>C</sup>      | 835   | 1,210       | 1,860      | 1,300      |           | 1,580      | 2,790      | 1,500       | 2,010      |           |
|                                        | 1,500 | 1,300       | 1,700      |            | 1,900     | 2,200      | 4,900      | 1,800       |            | 3,600     |
| Chromium +6                            | <20   | <20         | 50         |            |           | 140        | 130        | 90          |            |           |
| Copper                                 | 38    | 21          | 77         | 42         | 10        | 51         | 47         | 51          | 45         | 182       |
| Cyanides                               | 60    | 50          | 60         |            |           | 20         | 20         | 20          |            |           |
| Lead                                   | 80    | <60         | <60        | 69         |           | 164        | <60        | <60         | 101        |           |
| Lead <sup>C</sup>                      |       |             |            |            | 12        |            |            |             |            | 2         |
| Mercury (laboratory 1)                 | 0.2   | 1.3<br>6.0d | 1.6        | 0.4        |           | 0.3        | 1.1        | 1.6         | 0.5        |           |
| Mercury (laboratory 3)                 | 0.2   |             | 2.0        |            |           | <0.1       | 0.2        | 2.0         |            |           |
| Nickel                                 | <50   | <50         | <50        | 50         | <1        | 189        | <50        | <50         | <b>7</b> 9 | 2         |
| Selenium                               | 25    | 24          | 4          |            | 11        | 7          | 29         | 19          |            | 23        |
| Silver                                 | <25   | <25         | <25        | <25        | 2         | 31         | <25        | <25         | <25        | <1        |
| Thallium                               | <1    | <1          | <1         |            | <2        | <1         | 4          | 6           |            | <2        |
| Zinc                                   | 411   | 261         | 579        | 304        |           | 464        | 609        | 417         | 491        |           |
| Zinc                                   | 340   | 290         | 620        |            | 560       | 600        | 740        | 520         |            | 760       |
| Phthalates, µg/L                       |       |             |            |            |           |            |            |             |            |           |
| Bis(2-ethylhexyl) phthalate            |       |             |            | 600        |           |            |            |             | ND         |           |
| Diethyl phthalate                      |       |             |            | ND         |           |            |            |             | ND         |           |
| Dimethyl phthalate                     |       |             |            | ND         |           |            |            |             | ND         |           |
| Phenols, µg/L                          |       |             |            |            |           |            |            |             |            |           |
| 2,4-Dimethylphenol                     |       |             |            | 650        |           |            |            |             | ND         |           |
| Pentachlorophenol                      |       |             |            | 850        |           |            |            |             | ND         |           |
| Phenol Phenol                          |       |             |            | 1,600      |           |            |            |             | ND         |           |
| Polycyclic aromatic hydrocarbons, µg/L |       |             |            |            |           |            |            |             |            |           |
| Acenaphthene                           |       |             |            | 50         |           |            |            |             | ND         |           |
| Anthracene/phenanthrene                |       |             |            | 230        |           |            |            |             | ND         |           |
| Chrysene/benz(a)anthracene             |       |             |            | 40         |           |            |            |             | ND         |           |
| Fluoranthene/pyrene                    |       |             |            | 20         |           |            |            |             | ND         |           |
| Fluorene                               |       |             |            | 80         |           |            |            |             | ND         |           |
| Naphthalene                            |       |             |            | ND         |           |            |            |             | ND         |           |
| Polychlorinated biphenyls and          |       |             |            |            |           |            |            |             |            |           |
| related compounds, µg/L                |       |             |            |            |           |            |            |             |            |           |
| Aroclor 1016                           |       |             |            | ND         |           |            |            |             | ND         |           |
| Aroclor 1232                           |       |             |            | ND         |           |            |            |             | ND         |           |
| Aroclor 1242                           |       |             |            | ND         |           |            |            |             | ND         |           |

TABLE 14-18 (continued)

|                                        |             | В                   | iopond in      | fluent              |           |      |          | Final ( | effluent     |           |
|----------------------------------------|-------------|---------------------|----------------|---------------------|-----------|------|----------|---------|--------------|-----------|
|                                        | Day         | Day                 | Day            |                     |           | Day  | Day      | Day     |              |           |
| Pollutant                              | 11          | 2                   | 3              | Composite           | Composite | 1    | 2        | 3       | Composite    | Composite |
| Conventional pollutants, mg/L          |             |                     |                |                     |           |      |          |         |              |           |
| BOD-1                                  | 96          | <84                 |                |                     |           | 6    | 6        |         |              |           |
| BOD-3                                  |             |                     | >84            |                     |           |      |          | 6       |              |           |
| COD                                    | <b>6</b> 10 | 570                 | 480            |                     |           | 87   | 87       | 92      |              |           |
| TOC                                    | 50          | 100                 | 120            |                     |           | 34   | 26       | 32      |              |           |
| TSS                                    | 24          | 16                  | 18             |                     |           | 20   | 7        | 8       |              |           |
| Total phenols                          | 120,000     | 110,000             | 83,000         |                     |           | 8    | 24       | 2       |              |           |
| Sulfide                                | 14          | 49                  | 3.5            |                     |           | 0.2  | 1.0      | 0.9     |              |           |
| Oil and grease                         | 11          | 9                   | 20             |                     |           | 20   | - 6      | 16      |              |           |
| рН                                     | 7.4         | 7.7                 | 7.5            |                     |           | 7.0  | 7.3      | 7.9     |              |           |
| Ammonia                                | 22          | 24                  | 20             |                     |           | 6.8  | 5.0      | 5.6     |              |           |
| Metals and inorganics, µg/L            |             |                     |                |                     |           |      |          |         |              |           |
| Antimony                               |             |                     |                |                     | <1        |      |          |         |              | <11       |
| Arsenic                                |             |                     |                |                     | <2        |      |          |         |              | <4        |
| Beryllium                              | <2          | <2                  | <2             | <2                  | <1        | < 2  | <2       | <2      | <2           | <1        |
| Cadmium                                | <20         | <20                 | <20            | <20                 | <1        | <20  | <20      | <20     | <20          | <1        |
| Chromium                               | <24         | <25                 | <24            | 29                  |           | 96   | 94       | 102     | 82           |           |
| Chromium <sup>C</sup>                  | 9           | 5                   | 6              |                     | 22        | 150  | 27       | 27      |              | 54        |
| Chromium +6                            | 80          | 100                 | 80             |                     | _         | <20  | <20      | <20     |              |           |
| Copper                                 | 41          | 7                   | <4             | 17                  | 2         | 9    | <4       | 6       | <4           | 32        |
| Cyanides                               | 220         | 340                 | 260            | -60                 |           | 70   | 80       | 80      | 150          |           |
| Lead                                   | 72          | <60                 | <b>&lt;6</b> 0 | <60                 | 3         | 82   | <60      | <60     | < <b>6</b> 0 | 9         |
| Lead                                   |             |                     |                |                     | 3         |      |          |         | 0.5          | 9         |
| Mercury (laboratory 1)                 | 2.0         |                     | • •            |                     |           | 0.8  | 1.3      | 0.9     | 0.5          |           |
| Mercury (laboratory 3)                 | 2.0<br><50  | 6<br><b>&lt;5</b> 0 | 3.0<br><50     | <50                 | <1        | 53   | 6<br><50 | 65      | <50          | 3         |
| Nickel<br>Selenium                     | 20          | 10                  | 18             | <50                 | 22        | 20   | 27       | 16      | <b>\</b> 30  | 12        |
| Silver                                 | <25         | <25                 | <25            | <25                 | <1        | <25  | <25      | <25     | <25          | <1        |
| Thallium                               | <1          | <1                  | <1             | 123                 | <2        | <1   | <1       | <1      | 123          | <2        |
| Zinc                                   | 148         | 54                  | 65             | 55                  | **        | 130  | 51       | 46      | 62           |           |
| Zinc <sup>C</sup>                      | 140         | 54                  | U.S            |                     |           | 130  | 31       | •••     |              | 62        |
| Phthalates, µg/L                       |             |                     |                |                     |           |      |          |         |              |           |
| Bis(2-ethylhexyl) phthalate            |             |                     |                | 210                 |           |      |          |         | 190          |           |
| Diethyl phthalate                      |             |                     |                | ND                  |           |      |          |         | 30           |           |
| Dimethyl phthalate                     |             |                     |                | ND                  |           |      |          |         | 3            |           |
| Phenols, µg/L                          |             |                     |                |                     |           |      |          |         |              |           |
| 2,4-Dimethylphenol                     |             |                     |                | <b>7</b> 5 <b>0</b> |           |      |          |         | ND           |           |
| Pentachloropheno1                      |             |                     |                | ND                  |           |      |          |         | ND           |           |
| Phenol                                 |             |                     |                | <12,000             |           |      |          |         | ND           |           |
| Polycyclic aromatic hydrocarbons, µg/L |             |                     |                |                     |           |      |          |         |              |           |
| Acenaphthene                           |             |                     |                | ND                  |           |      |          |         | ND           |           |
| Anthracene/phenanthrene                |             |                     |                | ND                  |           |      |          |         | ND           |           |
| Chrysene/benz(a)anthracene             |             |                     |                | ND                  |           |      |          |         | ND           |           |
| Fluorantnene/pyrene                    |             |                     |                | ND                  |           |      |          |         | ND           |           |
| Fluorene                               |             |                     |                | ND                  |           |      |          |         | ND           |           |
| Naphthalene                            |             |                     |                | ND                  |           |      |          |         | ND           |           |
| Polychlorinated biphenyls and          |             |                     |                |                     |           |      |          |         |              |           |
| related compounds, ug/L                |             |                     |                |                     |           |      |          |         | ND           |           |
| Aroclor 1016                           |             |                     |                | ND                  |           |      |          |         |              |           |
| Aroclor 1232                           |             |                     |                | ND                  |           |      |          |         | ND<br>ND     |           |
| Aroclor 1242                           |             |                     |                | 0.1                 |           |      |          |         | ND           |           |
| Flow, MGD                              |             |                     |                |                     |           | 2.70 | 2.55     | 2.73    |              |           |

<sup>&</sup>lt;sup>a</sup>24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

Total phenols, µg/L; pH, pH units.

 $<sup>^{\</sup>mathrm{C}}\mathrm{A}$  second laboratory analyzed samples and reported these values.

daverage value.

eNot detected in sample.

TABLE 14-19. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY K [4,5]

| •                                 |      |      |     | Intake    |                        |       |          | DAF ef | Iluent    |              |
|-----------------------------------|------|------|-----|-----------|------------------------|-------|----------|--------|-----------|--------------|
|                                   | Day  | Day  | Day |           | Composite <sup>a</sup> | Day   | Day<br>2 | Day    | 0         | O            |
| Pollutant                         | 1    | 2    | 3   | Composite | Composite              | 1     |          | 3      | Composite | Composit     |
| Conventional pollutants, $mg/L^b$ |      |      |     |           |                        |       |          |        |           |              |
| BOD-1                             | 4    | 4    | <6  |           |                        | <120  | 220      | <120   |           |              |
| BOD-2                             | -    | _    | •   |           |                        | <120  | 210      | <120   |           |              |
| BOD-3                             | 4    | 4    | <6  |           |                        | 80    | 200      | <120   |           |              |
| COD                               | 27   | 23   | 24  |           |                        | 530   | 1,000    | 540    |           |              |
| <b>TO</b> C                       | 21   | 11   | 10  |           |                        | 180   | 350      | 180    |           |              |
|                                   |      | 14   | 10  |           |                        | 260   | 380      | 210    |           |              |
| TSS                               | 12   |      | 10  |           |                        | 260   | 700      | 210    |           |              |
| Total phenols                     |      | <10  |     |           |                        |       | -        |        |           |              |
| Sulfide                           | 0.4  | 0.4  | 0.3 |           |                        | 0.8   | 1.6      | 0.6    |           |              |
| Oil and grease                    | 9    | 6    | 14  |           |                        | 590   | 100      | 98     |           |              |
| рĦ                                | 8.1  |      | 7.4 |           |                        | 7.8   |          | 7.3    |           |              |
| Ammonia                           | <1.0 | <1.0 | 1.0 |           |                        | 6.7   | 6.7      | 6.2    |           |              |
| Metals and inorganics, µg/L       |      |      |     |           |                        |       |          |        |           |              |
| Antimony                          |      |      |     |           | <25                    |       |          |        |           | <25          |
| Arsenic                           |      |      |     |           | <20                    |       |          |        |           | <20          |
| Beryllium                         | <1   | <1   | <1  | <1        | <3                     | <1    | <1       | <1     | <1        | <3           |
| Cadmium                           | <2   | <2   | 3   | <2        | <1                     | <2    | <2       | <2     | <2        | 3            |
| Chromium                          | 20   | 10   | 10  | 20        | 5                      | 1,000 | 2,000    | 1,000  | 1,000     | 1,600        |
| Chromium +5                       | <20  | <20  | <20 | 20        | ,                      | <20   | 40       | 20     | 1,000     | 1,000        |
| Copper                            | 10   | 10   | 10  | 10        | 6                      | 200   | 400      | 200    | 300       | 280          |
| ••                                | 10   |      | 10  | 10        | •                      | 200   |          | 200    | 300       | 200          |
| Total cyanide                     |      | <20  |     |           |                        |       | <20      |        |           |              |
| Lead                              | 70   | 40   | 80  | 40        | <15                    | 50    | 200      | 60     | 100       | 70           |
| Mercury                           |      |      |     | <0.5      |                        |       |          | _      | <0.5      |              |
| Nickel                            | <5   | <5   | <5  | <5        | <15                    | 9     | 20       | <5     | 20        | 28           |
| Selenium                          |      |      |     |           | <20                    |       |          |        |           | < <b>2</b> 0 |
| Silver                            | <1   | <1   | <1  | <1        | <5                     | <1    | <1       | <1     | <1        | <5           |
| Thallium                          |      |      |     |           | <15                    |       |          |        |           | <15          |
| Zinc                              | 200  | 70   | 60  | 70        | 45                     | 1,000 | 3,000    | 1,000  | 2,000     | 1,400        |
| Phenols, µg/L                     |      |      |     |           |                        |       |          |        |           |              |
| 2-Chlorophenol                    |      |      |     | NDC       |                        |       |          |        | 315       |              |
| 2,4-Dinitrophenol                 |      |      |     | ND        |                        |       |          |        | 11,000    |              |
| 2,4-Dimethylphenol                |      |      |     | ND        |                        |       |          |        | 1,150     |              |
| 4-Nitrophenol                     |      |      |     | ND        |                        |       |          |        | 5.800     |              |
| Phenol                            |      |      |     | ND        |                        |       |          |        | 105       |              |
|                                   |      |      |     |           |                        |       |          |        |           |              |
| Aromatics, μg/L                   |      |      |     |           |                        |       |          |        |           |              |
| Benzene                           |      |      |     | ND        |                        |       |          |        | 20        |              |
| Ethylbenzene                      |      |      |     | ND        |                        |       |          |        | ND        |              |
| Toluene                           |      |      |     | ND        |                        |       |          |        | <10       |              |
| Polychlorinated biphenyls and     |      |      |     |           |                        |       |          |        |           |              |
| related compounds, µg/L           |      |      |     |           |                        |       |          |        |           |              |
| Aroclor 1016                      |      |      |     | ND        |                        |       |          |        | <10       |              |
| Aroclor 1221                      |      |      |     | ND        |                        |       |          |        | <10       |              |
| Aroclor 1232                      |      |      |     | ND        |                        |       |          |        | <10       |              |
| Aroclor 1242                      |      |      |     | ND        |                        |       |          |        | <10       |              |
| Aroclor 1248                      |      |      |     | ND        |                        |       |          |        | <10       |              |
| Aroclor 1254                      |      |      |     | ND        |                        |       |          |        | <10       |              |
| Aroclor 1260                      |      |      |     | ND        |                        |       |          |        | <10       |              |
| Halogenated aliphatics, µg/L      |      |      |     |           |                        |       |          |        |           |              |
| Chloroform                        |      |      |     | <10       |                        |       |          |        | ND        |              |
| 1,2-Dichloroethane                |      |      |     | ND        |                        |       |          |        | ND        |              |
| 1,2-trans-Dichloroethylene        |      |      |     | ND        |                        |       |          |        | ND        |              |
| Methylene chloride                |      |      |     | ND        |                        |       |          |        | 1,100     |              |
| 1,1,2,2-Tetrachloroethane         |      |      |     | _         |                        |       |          |        | •         |              |
|                                   |      |      |     | ND        |                        |       |          |        | ND        |              |
| Tetrachloroethylene               |      |      |     | ND        |                        |       |          |        | ND        |              |
| Pesticides and metabolites, ug/   | 'L   |      |     |           |                        |       |          |        | _         |              |
| Heptachlor epoxide                |      |      |     | ND        |                        |       |          |        | <5        |              |
|                                   |      |      |     |           |                        |       |          |        |           |              |

TABLE 14-19 (continued)

| Day<br>1      | Day<br>2                                                                     | Day<br>3                                                                                                                                                          | Composite                                                                                                                                       | Composite                                                                                                                                                                                                                                                                                                                       |
|---------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| •             |                                                                              | ••                                                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| 8             | <6                                                                           | 11                                                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| 7             | 6                                                                            | 10                                                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| ,,            |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| 21            | 16                                                                           | 32                                                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               | 29                                                                           |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| 0.5           | 0.3                                                                          | 0.3                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| 31            | 15                                                                           | 12                                                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               | 3.4                                                                          |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| •             | 3.4                                                                          | •••                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 | <25                                                                                                                                                                                                                                                                                                                             |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 | <20                                                                                                                                                                                                                                                                                                                             |
| <1            | <1                                                                           | <1                                                                                                                                                                | <1                                                                                                                                              | <3                                                                                                                                                                                                                                                                                                                              |
| <2            | <2                                                                           | <2                                                                                                                                                                | <2                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                               |
| 100           | 60                                                                           | 100                                                                                                                                                               | 100                                                                                                                                             | 73                                                                                                                                                                                                                                                                                                                              |
| <20           | <20                                                                          | <20                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| 60            | 10                                                                           | 20                                                                                                                                                                | 30                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                              |
|               | <20                                                                          |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| <20           | <20                                                                          | <20                                                                                                                                                               |                                                                                                                                                 | <15                                                                                                                                                                                                                                                                                                                             |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| <b>&lt;</b> 5 | <5                                                                           | <5                                                                                                                                                                | <5                                                                                                                                              | <15<br><20                                                                                                                                                                                                                                                                                                                      |
| -1            | -1                                                                           | -1                                                                                                                                                                | -1                                                                                                                                              | <5                                                                                                                                                                                                                                                                                                                              |
| '1            | `1                                                                           | ~1                                                                                                                                                                | 1                                                                                                                                               | ·<15                                                                                                                                                                                                                                                                                                                            |
| 100           | 70                                                                           | 100                                                                                                                                                               | 1,000                                                                                                                                           | 120                                                                                                                                                                                                                                                                                                                             |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   | ND                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   | <10<br><b>N</b> D                                                                                                                               |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   | <10                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   | <10                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   | <10                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   | <10                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   | <10                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   | <10                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   | <10                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|               |                                                                              |                                                                                                                                                                   | ND                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |
|               | 96 21 0.5 31 7.7 2.2 <1 <2 100 <20 60 <20 <1 100 <100 <100 <100 <100 <100 <1 | 96 130 39 21 16 29 0.5 0.3 31 15 7.7 2.2 3.4  <1 <1 <2 <2 100 60 <20 <20 <20 <20 <1 <1 100 <1 <20 <20 <1 <1 <1 <1 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 96 130 140 39 42 21 16 32 99 0.5 0.3 0.3 31 15 12 7.7 7.3 2.2 3.4 3.9  <1 <1 <1 <1 <2 <2 <2 <2 100 60 100 <20 <20 <20 <20 <20 <20 <20 <20 <20 < | 96 130 140 39 42 21 16 32 29 0.5 0.3 0.3 31 15 12 7.7 7.3 2.2 3.4 3.9 <pre> </pre> <pre> &lt;1 &lt;1 &lt;1 &lt;1 &lt;1 &lt;1 &lt;1 &lt;1 &lt;2 &lt;0 &lt;20 &lt;0 &lt;20 &lt;0 &lt;20 &lt;0 &lt;0</pre> |

<sup>&</sup>lt;sup>a</sup>24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

 $<sup>^{\</sup>rm b}$  Phenolics,  $\mu g/L;$  pH, pH units.

Compound was not detected.

TABLE 14-20. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY L [4,5]

|                                            |               |          | Intak    |                |                |          |          | tor 1 ef |                |                |
|--------------------------------------------|---------------|----------|----------|----------------|----------------|----------|----------|----------|----------------|----------------|
| Pollutant                                  | Day<br>1      | Day<br>2 | Day<br>3 | Compo-<br>site | Compo-<br>site | Day<br>1 | Day<br>2 | Day<br>3 | Compo-<br>site | Compo-<br>site |
|                                            |               |          |          | site           | SILE           |          |          |          | BILE           | Site           |
| Conventional pollutants, mg/L <sup>b</sup> |               |          |          |                |                |          |          |          |                |                |
| BOD-1                                      | 2             |          | <2       |                |                | 100      |          | 180      |                |                |
| BOD-2                                      | 3             | <5       | <3       |                |                | 130      | 100      | 170      |                |                |
| BOD-3                                      | 2             | <3       | <5       |                |                | 120      | 98       | 150      |                |                |
| COD                                        | 56            | 20       | 24       |                |                | 390      | 350      | 530      |                |                |
| TOC                                        | 13            | 10       | 6        |                |                | 110      | 110      | 140      |                |                |
| TSS                                        | 290           | 220      | 120      |                |                | 140      | 110      | 120      |                |                |
| Total phenols                              | <1            | <1       | <1       |                |                | 51,400   |          | 61,800   |                |                |
| Sulfide                                    | 0.1           | 1.0      | 1.0      |                |                | 0.9      | 1.5      | 1.2      |                |                |
| pH                                         | 7.2           | 7.5      | 7.1      |                |                | 7.9      | 8.3      | 8.6      |                |                |
| Ammonia                                    | <1.0          | <1.0     | <1.0     |                |                | 6.2      | 10       | 20       |                |                |
| Metals and inorganics, µg/L                |               |          |          |                |                |          |          |          |                |                |
| Antimony                                   |               |          |          |                | <25            |          |          |          |                | <25            |
| Arsenic                                    |               |          |          |                | <20            |          |          |          |                | <20            |
| Asbestos, millions fibers/L                |               |          |          |                |                |          |          |          | 3.4            | _0             |
| Beryllium                                  | <20           | <20      | <2       | <20            | <3             | <20      | <20      | <20      | <20            | <3             |
| Cadmium                                    | <200          | <200     | <20      | <200           | <1             | <200     | <200     | <200     | <200           | <1             |
| Chromium                                   | <240          | <240     | <24      | <240           | 30             | 1,000    | <240     | <240     | <240           | 290            |
| Chromium +6                                | 250           | <20      | 50       | 1240           | 30             | <20      | <20      | 70       | 1240           | 290            |
| Copper                                     | <40           | <40      | 22       | <40            | 20             | 170      | <40      | 100      | 100            | 180            |
| Cyanides                                   | <100          | <50      | <50      | <b>~40</b>     | 20             | 190      | 360      | 600      | 100            | 180            |
| Lead                                       | < <b>6</b> 00 |          |          | 45.00          | 40             |          |          |          | 4600           | 45             |
|                                            |               | 700      | 64       | <600           | 40             | <600     | <600     | <600     | <600           | 45             |
| Mercury (laboratory 1)                     | <0.5          | <0.5     | <0.5     |                |                | <0.5     | <0.5     | <0.5     |                |                |
| Mercury (laboratory 2)                     | <0.1          | 0.2      | 0.2      | 0.2            |                | 1.4      | 1.4      | 0.8      | 1.5            |                |
| Nickel                                     | <500          | <500     | <50      | <500           | 21             | <500     | <500     | <500     | <500           | 70             |
| Selenium                                   |               |          |          |                | <20            | _        |          |          |                | <20            |
| Silver                                     | <250          | <250     | <25      | <250           | <b>&lt;</b> 5  | <250     | <250     | <250     | <250           | <5             |
| Thallium                                   |               |          |          |                | <15            |          |          |          |                | <15            |
| Zinc                                       | 810           | <250     | 125      | <250           | 120            | 490      | 290      | 290      | 360            | 370            |
| Phenols, µg/L                              |               |          |          |                |                |          |          |          |                |                |
| 2,4-Dimethylphenol                         |               |          |          |                |                |          |          |          | >100           |                |
| Phenol                                     |               |          |          |                |                |          |          |          | >100           |                |
|                                            |               |          |          |                |                |          |          |          | 100            |                |
| Aromatics, µg/L                            |               |          |          | _              |                |          |          |          |                |                |
| Benzene                                    |               |          |          | NDC            |                |          |          |          | >100           |                |
| Ethylbenzene                               |               |          |          | ND             |                |          |          |          | >100           |                |
| Toluene                                    |               |          |          | ND             |                |          |          |          | >100           |                |
| Polycyclic aromatic compounds, µg/L        |               |          |          |                |                |          |          |          |                |                |
| Acenaphthene                               |               |          |          | 29             |                |          |          |          | ND             |                |
| Acenaphthylene                             |               |          |          | 0.2            |                |          |          |          | ND<br>ND       |                |
| Anthracene/phenanthrene                    |               |          |          | 1              |                |          |          |          |                |                |
| Chrysene                                   |               |          |          | ND             |                |          |          |          | 230            |                |
| Fluoranthene                               |               |          |          |                |                |          |          |          | 20             |                |
| Fluorene                                   |               |          |          | 0.2            |                |          |          |          | ND             |                |
|                                            |               |          |          | 1.0            |                |          |          |          | 270            |                |
| Naphthalene<br>Pyrene                      |               |          |          | 1.0<br>0.3     |                |          |          |          | 500<br>ND      |                |
| Polychlorinated biphenyls and              |               |          |          |                |                |          |          |          |                |                |
| related compounds, ug/L                    |               |          |          |                |                |          |          |          |                |                |
| Aroclor 1242                               |               |          |          | 0.2            |                |          |          |          | 5.2            |                |
| Halogenated aliphatics, µg/L               |               |          |          |                |                |          |          |          |                |                |
| Chloroform                                 |               |          |          | ND             |                |          |          |          | 10             |                |
| Methylene chloride                         |               |          |          | 40             |                |          |          |          | >100           |                |
|                                            |               |          |          |                |                | 3.88     | 3.86     | 4.28     |                |                |

TABLE 14-20 (continued)

|                                                     |           |                   |           | effluent       |                |          |                 | lefflue  |                |                |
|-----------------------------------------------------|-----------|-------------------|-----------|----------------|----------------|----------|-----------------|----------|----------------|----------------|
| Pollutant                                           | Day<br>1  | Day<br>2          | Day<br>3  | Compo-<br>site | Compo-<br>site | Day<br>1 | Day<br>2        | Day<br>3 | Compo-<br>site | Compo-<br>site |
|                                                     |           |                   |           |                |                |          |                 |          |                |                |
| Conventional pollutants, mg/L <sup>b</sup>          |           |                   |           |                |                |          |                 |          |                |                |
| BOD-1                                               | 32        |                   | 40        |                |                | 3        |                 | 11       |                |                |
| BOD-2                                               | 38        | 31                | 42        |                |                |          | - 4             | •        |                |                |
| BOD- 3                                              | 34        | 42                | 40        |                |                | 3<br>75  | <4              | 8<br>71  |                |                |
| COD<br>TOC                                          | 200<br>49 | 210<br>5 <b>6</b> | 170<br>46 |                |                | 75<br>19 | <b>44</b><br>15 | 14       |                |                |
| TSS                                                 | 49        | 36                | 48        |                |                | 19<br>34 | 15              | 21       |                |                |
| Total phenols                                       |           | 21,600            | 2,100     |                |                | 8        | 15              | 21       |                |                |
| Sulfide                                             | 0.8       | 1.7               | 0.9       |                |                | 0.4      | 0.3             | 0.9      |                |                |
| pH                                                  | 8.0       | 6.3               | 8.4       |                |                | 7.2      | 6.9             | 7.2      |                |                |
| Ammonia                                             | 7.8       | 15                | 9.0       |                |                | <1.0     | 3.4             | 3.0      |                |                |
| Metals and inorganics, µg/L                         |           |                   |           |                |                |          |                 |          |                |                |
| Antimony                                            |           |                   |           |                | <25            |          |                 |          |                | <25            |
| Arsenic                                             |           |                   |           |                | <20            |          |                 |          |                | <20            |
| Asbestos, millions fibers/L                         |           |                   |           |                |                |          |                 |          |                |                |
| Beryllıum                                           | <2        | <2                | <2        | <2             | <3             | <2       | <2              | <2       | <2             | <3             |
| Cadmium                                             | <20       | <20               | <20       | <20            | <1             | <20      | <20             | <20      | <20            | <1             |
| Chromium                                            | 773       | 831               | 928       | 802            | 870            | 205      | 119             | 165      | 144            | 190            |
| Chromium +6                                         | 50        | <20               | < 20      |                |                | <20      | 110             | 10       |                |                |
| Copper                                              | 43        | 54                | 31        | 42             | 50             | 24       | 19              | 31       | 24             | 39             |
| Cyanides                                            | 160       | 210               | 80        |                |                | <100     | 800             | 80       |                |                |
| Lead                                                | <60       | <60               | <60       | <60            | 13             | <60      | <60             | <60      | <60            | <15            |
| Mercury (laboratory 1)                              | <0.5      | <0.5              | <0.5      |                |                | <0.5     | <0.5            | <0.5     |                |                |
| Mercury (laboratory 2)                              | 0.6       | 0.4               | 0.4       | 0.5            |                | 0.3      | 0.3             | 0.3      | 0.3            |                |
| Nickel                                              | <50       | <50               | <50       | <50            | 16             | <50      | <50             | <50      | <50            | <15            |
| Selenium                                            | .05       | -05               | -05       | 405            | <20<br><5      | 425      | <25             | -25      | <25            | <20<br><5      |
| Silver                                              | <25       | <25               | <25       | <25            | <b>4</b> 5     | <25      | <25             | <25      | <25            | <b>&lt;1</b> 5 |
| Thallium<br>Zinc                                    | 382       | 304               | 314       | 325            | 45<br>290      | 174      | 157             | 161      | 174            | 140            |
| ZINC                                                | 302       | 304               | 314       | 323            | 290            | 274      | 13,             | 101      | 1,3            | 2.0            |
| Phenols                                             |           |                   |           | >100           |                |          |                 |          |                |                |
| 2,4-Dimethylphenol Phenol                           |           |                   |           | >100           |                |          |                 |          |                |                |
| PhenoI                                              |           |                   |           | >100           |                |          |                 |          |                |                |
| Aromatics, µg/L                                     |           |                   |           | >100           |                |          |                 |          | ир             |                |
| Benzene                                             |           |                   |           | >100           |                |          |                 |          | ND             |                |
| Ethylbenzene<br>Toluene                             |           |                   |           | >100           |                |          |                 |          | ND             |                |
|                                                     |           |                   |           |                |                |          |                 |          |                |                |
| Polycyclic aromatic compounds, µg/l<br>Acenaphthene |           |                   |           | 3,000          |                |          |                 |          | 6.0            |                |
| Acenaphthylene                                      |           |                   |           | ND             |                |          |                 |          | ND             |                |
| Anthracene/phenanthrene                             |           |                   |           | ND             |                |          |                 |          | 1              |                |
| Chrysene                                            |           |                   |           | 2              |                |          |                 |          | 0.3            |                |
| Fluoranthene                                        |           |                   |           | 9              |                |          |                 |          | <0.1           |                |
| Fluorene                                            |           |                   |           | 300            |                |          |                 |          | ND             |                |
| Naphthalene                                         |           |                   |           | 280            |                |          |                 |          | 0.1            |                |
| Pyrene                                              |           |                   |           | 7.0            |                |          |                 |          | <0.1           |                |
| Polychlorinated biphenyls and                       |           |                   |           |                |                |          |                 |          |                |                |
| related compounds, µg/L                             |           |                   |           |                |                |          |                 |          |                |                |
| Aroclor 1242                                        |           |                   |           | ND             |                |          |                 |          | ND             |                |
| Halogenated aliphatics, µg/L                        |           |                   |           |                |                |          |                 |          |                |                |
| Chloroform                                          |           |                   |           | <10            |                |          |                 |          | ND             |                |
| Methylene chloride                                  |           |                   |           | 50             |                |          |                 |          | 60             |                |
| Flow, MGD                                           | 7.15      | 5.37              | 4.98      |                |                | 11.03    | 9.23            | 9.26     |                |                |

 $<sup>^{\</sup>rm a}$ 24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

 $<sup>^{\</sup>mathrm{b}}$ Total phenols,  $\mu\mathrm{g/L};~\mathrm{pH},~\mathrm{pH}$  units.

<sup>&</sup>lt;sup>C</sup>Not detected in sample.

TABLE 14-21. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY M [4,5]

|                                |          |          | Intake   |        |                |          |          | AF effl  |                 |                |       |          | al effl  |                     |        |
|--------------------------------|----------|----------|----------|--------|----------------|----------|----------|----------|-----------------|----------------|-------|----------|----------|---------------------|--------|
|                                | Day<br>1 | Day<br>2 | Day<br>3 | COMpo- | Compo-<br>site | Day<br>1 | Day<br>2 | Day<br>3 | Compo-<br>site  | Compo-<br>site | Day   | Day<br>2 | Day<br>3 | Compo-<br>site      | Compo  |
|                                |          |          |          | BICE   | 1100           |          |          |          | Bite            | - BICE         |       |          |          | 8100                | 27 / 6 |
| Conventional pollutants, mg/Lb |          |          |          |        |                |          |          |          |                 |                |       |          |          |                     |        |
| BOD-1                          | <6       | <6       | <6       |        |                | 51       | 50       | 36       |                 |                | -12   | <6       | <6       |                     |        |
| BOD-2                          |          |          |          |        |                | 25       | 52       | 40       |                 |                |       |          |          |                     |        |
| BOD- 3                         | <6       |          | <6       |        |                | 34       | 40       | 34       |                 |                | <12   | <6       | <6       |                     |        |
| COD                            | 10       | 9        | 8        |        |                | 260      | 220      | 220      |                 |                | 92    | 86       | 73       |                     |        |
| TOC                            | 6        | 10       | 4        |        |                | 72       | 62       | 66       |                 |                | 16    | 16       | .4       |                     |        |
| TSS                            | <1       | <1       | <1       |        |                | 18       | 9        | 7        |                 |                | 8     | 5        | 11       |                     |        |
| Total phenols                  | <10      | <10      | <10      |        |                | 4,700    | 4,200    | 4,300    |                 |                | <10   | -10      | <10      |                     |        |
| Sulfide                        | 0.2      | 0.2      | 0.3      |        |                | 0.6      | 0.5      | 0.4      |                 |                | 0.4   | 0 4      | 0.3      |                     |        |
| Oll and grease                 | 4        | 8        | 11       |        |                | 16       | 18       | 18       |                 |                | 13    | 14       | 14       |                     |        |
| PH                             | 8.0      | 8.0      | 8.1      |        |                | 6.9      | 8.4      | 8.2      |                 |                | 7.7   | 7.9      | 7.8      |                     |        |
| Ammonia                        | <1.0     | <1.0     | <1.0     |        |                | 13       | 9.5      | 12       |                 |                | 1.0   | <1.0     | 1.0      |                     |        |
| Metals and inorganics, µg/L    |          |          |          |        |                |          |          |          |                 |                |       |          |          |                     |        |
| Antimony                       |          |          |          |        | <25            |          |          |          |                 | < 25           |       |          |          |                     | <25    |
| Arsenic                        |          |          |          |        | <20            |          |          |          |                 | < 20           |       |          |          |                     | <20    |
| Beryllıum                      | <1       | <1       | <1       | <1     | <3             | 2        | 2        | 2        | 2               | < 3            | 2     | 2        | <1       | <1                  | <3     |
| Cadmium                        | <2       | <2       | < 2      | <2     | <1             | <2       | <2       | <2       | <2              | <1             | 3     | <2       | <2       | <2                  | <1     |
| Chroma um                      | 30       | 10       | 20       | 20     | <5             | 200      | 100      | 90       | 100             | 73             | 90    | 100      | 90       | 100                 | 24     |
| Chromium +6                    | <20      | <20      | <20      |        |                | 750      | <20      | <20      |                 |                | 20    | <20      | <20      |                     |        |
| Copper                         | 300      | 100      | 100      | 200    | 180            | 10       | 10       | 9        | 10              | 6              | 10    | 10       | 20       | 20                  | 8      |
| Cyanides                       | <20      | <20      | <20      |        |                | 10       | 20       | 30       |                 |                | 20    | <20      | <20      |                     |        |
| Lead                           | 200      | <20      | 40       | 60     | 25             | <20      | <20      | <20      | <20             | <15            | · 2 J | 50       | <20      | 30                  | <15    |
| Nickel                         | 10       | 5        | <5       | <5     | <15            | <5       | <5       | <5       | < 5             | <15            | <5    | <5       | 10       | 20                  | <15    |
| Selenium                       |          |          |          |        | <20            |          |          |          |                 | <20            |       |          |          |                     | <20    |
| Silver                         | <1       | <1       | <1       | <1     | <5             | <1       | <1       | <1       | <1              | <5             | <1    | <1       | 4        | 4                   | <5     |
| Thallium                       |          |          |          |        | <15            |          |          |          |                 | <15            |       |          |          |                     | <15    |
| Zinc                           | 200      | 90       | 100      | 100    | 75             | 200      | 100      | 90       | 100             | 140            | 90    | 100      | 100      | 200                 | 90     |
| Phenols, µg/L                  |          |          |          |        |                |          |          |          |                 |                |       |          |          |                     |        |
| 2,4-Dinitropheno_              |          |          |          | ND     |                |          |          |          | 2,660           |                |       |          |          | ND                  |        |
| 2,4-Dimethylphenol             |          |          |          | ND     |                |          |          |          | 18,300          |                |       |          |          | ND                  |        |
| 4-Nitrophenol                  |          |          |          | ND     |                |          |          |          | 1.400           |                |       |          |          | ND                  |        |
| Phenol                         |          |          |          | <10    |                |          |          | :        | 33,500          |                |       |          |          | <10                 |        |
| p-chloro-m-creso!              |          |          |          | ND     |                |          |          |          | ND              |                |       |          |          | 10                  |        |
| Aromatics, µg/2                |          |          |          |        |                |          |          |          |                 |                |       |          |          |                     |        |
| Benzene                        |          |          |          | 14     |                |          |          |          | 12 <sup>d</sup> |                |       |          |          | 11 <sup>d</sup>     |        |
| Toluene                        |          |          |          | <10    |                |          |          |          | <10             |                |       |          |          | <10                 |        |
| Polychlorinated biphenyls and  |          |          |          |        |                |          |          |          |                 |                |       |          |          |                     |        |
| related compounds, µg/L        |          |          |          |        |                |          |          |          |                 |                |       |          |          |                     |        |
| Aroclor 1016                   |          |          |          | ND     |                |          |          |          | <10             |                |       |          |          | <10                 |        |
| Aroclor 1221                   |          |          |          | ND     |                |          |          |          | <10             |                |       |          |          | <10                 |        |
| Aroclor 1232                   |          |          |          | ND     |                |          |          |          | <10             |                |       |          |          | <10                 |        |
| Aroclor 1242                   |          |          |          | ND     |                |          |          |          | <10             |                |       |          |          | <10                 |        |
| Aroclor 1248                   |          |          |          | ND     |                |          |          |          | <10             |                |       |          |          | <10                 |        |
| Aroclor 1254                   |          |          |          | ND     |                |          |          |          | <10             |                |       |          |          | <10                 |        |
| Aroclor 1260                   |          |          |          | ND     |                |          |          |          | <10             |                |       |          |          | <10                 |        |
| Halogenated aliphatics, ug/L   |          |          |          |        |                |          |          |          |                 |                |       |          |          |                     |        |
| Carbon tetrachloride           |          |          |          | ND     |                |          |          |          | 10.             |                |       |          |          | <10.                |        |
| Chloroform                     |          |          |          | 44     |                |          |          |          | 5 <b>d</b>      |                |       |          |          | <10 <sup>d</sup>    |        |
| Methylene chloride             |          |          |          | 91     |                |          |          |          | 10<br>55<br>180 |                |       |          |          | <10d<br><10d<br><10 |        |
| Flow, MGD                      |          |          |          |        |                |          |          |          |                 |                | 1.64  | 1.52     |          |                     |        |

Note: Blanks indicate data not available.

a 24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

Total phenols, ug/L; pH, pH units.

<sup>&</sup>lt;sup>C</sup>Not detected in sample.

d Compound was detected at greater level in sample blank

TABLE 14-22. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY N [4,5]

| Day 1   D                                                                                          | <pre>4</pre>                                                                      | 22 28 12 26 <10 1.1 7.3 <1.0 <20 <200 3,000 90 <40                               | <pre></pre>                     | <pre>&lt;25 &lt;20 &lt;3 &lt;1</pre>     | 83<br>360<br>88<br>68<br>6,200<br>2.9<br>8.1<br>12          | 100<br>440<br>120<br>112<br>6,570<br>8.1<br>15              | 120<br>40<br>100<br>76<br>4,700<br>9.2<br>7.9<br>13             | Composite                                                            | Compo<br>site          |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|------------------------|
| <1 40 12 18 <10 0.3 8.4 <1.0 <2 <20 <24 <20 <46 <60 <60 <0.2                                       | <55 16 8 22 <11 0.8 7.7 <1.0 <2 <20 <24 70 <44 <30                                | 22 28 12 26 <10 1.1 7.3 <1.0 <20 <200 3,000 90 <40                               | <2<br><20                       | <25<br><20<br><3<br><1                   | 83<br>360<br>88<br>68<br>6,200<br>2.9<br>8.1<br>12          | 100<br>440<br>120<br>112<br>6,570<br>8.1<br>8.1<br>15       | 120<br>40<br>100<br>76<br>4,700<br>9.2<br>7.9<br>13             |                                                                      | <;<br><;               |
| 40<br>12<br>18<br><10<br>0.3<br>8.4<br><1.0<br><2<br><20<br><24<br><20<br><4<br><60<br><60<br><0.2 | 16<br>8<br>22<br><11<br>0.8<br>7.7<br><1.0<br><2<br><20<br><24<br>70<br><4<br><30 | 28<br>12<br>26<br><10<br>1.1<br>7.3<br><1.0<br><20<br><200<br>3,000<br>90<br><40 | <20                             | <20<br><3<br><1                          | 360<br>88<br>68<br>6,200<br>2.9<br>8.1<br>12<br><20<br><200 | 440<br>120<br>112<br>6,570<br>8.1<br>8.1<br>15              | 40<br>100<br>76<br>4,700<br>9.2<br>7.9<br>13                    | <2                                                                   | <2                     |
| 40<br>12<br>18<br><10<br>0.3<br>8.4<br><1.0<br><2<br><20<br><24<br><20<br><4<br><60<br><60<br><0.2 | 16<br>8<br>22<br><11<br>0.8<br>7.7<br><1.0<br><2<br><20<br><24<br>70<br><4<br><30 | 28<br>12<br>26<br><10<br>1.1<br>7.3<br><1.0<br><20<br><200<br>3,000<br>90<br><40 | <20                             | <20<br><3<br><1                          | 360<br>88<br>68<br>6,200<br>2.9<br>8.1<br>12<br><20<br><200 | 440<br>120<br>112<br>6,570<br>8.1<br>8.1<br>15              | 40<br>100<br>76<br>4,700<br>9.2<br>7.9<br>13                    | <2                                                                   | <2                     |
| 40<br>12<br>18<br><10<br>0.3<br>8.4<br><1.0<br><2<br><20<br><24<br><20<br><4<br><60<br><60<br><0.2 | 16<br>8<br>22<br><11<br>0.8<br>7.7<br><1.0<br><2<br><20<br><24<br>70<br><4<br><30 | 28<br>12<br>26<br><10<br>1.1<br>7.3<br><1.0<br><20<br><200<br>3,000<br>90<br><40 | <20                             | <20<br><3<br><1                          | 360<br>88<br>68<br>6,200<br>2.9<br>8.1<br>12<br><20<br><200 | 440<br>120<br>112<br>6,570<br>8.1<br>8.1<br>15              | 40<br>100<br>76<br>4,700<br>9.2<br>7.9<br>13                    | <2                                                                   | <2                     |
| 40<br>12<br>18<br><10<br>0.3<br>8.4<br><1.0<br><2<br><20<br><24<br><20<br><4<br><60<br><60<br><0.2 | 8 22 <11 0.8 7.7 <1.0 <2 <20 <24 <30                                              | 12<br>26<br><10<br>1.1<br>7.3<br><1.0<br><20<br><200<br>3,000<br>90<br><40       | <20                             | <20<br><3<br><1                          | 360<br>88<br>68<br>6,200<br>2.9<br>8.1<br>12<br><20<br><200 | 440<br>120<br>112<br>6,570<br>8.1<br>8.1<br>15              | 40<br>100<br>76<br>4,700<br>9.2<br>7.9<br>13                    | <2                                                                   | <2                     |
| 12<br>18<br><10<br>0.3<br>8.4<br><1.0<br><2<br><20<br><24<br><20<br><4<br><60<br><60<br><0.2       | 8 22 <11 0.8 7.7 <1.0 <2 <20 <24 <30                                              | 12<br>26<br><10<br>1.1<br>7.3<br><1.0<br><20<br><200<br>3,000<br>90<br><40       | <20                             | <20<br><3<br><1                          | 88<br>68<br>6,200<br>2.9<br>8.1<br>12<br><20<br><200        | 120<br>112<br>6,570<br>8.1<br>8.1<br>15                     | 100<br>76<br>4,700<br>9.2<br>7.9<br>13                          | <2                                                                   | <2                     |
| 18 <10 0.3 8.4 <1.0 <2 <20 <24 <20 <4 <60 <60 <0.2                                                 | 22<br><11<br>0.8<br>7.7<br><1.0<br><2<br><20<br><24<br>70<br><4<br><30            | 26<br><10<br>1.1<br>7.3<br><1.0<br><20<br><200<br>3,000<br>90<br><40             | <20                             | <20<br><3<br><1                          | 68<br>6,200<br>2.9<br>8.1<br>12<br><20<br><200              | 112<br>6,570<br>8.1<br>8.1<br>15                            | 76<br>4,700<br>9.2<br>7.9<br>13                                 | <2                                                                   | <2                     |
| <10<br>0.3<br>8.4<br><1.0<br><2<br><20<br><24<br><20<br><4<br><60<br><60<br><0.2                   | <11<br>0.8<br>7.7<br><1.0<br><2<br><20<br><24<br>70<br><4<br><30                  | <10<br>1.1<br>7.3<br><1.0<br><20<br><200<br>3,000<br>90<br><40                   | <20                             | <20<br><3<br><1                          | 6,200<br>2.9<br>8.1<br>12<br><20<br><200                    | 6,570<br>8.1<br>8.1<br>15                                   | 4,700<br>9.2<br>7.9<br>13                                       | <2                                                                   | <2                     |
| 0.3<br>8.4<br><1.0<br><2<br><20<br><24<br><20<br><4<br><60<br><60<br><0.2                          | 7.7<br><1.0<br><2<br><20<br><24<br>70<br><4<br><30                                | 1.1<br>7.3<br><1.0<br><20<br><200<br>3,000<br>90<br><40                          | <20                             | <20<br><3<br><1                          | 2.9<br>8.1<br>12<br><20<br><200                             | 8.1<br>8.1<br>15                                            | 9.2<br>7.9<br>13                                                | <2                                                                   | <2                     |
| <1.0<br><2<br><20<br><24<br><20<br><4<br><60<br><60<br><0.2                                        | <1.0<br><2<br><20<br><24<br>70<br><4<br><30                                       | <20<br><200<br>3,000<br>90<br><40                                                | <20                             | <20<br><3<br><1                          | <20<br><200                                                 | 15<br><20                                                   | 13                                                              | <2                                                                   | <2                     |
| <1.0<br><2<br><20<br><24<br><20<br><4<br><60<br><60<br><0.2                                        | <1.0<br><2<br><20<br><24<br>70<br><4<br><30                                       | <20<br><200<br>3,000<br>90<br><40                                                | <20                             | <20<br><3<br><1                          | <20<br><200                                                 | 15<br><20                                                   | <2                                                              | <2                                                                   | <2                     |
| <20<br><24<br><20<br><4<br><60<br><60<br><0.2                                                      | <20<br><24<br>70<br><4<br><30                                                     | <200<br>3,000<br>90<br><40                                                       | <20                             | <20<br><3<br><1                          | <200                                                        |                                                             |                                                                 | <2                                                                   | <2                     |
| <20<br><24<br><20<br><4<br><60<br><60<br><0.2                                                      | <20<br><24<br>70<br><4<br><30                                                     | <200<br>3,000<br>90<br><40                                                       | <20                             | <20<br><3<br><1                          | <200                                                        |                                                             |                                                                 | <2                                                                   | <2                     |
| <20<br><24<br><20<br><4<br><60<br><60<br><0.2                                                      | <20<br><24<br>70<br><4<br><30                                                     | <200<br>3,000<br>90<br><40                                                       | <20                             | <3<br><1                                 | <200                                                        |                                                             |                                                                 | <2                                                                   |                        |
| <20<br><24<br><20<br><4<br><60<br><60<br><0.2                                                      | <20<br><24<br>70<br><4<br><30                                                     | <200<br>3,000<br>90<br><40                                                       | <20                             | <1                                       | <200                                                        |                                                             |                                                                 | <2                                                                   | <                      |
| <24<br><20<br><4<br><60<br><60                                                                     | <24<br>70<br><4<br><30                                                            | 3,000<br>90<br><b>&lt;4</b> 0                                                    |                                 |                                          |                                                             | <200                                                        | -20                                                             |                                                                      |                        |
| <20<br><4<br><60<br><60<br><0.2                                                                    | 70<br><4<br><30                                                                   | 90<br><b>&lt;4</b> 0                                                             | <24                             | -                                        |                                                             | -200                                                        | <20                                                             | <20                                                                  | <                      |
| <4<br><60<br><60<br><0.2                                                                           | <4<br><30                                                                         | <40                                                                              |                                 | 7                                        | 1,000                                                       | 2,000                                                       | 980                                                             | 1,280                                                                | 1,40                   |
| <60<br><60<br><0.2                                                                                 | <30                                                                               |                                                                                  |                                 |                                          | <20                                                         | <20                                                         | <20                                                             |                                                                      |                        |
| <60<br><0.2                                                                                        |                                                                                   |                                                                                  | <4                              | <b>&lt;</b> 5                            | <40                                                         | <40                                                         | 7                                                               | 14                                                                   | 6                      |
| <0.2                                                                                               | <60                                                                               | <b>&lt;6</b> 0                                                                   |                                 |                                          | <60                                                         | 40                                                          | <60                                                             |                                                                      |                        |
|                                                                                                    |                                                                                   | <600                                                                             | <60                             | <15                                      | <600                                                        | <600                                                        | <60                                                             | <60                                                                  | 1                      |
| <50                                                                                                | <0.1                                                                              | <0.2                                                                             | <0.5                            | <0.2                                     | 0.4                                                         | 0.6                                                         | 0.4                                                             | <0.5                                                                 | 0.                     |
|                                                                                                    | <50                                                                               | 790                                                                              | <50                             | <15                                      | <500                                                        | <500                                                        | <50                                                             | <50                                                                  | 1                      |
|                                                                                                    |                                                                                   |                                                                                  |                                 | <20                                      |                                                             |                                                             |                                                                 |                                                                      | < 2                    |
| <25                                                                                                | <25                                                                               | <250                                                                             | <25                             | <5                                       | <250                                                        | <250                                                        | <25                                                             | <25                                                                  | <                      |
|                                                                                                    |                                                                                   |                                                                                  |                                 | <15                                      |                                                             |                                                             |                                                                 |                                                                      | <1                     |
| 56                                                                                                 | 29                                                                                | <250                                                                             | 36                              | 19                                       | 480                                                         | 760                                                         | 5 <b>~3</b>                                                     | 603                                                                  | 57                     |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  | ИDC                             | !                                        |                                                             |                                                             |                                                                 | 71                                                                   |                        |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 | >100                                                                 |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 | >100                                                                 |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 | >100                                                                 |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 | ND                                                                   |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 | >100                                                                 |                        |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 | 522                                                                  |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 | 87                                                                   |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 | 16                                                                   |                        |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 | 0.5                                                                  |                        |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  |                                 |                                          |                                                             |                                                             |                                                                 |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  | -100                            |                                          |                                                             |                                                             |                                                                 | 100                                                                  |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 | מא                                                                   |                        |
|                                                                                                    |                                                                                   |                                                                                  | ND                              |                                          |                                                             |                                                             |                                                                 | עא                                                                   |                        |
| 24.69                                                                                              | 26.84                                                                             | 25.91                                                                            |                                 |                                          | 15.25                                                       | 15.25                                                       | 18.25                                                           |                                                                      |                        |
|                                                                                                    |                                                                                   |                                                                                  | 56 29 <250<br>24.69 26.84 25.91 | ND N | 56 29 <250 36 19  NDC  NDC  NDD  ND  ND  ND  ND  ND  ND     | 56 29 <25C 36 19 480  NDC  NDC  NDD  ND  ND  ND  ND  ND  ND | 56 29 <250 36 19 480 760  ND  ND  ND  ND  ND  ND  ND  ND  ND  N | 56 29 <250 36 19 480 760 5~3  NDC  ND  ND  ND  ND  ND  ND  ND  ND  N | 56       29       <250 |

(continued)

TABLE 14-22 (continued)

|                                        | CI       | nemical |       | effluent       |                |       | Fin   | al efflu |                | -    |
|----------------------------------------|----------|---------|-------|----------------|----------------|-------|-------|----------|----------------|------|
| Pollutant                              | Day 1 1  | Day 2 I |       | Compo-<br>site | Compo-<br>site | Day 1 | Day 2 | Day 3    | Compo-<br>site | site |
| b                                      |          |         |       |                |                |       |       |          |                |      |
| Conventional pollutants, mg/L          |          |         |       |                |                |       |       |          |                |      |
| BOD-2                                  |          |         | 34    |                |                | 10    |       |          |                |      |
| BOD-3                                  | 74       | 140     |       |                |                | 10    | 8     |          |                |      |
| COD                                    | 340      | 810     | 240   |                |                | 140   | 120   |          |                |      |
| TOC                                    | 93       | 240     | 69    |                |                | 33    | 33    |          |                |      |
| TSS                                    | 28       | 36      | 40    |                |                | 50    | 40    | 44       |                |      |
| Total phenols                          | <260,000 | 73      | 74    |                |                | <15   | <11   |          |                |      |
| Sulfide                                | 0.7      | 0.9     | 0.9   |                |                | 0.6   | 0.9   |          |                |      |
| pH                                     | 6.8      | 6.6     | 6.7   |                |                | 8.6   | 7.4   | 7.4      |                |      |
| Ammonia                                | 1.1      | <1.0    | 2.0   |                |                | 6.2   | 6.7   | 3.0      |                |      |
| Metals and inorganics, µg/L            |          |         |       |                |                |       |       |          |                |      |
| Antimony                               |          |         |       |                | <25            |       |       |          |                | <2   |
| Arsenic                                |          |         |       |                | <20            |       |       |          |                | <2   |
| Beryllium                              | <2       | <2      | <2    | <2             | <3             | <2    | <2    | <2       | <2             | <    |
| Cadmium                                | <20      | <20     | <20   | <20            | <1             | <20   | <20   |          | <20            | <    |
| Chromium                               | 805      | 679     | 499   | 701            | 650            | <24   | 159   |          | 137            | 12   |
| Chromium +6                            | <20      | <20     | <20   | /01            | 050            | <20   | <20   |          | 131            | 12   |
|                                        | <4       | -       |       |                | 1.2            | <4    | <4    |          | <4             |      |
| Copper                                 |          | 8       | 7     | <4             | 13             |       |       | _        | <b>14</b>      | 1    |
| Cyanides                               | <60      | <30     | <60   |                |                | <60   | <30   | _        |                |      |
| Lead                                   | <60      | <60     | <60   | <60            | <15            | <60   | <60   |          | <60            | <1   |
| Mercury                                | <0.1     | <0.4    | <0.2  | <0.5           | <0.2           | 0.4   | 0.2   | -        | <0.5           | <0.1 |
| Nickel                                 | <50      | <50     | <50   | <50            | <15            | <50   | <50   | <50      | <50            | <15  |
| Selenium                               |          |         |       |                | <20            |       |       |          |                | <20  |
| Silver                                 | <25      | <25     | <25   | <25            | <5             | <25   | <25   | <25      | <25            | </td |
| Thallium                               |          |         |       |                | <15            |       |       |          |                | <15  |
| Zinc                                   | 6,520    | 4,110   | 4,260 | 5,210          | 4,800          | <25   | 118   | 61       | 104            | 35   |
|                                        |          |         |       |                |                |       |       |          |                |      |
| Phenols, µg/L                          |          |         |       |                |                |       |       |          |                |      |
| 2,4~Dimethyl phenol                    |          |         |       | >100           |                |       |       |          | ND             |      |
| Phenol                                 |          |         |       | 40             |                |       |       |          | ND             |      |
| Åromatics, µg/L                        |          |         |       |                |                |       |       |          |                |      |
| Benzene                                |          |         |       | 90             |                |       |       |          | 6              |      |
| Ethylbenzene                           |          |         |       | 20             |                |       |       |          | ND             |      |
| p-Chloro-m-cresol                      |          |         |       | 10             |                |       |       |          | ND             |      |
| Toluene                                |          |         |       | >100           |                |       |       |          | 35             |      |
| Polycyclic aromatic hydrocarbons, µg/L |          |         |       |                |                |       |       |          |                |      |
| Acenaphthene                           |          |         |       | ND             |                |       |       |          | ND             |      |
| Acenaphthylene                         |          |         |       | ND             |                |       |       |          | ND             |      |
|                                        |          |         |       | ,              |                |       |       |          | ND             |      |
| Anthracene/phenanthrene                |          |         |       | 1              |                |       |       |          |                |      |
| Chrysene                               |          |         |       | <0.1           |                |       |       |          | ND             |      |
| Fluoranthene                           |          |         |       | ND             |                |       |       |          | ND             |      |
| Naphthalene                            |          |         |       | 27             |                |       |       |          | ND             |      |
| Pyrene                                 |          |         |       | 1              |                |       |       |          | ND             |      |
| Polychlorinated biphenyls and          |          |         |       |                |                |       |       |          |                |      |
| related compounds, ug/L                |          |         |       |                |                |       |       |          |                |      |
| Aroclor 1016                           |          |         |       | 1.3            |                |       |       |          | ND             |      |
| Aroclor 1221                           |          |         |       | ND             |                |       |       |          | ND             |      |
| Aroclor 1232                           |          |         |       | 0.1            |                |       |       |          | ND             |      |
| Halogenated aliphatics, μg/L           |          |         |       |                |                |       |       |          |                |      |
| Chloroform                             |          |         |       | 10             |                |       |       |          | ND             |      |
| Methylene chloride                     |          |         |       | >100           |                |       |       |          | >100           |      |
| Pesticicdes and metabolites, µg/L      |          |         |       |                |                |       |       |          |                |      |
| Heptachlor epoxide                     |          |         |       | 4.6            |                |       |       |          | ND             |      |
| Flow, MGD                              | 0.8      | 0.95    | 0.9   |                |                | 14.75 | 15.9  | 17.6     |                |      |

Note: Blanks indicate data not available.

Date: 6/23/80

<sup>&</sup>lt;sup>a</sup>24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

b Total phenols,  $\mu g/L$ ; pH, pH units.

<sup>&</sup>lt;sup>C</sup>Not detected in sample.

TABLE 14-23. SCREENING STUDY WASTEWATER CHARACTERISTICS BY PLANT, REFINERY O [4,5]

|                                            | Day      |          | Intake   | -              | <b>0</b>       | Day      | Day    | F efflu<br>Day | Compo~ | Compo- | Day | Day    | al effl<br>Day | Compo-                | Compo         |
|--------------------------------------------|----------|----------|----------|----------------|----------------|----------|--------|----------------|--------|--------|-----|--------|----------------|-----------------------|---------------|
| Pollutant                                  | Day<br>1 | Day<br>2 | Day<br>3 | Compo-<br>site | Compo-<br>site | Day<br>1 | 2      | 3              | site   | site   | 1   | 2<br>2 | Day            | site                  | site          |
|                                            |          |          |          |                |                |          |        |                |        |        |     |        |                |                       |               |
| conventional pol'utants, mg/L              |          |          |          |                |                |          |        |                |        |        |     |        |                |                       |               |
| BOD-1                                      | <2       | <5       | <3       |                |                | 120      | 100    | 85             |        |        | 6   | <10    | 94             |                       |               |
| BOD-2                                      |          | <5       | <2       |                |                |          | 75     | 88             |        |        |     |        |                |                       |               |
| BOD-3                                      |          |          |          |                |                |          |        | 8              |        |        |     | <10    | <8             |                       |               |
| COD                                        | 11       | 26       | 12       |                |                | 380      | 410    | 480            |        |        | 150 | 140    | 120            |                       |               |
| TOC                                        | 10       | 21       | 25       |                |                | 120      | 110    | 180            |        |        | 48  | 40     | 52             |                       |               |
| TSS                                        | 10       | 10       | 14       |                |                | 21       | 32     | 42             |        |        | 24  | 26     | 24             |                       |               |
| *                                          | <10      | <5       | <5       |                |                | 11,000   | 10,000 |                |        |        | 52  | 49     | 36             |                       |               |
| Total phenols                              |          |          |          |                |                |          |        |                |        |        |     | 0.5    | 0.4            |                       |               |
| Sulfide                                    | 0.5      | <0.1     | 0.1      |                |                | 3.9      | 4.1    | 2.9            |        |        | 0.6 | 0.5    |                |                       |               |
| pH                                         | 7.1      | 6.0      | 7.0      |                |                | 8.4      | 8.6    | 8.8            |        |        | 7.9 |        | 7.8            |                       |               |
| Ammonia                                    | <1.0     | <1.0     | <1.0     |                |                | 5.3      | 6.4    | 18             |        |        | 2.5 | 3.1    | 2.5            |                       |               |
| tetals and inorganics, pg/L                |          |          |          |                |                |          |        |                |        |        |     |        |                |                       |               |
| Antimony                                   |          |          |          |                | <25            |          |        |                | <25    |        |     |        |                | <25                   |               |
| Arsenic                                    |          |          |          |                | <20            |          |        |                | <20    |        |     |        |                | <20                   |               |
|                                            | <1       | <1       | <1       | <1             | <3             | <1       | <1     | <1             | <1     | <3     | <1  | <1     | <1             | <1                    | <3            |
| Beryllium                                  |          |          | <2       |                | <1             | <2       | <2     | <2             | <2     | <1     | <2  | <2     | <2             | <2                    | <1            |
| Cadmium                                    | <2       | <2       |          | <2             | _              |          |        |                | _      |        |     |        |                |                       |               |
| Chromium                                   | <5       | <5       | <5       | <5             | 8              | 200      | 300    | 300            | 200    | 240    | 50  | 50     | 50             | 50                    | 110           |
| Chromium +6                                | <20      | 20       | 20       |                |                | <20      | €20    | <20            |        |        | <20 | 20     | <20            |                       |               |
| Copper                                     | <6       | <6       | <6       | <6             | <5             | 30       | 18     | 8              | 20     | 30     | <6  | <6     | <6             | <6                    | <5            |
| Cyanides                                   | <20      | <20      | <20      |                |                | 210      | 160    | 130            |        |        | <30 | <30    | <30            |                       |               |
| Lead                                       | <20      | <20      | <20      | <20            | <15            | <20      | <20    | <20            | <20    | <27    | <20 | <20    | <20            | <20                   | <15           |
| Hercury                                    |          | •••      |          | <0.5           |                |          |        |                | <0.5   | -      | _   |        |                | <0.5                  |               |
| Nickel                                     | <5       | <5       | <5       | <5             | <15            | <5       | < 5    | <5             | <5     | <15    | <5  | <5     | <5             | <5                    | <15           |
|                                            | *>       | ٠,       | • • • •  | -5             |                | **       | • •    | ٠,             | 13     | <20    | 13  | ٠,     | 1,5            | -3                    | <15           |
| Selenium                                   |          |          |          | _              | <20            |          |        |                |        |        |     |        | <1             | <1                    | <b>&lt;</b> 5 |
| Silver                                     | <1       | <1       | <1       | <1             | <5             | <1       | <1     | <1             | <1     | <5     | <1  | <1     | <1             | <1                    |               |
| Thallium                                   |          |          |          |                | <15            |          |        |                |        | <15    |     |        |                |                       | <15           |
| Zinc                                       | <60      | <60      | <60      | <60            | <10            | <60      | <60    | 100            | 60     | 74     | <60 | <60    | <60            | <60                   | <10           |
| Phthalates, µg/i,                          |          |          |          | _              |                |          |        |                |        |        |     |        |                |                       |               |
| Di-n-butyl phthalate                       |          |          |          | NDC            |                |          |        |                | ND     |        |     |        |                | ND                    |               |
| Dimethyl phthulate                         |          |          |          | ND             |                |          |        |                | ND     |        |     |        |                | ND                    |               |
| Phenols, µg/L                              |          |          |          |                |                |          |        |                |        |        |     |        |                |                       |               |
| 2,4-Dimethylphenol                         |          |          |          | ND             |                |          |        |                |        |        |     |        |                | ND                    |               |
|                                            |          |          |          |                |                |          |        |                | 2,000  |        |     |        |                |                       |               |
| Phenol                                     |          |          |          | ND             |                |          |        |                | 1,900  |        |     |        |                | ND                    |               |
| Aromatics, ug/L                            |          |          |          |                |                |          |        |                |        |        |     |        |                | 4                     |               |
| Benzene                                    |          |          |          | ND             |                |          |        |                | <10    |        |     |        |                | <10 <sup>d</sup>      |               |
| Toluene                                    |          |          |          | <10            |                |          |        |                | 16     |        |     |        |                | ND                    |               |
| Polycyclic aromatic                        |          |          |          |                |                |          |        |                |        |        |     |        |                |                       |               |
| hydrocarbons, vg/L                         |          |          |          |                |                |          |        |                |        |        |     |        |                |                       |               |
| Acenaphthene                               |          |          |          | ND             |                |          |        |                | 390    |        |     |        |                | ND                    |               |
|                                            |          |          |          | ND             |                |          |        |                | 530    |        |     |        |                | ND                    |               |
| Acenaphthylene                             |          |          |          |                |                |          |        |                |        |        |     |        |                |                       |               |
| Anthracene                                 |          |          |          | ND             |                |          |        |                | 1,750  |        |     |        |                | ND                    |               |
| Chrysane                                   |          |          |          | ND             |                |          |        |                | ND     |        |     |        |                | ND                    |               |
| Fluoranthene                               |          |          |          | ND             |                |          |        |                | ND     |        |     |        |                | ND                    |               |
| Fluorene                                   |          |          |          | ND             |                |          |        |                | 495    |        |     |        |                | ND                    |               |
| Naphthalene                                |          |          |          | ND             |                |          |        |                | 3,750  |        |     |        |                | ND                    |               |
| Phenanthrene                               |          |          |          | ND             |                |          |        |                | 1,750  |        |     |        |                | ND                    |               |
| Pyrene                                     |          |          |          | ND             |                |          |        |                | ND     |        |     |        |                | ND                    |               |
| W-1                                        |          |          |          |                |                |          |        |                |        |        |     |        |                |                       |               |
| Halogenated aliphatics, µg/L<br>Chloroform |          |          |          | 55             |                |          |        |                | 13     |        |     |        |                | 32 <sup>d</sup>       |               |
| Methylene chloride                         |          |          |          | 130            |                |          |        |                | ND     |        |     |        |                | 32 <sup>d</sup><br>44 |               |
| Pesticides and metabolites,                |          |          |          |                |                |          |        |                |        |        |     |        |                |                       |               |
| ug/L                                       |          |          |          |                |                |          |        |                |        |        |     |        |                |                       |               |
| а-вис                                      |          |          |          | ND             |                |          |        |                | <10    |        |     |        |                | ND                    |               |
| Isophorone                                 |          |          |          | ND             |                |          |        |                | 2,500  |        |     |        |                | ND                    |               |
|                                            |          |          |          |                |                |          |        |                |        |        |     |        |                |                       |               |

Note: Blanks indicate data not available.

a 24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

 $<sup>^{\</sup>mathrm{b}}$ Total phenols,  $\mu g/L$ ; pH, pH units.

Not detected in sample.

d Compound was detected at a greater level in sample blank than sample.

TABLE 14-24. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY P [4,5]

|                                            |              |                |               | Intake        |            |          |               | Separator      | effluent   |             |
|--------------------------------------------|--------------|----------------|---------------|---------------|------------|----------|---------------|----------------|------------|-------------|
| Pollutant                                  | Day<br>1     | Day<br>2       | Day<br>3      | Composite     | Composite  | Day<br>1 | Day<br>2      | Day<br>3       | Composite  | Composit    |
|                                            |              |                |               | Composito     |            |          |               |                | COMPOSITOR | - composite |
| Conventional pollutants, mg/L <sup>b</sup> |              |                |               |               |            |          |               |                |            |             |
| BOD-1                                      | <2           | <b>&lt;</b> 5  | <2            |               |            | 320      | 210           | 150            |            |             |
| BOD-2                                      |              | <5             | <2            |               |            |          | 220           | 160            |            |             |
| BOD-3                                      |              |                |               |               |            |          |               |                |            |             |
| COE                                        | 4            | 6              | <4            |               |            | 600      | 540           | 470            |            |             |
| TOC                                        | 3            | 7              | 7             |               |            | 170      | 140           | 140            |            |             |
| TSS                                        | <1           | <1             | <1            |               |            | 68       | 78            | 42             |            |             |
| Total phenols                              | <10          | <5             | <5            |               |            | 106,000  |               | 29,000         |            |             |
| Sulfide                                    | <0.1         | <0.1           | <0.1          |               |            | 25       | 25            | 23             |            |             |
| pH                                         | 7.0          | 6.8            | 6.3           |               |            |          | 10.1          | 9.9            |            |             |
| Ammonia                                    | <1.0         | <1.0           | <1.0          |               |            | 11       | 16            | 18             |            |             |
| Metals and inorganics, µg/L                |              |                |               |               |            |          |               |                |            |             |
| Antimony                                   |              |                |               |               | <25        |          |               |                |            | 360         |
| Arsenic                                    |              |                |               |               | <20        |          |               |                |            | <20         |
| Beryllium                                  | <7           | <1             | <1            | <1            | <3         | <1       | <1            | <1             | <1         | <3          |
| Cadmium                                    | <2           | <2             | <2            | <2            | <1         | <2       | <2            | <2             | <2         | <1          |
| Chromium                                   | <5           | <5             | <5            | <b>&lt;</b> 5 | 40         | 900      | 50            | 700            | 600        | 72          |
| Chromium +6                                | 20           | <20            | <20           | -5            | 10         | <20      | 150           | 50             | 000        |             |
| Copper                                     | <6           | <6             | <6            | <6            | <5         | <6       | <6            | <6             | <6         | €5          |
| Total cyanide                              | <30          | <20            | <20           | 10            | <b>\</b> 5 | 90       | 60            | 40             | .0         | • 5         |
| Lead                                       | <20          | <20            | <20           | <20           | <15        | <20      | <20           | <20            | <20        | <15         |
|                                            | <20          | ~20            | <20           |               | (15        | <20      | <20           | <20            | <0.5       | <12         |
| Mercury<br>Nickel                          |              |                |               | <0.5          | -25        |          |               |                |            | -3.5        |
|                                            | <5           | <5             | <b>&lt;</b> 5 | <b>&lt;</b> 5 | <15        | <5       | <b>&lt;</b> 5 | <5             | <5         | <15         |
| Selenium                                   |              |                |               |               | <20        |          |               |                |            | <20         |
| Silver                                     | <1           | <1             | <1            | <1            | <5         | <1       | <1            | <1             | <1         | <5          |
| Thallium                                   |              |                |               |               | <15        |          |               |                |            | <15         |
| Zinc                                       | < <b>6</b> 0 | <b>&lt;6</b> 0 | <60           | 60            | 61         | <60      | < <b>6</b> 0  | <b>&lt;6</b> 0 | <60        | 55          |
| Phenols, µg/L                              |              |                |               | •             |            |          |               |                |            |             |
| 2,4-Dinitrophenol                          |              |                |               | NDC           |            |          |               |                | 110        |             |
| 2-Nitrophenol                              |              |                |               | <10           |            |          |               |                | 1,350      |             |
| 4-Nitrophenol                              |              |                |               | <10           |            |          |               |                | 20         |             |
| 4,6-Dinitro-0-cresol                       |              |                |               | ND            |            |          |               |                | 60         |             |
| Aromatics, ug/L                            |              |                |               |               |            |          |               |                |            |             |
| Benzene                                    |              |                |               | <10           |            |          |               |                | 1,100      |             |
| Ethylbenzene                               |              |                |               | ND            |            |          |               |                | 28         |             |
| 'oluene                                    |              |                |               | <10           |            |          |               |                | 655        |             |
| Polycyclic aromatic hydrocarbons, µg/L     |              |                |               |               |            |          |               |                |            |             |
| Acenaphthene                               |              |                |               | ND            |            |          |               |                | 315        |             |
| Acenaphthylene                             |              |                |               | ND            |            |          |               |                | 665        |             |
| Anthracene                                 |              |                |               | ND            |            |          |               |                | 660        |             |
| Naphthalene                                |              |                |               | ND            |            |          |               |                | 3,200      |             |
| Phenanthrene                               |              |                |               | ND            |            |          |               |                | 660        |             |
| Halogenated aliphatics, μg/L               |              |                |               |               |            |          |               |                |            |             |
| Carbon tetrachloride                       |              |                |               | ND            |            |          |               |                | ND         |             |
| Chloroform                                 |              |                |               | <10           |            |          |               |                | 100        |             |
| 1,2-trans-Dichloroethylene                 |              |                |               | 11            |            |          |               |                | ND         |             |
| Methylene chloride                         |              |                |               | ND            |            |          |               |                | 1,600      |             |
| 1,1,2,2-Tetrachloroethane                  |              |                |               | <10           |            |          |               |                | ND         |             |
| Tetrachloroethylene                        |              |                |               | <10           |            |          |               |                | ND         |             |
| Trichloroethylene                          |              |                |               | <10           |            |          |               |                | ND         |             |
| Pesticides and metabolites, µg/L           |              |                |               |               |            |          |               |                |            |             |
| Aldrin                                     |              |                |               | ND            |            |          |               |                | 12         |             |
| в-вис                                      |              |                |               | ND            |            |          |               |                | <5         |             |
| б-внс                                      |              |                |               | ND            |            |          |               |                | 12         |             |
| β-Endosulfan                               |              |                |               | ND            |            |          |               |                |            |             |
| Heptachlor                                 |              |                |               | ND            |            |          |               |                | 13<br><5   |             |
| Isophorone                                 |              |                |               | ND<br>ND      |            |          |               |                |            |             |
| 200711020110                               |              |                |               | ND            |            |          |               |                | 3,500      |             |
|                                            |              |                |               |               |            |          |               |                |            |             |

(continued)

TABLE 14-24 (continued)

|                                                 |          |          | Fina     | leffluent     |           |
|-------------------------------------------------|----------|----------|----------|---------------|-----------|
| Pollutant                                       | Day<br>1 | Day<br>2 | Day<br>3 | Composite     | Composite |
|                                                 |          |          |          | COMPOSICE     | COMPOSITO |
| Conventional pollutants, mg/Lb                  |          |          |          |               |           |
| 30D-1<br>30D-2                                  | <5       | <5       | <3       |               |           |
| 30D-2<br>30D-3                                  |          | <5       | <3       |               |           |
| COD                                             | 64       | 49       | 41       |               |           |
| TOC                                             | 16       | 24       | 31       |               |           |
| TSS                                             | 11       | 2        | 7        |               |           |
| Total phenols                                   | 12       | 11       | 10       |               |           |
| Sulfide                                         | 0.3      | 0.6      | <0.1     |               |           |
| PH                                              |          | 7.7      | 7.5      |               |           |
| Ammonia                                         | 1.4      | 2.0      | 2.0      |               |           |
| Metals and inorganics, µg/L                     |          |          |          |               |           |
| Antimony                                        |          |          |          |               | 370       |
| Arsenic                                         |          |          |          |               | <20       |
| Beryllium                                       | <1       | <1       | <1       | <1            | <3        |
| Cadmium                                         | <2       | <2       | <2       | <2            | <1        |
| Chromium                                        | <5       | <5       | <5       | <5            | 40        |
| Chromium +6                                     | <20      | <20      | <20      |               |           |
| Copper                                          | <6       | <6       | <6       | <6            | <5        |
| Total cyanide                                   | <30      | <30      | <30      |               |           |
| Lead                                            | <20      | <20      | <20      | <20           | <15       |
| Mercury                                         | <5       | <5       | <5       | <0.5          |           |
| Nickel                                          | ₹5       | ₹5       | ₹5       | <b>&lt;</b> 5 | <15       |
| Selenium<br>Silver                              | <1       | <1       | <1       | <1            | <20<br><5 |
| Thallium                                        | '1       | ``       | '1       | `1            | <15       |
| Zinc                                            | <60      | <60      | <60      | <60           | 43        |
|                                                 |          |          | -        |               | •         |
| Phenols, µg/L                                   |          |          |          |               |           |
| 2,4-Dinitrophenol                               |          |          |          | ND            |           |
| 2-Nitrophenol                                   |          |          |          | ND            |           |
| 4-Nitrophenol                                   |          |          |          | ND<br>ND      |           |
| 4,6-Dinitro-o-cresol                            |          |          |          | ND            |           |
| Aromatics, µg/L                                 |          |          |          |               |           |
| Benzene                                         |          |          |          | <10           |           |
| Ethylbenzene                                    |          |          |          | ND            |           |
| Tuluene                                         |          |          |          | ND            |           |
| Polycyclic aromatic hydrocarbons, µg/L          |          |          |          |               |           |
| Acenaphthene                                    |          |          |          | ND            |           |
| Acenaphthylene                                  |          |          |          | ND            |           |
| Anthracene                                      |          |          |          | ND            |           |
| Naphthalene<br>Phenanthrene                     |          |          |          | ND<br>ND      |           |
|                                                 |          |          |          | N.D           |           |
| Halogenated aliphatics, ug/L                    |          |          |          |               |           |
| Carbon tetrachloride                            |          |          |          | <10           |           |
| Chloroform                                      |          |          |          | <10           |           |
| 1,2-trans-Dichloroethylene                      |          |          |          | ND<br>41      |           |
| Methylene chloride<br>1,1,2,2-Tetrachloroethane |          |          |          | <10           |           |
| Tetrachloroethylene                             |          |          |          | ND            |           |
| Trichloroethylene                               |          |          |          | <10           |           |
| Pesticides and metabolites, µg/L                |          |          |          |               |           |
| Aldrin                                          |          |          |          | ND            |           |
| в-внс                                           |          |          |          | ND            |           |
| 6-BHC                                           |          |          |          | ND            |           |
| β-Endosulfan                                    |          |          |          | ND            |           |
| Heptachlor                                      |          |          |          | ND            |           |
| Isophorone                                      |          |          |          | ND            |           |

Note: Blanks indicate data not available.

<sup>&</sup>lt;sup>a</sup><sub>2</sub>4-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

 $<sup>^{\</sup>rm b}$ Total phenols,  $\mu g/L$ ; pH, pH units; flow, MGD - million gallons per day.

CNot detected in sample.

TABLE 14-25. SCREENING STUDY WASTEWATER CHARACTERIZATION BY PLANT, REFINERY Q [4]

|                               | Day  | Day  | Int  | AXE       | Day  | Day | Day  | Day  | effluent        | Day  | Day    | Fina<br>Day | l efflue<br>Day |           | Da  |
|-------------------------------|------|------|------|-----------|------|-----|------|------|-----------------|------|--------|-------------|-----------------|-----------|-----|
| Pollutant                     | 1    | 3    | 3    | Composite | 4    | ı,  | 2    | 3    | Composite       | 4,   | 1      | 2,          | 3               | Composite |     |
| b                             |      |      |      |           |      |     |      |      |                 |      |        |             |                 |           |     |
| onventional pollutants, mg/Lb |      |      |      |           |      | 80  | 40   | 66   |                 |      | 28     | 20          | 30              |           |     |
| BOD-1                         | <2   | <2   | <3   |           |      | 50  | 70   | 64   |                 |      | 20     | 20          | 30              |           |     |
| BOD- 3                        |      |      |      |           |      | 370 | 330  | 260  |                 |      | 260    | 250         | 230             |           |     |
| COD                           | 4    | . 4  | 24   |           |      | 91  | 84   | 65   |                 |      | 59     | 78          | 60              |           |     |
| TOC                           | 6    | 11   | 9    |           |      | 38  | 10   |      |                 |      | 38     | 22          | 26              |           |     |
| TSS                           | 3    | 2    | <1   |           |      |     |      | 12   |                 |      | 16     | 18          | 14              |           |     |
| Total phenols                 | <1   | . 4  | 10   |           |      | 108 | 116  | 118  |                 |      |        |             |                 |           |     |
| Sulfide                       | 0.4  | 0.3  | 0.3  |           |      | 9.3 | 5.6  | 2.4  |                 |      | 0.7    | 0.6         | 0.5             |           |     |
| Oil and grease                | . 5  | - 9  | 13   |           |      | 62  |      | 38   |                 |      | 45     | 45          | 37              |           |     |
| PH                            | 7.1  | 7.4  | 7.5  |           |      | 9.2 | 9.3  | 9.8  |                 |      | 8.8    | 8.3         | 8.7             |           |     |
| Ammonia                       | <1.0 | <1.0 | <1.0 |           |      | 45  | 46   | 39   |                 |      | 53     | 49          | 42              |           |     |
| etals and inorganics, pg/L    |      |      |      |           |      |     |      |      |                 |      |        |             |                 |           |     |
| Antimony                      |      |      |      | <1        |      |     |      |      | <1              |      |        |             |                 | -         |     |
| Arsenic                       |      |      |      | 7         | 35   | 480 | 460  | 460  | 440             | 350  | 790    | 900         | 680             | 800       | 50  |
| Beryllium (laboratory .       | <2   | <2   | <2   | <2        |      | <2  | <2   | <2   | <2              |      | <2     | <2          | <2              | <2        |     |
| Beryllium (laboratory 3       |      |      |      | <1        |      |     |      |      | <1              |      |        |             |                 | <1        |     |
| Cadmium (laboratory 1)        | <20  | <20  | <20  | <20       |      | <20 | <20  | <20  | <20             |      | <20    | <20         | <20             | <20       |     |
| Cadmium (laboratory 3)        |      |      |      | <1        |      |     |      |      | <1              |      | <1     | <1          | <1              | 5         |     |
| Chromium (laboratory 1)       | <24  | <24  | <24  | <24       |      | <24 | <24  | <24  | · <24           |      | <24    | <24         | <24             | <24       |     |
| Chromium (laboratory 3)       |      | -    |      | 1         |      |     | -    |      | 1               |      |        |             |                 | 2         |     |
| Chromium +6                   | <20  | <20  | <20  | -         |      | <20 | <20  | <20  | -               |      | <20    | <20         | <20             | -         |     |
| Copper (laboratory 1)         | 37   | 37   | 20   | 53        |      | 7   | <4   | 6    | 15              |      | 11     | 20          | <24             | 23        |     |
| Copper (laboratory 3)         | 3,   | •    |      | 120       | 240  | 60  | 140  | 60   | 210             | 380  |        |             |                 | 180       | 13  |
| Total cyanide                 | <10  | 20   | <10  | 140       | <20  | <10 | <10  | 30   | •••             | <20  | <10    | 320         | 10              | 200       | 3   |
|                               | <60  | <60  | <60  | 167       | ~**  | <60 | <60  | <60  | 101             |      | <60    | <60         | <60             | 102       |     |
| Lead (laboratory 1)<br>Lead   | 100  | 160  | 100  | 2         |      | -00 | 100  | 100  | 10              |      | -60    | 100         | 100             | 15        |     |
|                               |      |      |      | 4         |      |     |      | 0.3  | 10              |      | 0.3    | 0.3         | 0.8             | 13        |     |
| Mercury (laboratory 1)        | 2.1  | 1.2  | 3.4  |           |      | 0.2 | 0.3  |      |                 |      |        |             |                 |           |     |
| Mercury (laboratory 3)        |      | 1.0  | 6.0  |           | <0.1 | 6.0 | <0.2 | <0.2 |                 | <0.2 | 6.1    | <1.1        | <0.2            |           | <0. |
| Nickel (laboratory 1)         | <50  | <50  | <50  | <50       |      | <50 | <50  | <50  | <50             |      | <50    | <50         | <50             | <50       |     |
| Nickel (laboratory 3)         |      |      |      | <1        |      |     |      |      | <1              |      |        |             |                 | <1        |     |
| Selenium                      | <6   | 6    | 10   | 6         |      | 9   | 7    | 6    | 10              |      | 11     | 10          | 22              | 20        |     |
| Silver (laboratory 1)         | <25  | <25  | <25  | <25       |      | <25 | <25  | <25  | <25             |      | <25    | <25         | <25             | <25       |     |
| Silver (laboratory 3)         |      |      |      | <1        |      |     |      |      | <1              |      |        |             |                 | <1        |     |
| Zinc (laboratory 1)           | 70   | 62   | 329  | 2,820     |      | 274 | 444  | 511  | 1,460           |      | 245    | 329         | 300             | 1,270     |     |
| Zinc (laboratory 3)           |      |      |      | 35        | <1   | 330 | 470  | 640  | 470             | 262  | 380    | 360         | 350             | 340       | 16  |
| Thallium                      | <1   | <1   | <1   | <2        |      | <1  | <1   | <1   | <2              |      | <1     | <1          | <1              | <2        |     |
| hthalates, µq/L               |      |      |      |           |      |     |      |      |                 |      |        |             |                 |           |     |
| Bis(2-ethylhexyl) phthalate   |      |      |      | 1.100     |      |     |      |      | 320             |      |        |             |                 | 2.000     |     |
| Di-n-butyl phthalate          |      |      |      | 20        |      |     |      |      | ND              |      |        |             |                 | ND        |     |
| Dietnyl phthalate             |      |      |      |           |      |     |      |      |                 |      |        |             |                 | 1         |     |
| Dimethyl phthalate            |      |      |      | 20        |      |     |      |      | ND <sup>C</sup> |      |        |             |                 | ND        |     |
| henols, ug/L                  |      |      |      |           |      |     |      |      |                 |      |        |             |                 |           |     |
| Phenol                        |      |      |      | 10        |      |     |      |      | 60              |      |        |             |                 | ND        |     |
| romatics, ug/L                |      |      |      |           |      |     |      |      |                 |      |        |             |                 |           |     |
| Benzene                       |      |      |      | <1        |      |     |      |      | 894             |      |        |             |                 | ND        |     |
| alogenated allphatics, pq/I   |      |      |      |           |      |     |      |      |                 |      |        |             |                 |           |     |
| Toluene                       |      |      |      | ND        |      |     |      |      | 107             |      |        |             |                 | ND        |     |
| Chloroform                    |      |      |      | ND        |      |     |      |      | 6               |      |        |             |                 | ND        |     |
| Dichlorobromomethane          |      |      |      | ND<br>ND  |      |     |      |      | 24              |      |        |             |                 | ND<br>ND  |     |
| Methylene chloride            |      |      |      | 6<br>6    |      |     |      |      | 4               |      |        |             |                 | 3         |     |
| low, MGD                      |      |      |      |           |      |     |      |      |                 |      | 0.2783 | 0.3086      | 0.3186          |           |     |

and 24-hr composite samples on 3 consecutive days were collected. Each was analyzed for the "traditional" parameters and a composite of the three was analyzed for the toxic pollutants.

bPhenolics, µg/L; pH, pH units.

CNot detected in sample.

facilities. Table 14-26 indicates the types of treatment technology and performance characteristics which were observed during the survey [2]. In most of the plants analyzed, some type of biological treatment was utilized to remove dissolved organic material. Table 14-27 summarizes the expected effluents from wastewater treatment processes throughout the petroleum refining industry. Typical efficiencies for these processes are shown in Table 14-28.

During the survey program, wastewater treatment plant performance history was obtained when possible. These historical data were analyzed statistically and the individual plant's performance evaluated in comparison to the original design basis. After this evaluation, a group of plants was selected as being exemplary, and data from these plants were presented in Table 14-26. The treatment data in Table 14-28 represent the annual daily average performance (50% probability of occurrence). There were enough plants involving only one subcategory to make the interpretation meaningful [2].

#### II.14.5 REFERENCES

- 1. NRDC Consent Decree Industry Summary Petroleum Refining.
- Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Petroleum Refining Point Source Category. EPA-440/1-74-014-a, U.S. Environmental Protection Agency, Washington, D.C., April 1974. 195 pp.
- 3. Interim Final Supplement for Pretreatment to the Development Document for the Petroleum Refining Industry Existing Point Source Category. EPA-440/1-76/083A, U.S. Environmental Protection Agency, Washington, D.C., March 1977. 115 pp.
- 4. Draft Development Document Including the Data Base for the Review of Effluent Limitations Guidelines (BATEA), New Source Performance Standards, and Pretreatment Standards for the Petroleum Refining Point Source Category. U.S. Environmental Protection Agency, Washington, D.C., March 1978.
- 5. Development Document for Proposed Effluent Limitations Guidelines, New Source Performance Standards, and Pretreatment Standards for the Petroleum Refining Point Source Category. EPA 440/1-79/014-b, U. S. Environmental Protection Agency, Washington, D. C., December 1979.

TABLE 14-26. OBSERVED REFINERY TREATMENT SYSTEM AND EFFLUENT LOADINGS [2]

|               |                                                                 |      |        |     | kg/l   |      |        | edsto | effluen<br>ck (lb/l |      |        | eedstoc |                 |       |         |
|---------------|-----------------------------------------------------------------|------|--------|-----|--------|------|--------|-------|---------------------|------|--------|---------|-----------------|-------|---------|
| Subcategory   | Treatment type                                                  | ВС   | DD5    |     | COD    |      | rss    |       | l and<br>ease       | N    | H3-N   |         | nolic<br>pounds | Su    | lfide_  |
| Topping       | Oxidation pond                                                  |      |        |     |        | -    |        | 2.0   | (0.7)               |      |        | 0.14    | (0.05)          | 0.03  | (0.009) |
| Cracking      | Aerated lagoon, polishing pond                                  | 8    | (2.8)  | 39  | (13.8) | -    |        | 2.3   | (8.0)               |      |        | 0.003   | (0.001)         |       |         |
| Cracking      | Aerated lagoon, filtration                                      | 8.0  | (4.4)  | 68  | (24)   | 25   | (8.7)  | 9     | (3.2)               |      |        | 0.4     | (0.145)         | 0.2   | (0.07)  |
| Cracking      | Equalization, dissolved air flotation, activated sludge         | 5.9  | (2.1)  | 96  | (34)   | 34   | (12)   | 4.0   | (1.4)               |      |        | 0.37    | (0.13)          | 0     | (0)     |
| Cracking      | Oxidation pond                                                  | 10   | (3.6)  | 71  | (25.0) | 8.5  | (3.0)  |       |                     | 4.8  | (1.7)  | 0.05    | (0.018)         | 0.03  | (0.010) |
| Cracking      | Dissolved air flotation,<br>aerated lagoon, polishing<br>pond   | 3.7  | (1.3)  | 39  | (13.8) | 4.2  | (1.5)  | 2.8   | (1.0)               | 0.14 | (0.05) | 0.006   | (0.002)         | 0.014 | (0.005) |
| Petrochemical | Dissolved air flotation, activated sludge                       | 13   | (4.6)  | 67  | (23.5) | 13.6 | (4.8)  | 6.5   | (2.3)               | 4.5  | (1.6)  | 0.06    | (0.023)         | 0.05  | (0.018) |
| Petrochemical | Dissolved air flotation, activated sludge                       | 2.7  | (0.95) |     |        | 8.5  | (3.0)  |       |                     |      |        |         |                 |       |         |
| Petrochemical | Dissolved air flotation,<br>aerated lagoon, polishing<br>pond   | 2.6  | (0.91) | 54  | (19)   | 7    | (2.5)  |       |                     | 2    | (0.7)  |         |                 |       |         |
| Lube          | Equalization, trickling filter, activated sludge                | 7.4  | (2.6)  | 57  | (20)   | 12   | (4.3)  | 4     | (1.4)               | 1.2  | (0.44) | 0.17    | (0.06)          |       |         |
| Lube          | Equalization, activated sludge                                  | 14   | (5.0)  | 136 | (48)   | 38   | (13.5) | 7.2   | (2.55)              |      |        |         |                 |       |         |
| Integrated    | Dissolved air flotation,<br>activated sludge, polishing<br>pond | 17.5 | (6.2)  | 320 | (113)  | 36   | (12.7) | 22    | (7.7)               | 2.3  | (0.8)  | 0.017   | (0.006)         | 0.20  | (0.07)  |

TABLE 14-27. EXPECTED EFFLUENTS FROM PETROLEUM TREATMENT PROCESSES [2]

|                            | Process a  |                  |           | Ef       | fluent conc | entration,     | mg/L       |          |         |
|----------------------------|------------|------------------|-----------|----------|-------------|----------------|------------|----------|---------|
| Process                    | influent   | BOD <sub>5</sub> | COD       | TOC      | SS          | Oil            | Phenol     | Ammonia  | Sulfide |
| API separator              | Raw waste  | 250 - 350        | 260 - 700 |          | 50 - 200    | 20 - 100       | 6 - 100    | 15 - 150 |         |
| Clarifier                  | 1          | 45 - 200         | 130 - 450 |          | 25 - 60     | <b>5 - 3</b> 5 | 10 - 40    |          |         |
| Dissolved air<br>flotation | 1          | 45 - 200         | 130 - 450 |          | 25 - 60     | 5 - 20         | 10 - 40    |          |         |
| Granular media<br>filter   | 1          | 40 - 170         | 100 - 400 |          | 5 - 25      | 6 - 20         | 3 - 35     |          |         |
| Oxidation pond             | 1          | 10 - 60          | 50 - 300  |          | 20 - 100    | 1.6 - 50       | 0.01 - 12  | 3 - 50   | 0 - 20  |
| Aerated lagoon             | 2,3,4      | 10 - 50          | 50 - 200  |          | 10 - 80     | 5 - 20         | 0.1 - 25   | 4 - 25   | 0 - 0.  |
| Activated sludge           | 2,3,4      | 5 - 50           | 30 - 200  | 20 - 80  | 5 - 50      | 1 - 15         | 0.01 - 2.0 | 1 - 100  | 0 - 0.  |
| Trickling filter           | 1          | 25 - 50          | 80 - 350  |          | 20 - 70     | 10 - 80        | 0.5 - 10   | 25 - 100 | 0.5 - 2 |
| Cooling tower              | 2,3,4      | 25 - 50          | 47 - 350  | 70 - 150 | 4.5 - 100   | 20 - 75        | 0.1 - 2.0  | 1 - 30   |         |
| Activated carbon           | 2,3,4      | 5 - 100          | 30 - 200  |          | 10 - 20     | 2 - 20         | <1         | 10 - 140 |         |
| Granular media filter      | 5-9        |                  |           | 25 - 61  | 3 - 20      | 3 - 17         | 0.35 - 10  |          |         |
| Activated carbon           | 5-9 and 11 | 3 - 10           | 30 - 100  | 1 - 17   | 1 - 15      | 0.8 - 2.5      | 0 - 0.1    | 1 - 100  | 0 - 0.  |

Note: Blanks indicate data not available.

<sup>&</sup>lt;sup>a</sup>Number(s) indicates which process(es) from the process column preceeds the process discussed.

TABLE 14-28. TYPICAL REMOVAL EFFICIENCIES FOR OIL REFINERY TREATMENT PROCESSES [2]

|                          | Process               |                  |         |         | Removal e | efficiency | , &      |         |          |
|--------------------------|-----------------------|------------------|---------|---------|-----------|------------|----------|---------|----------|
| Process                  | influent <sup>a</sup> | BOD <sub>5</sub> | COD     | TOC     | ss        | Oil        | Phenol   | Ammonia | Sulfide  |
| API separator            | Raw waste             | 5 - 40           | 5 - 30  |         | 10 - 50   | 60 - 99    | 0 - 50   |         |          |
| Clarifier                | 1                     | 30 - 60          | 20 - 50 |         | 50 - 80   | 60 - 95    | 0 - 50   |         |          |
| Dissolved air flotation  | 1                     | 20 - 70          | 10 - 60 |         | 50 - 85   | 70 - 85    | 10 - 75  |         |          |
| Filter                   | 1                     | 40 - 70          | 20 - 55 |         | 75 - 95   | 65 - 90    | 5 - 20   |         |          |
| Oxidation pond           | 1                     | 40 - 95          | 30 - 65 | 60      | 20 - 70   | 50 - 90    | 60 - 99  | 0 - 15  | 70 - 100 |
| Aerated lagoon           | 2,3,4                 | 75 - 95          | 60 - 85 |         | 40 - 65   | 70 - 90    | 90 ~ 99  | 10 - 45 | 95 - 100 |
| Activated sludge         | 2,3,4                 | 80 - 99          | 50 - 95 | 40 - 90 | 60 - 85   | 80 - 99    | 95 ~ 99+ | 33 - 99 | 97 - 100 |
| Trickling filter         | 1                     | 60 - 85          | 30 - 70 |         | 60 - 85   | 50 - 80    | 70 - 98  | 15 - 90 | 70 - 10  |
| Cooling tower            | 2,3,4                 | 50 - 90          | 40 - 90 | 10 - 70 | 50 ~ 85   | 60 - 75    | 75 ~ 99+ | 60 - 95 |          |
| Activated carbon         | 2,3,4                 | 70 - 95          | 70 - 90 | 50 - 80 | 60 - 90   | 75 ~ 95    | 90 - 100 | 7 - 33  |          |
| Filter<br>granular media | 5-9                   |                  |         | 50 ~ 65 | 75 ~ 95   | 65 ~ 95    | 5 - 20   |         |          |
| Activated carbon         | 5-9 and 11            | 91 - 98          | 86 - 94 | 50 - 80 | 60 ~ 90   | 70 - 95    | 90 - 99  | 33 - 87 |          |

Note: Blanks indicate data not available.

<sup>&</sup>lt;sup>a</sup>Number(s) indicates which process(es) from the process column preceeds the process discussed.

#### II.16 PULP, PAPER, AND PAPERBOARD MILLS

#### II.16.1 INDUSTRY DESCRIPTION [1]

#### II.16.1.1 General Description

The pulp, paper, and paperboard industry includes 730 operating mills, making this one of the largest industries in the United States. (Six hundred forty four of these mills responded to 308 surveys used for data in Reference 1.) Included in this industry are mills that produce (1) only pulp, (2) both pulp and paper products, and (3) only paper products from pulp manufactured elsewhere. Included in this industry are mills that use secondary fibers (usually waste paper) to produce paper and paperboard products.

Production operations range from large integrated kraft pulp, paper, and paperboard mills producing 1,814 Mg/d (2,000 ton/d) of product to nonintegrated single-machine mills producing less than 0.9 Mg/d (1 ton/d) of product. Total annual production for the industry is 239,516 Mg (264,075 ton).

The pulp, paper, and paperboard industry manufactures a variety of products. The various papers differ basically in durability, weight, thickness, flexibility, brightness, opacity, smoothness, printability, strength, and color. These characteristics are a function of raw material selection, pulp methods, and papermaking techniques. End products of the industry include stationery, tissue, printing newspapers, boxes, builder papers, and numerous other grades of industrial and consumer papers.

There are three general classifications of mills: integrated mills; secondary fiber mills; and nonintegrated mills. At integrated mills, pulp is produced from wood and nonwood raw materials and used to manufacture paper and board products on site. At secondary fiber mills no pulp is produced on site with most of the furnish (i.e., the raw materials placed in a beater for making paper pulp) derived from waste paper. At nonintegrated mills, the furnish consists of purchased wood pulp (or other fibers). No pulp is made on site, but some waste paper can be used providing the mill does not have a full deink process.

At mills that produce pulp on site, the raw materials must be prepared for the pulping process. The preparation of wood for pulping may require log washing, bark removal, and chipping. Depending on the form in which raw materials arrive at the mill, all of these steps, or none of them, may be used.

Pulping processes at integrated mills range from simple groundwood operations, using only mechanical defibration of full logs and limited bleaching operations, to complex dissolving pulp

mills employing extensive chemical pulping operations and attendant recovery systems coupled with multistage bleaching operations. Pulping operations include groundwood and modified groundwood operations, sulfite (acid) processes, unbleached and bleached kraft or soda processes (alkaline), and modified high-yield processes utilizing mild chemical treatments coupled with mechanical defibration.

After pulping, the unbleached pulp is brown or deeply colored. The pulp is then bleached to remove the color bodies and produce a light colored or white product. Bleaching is usually accomplished in a series of steps, using chlorination and alkaline extraction, and various chemicals, such as chlorine dioxide, and hypochlorite.

In recent years, secondary fiber sources such as waste paper of various classifications have gained increasing acceptance as a raw material fiber source. Such secondary fiber can frequently be used without processing. For some applications, however, the reclaimed waste papers must be deinked prior to use.

Table 16-1 presents industry summary data for the pulp and paper point source category in terms of the total number of subcategories, the number of subcategories studied by EGD (Effluent Guidelines Division), and the number and type of dischargers.

#### TABLE 16-1. INDUSTRY SUMMARY [1,2]

Industry: Pulp and Paper

Total Number of Subcategories: 24<sup>a</sup>
Number of Subcategories Studied: 24

Number of Dischargers Responding to Survey: 644

- Direct Dischargers: 359
- Indirect Dischargers: 230
- Zero Dischargers: 55

#### II.16.1.2 Subcategory Descriptions

As part of the BATEA review program, an updated and more complete data base was developed; this result led to the review and revision of the previous subcategorization. The previous and revised subcategorization is shown in Table 16-2, as reported in Reference 1.

Date: 6/23/80

aExcludes three mill groupings, which are not considered to be subcategories.

# TABLE 16-2. PREVIOUS AND REVISED INDUSTRY SUBCATEGORIZATION [1]

# Previous subcategories

Revised subcategoriesa

#### Phase I

Unbleached kraft
NSSC - ammonia
NSSC - sodium

Unbleached kraft-NSSC Paperboard from wastepaper

#### Phase II

Dissolving kraft
Market kraft
BCT-kraft
Fine kraft
Papergrade sulfite

- blow pit wash (plus allowances)
Papergrade sulfite-drum wash
- drum wash (plus allowances)

Dissolving sulfite (allowances by

grade)

Groundwood chemi-mechanical Groundwood thermo-mechanical

Groundwood-CMN Groundwood-fine

Sođa Deink

Nonintegrated-fine Nonintegrated-tissue - from waste paper Alkaline-dissolving Alkaline-market Alkaline-BCT Alkaline-fine

Alkaline-unbleached

Semi-chemical

Groundwood-CMN

Wastepaper-board

Alkaline unbleached and semi-chemical

Alkaline-newsprint Sulfite-dissolving Sulfite-papergrade Thermo-mechanical pulp

Groundwood-fine
Deink-fine and tissue
Deink-newsprint
Wastepaper-tissue

Wastepaper-molded products
Wastepaper-construction products

Nonintegrated-fine Nonintegrated-tissue Nonintegrated-lightweight

Nonintegrated-filter and nonwoven

Nonintegrated-paperboard

The BPT effluent limitations for the previous subcategorizations (as they appear in Table 16-2) are shown in Table 16-3. BPT limitations for the revised subcategorizations are not currently available.

As a part of the review of previous subcategories, raw waste loads were assessed taking into account the size and age of the mills, the treatability of the wastes produced, and the effect of unique geographical factors. With the revised subcategorization, 512 of the 644 mills responding to the data request fit

Excludes three groupings of miscellaneous mills: integrated miscellaneous (including alkaline miscellaneous, groundwood chemi-mechanical, and nonwood pulping), secondary fiber-miscellaneous, and nonintegrated-miscellaneous.

TABLE 16-3. BPT EFFLUENT LIMITATIONS FOR THE PREVIOUS SUBCATEGORIES [1]

|                              |       | BODs, kg/l | Mg                     |       | rss, kg/M | 1                      |           |
|------------------------------|-------|------------|------------------------|-------|-----------|------------------------|-----------|
| Cubaataaa                    | Daily | 30-Day     | Anrual<br>daily<br>ave | Daily | 30-Day    | Annual<br>daily<br>ave | pH, units |
| Subcategory                  | max   | ave        | ave                    | IIIdx | ave       | ave                    | Kange     |
| Unbleached kraft             | 5.6   | 2.8        |                        | 12    | 6.0       |                        | 6 to 9    |
| Sodium based NSSC            | 8.0   | 4.4        |                        | 11    | 5.5       |                        | 6 to 9    |
| Ammonia based NSSC           | 8.0   | 4.0        |                        | 10    | 5.0       |                        | 6 to 9    |
| Unbleached kraft-NSSC        | 8.0   | 4.0        |                        | 12    | 6.2       |                        | 6 to 9    |
| Paperboard FWP               | 3.0   | 1.5        |                        | 5     | 2.5       |                        | 6 to 9    |
| Dissolving kraft             | 24    | 12.25      | 6.9                    | 37    | 20        | 11                     | 5 to 9    |
| Market kraft                 | 15    | 8          | 4.5                    | 30    | 16        | 20                     | 5 to 9    |
| BCT kraft                    | 14    | 7.1        | 4.0                    | 24    | 13        | 7.1                    | 5 to 9    |
| Fine kraft                   | 11    | 5.5        | 3.1                    | 22    | 12        | 6.6                    | 5 to 9    |
| Papergrade sulfite-          |       |            |                        |       |           |                        | -         |
| blow pit wash                | 32    | 17         | 9.3                    | 44    | 24        | 13                     | 5 to 9    |
| Papergrade sulfite-          |       |            |                        | • •   |           |                        |           |
| drum wash                    | 27    | 14         | 7.8                    | 44    | 24        | 13                     | 5 to 9    |
| Papergrade sulfite-          |       |            |                        |       |           |                        |           |
| market pulp                  | 40    | 21         |                        | 40    | 2.6       |                        | 5 to 9    |
| Dissolving sulfite           | 41    | 22         | 12                     | 71    | 38        | 21                     | 5 to 9    |
| Groundwood chemi-mechanical  | 14    | 7          | 4                      | 20    | 11        | 5.8                    | 5 to 9    |
| Groundwood thermo-mechanical | 11    | 5.6        | 3.1                    | 16    | 8.4       | 4.6                    | 5 to 9    |
| Groundwood CMN               | 7.4   | 3.9        | 2.2                    | 13    | 6.8       | 3.8                    | 5 to 9    |
| Groundwood fine              | 6.8   | 3.6        | 2.0                    | 12    | 6.3       | 3.4                    | 5 to 9    |
| Soda                         | 14    | 7.1        | 4.0                    | 24    | 13        | 7.2                    | 5 to 9    |
| Deink                        | 18    | 9.4        | 5.3                    | 24    | 13        | 7.1                    | 5 to 9    |
| Nonintegrated-fine           | 8.2   | 4.2        | 2.4                    | īi    | 5.9       | 3.2                    | 5 to 9    |
| Nonintegrated-tissue         | 11    | 6.2        | 3.5                    | 10    | 5.0       | 2.8                    | 5 to 9    |
| Nonintegrated-tissue FWP     | 14    | 7.1        | 4.0                    | 17    | 9.2       | 5                      | 5 to 9    |

into the subcategories shown below, which are grouped as intetrated mills, secondary fiber mills, and nonintegrated mills.

## II.16.1.2.1 Integrated Mills

In integrated mill operations, pulp is produced and processed into pulp, pulp bales, paper, or paperboard at the same site.

Alkaline-Dissolving. At alkaline-dissolving mills, a highly bleached wood pulp is produced in a full-cook process using a sodium hydroxide and sodium sulfide cooking liquor and a precook operation called "prehydrolysis". The principal product is a highly purified dissolving pulp.

Alkaline-Market. At alkaline-market mills, a bleached papergrade market wood pulp is produced in a full-cook process using a highly alkaline sodium hydroxide cooking liquor. Sodium sulfide is also usually present in the cooking liquor in varying amounts.

Alkaline-BCT. At alkaline-BCT mills, bleached alkaline pulp is produced and manufactured into paperboard, coarse, and tissue (BCT) grades of paper. Bleached alkaline pulp is produced in a process similar to that presented above for the alkaline-market subcategory.

Alkaline-Fine. At alkaline-fine mills, bleached alkaline pulp is produced and manufactured into fine papers, including business, writing, and printing papers. The pulping process is the same as that discussed in the previous two subcategories.

Alkaline-Unbleached. At alkaline-unbleached mills, an unbleached wood pulp is produced in a full-cook process using a highly alkaline sodium hydroxide cooking liquor. Sodium sulfide is also usually present in the cooking liquor in varying amounts. The products are coarse papers and paperboard, and may include market pulp, unbleached kraft specialties, towers, and corrugating medium and tube stock.

Semi-Chemical. At semi-chemical mills, a high-yield wood pulp is produced and manufactured into corrugating medium, insulating board, partition board, chip board, tube stock, and specialty boards. A variety of cooking liquors is used to cook the wood chips under pressure; the cooked chips are usually refined before being converted into board or similar products.

Alkaline-Unbleached and Semi-Chemical. At mills in this subcategory, high-yield semi-chemical pulp (as defined in the semi-chemical subcategory) and unbleached kraft pulp (as defined in the alkaline-unbleached subcategory) are produced. Cooking liquors from both processes are recovered in the same recovery furnace. Major products include linerboard, corrugating medium, and market pulp.

Alkaline-Newsprint. At alkaline-newsprint mills, bleached alkaline pulp (as defined in the alkaline-market subcategory) and groundwood pulp (as defined in the groundwood-CMN and thermomechanical pulp subcategories) are produced. Newsprint is the principal product.

Sulfite-Dissolving. At sulfite-dissolving mills, a highly bleached and purified wood pulp is produced in a full-cook process using strong solutions of calcium, magnesium, ammonia or sodium bisulfite, and sulfur dioxide. The pulps produced are viscose, nitration, cellophane or acetate grades; they are used principally for the manufacture of rayon and other products that require the virtual absence of lignin and high alphacellulose content.

Sulfite-Papergrade. At sulfite-papergrade mills, sulfite pulp and paper or papergrade market pulp are produced. The sulfite wood pulp is produced by a full-cook process using strong solutions of calcium, magnesium, ammonia or sodium bisulfite, and sulfur dioxide. Purchased groundwood, secondary fibers or virgin pulp are commonly used in addition to sulfite pulp to produce tissue paper, fine paper, newsprint, market pulp, chip board, glassine, wax paper, and sulfite specialties.

Thermo-Mechanical Pulp (TMP). At thermo-mechanical pulp mills, wood pulp is produced in a process using rapid steaming followed by refining. A cooking liquor, such as sodium sulfite, is added. The principal products are fine paper, newsprint, and tissue papers.

Groundwood-CMN. At groundwood-CMN mills, groundwood pulp is produced using stone grinders or refiners; no separate steaming vessel is used before the defibration. Purchased fibers are used in addition to groundwood pulp to produce coarse papers, molded fiber products, and newsprint (CMN).

Groundwood-Fine. At groundwood-fine mills, groundwood pulp is produced using stone grinders or refiners; no separate steaming vessel is used before the defibration. Purchased fibers are used in addition to groundwood pulp to produce fine papers, including business, writing, and printing papers.

# II.16.1.2.2 Secondary Fiber Mills

No pulp is produced at secondary fiber mills; most of the new material furnish is waste paper. Some secondary fiber mills include deinking to produce a pulp, paper or paperboard product.

Deink-Fine and Tissue. At deink-fine and tissue mills, a deink pulp is produced from waste paper. The principal products made from the deinked pulp including printing, writing, business, and tissue papers; they may also include products such as wall-paper, converting stock, and wadding.

Deink-Newsprint. Deink-newsprint mills produce newsprint from deink pulp derived mostly from over-issue and waste news.

Wastepaper-Tissue. In wastepaper-tissue mills, paper stock furnish is derived from waste paper without deinking. The principal products are facial and toilet paper, paper towels, glassine, paper diapers and wadding.

Wastepaper-Board. Wastepaper-board mills use a furnish derived from waste paper without deinking. A wide range of products are made, including setup and folding boxboards, corrugating medium, tube stock, chip board, gypsum liner, and liner-board. Other board products include fiber and partition board; building board; shoe board; bogus, blotting, cover, auto, filter, gasket, tag, liner, and electrical board; fiber pipe; food board; and wrapper and speciality boards.

Wastepaper-Molded Products. At wastepaper-molded products mills, most of the furnish is obtained from waste paper without deinking. The principal products are molded items, such as fruit and vegetable packs and similar throwaway containers and display items.

Wastepaper-Construction Products. Mills in the wastepaper-construction products subcategory primarily produce saturated and coated building paper and boards. Waste paper is the furnish; no deinking is employed. The principal products include roofing felt, shingles, and rolled and prepared roofing. Asphalt may be used for saturating, and various mineral coatings may be used. Some asbestos and nonwood fibers (fiberglass) may also be used. At many mills, some groundwood, defibrated pulp or wood flour may be processed and used to produce the final product.

# II.16.1.2.3 Nonintegrated Mills

Nonintegrated mills purchase wood pulp or other fiber source(s) to produce paper or paperboard products.

Nonintegrated-Fine. Nonintegrated-fine mills produce fine papers from wood pulp or secondary fibers prepared at another site. No deinking is employed at the papermill site. The principal products are printing, writing, business, and technical papers; bleached bristols; and rag papers.

Nonintegrated-Tissue. Nonintegrated-tissue mills produce sanitary or industrial tissue papers from wood pulp or secondary fiber prepared at another site. No deink pulp is prepared at the papermill site. The principal products are facial and toilet paper, paper towels, glassine, paper diapers, wadding, and wrapping.

Nonintegrated-Lightweight. Nonintegrated lightweight mills produce lightweight or thin papers from wood pulp or secondary fiber prepared at another site, as well as from nonwood fibers and additives. The principal products are uncoated thin papers, such as carbonizing, cigarette papers, and some special grades of tissue, such as capacitor, pattern, and interleaf.

Nonintegrated-Filter and Nonwoven. Nonintegrated-filter and nonwoven mills produce filter papers and nonwoven items using a furnish of purchased wood pulp, waste paper, and nonwood fibers. The principal products are filter and blotting paper, nonwoven packaging and specialties, insulation, technical papers, and gaskets.

Nonintegrated-Paperboard. Nonintegrated-paperboard mills produce various types of paperboard from purchased wood pulps or secondary fibers. Products include linerboard; folding boxboard; milk cartons; and food, chip, stereotype, pressboard, electrical, and other specialty board grades.

In addition to the above, there are three miscellaneous groupings which are not considered subcategories because they do not fit into any one subcategory definition. These groups include integrated-miscellaneous (including alkaline miscellaneous,

groundwood chemi-mechanical, and nonwood pulping), secondary fiber-miscellaneous, and nonintegrated-miscellaneous; and they are described below.

Integrated-Miscellaneous. This mill grouping includes three types of miscellaneous mills: 1) mills employing more than one pulping process (exceptions are the alkaline-newsprints and the alkaline-unbleached and semi-chemical subcategories); 2) miscellaneous processes not described above (i.e., nonwood pulping, chemi-mechanical, miscellaneous acid and alkaline pulping mills); and 3) mills producing a wide variety of products not covered above.

Secondary Fiber-Miscellaneous. This mill grouping manufactures products or product mixes not included in the wastepaper-tissue, wastepaper-board, wastepaper-molded products and wastepaper construction products subcategories. Their furnish is more than 50 percent waste paper without deinking. Products may include market pulp from waste paper and polycoated waste, filters, gaskets, mats, absorbent papers, groundwood specialties, and other grade mixtures. A mill producing less than 50 percent construction paper or any other combination of products, other than secondary fiber subcategory products, would be classified in this grouping.

Nonintegrated-Miscellaneous. This grouping includes any nonintegrated mill not included in the above subcategories. Included are mills making mostly asbestos and synthetic products; paper and paperboard products that are too diverse to be classified; or products with unique process or product specifications, commonly called specialty items.

Total production by subcategory is given in Table 16-4, as reported in Reference 1.

# II.16.1.3 Wastewater Flow Characterization

Total wastewater flow for the mills sampled is 2,662.7 m³/Mg (640 kgal/ton) of product formed. Wastewater flows for each subcategory are included in Table 16-7, which is shown in Section II.16.2.1. Points of effluent discharge for a typical paper mill are shown in Figure 16-1.

#### II.16.2 WASTEWATER CHARACTERIZATION [1]

# II.16.2.1 Conventional Pollutants

Raw waste load data were collected to establish effluent limitation guidelines and the cost of achieving such guidelines. To meet these objectives, two representative conceptual mills were established: the model mill and the pure mill, as described below.

TABLE 16-4. REPORTED PULP AND PAPER PRODUCTION BY SUBCATEGORY [1]

|                                  |        |        |           | Ave                                 | age                        |         |            |
|----------------------------------|--------|--------|-----------|-------------------------------------|----------------------------|---------|------------|
|                                  |        | Ave    | erage     | produ                               | ction                      |         | otal       |
|                                  | No. of | mill p | roduction | per ma                              | chine                      | annual  | production |
| Subcategory                      | mills  | Mg/d   | (t/d)     | Mg/d                                | (t/d)                      | Mkg     | (1,000 t)  |
| Integrated mills                 |        |        |           |                                     |                            |         |            |
| Alkaline-dissolving              | 3      | 1,020  | (1,130)   | 430                                 | (480)                      | 1,110   | (1,220)    |
| Alkaline-market                  | 9      | 750    | (830)     | 470                                 | (520)                      | 2,440   | (2,690     |
| Alkaline-BCT                     | 8      | 790    | (970)     | 250                                 | (280)                      | 2,280   | (2,510     |
| Alkaline-fine                    | 18     | 640    | (700)     | 55                                  | (61)                       | 4,140   | (4,570     |
| Alkaline-unbleached              | 29     | 790    | (870)     | 400                                 | (440)                      | 8,230   | (9,070)    |
| Semi-chemical                    | 19     | 410    | (460)     | 240                                 | (270)                      | 1,640   | (1,810)    |
| Alkaline-unbleached and          |        |        | , ,       |                                     | , ,                        | •       | •          |
| semi-chemical                    | 10     | 1,190  | (1,320)   | 340                                 | (370)                      | 4,300   | (4,740)    |
| Alkaline-newsprint               | 3      | 1,210  | (1,340)   | 300                                 | (330)                      | 1,310   | (1,440)    |
| Sulfite-dissolving               | 6      | 490    | (540)     | 490                                 | (540)                      | 1,070   | (1,180     |
| Sulfite-papergrade               | 18     | 320    | (360)     | 83                                  | (91)                       | 2,100   | (2,310     |
| Thermo-mechanical pulp           | 2      | 260    | (280)     | 100                                 | (Ì10)                      | 180     | (200       |
| Groundwood-CMN                   | 6      | 250    | (280)     | 74                                  | (82)                       | 540     | (590       |
| Groundwood-fine                  | 8      | 420    | (460)     | 120                                 | (140)                      | 1,210   | (1,340     |
| Secondary fiber mills            |        |        |           |                                     |                            |         |            |
| Deink-fine                       | 17     | 150    | (170)     | 52                                  | (57)                       | 930     | (1,030     |
| Deink-newsprint                  | 3      | 320    | (360)     | 240                                 | (270)                      | 350     | (390       |
| Wastepaper-tissue                | 22     | 30     | (33)      | 12_                                 | (13)<br>(140) <sup>a</sup> | 240     | (260       |
| Wastepaper-board                 | 147    | 130    | (150)     | 12 <sub>a</sub><br>130 <sup>a</sup> | $(140)^{a}$                | 7,060   | (7,780     |
| Wastepaper-molded products       | 15     | 44     | `(49)     | 5                                   | (5)                        | 240     | (260       |
| Wastepaper-construction products | 58     | 74     | (82)      | 54                                  | (60)                       | 1,550   | (1,710     |
| Nonintegrated mills              |        |        |           |                                     |                            |         |            |
| Nonintegrated-fine               | 39     | 190    | (210)     | 73                                  | (81)                       | 2,100   | (2,310     |
| Nonintegrated-tissue             | 26     | 110    | (130)     | 58                                  | (64)                       | 1,190   | (1,320     |
| Nonintegrated-lightweight        | 18     | 52     | (57)      | 19                                  | (21)                       | 320     | (350       |
| Nonintegrated-filter and         |        |        |           |                                     |                            |         |            |
| nonwoven                         | 16     | 18     | (19)      | 39                                  | (43)                       | 100     | (110       |
| Nonintegrated-paperboard         | 12     | 33     | (36)      | 20                                  | (22)                       | 160     | (180       |
| Subtotal                         | 512    |        |           |                                     |                            | 226,000 | (249,000   |
| Miscellaneous groups             | 134    |        |           |                                     |                            | 13,300  | (14,700    |
| Total                            | 646    |        |           |                                     |                            | 240,000 | (264,000   |

aEstimated.

Note: Blanks indicate not applicable.

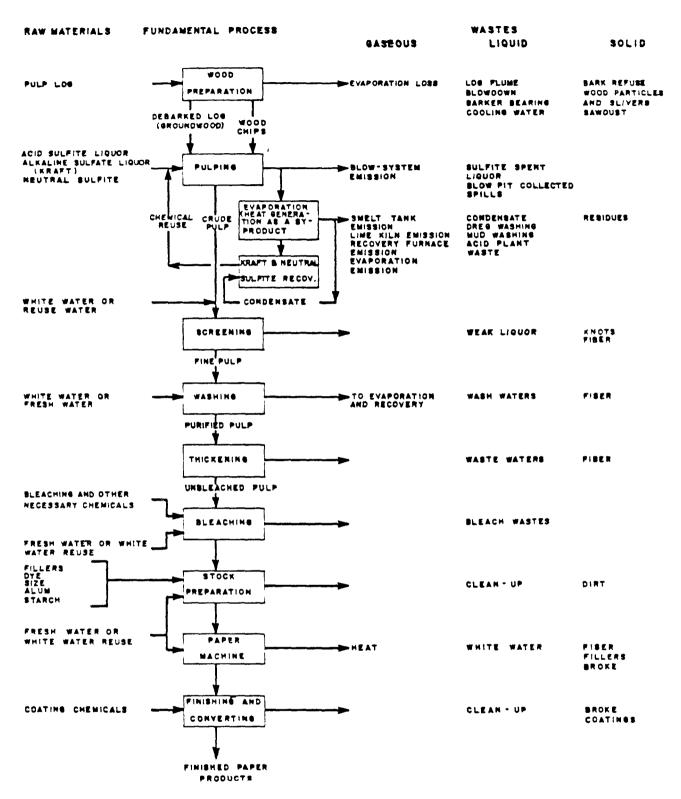



Figure 16-1. General flow sheet - pupling and papermaking [1].

A model mill was developed for each subcategory in order to present a typical operation of mills within the subcategory. The model mill was selected to serve as the basis for subsequent cost and energy evaluation. The raw waste load presented for the model mill in some subcategories is the average raw waste load of mills within the subcategory. In other cases, the model mill raw waste load may reflect an operation or set of operations that typify the subcategory but may not be the arithmetic average of the subcategory. Raw waste loads of conventional pollutants for model mills in each subcategory are presented in Table 16-5.

TABLE 16-5. SUMMARY OF MODEL MILL RAW WASTE LOADS [1]

|                           | Mode  | l mill  |                    |          | Raw wast | e load          |       |       |
|---------------------------|-------|---------|--------------------|----------|----------|-----------------|-------|-------|
|                           | 8     | ize     | F                  | OW       | BO       | DD <sub>5</sub> | TS    | SS    |
| Subcategory               | Mg/d  | (t/d)   | m <sub>3</sub> /Mg | (kgal/t) | kg/Mg    | (1b/t)          | kg/Mg | (lb/t |
| Alkalıne-dissolving       | 910   | (1,000) | 200                | (48)     | 54       | (110)           | 77    | (150) |
| Alkaline-market           | 540   | (600)   | 180                | (43)     | 42       | (83)            | 32    | (64)  |
| Alkaline-BCT              | 725   | (800)   | 150                | (36)     | 46       | (91)            | 42    | (85)  |
| Alkaline-fine             | 725   | (800)   | 110                | (26)     | 30       | (61)            | 66    | (130  |
| Alkaline-unbleached       | 910   | (1,000) | 47                 | (11)     | 14       | (28)            | 16    | (33)  |
| Semi-chemical             | 385   | (425)   | 32                 | (7.8)    | 18       | (37)            | 22    | (43)  |
| Alkaline-unbleached and   |       |         |                    | ` '      |          |                 |       |       |
| semi-chemical             | 1,360 | (1,500) | 56                 | (13)     | 19       | (37)            | 24    | (47)  |
| Alkaline-newsprint        | 1.270 | (1,400) | 94                 | (22)     | 21       | (42)            | 57    | (110) |
| Sulfite-dissolving        | 540   | (600)   | 260                | (62)     | 150      | (310)           | 90    | (180) |
| Sulfite-papergrade        | 410   | (450)   | 150                | (37)     | 49       | (97)            | 33    | (66)  |
| Thermo-mechanical pulp    | 320   | (350)   | 60                 | (14)     | 18       | (37)            | 39    | (77)  |
| Groundwood-CMN            | 540   | (600)   | 88                 | (21)     | 19       | (37)            | 48    | (97)  |
| Groundwood-fine           | 450   | (500)   | 68                 | (16)     | 18       | (35)            | 54    | (110) |
| Deink-fine and tissue     | 160   | (180)   | 81                 | (20)     | 49       | (97)            | 140   | (290) |
| Deink-newsprint           | 360   | (400)   | 68                 | (16)     | 16       | (32)            | 120   | (250) |
| Wastepaper-tissue         | 41    | (45)    | 39                 | (9.4)    | 8.8      | (18)            | 27    | (54)  |
| Wastepaper-board          | 140   | (Ì60)   | 15                 | (3.7)    | 6.5      | (13)            | 7.7   | (15)  |
| Wastepaper-molded         |       | ,       |                    | • • • •  |          | , ,             |       |       |
| products                  | 45    | (50)    | 47                 | (11)     | 5.7      | (11)            | 11    | (21)  |
| Wastepaper-construction   |       | ` ,     |                    | • ,      |          |                 |       | -     |
| products                  | 91    | (100)   | 9.2                | (2.2)    | 5.8      | (12)            | 8.2   | (16)  |
| Nonintegrated-fine        | 190   | (220)   | 48                 | (12)     | 8.5      | (17)            | 30    | (60)  |
| Nonintegrated-tissue      | 160   | (180)   | 73                 | (18)     | 13       | (26)            | 39    | (78)  |
| Nonintegrated-lightweight |       | (60)    | 270                | (64)     | 15       | (31)            | 46    | (91)  |
| Nonintegrated-filter      | 18    | (20)    | 170                | (41)     | 5        | (10)            | 25    | (50)  |
| Nonintegrated-paperboard  | 36    | (40)    | 100                | 25       | 10       | (20)            | 42    | 84    |

The pure mill concept was used to establish a basis for the development of effluent guidelines and standards which can be applied to each mill in this industry. Because most mills are combinations of complex processes and products, it is necessary to isolate distinct operations that can be found in the industry. Raw waste loads attributable to each distinct process can then be prorated to match the combination of processes that may be found at a particular mill. Pure mill raw waste loads are presented for each subcategory in Table 16-6. For some subcategories that are particularly well defined and discrete, the pure mill and model mill raw waste loads may be the same.

Table 16-7 presents the average raw waste loads for all mills sampled in each of the subcategories.

Date: 6/23/80

TABLE 16-6. SUMMARY OF "PURE MILL" RAW WASTELOADS [1]

|                                                                  |          |                  |           | ste load               |          |               |
|------------------------------------------------------------------|----------|------------------|-----------|------------------------|----------|---------------|
| Subcategory                                                      | m³/Mg    | Flow<br>(kgal/t) | kg/Mg     | OD <sub>2</sub> (1b/t) | kg/Mg    | TSS<br>(lb/t) |
| Subcategory                                                      | m /Mg    | (Agai/C)         | Kg/ Mg    | (10/ 0)                | Kg/Fig   | (10/0)        |
| Alkaline-dissolving                                              | 220      | (53)             | 65        | (130)                  | 97       | (190)         |
| Alkaline-market                                                  | 160      | (40)             | 38        | `(75)                  | 48       | (97)          |
| Alkaline-BCT                                                     | 150      | (36)             | 46        | (91)                   | 42       | (85)          |
| Alkaline-fine                                                    | 110      | (26)             | 29        | (57)                   | 53       | (110)         |
| Alkaline-unbleached                                              |          |                  |           | • •                    |          |               |
| · Linerboard                                                     | 47       | (11)             | 14        | (28)                   | 16       | (32)          |
| · Bag                                                            | 70       | (17)             | 19        | (38)                   | 21       | (41)          |
| Semi-chemical                                                    |          |                  |           |                        |          |               |
| · 80%                                                            | 32       | (7.8)            | 18        | (37)                   | 22       | (43)          |
| · 100%                                                           | 48       | (12)             | 19        | (39)                   | 38       | (77)          |
| Alkaline-unbleached and semi-chem                                | 56       | (13)             | 19        | (37)                   | 24       | (47)          |
| Alkaline-news                                                    | 94       | (22)             | 21        | (42)                   | 57       | (110)         |
| Sulfite-dissolving                                               | 270      | (64)             | 170       | (340)                  | 100      | (200)         |
| Sulfite-papergrade                                               |          |                  |           |                        |          |               |
| • 67%                                                            | 150      | (37)             | 49        | (97)                   | 33       | (66)          |
| · 100%                                                           | 200      | (49)             | 68        | (140)                  | 35       | (69)          |
| Thermo-mechanical pulp                                           | 60       | (14)             | 18        | (36)                   | 39       | (77)          |
| Groundwood-CMN · 74%                                             | 88       | (21)             | 10        | (27)                   | 4.4      | (07)          |
| . 100%                                                           | 130      | (21)             | 19        | (37)                   | 44       | (97)          |
| Groundwood-fine                                                  | 130      | (32)             | 23        | (46)                   | 78       | (160)         |
| · 59%                                                            | 68       | (16)             | 18        | (35)                   | 54       | (110)         |
| · 100%                                                           | 110      | (27)             | 19        | (37)                   | 55       | (110)         |
| Deink-fine                                                       | 110      | (2/)             | 1,5       | (37)                   | 33       | (110)         |
| · Pure tissue                                                    | 81       | (20)             | 49        | (97)                   | 140      | (290)         |
| · Pure fine                                                      | 110      | (26)             | 50        | (100)                  | 220      | (430)         |
| Deink-newsprint                                                  | 68       | (16)             | 16        | (32)                   | 120      | (250)         |
| Wastepaper tissue <sup>a</sup>                                   |          | (/               |           | (02)                   |          | (200)         |
| · 100% Industrial                                                | 57       | (14)             | 13        | (26)                   | 40       | (81)          |
| Wastepaper-board                                                 |          | •                |           | , ,                    |          | <b>, ,</b>    |
| · Board                                                          | 15       | (3.7)            | 11        | (21)                   | 9.9      | (20)          |
| · Linerboard                                                     | 28       | (6.7)            | 8.9       | (18)                   | 11       | (22)          |
| · Corrugated                                                     | 4.2      | (1.0)            | 5.3       | (11)                   | 4        | (7.9)         |
| · Chip and filler                                                | 10       | (2.4)            | 3.5       | (6.9)                  | 4.5      | (8.9)         |
| · Folding box                                                    | 16       | (3.9)            | 6.1       | (12)                   | 7.1      | (14)          |
| · Set-up box                                                     | 20       | (4.9)            | 7.3       | (15)                   | 5.7      | (11)          |
| · Gypsum                                                         | 12       | (2.8)            | 5.8       | (12)                   | 16       | (32)          |
| Wastepaper-molded productsa                                      | 52       | (13)             | 6.5       | (13)                   | 11       | (23)          |
| Wastepaper-construction products <sup>a</sup> · 100% waste paper | 16       | (2.5)            | 2.6       | (35)                   | 1.0      | (00)          |
| · 50% WP/50% TMP                                                 | 15<br>12 | (3.5)            | 7.6       | (15)                   | 19       | (39)          |
| Nonintegrated-fine                                               | 48       | (3.0)            | 14        | (28)                   | 10       | (20)          |
| Nonintegrated-tissue                                             | 73       | (12)<br>(18)     | 8.5<br>13 | (17)<br>(20)           | 30<br>39 | (60)<br>(78)  |
| Nonintegrated-lightweight                                        | 270      | (64)             | 15        | (31)                   | 39<br>46 | (78)<br>(91)  |
| · Lightweight-electrical                                         | 410      | (98)             | 12        | (23)                   | 38       | (75)          |
| Nonintegrated-filter and nonwoven                                | 170      | (41)             | 5         | (10)                   | 25       | (50)          |
| Nonintegrated                                                    | 2.0      | (41)             | •         | (10)                   | 23       | (30)          |
| · Board                                                          | 100      | (25)             | 10        | (20)                   | 42       | (84)          |
| <ul> <li>Electrical board</li> </ul>                             | 250      |                  |           | : :                    | 72       |               |
| · Electrical board                                               |          | (59)             |           | ()                     |          | ()            |

a Excludes self-contained mills.

TABLE 16-7. SUMMARY OF AVERAGE RAW WASTE LOADS FOR MILLS SAMPLED [1]

|                                  |                    |          |       | te load |       |       |
|----------------------------------|--------------------|----------|-------|---------|-------|-------|
|                                  |                    | Flow     |       | $OD_2$  |       | TSS   |
| Subcategory                      | m <sup>3</sup> /Mg | (kgal/t) | kg/Mg | (lb/t)  | kg/Mg | (lb/t |
| Alkalıne-dissolving              | 200                | (48)     | 61    | (130)   | 77    | (150) |
| Alkaline-market                  | 130                | (32)     | 33    | (65)    | 29    | (58)  |
| Alkaline-BCT                     | 150                | (36)     | 46    | (91)    | 42    | (85)  |
| Alkalıne-fine                    | 110                | (26)     | 30    | (61)    | 66    | (130) |
| Alkaline-unbleached              | 70                 | (17)     | 19    | (38)    | 28    | (57)  |
| Semi-chemical <sup>a</sup>       | 32                 | (7.8)    | 18    | (37)    | 22    | (43)  |
| Alkaline-unbleached and          |                    |          |       |         |       |       |
| semi-chemical                    | 56                 | (13)     | 19    | (37)    | 24    | (47)  |
| Alkalıne-newsprint               | 94                 | (22)     | 21    | (42)    | 57    | (110) |
| Sulfite-dissolving               | 260                | (62)     | 150   | (310)   | 90    | (181) |
| Sulfite-papergrade               | 140                | (34)     | 58    | (120)   | 46    | (91)  |
| Thermo-mechanical pulp           | 60                 | (14)     | 18    | (36)    | 39    | (77)  |
| Groundwood-CMN                   | 110                | (27)     | 19    | (39)    | 67    | (130) |
| Groundwood-fine                  | 68                 | (16)     | 18    | (35)    | 54    | (110) |
| Deink-fine and tissue            | 93                 | (22)     | 52    | (100)   | 160   | (320) |
| Deink-newsprint                  | 68                 | (16)     | 16    | (32)    | 120   | (250) |
| Wastepaper tissue                | 140                | (32)     | 36    | (72)    | 94    | (190) |
| Wastepaper-board                 | 15                 | (3.7)    | (6.5) | (13)    | 7.7   | (15)  |
| Wastepaper-molded products       | 68                 | (16)     | 7.2   | (14)    | 14    | (27)  |
| Wastepaper-construction products | 9.2                | (2.2)    | 5.8   | (12)    | 8.2   | (16)  |
| Nonintegrated-fine               | 48                 | (12)     | 8.5   | (17)    | 30    | (60)  |
| Nonintegrated-tissue             | 85                 | (20)     | 10    | (20)    | 28    | (56)  |
| Nonintegrated-lightweight        | 270                | (64)     | 15    | (31)    | 46    | (91)  |
| Nonintegrated-filter             | 170                | (41)     | 9.8   | (20)    | 39    | (78)  |
| Nonintegrated-paperboard         | 100                | (25)     | 10    | (20)    | 42    | (84)  |

amills with liquor recovery.

## II.16.2.2 Toxic and Nonconventional Pollutants

Approximately 200 organic compounds have been identified in pulp, paper, and paperboard wastewaters. Those not specified by the NRDC Consent Decree are herein considered nonconventional pollutants. A summary of verification data for toxic and nonconventional pollutants for each subcategory is presented in Tables 16-8 through 16-30. The available data do not include the subcategories alkaline-dissolving and sulfite-dissolving, but do include three miscellaneous groupings not considered subcategories: chemimechanical pulp, nonwood pulping, and nonintegrated miscellaneous.

# II.16.3 PLANT SPECIFIC DESCRIPTIONS

Limited plant specific data are presently available from Reference 1. Table 16-31 presents waste load flow,  $BOD_5$ , and TSS for selected mills within each subcategory and the subdivisions of the subcategories.

These selected mills were chosen by the approximate mid-range value of the pollutant wasteloads for the sampled plants. No data on treated wastewater for specific plants are currently available.

#### II.16.4 POLLUTANT REMOVABILITY [1]

The pulp, paper and paperboard industry employs many types of wastewater treatment systems to reduce the levels of pollutants

TABLE 16-8. ALKALINE-MARKET SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                      |                     |                      |                                  | Subcate             | gory: Alkal          | ine-market                       |                     |                      |                                  |                   |
|--------------------------------------|---------------------|----------------------|----------------------------------|---------------------|----------------------|----------------------------------|---------------------|----------------------|----------------------------------|-------------------|
|                                      |                     | Raw water            |                                  | Ae                  | ration influ         |                                  | ~                   | Final efflue         |                                  |                   |
|                                      | No. of              | No. of               | Average<br>concentra-<br>tion of | No. of              | No. of               | Average<br>concentra-<br>tion of | No. of              | No. of               | Average<br>concentra-<br>tion of |                   |
|                                      | samples<br>in which | samples<br>in which  | pollutant<br>in all              | samples<br>in which | samples<br>in which  | pollutant<br>in all              | samples<br>in which | samples<br>in which  | pollutant<br>in all              |                   |
|                                      | pollutant<br>was    | pollutant<br>was not | samples<br>analyzed,             | pollutant           | pollutant<br>was not | samples<br>analyzed,             | pollutant           | pollutant<br>was not | samples<br>analyzed,             | Percent           |
| Pollutant                            | detected            | detected             | μg/L                             | detected            | detected             | μg/L                             | detected            | detected             | μg/L                             | removal           |
| Toxic pollutants                     |                     |                      |                                  |                     |                      |                                  |                     |                      |                                  |                   |
| Metals                               |                     |                      |                                  |                     |                      |                                  |                     |                      |                                  |                   |
| Chromium                             | 2                   | 0                    | 2                                | 6                   | ٥                    | 12                               | 6                   | 0                    | 26                               | _a                |
| Copper                               | 2                   | 0                    | 22                               | 6                   | 0                    | 31                               | 6                   | 0                    | 14                               | 55                |
| Lead                                 | 2                   | 0                    | <1                               | 6                   | 0                    | 9                                | 6                   | 0                    | 10                               | 55<br>a<br>_b     |
| Mercury                              | 2                   | 0                    | <1                               | 6                   | 0                    | <1                               | 6                   | 0                    | <1                               | ~p                |
| Nickel                               | 2                   | 0                    | 3                                | 6                   | 0                    | 31                               | 6                   | 0                    | 14                               | 55                |
| Zinc                                 | 2                   | 2                    | 15                               | 6                   | 0                    | 150                              | 6                   | 0                    | 70                               | 5 <b>5</b>        |
| Phthalates<br>Bis(2-ethylhexyl)      |                     |                      |                                  |                     |                      |                                  |                     | •                    |                                  |                   |
| phthalate                            | 2                   | 0                    | 43                               | 5                   | 1                    | 11                               | 6                   | 0                    | 32                               | _a                |
| Di-n-butyl phthalate                 | 2                   | O                    | 43                               | 5                   | 1                    | 3                                | 5                   | 1                    | 8                                | _a<br>_a          |
| Diethyl phthalate                    |                     |                      |                                  | 2                   | 4                    | <1                               | •                   | •                    | Ü                                |                   |
| Phenols                              |                     |                      |                                  |                     |                      |                                  |                     |                      |                                  | _b                |
| 2,4-Dichlorophenol                   |                     |                      |                                  | 4                   | 2                    | 4                                | 4                   | 2                    | 4                                |                   |
| Phenol                               |                     |                      |                                  | 5                   | 1                    | 15                               | 5                   | 1                    | 1                                | 93                |
| 2,4,6-Trichlorophenol                |                     |                      |                                  | 5                   | 1                    | 11                               | 6                   | 0                    | 5                                | 55                |
| Monocyclic aromatics                 |                     |                      |                                  | _                   | _                    |                                  |                     |                      |                                  | _b                |
| Benzene                              |                     |                      |                                  | 1                   | 5                    | <1                               | 2                   | 4                    | <1                               | -                 |
| Ethylbenzene                         |                     |                      |                                  | 1                   | 5                    | 14                               |                     |                      |                                  |                   |
| Toluene                              |                     |                      |                                  | 3                   | 3                    | 1                                |                     |                      |                                  |                   |
| Halogenated aliphatics<br>Chloroform |                     |                      |                                  | 5                   | 1                    | 1,200                            | 6                   | 0                    | 12                               | 99                |
|                                      | 1                   | 1                    | <1                               | 3                   | 3                    | <1                               | 2                   | 4                    | <1<br><1                         | 99 <sub>-</sub> b |
| Methylene chloride                   | 1                   | 1                    | <b>\1</b>                        | 3                   | 3                    | <b>\1</b>                        | 2                   | •                    | <b>\1</b>                        | _                 |
| Nonconventional pollutants           |                     |                      |                                  |                     |                      |                                  |                     |                      |                                  |                   |
| Abietic acid                         |                     |                      |                                  | 5                   | 1                    | 180                              | 2                   | 4                    | 580                              | -3                |
| Dehydroabietic acid                  | 1                   | 1                    | 12                               | 5                   | 1                    | 220                              | 4                   | 2                    | 430                              | - م               |
| Isopimaric acid                      |                     |                      |                                  | 3                   | 3                    | 58                               | 3                   | 3                    | 200                              | _a<br>_a<br>_a    |
| Pimaric acid                         |                     |                      |                                  | 3                   | 3                    | 78                               | 3                   | 3                    | 210                              |                   |
| Oleic acıd                           |                     |                      |                                  | 5                   | 1                    | 300                              | 6                   | 0                    | 150                              | 49                |
| Linoleic acid                        |                     |                      |                                  | 5                   | 1                    | 700                              | 3                   | 3                    | 47                               | 93                |
| Linolenic acid                       |                     |                      |                                  | 1                   | 5                    | 35                               |                     |                      |                                  |                   |
| 1-Chlorodehydroabietic aci           |                     |                      |                                  | 4                   | 2                    | 50                               | 3                   | 3                    | 42                               | 16                |
| Dichlorodihydroabietic acid          | 1                   |                      |                                  | 3                   | 3                    | 29                               | 3                   | 3                    | 19                               | 34                |
| 3,4,5-Trichloroguaiacol              |                     |                      |                                  | 3                   | 3                    | 9                                |                     |                      |                                  |                   |
| Tetrachlorogua1acol                  |                     |                      |                                  | 6                   | U                    | 11                               |                     |                      |                                  |                   |

Negative removal.

b Negligible removal.

TABLE 16-9. ALKALINE-BCT SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                  |                                                               |                                                                   |                                                                                         | Subc                                                          | ategory. Al                                                       | kaline-BCT                                                       |                                                               |                                                                   |                                                                                         |                   |
|----------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------|
|                                  |                                                               | Raw water                                                         |                                                                                         |                                                               | ration influ                                                      | ent                                                              |                                                               | Pinal efflue                                                      |                                                                                         |                   |
| Pollutant                        | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>ug/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average concentration of pollutant in all samples analyzed, µg/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>µg/L | Percent<br>remova |
|                                  |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                                         |                   |
| Toxic pollutants                 |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                                         |                   |
| Metals                           | -                                                             | 0                                                                 | ,                                                                                       |                                                               | o                                                                 | 85                                                               | 9                                                             | ^                                                                 | 55                                                                                      |                   |
| Chromium                         | 3                                                             |                                                                   | 1                                                                                       | 9                                                             | 0                                                                 |                                                                  | 9                                                             | 0                                                                 | 17                                                                                      | 35                |
| Copper                           | 2                                                             | O                                                                 | 21                                                                                      |                                                               |                                                                   | 46                                                               |                                                               | 0                                                                 |                                                                                         | 62                |
| Lead                             | 3                                                             | O                                                                 | 4                                                                                       | 9                                                             | 0                                                                 | 17                                                               | 9                                                             | 0                                                                 | 18                                                                                      | Ĵь                |
| Mercury                          | 3                                                             | 0                                                                 | < 1                                                                                     | 9                                                             | 0                                                                 | [1                                                               | 9                                                             | 0                                                                 | <1                                                                                      |                   |
| Nickel                           | 3                                                             | 0                                                                 | 3                                                                                       | 9                                                             | 0                                                                 | 36                                                               | 9                                                             | 0                                                                 | 12                                                                                      | 67                |
| Zinc                             | 3                                                             | 0                                                                 | 58                                                                                      | 9                                                             | 0                                                                 | 140                                                              | 9                                                             | 0                                                                 | 110                                                                                     | 20                |
| Phthalates<br>Bis(2-ethylhexy1)  |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                                         |                   |
| phthalate                        | 1                                                             | 2                                                                 | 2                                                                                       | 8                                                             | 1                                                                 | 3                                                                | 6                                                             | 3                                                                 | 2                                                                                       | 33                |
| Di-n-butyl phthalate             | •                                                             | -                                                                 | -                                                                                       | 5                                                             | 4                                                                 | 2                                                                | 1                                                             | ē                                                                 | <1                                                                                      | 50                |
| Phenols                          |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                                         |                   |
| 2,4-Dichlorophenol               |                                                               |                                                                   |                                                                                         | 4                                                             | 5                                                                 | ı                                                                | 2                                                             | 7                                                                 | <1                                                                                      | _b                |
| Pentachlorophenol                |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 6                                                                | 3                                                             | 6                                                                 | 6                                                                                       | _b                |
| Phenol                           | 1                                                             | 2                                                                 | <1                                                                                      | 9                                                             | o                                                                 | 55                                                               | 4                                                             | 5                                                                 | 5                                                                                       | 91                |
| 2,4,6-Trichlorophenol            | •                                                             | 2                                                                 | `•                                                                                      | é                                                             | i                                                                 | 8                                                                | i                                                             | 8                                                                 | <1                                                                                      | 88                |
| Monocyclic aromatics             |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                                         |                   |
| Benzene                          | 1                                                             | 2                                                                 | <1                                                                                      |                                                               |                                                                   |                                                                  | 1                                                             | 8                                                                 | <1                                                                                      |                   |
| Ethy lbenzene                    |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  | 1                                                             | 8                                                                 | <1                                                                                      |                   |
| Toluene                          |                                                               |                                                                   |                                                                                         | 6                                                             | 3                                                                 | 1                                                                |                                                               |                                                                   |                                                                                         |                   |
| Polycyclic aromatic Hydrocarbons |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                                         |                   |
| Anthracene                       |                                                               |                                                                   |                                                                                         | 1                                                             | 8                                                                 | <1                                                               |                                                               |                                                                   |                                                                                         |                   |
|                                  |                                                               |                                                                   |                                                                                         | •                                                             | 0                                                                 | `1                                                               |                                                               |                                                                   |                                                                                         |                   |
| Halogenated aliphatics           |                                                               |                                                                   |                                                                                         | _                                                             | _                                                                 |                                                                  | _                                                             | _                                                                 | _                                                                                       |                   |
| Chloroform                       |                                                               |                                                                   |                                                                                         | 9                                                             | o                                                                 | 1,550                                                            | 8                                                             | 1                                                                 | 6                                                                                       | 99 <sub>b</sub>   |
| Methylene chloride               | 1                                                             | 2                                                                 | 1                                                                                       | 7                                                             | 2                                                                 | 2                                                                | 5                                                             | 4                                                                 | 2                                                                                       |                   |
| Tetrachloroethylene              |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | <1                                                               |                                                               |                                                                   |                                                                                         |                   |
| Trichloroethylene                |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | <1                                                               |                                                               |                                                                   |                                                                                         |                   |
| Nonconventional pollutants       |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                                         |                   |
| Abietic acid                     |                                                               |                                                                   |                                                                                         | 7                                                             | 2                                                                 | 1,040                                                            | 7                                                             | 2                                                                 | 120                                                                                     | 86                |
| Dehydroabietic acid              |                                                               |                                                                   |                                                                                         | 8                                                             | 1                                                                 | 740                                                              | 9                                                             | 0                                                                 | 120                                                                                     | 83                |
| Isopimaric acid                  |                                                               |                                                                   |                                                                                         | 7                                                             | 2                                                                 | 96                                                               | 7                                                             | 2                                                                 | 21                                                                                      | 78                |
| Pimaric acid                     |                                                               |                                                                   |                                                                                         | 7                                                             | 2                                                                 | 110                                                              | 6                                                             | 3                                                                 | 22                                                                                      | 81                |
| Oleic acid                       |                                                               |                                                                   |                                                                                         | 7                                                             | 2                                                                 | 1.080                                                            | -                                                             | -                                                                 |                                                                                         |                   |
| Linoleic acid                    |                                                               |                                                                   |                                                                                         | 6                                                             | 3                                                                 | 510                                                              |                                                               |                                                                   |                                                                                         |                   |
| 1-Chlorodehydroabietic aci       | d                                                             |                                                                   |                                                                                         | 5                                                             | 4                                                                 | 52                                                               | 3                                                             | 6                                                                 | 6                                                                                       | 88                |
|                                  |                                                               |                                                                   |                                                                                         | 2                                                             | 7                                                                 | 2                                                                | 1                                                             | 8                                                                 | <1                                                                                      | 50                |
| Dichlorodihydroabietic aci       | a                                                             |                                                                   |                                                                                         | 1                                                             |                                                                   | <1                                                               | 1                                                             | 8                                                                 | ~1                                                                                      | 30                |
| 3,4,5-Trichloroguaiacol          |                                                               |                                                                   |                                                                                         |                                                               | 8                                                                 |                                                                  |                                                               | _                                                                 |                                                                                         | 110               |
| Tetrachlorogualacol              |                                                               |                                                                   |                                                                                         | 6                                                             | 3                                                                 | 5                                                                | 1                                                             | 8                                                                 | <1                                                                                      | 80                |

<sup>&</sup>lt;sup>a</sup>Negative removal.

Negligible removal

TABLE 16-10. ALKALINE-UNBLEACHED SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                               |                                 |                                     |                                               |                                 |                                     | ine-unbleache                                 |                               |                               |                                                         |                    |
|---------------------------------------------------------------|---------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------------|-----------------------------------------------|-------------------------------|-------------------------------|---------------------------------------------------------|--------------------|
|                                                               |                                 | Raw water                           |                                               | Ae                              | ration_influ                        |                                               |                               | Final efflue                  |                                                         |                    |
|                                                               | No. of samples                  | No. of samples                      | Average<br>concentra-<br>tion of<br>pollutant | No. of samples                  | No. of samples                      | Average<br>concentra-<br>tion of<br>pollutant | No. of<br>samples<br>in which | No. of<br>samples<br>in which | Average<br>concentra-<br>tion of<br>pollutant<br>in all |                    |
| Pollutant                                                     | in which pollutant was detected | in which pollutant was not detected | in all<br>samples<br>analyzed,<br>µg/L        | in which pollutant was detected | in which pollutant was not detected | in all<br>samples<br>analyzed,<br>ug/L        | pollutant was detected        | pollutant was not detected    | samples<br>analyzed,<br>pg/L                            | Percent<br>removal |
| Toxic pollutants                                              |                                 |                                     |                                               |                                 |                                     |                                               |                               |                               |                                                         |                    |
| Metals                                                        |                                 |                                     |                                               |                                 |                                     |                                               |                               |                               |                                                         |                    |
| Chromium                                                      | 3                               | 0                                   | 7                                             | 8                               | 1                                   | 14                                            | 6                             | 0                             | 12                                                      | 14                 |
| Copper                                                        | 3                               | 0                                   | 4                                             | 9                               | 0                                   | 19                                            | 6                             | 0                             | 9                                                       | 53 <sub>a</sub>    |
| Lead                                                          | 3                               | 0                                   | 21                                            | 9                               | 0                                   | 14                                            | 6                             | 0                             | 16                                                      | <u>_</u> _p        |
| Mercury                                                       | 3                               | 0                                   | <1                                            | 9                               | 0                                   | <1                                            | 6                             | 0                             | <1                                                      |                    |
| Nickel                                                        | 3                               | 0                                   | 7                                             | 9                               | 0                                   | 6                                             | 6                             | 0                             | 5                                                       | 16                 |
| Zinc                                                          | 3                               | 0                                   | 14                                            | 9                               | 0                                   | 110                                           | 6                             | 0                             | 81                                                      | 30                 |
| Phthalates Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate | 1                               | 2                                   | <1                                            | 5<br>2                          | <b>4</b><br>7                       | 18<br>8                                       | 1                             | 5                             | <1                                                      | 94                 |
| Di-n-butyl phthalate                                          |                                 |                                     |                                               | 4                               | 5                                   | 2                                             | 3                             | 0                             | $\mathbf{1^b}$                                          | 50                 |
| Phenols<br>Phenol                                             | 2                               | 1                                   | <1                                            | 9                               | 0                                   | 85                                            | 3                             | 0                             | 3 <sup>b</sup>                                          | 96                 |
| Monocyclic aromatics<br>Benzene<br>Ethylbenzene<br>Toluene    |                                 |                                     |                                               | 1<br>3<br>7                     | 8<br>6<br>2                         | <1<br><1<br>4                                 | 2                             | 4                             | <1                                                      | . <b>_b</b>        |
| Halogenated aliphatics                                        |                                 |                                     |                                               |                                 |                                     |                                               |                               |                               |                                                         |                    |
| Chloroform                                                    |                                 |                                     |                                               | 3                               | 6                                   | <1                                            |                               |                               |                                                         |                    |
| Methylene chloride                                            | 1                               | 2                                   | 3                                             | 7                               | 2                                   | 34                                            | 5                             | 1                             | 4                                                       | 88                 |
| Tetrachloroethylene                                           |                                 |                                     |                                               | 2                               | 7                                   | <1                                            |                               |                               |                                                         |                    |
| Nonconventional pollutants                                    |                                 |                                     |                                               |                                 |                                     |                                               |                               |                               |                                                         |                    |
| Abietic acid Dehydroabietic acid                              |                                 |                                     |                                               | 9<br>9                          | 0                                   | 2,030<br>740                                  | 6<br>6                        | 0<br>0                        | 120<br>52                                               | 94<br>93           |
| Isopimaric acid                                               |                                 |                                     |                                               | 9                               | 0                                   | 330                                           | 3                             | 3                             | 15                                                      | 95                 |
| Pimaric acid                                                  |                                 |                                     |                                               | 9                               | 0                                   | 320                                           | 4                             | 2                             | 17                                                      | 95                 |
| Oleic acid                                                    |                                 |                                     |                                               | 9                               | 0                                   | 1,070                                         | 6                             | 0                             | 110                                                     | 90                 |
| Linoleic acid                                                 |                                 |                                     |                                               | 9                               | 0                                   | 450                                           |                               |                               |                                                         |                    |
| Linolenic acid                                                |                                 |                                     |                                               | 3                               | 6                                   | 170                                           |                               |                               |                                                         |                    |
| Dichlorodehydroabietic                                        |                                 |                                     |                                               | 1                               | 8                                   | <1                                            |                               |                               |                                                         |                    |
| acid                                                          |                                 |                                     |                                               | 6                               | 3                                   | 14                                            |                               |                               |                                                         |                    |
| Xylenes                                                       |                                 |                                     |                                               | Ü                               | 3                                   | 14                                            |                               |                               |                                                         |                    |

a Negative removal.

b Negligible removal.

TABLE 16-11. ALKALINE-FINE SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                          |                                                   |                                                       |                                                                      |                                                   | gory: Alkal                                           |                                                                      |                                                   | 5() -65)                                              |                                                                      |                 |
|----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|-----------------|
|                                                          |                                                   | Raw water                                             | Average                                                              | Ae                                                | ration influ                                          | Average                                                              |                                                   | Final efflue                                          | Average                                                              |                 |
| - 11 - 1                                                 | No. of<br>samples<br>in which<br>pollutant<br>was | No. of<br>samples<br>in which<br>pollutant<br>was not | concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed, | No. of<br>samples<br>in which<br>pollutant<br>was | No. of<br>samples<br>in which<br>pollutant<br>was not | concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed, | No. of<br>samples<br>in which<br>pollutant<br>was | No. of<br>samples<br>in which<br>pollutant<br>was not | concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed, | Percent         |
| Pollutant                                                | detected                                          | detected                                              | pg/L                                                                 | detected                                          | detected                                              | μg/L                                                                 | detected                                          | detected                                              | µg/L                                                                 | removal         |
| Toxic pollutants                                         |                                                   |                                                       |                                                                      |                                                   |                                                       |                                                                      |                                                   |                                                       |                                                                      |                 |
| Metals                                                   |                                                   |                                                       |                                                                      |                                                   |                                                       |                                                                      |                                                   |                                                       |                                                                      |                 |
| Chromium                                                 | 3                                                 | 0                                                     | 2                                                                    | 9                                                 | 0                                                     | 26                                                                   | 9                                                 | 0                                                     | 7                                                                    | 74              |
| Copper                                                   | 3                                                 | 0                                                     | 6                                                                    | 9                                                 | 0                                                     | 22                                                                   | 9                                                 | 0                                                     | 8                                                                    | 64 <sub>a</sub> |
| Lead                                                     | 3                                                 | 0                                                     | 3                                                                    | 9                                                 | 0                                                     | 6                                                                    | 9                                                 | 0                                                     | 6                                                                    | _a              |
| Mercury                                                  | 3                                                 | 0                                                     | <1                                                                   | 9                                                 | 0                                                     | <1                                                                   | 9                                                 | 0                                                     | <1                                                                   |                 |
| Nickel                                                   | 3                                                 | 0                                                     | 2                                                                    | 9                                                 | 0                                                     | 16                                                                   | 9                                                 | 0                                                     | 8                                                                    | 50              |
| Zinc                                                     | 3                                                 | 0                                                     | 19                                                                   | 9                                                 | 0                                                     | 150                                                                  | 9                                                 | o                                                     | 71                                                                   | 52              |
| Phthalates<br>Bis(2-ethylhexyl)                          |                                                   |                                                       |                                                                      |                                                   |                                                       |                                                                      | _                                                 |                                                       |                                                                      |                 |
| phthalate                                                | 2                                                 | 1                                                     | 4                                                                    | 7                                                 | 2                                                     | 28                                                                   | 6                                                 | 3                                                     | 16                                                                   | 43 <sub>a</sub> |
| Di-n-butyl phthalate                                     |                                                   |                                                       |                                                                      | 2                                                 | 7<br>8                                                | <1<br><1                                                             | 1                                                 | 8                                                     | <1                                                                   | -               |
| Diethyl phthalate                                        |                                                   |                                                       |                                                                      | 1                                                 | 8                                                     | <1                                                                   |                                                   |                                                       |                                                                      |                 |
| Phenols                                                  |                                                   |                                                       |                                                                      |                                                   | _                                                     | _                                                                    | _                                                 | _                                                     |                                                                      | _a              |
| 2,4-Dichlorophenol                                       | 1                                                 | 2                                                     | 2                                                                    | 2                                                 | 7                                                     | <1                                                                   | 1                                                 | 8                                                     | <1                                                                   |                 |
| Pentachlorophenol                                        |                                                   |                                                       |                                                                      | 3                                                 | 6                                                     | 3                                                                    | 1                                                 | 2                                                     | 2                                                                    | 33              |
| Phenol                                                   |                                                   |                                                       |                                                                      | 6                                                 | 3                                                     | 7                                                                    | 2                                                 | 7                                                     | <1                                                                   | 86              |
| 2,4,6-Trichlorophenol                                    |                                                   |                                                       |                                                                      | 9                                                 | 0                                                     | 11                                                                   | 7                                                 | 2                                                     | 3                                                                    | 73              |
| Monocyclic aromatics                                     |                                                   |                                                       |                                                                      |                                                   |                                                       |                                                                      |                                                   |                                                       |                                                                      |                 |
| Toluene                                                  |                                                   |                                                       |                                                                      | 8                                                 | 1                                                     | 23                                                                   |                                                   |                                                       |                                                                      |                 |
| Halogenated aliphatics                                   |                                                   |                                                       |                                                                      |                                                   |                                                       |                                                                      |                                                   |                                                       |                                                                      |                 |
| Chloroform                                               |                                                   |                                                       |                                                                      | 6                                                 | 3                                                     | 780                                                                  | 9                                                 | 0                                                     | 52                                                                   | 93              |
| Dichlorobromomethane                                     |                                                   |                                                       |                                                                      | 2                                                 | 7                                                     | 4                                                                    |                                                   |                                                       |                                                                      |                 |
| Methylene chloride                                       | 1                                                 | 2                                                     | 2                                                                    | 3                                                 | 6                                                     | <1                                                                   | 2                                                 | 7                                                     | <1                                                                   | _a              |
| Tetrachloroethylene                                      |                                                   |                                                       |                                                                      | 1                                                 | 8                                                     | <1                                                                   |                                                   |                                                       |                                                                      |                 |
| 1,1,1-Trichloroethane                                    |                                                   |                                                       |                                                                      | 1                                                 | 8                                                     | 8                                                                    |                                                   |                                                       |                                                                      |                 |
|                                                          |                                                   |                                                       |                                                                      | •                                                 | ŭ                                                     | ·                                                                    |                                                   |                                                       |                                                                      |                 |
| Nonconventional pollutants                               |                                                   |                                                       |                                                                      |                                                   |                                                       |                                                                      |                                                   |                                                       |                                                                      |                 |
| Abietic acid                                             |                                                   |                                                       |                                                                      | 4                                                 | 5                                                     | 190                                                                  | _                                                 | _                                                     |                                                                      |                 |
| Dehydroabietic acid                                      |                                                   |                                                       |                                                                      | 6                                                 | 3                                                     | 180                                                                  | 1                                                 | 8                                                     | 1                                                                    | 99              |
| Isopimaric acid                                          |                                                   |                                                       |                                                                      | 6                                                 | 3                                                     |                                                                      | 4                                                 | 5                                                     | 3                                                                    | 99              |
| Pimaric acid                                             |                                                   |                                                       |                                                                      | 6                                                 | 3                                                     | 48<br>40                                                             |                                                   |                                                       |                                                                      |                 |
| Oleic acid                                               |                                                   |                                                       |                                                                      | 3                                                 | 6                                                     | 180                                                                  | 2                                                 | _                                                     |                                                                      |                 |
| Linoleic acid                                            |                                                   |                                                       |                                                                      | 3                                                 | 6                                                     | 94                                                                   | 2<br>1                                            | 7<br>8                                                | 18                                                                   | 90              |
| 9,10-Epoxystearic acid<br>Dichlorodehydroabietic<br>acid | 1                                                 | 2                                                     | 37                                                                   |                                                   |                                                       | <b>7</b> •                                                           | 1                                                 | ਬ                                                     | 10                                                                   | 89              |
| 3,4,5-Trichloroquaiacol                                  | 1                                                 | -                                                     |                                                                      | 2                                                 | 7                                                     | 4                                                                    |                                                   |                                                       |                                                                      |                 |
| Tetrachloroguaiacol                                      | 1                                                 | 2<br>2                                                | 4                                                                    | 4                                                 | 5                                                     | 2                                                                    | 1                                                 | 8                                                     | <1                                                                   | 50              |
| Xylenes                                                  | 1                                                 | 2                                                     | 8                                                                    | 7                                                 | 2                                                     | 6                                                                    | 3                                                 | 6                                                     | 2                                                                    | 67              |
| -,-                                                      |                                                   |                                                       |                                                                      | 2                                                 | 7                                                     | 1                                                                    |                                                   |                                                       |                                                                      |                 |

<sup>&</sup>lt;sup>a</sup>Negligible removal.

SEMI-CHEMICAL SUBCATEGORY - SUMMARY OF VERIFICATION TABLE 16-12. DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

| of tillings - shirtless and Taxanian and Taxanian                                   |                                                               | Raw water                                                         |                                                                  |                                                               | gory: Semi-<br>ration influ                                       |                                                                       |                                                               | Final efflue                                                      | nt                                                               |                    |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|--------------------|
| Pollutant                                                                           | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average concentration of pollutant in all samples analyzed, pg/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average concentra-<br>tion of pollutant in all samples analyzed, pg/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average concentration of pollutant in all samples analyzed, µg/L | Percent<br>removal |
| Politicant                                                                          | Derected                                                      | Detected                                                          | pg/ L                                                            | detected                                                      | accected                                                          | pg/ 2                                                                 | uc rection                                                    |                                                                   | - F2/                                                            | 10,110,141         |
| Toxic pollutants                                                                    |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                       |                                                               |                                                                   |                                                                  |                    |
| Metals                                                                              |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                       |                                                               |                                                                   |                                                                  |                    |
| Chromlum                                                                            | 2                                                             | 0                                                                 | 2                                                                | 6                                                             | 0                                                                 | 29                                                                    | 6                                                             | 0                                                                 | 19                                                               | 35                 |
| Copper                                                                              | 2                                                             | 0                                                                 | 4                                                                | 6                                                             | 0                                                                 | 79                                                                    | 6                                                             | 0                                                                 | 25                                                               | 68 <sub>a</sub>    |
| Cyanide                                                                             | 3                                                             | O                                                                 | 9                                                                | 3                                                             | 0                                                                 | 9                                                                     | 3                                                             | 0                                                                 | 9                                                                | _                  |
| Lead                                                                                | 3                                                             | 0                                                                 | 4                                                                | 6                                                             | 0                                                                 | 95                                                                    | 6                                                             | 0                                                                 | 35                                                               | 63 <sub>a</sub>    |
| Mercury                                                                             | 1                                                             | 1                                                                 | <1                                                               | ь                                                             | 0                                                                 | ~1                                                                    | 6                                                             | 0                                                                 | <1                                                               |                    |
| Nickel                                                                              | 2                                                             | U                                                                 | 3                                                                | 6                                                             | 0                                                                 | 12                                                                    | 6                                                             | 0                                                                 | 10                                                               | 17                 |
| Zinc                                                                                | 2                                                             | 0                                                                 | 2                                                                | 6                                                             | 0                                                                 | 143                                                                   | 6                                                             | 0                                                                 | 61                                                               | 58                 |
| Phthalates Bis (2-ethylhexyl) phthalate Butyl benzyl phthalate Di-n-butyl phthalate | 1                                                             | 1                                                                 | 11                                                               | 5<br>1<br>6                                                   | 1 5 0                                                             | 21<br><1<br>4                                                         | 6                                                             | 0                                                                 | 14                                                               | 29                 |
|                                                                                     |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                       |                                                               |                                                                   |                                                                  |                    |
| Phenols Pentachlorophenol Phenol                                                    | 1                                                             | 1                                                                 | 2                                                                | 1                                                             | 5<br>0                                                            | <1<br>230                                                             | 1<br>6                                                        | 5<br>0                                                            | <1<br>14                                                         | _a<br>9 <b>4</b>   |
| Monocyclic aromatics                                                                |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                       |                                                               |                                                                   |                                                                  |                    |
| Benzene                                                                             |                                                               |                                                                   |                                                                  | 3                                                             | 3                                                                 | 3                                                                     | 2                                                             | 4                                                                 | <1                                                               | 67 <sub>a</sub>    |
| Ethylbenzene                                                                        |                                                               |                                                                   |                                                                  | 2                                                             | 4                                                                 | <1                                                                    | 2                                                             | 4                                                                 | <1                                                               | _a                 |
| Toluene                                                                             |                                                               |                                                                   |                                                                  | 3                                                             | 3                                                                 | 2                                                                     | 3                                                             | 3                                                                 | 1                                                                | 50                 |
| Polycyclic aromatic<br>hydrocarbons<br>Naphthalene                                  |                                                               |                                                                   |                                                                  | 2                                                             | 4                                                                 | 2                                                                     |                                                               |                                                                   |                                                                  |                    |
| Halogenated aliphatics                                                              |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                       |                                                               |                                                                   |                                                                  |                    |
| Chloroform                                                                          |                                                               |                                                                   |                                                                  | 3                                                             | 3                                                                 | 1                                                                     |                                                               |                                                                   |                                                                  |                    |
| Methylene chloride                                                                  |                                                               |                                                                   |                                                                  | 4                                                             | 2                                                                 | 6                                                                     | 6                                                             | 0                                                                 | 5                                                                | 16                 |
| Trichloroethylene                                                                   |                                                               |                                                                   |                                                                  | 3                                                             | 3                                                                 | 5                                                                     |                                                               |                                                                   |                                                                  |                    |
| Nonconventional pollutants                                                          |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                       |                                                               |                                                                   |                                                                  |                    |
|                                                                                     |                                                               |                                                                   |                                                                  | _                                                             |                                                                   | 120                                                                   | 2                                                             | 2                                                                 | 19                                                               | 85                 |
| Abietic acid                                                                        |                                                               |                                                                   |                                                                  | 3                                                             | 3                                                                 | 130                                                                   | 3                                                             | 3<br>2                                                            |                                                                  | 92                 |
| Dehydroabietic acid                                                                 |                                                               |                                                                   |                                                                  | 6                                                             | 0                                                                 | 170                                                                   | 4 3                                                           | 3                                                                 | 14                                                               | 79                 |
| Isopimaric acid                                                                     |                                                               |                                                                   |                                                                  | 6                                                             | 0                                                                 | 34                                                                    |                                                               | 5                                                                 | 2                                                                | 93                 |
| Pimaric acid                                                                        |                                                               |                                                                   |                                                                  | 3                                                             | 3                                                                 | 27<br>120                                                             | 1                                                             | 5                                                                 |                                                                  | 95<br>95           |
| Oleic acid                                                                          |                                                               |                                                                   |                                                                  | 6                                                             | 0                                                                 |                                                                       | 1                                                             | 4                                                                 | 6<br>4                                                           | 93                 |
| Linoleic acid                                                                       |                                                               |                                                                   |                                                                  | 3                                                             | 3                                                                 | 61                                                                    | 2                                                             | 4                                                                 | 4                                                                | 93                 |
| Linolenic acid<br>1-Chlorodehydroabietic                                            |                                                               |                                                                   |                                                                  | 3                                                             | 3<br><b>4</b>                                                     | 49                                                                    |                                                               |                                                                   |                                                                  |                    |
| acid<br>Dichlorodehydroabietic                                                      |                                                               |                                                                   |                                                                  | 2                                                             | •                                                                 | •                                                                     |                                                               |                                                                   |                                                                  |                    |
| acid                                                                                |                                                               |                                                                   |                                                                  | 2                                                             | 4                                                                 | 7                                                                     |                                                               |                                                                   |                                                                  |                    |
| Xylenes                                                                             |                                                               |                                                                   |                                                                  | 2                                                             | 4                                                                 | <1                                                                    | 3                                                             | 3                                                                 | <1                                                               | _a                 |

Negligible removal.

TABLE 16-13. ALKALINE UNBLEACHED AND SEMI-CHEMICAL SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCON-VENTIONAL POLLUTANT CONCENTRATION [1]

|                                                    |                              |                                  | Subcat                           |                              |                                  | hed and semi-                    |                              |                                  |                                  |                    |
|----------------------------------------------------|------------------------------|----------------------------------|----------------------------------|------------------------------|----------------------------------|----------------------------------|------------------------------|----------------------------------|----------------------------------|--------------------|
|                                                    |                              | Raw water                        |                                  | Дe                           | ration influ                     |                                  |                              | Final efflue                     |                                  |                    |
|                                                    | No. of                       | No. of                           | Average<br>concentra-<br>tion of | No. of                       | No. of                           | Average<br>concentra-<br>tion of | No. of                       | No. of                           | Average<br>concentra-<br>tion of |                    |
|                                                    | samples<br>in which          | samples<br>in which              | pollutant<br>in all              | samples<br>in which          | samples<br>in which              | pollutant<br>in all              | samples<br>in Which          | samples<br>in which              | pollutant<br>in all              |                    |
|                                                    | pollutant<br>was<br>detected | pollutant<br>was not<br>detected | samples<br>analyzed,<br>µg/L     | pollutant<br>was<br>detected | pollutant<br>was not<br>detected | samples<br>analyzed,<br>µg/L     | pollutant<br>was<br>detected | pollutant<br>was not<br>detected | samples<br>analyzed,<br>ug/L     | Percent<br>removal |
| Toxic pollutants                                   |                              |                                  |                                  |                              |                                  |                                  |                              |                                  |                                  |                    |
| Metals                                             |                              |                                  |                                  |                              |                                  |                                  |                              |                                  |                                  |                    |
| Chromium                                           | 2                            | 0                                | 2                                | 6                            | 0                                | 29                               | 6                            | 0                                | 19                               | 35                 |
| Copper                                             | 2                            | 0                                | 8                                | 6                            | 0                                | 38                               | 6                            | ō                                | 15                               | 61                 |
| Cyanide                                            | 6                            | 0                                | 10                               | 6                            | 0                                | 16                               | 6                            | ō                                | 10                               | 38                 |
| Lead                                               | 2                            | ō                                | 2                                | 6                            | ō                                | 24                               | 6                            | Ö                                | 13                               | 46                 |
| Mercury                                            | 2                            | 0                                | <1                               | 6                            | Ö                                | <1                               | 6                            | Ö                                | <1                               | 46 <sub>a</sub>    |
| Nickel                                             | 2                            | Ö                                | 2                                | 6                            | Ö                                | 10                               | 6                            | Ö                                | 5                                | 50                 |
| Zinc                                               | 2                            | Ö                                | 6                                | 6                            | Ö                                | 40                               | 6                            | Ö                                | 25                               | 38                 |
| nhahalat                                           |                              | -                                | -                                | -                            | -                                |                                  | -                            | _                                |                                  |                    |
| Phthalates Bis(2-ethylhexyl)                       |                              |                                  |                                  | _                            |                                  |                                  | _                            | _                                |                                  | _a                 |
| phthalate                                          |                              |                                  |                                  | 5                            | 1                                | 10                               | 5                            | 1                                | 10                               | <b>-</b> -         |
| Di-n-butyl phthalate<br>Diethylphthalate           |                              |                                  |                                  | <b>4</b><br>2                | 2<br>4                           | 5<br>7                           |                              |                                  |                                  |                    |
| Phenols                                            |                              |                                  |                                  |                              |                                  |                                  |                              |                                  |                                  |                    |
| Pentachlorophenol                                  |                              |                                  |                                  | 1                            | 5                                | 1                                |                              |                                  |                                  |                    |
| Phenol                                             |                              |                                  |                                  | 6                            | 0                                | 56                               |                              |                                  |                                  |                    |
| Manager 11 - 1 - 1 - 1 - 1                         |                              |                                  |                                  |                              |                                  |                                  |                              |                                  |                                  |                    |
| Monocyclic aromatics                               |                              |                                  |                                  | -                            | •                                | •                                |                              |                                  |                                  |                    |
| Benzene                                            |                              |                                  |                                  | 3<br>3                       | 3<br>3                           | 2                                |                              |                                  |                                  |                    |
| Toluene                                            |                              |                                  |                                  | 3                            | ,                                | 1                                |                              |                                  |                                  |                    |
| Polychlorinated biphenyls<br>and related compounds |                              |                                  |                                  |                              |                                  |                                  |                              |                                  |                                  |                    |
| Aroclor 1232                                       | 1                            | 1                                | <1                               |                              |                                  |                                  |                              |                                  |                                  |                    |
| Aroclor 1254                                       | 2                            | 0                                | 2                                | 3                            | 3                                | <1                               | 4                            | 2                                | 2                                | _p                 |
| Halogenated aliphatics                             |                              |                                  |                                  |                              |                                  |                                  |                              |                                  |                                  |                    |
| Chloroform                                         | 1                            | 1                                | <1                               | 2                            | 4                                | 1                                |                              |                                  |                                  |                    |
| Methylene chloride                                 | ĩ                            | ĩ                                | 3                                | 3                            | 3                                | 58                               | 1                            | 5                                | 13                               | 78                 |
| 1,1,1-Trichloroethane                              | -                            | •                                | •                                | 3                            | 3                                | 3                                | •                            | ,                                | 13                               | 70                 |
| Trichloroethylene                                  |                              |                                  |                                  | 2                            | 4                                | <1                               |                              |                                  |                                  |                    |
|                                                    |                              |                                  |                                  | -                            | •                                |                                  |                              |                                  |                                  |                    |
| Nonconventional pollutants                         |                              |                                  |                                  |                              |                                  |                                  |                              |                                  |                                  |                    |
| Abietic acid                                       | 1                            | 1                                | 24                               | 6                            | 0                                | 1,400                            | 6                            | 0                                | 710                              | 50                 |
| Dehydroabietic acid                                | 1                            | 1                                | 9                                | 6                            | 0                                | 610                              | 6                            | 0                                | 230                              | 61                 |
| Isopimarıc acid                                    |                              |                                  |                                  | 6                            | 0                                | 550                              | 6                            | 0                                | 190                              | <b>6</b> 6         |
| Pimaric acid                                       |                              |                                  |                                  | 6                            | 0                                | 150                              | 6                            | 0                                | 95                               | 38                 |
| Oleic acid                                         |                              |                                  |                                  | 6                            | 0                                | 620                              | 6                            | 0                                | 410                              | 34                 |
| Linoleic acid                                      |                              |                                  |                                  | 6                            | 0                                | 440                              | 3                            | 3                                | 5 <b>9</b>                       | 86                 |
| 9,10-Epoxystearic acid                             |                              |                                  |                                  | 3                            | 3                                | 130                              | 2                            | 4                                | 57                               | 57                 |
| Xylenes                                            |                              |                                  |                                  | 3                            | 3                                | 11                               |                              |                                  |                                  |                    |

a Negligible removal.

Negative removal.

TABLE 16-14. SULFITE PAPERGRADE SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                 |                                                               | Raw water                                                         |                                                                                         | Subcatego<br><b>Ae</b>                                        | ry: Sulfite                                                       | papergrade<br>ent                                                               |                                                               | Final efflue                                                      | nt                                                                              |                    |
|---------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------|
| Pollutant                       | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>pg/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed, | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed, | Percent<br>removal |
|                                 | dececced                                                      | detected                                                          | рд/г                                                                                    | detected                                                      | detected                                                          | µg/L                                                                            | detected                                                      | detected                                                          | μg/L                                                                            | remova             |
| Toxic pollutants                |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                 |                                                               |                                                                   |                                                                                 |                    |
| Metals                          |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                 |                                                               |                                                                   |                                                                                 |                    |
| Chromium                        | 4                                                             | 0                                                                 | 6                                                                                       | 7                                                             | 2                                                                 | 13                                                                              | 9                                                             | 3                                                                 | 7                                                                               | 46                 |
| Copper                          | 4                                                             | 0                                                                 | 15                                                                                      | 7                                                             | 2                                                                 | 81                                                                              | 9                                                             | 3                                                                 | 29                                                                              | 64                 |
| Lead                            | 4                                                             | 0                                                                 | 5                                                                                       | 7                                                             | 2                                                                 | 13                                                                              | 9                                                             | 3                                                                 | 10                                                                              | 23 <sub>a</sub>    |
| Mercury                         | 4                                                             | 0                                                                 | <1                                                                                      | 9                                                             | 0                                                                 | <1                                                                              | 12                                                            | 0                                                                 | <1                                                                              | _a                 |
| Nickel                          | 4                                                             | 0                                                                 | 3                                                                                       | 7                                                             | 2                                                                 | 16                                                                              | 9                                                             | 3                                                                 | 6                                                                               | 63 <sub>b</sub>    |
| Zinc                            | 4                                                             | 0                                                                 | 26                                                                                      | 9                                                             | 0                                                                 | 91                                                                              | 12                                                            | ō                                                                 | 120                                                                             | _p                 |
|                                 | -                                                             | •                                                                 | •••                                                                                     | •                                                             | Ü                                                                 | 7.                                                                              |                                                               | Ü                                                                 | 1.0                                                                             |                    |
| Phthalates<br>Bis(2-ethylhexyl) |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                 |                                                               |                                                                   |                                                                                 |                    |
|                                 | 2                                                             | 2                                                                 |                                                                                         | 7                                                             | 2                                                                 | 20                                                                              |                                                               |                                                                   | 23                                                                              | 45                 |
| phthalate                       | 2                                                             | 2                                                                 | 66                                                                                      |                                                               |                                                                   | 38                                                                              | 11                                                            | 1                                                                 | 21                                                                              | 45                 |
| Di-n-butyl phthalate            |                                                               |                                                                   |                                                                                         | 1                                                             | 8                                                                 | <1                                                                              | _                                                             |                                                                   | _                                                                               | _b                 |
| Diethyl phthalate               |                                                               |                                                                   |                                                                                         | 1                                                             | 8                                                                 | <1                                                                              | 1                                                             | 11                                                                | 1                                                                               | -                  |
| Phenols                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                 |                                                               |                                                                   |                                                                                 | h.                 |
| 2-Chlorophenol                  |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                 | 3                                                             | 9                                                                 | 9                                                                               | -'p                |
| 2,4-Dichlorophenol              |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | <1                                                                              | 3                                                             | 9                                                                 | 27                                                                              | _p                 |
| Pentachlorophenol               | 1                                                             | 3                                                                 | <1                                                                                      | 3                                                             | 6                                                                 | 4                                                                               | 1                                                             | 11                                                                | <1                                                                              | <b>7</b> 5         |
| Phenol                          | 1                                                             | 3                                                                 | 2                                                                                       | 8                                                             | 1                                                                 | 53                                                                              | 8                                                             | 4                                                                 | 41                                                                              | 15.                |
| 2,4,6-Trichlorophenol           |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 4                                                                               | 5                                                             | 7                                                                 | 39                                                                              | p                  |
|                                 |                                                               |                                                                   |                                                                                         | _                                                             | _                                                                 | -                                                                               | _                                                             |                                                                   |                                                                                 |                    |
| Monocyclic aromatics            |                                                               |                                                                   |                                                                                         | 3                                                             | 3                                                                 |                                                                                 | _                                                             | _                                                                 |                                                                                 |                    |
| Benzene                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   | 1                                                                               | 5                                                             | 7                                                                 | 12                                                                              | 77                 |
| Toluene                         |                                                               |                                                                   |                                                                                         | 3                                                             | 3                                                                 | 0.2                                                                             | 7                                                             | 5                                                                 | 14                                                                              | 6                  |
| Halogenated aliphatics          |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                 |                                                               |                                                                   |                                                                                 |                    |
| Chloroform                      |                                                               |                                                                   |                                                                                         | 8                                                             | 1                                                                 | 3,200                                                                           | 12                                                            | 0                                                                 | 430                                                                             | 86                 |
| Dichlorobromomethane            |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 9                                                                               | 1                                                             | 11                                                                | <1                                                                              | 89                 |
| 1,1-Dichloroethane              |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 4                                                                               |                                                               |                                                                   |                                                                                 |                    |
| Methylene chloride              |                                                               |                                                                   |                                                                                         | 7                                                             | 2                                                                 | 460                                                                             | 12                                                            | 0                                                                 | 270                                                                             | 42                 |
| 1,1,1-Trichloroethane           | 3                                                             | 6                                                                 | 414                                                                                     | 2                                                             | - 1                                                               | 3                                                                               | 3                                                             | 9                                                                 | 2                                                                               | 33                 |
| Trichloroethylene               | -                                                             |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 5                                                                               | 2                                                             | 10                                                                | <1                                                                              | 80                 |
|                                 |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                 |                                                               |                                                                   |                                                                                 |                    |
| Nonconven' onal pollutants      |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                 |                                                               |                                                                   |                                                                                 |                    |
| Abietic acid                    |                                                               |                                                                   |                                                                                         | 6                                                             | 3                                                                 | 140                                                                             | 6                                                             | 6                                                                 | 51                                                                              | 64                 |
| Dehydroabietic acid             |                                                               |                                                                   |                                                                                         | 9                                                             | 0                                                                 | 560                                                                             | 9                                                             | 3                                                                 | 250                                                                             | 55                 |
| Isopimaric acid                 |                                                               |                                                                   |                                                                                         | 6                                                             | 3                                                                 | 62                                                                              | 7                                                             | 5                                                                 | 13                                                                              | 79                 |
| Pimaric acid                    |                                                               |                                                                   |                                                                                         | 2                                                             | 7                                                                 | 8                                                                               | 1                                                             | 11                                                                | 4                                                                               | 50                 |
| Oleic acid                      |                                                               |                                                                   |                                                                                         | 9                                                             | 0                                                                 | 170                                                                             | 7                                                             | 5                                                                 | 47                                                                              | 72                 |
| Linoleic acid                   |                                                               |                                                                   |                                                                                         | 6                                                             | 3                                                                 | 57                                                                              | 4                                                             | 8                                                                 | 26                                                                              | 54                 |
| Linolenic acid                  |                                                               |                                                                   |                                                                                         | 2                                                             | 7                                                                 | 12                                                                              |                                                               |                                                                   |                                                                                 |                    |
| 9,10-Epoxystearic acid          |                                                               |                                                                   |                                                                                         | 2                                                             | 7                                                                 | 49                                                                              | 1                                                             | 11                                                                | 2                                                                               | 96                 |
| 1-Chlorodehydroabietic          |                                                               |                                                                   |                                                                                         | -                                                             |                                                                   | •                                                                               | -                                                             | -                                                                 |                                                                                 |                    |
| acid                            |                                                               |                                                                   |                                                                                         | 6                                                             | 3                                                                 | 82                                                                              | 3                                                             | 9                                                                 | 20                                                                              | 75                 |
| Dichlorodehydroabietic          |                                                               |                                                                   |                                                                                         | U                                                             | •                                                                 | •                                                                               | ~                                                             | •                                                                 |                                                                                 |                    |
| acid                            |                                                               |                                                                   |                                                                                         | 1                                                             | 8                                                                 | <1                                                                              | 1                                                             | 11                                                                | <1                                                                              | _a                 |
|                                 |                                                               |                                                                   |                                                                                         |                                                               | o                                                                 | ~1                                                                              | 2                                                             | 10                                                                | <1                                                                              | _ b                |
| 3,4,5~Trichloroguaiacol         |                                                               |                                                                   |                                                                                         | ,                                                             | 8                                                                 | <1                                                                              | 2                                                             | 10                                                                | ×1                                                                              | -                  |
| Tetrachlorogualacol             |                                                               |                                                                   |                                                                                         | 1                                                             |                                                                   |                                                                                 |                                                               |                                                                   |                                                                                 |                    |
| Xylenes                         |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | <b>1</b>                                                                        |                                                               |                                                                   |                                                                                 |                    |

ANegligible removal

b<sub>Negative removal.</sub>

TABLE 16-15. CHEMICAL-MECHANICAL PULP SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                 |                                         |                                             |                                          |                                         |                                             | hanical pulp                             |                                         |                                             |                                         |                            |
|-------------------------------------------------|-----------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|----------------------------|
|                                                 |                                         | Raw water                                   |                                          | Ae                                      | ration influ                                |                                          |                                         | Final efflue                                |                                         |                            |
|                                                 | No. of                                  | No. of                                      | Average<br>concentra-<br>tion of         | No. of                                  | No. of                                      | Average<br>concentra-<br>tion of         | No. of                                  | No. of                                      | Average<br>concentra-<br>tion of        |                            |
| Pollutant                                       | samples in which pollutant was detected | samples in which pollutant was not detected | pollutant in all samples analyzed,  µg/L | samples in which pollutant was detected | samples in which pollutant was not detected | pollutant in all samples analyzed,  µg/L | samples in which pollutant was detected | samples in which pollutant was not detected | pollutant in all samples analyzed, pg/L | Percent<br>removal         |
| Toxic pollutants                                |                                         |                                             |                                          |                                         |                                             |                                          |                                         |                                             |                                         |                            |
| Metals                                          |                                         |                                             |                                          |                                         |                                             |                                          |                                         |                                             |                                         | _                          |
| Chromium                                        | 1                                       | 0                                           | 2                                        | 3                                       | 0                                           | 3                                        | 3                                       | 0                                           | 4                                       | _a                         |
| Copper                                          | 1                                       | 0                                           | 2                                        | 3                                       | 0                                           | 40                                       | 3                                       | 0                                           | 16                                      | 60                         |
| Cyanide                                         | 3                                       | 0                                           | 10                                       | 3                                       | 0                                           | 13                                       | 3                                       | 0                                           | 9                                       | 30<br>_a<br>_b<br>_a<br>73 |
| Lead                                            | 1                                       | 0                                           | 2                                        | 3                                       | 0                                           | 2                                        | 3                                       | 0                                           | 3                                       | _ <b>_</b> _               |
| Mercury                                         | 3                                       | 0                                           | <1                                       | 1                                       | 0                                           | <1                                       | 3                                       | 0                                           | <1                                      | _ <u>-</u> -               |
| Nickel                                          | 1                                       | 0                                           | 2                                        | 3                                       | 0                                           | 3                                        | 3                                       | 0                                           | 6                                       | _a                         |
| Zinc                                            | 1                                       | 0                                           | 14                                       | 3                                       | 0                                           | 400                                      | 3                                       | 0                                           | 110                                     | 73                         |
| Phthalates Bis(2-ethylhexyl)                    |                                         |                                             |                                          | 2                                       | 1                                           | 7                                        |                                         |                                             |                                         |                            |
| phthalate                                       |                                         |                                             |                                          | 2                                       | •                                           | ,                                        |                                         |                                             |                                         |                            |
| Phenols<br>Phenol                               |                                         |                                             |                                          | 3                                       | 0                                           | 31                                       |                                         |                                             |                                         |                            |
| Monocyclic aromatics                            |                                         |                                             |                                          |                                         |                                             |                                          |                                         |                                             |                                         |                            |
| Ethylbenzene<br>Toluene                         |                                         |                                             |                                          | 1<br>2                                  | 2<br>1                                      | <1<br>3                                  | 1                                       | 2                                           | 1                                       | 67                         |
| Polychlorinated biphenyls and related compounds |                                         |                                             |                                          |                                         |                                             |                                          |                                         |                                             |                                         |                            |
| Aroclor 1254                                    |                                         |                                             |                                          | 1                                       | 2                                           | <1                                       | 1                                       | 2                                           | <1                                      | -b                         |
| Halogenated aliphatics<br>Methylene chloride    | 1                                       | o                                           | 4                                        | 2                                       | 1                                           | 5                                        | 2                                       | 1                                           | 6                                       | _a                         |
| Nonconventional pollutants                      |                                         |                                             |                                          |                                         |                                             |                                          |                                         |                                             |                                         |                            |
| Abietic acid                                    |                                         |                                             |                                          | 3                                       | 0                                           | 2,700                                    | 3                                       | 0                                           | 140                                     | 95                         |
| Dehydroabietic acid                             |                                         |                                             |                                          | 3                                       | 0                                           | 1,400                                    | 3                                       | 0                                           | 100                                     | 93                         |
| Isopimaric acid                                 |                                         |                                             |                                          | 3                                       | 0                                           | 1,020                                    | 3                                       | 0                                           | 67                                      | 93                         |
| Pimaric acid                                    |                                         |                                             |                                          | 3                                       | Ö                                           | 750                                      | 3                                       | 0                                           | 42                                      | 94                         |
| Oleic acid                                      |                                         |                                             |                                          | 3                                       | Ö                                           | 1,300                                    | 3                                       | ō                                           | 66                                      | 95                         |
| Linoleic acid 1-Chlorodehydroabietic            |                                         |                                             |                                          | ž                                       | o                                           | 300                                      | -                                       | -                                           |                                         | -                          |
| acid                                            |                                         |                                             |                                          | 3                                       | 0                                           | 54                                       |                                         |                                             |                                         |                            |
| Xylenes                                         |                                         |                                             |                                          | 2                                       | ĭ                                           | 57                                       | 1                                       | 2                                           | 1                                       | 98                         |

a Negative remova.

bNegligible removil.

TABLE 16-16. GROUNDWOOD-CMN SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                            |                               |                                  |                                                         | Subcate                       |                                  | dwood-CMN                                               |                               | Final efflue                     |                                                         |                    |
|----------------------------|-------------------------------|----------------------------------|---------------------------------------------------------|-------------------------------|----------------------------------|---------------------------------------------------------|-------------------------------|----------------------------------|---------------------------------------------------------|--------------------|
|                            |                               | Raw water                        |                                                         | Ox                            | dation infl                      |                                                         |                               | rinal elliue                     |                                                         |                    |
|                            | No. of<br>samples<br>in which | No. of<br>samples<br>in which    | Average<br>concentra-<br>tion of<br>pollutant<br>in all | No. of<br>samples<br>in which | No. of<br>samples<br>in which    | Average<br>concentra-<br>tion of<br>pollutant<br>in all | No. of<br>samples<br>in which | No. of samples in which          | Average<br>concentra-<br>tion of<br>pollutant<br>in all |                    |
| Pollutant                  | pollutant<br>was<br>detected  | pollutant<br>was not<br>detected | <pre>samples analyzed,</pre>                            | pollutant<br>was<br>detected  | pollutant<br>was not<br>detected | samples<br>analyzed,<br>µg/L                            | pollutant<br>was<br>detected  | pollutant<br>was not<br>detected | samples<br>analyzed,<br>µg/L                            | Percent<br>removal |
|                            |                               |                                  |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                    |
| Toxic pollutants           |                               |                                  |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                    |
| Metals                     |                               |                                  |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                    |
| Chromium                   | 1                             | 0                                | 2                                                       | 3                             | 0                                | 6                                                       | 3                             | 0                                | 4                                                       | 33                 |
| Copper                     | 1                             | 0                                | 16                                                      | 3                             | 0                                | 15                                                      | 3                             | 0                                | 5                                                       | 67<br>_a           |
| Cyanide                    | 1                             | 0                                | 10                                                      | 3                             | 0                                | 9                                                       | 3                             | 0                                | 9                                                       |                    |
| Lead                       | 1                             | 0                                | 2                                                       | 3                             | 0                                | 13                                                      | 3                             | 0                                | 2                                                       | 85 <sub>a</sub>    |
| Mercury                    | 1                             | 0                                | 1                                                       | 3                             | 0                                | <1                                                      | 3                             | 0                                | <1                                                      | -                  |
| Nickel                     | 1                             | 0                                | 2                                                       | 3                             | 0                                | 8                                                       | 3                             | 0                                | 7                                                       | 12 <sub>b</sub>    |
| Zinc                       | 1                             | 0                                | 10                                                      | 3                             | 0                                | 480                                                     | 3                             | 0                                | 1,600                                                   | ~~                 |
| Phthalates                 |                               |                                  |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                    |
| Bis(2-ethylhexyl)          |                               |                                  |                                                         |                               |                                  |                                                         |                               |                                  | _                                                       | ^p                 |
| phthalate                  | 1                             | 0                                | 6                                                       | 3                             | 0                                | 8                                                       | 3                             | 0                                | 9                                                       |                    |
| Phenols                    |                               |                                  |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                    |
| Phenol                     | 1                             | 0                                | 8                                                       | 3                             | 0                                | 16                                                      | 3                             | 0                                | 11                                                      | 31                 |
| Monocyclic aromatics       |                               |                                  |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                    |
| Benzene                    |                               |                                  |                                                         | 3                             | 0                                | 9                                                       | 1                             | 2                                | <1                                                      | 89                 |
| Toluene                    |                               |                                  |                                                         | 3                             | 0                                | 290                                                     | 3                             | 0                                | 87                                                      | 70                 |
| Halogenated aliphatics     |                               |                                  |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                    |
| Chloroform                 |                               |                                  |                                                         | 1                             | 2                                | <1                                                      |                               |                                  |                                                         | h                  |
| Methylene chloride         |                               |                                  |                                                         |                               |                                  |                                                         | 1                             | 2                                | <1                                                      | _b                 |
| Nonconventional pollutants |                               |                                  |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                    |
| Abietic acid               |                               |                                  |                                                         | 2                             | 1                                | 220                                                     |                               |                                  |                                                         |                    |
| Dehydroabietic acid        | 1                             | 0                                | 31                                                      | 3                             | ō                                | 430                                                     | 3                             | 0                                | 45                                                      | 89                 |
| Isopimaric acid            | •                             | v                                |                                                         | 2                             | ĭ                                | 14                                                      | -                             | •                                |                                                         |                    |
| Oleic acid                 |                               |                                  |                                                         | 3                             | ō                                | 74                                                      |                               |                                  |                                                         |                    |
| Linoleic acid              |                               |                                  |                                                         | i                             | 2                                | 16                                                      |                               |                                  |                                                         |                    |
| Xylenes                    |                               |                                  |                                                         | 2                             | ī                                | 4                                                       |                               |                                  |                                                         |                    |

a Negligible removal.

b Negative removal.

TABLE 16-17. GROUNDWOOD-FINE SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                                                   | Subcategory: Groundwood-fine Raw water Aeration influent Final effluent |                                                       |                                                                                 |                                       |                                           |                                                               |                                                   |                                                       |                                                                                 |                  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|------------------|
|                                                                                   | No. of<br>samples<br>in which<br>pollutant<br>was                       | No. of<br>samples<br>in which<br>pollutant<br>was not | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed, | No. of samples in which pollutant was | No. of samples in which pollutant was not | Average concentra- tion of pollutant in all samples analyzed, | No. of<br>samples<br>in which<br>pollutant<br>was | No. of<br>samples<br>in which<br>pollutant<br>was not | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed, | P <b>er</b> cent |
| Pollutant                                                                         | detected                                                                | detected                                              | µg/L                                                                            | detected                              | detected                                  | µg/L                                                          | detected                                          | detected                                              | μg/L                                                                            | removal          |
| Toxic pollutants                                                                  |                                                                         |                                                       |                                                                                 |                                       |                                           |                                                               |                                                   |                                                       |                                                                                 |                  |
| Metals                                                                            |                                                                         |                                                       |                                                                                 |                                       |                                           |                                                               |                                                   |                                                       |                                                                                 |                  |
| Chromium                                                                          | 2                                                                       | 0                                                     | 2                                                                               | 6                                     | 0                                         | 5                                                             | 6                                                 | 0                                                     | 3                                                                               | 40               |
| Copper                                                                            | 2                                                                       | 0                                                     | 5                                                                               | 6                                     | o o                                       | 28                                                            | 6                                                 | 0                                                     | 14                                                                              | 50               |
| Lead                                                                              | 2                                                                       | o o                                                   | 2                                                                               | 6                                     | 0                                         | 9                                                             | 6                                                 | 0                                                     | 8                                                                               |                  |
| Mercury                                                                           | 2                                                                       | 0                                                     | <1                                                                              | 6                                     | 0                                         | <1                                                            | 6                                                 | 0                                                     | <1                                                                              | 11<br>_a<br>_a   |
| Nickel                                                                            | 2                                                                       | 0                                                     | 5                                                                               | 6                                     | 0                                         | 5                                                             | 6                                                 | 0                                                     | 5                                                                               | _a               |
| Zinc                                                                              | 2                                                                       | 0                                                     | 22                                                                              | 6                                     | 0                                         | 74                                                            | 6                                                 | 0                                                     | 45                                                                              | 39               |
| Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate                       | 1                                                                       | 1                                                     | 2                                                                               | 4<br>3                                | 2<br>3                                    | 3<br><1                                                       | 5<br>3                                            | 1<br>3                                                | 4<br><1                                                                         | b<br>_a          |
| Phenols Pentachlorophenol Phenol                                                  | 1                                                                       | 1                                                     | 2                                                                               | 3<br>6                                | 3<br>0                                    | 3<br>28                                                       | 2<br>4                                            | 4 2                                                   | <1<br>2                                                                         | 67<br>93         |
| Monocyclic aromatics Benzene Ethylbenzene                                         | 1                                                                       | 1                                                     | 3                                                                               | 1                                     | 5                                         | <1                                                            |                                                   |                                                       |                                                                                 |                  |
| Toluene                                                                           | 1                                                                       | 1                                                     | 2                                                                               | 6                                     | 0                                         | 13                                                            | 3                                                 | 3                                                     | <1                                                                              | 92               |
| Halogenated aliphatics<br>Chloroform<br>Methylene chloride<br>Tetrachloroethylene |                                                                         |                                                       |                                                                                 | 6<br>1<br>1                           | 0<br>1<br>5                               | 99<br><1<br><1                                                | 9<br>1                                            | O<br>5                                                | 15<br>2                                                                         | 85<br>_b         |
| Nonconventional pollutants                                                        |                                                                         |                                                       |                                                                                 |                                       |                                           |                                                               |                                                   |                                                       |                                                                                 |                  |
| Abietic acid                                                                      |                                                                         |                                                       |                                                                                 | 6<br>6                                | 0                                         | 180<br>150                                                    | 2<br>6                                            | 4                                                     | 5<br>26                                                                         | 98<br>84         |
| Dehydroabietic acıd                                                               |                                                                         |                                                       |                                                                                 | 5                                     | 1                                         | 29                                                            | 4                                                 | 2                                                     | 26                                                                              | 93               |
| Isopimaric acid                                                                   |                                                                         |                                                       |                                                                                 | 2                                     | 4                                         | 29<br>50                                                      | 1                                                 | 5                                                     | 3                                                                               | 93               |
| Pimaric acid                                                                      |                                                                         |                                                       |                                                                                 | _                                     | -                                         |                                                               | _                                                 | _                                                     | 13                                                                              | 94               |
| Oleic acid                                                                        |                                                                         | _                                                     |                                                                                 | 5                                     | 1                                         | 170                                                           | 2                                                 | 4                                                     |                                                                                 | 92<br>77         |
| Linoleıc acid<br>Linolenic acıd                                                   | 1                                                                       | 1                                                     | 17                                                                              | <b>3</b><br>3                         | <b>3</b><br>3                             | 170<br>130                                                    | 3                                                 | 3                                                     | 39                                                                              | //               |

a Negligible removal.

bNegative removal.

TABLE 16-18. NONWOOD PULPING SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                                               | Subcategory: Nonwood pulping Raw water Aeration influent Final effluent |                                                                   |                                                                  |                                                               |                                                    |                                                                    |                                                               |                                                                   |                                                                    | _                  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|
| Pollutant                                                                     | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected           | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average concentration of pollutant in all samples analyzed, ug/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of samples in which pollutant was not detected | Average concentra- tion of pollutant in all samples analyzed, ug/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average concentra- tion of pollutant in all samples analyzed, pg/L | Percent<br>removal |
|                                                                               |                                                                         |                                                                   |                                                                  |                                                               |                                                    |                                                                    |                                                               |                                                                   |                                                                    |                    |
| Metals                                                                        |                                                                         |                                                                   |                                                                  |                                                               |                                                    |                                                                    |                                                               |                                                                   |                                                                    |                    |
| Chromium                                                                      | 3                                                                       | 0                                                                 | 3                                                                | 6                                                             | 0                                                  | 5                                                                  | 6                                                             | 0                                                                 | 5                                                                  | _a                 |
| Copper                                                                        | 3                                                                       | 0                                                                 | 9                                                                | 6                                                             | 0                                                  | 39                                                                 | 6                                                             | 0                                                                 | 15                                                                 | 62_                |
| Cyanide                                                                       | 3                                                                       | 0                                                                 | 10                                                               | 3                                                             | 0                                                  | 9                                                                  | 3                                                             | 0                                                                 | 9                                                                  | 62 <sub>a</sub>    |
| Lead                                                                          | 3                                                                       | 0                                                                 | 7                                                                | 6                                                             | 0                                                  | 17                                                                 | 6                                                             | 0                                                                 | 11                                                                 | 35 <sub>a</sub>    |
| Mercury                                                                       | 3                                                                       | 0                                                                 | <1                                                               | 6                                                             | 0                                                  | <1                                                                 | 6                                                             | 0                                                                 | <1                                                                 | _a                 |
| Nickel                                                                        | 3                                                                       | 0                                                                 | 3                                                                | 6                                                             | 0                                                  | 5                                                                  | 6                                                             | 0                                                                 | 3                                                                  | 40                 |
| Zinc                                                                          | 3                                                                       | 0                                                                 | 66                                                               | 6                                                             | 0                                                  | 75                                                                 | 6                                                             | 0                                                                 | 33                                                                 | 56                 |
| Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Diethyl phthalate | 3                                                                       | o                                                                 | 15                                                               | <b>4</b><br>2<br>5                                            | 2<br>4<br>1                                        | 8<br><1<br>2                                                       | 5<br>2                                                        | 1<br>4                                                            | <b>4</b> 5<br><1                                                   | _b<br>_a           |
| Phenols Pentachlorophenol Phenol 2,4,6-Trichlorophenol                        | 2                                                                       | 1                                                                 | <1                                                               | 4<br>3<br>1                                                   | 2<br>3<br>5                                        | 12<br>5<br>3                                                       | 1<br>4<br>1                                                   | 5<br><b>2</b><br>5                                                | <1<br>3<br><1                                                      | 92<br>40<br>67     |
| Monocyclic aromatics Toluene                                                  |                                                                         |                                                                   |                                                                  | 1                                                             | 5                                                  | <1                                                                 | 3                                                             | 3                                                                 | 55                                                                 | <b>_</b> p         |
| Halogenated aliphatics                                                        |                                                                         |                                                                   | _                                                                | _                                                             |                                                    |                                                                    |                                                               | -                                                                 | -                                                                  | 00                 |
| Chloroform                                                                    | 1                                                                       | 2                                                                 | 6                                                                | 3                                                             | 3                                                  | 420                                                                | 3                                                             | 3<br>5                                                            | 5<br><1                                                            | 99<br>_a           |
| Methylene chloride<br>l,l,l-Trichloroethane                                   |                                                                         |                                                                   |                                                                  | 2                                                             | <b>4</b><br>3                                      | <1<br>33                                                           | 1                                                             | 5                                                                 | <1                                                                 | _                  |
| Nonconventional pollutants                                                    |                                                                         |                                                                   |                                                                  | 3                                                             | 3                                                  | 33                                                                 |                                                               |                                                                   |                                                                    |                    |
| Nonconventional pollucants                                                    |                                                                         |                                                                   |                                                                  |                                                               |                                                    |                                                                    |                                                               |                                                                   |                                                                    |                    |
| Abietic acıd                                                                  |                                                                         |                                                                   |                                                                  | 3                                                             | 3                                                  | 82                                                                 | 2                                                             | 4                                                                 | 18                                                                 | 78                 |
| Dehydroabletic acid                                                           |                                                                         |                                                                   |                                                                  | 4                                                             | 2                                                  | 250                                                                | 3                                                             | 3                                                                 | 120                                                                | 53                 |
| Isopimarıc acid                                                               |                                                                         |                                                                   |                                                                  | 1                                                             | 5                                                  | 16                                                                 | 2                                                             | 4                                                                 | 8                                                                  | 50                 |
| Pimaric acid                                                                  |                                                                         |                                                                   |                                                                  | 1                                                             | 5                                                  | 10                                                                 | 1                                                             | 5                                                                 | 4                                                                  | 60                 |
| Oleic acid                                                                    |                                                                         |                                                                   |                                                                  | 4                                                             | 2                                                  | 220                                                                | 2                                                             | 4                                                                 | 43                                                                 | 80                 |
| Linoleic acid                                                                 |                                                                         |                                                                   |                                                                  | 3                                                             | 3                                                  | 270                                                                | 1                                                             | 5                                                                 | <1                                                                 | 99                 |
| l-Chlorodehydroabietic                                                        |                                                                         |                                                                   |                                                                  | 1                                                             | 5                                                  | 6                                                                  | 1                                                             | 5                                                                 | <1                                                                 | 83                 |
| Dichlorodehydroabietic                                                        |                                                                         |                                                                   |                                                                  | -                                                             | ,                                                  | Ü                                                                  | •                                                             | -                                                                 | _                                                                  |                    |
| acid                                                                          |                                                                         |                                                                   |                                                                  | 1                                                             | 5                                                  | <1                                                                 | 1                                                             | 5                                                                 | 3                                                                  | _p                 |
| Xylenes                                                                       |                                                                         |                                                                   |                                                                  | 3                                                             | 3                                                  | 4                                                                  | -                                                             | _                                                                 | -                                                                  |                    |

<sup>&</sup>lt;sup>a</sup>Negligible removal.

Negative removal.

TABLE 16-19. DEINK NEWSPRINT SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                                                                      |                                                   | S                                                     | ubcategory:                                                                     | Deink newsprint Discharge, POTW                   |                                                       |                                                                                 |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
|                                                                                                      |                                                   | Raw water                                             |                                                                                 |                                                   |                                                       |                                                                                 |  |  |
|                                                                                                      | No. of<br>samples<br>in which<br>pollutant<br>was | No. of<br>samples<br>in which<br>pollutant<br>was not | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed, | No. of<br>samples<br>in which<br>pollutant<br>was | No. of<br>samples<br>in which<br>pollutant<br>was not | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed, |  |  |
| Pollutant                                                                                            | detected                                          | detected                                              | μg/L                                                                            | detected                                          | detected                                              | μg/L                                                                            |  |  |
| Toxic pollutants                                                                                     |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                                                 |  |  |
| Metals                                                                                               |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                                                 |  |  |
| Chromium                                                                                             | 1                                                 | 0                                                     | 3                                                                               | 3                                                 | 0                                                     | 29                                                                              |  |  |
| Copper                                                                                               | 1                                                 | О                                                     | 54                                                                              | 3                                                 | 0                                                     | 76                                                                              |  |  |
| Lead                                                                                                 | 1                                                 | 0                                                     | 10                                                                              | 3                                                 | 0                                                     | 160                                                                             |  |  |
| Mercury                                                                                              | 1                                                 | 0                                                     | <1                                                                              | 3                                                 | 0                                                     | 1                                                                               |  |  |
| Nickel                                                                                               | 1                                                 | 0                                                     | 3                                                                               | 3                                                 | 0                                                     | 15                                                                              |  |  |
| Zinc                                                                                                 | 1                                                 | 0                                                     | 10                                                                              | 3                                                 | 0                                                     | 340                                                                             |  |  |
| Phthalates Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate Di-n-butyl phthalate Diethyl phthalate | 1                                                 | 0                                                     | 14                                                                              | 3<br>3<br>1<br>1                                  | 0<br>0<br>2<br>2                                      | 13<br>5<br><1<br>1                                                              |  |  |
| Phenols<br>Phenol                                                                                    |                                                   |                                                       |                                                                                 | 1                                                 | 2                                                     | 1                                                                               |  |  |
| Monocyclic aromatics<br>Ethylbenzene<br>Toluene                                                      |                                                   |                                                       |                                                                                 | 2 3                                               | 1<br>0                                                | 2<br>14                                                                         |  |  |
| Halogenated aliphatics                                                                               |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                                                 |  |  |
| Chloroform                                                                                           | 1                                                 | 0                                                     | <1                                                                              | 3                                                 | 0                                                     | <1                                                                              |  |  |
| Methylene chloride                                                                                   | 1                                                 | 0                                                     | 3                                                                               | 1                                                 | 2                                                     | <1                                                                              |  |  |
| Nonconventional pollutants                                                                           |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                                                 |  |  |
| Abietic acid                                                                                         |                                                   |                                                       |                                                                                 | 3                                                 | 0                                                     | 3,500                                                                           |  |  |
| Dehydroabietic acid                                                                                  |                                                   |                                                       |                                                                                 | 3                                                 | 0                                                     | 3,700                                                                           |  |  |
| Isopimaric acid                                                                                      |                                                   |                                                       |                                                                                 | 3                                                 | 0                                                     | 510                                                                             |  |  |
| Pimaric acid                                                                                         |                                                   |                                                       |                                                                                 | 3                                                 | 0                                                     | 260                                                                             |  |  |
| -                                                                                                    |                                                   |                                                       |                                                                                 | 3                                                 | 0                                                     | 1,400                                                                           |  |  |
| Oleic acid<br>Linoleic acıd                                                                          |                                                   |                                                       |                                                                                 | 3                                                 | 0                                                     | 750                                                                             |  |  |
| Linoleic acid                                                                                        |                                                   |                                                       |                                                                                 | 3                                                 | O                                                     | 750                                                                             |  |  |

TABLE 16-20. DEINK-FINE AND TISSUE SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                    |                                                               | RAW Water                                                         |                                                                                         | Subcategory<br>Ae                                             | : Deink-fin                                                       | e and tissue                                                                            |                                                               | Final efflue                                                      | nt                                                                                      |                    |
|----------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------|
| Pollutant                                          | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>pg/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>ug/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>ug/L | Percent<br>removal |
|                                                    |                                                               |                                                                   | 73/2                                                                                    |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         | - Cinio Fai        |
| Toxic pollutants                                   |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                    |
| Metals                                             |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                    |
| Chromium                                           | 3                                                             | 0                                                                 | 5                                                                                       | 9                                                             | 0                                                                 | 22                                                                                      | 9                                                             | 0                                                                 | 6                                                                                       | 72                 |
| Copper                                             | 3                                                             | 0                                                                 | 4                                                                                       | 9                                                             | 0                                                                 | 34                                                                                      | 9                                                             | 0                                                                 | 10                                                                                      | 71<br>a            |
| Cyanide                                            | 9                                                             | 0                                                                 | 10                                                                                      | 9                                                             | 0                                                                 | 68                                                                                      | 9                                                             | 0                                                                 | 89                                                                                      |                    |
| Lead                                               | 3                                                             | 0                                                                 | 3                                                                                       | 9                                                             | 0                                                                 | 61                                                                                      | 9                                                             | 0                                                                 | 13                                                                                      | 79<br>b            |
| Mercury                                            | 3                                                             | 0                                                                 | <1                                                                                      | 9                                                             | 0                                                                 | <1                                                                                      | 9                                                             | 0                                                                 | <1                                                                                      |                    |
| Nickel                                             | 3                                                             | 0                                                                 | 6                                                                                       | 9                                                             | 0                                                                 | 8                                                                                       | 9                                                             | 0                                                                 | 3                                                                                       | 63                 |
| Zinc                                               | 3                                                             | 0                                                                 | 17                                                                                      | 9                                                             | ٥                                                                 | 150                                                                                     | 9                                                             | 0                                                                 | 41                                                                                      | 72                 |
| Phthalates Bis(2-ethylhexyl) phthalate             |                                                               |                                                                   |                                                                                         | ,                                                             | 3                                                                 | 7                                                                                       | 7                                                             | •                                                                 | 2                                                                                       |                    |
| Di-n-butyl phthalate                               | 1                                                             | 2                                                                 | <1                                                                                      | 6<br>4                                                        | 5                                                                 | ,<br>5                                                                                  | 4                                                             | 2<br>5                                                            | 4                                                                                       | 71                 |
| Diethyl phthalate                                  | •                                                             | 2                                                                 | 1                                                                                       | i                                                             | 6                                                                 | 1                                                                                       | 2                                                             | 7                                                                 | <1                                                                                      | 80 <sub>E</sub>    |
| Phenols                                            |                                                               |                                                                   |                                                                                         |                                                               | _                                                                 |                                                                                         | _                                                             | _                                                                 |                                                                                         |                    |
| 2,4-Dichlorophenol                                 |                                                               |                                                                   |                                                                                         | 4                                                             | 5                                                                 | 2                                                                                       | 2                                                             | 7                                                                 | <1                                                                                      | 50                 |
| Pentachlorophenol                                  |                                                               |                                                                   |                                                                                         | 6                                                             | 3                                                                 | 18                                                                                      | 6                                                             | 3                                                                 | 15                                                                                      | 1€                 |
| Phenol                                             |                                                               |                                                                   |                                                                                         | 5                                                             | 4                                                                 | 38                                                                                      | 1                                                             | 8                                                                 | 8                                                                                       | 79                 |
| 2,4,6-Trichlorophenol<br>2-Chlorophenol            |                                                               |                                                                   |                                                                                         | 5<br>1                                                        | <b>4</b><br>6                                                     | 18<br><1                                                                                | 4                                                             | 5                                                                 | 16                                                                                      | 11                 |
| Monocyclic aromatics<br>Benzene                    |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 2                                                                                       | 5                                                             | 4                                                                 | 2                                                                                       | Ė                  |
| Chlorobenzene                                      |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 14                                                                                      |                                                               |                                                                   | =                                                                                       |                    |
| Ethylberzene<br>Toluene                            |                                                               |                                                                   |                                                                                         | 3                                                             | €<br>0                                                            | 11<br>25                                                                                | 1                                                             | 8                                                                 | <1                                                                                      | 96                 |
| Polycyclic aromatic<br>hydrocarbons<br>Naphthalene |                                                               |                                                                   |                                                                                         | 4                                                             | 5                                                                 | 42                                                                                      |                                                               |                                                                   |                                                                                         |                    |
| Polychlorinated biphenyls and related compounds    |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                    |
| Aroclor 1242<br>Aroclor 1260                       |                                                               |                                                                   |                                                                                         | 1                                                             | 8<br>0                                                            | 1<br><1                                                                                 |                                                               |                                                                   |                                                                                         |                    |
| Halogenated aliphatics                             |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                    |
| Chloroform                                         | 1                                                             | 0                                                                 | 1                                                                                       | 9                                                             | 0                                                                 | 1,800                                                                                   | 9                                                             | 0                                                                 | 68                                                                                      | 96                 |
| 1,2-Dichloroethane                                 |                                                               |                                                                   |                                                                                         | 2                                                             | 7                                                                 | <1                                                                                      |                                                               |                                                                   |                                                                                         |                    |
| Methylene chloride                                 |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 4                                                                                       | 3                                                             | 6                                                                 | <1                                                                                      | 75                 |
| Tetrachloroethylene                                |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 32                                                                                      |                                                               |                                                                   |                                                                                         |                    |
| i,1,1-Trichloroethane Trichloroethylene            |                                                               |                                                                   |                                                                                         | 3                                                             | 6<br>3                                                            | 7                                                                                       |                                                               |                                                                   |                                                                                         |                    |
| Nonconventional pollutants                         |                                                               |                                                                   |                                                                                         | 6                                                             | 3                                                                 | 170                                                                                     | 3                                                             | 6                                                                 | 2                                                                                       | 99                 |
| Abietic acid                                       |                                                               |                                                                   |                                                                                         | 9                                                             | 0                                                                 | 640                                                                                     |                                                               | 3                                                                 | E.c.                                                                                    | ~ ~                |
| Dehydroabietic acid                                |                                                               |                                                                   |                                                                                         | 9                                                             | 1                                                                 | 2,200                                                                                   | 6<br>8                                                        | 3<br>1                                                            | 56                                                                                      | ∋1<br>99           |
| Isopimaric acid                                    |                                                               |                                                                   |                                                                                         | 8                                                             | 1                                                                 | 300                                                                                     | 3                                                             | 6                                                                 | 210                                                                                     |                    |
| Pimaric acid                                       |                                                               |                                                                   |                                                                                         | 8                                                             | 1                                                                 | 69                                                                                      | 3                                                             | 0                                                                 | 5                                                                                       | 98                 |
| Oleic acid                                         |                                                               |                                                                   |                                                                                         | 9                                                             | 0                                                                 | 550                                                                                     | 7                                                             | 2                                                                 | 290                                                                                     | 48                 |
| Linoleic acid                                      |                                                               |                                                                   |                                                                                         | 6                                                             | 3                                                                 | 150                                                                                     | ,                                                             | 4                                                                 | 290                                                                                     | 40                 |
| Linolenic acid<br>1-Chlorodehydroabietic           |                                                               |                                                                   |                                                                                         | 2                                                             | 7                                                                 | 40                                                                                      |                                                               |                                                                   |                                                                                         |                    |
| acid<br>Dichlorodehydroabietic                     |                                                               |                                                                   |                                                                                         | 5                                                             | 4                                                                 | 130                                                                                     | 2                                                             | 7                                                                 | r                                                                                       | 96                 |
| acid                                               |                                                               |                                                                   |                                                                                         | 2                                                             | 7                                                                 | 2                                                                                       |                                                               |                                                                   |                                                                                         |                    |
| 3,4,5-Trichloroguatacol                            |                                                               |                                                                   |                                                                                         | 2                                                             | 7                                                                 | 5                                                                                       | 3                                                             | 6                                                                 | 5                                                                                       | -,b                |
| Tetrachloroguaiacol<br>Xylenes                     |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 3                                                                                       | 3                                                             | €                                                                 | 3                                                                                       | _b                 |
|                                                    |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 4                                                                                       |                                                               |                                                                   |                                                                                         |                    |

A Negative removal.

b<sub>Neq11</sub>g1ble removal.

TABLE 16-21. WASTEPAPER-TISSUE SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                                               |                                                               | Raw water                                                         |                                                                                         | Subcatego<br>Ae                                               | ry: Wastepa<br>ration influ                                       | per-tissue<br>ent                                                |                                                               | Final efflue                                                      | nt                                                               | <del> </del>       |
|-------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|--------------------|
| <b>Pollutant</b>                                                              | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>µg/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average concentration of pollutant in all samples analyzed, pg/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average concentration of pollutant in all samples analyzed, µg/L | Percent<br>removal |
| Toxic pollutants                                                              |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                  |                    |
| Metals                                                                        |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                  |                    |
| Chromium                                                                      | 3                                                             | 0                                                                 | 10                                                                                      | 6                                                             | 0                                                                 | 20                                                               | 9                                                             | 0                                                                 | 10                                                               | 50                 |
| Copper                                                                        | 3                                                             | ŏ                                                                 | 4                                                                                       | 6                                                             | ŏ                                                                 | 55                                                               | 9                                                             | Ö                                                                 | 34                                                               | 38 <sub>a</sub>    |
| Cyanide                                                                       | ý                                                             | ŏ                                                                 | 9                                                                                       | 6                                                             | ŏ                                                                 | 9                                                                | 9                                                             | Õ                                                                 | 9                                                                | · ja               |
| Lead                                                                          | 3                                                             | ŏ                                                                 | 4                                                                                       | 6                                                             | Ö                                                                 | 44                                                               | 9                                                             | ŏ                                                                 | 26                                                               | 36                 |
| Mercury                                                                       | 3                                                             | ő                                                                 | <1 <1                                                                                   | 6                                                             | Ö                                                                 | <1                                                               | ģ                                                             | ŏ                                                                 | <1                                                               | ~~~a               |
| Nickel                                                                        | 3                                                             | Ö                                                                 | ii                                                                                      | 6                                                             | Ü                                                                 | 21                                                               | ģ                                                             | ő                                                                 | 9                                                                | 57                 |
| Zinc                                                                          | 3                                                             | Ö                                                                 | 4                                                                                       | 6                                                             | Ö                                                                 | 490                                                              | 9                                                             | ō                                                                 | 68                                                               | 86                 |
| Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Diethyl phthalate |                                                               |                                                                   |                                                                                         | 5<br>1<br>2                                                   | 1<br>5<br><b>4</b>                                                | 10<br>3<br>13                                                    | 4                                                             | 5                                                                 | 2                                                                | 80                 |
| Phenols Phenol                                                                |                                                               |                                                                   |                                                                                         | 6                                                             | 0                                                                 | 41                                                               | 4                                                             | 5                                                                 | 2                                                                | 95                 |
| Monocyclic aromatics Benzene Ethylbenzene Toluene                             |                                                               |                                                                   |                                                                                         | 1 5                                                           | 8                                                                 | <1<br>2                                                          | 3<br>2                                                        | 3<br>7                                                            | 13<br>1                                                          | 50                 |
| Polycyclic aromatic hydrocarbons                                              |                                                               |                                                                   |                                                                                         | ,                                                             | -                                                                 | -                                                                | -                                                             | •                                                                 | -                                                                | 50                 |
| Naphthalene                                                                   |                                                               |                                                                   |                                                                                         | 3                                                             | 0                                                                 | 26                                                               | 2                                                             | 7                                                                 | 6                                                                | 77                 |
| Polychlorinated biphenyls<br>and related compounds<br>Arcolor 1254            |                                                               |                                                                   |                                                                                         | 1                                                             | 5                                                                 | <1                                                               |                                                               |                                                                   |                                                                  |                    |
| Halogenated aliphatics                                                        |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                  |                    |
| Chloroform                                                                    |                                                               |                                                                   |                                                                                         | 1                                                             | 5                                                                 | 2                                                                | 1                                                             | 8                                                                 | <1                                                               | 50                 |
| Methylene chloride<br>Tetrachloroethylene                                     | 1                                                             | 2                                                                 | 2                                                                                       | 3<br>2                                                        | 3<br>1                                                            | 87<br>7 <b>4</b>                                                 | 2<br>1                                                        | 7<br>8                                                            | <1<br>6                                                          | 99<br>92           |
| Nonconventional pollutants                                                    |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                  |                                                               |                                                                   |                                                                  |                    |
| Abletic acid Dehydroabletic acid Isopimaric acid                              |                                                               |                                                                   |                                                                                         | 4<br>6<br>3                                                   | 2<br>0<br>3                                                       | 54<br>370<br>16                                                  | 2<br>7                                                        | 7<br>2                                                            | 24<br>97                                                         | 55<br>74           |
| Pimaric acid                                                                  |                                                               |                                                                   |                                                                                         | 1                                                             | 5                                                                 | 3                                                                | ,                                                             |                                                                   | 7.40                                                             | 25                 |
| Oleic acid<br>Xylenes                                                         |                                                               |                                                                   |                                                                                         | <b>6</b><br>5                                                 | (-<br>1                                                           | 180<br>28                                                        | 6<br>1                                                        | 3<br>8                                                            | 140<br>1                                                         | 25<br>96           |

<sup>&</sup>lt;sup>a</sup>Negligible removal.

TABLE 16-22. WASTEPAPER-BOARD SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                    |                                                               |                                                                   |                                                                              | Subcatego                                                     |                                                                     | per-board                                                                    |                                                               |                                                                   |                                                                              |                    |
|----------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------|
|                                                    |                                                               | Raw water                                                         | Average                                                                      | Aor.                                                          | ation influe                                                        | Average                                                                      |                                                               | Final offluo                                                      | Average                                                                      |                    |
| Pollutant                                          | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>ug/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples '<br>in which<br>pollutant<br>was not<br>detected | concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>ug/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>ug/L | Percent<br>removal |
|                                                    | deceded                                                       | u-tected                                                          |                                                                              | decected                                                      | dececced                                                            | pg/ 0.                                                                       | decected                                                      | decected                                                          | pg/L                                                                         | ECHIOVA.           |
| oxic pollutants                                    |                                                               |                                                                   |                                                                              |                                                               |                                                                     |                                                                              |                                                               |                                                                   |                                                                              |                    |
| 4etals                                             |                                                               |                                                                   |                                                                              | _                                                             |                                                                     | 1.0                                                                          | 12                                                            | 6                                                                 | 3°                                                                           | 81                 |
| (hromium                                           | 4                                                             |                                                                   | 2                                                                            | 2                                                             | 1                                                                   |                                                                              | 12                                                            | 6                                                                 | 37                                                                           | 65                 |
| Copper                                             | 4                                                             | 2                                                                 | 3                                                                            | 2                                                             | 1                                                                   | 110                                                                          |                                                               |                                                                   |                                                                              | 81                 |
| Cyanide                                            | 16                                                            | O                                                                 | 10                                                                           | 3                                                             | 0                                                                   | 74                                                                           | 18                                                            | 0                                                                 | 14                                                                           |                    |
| Lead                                               | 4                                                             | 2                                                                 | 3                                                                            | 7                                                             | 2                                                                   | 150                                                                          | 12                                                            | 6                                                                 | 31                                                                           | 81 <sub>a</sub>    |
|                                                    | 6                                                             | ō                                                                 | <1                                                                           | 3                                                             | 0                                                                   | <1                                                                           | 18                                                            | 0                                                                 | <1                                                                           | -                  |
| Mercury                                            |                                                               |                                                                   | 4                                                                            | 2                                                             | i                                                                   | 37                                                                           | 12                                                            | 6                                                                 | 1/                                                                           | 54                 |
| Nickel                                             | 4                                                             | 2                                                                 |                                                                              |                                                               | _                                                                   | 1,400                                                                        | 18                                                            | 0                                                                 | 349                                                                          | 76                 |
| Zinc                                               | 6                                                             | n                                                                 | 22                                                                           | 3                                                             | n                                                                   | 1,400                                                                        | 10                                                            | Ü                                                                 | 540                                                                          |                    |
| Phthalates                                         |                                                               |                                                                   |                                                                              |                                                               |                                                                     |                                                                              |                                                               |                                                                   |                                                                              | _b                 |
| Bis(2-ethylhexyl)                                  | •                                                             | •                                                                 | 3                                                                            | 3                                                             | 0                                                                   | 23                                                                           | 13                                                            | 5                                                                 | 73                                                                           | -"                 |
| phthalate                                          | 3                                                             | 3                                                                 |                                                                              |                                                               | ő                                                                   | 80                                                                           | 3                                                             | 15                                                                | 11                                                                           | 86                 |
| Butyl benzyl phthalate                             | 3                                                             | 0                                                                 | 100                                                                          | 3                                                             |                                                                     |                                                                              | 3                                                             | 15                                                                | 7                                                                            | 84                 |
| Di-n-butyl phthalate                               |                                                               |                                                                   |                                                                              | 2                                                             | 1                                                                   | 32                                                                           |                                                               |                                                                   | 69                                                                           | 13                 |
| Diethyl phthalate                                  |                                                               |                                                                   |                                                                              | 3                                                             | 0                                                                   | 79                                                                           | 6                                                             | 12                                                                | 69                                                                           | 13                 |
| Phenols                                            |                                                               |                                                                   |                                                                              |                                                               |                                                                     |                                                                              |                                                               | 15                                                                | 200                                                                          | 81                 |
| Pentachlorophenol                                  | 1                                                             | 5                                                                 | 9                                                                            | 3                                                             | 0                                                                   | 1,050                                                                        | 3                                                             | 15                                                                |                                                                              |                    |
| Phenol                                             | 2                                                             | 4                                                                 | <1                                                                           | 3                                                             | 0                                                                   | 460                                                                          | 5                                                             | 13                                                                | 72                                                                           | 84                 |
| 2,4,6-Trichlorophenol                              | ī                                                             | 5                                                                 | 4                                                                            | 3                                                             | 0                                                                   | 360                                                                          | 5                                                             | 13                                                                | 72                                                                           | 8                  |
| Monocyclic aromatics                               |                                                               |                                                                   |                                                                              |                                                               |                                                                     | -                                                                            |                                                               |                                                                   | _                                                                            | _a                 |
| Benzene                                            |                                                               |                                                                   |                                                                              | 1                                                             | 8                                                                   | <1 <sup>c</sup>                                                              | 1                                                             | 17                                                                | <1                                                                           |                    |
| Toluene                                            |                                                               |                                                                   |                                                                              | 3                                                             | 0                                                                   | 4                                                                            | 9                                                             | 9                                                                 | 2                                                                            | 50                 |
|                                                    |                                                               |                                                                   |                                                                              |                                                               |                                                                     |                                                                              |                                                               |                                                                   |                                                                              |                    |
| Polychlorinated biphenyls<br>and related compounds |                                                               |                                                                   |                                                                              |                                                               |                                                                     |                                                                              |                                                               |                                                                   |                                                                              | a                  |
| Aroclor 1248                                       |                                                               |                                                                   |                                                                              | 2                                                             | 1                                                                   | <1                                                                           | 3                                                             | 15                                                                | < 1                                                                          | -a                 |
|                                                    | 1                                                             | 5                                                                 | <1                                                                           | 2                                                             | 1                                                                   | <1                                                                           | 4                                                             | 14                                                                | <1                                                                           |                    |
| Aroclor 1254                                       | 1                                                             | ,                                                                 | -•                                                                           | -                                                             | -                                                                   |                                                                              |                                                               |                                                                   |                                                                              |                    |
| Halogenated aliphatics                             |                                                               |                                                                   |                                                                              | 1                                                             | 2                                                                   | 40                                                                           | 1                                                             | 17                                                                | 3                                                                            | 93                 |
| Bromoform                                          |                                                               |                                                                   |                                                                              |                                                               | ó                                                                   | 40<br>19                                                                     | 3                                                             | 15                                                                | 2                                                                            | 89                 |
| Chloroform                                         | 1                                                             | 5                                                                 | 17                                                                           | 9                                                             | 0                                                                   | 19                                                                           | ,                                                             | 1,                                                                | -                                                                            |                    |
| Dibromochloromethane                               | 2                                                             | 4                                                                 | 1                                                                            |                                                               |                                                                     |                                                                              |                                                               |                                                                   |                                                                              | _a                 |
| Dichlorobromomethane                               | 1                                                             | 5                                                                 | 6                                                                            | 1                                                             | 2                                                                   | <1                                                                           | 3                                                             | 15                                                                | <1                                                                           | _p                 |
|                                                    | ī                                                             | 5                                                                 | <1                                                                           | 5                                                             | 4                                                                   | 1                                                                            | 6                                                             | 12                                                                | 9                                                                            |                    |
| Methylene chloride                                 | •                                                             | -                                                                 |                                                                              | 2                                                             | 4                                                                   | 3                                                                            | 1                                                             | 8                                                                 | <1                                                                           | 67                 |
| Tetrachloroethylene                                |                                                               |                                                                   |                                                                              | 2                                                             | i                                                                   |                                                                              | 3                                                             | 15                                                                | <1                                                                           | 50                 |
| l,l,l-Trichloroethane                              |                                                               | _                                                                 |                                                                              | 4                                                             | 5                                                                   | 2<br>1°                                                                      | •                                                             |                                                                   |                                                                              |                    |
| Trichloroethylene                                  | 1                                                             | 5                                                                 | 4                                                                            | 4                                                             | 3                                                                   | -                                                                            |                                                               |                                                                   |                                                                              |                    |
| Nonconventional pollutants                         |                                                               |                                                                   |                                                                              |                                                               |                                                                     |                                                                              |                                                               |                                                                   |                                                                              |                    |
|                                                    |                                                               |                                                                   |                                                                              | 3                                                             | 0                                                                   | 410                                                                          | 6                                                             | 12                                                                | 16                                                                           | 96                 |
| Abietic acid                                       |                                                               |                                                                   |                                                                              | 3                                                             | 0                                                                   | 470                                                                          | 15                                                            | 3                                                                 | 62                                                                           | 86                 |
| Dehydroabietic acid                                |                                                               |                                                                   |                                                                              | 3                                                             | 0                                                                   | 84                                                                           | 1                                                             | 17                                                                | <1                                                                           | 99                 |
| Isopimaric acid                                    |                                                               |                                                                   |                                                                              | 3                                                             | ŏ                                                                   | 41                                                                           | 5                                                             | 4                                                                 | 27                                                                           | 34                 |
| Pimaric acid                                       |                                                               |                                                                   | _                                                                            |                                                               | -                                                                   | 200                                                                          | 10                                                            | 8                                                                 | 65                                                                           | 77                 |
| Oleic acid                                         | 1                                                             | 5                                                                 | 1                                                                            | 3                                                             | 0                                                                   | 290<br>                                                                      | 10                                                            |                                                                   | 0,5                                                                          |                    |
| Linoleic acid                                      |                                                               |                                                                   |                                                                              | 5                                                             | 4                                                                   | 42°C                                                                         |                                                               |                                                                   | _                                                                            |                    |
|                                                    |                                                               |                                                                   |                                                                              | 3                                                             | 6                                                                   | 23 <sup>C</sup>                                                              | 1                                                             | 17                                                                | <1                                                                           | 96                 |
| Linolenic acid                                     |                                                               |                                                                   |                                                                              | 1                                                             | 2                                                                   | <1                                                                           |                                                               |                                                                   |                                                                              |                    |
| Xylenes                                            |                                                               |                                                                   |                                                                              | -                                                             | _                                                                   |                                                                              |                                                               |                                                                   |                                                                              |                    |

a Negligible removal.

b<sub>Negative removal.</sub>

Coxidation influent.

TABLE 16-23. WASTEPAPER MOLDED PRODUCTS SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                 |                                            |                                                       | S                                                                               | ubcategory:                                       | Wastepaper                                            | molded produc                                                                   |                                                   |                                                       |                                                             |                 |
|---------------------------------|--------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|-----------------|
|                                 |                                            | Raw water                                             |                                                                                 | λe                                                | ration influ                                          |                                                                                 |                                                   | Final efflue                                          |                                                             |                 |
|                                 | No. of<br>samples<br>in which<br>pollutant | No. of<br>samples<br>in which<br>pollutant<br>was not | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed, | No. of<br>samples<br>in which<br>pollutant<br>was | No. of<br>samples<br>in which<br>pollutant<br>was not | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed, | No. of<br>samples<br>in which<br>pollutant<br>was | No. of<br>samples<br>in which<br>pollutant<br>was not | Average concentration of pollutant in all samples analyzed, | Percent         |
| Pollutant                       | detected                                   | detected                                              | µg/L                                                                            | detected                                          | detected                                              | μg/L                                                                            | detected                                          | detected                                              | μg/L                                                        | removal         |
| Toxic pollutants                |                                            |                                                       |                                                                                 |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                             |                 |
| Metal                           |                                            |                                                       |                                                                                 |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                             |                 |
| Chromium                        | 2                                          | 0                                                     | 2                                                                               | 3                                                 | 0                                                     | 9                                                                               | 3                                                 | 0                                                     | 3                                                           | 67              |
| Copper                          | 2                                          | 0                                                     | 27                                                                              | 3                                                 | 0                                                     | 16                                                                              | 3                                                 | 0                                                     | 4                                                           | 75 <sub>a</sub> |
| Cyanide                         | 6                                          | 0                                                     | 10                                                                              | 3                                                 | 0                                                     | 9                                                                               | 3                                                 | 0                                                     | 9                                                           | -"              |
| Lead                            | 2                                          | 0                                                     | 4                                                                               | 3                                                 | 0                                                     | 22                                                                              | 3                                                 | 0                                                     | 12                                                          | 45<br>_a        |
| Mercury                         | 2                                          | 0                                                     | 3                                                                               | 3                                                 | 0                                                     | <1                                                                              | 3                                                 | 0                                                     | <1                                                          |                 |
| Nickel                          | 2                                          | 0                                                     | 6                                                                               | 3                                                 | 0                                                     | 23                                                                              | 3                                                 | 0                                                     | 3                                                           | 87              |
| Zinc                            | 2                                          | 0                                                     | 12                                                                              | 3                                                 | О                                                     | 390                                                                             | 3                                                 | 0                                                     | 52                                                          | 88              |
| Phthalates<br>Bis(2-ethylhexyl) |                                            |                                                       | _                                                                               |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                             |                 |
| phthalate                       | 2                                          | 0                                                     | 5                                                                               | 3                                                 | 0                                                     | 2                                                                               | 1                                                 | 2                                                     | <1                                                          | 50              |
| Phenols                         |                                            |                                                       |                                                                                 |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                             |                 |
| Pentachlorophenol               | 1                                          | 1                                                     | 2                                                                               | 1                                                 | 2                                                     | 2                                                                               | 1                                                 | 2                                                     | 2                                                           |                 |
| Phenol                          | 1                                          | 1                                                     | 2                                                                               | 3                                                 | 0                                                     | 8                                                                               | 1                                                 | 2                                                     | <1                                                          | 87              |
| Monocyclic aromatics            |                                            |                                                       |                                                                                 |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                             |                 |
| Benzene                         | 1                                          | 1                                                     | 2                                                                               |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                             |                 |
| Toluene                         | 1                                          | 1                                                     | <1                                                                              |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                             |                 |
| Halogenated aliphatics          |                                            |                                                       |                                                                                 |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                             |                 |
| Methylene chloride              | 1                                          | 1                                                     | <1                                                                              | 2                                                 | 1                                                     | <1                                                                              | 1                                                 | 2                                                     | <1                                                          | _a              |
| Nonconventional pollutants      |                                            |                                                       |                                                                                 |                                                   |                                                       |                                                                                 |                                                   |                                                       |                                                             |                 |
| Abietic acıd                    |                                            |                                                       |                                                                                 | 3                                                 | 0                                                     | 210                                                                             |                                                   |                                                       |                                                             |                 |
| Dehydroabletic acid             | 1                                          | 1                                                     | 37                                                                              | 3                                                 | 0                                                     | 450                                                                             | 1                                                 | 2                                                     | 57                                                          | 87              |
| Isopimaric acid                 | •                                          | •                                                     |                                                                                 | 3                                                 | 0                                                     | 48                                                                              | 3                                                 | 0                                                     | 94                                                          | _p              |
| Pimaric acid                    |                                            |                                                       |                                                                                 | 3                                                 | 0                                                     | 57                                                                              |                                                   |                                                       |                                                             |                 |
| Oleic acid                      |                                            |                                                       |                                                                                 | 3                                                 | 0                                                     | 490                                                                             | 3                                                 | 0                                                     | 360                                                         | 27              |
| Linoleic acid                   |                                            |                                                       |                                                                                 | 3                                                 | 0                                                     | 210                                                                             | 3                                                 | 0                                                     | 120                                                         | 41              |
| 9,10-Epoxystearic acid          |                                            |                                                       |                                                                                 | 1                                                 | 2                                                     | 10                                                                              | 1                                                 | 2                                                     | 9                                                           | 10              |

aNegligible removal.

bNegative removal.

TABLE 16-24. WASTEPAPER CONSTRUCTION PRODUCTS SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                     |                                   | Subcategory                                | /: Wastepaper                                                      | construction                      |                                   |                                                   |
|-------------------------------------|-----------------------------------|--------------------------------------------|--------------------------------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------------|
|                                     |                                   | Raw water                                  |                                                                    |                                   | Discharge, Po                     |                                                   |
|                                     | No. of samples in which pollutant | No. of<br>samples<br>in which<br>pollutant | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples | No. of samples in which pollutant | No. of samples in which pollutant | Average concentration of pollutant in all samples |
| Pollutant                           | was<br>detected                   | was not<br>detected                        | analyzed,<br>µg/L                                                  | was<br>detected                   | was not<br>detected               | analyzed,<br>μg/L                                 |
| Toxic pollutants                    |                                   |                                            |                                                                    |                                   |                                   |                                                   |
| Metals                              |                                   |                                            |                                                                    |                                   |                                   |                                                   |
| Chromium                            | 5                                 | 0                                          | 24                                                                 | 9                                 | 0                                 | 81                                                |
| Copper                              | 5                                 | 0                                          | 40                                                                 | 9                                 | 0                                 | 140                                               |
| Cyanide                             | 13                                | 0                                          | 21                                                                 | 9                                 | 0                                 | 350                                               |
| Lead                                | 6                                 | 0                                          | 38                                                                 | 9                                 | 0                                 | <b>26</b> 0                                       |
| Mercury                             | 4                                 | 0                                          | <1                                                                 | 9                                 | 0                                 | <1                                                |
| Nickel                              | 5                                 | 0                                          | 29                                                                 | 9                                 | 0                                 | 40                                                |
| Zinc                                | 5                                 | 0                                          | 240                                                                | 9                                 | Ō                                 | 1,000                                             |
| Phthalates<br>Bis(2-ethylhexyl)     |                                   |                                            |                                                                    |                                   |                                   |                                                   |
| phthalate                           | 2                                 | 3                                          | 20                                                                 | 8                                 | 1                                 | 30                                                |
| Butyl benzil phthalate              | 1                                 | 4                                          | 2                                                                  | 3                                 | 6                                 | 3                                                 |
| Di-n-butyl phthalate                | i                                 | 4                                          | <1                                                                 | 7                                 | 2                                 | 16                                                |
| Diethyl phthalate                   | 1                                 | 4                                          | <1                                                                 | 6                                 | 3                                 | 29                                                |
|                                     | 1                                 | •                                          | `-                                                                 | O                                 | 3                                 | 23                                                |
| Phenols                             |                                   |                                            |                                                                    |                                   |                                   |                                                   |
| Pentacnlorophenol                   | 1                                 | 4                                          | 6                                                                  | 4                                 | 4                                 | 35                                                |
| Phenol                              | 1                                 | 4                                          | 17                                                                 | 8 .                               | 1                                 | 100                                               |
| Monocyclic aromatics                |                                   |                                            |                                                                    |                                   |                                   |                                                   |
| Benzene                             |                                   |                                            |                                                                    | 2                                 | 7                                 | <1                                                |
| Ethylbenzene                        | 1                                 | 4                                          | <1                                                                 | 2                                 | 7                                 | 1                                                 |
| Toluene                             | 1                                 | 4                                          | 14                                                                 | 7                                 | 2                                 | 81                                                |
|                                     | -                                 | 4                                          | 14                                                                 | ,                                 | 2                                 | 01                                                |
| Polychlorinated biphenyls           |                                   |                                            |                                                                    |                                   |                                   |                                                   |
| and related compounds               |                                   |                                            |                                                                    |                                   |                                   |                                                   |
| Aroclor 1248                        |                                   |                                            |                                                                    | 2                                 | 7                                 | 1                                                 |
| Aroclor 1254                        |                                   |                                            |                                                                    | 2                                 | 7                                 | <1                                                |
| Malogenated aliphatics              |                                   |                                            |                                                                    |                                   |                                   |                                                   |
| Chloroform                          | 2                                 | 3                                          | 10                                                                 | 2                                 | 7                                 | 3                                                 |
| Dichlorobromomethane                | 1                                 | 4                                          | 6                                                                  | 1                                 | 8                                 | 3<br>2                                            |
| Methylene chloride                  | 2                                 | 3                                          | <1                                                                 | 3                                 | 8<br>6                            | <1                                                |
| Dibromochloromethane                | 1                                 | 4                                          | 2                                                                  | 3<br>1                            |                                   |                                                   |
|                                     | 1                                 | 4                                          | 2                                                                  |                                   | 8                                 | <1                                                |
| Tetrachloroethylene                 | ,                                 | 4                                          | ,                                                                  | 1                                 | 8                                 | <1                                                |
| 1,1,1-Trichloroethane               | 1                                 | 4                                          | 6                                                                  | 6                                 | 3                                 | 6                                                 |
| Trichloroethylene                   | 1                                 | 4                                          | <1                                                                 | 5                                 | 4                                 | 7                                                 |
| Trichlorofluoromethane<br>Bromoform | ,                                 | 4                                          | 3.4                                                                | 1                                 | 8                                 | <1                                                |
|                                     | 1                                 | 4                                          | 14                                                                 |                                   |                                   |                                                   |
| Nonconventional pollutants          |                                   |                                            |                                                                    |                                   |                                   |                                                   |
| Abietic acid                        | _                                 |                                            |                                                                    | 8                                 | 1                                 | 4,200                                             |
| Dehydroabietic acid                 | 1                                 | 4                                          | 94                                                                 | 8                                 | 1                                 | 900                                               |
| Isopimaric acid                     | 1                                 | 4                                          | 42                                                                 | 8                                 | 1                                 | 960                                               |
| Pimaric acid                        | 1                                 | 4                                          | 14                                                                 | 8                                 | 1                                 | 470                                               |
| oleic acid                          | 1                                 | 4                                          | 110                                                                | 9                                 | 0                                 | 1,300                                             |
| Linoleic acıd                       | 1                                 | 4                                          | 50                                                                 | 8                                 | 1                                 | 850                                               |
| Xylenes                             | 1                                 | 4                                          | 3                                                                  | 8                                 | 1                                 | 16                                                |
|                                     |                                   |                                            | -                                                                  | _                                 | _                                 |                                                   |

Date: 6/23/80

TABLE 16-25. NONINTEGRATED FINE SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                              |                                            |                                            |                                           |                                            |                                            | tegrated fine                             |                                            |                                            |                                  |                       |
|------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------|-----------------------|
|                              |                                            | Raw water                                  |                                           | Ae                                         | ration influ                               |                                           |                                            | Final efflue                               |                                  |                       |
|                              |                                            |                                            | Average<br>concentra-                     |                                            |                                            | Average<br>concentra-                     |                                            |                                            | Average<br>concentra-            |                       |
|                              | No. of<br>samples<br>in which<br>pollutant | No. of<br>samples<br>in which<br>pollutant | tion of<br>pollutant<br>in all<br>samples | No. of<br>samples<br>in which<br>pollutant | No. of<br>samples<br>in which<br>pollutant | tion of<br>pollutant<br>in all<br>samples | No. of<br>samples<br>in which<br>pollutant | No. of<br>samples<br>in which<br>pollutant | tion of pollutant in all samples | <b>D</b>              |
| Pollutant                    | was<br>detected                            | was not<br>detected                        | analyzed,<br>µg/L                         | was<br>detected                            | was not<br>detected                        | analyzed,<br>µg/L                         | was<br>detected                            | was not<br>detected                        | analyzed,<br>µg/L                | Percent<br>removal    |
| Toxic pollutants             |                                            |                                            |                                           |                                            |                                            |                                           |                                            |                                            |                                  |                       |
| Metals                       |                                            |                                            |                                           |                                            |                                            |                                           |                                            |                                            |                                  |                       |
| Chromium                     | 3                                          | 0                                          | <1                                        | 6                                          | 0                                          | 3                                         | 9                                          | 0                                          | 1                                | 67                    |
| Copper                       | 3                                          | 0                                          | 9                                         | 6                                          | O                                          | 13                                        | 9                                          | 0                                          | 18                               | 67<br>_a<br>_b<br>_b  |
| Lead                         | 3                                          | 0                                          | 6                                         | 6                                          | 0                                          | 3                                         | 9                                          | 0                                          | 6                                | -a                    |
| Mercury                      | 2                                          | 0                                          | <1                                        | . 6                                        | 0                                          | <1                                        | 9                                          | 0                                          | <1                               | _B                    |
| Nickel                       | 3                                          | 0                                          | 4                                         | 6                                          | 0                                          | 5                                         | 9                                          | 0                                          | 4                                | 20                    |
| Zinc                         | 3                                          | 0                                          | 26                                        | 6                                          | 0                                          | 55                                        | 9                                          | 0                                          | 51                               | 7                     |
| Phthalates Bis(2-ethylhexyl) |                                            |                                            |                                           |                                            |                                            |                                           |                                            |                                            |                                  | _a                    |
| phthalate                    | 1                                          | 2                                          | 1                                         | 3                                          | 3                                          | 3                                         | 7                                          | 2                                          | 290                              |                       |
| Phenols                      |                                            |                                            |                                           |                                            |                                            |                                           |                                            |                                            |                                  |                       |
| Phenol                       | 1                                          | 2                                          | <1                                        | 4                                          | 2                                          | 6                                         | 3                                          | 6                                          | 13                               | _a                    |
| Monocyclic aromatics         |                                            |                                            |                                           |                                            |                                            |                                           |                                            |                                            |                                  |                       |
| Benzene                      | 1                                          | 2                                          | <1                                        |                                            |                                            |                                           | 2                                          | 7                                          | <1                               |                       |
| Toluene                      | 1                                          | 2                                          | <1                                        |                                            |                                            |                                           | 3                                          | 6                                          | <1                               |                       |
| Halogenated aliphatics       |                                            |                                            |                                           |                                            |                                            |                                           |                                            |                                            |                                  |                       |
| Chloroform                   |                                            |                                            |                                           | 3                                          | 3                                          | 6                                         | 6                                          | 3                                          | 3                                | <sup>50</sup> b<br>_a |
| 1,2-Dichloroethane           |                                            |                                            |                                           | 1                                          | 5                                          | <1                                        | 3                                          | 6                                          | <1                               | -B                    |
| Methylene chloride           |                                            |                                            |                                           | 1                                          | 5                                          | <1                                        | 4                                          | 5                                          | 2                                | _ <b>a</b>            |
| Nonconventional pollutants   |                                            |                                            |                                           |                                            |                                            |                                           |                                            |                                            |                                  |                       |
| Abietic acid                 |                                            |                                            |                                           | 4                                          | 2                                          | 210                                       |                                            |                                            |                                  |                       |
| Dehydroabietic acid          | 1                                          | 2                                          | 3                                         | 6                                          | 0                                          | 440                                       | 7                                          | 2                                          | 52                               | 88                    |
| Isopimaric acid              |                                            |                                            |                                           | 4                                          | 2                                          | 40                                        |                                            |                                            |                                  |                       |
| Pimaric acid                 |                                            |                                            |                                           | 3                                          | 3                                          | 12                                        |                                            |                                            |                                  |                       |
| Oleic acid                   |                                            |                                            |                                           | 2                                          | 4                                          | 19                                        |                                            |                                            |                                  |                       |
| Linoleic acid                |                                            |                                            |                                           | 1                                          | 5                                          | 33                                        |                                            |                                            |                                  |                       |

<sup>&</sup>lt;sup>a</sup>Negative removal.

b<sub>Negligible removal.</sub>

TABLE 16-26. NONINTEGRATED-TISSUE SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                              |                                                     |                                             |                                         | Subcategor                                          |                                             | rated-tissue                            |                                         |                                             |                                         |                    |
|------------------------------|-----------------------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|--------------------|
|                              |                                                     | Raw water                                   |                                         | Ae                                                  | ration influ                                |                                         |                                         | Final efflue                                |                                         |                    |
|                              | No. of                                              | No. of                                      | Average<br>concentra-<br>tion of        | No. of                                              | No. of                                      | Average<br>concentra-<br>tion of        | No. of                                  | No. of                                      | Average<br>concentra-<br>tion of        |                    |
| Pollutant                    | samples<br>in which<br>pollutant<br>was<br>detected | samples in which pollutant was not detected | pollutant in all samples analyzed, ug/L | samples<br>in which<br>pollutant<br>was<br>detected | samples in which pollutant was not detected | pollutant in all samples analyzed, ug/L | samples in which pollutant was detected | samples in which pollutant was not detected | pollutant in all samples analyzed, pg/L | Percent<br>removal |
| Toxic pollutants             |                                                     |                                             |                                         |                                                     |                                             |                                         |                                         |                                             |                                         |                    |
| Metals                       |                                                     |                                             |                                         |                                                     |                                             |                                         |                                         |                                             |                                         |                    |
| Chromium                     | 1                                                   | 1                                           | <1                                      | 3                                                   | 0                                           | 2                                       | 4                                       | 2                                           | 2                                       | _a                 |
| Copper                       | 1                                                   | 1                                           | 4                                       | 3                                                   | 0                                           | 19                                      | 4                                       | 2                                           | 15                                      | 21                 |
| Lead                         | 1                                                   | 1                                           | <1                                      | 3                                                   | 0                                           | 2                                       | 4                                       | 2                                           | 1                                       | 50 <sub>b</sub>    |
| Mercury                      | 2                                                   | 0                                           | <1                                      | 3                                                   | 0                                           | <1                                      | 6                                       | 0                                           | <1                                      | _b<br>a            |
| Nickel                       | 1                                                   | 1                                           | <1                                      | 3                                                   | 0                                           | 2                                       | 4                                       | 2                                           | 2                                       | _a                 |
| Zinc                         | 2                                                   | 0                                           | 32                                      | 3                                                   | 0                                           | 53,000                                  | 6                                       | 0                                           | 56                                      | 99                 |
| Phthalates Bis(2-ethylhexyl) |                                                     |                                             |                                         |                                                     |                                             |                                         |                                         |                                             |                                         |                    |
| phthalate                    | 2                                                   | О                                           | 18                                      | 3                                                   | 0                                           | 30<br>800                               | 5                                       | 1                                           | 15                                      | 50                 |
| Butyl benzyl phthalate       |                                                     |                                             |                                         | 3                                                   | 0                                           | 800<br><1°                              | 1                                       | 5                                           | 3                                       | 99                 |
| Di-n-butyl phthalate         |                                                     |                                             |                                         | 1                                                   | 2                                           | 12°                                     |                                         |                                             |                                         |                    |
| Di <b>et</b> hyl phthalate   |                                                     |                                             |                                         | 1                                                   | 2                                           | 12                                      |                                         |                                             |                                         |                    |
| Phenols                      |                                                     | ,                                           | 2                                       | 2                                                   | 0                                           | 5                                       | 4                                       | 2                                           | 3                                       | 40                 |
| Phenol                       | 1                                                   | 1                                           | 3                                       | 3                                                   | 0                                           | 5                                       | 4                                       | 2                                           | 3                                       | 40                 |
| Monocyclic aromatics         |                                                     |                                             |                                         | 2                                                   | 0                                           | 13,000 c                                | 3                                       | 3                                           | 74                                      | 99                 |
| Ethylbenzene                 |                                                     |                                             |                                         | 3                                                   |                                             | 13,000 c                                | 3                                       | 3                                           | 3                                       | 98                 |
| Toluene                      |                                                     |                                             |                                         | 3                                                   | 0                                           | 130                                     | 3                                       | 3                                           | 3                                       | 90                 |
| Halogenated aliphatics       |                                                     |                                             |                                         |                                                     | _                                           | 3 <sup>C</sup>                          | _                                       | _                                           | _                                       |                    |
| Chloroform                   |                                                     |                                             |                                         | 3                                                   | 0                                           | 3                                       | 3                                       | 3                                           | 2                                       | <sup>33</sup> b    |
| Tetrachloroethylene          |                                                     |                                             |                                         | _                                                   |                                             | 4.3                                     | 3                                       | 3                                           | 4                                       | -                  |
| Trichloroethylene            |                                                     |                                             |                                         | 1                                                   | 1                                           | <1                                      |                                         |                                             |                                         |                    |
| Nonconventional pollutants   |                                                     |                                             |                                         |                                                     |                                             |                                         |                                         |                                             |                                         |                    |
| Abietıc                      |                                                     |                                             |                                         | 3                                                   | 0                                           | 53 <sup>C</sup>                         |                                         |                                             |                                         |                    |
| Dehydroabietic acid          |                                                     |                                             |                                         | 3                                                   | 0                                           | 210 <sup>C</sup>                        | 3                                       | 3                                           | 49                                      | 77                 |
| Isopimaric acid              |                                                     |                                             |                                         | 3                                                   | 0                                           | 37 <sup>C</sup>                         | 1                                       | 5                                           | <1                                      | 97                 |
| Pimaric acid                 |                                                     |                                             |                                         | 2                                                   | 1                                           | 10 <sup>c</sup>                         |                                         |                                             |                                         |                    |
| Oleic acid                   |                                                     |                                             |                                         | 3                                                   | 0                                           | 13                                      | 4                                       | 2                                           | 27                                      | _p                 |
| Xylenes                      |                                                     |                                             |                                         | 3                                                   | 0                                           | 14,000                                  | 3                                       | 3                                           | 400                                     | 9 <b>7</b>         |

<sup>&</sup>lt;sup>a</sup>Negligible removal.

b Negative removal.

cFlotation influent.

TABLE 16-27. NONINTEGRATED-MISCELLANEOUS SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                                    |                                                               |                                                                   | Su                                                                                      |                                                               |                                                                   | d-miscellaneo                                                                           | us                                                            |                                                                   |                                                                    |                    |
|--------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|
|                                                                    |                                                               | Raw water                                                         |                                                                                         | (ları                                                         | fication inf                                                      |                                                                                         |                                                               | Final efflue                                                      |                                                                    |                    |
| Pollutant                                                          | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>µg/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>µg/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average concentra- tion of pollutant in all samples analyzed, µg/L | Percent<br>removal |
| Toxic pollutants                                                   |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                    |                    |
| Metals                                                             |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                    |                    |
| Chromium                                                           | 3                                                             | 0                                                                 | 2                                                                                       | 9                                                             | 0                                                                 | 13                                                                                      | 8                                                             | 1                                                                 | 2                                                                  | 85                 |
| Copper                                                             | 3                                                             | 0                                                                 | 6                                                                                       | 9                                                             | 0                                                                 | 46                                                                                      | 10                                                            | 1                                                                 | 8                                                                  | 83 <sub>a</sub>    |
| Cyanide                                                            | 1                                                             | О                                                                 | 9                                                                                       | 3                                                             | 0                                                                 | 9                                                                                       | 3                                                             | 0                                                                 | 9                                                                  |                    |
| Lead                                                               | 3                                                             | О                                                                 | 14                                                                                      | 9                                                             | 0                                                                 | 14                                                                                      | 9                                                             | 0                                                                 | 5                                                                  | 6 <b>4</b> a       |
| Mercury                                                            | 3                                                             | 0                                                                 | <1                                                                                      | 9                                                             | 0                                                                 | <1                                                                                      | 9                                                             | 0                                                                 | <1                                                                 | -                  |
| Nickel                                                             | 3                                                             | 0                                                                 | 3                                                                                       | 8                                                             | 1                                                                 | 20                                                                                      | 9                                                             | О                                                                 | 5                                                                  | 75                 |
| Zinc                                                               | 3                                                             | 0                                                                 | 16                                                                                      | 9                                                             | 0                                                                 | 540                                                                                     | 9                                                             | 0                                                                 | 140                                                                | 75                 |
| Phthalates Bis(2-ethylhexyl) phthalate                             | 3                                                             | 0                                                                 | 6                                                                                       | 9                                                             | 0                                                                 | 26                                                                                      | 8                                                             | 1                                                                 | 6                                                                  | 62                 |
| Phenols                                                            |                                                               |                                                                   |                                                                                         | _                                                             | _                                                                 | 2.4                                                                                     | ,                                                             |                                                                   | 8                                                                  | 67                 |
| Pentachlorophenol                                                  | _                                                             | _                                                                 | * -                                                                                     | 2                                                             | 7                                                                 | 2 <b>4</b><br>5                                                                         | 1<br>5                                                        | 8<br>4                                                            | 2                                                                  | 60                 |
| Phenol                                                             | 2                                                             | 1                                                                 | 58                                                                                      | 6                                                             | 3<br>6                                                            | 6                                                                                       | 3                                                             | 6                                                                 | 6                                                                  | •°_a               |
| 2,4,6-Trichlorophenol                                              | 1                                                             | 2                                                                 | <1                                                                                      | 3                                                             | 6                                                                 | ь                                                                                       | 3                                                             | 6                                                                 | 6                                                                  |                    |
| Monocyclic aromatics                                               |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                    | _a                 |
| Benzene                                                            | 1                                                             | 2                                                                 | <1                                                                                      | 2                                                             | 7                                                                 | <1                                                                                      | 1                                                             | 8                                                                 | <1                                                                 | _ b                |
| Ethylbenzene                                                       |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         | 2                                                             | 7                                                                 | 4                                                                  | _ b                |
| Toluene                                                            |                                                               |                                                                   |                                                                                         | 1                                                             | 8                                                                 | <1                                                                                      | 5                                                             | 4                                                                 | 2                                                                  |                    |
| Polychlorinated biphenyls<br>and related compounds<br>Aroclor 1254 |                                                               |                                                                   |                                                                                         | 1                                                             | 6                                                                 | 1                                                                                       | 1                                                             | 6                                                                 | <1                                                                 | _a                 |
|                                                                    |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                    |                    |
| Halogenated aliphatics                                             |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 3                                                                                       | 3                                                             | 6                                                                 | 1                                                                  | 67                 |
| Chloroform 1,1,1-Trichloroethane                                   | 1                                                             | 2                                                                 | 4                                                                                       | 6                                                             | 3                                                                 | 7                                                                                       | 6                                                             | 3                                                                 | 4                                                                  | 43                 |
| 1,1,1-111Chloroethane                                              | •                                                             | •                                                                 | ,                                                                                       | •                                                             | -                                                                 |                                                                                         |                                                               |                                                                   |                                                                    |                    |
| Nonconventional pollutants                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                    |                    |
| Abietıc acid                                                       |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 59                                                                                      |                                                               |                                                                   |                                                                    |                    |
| Dehydroabletic acid                                                | 1                                                             | 2                                                                 | 3                                                                                       | 8                                                             | 1                                                                 | 120                                                                                     | 6                                                             | 3                                                                 | 93                                                                 | 23                 |
| Isopimaric acid                                                    |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 28                                                                                      | 1.                                                            | 8                                                                 | 2                                                                  | 93                 |
| Pimaric acid                                                       |                                                               |                                                                   |                                                                                         | 2                                                             | 7                                                                 | 11                                                                                      |                                                               |                                                                   |                                                                    |                    |
| Linoleic acid                                                      | 1                                                             | 2                                                                 | 19                                                                                      | 1                                                             | 8                                                                 | 9                                                                                       |                                                               |                                                                   |                                                                    | ь                  |
| Xylenes                                                            |                                                               |                                                                   |                                                                                         | 3                                                             | 6                                                                 | 3                                                                                       | 3                                                             | 6                                                                 | 49                                                                 | -                  |

a<sub>Negligible</sub> removal.

b<sub>Negative removal.</sub>

TABLE 16-28. NONINTEGRATED-LIGHTWEIGHT SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                                      |                                                               | Raw water                                                         |                                                                                         | λe                                                            | ration influ                                                      | ent                                                                                     |                                                               | Final efflue                                                      | nt                                                                                      |                    |
|----------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------|
| Pollutant                                                            | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>µg/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>µg/L | No. of<br>samples<br>in which<br>pollutant<br>was<br>detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | Average<br>concentra-<br>tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>pg/L | Percent<br>removal |
| Toxic pollutants                                                     |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                    |
| Metals                                                               |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                    |
| Chromium                                                             | 1                                                             | 0                                                                 | 2                                                                                       | 2                                                             | 1                                                                 | 2                                                                                       | 2                                                             | 1                                                                 | 2                                                                                       | _a                 |
| Copper                                                               | ī                                                             | 0                                                                 | 23                                                                                      | 2                                                             | 1                                                                 | 19                                                                                      | 2                                                             | 1                                                                 | 4                                                                                       | <sup>79</sup> a    |
| Cyanide                                                              | 3                                                             | Ō                                                                 | 10                                                                                      | 3                                                             | 0                                                                 | 9                                                                                       | 3                                                             | O                                                                 | 9                                                                                       | _a                 |
| Lead                                                                 | 1                                                             | 0                                                                 | 4                                                                                       | 2                                                             | 1                                                                 | 6                                                                                       | 2                                                             | 1                                                                 | <1                                                                                      | 83                 |
| Mercury                                                              | 1                                                             | 0                                                                 | <1                                                                                      | 3                                                             | 0                                                                 | <1                                                                                      | 3                                                             | 0                                                                 | <1                                                                                      | 83<br>_a<br>_a     |
| Nickel                                                               | 1                                                             | 0                                                                 | 2                                                                                       | 2                                                             | 1                                                                 | 1                                                                                       | 2                                                             | 1                                                                 | <1                                                                                      |                    |
| Zinc                                                                 | 1                                                             | 0                                                                 | 5                                                                                       | 3                                                             | 0                                                                 | 16                                                                                      | 2                                                             | 1                                                                 | 4                                                                                       | 75                 |
| Phthalates<br>Bıs(2-ethylhexyl)<br>phthalate<br>Di-n-butyl phthalate | 1                                                             | o                                                                 | 4                                                                                       | 3<br>1                                                        | 0<br>2                                                            | 5<br><1                                                                                 | 3<br>1                                                        | 0<br>2                                                            | 7<br>2                                                                                  | _b<br>_b           |
| Phenols<br>Phenol                                                    | 1                                                             | 0                                                                 | 7                                                                                       | 2                                                             | 2                                                                 | 2                                                                                       | 2                                                             | 1                                                                 | 2                                                                                       | _a                 |
| Monocyclic aromatics<br>Ethylbenzene<br>Toluene                      |                                                               |                                                                   |                                                                                         | 2<br>2                                                        | 1                                                                 | 2<br>2                                                                                  | 2<br>2                                                        | 1                                                                 | <1<br><1                                                                                | 50<br>50           |
| Halogenated aliphatics<br>Chloroform<br>Methylene chloride           | 1                                                             | 0                                                                 | 2                                                                                       | 3<br>1                                                        | 0<br>2                                                            | 27<br><1                                                                                | 3<br>2                                                        | 0<br>1                                                            | 3<br><1                                                                                 | 89<br>_a           |
| Nonconventional pollutants                                           |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                                                               |                                                                   |                                                                                         |                    |
| Xylenes                                                              |                                                               |                                                                   | 2                                                                                       | 1                                                             | 5                                                                 |                                                                                         |                                                               |                                                                   |                                                                                         |                    |

a Negligible removal.

b<sub>Negative removal.</sub>

TABLE 16-29. NONINTEGRATED-FILTER AND NONWOVEN SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATION [1]

|                                                                    |                                         | Raw water                                                         |                                                                |                                                | ration influ                                                      | ilter and non                                    |                                                | Final efflue                                                      | nt                                                             |                    |
|--------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|--------------------|
|                                                                    |                                         |                                                                   | Average<br>concentra-                                          |                                                |                                                                   | Average<br>concentra-                            |                                                |                                                                   | Average<br>concentra-                                          |                    |
| Pollutant                                                          | samples<br>in which<br>pollutant<br>was | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>ug/L | No. of samples in which pollutant was detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | tion of pollutant in all samples analyzed,  µg/L | No. of samples in which pollutant was detected | No. of<br>samples<br>in which<br>pollutant<br>was not<br>detected | tion of<br>pollutant<br>in all<br>samples<br>analyzed,<br>ug/L | Percent<br>removal |
| Toxic pollutants                                                   |                                         |                                                                   |                                                                |                                                |                                                                   |                                                  |                                                |                                                                   |                                                                |                    |
| Metals                                                             |                                         |                                                                   |                                                                |                                                |                                                                   |                                                  |                                                |                                                                   |                                                                |                    |
| Chromium                                                           | 1                                       | 1                                                                 | <1                                                             | 3                                              | 0                                                                 | 6                                                | 5                                              | 1                                                                 | 2                                                              | 67                 |
| Copper                                                             | 1                                       | 1                                                                 | 4                                                              | 3                                              | 0                                                                 | 61                                               | 5                                              | 1                                                                 | 7                                                              | 88                 |
| Cyanide                                                            | 3                                       | 0                                                                 | 10                                                             | 3                                              | 0                                                                 | 11                                               | 3                                              | 0                                                                 | 9                                                              | 18                 |
| Lead                                                               | 1                                       | 1                                                                 | <1                                                             | 3                                              | 0                                                                 | 4                                                | 5                                              | 1                                                                 | 3                                                              | 25                 |
| Mercury                                                            | 2                                       | 0                                                                 | <1                                                             | 3                                              | 0                                                                 | <1                                               | 6                                              | 0                                                                 | <1                                                             | _a                 |
| Nickel                                                             | 1                                       | 1                                                                 | <1                                                             | 3                                              | 0                                                                 | 2                                                | 5                                              | 1                                                                 | 2                                                              | _a                 |
| Zinc                                                               | 2                                       | ο.                                                                | 3                                                              | 3                                              | 0                                                                 | 160                                              | 6                                              | 0                                                                 | 34                                                             | 79                 |
| Phthalates<br>Bis(2-ethylhexyl)                                    |                                         |                                                                   |                                                                |                                                |                                                                   |                                                  |                                                |                                                                   |                                                                |                    |
| phthalate                                                          | 1                                       | 1                                                                 | 39                                                             | 3                                              | 0                                                                 | 85                                               | 4                                              | 2                                                                 | 16                                                             | 81                 |
| Phenols                                                            |                                         |                                                                   |                                                                |                                                |                                                                   |                                                  |                                                |                                                                   |                                                                |                    |
| Phenol                                                             | 1                                       | 1                                                                 | 2                                                              | 3                                              | 0                                                                 | 65                                               | 3                                              | 3                                                                 | 6                                                              | 91                 |
| Monocyclic aromatics Benzene                                       | 1                                       | 1                                                                 | 2                                                              |                                                |                                                                   |                                                  | 1                                              | 5                                                                 | <1                                                             |                    |
| Ethylbenzene                                                       |                                         |                                                                   |                                                                | 1                                              | 2                                                                 | <1                                               |                                                |                                                                   |                                                                |                    |
| Toluene                                                            |                                         |                                                                   |                                                                | 1                                              | 2                                                                 | 2                                                |                                                |                                                                   |                                                                |                    |
| Polychlorinated biphenyls<br>and related compounds<br>Aroclor 1254 | 1                                       | 1                                                                 | <b>&lt;1</b>                                                   | 2                                              | 0                                                                 | 15 <sup>b</sup>                                  | 1                                              | 4                                                                 | <1                                                             | 93                 |
|                                                                    | •                                       | •                                                                 | •                                                              | ~                                              | Ü                                                                 | -3                                               | -                                              | -                                                                 |                                                                | ,,                 |
| Nonconventional pollutants                                         |                                         |                                                                   |                                                                | _                                              | _                                                                 |                                                  |                                                |                                                                   |                                                                |                    |
| Dehydroabietic acid<br>Linoleic acid                               |                                         |                                                                   |                                                                | 2                                              | 1                                                                 | 33                                               | 1                                              | 5                                                                 | 2                                                              |                    |

a Negligible removal.

 $<sup>^{\</sup>mathrm{b}}$ Clarifier influent.

TABLE 16-30. NONINTEGRATED-PAPERBOARD SUBCATEGORY - SUMMARY OF VERIFICATION DATA FOR TOXIC AND NONCONVENTIONAL POLLUTANT CONCENTRATIONS [1]

|                                           |                               |                               |                                                         |                               |                                  | ted-paperboar                                           | d                             |                                  |                                                         |                      |
|-------------------------------------------|-------------------------------|-------------------------------|---------------------------------------------------------|-------------------------------|----------------------------------|---------------------------------------------------------|-------------------------------|----------------------------------|---------------------------------------------------------|----------------------|
|                                           |                               | Raw water                     |                                                         | Ae                            | ration influ                     |                                                         |                               | Final efflue                     |                                                         |                      |
|                                           | No. of<br>samples<br>in which | No. of<br>samples<br>in which | Average<br>concentra-<br>tion of<br>pollutant<br>in all | No. of<br>samples<br>in which | No. of<br>samples<br>in which    | Average<br>concentra-<br>tion of<br>pollutant<br>in all | No. of<br>samples<br>in which | No. of<br>samples                | Average<br>concentra-<br>tion of<br>pollutant<br>in all |                      |
| Pollutant                                 | pollutant was detected        | pollutant was not detected    | samples<br>analyzed,<br>pg/L                            | pollutant<br>was<br>detected  | pollutant<br>was not<br>detected | samples<br>analyzed,<br>µg/L                            | pollutant<br>was<br>detected  | pollutant<br>was not<br>detected | samples<br>analyzed,<br>µg/L                            | Percent<br>removal   |
| Toxic pollutants                          |                               |                               |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                      |
| Metals                                    |                               |                               |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                      |
| Chromium                                  | 2                             | 0                             | 2                                                       | 3                             | 0                                | 26                                                      | 6                             | 0                                | 6                                                       | 77                   |
| Copper                                    | 2                             | 0                             | 4                                                       | 3                             | 0                                | 27                                                      | 6                             | 0                                | 4                                                       | 85<br>_a<br>_a<br>_b |
| Cyanide                                   | 6                             | 0                             | 9                                                       | 3                             | 0                                | 9                                                       | 6                             | 0                                | 26                                                      | _a                   |
| Lead                                      | 2                             | 0                             | 2                                                       | 3                             | 0                                | 2                                                       | 6                             | 0                                | 9                                                       | _a                   |
| Mercury                                   | 2                             | 0                             | <1                                                      | 3                             | 0                                | <1                                                      | 6                             | 0                                | <1                                                      | _p                   |
| Nickel                                    | 2                             | 0                             | 3                                                       | 3                             | 0                                | 18                                                      | 6                             | 0                                | 5                                                       | 72                   |
| Zinc                                      | 2                             | 0                             | 15                                                      | 3                             | 0                                | 1,300                                                   | 6                             | 0                                | 72                                                      | 94                   |
| Phthalates Bis(2-ethylhexyl)              |                               |                               |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                      |
| phthalate                                 | 1                             | 1                             | 42                                                      | 3                             | 0                                | 7                                                       | 3                             | 3                                | 2                                                       | 71                   |
| Dı-n-butyl phthalate<br>Dıethyl phthalate |                               |                               |                                                         | 3<br>1                        | 0<br>2                           | 180<br>4 <sup>C</sup>                                   | 2                             | 4                                | 29                                                      | _a                   |
| Phenols<br>Phenol                         |                               |                               |                                                         | 3                             | 0                                | 6                                                       | 3                             | 3                                | 1                                                       | 83                   |
| Monocyclic aromatics Benzene              |                               |                               |                                                         | 1                             | 2                                | <1                                                      | 1                             | 5                                | <1                                                      | _b                   |
| Ethylbenzene                              |                               |                               |                                                         | 3                             | 0                                | <1<br>3<br>3<br>3                                       | 2                             | 4                                | <1                                                      | 67                   |
| Toluene                                   |                               |                               |                                                         | 3                             | 0                                | 3 <sup>c</sup>                                          | 4                             | 2                                | <1                                                      | 67                   |
| Halogenated aliphatics                    |                               |                               |                                                         |                               |                                  | <1 <sup>b</sup>                                         |                               |                                  |                                                         |                      |
| Methylene chloride<br>Tetrachloroethylene | 1                             | 1                             | 3                                                       | 1<br>3                        | <b>2</b><br>0                    | 3                                                       |                               |                                  |                                                         |                      |
| Nonconventional pollutants                |                               |                               |                                                         |                               |                                  |                                                         |                               |                                  |                                                         |                      |
| Abietic acid                              |                               |                               |                                                         | 1                             | 2                                | 7                                                       |                               |                                  |                                                         |                      |
| Dehydroabietic acid                       |                               |                               |                                                         | 3                             | 0                                | 160                                                     | 4                             | 2                                | 64                                                      | 58                   |
| Isopimaric acid                           |                               |                               |                                                         | 3                             | 0                                | 8_                                                      |                               |                                  |                                                         |                      |
| Pimaric acid                              |                               |                               |                                                         | 3                             | 0                                | 8<br>25                                                 |                               |                                  |                                                         |                      |
| Oleic acıd                                |                               |                               |                                                         | 3                             | 0                                | 260°<br>8°                                              |                               |                                  |                                                         |                      |
| Xylenes                                   |                               |                               |                                                         | 3                             | 0                                | 8                                                       | 3                             | 3                                | 2                                                       |                      |

a<sub>Negative</sub> removal.

b<sub>Negligible</sub> removal.

c<sub>Oxidation influent.</sub>

TABLE 16-31. RAW WASTE LOADS FOR SELECTED MILLS [1]

| • • • • • • • • • • • • • • • • • • • •       |                           |                               |                             | waste lo                    |               |
|-----------------------------------------------|---------------------------|-------------------------------|-----------------------------|-----------------------------|---------------|
| Subcategory/subdivisions                      | Mill<br>number            | Production,<br>Mg/d           | Flow,<br>m <sup>3</sup> /Mg | Bod <sub>5</sub> ,<br>kg/Mg | TSS,<br>kg/Mg |
| Alkaline-dissolving                           | 032003                    |                               | 240                         | 54                          | 82            |
| Alkalıne-market                               |                           |                               |                             | ••                          |               |
| Softwood mills Hardwood mills                 | 030018                    | 490                           | 180                         | 39<br>18                    | 48<br>20      |
| Mixed mills                                   | 030005<br>030028          | <b>34</b> 0<br>1, <b>5</b> 00 | 73<br>150                   | 36                          | 24            |
| Alkaline-BCT                                  | 030028                    | 870                           | 190                         | 58                          | 42            |
|                                               | 030004                    | 870                           | 190                         | 76                          | 42            |
| Alkaline-fine<br>High clay mills              | 030027                    | 690                           | 72                          | 22                          | 33            |
| Low clay mills                                | 030046                    | 680                           | 130                         | 31                          | 80            |
| High softwood                                 | 030051                    | 560                           | 94                          | 33                          | 41            |
| Mills making some groundwood                  | 030045                    | 870                           | 150                         | 65                          | 130           |
| High clay-high softwood                       | 030020                    | 380                           | 120                         | 26                          | 78            |
| High clay-high hardwood                       | 030034                    | 640                           | 120                         |                             |               |
| Low clay-high hardwood                        | 030060                    | 460                           | 160                         | 39                          | 100           |
| Alkalıne-unbleached<br>Linerboard             | 010002                    | 850                           | 44                          | 13                          | 25            |
| Packaging items                               | 010002                    | 360                           | 220                         | 33                          | 23            |
| Bag                                           | 010032                    | 750                           | 47                          | 18                          | 17            |
| Semi-chemical                                 |                           |                               |                             |                             |               |
| Mills with liquor recovery                    | 060004                    | 450                           | 49                          | 28                          | 55            |
| Mills with no liquor recovery                 | 020005                    | 170                           | 47                          | 56                          | 52            |
| One third wastepaper                          | 020001                    | 270                           | 19                          | 24                          | 8.1           |
| Mills not representative of<br>subcategory    | 020010                    | 560                           | 60                          | 18                          | 49            |
| Alkaline-unbleached and                       |                           |                               |                             |                             |               |
| semi-chemical<br>Alkaline-newsprint           | 015003<br>05 <b>4</b> 003 | 1,620<br>940                  | 50<br>94                    | 19<br>12                    | 29<br>56      |
| •                                             | 046403                    | 420                           | 360                         | 280                         | 15            |
| Sulfite-dissolving<br>Sulfite-papergrade      | 040403                    | <b>3</b> 70                   | 120                         | 280<br>97                   | 37            |
| Thermo-mechanical pulp                        | 070001                    | 140                           | 79                          | 18                          | 39            |
| Groundwood-CMN                                | 054006                    | 45                            | 110                         | 19                          | 56            |
| Groundwood-fine                               | 052004                    | 440                           | 66                          | 29                          | 79            |
| Deink-fine and tissue                         |                           |                               |                             |                             |               |
| Mills utilizing mainly deink furnish          | 140021                    | 140                           | 78                          | 10                          | 3.5           |
| Fine mills utilizing mixed                    |                           |                               | •                           |                             |               |
| furnish                                       | 140007                    | 320                           | 54                          | 55                          | 160           |
| Tissue mills utilizing mixed                  | 140010                    |                               | 100                         |                             | 100           |
| furnish                                       | 140010                    | 69                            | 120                         | 56                          | 130           |
| Vastepaper-tissue<br>Industrial tissue mills  | 085006                    | 42                            | 140                         | 38                          | 100           |
| Sanitary tissue mills                         | 090010                    | 150                           | 77                          | 19                          | 59            |
| Vastepaper-board                              | 3,0010                    | 100                           | , ,                         |                             | 33            |
| Wastepaper-molded products                    | 150006                    | 40                            | 46                          | 10                          | 19            |
| Wastepaper-construction products              |                           |                               |                             |                             |               |
| Predominantly wastepaper                      | 100014                    | 10                            | 1.4                         | 2.2                         | 1.0           |
| furnish<br>Furnish includes TMP               | 120014                    | 19<br>210                     | 14                          | 33<br>13                    | 10            |
| Furnish includes imp                          | 120012                    | 210                           | 7.4                         | 13                          | 5.1           |
| groundwood                                    | 120005                    | 150                           | 4.2                         | 5.5                         | 1.5           |
| Other furnish                                 | 140065                    | 54                            | 8.9                         | 3.9                         | 6.5           |
| Nonintegrated-fine                            | 080046                    | 300                           | 61                          | 14                          | 32            |
| Nonintegrated-tissue                          | 090020                    | 810                           | 80                          | 13                          | 44            |
| Nonintegrated-lightweight<br>Electrical paper | 105071                    | 24                            | 260                         | 12                          | 19            |
| Misscellaneous tissue and                     | 1030/1                    | 4-1                           | 200                         | 12                          | 19            |
| carbonizing                                   | 090015                    | 58                            | 150                         | 2.9                         | 150           |
| Printing and thin paper                       | 150020                    | 180                           | 200                         | 8.2                         | 16            |
| Carbonize, thin, cigarette                    | 105013                    | 18                            | 135                         | 20                          | 57            |
| Nonintegrated-filter and                      | 10555                     |                               | 100                         |                             |               |
| nonwoven                                      | 105050                    | 11                            | 170                         | 4.9                         | 20            |
| Nonitegrated-paperboard                       | 105073                    | 14                            | 110                         | 13                          | 42            |

contained in mill effluents. Biological treatment systems are currently employed extensively by pulp, paper, and paperboard mills to reduce BOD $_5$  and TSS loads. A summary of treatment systems currently employed in the pulp, paper and paperboard industry is shown in Table 16-32. As noted, aerated stabilization is the most common treatment process employed at mills discharging directly to a receiving water. Primary treatment only is employed at a relatively large number of plants in the nonintegrated and secondary fiber subcategories. Primary treatment can often achieve substantial BOD $_5$  reductions, if BOD $_5$  is predominantly contained in suspended solids.

The mills with treatment systems exhibiting the greatest percent  $BOD_5$  and TSS removals are shown in Table 16-33 for each subcategory.  $BOD_5$  removals for these mills range from 70% to 99% with effluent concentrations between 9 and 235 mg/L. Activated sludge is employed at 9 of the 18 mills.

# II.16.4.1 Primary and Preliminary Treatment

Often primary treatment is necessary to remove suspended organic and inorganic materials that may damage or clog downstream treatment equipment. This can be accomplished by sedimentation, flotation or filtration. Sedimentation can involve mechanical clarifiers, flotation units, or sedimentation lagoons. Mechanical clarification is the most common technology for removing suspended solids.

# II.16.4.1.1 Dissolved Air Flotation

Dissolved air flotation (DAF) units also have been applied to effluents from paper mills and have, in some cases, effectively removed suspended solids. DAF units are somewhat limited because of their inability to handle high pollutant concentrations and shock loads.

## II.16.4.1.2 Primary Clarification

Because of the biodegradable nature of a portion of the settle-able solids present in pulp, paper and paperboard wastewaters, clarification results in some BODs reduction. Typical BODs removals through primary clarification in integrated pulp and paper mills varies between 10% and 30%. The exact BODs removal depends on the relative amount of soluble BODs present in the raw wastewater. Primary clarification can result in significantly higher BODs reductions at nonintegrated mills than at integrated mills. Responses to the data request program indicate that roughly 50% of the raw wastewater BODs is commonly removed at nonintegrated mills through primary clarification.

TABLE 16-32. SUMMARY OF METHOD OF DISCHARGE AND INPLACE TECHNOLOGY [1]

|                                  |             |        |              |                   |                       | T               | reatment so       | cheme - Direc     | ct discharge        |                     |       |
|----------------------------------|-------------|--------|--------------|-------------------|-----------------------|-----------------|-------------------|-------------------|---------------------|---------------------|-------|
|                                  | No.         | Me     | thod of disc | charge            | No                    | W-37            |                   | Lagoon w/         |                     |                     |       |
| Subcategory                      | of<br>mills | Direct | Indirect     | Self<br>contained | external<br>treatment | Primary<br>only | Aerated<br>lagoon | polishing<br>pond | Activated<br>sludge | Trickling<br>filter | Other |
| Alkaline-dissolving              | 3           | 3      |              |                   |                       |                 | 2                 |                   | 1                   |                     |       |
| Alkaline-market                  | 9           | 9      |              |                   | 2                     |                 | 4                 | 1                 | 1                   |                     | 1     |
| Alkaline-BCT                     | 8           | 8      |              |                   |                       |                 | 3                 | 4                 |                     |                     | 1     |
| Alkaline-fine                    | 18          | 14     | 4            |                   |                       |                 | 2                 | 2                 | 5                   |                     | 5     |
| Alkaline-unbleached              | 29          | 28     | 1            |                   |                       | 2               | 9                 | 5                 | 4                   | 1                   | 7     |
| Semi-chemical                    | 19          | 17     | 2            |                   | 2                     | 1               | 1                 | 6                 | 3                   |                     | 4     |
| Alkaline-unbleached and          |             |        |              |                   |                       |                 |                   |                   |                     |                     |       |
| Semi-chemical                    | 10          | 9      | 1            |                   |                       |                 | 7                 |                   | 1                   |                     | 1     |
| Alkaline-newsprint               | 3           | 3      |              |                   |                       |                 |                   | 1                 | 1                   |                     | 1     |
| Sulfite-dissolving               | 6           | 6      |              |                   |                       | 3               | 1                 |                   | 1                   |                     | 1     |
| Sulfite-papergrade               | 18          | 17     | 1            |                   | 2                     | 6               | 3                 |                   | 1                   |                     | 5     |
| Thermo-mechanical pulp           | 2           | 2      |              |                   |                       | 1               |                   |                   | 1                   |                     |       |
| Groundwood-CMN                   | 6           | 5      | 1            |                   |                       | 1               |                   |                   | 1                   |                     | 3     |
| Groundwood-fine                  | 8           | 7      | 1            |                   | 1                     | 1               |                   |                   | 3                   |                     | 2     |
| Deink-fine and tissue            | 17          | 10     | 5            | 2                 | 1                     |                 | 2                 |                   | 7                   |                     |       |
| Deink-newsprint                  | 3           |        | 3            |                   |                       |                 |                   |                   |                     |                     |       |
| Wastepaper-tissue                | 22          | 11     | 3            | 8                 | 2                     | 4               | 2                 |                   | 1                   |                     | 2     |
| Wastepaper-board                 | 147         | 45     | 84           | 18                | 3                     | 8               | 21                |                   | 4                   |                     | 9     |
| Wastepaper-molded products       | 15          | 2      | 11           | 2                 |                       | 1               | 1                 |                   |                     |                     |       |
| Wastepaper-construction          |             |        |              |                   |                       |                 |                   |                   |                     |                     |       |
| products                         | 58          | 4      | 36           | 18                | 1                     | 1               |                   | 2                 |                     |                     |       |
| Nonintegrated-fine               | 39          | 18     | 19           | 2                 | 3                     | 6               | 3                 | 1                 | 2                   |                     | 3     |
| Nonintegrated-tissue             | 26          | 14     | 12           |                   | 1                     | 10              | 2                 |                   |                     |                     | 1     |
| Nonintegrated-lightweight        | 18          | 14     | 4            |                   |                       | 6               | 1                 |                   |                     | 1                   | 6     |
| Nonintegrated-filter and         |             |        |              |                   |                       |                 |                   |                   |                     |                     |       |
| nonwoven                         | 16          | 6      | 10           |                   |                       | 3               | 1                 |                   | 1                   |                     | 1     |
| Nonintegrated-paperboard         | 12          | 5      | 7            |                   |                       | 3               | 2                 |                   |                     |                     |       |
| Subtotal                         | 512         | 257    | 205          | 50                | 18                    | 57              | 67                | 21                | 40                  | 2                   | 53    |
| Miscellaneous mills <sup>a</sup> | 132         | 102    | 25           | _5                | _4                    | 23              | 22                | 10                | <u>19</u>           | 2                   | 21    |
| Total                            | 644         | 359    | 230          | 55                | 22                    | 80              | 89                | 31                | 59                  | 4                   | 74    |

a Miscellaneous mills not included in subcategorization.

Note: Data for 1976 calendar year.

TABLE 16-33. MILLS REPORTING BEST PERCENT REMOVAL OF BOD<sub>5</sub> AND TSS BY SUBCATEGORY [1]

|                          |       |          |                    | Final eff | luent a | verage day       | •      |       |          |        |               | Perc             |      |
|--------------------------|-------|----------|--------------------|-----------|---------|------------------|--------|-------|----------|--------|---------------|------------------|------|
|                          | Prod  | uction   | F                  | low       |         | BOD <sub>5</sub> |        |       | TSS      |        | Treatment     | reduc            | :tio |
| Subcategory              | Mg/d  | (tons/d) | M <sup>3</sup> /Mg | (kgal/t)  | kg/Mg   | (lb/ton)         | (mg/L) | kg/Mg | (lb/ton) | (mg/L) | type          | BOD <sub>5</sub> | TS   |
| Alkaline-dissolving      | 1,040 | (1,150)  | 240                | (57)      | 7.5     | (15)             | 34     | 15    | (29)     | 61     | ASB           | 86               | 82   |
| Alkaline-market          | 660   | (722)    | 170                | (41)      | 2.7     | (5.4)            | 16     | 3.1   | (6.1)    | 18     | ASB w/Hold.   | 94               | 88   |
| Alkaline-BCT             | 280   | (310)    | 190                | (45)      | 2.1     | (4.2)            | 11     | 3.9   | (7.7)    | 21     | ASB           | 94               | 91   |
| Alkaline-fine            | 690   | (760)    | 70                 | (17)      | 0.6     | (1.2)            | 9      | 1.9   | (3.9)    | 30     | Act. Sl.      | 97               | 94   |
| lkaline-unbleached       | 970   | (1,070)  | 48                 | (12)      | 0.7     | (1.5)            | 16     | 1.7   | (3.3)    | 34     | ASB           | 94               | 99   |
| Semi-ch <b>e</b> mical   | 440   | (490)    | 34                 | (8.1)     | 1.3     | (2.5)            | 38     | 1.5   | (2.9)    | 43     | Act. Sl.      | 95               | 97   |
| lkaline-unbleached and   |       |          |                    | , ,       |         |                  |        |       |          |        |               |                  |      |
| semi-chemical            | 1,540 | (1,700)  | 52                 | (12)      | 2.0     | (4.1)            | 40     | 3.5   | (6.9)    | 67     | Act. Sl.      | 87               | 80   |
| lkaline-newsprint        | 1,420 | (1,560)  | 98                 | (24)      | 2.3     | (4.6)            | 23     | 2.4   | (4.7)    | 24     | ASB           | 91               | 9    |
| Sulfite-dissolving       | 350   | (390)    | 170                | (42)      | 41      | (82)             | 240    | 11    | (22)     | 64     | ASB           | 71               | 92   |
| Sulfite-papergrade       | 450   | (490)    | 93                 | (22)      | 5.1     | (10)             | 60     | 7.5   | (15)     | 80     | Act. Sl.      | 87               | 97   |
| hermo-mechanical pulp    | 140   | (160)    | 81                 | (20)      | 5.6     | (11)             | 68     | 29    | (59)     | 360    | Act. Sl.      | 71               | 29   |
| roundwood-CMN            | 890   | (980)    | 120                | (28)      | 6.4     | (13)             | 54     | 4.5   | (9)      | 38     | Act. Sl.      | 70               | 90   |
| roundwood-fine           | 710   | (790)    | 58                 | (14)      | 0.5     | (1.0)            | 9      | 2.0   | (3.9)    | 34     | Act. Sl.      | 95               | 90   |
| eink-fine and tissue     | 770   | (840)    | 90                 | (22)      | 3.5     | (6.9)            | 38     | 6.3   | (12)     | 69     | Act. Sl.      | 95               | 9    |
| astepaper-tissue         | 150   | (160)    | 88                 | (21)      | 1.3     | (2.6)            | 15     | 0.4   | (0.8)    | 5      | Act. Sl.      | 93               | 9    |
| lastepaper-board         | 290   | (320)    | 5.8                | (1.4)     | 0.1     | (0.1)            | 11     | 0.3   | (0.5)    | 41     | ASB           | 99               | 9    |
| Nonintegrated-fine       | 370   | (411)    | 110                | (26)      | 1.8     | (3.5)            | 16     | 2.7   | (5.4)    | 25     | ASB w/Hold.   | 88               | 9    |
| onintegrated-tissue      | 180   | (190)    | 68                 | (16)      | 2.1     | (4.2)            | 31     | 0.6   | (1.1)    | 9      | No Sec. Trtmt | 86               | 9    |
| onintegrated-lightweight | 58    | (64)     | 220                | (54)      | 8.1     | (Ì6)             | 36     | 2.4   | (4.7)    | 10     | Trick. Filter | 86               | 9    |
| onintegrated-filter and  |       | . ,      |                    |           |         | •                |        |       |          |        |               |                  |      |
| nonwoven                 | 39    | (43)     | 290                | (69)      | 2.1     | (4.1)            | 7      | 3.1   | (6.2)    | 11     | ASB           | 87               | 9    |

ASB: aerated stabilization basin; Hold.: holding pond; Act. Sl.: activated sludge; Sec. Trtmt: secondary treatment; Trick. Filter: trickling filter.

NOTE: Data represents 1976 calendar year.

### II.16.4.2 Biological Treatment

Currently, the most common types of biological treatment used in the pulp, paper and paperboard industry include oxidation basins, aerated stabilization basins, and the activated sludge process or its modifications. Other biological systems include oxygen activated sludge, the Zurn/Attisholz process, rotating biological contactors, and anaerobic contact filters.

# II.16.4.2.1 Oxidation Basins

Oxidation basins were the first type of biological treatment systems used in the pulp, paper and paperboard industry. Typical design BOD<sub>5</sub> loads range from 56 to 67 kilograms per hectare (kg/ha) of surface area/day (50 to 60 lb/acre/day). Retention times can vary from 20 to over 60 days. Literature presenting data on the removal of toxic and nonconventional pollutants through application of oxidation basin technology is limited.

# II.16.4.2.2 Aerated Stabilization Basins

The aerated stabilization basin (ASB) evolved from the necessity of increasing performance of existing oxidation basins due to increasing effluent flows and/or more stringent water quality standards. The removal efficiency of an ASB treating unbleached kraft waste was evaluated over a 1-month period in late 1976. Although the raw wastewater exhibited an LC-50 of 1% and 2% by volume, all but one of the 26 treated effluent samples either were nontoxic or exhibited greater than 50% fish survival after 96 hours of exposure. The one failure was attributed to a black liquor spill at the mill. Average reductions of 87% BOD<sub>5</sub>, 90% toxicity and 96% total resin acids were achieved.

Pilot-scale ASB treatment of bleached kraft wastewater was evaluated over a 5-month period. Two basins, one with a 5-day and one with a 3-day hydraulic detention time, were studied with and without surge equalization. The raw wastewater BOD<sub>5</sub> varied from 108 mg/L to 509 mg/L and was consistently toxic. The median survival times (MST) of fish ranged from 7 to 1,440 minutes. Mean BOD<sub>5</sub> removals with surge equalization were 85% for the 5-day basin and 77% for the 3-day basin. Mean effluent BOD<sub>5</sub> levels with surge equalization were 40 mg/L for the 5-day basin and 59 mg/L for the 3-day basin. Mean reported effluent BOD<sub>5</sub> values for the 5-day and 3-day basins without equalization were 51 mg/L and 67 mg/L, respectively.

## II.16.4.2.3 Activated Sludge Processes

The activated sludge process is a high-rate biological wastewater treatment system. The ability of activated sludge basins to detoxify bleached kraft mill effluents was analyzed over a 5-month

period. Two pilot-scale activated sludge systems (8-hour and 24-hour detention times) were operated with and without surge equalization. Raw wastewater BODs varied from 108 to 509 mg/L. Mean BODs removals for the 8-hour and 24-hour activated sludge lagoon with a 12-hour surge equalization basin achieved an average of 76% and 72% BODs removal, respectively. Effluent BODs concentration for the 24-hour system ranged from 5 mg/L to 263 mg/L with a mean of 64 mg/L. The 8-hour activated sludge system removed an average of 72% of the BODs. Final effluent BODs concentrations ranged from 14 to 270 mg/L, with a mean of 64 mg/L.

The pure oxygen activated sludge process uses oxygen, rather than air, to stimulate biological activity. Field test data by Union Carbide Corp. confirms that the oxygen activated sludge process is capable of achieving final effluent BOD<sub>5</sub> concentrations on the order of 20 to 30 mg/L with pulp, paper, and paperboard mill wastes. Effluent TSS after clarification was generally in the range of 40 to 60 mg/L. A summary of pilot-scale information is presented in Table 16-34.

TABLE 16-34. OXYGEN ACTIVATED SLUDGE TREATABILITY PILOT SCALE [1]

|                     | Retention, | BOD5,     | mg/L            | TSS, mg/L |                 |  |
|---------------------|------------|-----------|-----------------|-----------|-----------------|--|
| Production process  | hrs        | Influent  | Effluent        | Influent  | Effluent        |  |
| Alkaline-unbleached | 1.3 - 2.2  | 280 - 460 | 20 - 41         | 57 - 86   | 46 - 61         |  |
| Alkaline-unbleached | 1.8 - 3.0  | 210 - 210 | 16 - 22         | 120 - 120 | 36 - 36         |  |
| Alkaline-unbleached | 2.0 - 2.9  | 265 - 300 | 25 <b>- 3</b> 0 | 95 - 120  | 60 <b>- 7</b> 0 |  |

Sulfite/newsprint effluent was treated using an oxygen activated sludge pilot-plant facility over an ll-month period. BOD<sub>5</sub> reductions during this time were over 90%. Final BOD<sub>5</sub> and TSS concentrations ranged from 23 to 42 mg/L and 61 to lll mg/L, respectively.

Zurn/Attisholz System. Seven full-scale Zurn/Attisholz ( $\mathbb{Z}/\mathbb{A}$ ) systems are currently in use at pulp and paper mills in the United States. These installations treat wastewaters from the following types of manufacturing:

| Deink-fine and tissue    | (5 | mills) |
|--------------------------|----|--------|
| Sulfite-papergrade       | (1 | mill)  |
| Integrated-miscellaneous | (1 | mill)  |

Most of these mills reportedly maintain final effluent BOD<sub>5</sub> and TSS concentrations in the range of 20 to 25 mg/L each. One mill reportedly achieves BOD<sub>5</sub> and TSS levels in the range of 5 to 10 mg/L each. Another mill also attained a 96% BOD<sub>5</sub> and 99% TSS reduction using the Z/A process.

A pilot study comparing a two-stage to a single-stage activated sludge system has recently been performed. The two-stage system achieved a higher toxicity reduction in treating bleached kraft wastewater than did a single-stage system.

Rotating Biological Contactor (RBC). This system involves a series of discs on a shaft supported above a basin containing wastewater. Pilot-scale evaluations of the RBC system treating bleached kraft wastewater with an average influent BODs content of 235 mg/L have resulted in substantial BODs reductions.

# II.16.4.3 Chemically Assisted Clarification

Recent experience with full-scale alum-assisted clarification of biologically treated kraft mill effluent suggests that with proper pH adjustment, final effluent qualities of 15 mg/L each of BOD<sub>5</sub> and TSS can be achieved. The desired alum dosage to attain these levels would be between 100 and 150 mg/L. A significantly lower alum dosage could provide insufficient floc formation, while a higher dosage would result in proportionately high levels of chemical solids and sludge quantities that must be removed and disposed.

As part of an EPA-sponsored study, biologically treated effluent from an alkaline kraft mill was evaluated with alum precipitation on a laboratory scale. Existing full-scale treatment consisted of a primary clarifier, aerated stabilization basin and polishing pond. Twenty-four hour composite samples of the polishing pond effluent were taken on three separate days. The samples were adjusted to pH 4.6 with alum and four drops of polymer per liter of sample were added. The results are summarized in Table 16-35.

TABLE 16-35. LABORATORY EVALUATION OF ALUM PRECIPITATION ON ALKALINE KRAFT MILL POLISHING POND EFFLUENT [1]

|                               | Concentration  | range, mg/L   |
|-------------------------------|----------------|---------------|
|                               | Polishing pond | Alum-treated  |
|                               | effluent       | effluent      |
| Total resin and fatty acids   | 2.8 - 3.8      | ND            |
| Total chlorinated derivatives | 0.43 - 0.45    | ND - 0.04     |
| Chloroform                    | 0.025 - 0.032  | 0.018 - 0.022 |
| BOD <sub>5</sub>              | 43 51.         | 0 14.         |

ND - Not detected.

In a recent EPA-sponsored laboratory study, alum, ferric chloride and lime in combination with five polymers were evaluated in further treatment of biological effluent from four pulp and paper mills. Of the three chemical coagulants, alum provided the most consistent flocculation at minimum dosages; lime was the least

effective of the three. The optimum alum dose was determined for four of the effluents and ranged between 40 and 180 mg/L at a constant dosage of 2 mg/L polymer.

## II.16.4.4 Filtration

Filtration is an available technology for application in treating pulp, paper, and paperboard wastewaters. If properly designed and operated, filtration can yield significant solids removal. Table 16-36 shows the results of a study evaluating the efficiency of sand filtration on four pulp and paper mill effluents.

|             |                      | TSS removal, percent            |                       |  |  |  |  |  |  |
|-------------|----------------------|---------------------------------|-----------------------|--|--|--|--|--|--|
| Mill<br>No. | Initial<br>TSS, mg/L | w/chemic <b>a</b> l<br>addition | w/o chemical addition |  |  |  |  |  |  |
| 1           | 110                  | 64                              | 14                    |  |  |  |  |  |  |
| 2           | 5.5                  |                                 | 36                    |  |  |  |  |  |  |
| 3           | 70                   | 71                              | 68                    |  |  |  |  |  |  |
| 5           | 60                   |                                 | 23                    |  |  |  |  |  |  |

TABLE 16-36. SAND FILTRATION RESULTS [1]

# I.16.4.5 Activated Carbon Adsorption

Researchers have indicated that pulp and paper mill wastewater suitable for reuse can be obtained using granular carbon without a biological oxidation step, particularly if the raw waste exhibits a  $BOD_5$  of 200 to 300 mg/L. Color due to refractory organic compounds contained in pulping effluents can also be reduced by such treatment. Table 16-37 presents the pilot-plant results obtained by the authors.

Extensive pilot-plant tests for treating unbleached kraft mill wastewater with granular and fine activated carbon (AC) (the fine activated carbon system is subject to a patent application) have been run. The 113 L/min (30 gpm) pilot plant utilized four different treatment processes, as follows:

- 1. Clarification followed by downflow granular carbon activated columns;
- Lime treatment and clarification followed by granular activated carbon columns;
- 3. Biological oxidation and clarification followed by granular activated carbon columns; and
- 4. Lime treatment and clarification followed by fine activated carbon effluent treatment (subject of a patent application).

Table 16-38 presents the results of the pilot-plant investigation.

TABLE 16-37. RESULTS OF GRANULAR ACTIVATED CARBON COLUMN PILOT-PLANT TREATING UNBLEACHED DRAFT MILL WASTE [1]

|                       | pre      | s preceded  <br>ecipitation<br>ogical oxida | _                   |          | AC columns preceded by lime precipitation <sup>a</sup> |                     |          |                   |                 |  |  |  |
|-----------------------|----------|---------------------------------------------|---------------------|----------|--------------------------------------------------------|---------------------|----------|-------------------|-----------------|--|--|--|
| Property <sup>a</sup> | Influent | Effluent                                    | Removal,<br>percent | Influent | Run l<br>Effluent                                      | Removal,<br>percent | Influent | Run 2<br>Effluent | Removal percent |  |  |  |
| BODs, mg/L            | 48       | 23                                          | 52                  | 100      | 32                                                     | 69                  | 82       | 12                | 85              |  |  |  |
| COD, mg/L             | _        | -                                           | -                   |          | _                                                      | -                   | 320      | 200               | 35              |  |  |  |
| SS, mg/L              | -        | -                                           | _                   | -        | -                                                      | -                   | 120      | 74                | 36              |  |  |  |
| Turbidity, JTU        | _        | _                                           | _                   |          | -                                                      | -                   | 35       | 35                | 0               |  |  |  |
| Color, Pt-Co units    | -        | _                                           | -                   | _        | ••                                                     | -                   | 28       | 0                 | 100             |  |  |  |
| Odor                  | 365      | 13                                          | 96                  | 185      | 23                                                     | 88                  | -        | _                 | _               |  |  |  |
| pH, pH units          | -        | -                                           | _                   | _        | -                                                      | -                   | 12       | 10                | 12              |  |  |  |
| TSS, mg/L             | -        | -                                           | -                   | -        | -                                                      | -                   | 1,280    | 1,200             | 6               |  |  |  |

aColumns loaded at 3.6-4.0 gpm/ft<sup>2</sup>.

Note: Dashes indicate no data available.

TABLE 16-38. RESULTS OF ACTIVATED CARBON PILOT PLANTS TREATING UNBLEACHED KRAFT MILL EFFLUENT [1]

|                               | biologi       |               |                     |               |               | eceded by<br>fication | primar        | y clarif      | ceded by            | lime<br>cl    | treatme<br>arificat | ion              | FA            | ACET syst       | .em                 |
|-------------------------------|---------------|---------------|---------------------|---------------|---------------|-----------------------|---------------|---------------|---------------------|---------------|---------------------|------------------|---------------|-----------------|---------------------|
| Description of carbon process | Influ-<br>ent | Efflu-<br>ent | Removal,<br>percent | Influ-<br>ent | Efflu-<br>ent | Removal,<br>percent   | Influ-<br>ent | Efflu-<br>ent | Removal,<br>percent | Influ-<br>ent | Efflu-<br>ent       | Removal, percent | Influ-<br>ent | Efflu-<br>ent   | Removal,<br>percent |
| Hydraulic load, gpm/ft2       |               |               |                     | 1.42          |               |                       | 0.71          |               |                     | 1.42          |                     |                  | NA            |                 | ·_•                 |
| Carbon                        | Granula       | r             |                     | Granula       | ır            |                       | Granula       | ır            |                     | Granula       | r                   |                  | Interme       | ediate          |                     |
| Contact time, min.            | 140           |               |                     |               |               |                       |               |               |                     | 108           |                     |                  |               |                 |                     |
| Parameters                    |               |               |                     |               |               |                       |               |               |                     |               |                     |                  |               |                 |                     |
| BOD, mg/L                     |               |               |                     |               |               |                       |               |               |                     |               |                     | 26               |               |                 |                     |
| TOC, mg/L                     | 150           | 57            | 61                  | 220           | 83            | 62                    | 310           | 120           | 61                  | 180           | 100                 | 44               | 160           | 100             | 36                  |
| Color, units                  | 740           | 210           | 71                  | 920           | 180           | 80                    | 1,160         | 200           | 83                  | 250           | 76                  | 70               | 160           | 73 <sup>b</sup> |                     |
| Fresh carbon<br>dosage        |               |               |                     |               |               |                       |               |               |                     |               |                     |                  |               |                 |                     |
| kg/m³                         | 1.0           | ı             |                     | 2.            | . 5           |                       | 3.            | 5             |                     | 0.            | . 3                 |                  | 0             | .5              |                     |
| (1b carbon/<br>1,000 gal)     | (8)           |               |                     | (20           | 0)            |                       | (28           | )             |                     | (2.           | .5)                 |                  | (3            | .9)             |                     |

Fine activated carbon effluent treatment.

<sup>&</sup>lt;sup>b</sup>Filtered.

### II.16.5 REFERENCES

- 1. Preliminary Data Base for Review of BATEA Effluent Limitations Guidelines, NSPS, and Pretreatment Standards for the Pulp, Paper, and Paperboard Point Source Category. Prepared for USEPA by E. C. Jordan, Co., Inc., Portland, Maine 04112. Contract No. 68-01-4624, June 1979.
- 2. NRDC Consent Decree Industry Summary Pulp, Paper, and .Paperboard Industry.
- 3. Environmental Protection Agency Effluent Guidelines and Standards for Pulp, Paper and Paperboard (40 CFR 430; FR 18742, May 12, 1974; Amended as shown in Volume 40 Code of Federal Regulations, Revised as of July 1, 1976; 41 FR 27732, July 6, 1976; 42 FR 1398; January 6, 1977).

### II.17 RUBBER PROCESSING

## II.17.1 INDUSTRY DESCRIPTION [1]

## II.17.1.1 General Description

The Rubber Processing Industry in the United States is covered by seven SIC codes. They are:

SIC 2822: Synthetic Rubber Manufacturing (Vulcanizable

Elastomers)

SIC 3011: Tire and Inner Tube Manufacturing

SIC 3021: Rubber Footwear

SIC 3031: Reclaimed Rubber

SIC 3041: Rubber Hose and Belting

SIC 3069: Fabricated Rubber Products, Not Elsewhere

Classified

SIC 3293: Rubber Gaskets, Packing and Sealing Devices

This industry includes a wide variety of production activities ranging from polymerization reactions closely aligned with the chemical processing industry to the extrusion of automotive window sealing strips. There are approximately 1,650 plants in this industry divided into the 11 subcategories described below. Plant production ranges from 1.6 x  $10^3$  Mg/yr (3.6 x  $10^6$  lb/yr) to 3.7 x  $10^5$  Mg/yr (8.2 x  $10^8$  lb/yr).

Table 17-1 presents a summary of the Rubber Processing Industry regarding the number of subcategories and the number and types of discharges. Table 17-2 presents a subcategory profile of BPT regulations (daily maximum and 30-day averages).

Industry: Rubber Processing
Total Number of Subcategories: 11
Number of Subcategories Studied: 3

Number of Dischargers in Industry:

Direct: 1,054Indirect: 504Zero: 100

aWet digestion, although not a Paragraph 8 exclusion, was not studied due to the lack of plant specific data. Emulsion and solution crumb rubber, although candidates for exclusion, were studied, because of data availability.

TABLE 17-2. BPT LIMITATIONS FOR SUBCATEGORIES OF RUBBER PROCESSING INDUSTRY [3] (kg/Mg)

| pН | limitation, | all | subcategories: | 6 | to | 9 |
|----|-------------|-----|----------------|---|----|---|
|----|-------------|-----|----------------|---|----|---|

|                  | Tire ar | d inner             | Emu   | lsion            | Sol   | ution           |       |                 |       | <u> </u>          |       |        |
|------------------|---------|---------------------|-------|------------------|-------|-----------------|-------|-----------------|-------|-------------------|-------|--------|
|                  |         | olants <sup>a</sup> |       | rubber           |       | rubber          |       | rubber          | Small | GMEF <sup>b</sup> | Mediu | m GMEF |
|                  | Daily   | 30-Day              | Daily | 30-Day           | -     | -               | Daily | 30-Day          | Daily | 30-Day            | Daily | 30-Day |
| Pollutant        | max     | av                  | max   | av               | max   | av              | max   | av              | max   | āv                | max   | av     |
| COD              |         |                     | 12.0  | 8.0              | 5.91  | 3.94            | 10.27 | 6.85            |       |                   |       |        |
| BOD <sub>5</sub> |         |                     | 0.60  | 0.40             | 0.60  | 0.40            | 0.51  | 0.34            |       |                   |       |        |
| TSS              | 0.096   | 0.064               | 0.98  | 0.65             | 0.98  | 0.65            | 0.82  | 0.55            | 1.28  | 0.64              | 0.80  | 0.40   |
| Oil and grease   | 0.0024  | 0.016               | 0.24  | 0.16             | 0.24  | 0.16            | 0.21  | 0.14            | 0.70  | 0.25              | 0.42  | 0.15   |
| Zinc             |         |                     |       |                  |       |                 |       |                 |       |                   |       |        |
|                  |         |                     |       |                  | dige  | dry             |       |                 |       |                   |       |        |
|                  | Large   | GMEF <sup>b</sup>   |       | gestion<br>aimed |       | anical<br>aimed | LD    | EM <sup>C</sup> | Late  | x foam            |       |        |
| COD              |         |                     | 14.7  | 6.11             |       |                 |       |                 |       |                   |       |        |
| BOD <sub>5</sub> |         |                     |       |                  |       |                 | 3.72  | 2.2             | 2.4   | 1.4               |       |        |
| TSS              | 0.50    | 0.25                | 1.04  | 0.52             | 0.384 | 0.192           | 6.96  | 2.9             | 2.26  | 0.94              |       |        |
| Oil and grease   | 0.26    | 0.093               | 0.40  | 0.144            | 0.40  | 0.144           | 2.0   | 0.73            |       |                   |       |        |
|                  |         |                     |       |                  |       |                 |       |                 |       |                   |       |        |

a Oil and grease limitations for nonprocess wastewater from plants placed in operation before 1959: daily max, 10 mg/L; 30-day av, 5 mg/L.

0.058 0.024

Note: Blanks indicate data not available

Zinc

<sup>&</sup>lt;sup>b</sup>General molded, extruded, and fabricated rubber.

CLatex-dipped, latex-extruded, and latex-molded goods.

# II.17.1.2 Subcategory Descriptions

The Rubber Processing Industry is divided into 11 subcategories based on raw waste loads as a function of production levels, presence of the same or similar toxic pollutants resulting from similar manufacturing operations, the nature of the wastewater discharges, frequency and volume of discharges, and whether the discharge is composed of contact or noncontact wastewaster. Other primary considerations are treatment facilities and plant size, age, and location. The 11 subcategories are listed below. A brief description of each subcategory follows.

Tire and Inner Tube Manufacturing Subcategory 1: Subcategory 2: Emulsion Crumb Rubber Production Subcategory 3: Solution Crumb Rubber Production Subcategory 4: Latex Rubber Production

Subcategory 5: Small-Sized General Molding, Extruding, and Fabricating Rubber Plants

Subcategory 6: Medium-Sized General Molding, Extruding, and Fabricating Rubber Plants

Subcategory 7: Large-Sized General Molding, Extruding, and Fabricating Rubber Plants

Subcategory 8: Wet Digestion Reclaimed Rubber

Subcategory 9: Pan, Dry Digestion, and Mechanical Re-

claimed Rubber

Subcategory 10: Latex-Dipped, Latex-Extruded, and Latex-

Molded Goods

Subcategory 11: Latex Foam.

## Subcategory 1 - Tire and Inner Tube Manufacturing

The production of tires and inner tubes involves three general steps: mixing and preliminary forming of the raw materials, formation of individual parts of the product, and constructing and curing the final product. Seventy-three plants use these general steps to produce tires in the United States.

The initial step in tire construction is the preparation or compounding of the raw materials. The basic raw materials for the tire industry include synthetic and natural rubber, reinforcing agents, fillers, extenders, antitack agents, curing and accelerator agents, antioxidants, and pigments. The fillers, extender, and reinforcing agents, pigments, and antioxidant agents are added and mixed into the raw rubber stock. This stock is nonreactive and can be stored for later use. When curing and accelerator agents are added the mixer becomes reactive, which means it has a short shelf life and must be used immediately.

After compounding, the stock is sheeted out in a roller mill and extruded into sheets or pelletized. This new rubber stock is tacky and must be coated with an antitack solution, usually a

II.17**-**3 Date: 6/23/80

soapstone solution or clay slurry, to prevent the sheets or pellets from sticking together during storage.

The rubber stock, once compounded and mixed, must be molded or transformed into the form of one of the final parts of the tire. This consists of several parallel process by which the sheeted rubber and other raw materials, such as cord and fabric, are made into the following basic tire components: tire beads, tire treads, tire cords, and the tire belts (fabric). Tire beads are coated wires inserted in the pneumatic tire at the point where the tire meets the steel wheel rim (on which it is mounted); they insure a seal between the rim and the tire. The tire treads are the part of the tire that meets the road surface; their design and composition depend on the use of the tire. Tire cords are woven synthetic fabrics (rayon, nylon, polyester) impregnated with rubber; they are the body of the tire and supply it with most of its strength. Tire belts stabilize the tires and prevent the lateral scrubbing or wiping action that causes tread wear.

The processes used to produce the individual tire components usually involve similar steps. First the raw stock is heated and subjected to a final mixing stage before going to a roller mill. The material is then peeled off rollers and continuously extruded into the final component shape. Tire beads are directly extruded onto the reinforcing wire used for the seal, and tire belt is produced by calendering rubber sheet onto the belt fabric.

The various components of the tire are fitted together in a mold to build green, or uncured, tires which are then cured in an automatic press. Curing times range from less than one hour for passenger car tires to 24 hours for large, off-the-road tires. After curing, the excess rubber on the tire is ground off (deflashed) to produce the final product.

This subcategory is often subdivided into two groups of plants: (1) those starting operations prior to 1959, and (2) those starting operations after 1959. (Thirty-nine plants were in operation prior to 1959.) The subdivision must be recognized in applying limitations on plant effluents of oil and grease because its BPT limitations are different for the two groups of plants. For plants placed in operation after 1959, the 30-day average oil and grease limitation is 0.016 kg/Mg of product. For plants placed in operation prior to 1959, the limitation is the same (0.016 kg/Mg) but only for process wastewater. Process wastewater for these pre-1959 plants comes from soapstone solution applications, steam cleaning operations, air pollution control equipment, unroofed process oil unloading areas, mold cleaning operations, latex applications, and air compressor receivers. Water used only for tread cooling and discharges from other areas of such plants is classified as non-process wastewater, in which

oil and grease levels are limited to 5 mg/L as a 30-day average and 10 mg/L as a maximum for a single day.

## Subcategory 2 - Emulsion Crumb Rubber Production

Emulsion polymerization, the traditional process for synthetic rubber production, is the bulk polymerization of droplets of monomers suspended in water. Emulsion polymerization is operated with sufficient emulsifier to maintain a stable emulsion and is usually initiated by agents that produce free radicals. This process is used because of the high conversion and the high molecular weights that are possible. Other advantages include a high rate of heat transfer through the aqueous phase, easy removal of unreacted monomers, and high fluidity at high concentrations of product polymer. Over 90% of styrene butadiene rubber (SBR) is produced by this method. Approximately 17 plants use the emulsion crumb rubber process.

Raw materials for this process include styrene, butadiene, catalyst, activator, modifier, and soap solution.

Polymerization proceeds stepwise through a train of reactors. This reactor system contributes significantly to the high degree of flexibility of the overall plant in producing different grades of rubber. The reactor train is capable of producing either "cold" (277 K to 280 K, 103 kPa to 206 kPa) or "hot" (323 K, 380 kPa to 517 kPa) rubber. The cold SBR polymers, produced at the lower temperature and stopped at 60% conversion, have improved properties when compared to hot SBR's. The hot process is the older of the two. For cold polymerization, the monomeradditive emulsion is cooled prior to entering the reactors. Each reactor has its own set of cooling coils and is agitated by a mixer. The residence time in each reactor is approximately one hour. Any reactor in the train can be bypassed. The overall polymerization reaction is ordinarily carried to no greater than 60% conversion of monomer to rubber since the rate of reaction falls off beyond this point and product quality begins to deteriorate. The product rubber is formed in the milky white emulsion phase of the reaction mixture called latex. Short stop solution is added to the latex exiting the reactors to quench the polymerization at the desired conversion. The quenched latex is held in blowdown tanks prior to the stripping operation.

The stripping operation removes the excess butadiene by vacuum stripping, then removes the excess styrene and water in a perforated plate stripping column. The water and styrene from the styrene stripper are separated by decanting and the water is discharged to the treatment facility. The recovered monomers are recycled to the monomer feed stage. The latex is now stabilized and is precipitated by an electrolyte and a dilute acid. This coagulation imparts different physical characteristics to the

rubber depending on the type of coagulants used. Carbon black and oil can be added during this coagulation/precipitation step to improve the properties of the rubber. This coagulated crumb is separated from the liquor, resuspended and washed with water, then dewatered, dried, and pressed into bales for shipment. The underflow from the washing is sent to the wastewater treatment facility.

## Subcategory 3 - Solution Crumb Rubber Production

Solution polymerization is bulk polymerization in which excess monomer serves as the solvent. Solution polymerization, used at approximately 13 plants, is a newer, less conventional process than emulsion polymerization for the commercial production of crumb rubber. Polymerization generally proceeds by ionic mechanisms. This sytem permits the use of stereospecific catalysts of the Ziegler-Natta or alkyl lithium types which make it possible to polymerize monomers into a cis structure characteristic which is very similar to that of natural rubber. This cis structure yields a rubbery product as opposed to a trans structure which produces a rigid product that is similar to plastics.

The production of synthetic rubbers by solution polymerization processes is a stepwise operation very similar in many aspects to production by emulsion polymerization. There are distinct differences in the two technologies, however. For solution polymerization the monomers must be extremely pure and the solvent should be completely anhydrous. In contrast to emulsion polymerization, where the monomer conversion is taken to approximately 60%, solution polymerization systems are polymerized to conversion levels typically in excess of 90%. The polymerization reaction is also more rapid, usually complete in 1 to 2 hours.

Fresh monomers often have inhibitors added to them while in storage to prevent premature polymerization. These inhibitors and any water that is present in the raw materials must be removed by caustic scrubbers and fractionating drying columns to provide the solution process with the high purity and anhydrous materials needed. The purified solvent and monomers are then blended into what is termed the "mixed feed," which may be further dried in a desiccant column.

The dried mixed feed is now ready for the polymerization step, and catalysts can be added to the solution (solvent plus monomers) just prior to the polymerization stage or in the lead polymerization reactor.

The blend of solution and catalysts is polymerized in a series of reactors. The reaction is highly exothermic and heat is removed continuously by either an ammonia refrigerant or by chilled brine

or glycol solutions. The reactors are similar in both design and operation to those used in emulsion polymerization. The mixture leaves the reactor train as a rubber cement, i.e., polymeric rubber solids dissolved in solvent. A short stop solution is added to the cement after the desired conversion is reached.

The rubber cement is then sent to storage tanks where antioxidants and extenders are mixed in. The rubber cement is pumped from the storage tank to the coagulator where the rubber is precipitated with hot water under violent agitation. The solvent and unreacted monomer are steam stripped overhead, then they are condensed, decanted, and recycled to the feed stage. The bottom water layer is discharged to the wastewaster treatment facility.

The stripped crumb slurry is further washed with water, then dewatered, dried, and baled as final product. Part of the water from this final washing is recycled to the coagulation stage, and the remainder is discharged for treatment.

# Subcategory 4 - Latex Rubber Production

The emulsion polymerization process is used by 17 production facilities to produce latex rubber products as well as solid crumb rubber. Latex production follows the same processing steps as emulsion crumb rubber production up to the finishing process. Between 5% and 10% of emulsion polymerized SBR and nearly 30% of nitrile rubber production (NBR) are sold as latex. Latex rubber is used to manufacture dipped goods, paper coatings, paints, carpet backing, and many other commodities.

Monomer conversion efficiencies for latex production range from 60% for low temperature polymerization to 98% for high temperature conversion.

The monomers are piped from the tank farm to the caustic soda scrubbers where the inhibitors are removed. Soap solution, catalysts, and modifiers are added to produce a feed emulsion which is fed to the reactor train. Fewer reactors are normally used than the number required for a crumb product line. When polymerization is complete, the latex is sent to a holding tank where stabilizers are added.

A vacuum stripper removes any unwanted butadiene, and the steam stripper following it removes the excess styrene. Neither the styrene nor butadiene is recycled. Solids are removed from the latex by filters, and the latex may be concentrated to a higher solids level.

# Subcategories 5, 6, 7 - Small -, Medium-, and Large-Sized General Molding, Extruding, and Fabricating Plants

These three closely related subcategories are divided based on the volume of wastewater emanating from each. These subcategories include a variety of processes such as compression molding, transfer molding, injection molding, extrusion, and calendering. An estimated 1,385 plants participate in these subcategories.

A common step for all of the above processes is the compounding and mixing of the elastomers and compounding ingredients. The mixing operation is required to obtain a thorough and uniform dispersion of the rubber and other ingredients. Wastewater sources from the mixing operation generally derive from leakage of oil and grease from the mixers.

Compression molding is one of the oldest and most commonly used manufacturing processes in the rubber fabrication industry. General steps for the processes include warming the raw materials, preforming the warm stock into the approximate shape, cooling and treating with antitack solution, molding by heat and pressure, and finally deflashing (removing excess rubber). Major products from this process include automotive parts, medical supplies, and rubber heels and soles.

Transfer molding involves the forced shifting of the uncured rubber stock from one part of the mold to another. The prepared rubber stock is placed in a transfer cavity where a ram forces the material into a heated mold. The applied force combined with the heat from the mold softens the rubber and allows it to flow freely into the entire mold. The molded item is cured, then removed and deflashed. Final products include V-belts, tool handles, and bushings with metal inserts.

Injection molding is a sophisticated, continuous, and essentially automatic process that uses molds mounted on a revolving turret. The turret moves the molds through a cyclic process that includes rubber injection, curing, release agent treatment and removal. Deflashing occurs after the product has been removed. A wide range of products are made by this process, including automative parts, diaphragms, hot-water bottles, and wheelbarrow tires.

Extrusion forces unvulcanized rubber through a die to give long lengths of rubber of a definite cross section. There are two general subdivisions of this technique; one extrudes simple products, and the other builds products by extruding the rubber onto metal or fabric reinforcement. Products from these techniques include tire tread, cable coating, and rubber hose.

Calendering involves passing unformed or extruded rubber through a set or sets of rolls to form sheets or rolls of rubber product. The thickness of the material is controlled by the space between the rolls. The calendar may also produce patterns, double the product thickness by combining sheets, or add a sheet of rubber to a textile material. The temperature of the calendar rolls is controlled by water and steam. Products produced by this process include hospital sheeting and sheet stock for other product fabrication.

## Subcategory 8 - Wet Digestion Reclaimed Rubber

This subcategory represents a process that is used to recover rubber from fiber-bearing scrap. Scrap rubber, water, reclaiming and defibering agents, and plasticizers are placed in a steam-jacketed, agitator-equipped autoclave. Reclaiming agents used to speed up depolymerization include petroleum and coal tar-base oils and resins as well as various chemical softeners such as phenol alkyl sulfides and disulfides, thiols, and amino acids. Defibering agents chemically do the work of the hammer mill by hydrolyzing the fiber; they include caustic soda, zinc chloride, and calcium chloride.

A scrap rubber batch is cooked for up to 24 hours and then discharged into a blowdown tank where water is added to facilitate subsequent washing operations. Digester liquor is removed by a series of screen washings. The washed rubber is dewatered by a press and then dried in an oven. Two major sources of wastewaster are the digester liquor and the washwater from the screen washings.

Two rubber reclaiming plants use the wet digestion method for reclamation of rubber.

# <u>Subcategory 9 - Pan, Dry Digestion, and Mechanical</u> Reclaimed Rubber

This subcategory combines processes that involve scrap size reduction before continuing the reclaiming process. The pan digestion process involves scrap rubber size reduction on steel rolls, followed by the addition of reclaiming oils in an open mixer. The mixture is discharged into open pans which are stacked on cars and rolled into a single-cell pressure vessel where live steam is used to heat the mixture. Depolymerization occurs in 2 to 18 hours. The pans are then discharged and the cakes of rubber are sent on for further processing. The steam condensate is highly contaminated and is not recycled.

The mechanical rubber reclaiming process, unlike pan digestion, is continuous and involves fiber-free scrap being fed into a horizontal cylinder containing a screw that works the scrap

against the heated chamber wall. Reclaiming agents and catalysts are used for depolymerization. As the depolymerized rubber is extruded through an adjustable orifice it is quenched. The quench vaporizes and is captured by air pollution control equipment. The captured liquid cannot be reused and is discharged for treatment.

Nine plants use these techniques to reclaim rubber.

# <u>Subcategory 10 - Latex-Dipped, Latex-Extruded, and Latex-Molded Goods</u>

These three processes involve the use of latex in its liquid form to manufacture products. Latex dipping consists of immersing an impervious male mold or article into the latex compound, withdrawing it, cleaning it, and allowing the adhering film to air dry. The straight dip process is replaced by a coagulant dip process when heavier films are desired. Fabric or other items may be dipped in latex to produce gloves and other articles. When it has the required coating the mold is leached in pure water to improve physical and electrical properties. After air drying the items are talc-dusted or treated with chlorine to reduce tackiness. Water is often used in several processes, for makeup, cooling, and stripping. Products from dipping include gloves, footwear, transparent goods, and unsupported mechanical goods.

Latex molding employs casts made of unglazed porcelain or plaster of paris. The molds are dusted with talc to prevent sticking, then the latex compound is poured into the mold and allowed to develop the required thickness. The mold is emptied of excess rubber and then oven dried. The mold is removed and the product is again dried in an oven. Casting is used to manufacture dolls, prosthetics, printing matrices, and relief maps.

No description of latex extrusion is available.

## Subcategory 11 - Latex Foam

No latex foam facilities are known to be in operation at this time.

## II.17.2 WASTEWATER CHARACTERIZATION

The raw wastewater emanating from rubber manufacturing plants contains toxic pollutants that are present due to impurities in the monomers, solvents, or the actual raw materials, or are associated with wastewater treatment steps. Both inorganic and organic pollutants are found in the raw wastewater, and conventional pollutants may be present in significant loadings.

Table 17-3 presents an industry-wide profile of the concentration of toxic pollutants found at facilities in each subcategory (no data are available for Subcategories 9 through 11). Table 17-4 gives a subcategory profile of the pollutant loadings (no data are available for Subcategories 8, 10, and 11). These tables were prepared from available 308 questionnaire data and sampling data.

In-plant management practices may often control the volume and quality of the treatment system influent. Volume reduction can be attained by process wastewater segregation from noncontact water, by recycling or reuse of noncontact water, and by the modification of plant processes. Control of spills, leakage, washdown, and storm runoff can also reduce the treatment system load. Modifications may include the use of vacuum pumps instead of steam ejectors, recycling caustic soda solution rather than discharging it to the treatment system, and incorporation of a more efficient solvent recovery system.

# II.17.2.1 Tire and Inner Tube Manufacturing

The tire and inner tube manufacturing industry has several potential areas for wastewater production, but water recycle is used extensively. The major area for water use is in processes requiring noncontact cooling. The general practice of the industry is to recirculate the majority of this water with a minimal blowdown to maintain acceptable concentrations of dissolved solids. Another water use area is contact water used in cooling tire components and in air pollution control devices. This water Steam condensate and hot and cold water is also recirculated. are used in the molding and curing areas. The majority of the water is recycled back to the boiler or hot water tank for use in the next recycle. Soapstone areas and plant and equipment cleanup are the final water use areas. Most facilities try to recycle soapstone solution because of its high solids content. Plant and equipment cleanup water is generally sent to the treatment system. Table 17-5 presents a summary of the potential wastewater sources and the general waste characterization for this subcategory.

Grease and oils and suspended solids make up the major pollutants within this industry. Organic pollutants, pH, and temperature may also require treatment. The organics are present due generally to poor housekeeping procedures.

# II.17.2.2 Emulsion Crumb Rubber Production

In-process controls for the reduction of wastewater flows and loads for emulsion crumb rubber plants include recycling of finishing line wastewaters and steam stripping of heavy monomer decanter wastewater. Recycling of finishing line wastewater

TABLE 17-3. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE RUBBER PROCESSING INDUSTRY BY CATEGORY [1] (mg/L)

|                                             |               | Treatment | influent |      | be manufactu  | Treatment | effluent |            |
|---------------------------------------------|---------------|-----------|----------|------|---------------|-----------|----------|------------|
|                                             | Number        |           |          |      | Number        |           |          |            |
| Toxic pollutants                            | re-<br>ported | Av        | Međ      | Max  | re-<br>ported | Av        | Med      | Max        |
|                                             | ported        |           | neu      | Max  | ported        |           | rieu     | nas        |
| Metals and inorganics<br>Cadmium            |               |           |          |      |               |           |          |            |
| Chromium                                    |               |           |          |      |               |           |          |            |
| Copper                                      | 1             | 0.07      |          | 0.07 |               |           |          |            |
| Lead                                        | Ž             | 25        |          | 50   |               |           |          |            |
| Mercury                                     | ī             | 10        |          | 10   | 1             | 0.35      |          | 0.3        |
| Nickel                                      | -             |           |          |      | -             |           |          |            |
| Selenium                                    |               |           |          |      |               |           |          |            |
| Zinc                                        | 5             | 250       | 150      | 770  |               |           |          |            |
| Phthalates                                  |               |           |          |      |               |           |          |            |
| Bis(2-ethylhexyl) phthalate                 |               |           |          |      |               |           |          |            |
| Di-n-butyl phthalate                        |               |           |          |      |               |           |          |            |
| Dimethyl phthalate                          |               |           |          |      |               |           |          |            |
| ditro con compounds                         |               |           |          |      |               |           |          |            |
| Vitrogen compounds<br>Acrylonitrile         |               |           |          |      |               |           |          |            |
| N-nitrosodiphenylamine                      |               |           |          |      |               |           |          |            |
| N-111 clobodipheny lamine                   |               |           |          |      |               |           |          |            |
| Phenols                                     |               |           |          |      |               |           |          |            |
| 2-Nitrophenol                               |               |           |          |      |               |           |          |            |
| Pentachlorophenol                           |               |           |          |      |               |           |          |            |
| Phenol                                      |               |           |          |      |               |           |          |            |
| 2,4,6-Trichlorophenol                       |               |           |          |      | 1             | <14       |          | <14        |
| Aromatics                                   |               |           |          |      |               |           |          |            |
| Benzene                                     |               |           |          |      |               |           |          |            |
| Ethylbenzene                                |               |           |          |      | 1             | >100      |          | >100       |
| Toluene                                     |               |           |          |      | 1             | <10       |          | <10        |
| Malogenated aliphatics                      |               |           |          |      |               |           |          |            |
| Carbon tetrachloride                        |               |           |          |      |               |           |          |            |
| Chloroethane                                |               |           |          |      |               |           |          |            |
| Chloroform                                  |               |           |          |      |               |           |          |            |
| 1,1-Dichloroethane                          |               |           |          |      |               |           |          |            |
| 1,2-Dichloroethane                          |               |           |          |      |               |           |          |            |
| 1,1-Dichloroethylene                        |               |           |          |      |               |           |          |            |
| 1,2-Trans-dichloroethylene                  |               |           |          |      | 1             | 16        |          | 16         |
| Methylene chloride                          |               |           |          |      | 2             | 20        |          | 20         |
| 1,1,2,2-Tetrachloroethane                   |               |           |          |      |               |           |          |            |
| 1,1,1-Trichloroethane 1,1,2-Trichloroethane |               |           |          |      |               |           |          |            |
| Trichloroethylene                           |               |           |          |      | 1             | 40        |          | 40         |
| <u>-</u>                                    |               |           |          |      | _             |           |          |            |
| esticides and metabolites<br>Isophorone     |               |           |          |      | 1             | <7        |          | <7         |
| TSOPHOTOHE                                  |               |           |          |      | 1             | ` '       |          | ` '        |
|                                             |               |           |          |      |               |           |          | (continued |
|                                             |               |           |          |      |               |           |          |            |

TABLE 17-3 (continued).

|                                                                                         |               |           | Emuls    | ion crumb rub | ber manufac   | turing    |          |         |
|-----------------------------------------------------------------------------------------|---------------|-----------|----------|---------------|---------------|-----------|----------|---------|
|                                                                                         |               | Treatment | influent |               |               | Treatment | effluent |         |
|                                                                                         | Number<br>re- |           |          |               | Number<br>re- |           |          |         |
| Toxic pollutants                                                                        | ported        | Av        | Med      | Max           | ported        | Av        | Med      | Max     |
| Metals and inorganics                                                                   |               |           |          |               |               |           |          |         |
| Cadmium                                                                                 | 3             | 270       | 90       | 720           | 2             | 33        |          | 67      |
| Chromium                                                                                | 2             | 210       |          | 250           | 1             | 220       |          | 220     |
| Copper                                                                                  | 1             | 200       |          | 200           |               |           |          |         |
| Lead                                                                                    | 1             | 390       |          | 390           |               |           |          |         |
| Mercury                                                                                 | 3             | 2.5       | 2.5      |               | 3             | 2.4       | 17       | 4.1     |
| Nickel                                                                                  | 2             | 380       |          | 590           | 1             | 400       |          | 400     |
| Selenium                                                                                | 1             | 20        |          | 20            | 1             | < 24      |          | < 24    |
| Zinc                                                                                    | ī             | 290       |          | 290           |               |           |          |         |
| Phthalates                                                                              |               |           |          |               |               |           |          |         |
| Bis(2-ethylhexyl) phthalate                                                             | 3             | 310       | 260      | 530           | 3             | 190       | 200      | 430     |
| Di-n-butyl phthalate                                                                    | -             |           |          |               |               |           |          |         |
| Dimethyl phthalate                                                                      | 2             | 1         |          | 14            | 2             | 9         |          | 14      |
| Mitrogen compounds                                                                      |               |           |          |               |               |           |          |         |
| Acrylonitrile                                                                           | 1             | <23,000   |          | <23.000       | 1             | <23,000   |          | <23,000 |
| N-nitrosodiphenylamine                                                                  | _             | ,         |          |               | _             |           |          | - ,     |
| Phenols                                                                                 |               |           |          |               |               |           |          |         |
| 2-Nitrophenol                                                                           | 1             | 9.4       |          | 9.4           | 1             | 4.9       |          | 4.9     |
| Pentachlorophenol                                                                       | _             |           |          |               |               |           |          |         |
| Phenol                                                                                  | 3             | 170       | 60       | 440           | 3             | 25        | 19       | 37      |
| 2,4,6-Trichlorophenol                                                                   | •             |           | •        |               | -             |           |          |         |
| Aromatics                                                                               |               |           |          |               |               |           |          |         |
| Benzene                                                                                 | 2             | 70        |          | 10            | 1             | <10       |          | <10     |
| Ethylbenzene                                                                            | ī             | 0.1       |          | 0.1           | 1             | <0.1      |          | <0.     |
| Toluene                                                                                 | 4             | 150       | 230      | 350           | 4             | 110       | 10       | 420     |
| Malogenated aliphatics                                                                  |               |           |          |               |               |           |          |         |
| Carbon tetrachloride                                                                    | 1             | 4.6       |          | 4.6           | 1             | 0.2       |          | 0.:     |
| Chloroethane                                                                            | _             |           |          |               |               |           |          |         |
| Chloroform                                                                              | 3             | 45        | 100      | 270           | 2             | 3         |          | 4       |
| 1,1-Dichloroethane                                                                      | ĭ             | ₹2        |          | <2            | ī             | <2        |          | <2      |
| 1,2-Dichloroethane                                                                      | ī             | 93        |          | 93            | =             |           |          |         |
| 1,1-Dichloroethylene                                                                    | -             |           |          | -             |               |           |          |         |
| 1,2-Trans-dichloroethylene                                                              | •             | 20        | 20       | 70            | 3             | 220       | 150      | 520     |
| Methylene chloride                                                                      | 3             | 30        | 20       | 1.5           | 1             | <0.1      | 130      | <0.     |
| 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene | 1             | 1.5       |          | 1.5           | 1             | \0.1      |          | ٠٠.     |

Pesticides and metabolites Isophorone

(continued)

TABLE 17-3 (continued).

|                                                 | Solution crumb rubber manufacturing |             |     |        |                    |         |     |         |
|-------------------------------------------------|-------------------------------------|-------------|-----|--------|--------------------|---------|-----|---------|
|                                                 | Treatment influent                  |             |     |        | Treatment effluent |         |     |         |
|                                                 | Number                              |             |     |        | Number             |         |     |         |
| mania nallutanta                                | re-                                 | •           |     |        | re-                | _       |     | **      |
| Toxic pollutants                                | ported                              | Av          | Med | Max    | ported             | AV      | Med | Max     |
| Metals and inorganics                           |                                     |             |     |        |                    |         |     |         |
| Cadmium                                         | 3                                   | 30          | 1   | 90     | 2                  | 1.2     |     | 1.3     |
| Chromium                                        | 4                                   | 350         | 310 | 720    |                    |         |     |         |
| Copper                                          | 3                                   | 70          | 9   | 200    | 3                  | 160     | 67  | 405     |
| Lead                                            | 1                                   | 390         |     | 390    | 2                  | 9.4     |     | 14      |
| Mercury                                         | 2                                   | 1.6         |     | 2      | 2                  | 1.5     |     | 2       |
| Nickel                                          | 1                                   | 160         |     | 160    |                    |         |     |         |
| Selenium                                        |                                     |             |     |        |                    |         |     |         |
| Zinc                                            | 2                                   | 8,100       |     | 15,900 | 1                  | 195,000 |     | 195,000 |
| Phthalates                                      |                                     |             |     |        |                    |         |     |         |
| Bis(2-ethylhexyl) phthalate                     | 3                                   | 260         | 140 | 530    | 3                  | 190     | 120 | 430     |
| Di-n-butyl phthalate                            | _                                   | _           |     |        | _                  | _       |     | _       |
| Dimethyl phthalate                              | 1                                   | 9           |     | 9      | 1                  | 6       |     | 6       |
| litrogen compounds                              |                                     |             |     |        |                    |         |     |         |
| Acrylonitrile                                   |                                     |             |     |        |                    |         |     |         |
| N-nitrosodiphenylamine                          |                                     |             |     |        |                    |         |     |         |
| Phenols                                         |                                     |             |     |        |                    |         |     |         |
| 2-Nitrophenol                                   |                                     |             |     |        |                    |         |     |         |
| Pentachlorophenol                               |                                     |             |     |        |                    |         |     |         |
| Phenol                                          | 3                                   | 200         | 170 | 440    | 3                  | 18      | 11  | 37      |
| 2,4,6-Trichlorophenol                           |                                     |             |     |        |                    |         |     |         |
| Aromatics                                       |                                     |             |     |        |                    |         |     |         |
| Benzene                                         | 3                                   | 1,140       | 50  | 3,360  | 3                  | 10      | 10  | 10      |
| Ethylbenzene                                    | ž                                   | 5           | 30  | 11     | 2                  | ₹ĭ      |     | <2      |
| Toluene                                         | 3                                   | 3           | 3   | 10     | 4                  | 110     | 10  | 420     |
| Malogenated aliphatics                          |                                     |             |     |        |                    |         |     |         |
| Carbon tetrachloride                            | 1                                   | 350         |     | 350    | 1                  | 1.410   |     | 1,410   |
| Chloroethane                                    | i                                   | 4,930       |     | 4,930  | 1                  | 2,260   |     | 2,260   |
| Chloroform                                      | 2                                   |             |     | 22     | 1                  | 1.1     |     | 1.3     |
| 1.1-Dichloroethane                              | 2                                   | 12          |     | 22     |                    | 1.1     |     | 1.3     |
| 1,2-Dichloroethane                              |                                     |             |     |        |                    |         |     |         |
| 1,1-Dichloroethylene                            |                                     |             |     |        |                    |         |     |         |
| 1,1-Dichioroethylene 1,2-Trans-dichloroethylene |                                     |             |     |        |                    |         |     |         |
| Methylene chloride                              | 2                                   | 8           |     | 15     | 2                  | 260     |     | 520     |
| 1,1,2,2-Tetrachloroethane                       | 1                                   | <0.1        |     | <0.1   | 1                  | <0.1    |     | <0.1    |
| 1,1,2,2-Tetrachloroethane                       | T                                   | 1.0         |     | \U.1   | T                  | \U.I    |     | `0.1    |
| 1,1,1-Trichloroethane                           | 1                                   | <0.1        |     | <0.1   | 1                  | <0.1    |     | <0.1    |
| Trichloroethylene                               | 1                                   | <0.1        |     | <0.1   | i                  | <0.1    |     | <0.1    |
| TT TOUTOF CHÂTENE                               | 1                                   | <b>(U.1</b> |     | \U.I   | 1                  | /0.1    |     | `0.1    |

Pesticides and metabolites Isophorone

Pesticides and metabolites Isophorone

TABLE 17-3 (continued)

| Latex rubber manufacturin   Treatment influent   Number   re-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Av    | effluent<br>Med | Max<br>1,480 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|--------------|
| Toxic pollutants ported Av Med Max ported  Metals and inorganics Cadmium 1 Chromium Copper Lead Mercury Nickel Selenium Zinc 1 Chthalates Bis(2-ethylhexyl) phthalate 1 100 100 1 Di-n-butyl phthalate Dimethyl phthalate Mitrogen compounds Acrylonitrile N-nitrosodiphenylamine Chenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 2,4,6-Trichlorophenol Uromatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,480 | Med             |              |
| Toxic pollutants ported Av Med Max ported  Metals and inorganics  Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,480 | Med             |              |
| Metals and inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,480 | MEG             |              |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                 | 1,480        |
| Chromium Copper Lead Mercury Nickel Selenium Zinc  1 Phthalates Bis(2-ethylhexyl) phthalate Dim-butyl phthalate Dimethyl phthalate Dimethyl phthalate Acrylonitrile N-nitrosodiphenylamine Phenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 2,4,6-Trichlorophenol  aromatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                 | 1,480        |
| Copper Lead Mercury Nickel Selenium Zinc  Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Dimethyl phthalate Dimethyl phthalate N-nitrogen compounds Acrylonitrile N-nitrosodiphenylamine Phenols 2-Nitrophenol Pentachlorophenol Pentachlorophenol 1 31 31 1 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |              |
| Lead Mercury Nickel Selenium Zinc  1 Chthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Dimethyl phthalate Dimethyl phthalate  N-nitrogen compounds Acrylonitrile N-nitrosodiphenylamine Chenols 2-Nitrophenol Pentachlorophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                 |              |
| Mercury Nickel Selenium Zinc  1 Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Dimethyl phthalate Citrogen compounds Acrylonitrile N-nitrosodiphenylamine Phenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol  romatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |              |
| Nickel Selenium Zinc  1 Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Dimethyl phthalate Dimethyl phthalate N-nitrogen compounds Acrylonitrile N-nitrosodiphenylamine Phenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                 |              |
| Selenium Zinc 1  Phthalates Bis(2-ethylhexyl) phthalate 1 100 100 1 Di-n-butyl phthalate Dimethyl phthalate  Sitrogen compounds Acrylonitrile N-nitrosodiphenylamine Phenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                 |              |
| Zinc 1  Phthalates Bis(2-ethylhexyl) phthalate 1 100 100 1 Di-n-butyl phthalate Dimethyl phthalate  Citrogen compounds Acrylonitrile N-nitrosodiphenylamine  Phenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol  romatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                 |              |
| Phthalates Bis(2-ethylhexyl) phthalate 1 100 100 1 Di-n-butyl phthalate Dimethyl phthalate Iitrogen compounds Acrylonitrile N-nitrosodiphenylamine Phenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol romatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                 |              |
| Bis(2-ethylhexyl) phthalate 1 100 100 1 Di-n-butyl phthalate Dimethyl phthalate  (itrogen compounds Acrylonitrile N-nitrosodiphenylamine  (henols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol  romatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,350 |                 | 2,350        |
| Bis(2-ethylhexyl) phthalate 1 100 100 1 Di-n-butyl phthalate Dimethyl phthalate  (itrogen compounds Acrylonitrile N-nitrosodiphenylamine  (henols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol  romatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·     |                 | •            |
| Di-n-butyl phthalate Dimethyl phthalate  Sitrogen compounds Acrylonitrile N-nitrosodiphenylamine  Chenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                 |              |
| Dimethyl phthalate  Witrogen compounds Acrylonitrile N-nitrosodiphenylamine  Phenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10   |                 | <10          |
| Ritrogen compounds Acrylonitrile N-nitrosodiphenylamine  Phenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |              |
| Acrylonitrile N-nitrosodiphenylamine  Phenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                 |              |
| Acrylonitrile N-nitrosodiphenylamine  Phenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                 |              |
| N-nitrosodiphenylamine  Phenols 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol  Aromatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                 |              |
| Phenols 2-Nitrophenol Pentachlorophenol Pentachlorophenol Pentachlorophenol Phenol Phe |       |                 |              |
| 2-Nitrophenol Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 |              |
| Pentachlorophenol 1 31 31 1 Phenol 1 31 31 1 2,4,6-Trichlorophenol  cromatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                 |              |
| Phenol 1 31 31 1 2,4,6-Trichlorophenol  cromatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                 |              |
| Phenol 1 31 31 1 2.4,6-Trichlorophenol  romatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <10   |                 | <10          |
| 2,4,6-Trichlorophenol cromatics Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <5    |                 | ₹5           |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _     |                 | _            |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                 |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |              |
| Ethylbenzene 1 1,500 1,500 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <5    |                 | <5           |
| Toluene 1,300 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠,5   |                 | 13           |
| rotache                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                 |              |
| alogenated aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                 |              |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                 |              |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                 |              |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                 |              |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                 |              |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                 |              |
| 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                 |              |
| 1,2-Trans-dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                 |              |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                 |              |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                 |              |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                 |              |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                 |              |
| Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                 |              |

TABLE 17-3 (continued).

|                                                                                                            |        |           | General mo | lding, extr | ding, and fabricating |                       |          |              |
|------------------------------------------------------------------------------------------------------------|--------|-----------|------------|-------------|-----------------------|-----------------------|----------|--------------|
|                                                                                                            | Number | Treatment | influent   |             | Number                | Treatment             | effluent |              |
|                                                                                                            | re-    |           |            |             | re-                   |                       |          |              |
| Toxic pollutants                                                                                           | ported | Av        | Med        | Max         | ported                | Av                    | Med      | Max          |
| etals and inorganics<br>Cadmium<br>Chromium<br>Copper                                                      |        |           |            |             |                       |                       |          |              |
| Lead<br>Mercury<br>Nickel<br>Selenium<br>Zinc                                                              | 1      | 20        |            | 20          | 1                     | 9<br>970              |          | 970          |
| ZIIIC                                                                                                      |        |           |            |             | 1                     | 970                   |          | 9/(          |
| nthalates<br>Bis(2-ethylhexyl) phthalate<br>Di-n-butyl phthalate<br>Dimethyl phthalate                     | 1      | 17        |            | 17          | 1                     | 16<br>36              |          | 16<br>36     |
| trogen compounds<br>Acrylonitrile<br>N-nitrosodiphenylamine                                                | 2      | 35        |            | 53          |                       |                       |          |              |
| menols<br>2-Nitrophenol<br>Pentachlorophenol<br>Phenol<br>2,4,6-Trichlorophenol                            | 1      | 2         |            | 2           | 1                     | 11,800                |          | 11,80        |
| omatics<br>Benzene<br>Ethylbenzene<br>Toluene                                                              |        |           |            |             | 11                    | 8                     |          | 4            |
| logenated aliphatics<br>Carbon tetrachloride<br>Chloroethane                                               |        |           |            |             |                       |                       |          |              |
| Chloroform 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylene 1,2- <i>Trans</i> -dichloroethylene  | 1      | 25        |            | <b>2</b> 5  | 2<br>1<br>1           | 10<br>110<br><b>4</b> |          | 10<br>11     |
| Methylene chloride 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene |        |           |            |             | 1<br>1<br>1           | 7,100<br>1<br>1,600   |          | 7,10<br>1,60 |
| sticides and metabolites<br>Isophorone                                                                     |        |           |            |             |                       |                       |          |              |

TABLE 17-3 (continued).

|                                                                   |               |           | Wet      | reclaimed rubber |               |           |          |     |
|-------------------------------------------------------------------|---------------|-----------|----------|------------------|---------------|-----------|----------|-----|
|                                                                   |               | Treatment | influent |                  |               | Treatment | effluent |     |
|                                                                   | Number        |           |          |                  | Number        |           |          |     |
| Toxic pollutants                                                  | re-<br>ported | Av        | Med      | Max              | re~<br>ported | Av        | Med      | Max |
|                                                                   |               |           |          |                  |               |           |          |     |
| etals and inorganics                                              | _             |           |          |                  |               |           |          |     |
| Cadmium                                                           | 1             | 10        |          | 10               |               |           |          |     |
| Chromium                                                          |               |           |          |                  |               |           |          |     |
| Copper                                                            | _             |           |          |                  |               |           |          |     |
| Lead                                                              | 1             | 50        |          | 50               |               |           |          |     |
| Mercury                                                           |               |           |          |                  |               |           |          |     |
| Nickel                                                            |               |           |          |                  |               |           |          |     |
| Selenium                                                          |               |           |          |                  |               |           |          |     |
| Zinc                                                              | 2             | 250       |          | 350              |               |           |          |     |
| Phthalates<br>Bis(2-ethylhexyl) phthalate<br>Di-n-butyl phthalate |               |           |          |                  |               |           |          |     |
| Dimethyl phthalate                                                |               |           |          |                  |               |           |          |     |
| Witrogen compounds Acrylonitrile N-nitrosodiphenylamine           |               |           |          |                  |               |           |          |     |
| Phenols                                                           |               |           |          |                  |               |           |          |     |
| 2-Nitrophenol<br>Pentachlorophenol                                |               |           |          |                  |               |           |          |     |
| Phenol 2,4,6-Trichlorophenol                                      |               |           |          |                  |               |           |          |     |
| romatics                                                          |               |           |          |                  |               |           |          |     |
| Benzene                                                           |               |           |          |                  |               |           |          |     |
| Ethylbenzene<br>Toluene                                           |               |           |          |                  |               |           |          |     |
| alogenated aliphatics                                             |               |           |          |                  |               |           |          |     |
| Carbon tetrachloride<br>Chloroethane                              |               |           |          |                  |               |           |          |     |
| Chloroform                                                        |               |           |          |                  |               |           |          |     |
| 1,1-Dichloroethane                                                |               |           |          |                  |               |           |          |     |
| 1,2-Dichloroethane                                                |               |           |          |                  |               |           |          |     |
| 1,1-Dichloroethylene                                              |               |           |          |                  |               |           |          |     |
| 1,2-Trans-dichloroethylene                                        |               |           |          |                  |               |           |          |     |
| Methylene chloride                                                |               |           |          |                  |               |           |          |     |
| 1,1,2,2-Tetrachloroethane                                         |               |           |          |                  |               |           |          |     |
| 1,1,1-Trichloroethane                                             |               |           |          |                  |               |           |          |     |
| 1,1,2-Trichloroethane                                             |               |           |          |                  |               |           |          |     |
| Trichloroethylene                                                 |               |           |          |                  |               |           |          |     |
| 11 1cm totoe chy tene                                             |               |           |          |                  |               |           |          |     |
| esticides and metabolites                                         |               |           |          |                  |               |           |          |     |
| I sophorone                                                       |               |           |          |                  |               |           |          |     |

Note: Blanks indicate data not available or not applicable (in the case of medians where less than 3 samples were analyzed).

TABLE 17-4. INDUSTRY PROFILE OF TOXIC AND CONVENTIONAL POLLUTANT LOADINGS [1]

|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                  |                  | Tire an         | d inner tub    |                  |                  |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|------------------|-----------------|----------------|------------------|------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Ef:              | luent            |                 |                | Eff              | luent            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number<br>re- |                  |                  |                 | Number         |                  |                  |                    |
| Toxic pollutant                                                                                                                                                                                                                                                                                                                                                                                                                                              | ported        | Av               | Med              | Max             | re-<br>ported  | Av               | Med              | Мах                |
| Metals, kg/Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |                  |                 |                |                  |                  |                    |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                  |                  |                 |                |                  |                  |                    |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                  |                  |                 | 1              | 0.000005         |                  | 0.000005           |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1             | 0.001            |                  | 0.001           | •              | 0.00000          |                  | 0.00000            |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1             | 0.001            |                  | 0.001           |                |                  |                  |                    |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                  |                  |                 |                |                  |                  |                    |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                  |                  |                 |                |                  |                  |                    |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                  |                  |                 |                |                  |                  |                    |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3             | 0.0034           | 0.0038           | 0.006           | 1              | 0.0007           |                  | 0.0007             |
| Organics, kg/Mg Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Dimethyl phthalate Dimethyl phthalate Acrylonitrile N-nitrosodiphenylamine 2-Nitrophenol Pentachlorophenol Phenol Benzene Ethylbenzene Nitrobenzene Toluene Carbon tetrachloride Chloroform 1,1-Dichloroethane 1,1-Trans-dichloroethylene 1,2-Dichloroethane Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene |               |                  |                  |                 |                |                  |                  |                    |
| Others, kg/Mg<br>Dichlorobromomethane<br>Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                       |               |                  |                  |                 |                |                  |                  |                    |
| Conventionals  BOD <sub>5</sub> , kg/d  COD, kg/d  TSS, kg/d  Oil and grease, kg/d  pH, pH units                                                                                                                                                                                                                                                                                                                                                             | 3<br>3<br>6   | 44<br>9.6<br>7.8 | 39<br>3.2<br>7.5 | 92<br>25<br>9.4 | 36<br>27<br>40 | 110<br>12<br>7.9 | 26<br>1.9<br>7.5 | 782<br>110<br>10.3 |

TABLE 17-4 (continued).

|                                     |        |                      |         | Emulsion    | crumb rubber |           |                                         |          |  |
|-------------------------------------|--------|----------------------|---------|-------------|--------------|-----------|-----------------------------------------|----------|--|
|                                     |        | E                    | ffluent |             |              | E         | ffluent                                 |          |  |
|                                     | Number |                      |         |             | Number       |           |                                         |          |  |
|                                     | re-    |                      |         |             | re-          |           |                                         |          |  |
| Toxic pollutant                     | ported | Av                   | Med     | Max         | ported       | Av        | Med                                     | Max      |  |
| Metals, kg/Mg                       |        |                      |         |             |              |           |                                         |          |  |
| Cadmium                             | 2      | 0.0003               |         | 0.0006      | 1            | 0.00013   |                                         | 0.00013  |  |
| Chromium                            | 3      | 4.3                  | 0.00095 | 13.1        | 2            | 5.8       |                                         | 11.7     |  |
| Copper                              | 1      | 0.0033               |         | 0.0033      |              |           |                                         |          |  |
| Lead                                | 1      | 0.006                |         | 0.006       |              |           |                                         |          |  |
| Mercury                             | 3      | 0.056                | 0.0095  | 0.17        | 4            | 0.06      | 0.007                                   | 0.25     |  |
| Nickel                              | ī      | <1.1                 | 0.0000  | <1.1        | i            | 1.26      | 0.007                                   | 1.26     |  |
| Selenium                            | -      |                      |         |             | •            | 1.20      | • • • • • • • • • • • • • • • • • • • • |          |  |
| Zinc                                | 2      | 0.006                |         | 0.007       | 1            | 0.005     |                                         | 0.005    |  |
| Organics, kg/Mg                     |        |                      |         |             |              |           |                                         |          |  |
| Bis(2-ethylhexyl) phthalate         | 3      | 2.4                  | 0.0000  | <b>47.3</b> | •            | 2.2       | 0.0056                                  | <7.0     |  |
| Di-n-butyl phthalate                | 3      | 2.4                  | 0.0069  | <7.3        | 3.           | 2.3       | 0.0056                                  | 1.0      |  |
|                                     | 2      | 0.00017              |         | 0.00010     | •            | 0.00013   |                                         | 0.00018  |  |
| Dimethyl phthalate<br>Acrylonitrile | 2      | 0.00015              |         | 0.00018     | 2            | 0.00013   |                                         | <1,200   |  |
|                                     |        |                      |         |             | 1            | <1,207.1  | •                                       | 1,200    |  |
| N-nitrosodiphenylamine              |        |                      |         |             | _            |           |                                         |          |  |
| 2-Nitrophenol                       | 1      | <1.1                 |         | <1.1        | 1            | 1.3       |                                         | 1.3      |  |
| Pentachlorophenol                   | _      |                      |         |             | _            |           |                                         |          |  |
| Phenol                              | 3      | 1.0                  | 0.0058  | 3.0         | 3            | 0.33      | 0.0005                                  | 0.98     |  |
| Benzene                             | 2      | 0.007                |         | 0.013       | 1            | 0.00013   |                                         | 0.00013  |  |
| Ethylbenzene                        | 1      | <0.05                |         | <0.05       | 1            | <0.005    |                                         | <0.005   |  |
| Nitrobenzene                        | 1      | <0.00039             |         | <0.00039    | 1            | <0.00039  |                                         | <0.00039 |  |
| Toluene                             | 4      | 0.015                | 0.003   | 0.05        | 3            | 0.0018    | 0.00013                                 | 0.005    |  |
| Carbon tetrachloride                | 1      | 0.00001              |         | 0.00001     | 1            | <0.000002 |                                         | <0.00000 |  |
| Chloroform                          | 3      | 0.14                 | 0.0003  | 0.40        | 2            | 0.044     |                                         | 0.089    |  |
| 1,1-Dichloroethane                  | 1      | 0.00002              |         | 0.00002     | 1            | <0.000002 |                                         | <0.00000 |  |
| 1,1-Trans-dichloroethylene          |        |                      |         |             |              |           |                                         |          |  |
| 1,2-Dichloroethane                  |        |                      |         |             |              |           |                                         |          |  |
| Methylene chloride                  | 3      | 1.3                  | 0.0002  | <3.8        | 3            | 1.9       | 0.0.0000068                             | <5.7     |  |
| 1,1,2,2-Tetrachloroethane           | 1      | 0.00002              |         | 0.00002     | 1            | 0.000013  |                                         | 0.00001  |  |
| Tetrachloroethylene                 |        |                      |         |             | _            |           |                                         |          |  |
| 1,1,1-Trichloroethane               | 1      | 0.00012              |         | 0.00012     | 1            | 0.000005  |                                         | 0.00000  |  |
| 1,1,2-Trichloroethane               | -      | 0.00012              |         | 0.00022     | -            | *         |                                         |          |  |
| Trichloroethylene                   |        |                      |         |             |              |           |                                         |          |  |
| 11 zenzor oceny zene                |        |                      |         |             |              |           |                                         |          |  |
| Others, kg/Hg                       | ,      | <i>(</i> 1. <i>(</i> |         |             |              | 7.0       |                                         | 7.0      |  |
| Dichlorobromomethane                | 1      | <1.6                 |         | 1.6         | 1            | 7.0       |                                         | 7.0      |  |
| Chloromethane                       |        |                      |         |             |              |           |                                         |          |  |
| Conventionals                       |        |                      |         |             |              |           |                                         |          |  |
| BOD <sub>5</sub> , kg/d             | 6      | 976                  | 992     | 2,378       | 7            | 305       | 310                                     | 639      |  |
| COD, kg/d                           | 5      | 2.544                | 1,441   | 7,696       | 7            | 2,084     | 2,378                                   | 5,864    |  |
| TSS, kg/d                           | 5      | 460                  | 106     | 1.875       | 7            | 461       | 92                                      | 2,130    |  |
| Oil and grease, kg/d                | 2      | 108.4                | •••     | 210         | 6            | 48        | 43.6                                    | 125      |  |
| pH, pH units                        | 1      | 7.5                  |         | 2.0         | 3            | 7.5       | 7.5                                     | 8.9      |  |

TABLE 17-4 (continued).

|                                                     |        |              |                 | Solution     | crumb rubl |          |        |         |
|-----------------------------------------------------|--------|--------------|-----------------|--------------|------------|----------|--------|---------|
|                                                     |        | E.           | ffluent         |              |            | E.       | fluent |         |
|                                                     | Number |              |                 |              | Number     |          |        |         |
|                                                     | re-    |              |                 |              | re-        |          |        |         |
| Toxic pollutant                                     | ported | Av           | Med             | Мах          | ported     | Av       | Med    | Max     |
| Metals, kg/Mg                                       |        |              |                 |              |            |          |        |         |
| Cadmium                                             | 3      | 0.01         | 0.0007          | 0.04         | 2          | 0.04     |        | 0.09    |
| Chromium                                            | 4      | 8.2          | 0.009           | <17          | 3          | 0.6      | 0.0004 | <1.3    |
| Copper                                              | 3      | 0.09         | 0.0003          | <0.28        | 2          | 0.17     |        | <0.34   |
| Lead                                                | 1      | 0.006        |                 | 0.006        | 3          |          |        |         |
| Mercury                                             | 2      | 2.2          |                 | 4.5          | 2          | 0.07     |        | 0.136   |
| Nickel                                              | _      |              |                 |              | _          | ••••     |        |         |
| Selenium                                            |        |              |                 |              |            |          |        |         |
| Zinc                                                | 2      | 0.07         |                 | 0.14         | 1          | 1.9      |        | 1.9     |
|                                                     | _      |              |                 | ****         | -          |          |        |         |
| organics, kg/Mg                                     | 2      | 1.3          | 0.007           |              | _          | 0.000    |        | 0.006   |
| Bis(2-ethylhexyl) phthalate<br>Di-n-butyl phthalate | 3      | 1.3          | 0.007           | <5. <b>4</b> | 2          | 0.003    |        | 0.006   |
| Dimethyl phthalate                                  | 1      | 0.0001       |                 | 0.0001       | 1          | 0.00008  |        | 0.0000  |
| Acrylonitrile                                       | •      | 0.0001       |                 | 0.0001       | -          | 0.0000   |        | 0.0000  |
| N-nitrosodiphenylamine                              |        |              |                 |              |            |          |        |         |
| 2-Nitrophenol                                       |        |              |                 |              |            |          |        |         |
|                                                     |        |              |                 |              |            |          |        |         |
| Pentachlorophenol                                   | 2      | 3.6          | 0.000           | 7.1          | •          | 0.38     | 0.0005 | <0.76   |
| Phenol                                              | 3      |              | 0.006           |              | 3          |          | 0.0005 | <0.76   |
| Benzene                                             | 3      | 67           | 0. <b>0</b> 007 | 135          | 2          | 0.003    |        |         |
| Ethylbenzene                                        | 2      | 0.002        |                 | 0.004        | 2          | 0.003    |        | 0.003   |
| Nitrobenzene                                        | _      |              |                 |              | _          |          |        |         |
| Toluene                                             | 3      | 0.001        | 0.0001          | 0.004        | 4          | 0.004    | 0.001  | 0.007   |
| Carbon tetrachloride                                | 1      | 0.0003       |                 | 0.0003       |            | _        |        |         |
| Chloroform                                          | 2      | 0. <b>06</b> |                 | 0.12         | 2          | 0.3      |        | 0.63    |
| 1,1-Dichloroethane                                  |        |              |                 |              |            |          |        |         |
| 1,1-Trans-dichloroethylene                          |        |              |                 |              |            |          |        |         |
| 1,2-Dichloroethane                                  |        |              |                 |              |            |          |        |         |
| Methylene chloride                                  | 2      | 0.001        |                 | 0.0002       | 2          | 0.004    |        | 0.007   |
| 1,1,2,2-Tetrachloroethane                           | 1      | 0.004        |                 | 0.004        | 1          | 0.007    |        | 0.007   |
| Tetrachloroethylene                                 |        |              |                 |              |            |          |        |         |
| 1,1,1-Trichloroethane                               |        |              |                 |              |            |          |        |         |
| 1,1,2-Trichloroethane                               | 1      | <0.00008     |                 | <0.00008     | 1          | <0.00001 |        | <0.0000 |
| Trichloroethylene                                   | ĩ      | <0.00008     |                 | <0.00008     | _          |          |        |         |
|                                                     | -      |              |                 |              |            |          |        |         |
| thers, kg/Mg                                        |        |              |                 |              |            |          |        |         |
| Dichlorobromomethane                                |        | 0.04         |                 | 0.04         | •          | 0.01     |        | 0.02    |
| Chloromethane                                       | 1      | 0.04         |                 | 0.04         | 2          | 0.01     |        | 0.02    |
| onventionals                                        |        |              |                 |              |            |          |        |         |
| BOD <sub>5</sub> , kg/đ                             | 6      | 2.532        | 1.080           | 12.405       | 9          | 171      | 70     | 934     |
| COD, kg/d                                           | 4      | 2.068        | 1,851           | 2,361        | 8          | 407      | 400    | 1.120   |
| TSS, kg/d                                           | 3      | 619          | 480             | 1.124        | 8          | 253      | 108    | 1.014   |
| Oil and grease, kg/d                                | 3      | 251          | 92              | 120          | 7          | 21       | 11     | 80      |
| oli and grease, kg/d                                | 1      | 9.5          | 34              | 9.5          | 4          | 6.7      | 7.3    | 8.2     |
| pH, pH units                                        |        | J. J         |                 | 7.3          | *          | 0.1      | ,      | 0.2     |

TABLE 17-4 (continued).

|                             |               |        |       | Latex rubl | er product    | ion     |        |          |
|-----------------------------|---------------|--------|-------|------------|---------------|---------|--------|----------|
|                             | Number        | Eff    | luent |            | Number        | Ef      | fluent |          |
|                             | number<br>re- |        |       |            | number<br>re- |         |        |          |
| Toxic pollutant             | ported        | Av     | Med   | Max        | ported        | Av      | Med    | Max      |
| etals, kg/Mg                |               |        |       |            |               |         |        |          |
| Cadmium                     |               |        |       |            |               |         |        |          |
| Chromium                    |               |        |       |            |               |         |        |          |
| Copper                      |               |        |       |            |               |         |        |          |
| Lead                        |               |        |       |            |               |         |        |          |
| Mercury                     |               |        |       |            |               |         |        |          |
| Nickel                      |               |        |       |            |               |         |        |          |
| Selenium                    |               |        |       |            |               |         |        |          |
| Zinc                        |               |        |       |            |               |         |        |          |
| rganics, kg/Mg              |               |        |       |            |               |         |        |          |
| Bis(2-ethylhexyl) phthalate | 1             | 0.0004 |       | 0.0004     | · 1           | 0.00004 |        | 0.0000   |
| Di-n-butyl phthalate        |               |        |       |            |               |         |        |          |
| Dimethyl phthalate          |               |        |       |            |               |         |        |          |
| Acrylonitrile               |               |        |       |            |               |         |        |          |
| N-nitrosodiphenylamine      |               |        |       |            |               |         |        |          |
| 2-Nitrophenol               |               |        |       |            |               |         |        |          |
| Pentachlorophenol           | 1             | 0.0001 |       | 0.0001     | 1             | 0.00004 |        | 0.0000   |
| Phenol                      | 1             | 0.0001 |       | 0.0001     | 1             | 0.00002 |        | 0.0000   |
| Benzene                     |               |        |       |            |               |         |        |          |
| Ethylbenzene                | 1             | 0.006  |       | 0.006      | 1             | 0.00002 |        | 0.0000   |
| Nitrobenzene                |               |        |       |            |               |         |        |          |
| Toluene                     |               |        |       |            |               |         |        |          |
| Carbon tetrachloride        |               |        |       |            |               |         |        |          |
| Chloroform                  |               |        |       |            |               |         |        |          |
| 1.1-Dichloroethane          |               |        |       |            |               |         |        |          |
| 1,1-Trans-dichloroethylene  |               |        |       |            |               |         |        |          |
| 1,2-Dichloroethane          |               |        |       |            |               |         |        |          |
| Methylene chloride          |               |        |       |            |               |         |        |          |
| 1,1,2,2-Tet achloroethane   |               |        |       |            |               |         |        |          |
| Te'rachloroethylene         |               |        |       |            |               |         |        |          |
| 1,1,1-Trichloroethane       |               |        |       |            |               |         |        |          |
|                             |               |        |       |            |               |         |        |          |
| 1,1,2-Trichloroethane       |               |        |       |            |               |         |        |          |
| Trichloroethylene           |               |        |       |            |               |         |        |          |
| hers, kg/Mg                 |               |        |       |            |               |         |        |          |
| Dichlorobromomethane        |               |        |       |            |               |         |        |          |
| Chloromethane               |               |        |       |            |               |         |        |          |
| nventionals                 |               |        |       |            |               |         |        |          |
| BOD <sub>5</sub> , kg/d     |               |        |       |            | 5             | 59      | 13     | 223      |
| COD, kg/d                   |               |        |       |            | 3             | 105     | 129    | 140      |
| rss, kg/d                   | 1             | 566.8  |       |            | 5             | 121     | 18     | 5,116    |
| Oil and grease, kg/d        |               |        |       |            | 3             | 2.5     | 2.8    | 3.6      |
| pH, pH units                |               |        |       |            | 3             | 8.4     | 8.5    | 8.7      |
|                             |               |        |       |            |               |         |        | (continu |
|                             |               |        |       |            |               |         |        | CONCINC  |

TABLE 17-4 (continued).

|                             |        |         | General m | olding, extru | ding, and fabricating rubber |        |     |       |  |
|-----------------------------|--------|---------|-----------|---------------|------------------------------|--------|-----|-------|--|
|                             | Number | Eff     | luent     |               | Effluent<br>Number           |        |     |       |  |
|                             | re-    |         |           |               | re-                          |        |     |       |  |
| Toxic pollutant             | ported | Av      | Med       | Max           | ported                       | Àv     | Med | Max   |  |
| etals, kg/Hg                |        |         |           |               |                              |        |     |       |  |
| Cadmium                     |        |         |           |               |                              |        |     |       |  |
| Chromium                    |        |         |           |               |                              |        |     |       |  |
| Copper                      |        |         |           |               |                              |        |     |       |  |
| Lead                        | 1      | 0.0003  |           |               | 1                            | 0.0001 |     | 0.000 |  |
| Mercury                     |        |         |           |               |                              |        |     |       |  |
| Nickel                      |        |         |           |               |                              |        |     |       |  |
| Selenium                    |        |         |           |               |                              |        |     |       |  |
| Zinc                        |        |         |           |               | 1                            | 0.14   |     | 0.14  |  |
| rganics, kg/Mg              |        |         |           |               |                              |        |     |       |  |
| Bis(2-ethylhemyl) phthalate | 1      | 0.0002  |           | 0.0002        | 1                            | 0.002  |     | 0.002 |  |
| Di-n-butyl phthalate        |        |         |           |               | 1                            | 0.005  |     | 0.005 |  |
| Dimethyl phthalate          |        |         |           |               |                              |        |     |       |  |
| Acrylonitrile               |        |         |           |               |                              |        |     |       |  |
| N-nitrosodiphenylamine      | 1      | 0.0007  |           | 0.0007        |                              |        |     |       |  |
| 2-Nitrophenol               |        |         |           |               |                              |        |     |       |  |
| Pentachlorophenol           | 1      | 0.00003 |           | 0.00003       |                              |        |     |       |  |
| Phenol                      |        |         |           |               | 1                            | 0.17   |     | 0.17  |  |
| Benzene                     |        |         |           |               | 1                            | 0.001  |     | 0.001 |  |
| Ethylbenzene                |        |         |           |               |                              |        |     |       |  |
| Nitrobenzene                |        |         |           |               |                              |        |     |       |  |
| Toluene                     |        |         |           |               |                              |        |     |       |  |
| Carbon tetrachloride        |        |         |           |               |                              |        |     |       |  |
| Chloroform                  |        |         |           |               | 1                            | 0.0003 |     | 0.000 |  |
| 1,1-Dichloroethane          |        |         |           |               | 1                            | 0.2    |     | 0.2   |  |
| 1,1-Trans-dichloroethylene  |        |         |           |               | 1                            | 0.4    |     | 0.4   |  |
| 1,2-Dichloroethane          |        |         |           |               | 1                            | 0.0006 |     | 0.000 |  |
| Methylene chloride          |        |         |           |               |                              |        |     |       |  |
| 1,1,2,2-Tetrachloroethane   |        |         |           |               |                              |        |     |       |  |
| Tetrachloroethylene         |        |         |           |               | 1                            | 0.0006 |     | 0.000 |  |
| 1,1,1-Trichloroethane       |        |         |           |               | 1                            | 1.0    |     | 1.0   |  |
| 1.1.2-Trichloroethane       |        |         |           |               | 1                            | 0.0002 |     | 0.000 |  |
| Trichloroethylene           |        |         |           |               | 1                            | 0.23   |     | 0.23  |  |
| thers, kg/Hg                |        |         |           |               |                              |        |     |       |  |
| Dichlorobromomethane        |        |         |           |               |                              |        |     |       |  |
| Chloromethane               |        |         |           |               |                              |        |     |       |  |
| onventionals                |        |         |           |               |                              |        |     |       |  |
| BOD <sub>5</sub> , kg/d     |        |         |           |               |                              |        |     |       |  |
| COD, kg/d                   |        |         |           |               |                              |        |     |       |  |
| TSS, kg/d                   |        |         |           |               |                              |        |     |       |  |
| Oil and grease, kg/d        |        |         |           |               |                              |        |     |       |  |
| ort and dreame, which       |        |         |           |               |                              |        |     |       |  |

TABLE 17-4 (continued).

|                                       |               |      | Pan,    | dry digestion, | and mechan    | nical reclaimed |         |     |
|---------------------------------------|---------------|------|---------|----------------|---------------|-----------------|---------|-----|
|                                       |               | E    | ffluent |                |               | F               | ffluent |     |
|                                       | Number<br>re- |      |         |                | Number        |                 |         |     |
| Toxic pollutant                       | ported        | Av   | Med     | ·Max           | re-<br>ported | λv              | Med     | Max |
| fetals, kg/Mg                         |               |      |         |                |               |                 |         |     |
| Cadmium                               |               |      |         |                |               |                 |         |     |
| Chromium                              |               |      |         |                |               |                 |         |     |
| Copper                                |               |      |         |                |               |                 |         |     |
| Lead                                  |               |      |         |                |               |                 |         |     |
| Mercury                               |               |      |         |                |               |                 |         |     |
| Nickel                                |               |      |         |                |               |                 |         |     |
| Selenium                              |               |      |         |                |               |                 |         |     |
| Zinc                                  |               |      |         |                |               |                 |         |     |
| organics, kg/Mg                       |               |      |         |                |               |                 |         |     |
| Bis(2-ethylhexyl) phthalate           |               |      |         |                |               |                 |         |     |
| Di-n-butyl phthalate                  |               |      |         |                |               |                 |         |     |
| Dimethyl phthalate                    |               |      |         |                |               |                 |         |     |
| Acrylonitrile                         |               |      |         |                |               |                 |         |     |
| N-nitrosodiphenylamine                |               |      |         |                |               |                 |         |     |
| 2-Nitrophenol                         |               |      |         |                |               |                 |         |     |
| Pentachlorophenol                     |               |      |         |                |               |                 |         |     |
| Phenol                                |               |      |         |                |               |                 |         |     |
| Benzene                               |               |      |         |                |               |                 |         |     |
| Ethylbenzene                          |               |      |         |                |               |                 |         |     |
| Nitrobenzene                          |               |      |         |                |               |                 |         |     |
| Toluene                               |               |      |         |                |               |                 |         |     |
| Carbon tetrachloride                  |               |      |         |                |               |                 |         |     |
| Chloroform                            |               |      |         |                |               |                 |         |     |
| 1,1-Dichloroethane                    |               |      |         |                |               |                 |         |     |
| 1,1-Trans-dichloroethylene            |               |      |         |                |               |                 |         |     |
| 1,2-Dichloroethane                    |               |      |         |                |               |                 |         |     |
| Methylene chloride                    |               |      |         |                |               |                 |         |     |
| 1,1,2,2-Tetrachloroethane             |               |      |         |                |               |                 |         |     |
| Tetrachloroethylene                   |               |      |         |                |               |                 |         |     |
| 1,1,1-Trichloroethane                 |               |      |         |                |               |                 |         |     |
| 1,1,2-Trichloroethane                 |               |      |         |                |               |                 |         |     |
| Trichloroethylene                     |               |      |         |                |               |                 |         |     |
| thers, kg/Hg                          |               |      |         |                |               |                 |         |     |
| Dichlorobromomethane<br>Chloromethane |               |      |         |                |               |                 |         |     |
| onventionals                          |               |      |         |                |               |                 |         |     |
| BOD <sub>5</sub> , kg/d               | 2             | 390  |         | 775            | 2             | 49              |         | 96  |
| COD, kg/d                             | 1             | 570  |         |                | 2             | 520             |         | 690 |
| TSS, kg/d                             | 2             | 3.2  |         | 5.2            | 3             | 13              | 17      | 22  |
| Oil and grease, kg/d                  | 2             | 13.9 |         | 24.4           | 3             | 2.6             | 0.07    | 7.7 |
|                                       | 1             | 7.2  |         |                | 2             | 7.3             |         | 7.5 |

Note: Blanks indicate data not available or not applicable (in the case of medians where less than 3 samples were analyzed).

TABLE 17-5. SUMMARY OF POTENTIAL PROCESS-ASSOCIATED WASTEWATER SOURCES FROM THE TIRE AND INNER TUBE INDUSTRY [1]

| Plant area                  | Source                                                                     | Nature and origin of wastewater contaminants                                                                                                        |
|-----------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Oil storage                 | Runoff                                                                     | Oil.                                                                                                                                                |
| Compounding                 | Washdown, spills, leaks,<br>discharges from wet air<br>pollution equipment | Solids from soapstone dip tanks. Oil from seals in roller mills. Oil from solids from Banbury seals. Solids from air pollution equipment discharge. |
| Bead, tread, tube formation | Washdown, spills, leaks                                                    | Oil and solvent-based cements from the cementing operation. Oil from seals in roller mills.                                                         |
| Cord and belt formation     | Washdown, spills, leaks                                                    | Organics and solids from dipping operation. Oil from seals, in roller mills, calenders, etc.                                                        |
| Green tire painting         | Washdown, spills, air pollution equipment                                  | Organics and solids from spray painting operation.<br>Soluble organics and solids from air pollution<br>equipment discharge.                        |
| Molding and curing          | Washdown, leaks                                                            | Oil from hydraulic system. Oil from presses.                                                                                                        |
| Tire finishing              | Washdown, spills, air pollution equipment                                  | Solids and soluble organics from painting operation. Solids from air pollution equipment discharge.                                                 |

occurs at nearly all emulsion crumb plants with the percent recycle depending primarily upon the desired final properties of the crumb. Approximately 75% recycle is an achievable rate, with recycle for white masterbatch crumb below this level and that for black masterbatch crumb exceeding it.

Organic toxic pollutants found at emulsion crumb rubber plants come from the raw materials, impurities in the raw materials, and additives to noncontact cooling water. BOD, COD and TSS levels may also reach high loadings.

Table 17-6 lists potential wastewater sources and general wastewater contaminants for the emulsion crumb rubber industry.

TABLE 17-6. SUMMARY OF WASTEWATER SOURCES FROM EMULSION CRUMB RUBBER PRODUCTION FACILITIES [1]

| Processing unit       | Source                                                                                                                        | Nature of wastewater contaminants                                                                                                  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Caustic soda scrubber | Spent caustic solution                                                                                                        | High pH, alkalinity, and color. Extremely low<br>average flow rate.                                                                |  |  |
| Monomer recovery      | Decant water layer                                                                                                            | Dissolved and separable organics. Source of high BOB and COD discharges.                                                           |  |  |
| Coagulation           | Coagulation liquor overflow                                                                                                   | Acidity, dissolved organics, suspended and high dissolved solids, and color. High wastewater flow rates relative to other sources. |  |  |
| Crumb dewatering      | Crumb rinse water overflow                                                                                                    | Dissolved organics, and suspended and dissolved solids. Source of highest wastewater volume from emulsion crumb rubber production. |  |  |
| Monomer strippers     | strippers Stripper cleanout rinse Dissolved organics, and suspended and dissolved water solids. High quantities of uncoagular |                                                                                                                                    |  |  |
| Tanks and reactors    | Cleanout rinse water                                                                                                          | Dissolved organics, and suspended and dissolved solids. High quantities of uncoagulated latex.                                     |  |  |
| All plant areas       | Area washdowns                                                                                                                | Dissolved and separable organics, and suspended and dissolved solids.                                                              |  |  |

#### II.17.2.3 Solution Crumb Rubber Production

Solution crumb rubber production plants have lower raw wastewater loads than emulsion crumb plants due to the thorough steam stripping of product cement to remove solvent and permit effective coagulation. Recycling in this industry is comparable to that in the emulsion crumb industry with about 75% of the wastewater being recirculated.

Toxic pollutants found in the wastewater streams are normally related to solvents and solvent impurities, product additives, and cooling water treatment chemicals. Table 17-7 presents a listing of the potential wastewater sources and the associated contaminants for this industry.

TABLE 17-7. SUMMARY OF WASTEWATER SOURCES FROM SOLUTION CRUMB RUBBER PRODUCTION [1]

| Processing unit                    | Source                                       | Nature of wastewater contaminants                                                                 |  |  |
|------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| Caustic soda scrubber              | Spent caustic solution                       | High pH, alkalinity, and color.<br>Extremely low average flow rate.                               |  |  |
| Monomer and solvent drying columns | Water removed from mono-<br>mers and solvent | Dissolved and separable organics.<br>Very low flow.                                               |  |  |
| Solvent purification               | Fractionator bottoms                         | Dissolved and separable organics.                                                                 |  |  |
| Monomer recovery                   | Decant water layer                           | Dissolved and separable organics.                                                                 |  |  |
| Crumb dewatering                   | Crumb rinse water overflow                   | Dissolved organics, and suspended and dissolved solids. Source of highest volume wastewater flow. |  |  |
| All plant areas                    | Area washdowns                               | Dissolved and separable organics, and suspended and dissolved solids.                             |  |  |

#### II.17.2.4 Latex Rubber Production

No in-process contact water is currently used by the latex rubber industry. No raw material recycling is practiced because of poor control of monomer feeds and the buildup of impurities in the water.

Organic toxic pollutants and chromium are present in the raw wastewater and normally consist of raw materials, impurities, and metals used as cooling water corrosion inhibitors.

Table 17-8 presents potential wastewater sources and general contaminants for this industry.

# II.17.2.5 General Molding, Extruding, and Fabricating Rubber Plants

Toxic pollutants resulting from production processes within this industry are generally the result of leaks, spills, and poor

housekeeping procedures. Pollutants include organics associated with the raw materials and lead from the rubber curing process.

TABLE 17-8. SUMMARY OF WASTEWATER SOURCES FROM LATEX RUBBER PRODUCTION [1]

| Processing unit                | Source                                   | Nature of wastewater contaminants                                                          |
|--------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------|
| Caustic soda scrubber          | Spent caustic solution                   | High pH, alkalinity, and color. Extremely low average flow rate.                           |
| Excess monomer stripping       | Decant water layer                       | Dissolved and separable organics.                                                          |
| Latex evaporators              | Water removed during latex concentration | Dissolved organics, suspended and dissolved solids. Relatively high wastewater flow rates. |
| Tanks, reactors, and strippers | Cleanout rinse water                     | Dissolved organics, suspended and dissolved solids. High quantities of uncoagulated latex. |
| Tank cars and tank trucks      | Cleanout rinse water                     | Dissolved organics, suspended and dissolved solids. High quantities of uncoagulated latex. |
| All plant areas                | Area washdowns                           | Dissolved and separable organics, and suspended and dissolved solids.                      |

#### II.17.2.6 Rubber Reclamation

Wastewater effuents from this industry contain high levels of toxic organic and inorganic pollutants. These pollutants generally result from impurities in the tires and tubes used in the reclamation process. The wastewater from the pan process is of low volume (0.46 m³/Mg [56 gal/1,000 lb]), but is highly contaminated, requiring treatment before discharge. The mechanical reclaiming process uses water only to quench the reclaimed rubber, but it uses a much higher quantity (1.1 m³/Mg). Steam generated from the quenching process is captured in a scrubber and sent to the treatment system. Wet digestion uses 5.1 m³ of water per Mg (604 gal/1,000 lb) of product in processing, of which 3.4 m³/Mg (407 gal/1,000 lb) of product is used in air pollution control.

# II.17.2.7. <u>Latex-Dipped</u>, <u>Latex-Extruded</u>, <u>and Latex-Molded</u> <u>Goods</u>

Wastewater sources in this industry are the leaching process, makeup water, cooling water, and stripping water. Toxic pollutants are present only in insignificant levels in the wastewater discharges.

#### II.17.2.8 Latex Foam

No information is available on the wastewater characteristics of this industry.

#### II.17.3 PLANT SPECIFIC DESCRIPTION

Only two subcategories of the rubber industry have not been recommended as Paragraph 8 exclusions of the NRDC consent decree: Wet Digestion Reclaimed Rubber, and Pan, Mechanical, and Dry Digestion Reclaimed Rubber. Of these two, plant specific data are available only for the latter. Of the nine remaining subcategories, plant specific information is available only for Emulsion Crumb Rubber and Solution Crumb Rubber, and it is presented below. Two plants in each subcategory are described. They were chosen as representative of their industries based on available data.

#### II.17.3.1 Emulsion Crumb Rubber Production

Plant 000012 produces  $3.9 \times 10^4$  Mg/yr  $(8.7 \times 10^7 \text{ lb/yr})$  of emulsion crumb rubber, primarily neoprene. The contact wastewater flow rate is approximately  $8.45 \text{ m}^3/\text{d}$   $(5.90 \times 10^5 \text{ gpd})$  and includes all air pollution control equipment, sanitary waste, maintenance and equipment cleanup, and direct contact wastewater. The treatment process consists of activated sludge, secondary clarification, sludge thickening, and aerobic sludge digestion. Noncontact wastewater, with a flow rate of approximately  $1.31 \times 10^5 \text{ m}^3/\text{d}$   $(3.46 \times 10^7 \text{ gpd})$ , is used on a once-through basis and is returned directly to the river source. Contact wastewater is also returned to the surface stream after treatment.

Plant 000033 produces three types of emulsion crumb rubber in varying quantities. Styrene butadiene rubber (SBR) is the bulk of production, at nearly 3.7 x  $10^5$  Mg/yr (8.2 x  $10^8$  lb/yr), with nitrile butadiene rubber (NBR) and polybutadiene rubber (PBR) making up the remainder of production (4.5 x  $10^4$  Mg/yr [1.0 x  $10^8$  lb/yr] and 4.5 x  $10^3$  Mg/yr [1 x  $10^7$  lb/yr], respectively). Wastewater consists of direct contact process water, MEC, noncontact blowdown, and noncontact ancillary water. The total flow of contact water is approximately 1.27 x  $10^4$  m³/d (3.365 x  $10^6$  gpd), and of noncontact water, it is 340.4 m³/d (90 x  $10^4$  gpd). Treatment of the wastewater consists of coagulation, sedimentation, and biological treatment with extended aeration. Treated wastewater is discharged to a surface stream.

Tables 17-9 and 17-10 present plant specific toxic pollutant data for the selected plants. Table 17-11 gives plant specific conventional pollutant data, including BPT regulations set for each specific plant. Both plants are within BPT regulations for the sampling data. Plant 000012 is not within the standards for the 308 data available.

TABLE 17-9. PLANT SPECIFIC VERIFICATION DATA FOR EMULSION CRUMB RUBBER PRODUCTION PLANT 000012 [1]

Flow rate,  $m^3/d$ : contact, 8.45; noncontact, 1.31 x  $10^5$ 

|                            |      |          |      |       |        | Loca         | tion in p | process  | line |                    |      |      |                  |
|----------------------------|------|----------|------|-------|--------|--------------|-----------|----------|------|--------------------|------|------|------------------|
|                            | Stri | pper dec | ant  | Spray | wash w | ater         | Treatme   | ent infl | uent | Treatment effluent |      |      | ,                |
| Pollutant                  | Av   | Med      | Max  | Av    | Med    | Max          | Av        | Med      | Max  | Av                 | Med  | Max  | Raw intake water |
| Cadmium                    | <1   | <1       | <1   | <1    | <1     | <1           | <2        | <1       | 4    | <1                 | <1   | <1   | <1.0             |
| Mercury                    | 1.5  | 0.7      | 3.4  | 2.0   | 1.1    | 3.8          | 2.5       | 3.4      | 3.6  | 1.6                | 0.7  | 3.4  | 1.5              |
| Nickel                     | 60   | 90       | 90   | 690   | 720    | 7 <b>4</b> 0 | 610       | 560      | 720  | 400                | 400  | 430  | <10              |
| Bis(2-ethylexyl) phthalate | 290  | 250      | 550  | 490   | 260    | 1,000        | 260       | 260      | 270  | 230                | 110  | 520  | 262              |
| Dimethyl phthalate         | <14  | <14      | <16  | <14   | <14    | <16          | <14       | <14      | <16  | <14                | <14  | <16  | <16              |
| N-nitrosodiphenylamine     | 1.5  | <1.0     | 2.5  | 1.0   | <1.0   | 1.0          | 5.2       | 4.0      | 10.4 | 2.0                | 1.8  | 3.1  | <1.0             |
| Phenol                     | 16   | 18       | 26   | 29    | 32     | 36           | 40        | 40       | 60   | 19                 | 19   | 20   | <2               |
| Nitrobenzene               | <30  | <30      | <30  | <30   | <30    | <30          | <30       | <30      | <30  | <30                | <30  | <30  | <30              |
| Toluene                    | 370  | 310      | 780  | <0.5  | <0.5   | <0.5         | 250       | 290      | 370  | <0.5               | <0.5 | <0.5 | <0.5             |
| Carbon tetrachloride       | 41   | 46       | 49   | 0.1   | 0.1    | 0.2          | 4.7       | 4.0      | 7.9  | 0.2                | <0.1 | 0.3  | 0.3              |
| Chloroform                 | 108  | 120      | 130  | 14    | 11     | 22           | 27        | 25       | 33   | 4.1                | 2.2  | 8.5  | 8.5              |
| 1,1-Dichloroethylene       | 51   | 71       | 81   | <1.7  | <1.7   | <1.7         | <1.7      | <1.7     | <1.7 | <1.7               | <1.7 | <1.7 | <1.7             |
| Methylene chloride         | 4.8  | 3.0      | 8.7  | 1.0   | 0.1    | 2.8          | <0.1      | <0.1     | <0.1 | 1.0                | <0.1 | 2.8  | <0.1             |
| <b>Tetrachloroethylene</b> | <0.1 | <0.1     | <0.1 | <0.1  | <0.1   | <0.1         | 1.4       | 0.9      | 3.2  | <0.1               | <0.1 | <0.1 | <0.1             |
| 1,1,1-Trichloroethane      | 1.6  | <0.1     | 4.6  | 0.3   | 0.2    | 0.6          | 1.1       | 0.9      | 2.2  | 0.3                | 0.2  | 0.6  | 0.2              |

<sup>&</sup>lt;sup>a</sup>Based on three 24-hour sample composite analyses.

bBased on second 24-hour sample composite analyses.

# TABLE 17-10. PLANT SPECIFIC VERIFICATION DATA FOR EMULSION CRUMB RUBBER PRODUCTION PLANT 000033<sup>a</sup> [1] (µg/L)

Flow rate, m<sup>3</sup>/d: SBR - contact, 1.02 x 10<sup>4</sup>; noncontact, 1.9 x 10<sup>2</sup>

NBR - contact, 1.25 x 10<sup>3</sup>; noncontact, 75.7

PBR - contact, 1.25 x 10<sup>3</sup>; noncontact, 75.7

Total - contact, 1.27 x 10<sup>4</sup>; noncontact, 340.4

|                            |        |             |        |         | Lo          | cation in p | rocess line |            |         |        |            |        |
|----------------------------|--------|-------------|--------|---------|-------------|-------------|-------------|------------|---------|--------|------------|--------|
|                            | S      | BR stripper | -      | Fi      | nishing com | ip.         | N           | BR finishi | ng      | Trea   | tment infl | uent   |
| Pollutant                  | Av     | Med         | Max    | Av      | Med         | Max         | Àv          | Med        | Max     | Av     | Med        | Max    |
| Cadmium                    | <1     | <1          | <1     | 80      | 80          | 80          | 1           | <1         | 2       | 40     | 50         | 50     |
| Chromium                   | 6      | 4           | 10     | 400     | 400         | 610         | 20          | 25         | 25      | 250    | 280        | 280    |
| Copper                     | 70     | 100         | 110    | 80      | 80          | 80          | <1          | <1         | <1      | 1,400  | 1,300      | 1,800  |
| lercury                    | 0.8    | 0.6         | 1.1    | 60      | 10          | 170         | 2.2         | 2.0        | 3.6     | 3.2    | 3.6        | 3.     |
| ielenium                   | <4     | <4          | <4     | <40     | <40         | <40         | 6           | <4         | 10      | <20    | <20        | <20    |
| is(2-ethylhexyl) phthalate | 350    | 410         | 530    | 210     | 160         | 350         | 170         | <110       | 280     | 100    | <110       | 190    |
| crylonitrile               | 26,000 | <23,000     | 33,000 | <23,000 | <23,000     | <23,000     | 94,000      | 98,000     | 128,000 | 32,000 | 33,000     | 35,000 |
| -Nitrophenol               | <4     | <4          | <4     | <4      | <4          | <4          | 17          | <4         | 44      | 10     | 7          | 19     |
| henol                      | 41     | 11          | 110    | 67      | 61          | 81          | 32          | 36         | 45      | 61     | 57         | 120    |
| thylbenzene                | 38     | <0.1        | 113    | <0.1    | <0.1        | <0.1        | <0.1        | <0.1       | <0.1    | <0.1   | <0.1       | <0.    |
| oluene                     | <0.1   | <0.1        | <0.1   | <0.1    | <0.1        | <0.1        | <0.1        | <0.1       | <0.1    | <0.1   | <0.1       | <0.    |
| hloroform                  | 1.4    | 1.5         | 1.5    | 2.2     | 1.9         | 3.8         | 5           | 6.2        | 7.8     | 8.3    | 9.6        | 13     |
| ichlorobromomethane        | 0.3    | <0.1        | 0.8    | 0.1     | <0.1        | 0.1         | 0.5         | 0.6        | 0.9     | 0.3    | 0.4        | 0.     |
| Methylene chloride         | 110    | 140         | 180    | <0.1    | <0.1        | <0.1        | 80          | <0.1       | 240     | 70     | 52         | 150    |

|                             | Treatment effluent |         |         | <b>NBR</b> decant | ;                               | Raw intake,       | Raw intake,       |         |
|-----------------------------|--------------------|---------|---------|-------------------|---------------------------------|-------------------|-------------------|---------|
|                             | Av                 | Med     | Маж     | λv                | Med                             | Max               | well <sup>D</sup> | river   |
| Cadmium                     | 40                 | 40      | 50      | 2                 | 2                               | 4                 | <1                | <1      |
| Chromium                    | 220                | 230     | 240     | 10                | 9                               | 16                | 6                 | 5       |
| Copper                      | 410                | 410     | 430     | c <sup>1</sup>    | _1                              | _2                | 1                 | <1      |
| Mercury                     | 3.1                | 3.2     | 3.6     | -c                | _c*                             | _c²               | 0.7               | 0.6     |
| Selenium                    | 25                 | <20     | 50      | 6                 | <4                              | 10                | <4                | <4      |
| Bis(2-ethylhexyl) phthalate | 130                | <110    | 180     | 115               | 115                             | 120               | <110              | <110    |
| Acrylonitrile               | <23,000            | <23,000 | <23,000 | 48,000            | 46,000                          | 63,000            | <23,000           | <23,000 |
| 2-Nitrophenol               | 5                  | <4      | 7       | 5                 | <4                              | 7                 | <4                | <4      |
| Phenol                      | 20                 | 27      | 30      | 16                | 6                               | 40                | 10                | <3      |
| Ethylbenzene                | <0.1               | <0.1    | <0.2    | 23,               | <0_1                            | 70,               | <0.1              | <0.1    |
| Toluene                     | <0.1               | <0.1    | <0.1    | 23<br>25          | <0 <sub>25</sub> a <sup>1</sup> | 70<br>51 <b>d</b> | <0.1              | <0.1    |
| Chloroform                  | 1.8                | 1.9     | 2.6     | 40                | 32                              | 60                | 1.2               | 41      |
| Dichlorobromomethane        | 0.1                | 0.1     | 0.2     | 5.2               | 4.3                             | 8.5               | <0.1              | 6.2     |
| Methylene chloride          | 100                | 59      | 260     | 180               | 160                             | 300               | <2                | <2      |

Based on results of three 24-hour composite samples.

Based on first 24-hour composite sample.

No analysis due to interference.

dBased on first and third 24-hour composite samples. Second sample was obscured.

TABLE 17-11. PLANT SPECIFIC CONVENTIONAL POLLUTANT VERIFICATION DATA FOR SELECTED EMULSION CRUMB RUBBER PRODUCTION PLANTS [1]

|                  |       |          |       | Was       | te load, | a plant 00 | 0012  |          |        |           |
|------------------|-------|----------|-------|-----------|----------|------------|-------|----------|--------|-----------|
|                  |       |          | luent |           |          | Eff        | luent |          |        |           |
| Parameter        | 30    | 8 data   | Samp  | ling data | 30       | 8 data     | Sampl | ing data | BPT re | egulation |
| BOD <sub>5</sub> | 1,400 | (3,090)  | 1,200 | (2,639)   | 45       | (100)      | 4.8   | (10.6)   | 44     | (96.7)    |
| COD              | 2,300 | (5,000)  | 2,100 | (4,574)   | 900      | (2,000)    | 130   | (281)    | 880    | (1,933)   |
| TSS              | 400   | (870)    | 10    | (17.6)    | 250      | (560)      | 35    | (77.4)   | 71     | (157)     |
| Oil and grease   |       |          | <8    | (<17.6)   |          |            | 8     | (17.6)   | 18     | (38.7)    |
| pН               |       | 7        |       |           |          | 8.2        |       |          | 6      | to 9      |
| Cyanide          |       |          |       |           |          |            |       |          |        |           |
| Ammonia          |       |          |       |           |          |            |       |          |        |           |
|                  |       |          | ·     | Was       | te load, | a plant 00 | 0033  |          |        |           |
| BOD <sub>5</sub> | 380   | (840)    | 2,700 | (5,947)   | 99       | (219)      | 143   | (315)    | 463    | (1,019)   |
| COD              | 5,700 | (12,600) | 8,730 | (19,240)  | 2,620    | (5,777)    | 2,700 | (5,947)  | 9,250  | (20,376)  |
| TSS              | 1,760 | (3,886)  | 2,130 | (4,688)   | 330      | (731)      | 250   | (542)    | 750    | (1,656)   |
| Oil and grease   |       |          | 240   | (525)     | 35       | (78)       | 140   | (314)    | 185    | (408)     |
| рĦ               |       | 5.5      |       |           | 7        | . 0        |       |          | 6 1    | to 9      |
|                  |       | (155)    | 0.4   | (0.9)     | 0.59     | (1.3)      | 0.16  | (0.35)   |        |           |
| Cyanide          | 70    | (133)    |       |           |          |            |       |          |        |           |

 $<sup>^{\</sup>mathbf{a}}$ Values in kg/d (lb/d) except for pH values; they are given in pH units.

Note: Blanks indicate data not available.

#### II.17.3.2 Solution Crumb Rubber Production

Plant 000005 produces approximately 3.2 x  $10^4$  Mg/yr (7.0 x  $10^7$  lb/yr) of isobutene-isopropene rubber. Wastewater generally consists of direct processes and MEC water. Contact wastewater flow rate is approximately 1,040 m³/d (2.75 x  $10^3$  gpd), and noncontact water flows at about 327 m³/d (8.64 x  $10^4$  gpd). Treatment consists of coagulation, flocculation and dissolved air flotation, and the treated effluent becomes part of the noncontact cooling stream of the on-site refinery.

Plant 000027 produces polyisoprene crumb rubber  $(4.5 \times 10^4 \text{ Mg/yr} [1 \times 10^8 \text{ lb/yr}])$ , polybutadiene crumb rubber  $(4.5 \times 10^4 \text{ mg/yr} [1.0 \times 10^8 \text{ lb/yr}])$ , and ethylene-propylene-diene-terpolymer rubber (EPDM;  $4.5 \times 10^4 \text{ Mg/yr} [1.0 \times 10^8 \text{ lb/yr}])$ . Wastewater consists of contact process water, MEC, cooling tower blowdown, boiler blowdown, and air pollution control. Wastewater is produced at about 12,100 m³/day  $(3.2 \times 10^6 \text{ gpd})$ . Treatment consists of API separators, sedimentation, stabilization, and lagooning, followed by discharge to a surface stream.

Tables 12-12 and 17-13 show plant specific toxic pollutant data for the above plants. Conventional pollutant data and BPT regulations are presented in Table 17-14.

#### II.17.3.3 Dry Digestion Reclaimed Rubber

An analytical data summary for plant 000134 is given in Table 17-15. Production, wastewater flow, and treatment data are currently not available for a plant within this subcategory.

#### II.17.4 POLLUTANT REMOVABILITY

In this industry, numerous organic compounds, BOD, and COD are typically found in the plant wastewater effluent. Industry-wide flow and production data show that these pollutants can be reduced by biological treatment. In emulsion crumb and latex plants, uncoagulated latex contributes to high suspended solids. Suspended solids are produced by rubber crumb fines and include both organic and inorganic materials. Removal of such solids is possible using a combination of coagulation/flocculation and dissolved air flotation.

Solvents, extender oils, and insoluble monomers are used throughout the rubber industry. In addition, miscellaneous oils are used to lubricate machinery. Laboratory analysis indicates the presence of oil and grease in the raw wastewater of these plants. Oil and grease entering the wastewater streams is removed by chemical coagulation, dissolved air flotation and, to some extent, biological oxidation.

TABLE 17-12. PLANT SPECIFIC VERIFICATION DATA FOR SOLUTION CRUMB PRODUCTION PLANT 000005  $^a$  [1] (µg/L)

Flow rate, m<sup>3</sup>/d: contact, 1,040; noncontact, 327

|                             |          |            |           | Locatio       | n in proces  | s line |        |             |        |
|-----------------------------|----------|------------|-----------|---------------|--------------|--------|--------|-------------|--------|
|                             | Screen - | tank 1 and | 2 comp.   | Expelle       | r - 1 and 2  | comp.  |        | DAF influen | t      |
| Pollutant                   | Àν       | Med        | Мах       | Av            | Med          | Max    | Av     | Med         | Max    |
| Cadmium                     | <1       | <1         | <1        | <1            | <1           | <1     | <1     | <1          | <1     |
| Chromium                    | 3        | 3          | 4         | 6             | 4            | 10     | 75     | 95          | 100    |
| Copper                      | 6        | 5          | 9         | 7             | 7            | 11     | 9      | 9           | 10     |
| Zinc                        | 13,000   | 14,000     | 14,000    | 11,000        | 12,000       | 12,000 | 14,000 | 14,000      | 16,000 |
| Bis(2-ethylhexyl) phthalate | 60       | 46         | 130       | 100           | 62           | 220    | 200    | 120         | 450    |
| Phenol                      | 9        | 8          | 16        | 5             | <4           | 8      | 7      | 8           | 8      |
| Benzene                     | <22      | <11        | <43       | 13            | <11          | 16     | 22     | 11          | 43     |
| Ethylbenzene                | <40      | <2         | <110      | <2            | <2           | <2     | 12     | <11         | 22     |
| Toluene                     | <26      | <3         | <72       | <3            | <3           | <3     | 26     | 3           | <72    |
| Carbon tetrachloride        | 0.06     | 0.06       | 0.07      | 0.06          | 0.06         | 0.06   | 35     | 31          | 65     |
| Chloroform                  | 0.90     | 0.88       | 0.94      | 0.88          | 0.90         | 0.94   | 3.0    | 2.0         | 3.0    |
| Methyl chloride             | 14,000   | 14,000     | 14,000    | 2,600         | 2,700        | 2,900  | 4,900  | 3,900       | 7,200  |
| Methylene chloride          | <1       | <1         | <b>(1</b> | <b>&lt;</b> 1 | <b>&lt;1</b> | <1     | <1     | <1          | <1     |
| 1,1,2-Trichloroethane       | <0.1     | <0.1       | <0.1      | <0.1          | <0.1         | <0.1   | <0.1   | <0.1        | <0.1   |
| Trichloroethylene           | <0.1     | <0.1       | <0.1      | <0.1          | <0.1         | <0.1   | <0.1   | <0.1        | <0.1   |

|                             |        |             | Loca   | tion in proc | ess line               |       |          |       |
|-----------------------------|--------|-------------|--------|--------------|------------------------|-------|----------|-------|
|                             |        | DAF effluen | t      | Well _       | Boiler ,               | Boi   | ler blow | down  |
|                             | Av     | Med         | Max    | water        | feedwater <sup>D</sup> | Av    | Med      | Max   |
| Cadmium                     | 41     | <1          | <1     | <1           | <1                     |       |          |       |
| Chromium                    | 430    | 400         | 540    | 3            | 3                      | 5,400 | 6,000    | 7,300 |
| Copper                      | 14     | 14          | 18     | 3            | 7                      |       |          |       |
| Zinc                        | 13,000 | 18,000      | 19,000 | 30           | 13,000                 | 3,700 | 4,000    | 4,700 |
| Bis(2-ethylhexyl) phthalate | 24     | 17          | 55     | 98           | 50                     |       |          |       |
| Phenol                      | 5      | 4           | 8      | <2           | 6                      |       |          |       |
| Benzene                     | 110    | <11         | 320    | <43          | <43                    |       |          |       |
| Ethylbenzene                | <38    | <2          | <110   | <110         | <110                   |       |          |       |
| Toluene                     | <26    | <3          | <72    | <72          | <72                    |       |          |       |
| Carbon tetrachloride        | 14     | 10          | 24     | 0.10         | 0.06                   |       |          |       |
| Chloroform                  | 1.3    | 1.7         | 2.0    | 1.0          | 0.98                   |       |          |       |
| Methyl chloride             | 2,000  | 2,000       | 4,000  | 190          | 31                     |       |          |       |
| Methylene chloride          | <1     | <1          | <1     | <1           | 35                     |       |          |       |
| 1,1,2-Trichloroethane       | <0.1   | <0.1        | <0.1   | <0.1         | <0.1                   |       |          |       |
| Trichloroethylene           | <0.1   | <0.1        | <0.1   | <0.1         | <0.1                   |       |          |       |

Results based on three 24-hour composite samples.

Note: Blanks indicate data not available.

bResults based on the first 24-hour composite sample.

TABLE 17-13. PLANT SPECIFIC VERIFICATION DATA FOR SOLUTION CRUMB RUBBER PRODUCTION PLANT 000027 [1] (µg/L)

Total flow rate: 12,100 m<sup>3</sup>/d

|                             | SN         | /CB proce | ess  | E      | PDM process |        | Treat | ment influ | ent   | Treat | ent eff | <u>luent</u> | Well   | Boiler      |
|-----------------------------|------------|-----------|------|--------|-------------|--------|-------|------------|-------|-------|---------|--------------|--------|-------------|
| Pollutant                   | Av         | Med       | Hax  | λv     | Med         | Max    | Av    | Med        | Max   | Δv    | Hed     | Max          | water" | blowdown    |
| admium                      | <1         | <1        | <1   | <1     | <1          | <1     | <1    | <1         | <1    | 1     | <1      | 2            | <1     | <1          |
| Chromium                    | 450        | 410       | 570  | 820    | 850         | 950    | 440   | 420        | 690   | 19    | 13      | 43           | 2      | 2,600       |
| Copper                      | 3          | 4         | 5    | 2      | <1          | 3      | 7     | 4          | 17    | 5     | 7       | 7            | 2      | <1          |
| fercury                     | 1.8        | 1.9       | 2.8  | 2.3    | 2.0         | 3.6    | 1.1   | 0.8        | 1.8   | 2.0   | 1.2     | 3.8          | 4.0    | 1.4         |
| sis(2-ethylhexyl) phthalate | <b>7</b> 7 | 76        | 110  | 115    | 110         | 190    | 140   | <46        | 330   | 124   | <46     | 280          | 170    | < <b>46</b> |
| henol                       | 12         | 16        | 18   | 670    | 510         | 1.400  | 180   | 150        | 290   | 12    | 16      | 17           | <2     | 7           |
| Benzene                     | <0.1       | <0.1      | <0.1 | 39,000 | 17,000      | 92,000 | 3,300 | 3,300      | 5,500 | <0.1  | <0.1    | <0.1         | <0.1   | <0.1        |
| thylbenzene                 | <0.1       | <0.1      | <0.1 | <0.1   | <0.1        | <0.1   | <0.1  | <0.1       | <0.1  | <0.1  | <0.1    | <0.1         | <0.1   | <0.1        |
| oluene                      | <0.1       | <0.1      | <0.1 | 43     | <0.1        | 130    | <0.1  | <0.1       | <0.1  | <0.1  | <0.1    | <0.1         | <0.1   | <0.1        |
| hloroform                   | 1.0        | 1.1       | 1.1  | 22     | 7.4         | 52     | 3.2   | 3.9        | 3.9   | 0.9   | 0.9     | 1.1          | 1.1    | 1.0         |
| .1,2,2-Tetrachloroethene    | <0.1       | <0.1      | <0.1 | <0.1   | <0.1        | <0.1   | <0.1  | <0.1       | <0.1  | <0.1  | <0.1    | <0.1         | <0.1   | FO.1        |

aResults based on three 24-hour composite samples.

TABLE 17-14. PLANT SPECIFIC CONVENTIONAL PLANT VERIFICATION DATA FOR SELECTED SOLUTION CRUMB RUBBER PRODUCTION PLANTS [1]

|                  |       |          |         |                 |       | Waste          | loada | ·       |      |                  |       |                |
|------------------|-------|----------|---------|-----------------|-------|----------------|-------|---------|------|------------------|-------|----------------|
|                  |       |          | Plant ( |                 |       |                |       |         |      | ant 000027       |       |                |
| Parameter        | Inf]  | uent     |         | eated<br>fluent |       | BPT<br>ulation | Inf   | luent   |      | reated<br>fluent |       | BPT<br>ulation |
| BOD <sub>5</sub> | 93.7  | (206.4)  | 66.6    | (146.8)         | 51.4  | (113.3)        | 1,226 | (2,701) | <90  | (<200)           | 165   | (363.9         |
| COD              | 250   | (550.4)  | 135.4   | (298.2)         | 504.3 | (1110.7)       | 2,680 | (5,903) | 450  | (1,000)          | 1,618 | (3,564.5)      |
| TSS              | 18.8  | (41.3)   | 11.4    | (25.2)          | 83.6  | (184.2)        | 1,276 | (2,811) | 11   | (25)             | 268   | (591.0         |
| Oil and grease   | 104.1 | (229.4)  | 13.5    | (29.8)          | 20.6  | (45.3)         | 45    | (100)   | <90  | (<200)           | 66    | (145.5)        |
| pH               |       |          |         |                 | 6     | to 9           |       |         |      |                  |       | 6 to 9         |
| Cyanide          | <0.02 | (<0.05)  | <0.02   | (<0.05)         |       |                |       |         | <0.2 | (<0.5)           |       |                |
| Phenol           | 0.006 | (0.0128) | 0.006   | (0.013)         |       |                | 1.03  | (2.26)  | 0.16 | (0.35)           |       |                |

 $<sup>^{</sup>a}$ Values in kg/d (lb/d) except for pH values; they are in pH units.

Note: Blanks indicate data not available.

<sup>&</sup>lt;sup>b</sup>Results based on first 24-hour composite sample.

bEffluent flow rate was twice influent flow rate.

TABLE 17-15. PLANT SPECIFIC VERIFICATION DATA FOR PAN, DRY RUBBER DIGESTION, AND MECHANICAL RECLAIMING PLANT 000134 [1] (µg/L)

|                             |         |                        |         | Location | n in proces           | s line |        |                                    |        |  |
|-----------------------------|---------|------------------------|---------|----------|-----------------------|--------|--------|------------------------------------|--------|--|
|                             |         | Treatment <sup>b</sup> |         |          | Treatment<br>effluent |        |        | Treatment <sup>b</sup><br>effluent |        |  |
| Pollutant                   | Av      | Med                    | Max     | Αv       | Med                   | Max    | Àν     | Med                                | Max    |  |
| Cadmium                     | 1       | <1                     | 2       | 1        | 1                     | 2      | 3      | 3                                  | 3      |  |
| Chromium                    | 6       | 6                      | 8       | 4        | 4                     | 4      | 20     | 15                                 | 40     |  |
| Copper                      | 31      | 30                     | 38      | <1       | <1                    | <1     | 12     | 12                                 | 15     |  |
| Lead                        | 70      | 67 <sub>c</sub>        | 100     | 290      | 130                   | 670    | 670    | 670                                | 830    |  |
| Mercury                     |         | _c                     |         | 1.9      | 1.8                   | 2.4    | 2.3    | 2.6                                | 2.8    |  |
| Zinc                        | 100     | 100                    | 120     | 2,700    | 1,800                 | 4,500  | 2,500  | 2,600                              | 3,200  |  |
| Bis(2-ethylhexyl) phthalate | 16,000  | 19,000                 | 23,000  | <80      | <80                   | <80    | 4,000  | 960                                | 12,000 |  |
| Di-n-butyl phthalate        |         |                        |         |          |                       |        |        |                                    |        |  |
| 2,4-Dimethylphenol          | 58,000  | 61,000                 | 110,000 | 56,000   | 52,000                | 66,000 | 14,000 | 13,000                             | 22,000 |  |
| Phenol                      | 26,000  | 37,000                 | 40,000  | 20,000   | 20,000                | 24,000 | 4,900  | 5,200                              | 7,100  |  |
| Benzene                     | 60      | <0.1                   | 180     | 10       | <0.1                  | 30     | <0.1   | <0.1                               | <0.1   |  |
| Chlorobenzened              |         |                        |         |          |                       |        |        |                                    |        |  |
| Ethylbenzene                | 8,600   | 2,500                  | 23,000  | <0.1     | < 0 1                 | <0.1   | <0.1   | <0.1                               | <0.1   |  |
| Toluene                     | 2,700   | 1,400                  | 6,500   | <0.1     | <0.1                  | <0.1   | <0.1   | <0.1                               | <0.1   |  |
| Acenaphthylene              | 33      | <20                    | <64     | <8       | <8                    | <8     | <8     | <8                                 | <8     |  |
| Anthracene                  |         |                        |         |          |                       |        |        |                                    |        |  |
| Phenanthrene <sup>d</sup>   | 1,400   | 290                    | 3,800   | 49       | <4                    | 140    | 300    | <4                                 | 900    |  |
| fluorene                    | 2,000   | 96                     | 6,000   | 40       | <12                   | 95     | <12    | <12                                | <12    |  |
| Naphthalene                 | 102,000 | 61,000                 | 210,000 | <12      | <12                   | <12    | 44     | 49                                 | 71     |  |
| Pyrene                      | 7,000   | 5,800                  | 10,000  | 9        | <8                    | 13     | 14     | <8                                 | 25     |  |
| Chloroform                  | 1.9     | 1.9                    | 2.3     | 1.3      | 1.0                   | 2.4    | 1.4    | 1.7                                | 1.9    |  |
| Methylene chloride          |         |                        |         |          |                       |        |        |                                    |        |  |

|                             | Co   | oling to<br>blowdown |       |                   | Steam<br>condensate |        | Boiler   | Intake |
|-----------------------------|------|----------------------|-------|-------------------|---------------------|--------|----------|--------|
|                             | Av   | Med                  | Max   | Av                | Med                 | Max    | blowdown | water  |
| Cadmium                     | 1    | <1                   | 1     | 35                | 42                  | 43     | 1        | <1     |
| Chromium                    | 2    | 2                    | 4     | 33                | 45                  | 52     | 2        | <1     |
| Copper                      | 3    | 3                    | 4     | 20                | 25                  | 25     | 6        | <1     |
| Lead                        | 29   | 25                   | 42    | 330               | 330                 | 330    | 22       | 10     |
| Mercury                     | 0.5  | 0.6                  | 0.7   | 1.0               | 0.9                 | 1.4    | 0.9      | 0.8    |
| Zinc                        | 100  | 100                  | 110   |                   |                     |        | 220      | 30     |
| Bis(2-ethylhexyl) phthalate | 120  | 110                  | 160   | 2,800             | 2,800               | 5,400  | 940      | 1,300  |
| Di-n-butyl phthalate        |      |                      |       | 1,900             | 2,200               | 2,200  |          |        |
| 2,4-Dimethylphenol          | 500  | 330                  | 1,200 | 730               | 680                 | 980    | 11       | <6     |
| Phenol                      | 130  | 64                   | 330   | 950               | 770                 | 1,200  | 12       | <4     |
| Benzene ,                   | <0.1 | <0.1                 | <0.1  | 26 <sup>r</sup>   | 26                  | 29     | <0.1     | <0.1   |
| Chlorobenzene               |      |                      |       | 25,000            | 23,000              | 26,000 |          |        |
| Ethylbenzene                | <0.1 | <0.1                 | <0.1  | <0.1f             | <0.1                | <0.1   | <0 1     | <0.1   |
| Toluene                     | <0.1 | <0.1                 | <0.1  | <0.1 <sup>r</sup> | <0.1                | <0.1   | <0.1     | <0.1   |
| Acenaphthylene              | <8   | <8                   | <8    | 16                | <8                  | 31     | <8       | <8     |
| Anthracene                  |      |                      |       | 190               | 15                  | 539    |          |        |
| Phenanthrene                | 110  | <4                   | 310   | 140               | <4                  | 410    | 340      | <4     |
| Fluorene                    | <12  | <12                  | <12   | <12               | <12                 | <12    | <12      | <12    |
| Naphthalene                 | 17   | <12                  | 20    | 1,400             | 66                  | 4,200  | <12      | <12    |
| Pyrene                      | 36   | 9                    | 270   | ء 29              | 16                  | 64     | <8       | 15     |
| Chloroform                  | 4.9  | 5.1                  | 5.5   | 3,2f              | 3.2                 | 5.9    | 1.0      | 36     |
| Methylene chloride          |      |                      |       | 1,300             | 1,200               | 1,300  |          |        |

aResults based on three 24-hour grab composite samples unless otherwise indicated.

Note. Blanks indicate data not available.

 $<sup>^{\</sup>mathrm{b}}$ Results based on three 24-hour composite samples from an automatic sampler.

CInterference precluded analysis.

 $<sup>^{\</sup>mathrm{d}}$  May be due to sampling procedure.

e<sub>Based</sub> on first 24-hour composite sample.

 $<sup>\</sup>boldsymbol{f}_{\text{Based on second}}$  and third 24-hour composite samples.

Wastewater sampling indicates that toxic pollutants found in the raw wastewater can be removed. Biological oxidation (activated sludge) adequately treats all of the organic toxic pollutants identified in rubber industry wastewater streams. Significant removal of metals was also observed across biological treatment. The metals are probably absorbed by the sludge mass and removed with the settled sludge. Treatment technologies currently in use are described in the following subcategory descriptions.

#### II.17.4.1 Emulsion Crumb Rubber Plants

There are a total of 17 plants in the United States producing emulsion-polymerized crumb rubber. Five of these plants discharge to POTW's; 10 discharge to surface streams; 1 plant discharges to an evaporation pond; and 1 plant employs land application with hauling of settled solids. Of the five plants discharging POTW's, four pretreat using coagulation and primary treatment, and one employs equalization with pH adjustment. All 10 of the plants discharging to surface streams employ biological waste treatment ranging from conventional activated sludge to nonaerated wastewater stabilization lagoons.

Organic pollutants are generally found to be reduced to insignificant levels (<10  $\mu$ g/L) by biological treatment. Most metals are also found to be reduced across biological treatment; they are generally very low levels in the treated effluent. However, significant metal concentrations may be found in some treated effluent.

At emulsion crumb rubber facilities, a well-operated biological treatment facility permits compliance with BPT limitations and reduces ogranic toxic pollutants to acceptable levels. Toxic metals that may not be reduced include chromium, cadmium, copper, selenium, and mercury. The need for advanced technologies such as ion exchange and chemical precipitation will depend on allowable limits adopted by US EPA. Tables 17-16 and 17-17 show pollutant removal efficiencies at two emulsion crumb plants.

#### II.17.4.2 Solution Crumb Rubber Plants

There are 13 solution crumb rubber plants in the United States. Twelve of these plants discharge treated wastewater to surface streams; the other plant discharges its treated wastewater into a neighboring oil refinery's noncontact cooling water system.

Ten of the plants discharging to surface streams employ some form of biological treatment for waste load reduction. Two of the plants discharging to surface streams use in-process controls, oil removal, and primary treatment prior to discharge. In-process control employed at one plant consists of steam stripping of wastewaters, while in-process control at the second

plant was not disclosed. The plant discharging to the oil refinery noncontact cooling water system used coagulation, floc-culation, and dissolved air flotation prior to discharge.

The results of the verification program showed that all organic toxic pollutants were reduced across biological treatment. Chloromethane, used as a solvent at plant 000005, was present at significant levels in treated effluent.

TABLE 17-16. TOXIC POLLUTANT REMOVAL EFFICIENCY AT EMULSION CRUMB RUBBER PLANT 000012 [1]

Treatment technology: Activated sludge Discharge point: Surface stream

|                        | Concentrat |          | Percent    |
|------------------------|------------|----------|------------|
| Pollutant              | Influent   | Effluent | removal    |
| Cadmium                | 1          | <1       | 100        |
| Mercury                | 2.5        | 1.6      | 36         |
| Nickel                 | 610        | 400      | 34         |
| Bis(2-ethylhexyl)      |            |          |            |
| phthalate <sup>C</sup> | 260        | 220      | <u>1</u> 5 |
| Dimethyl phthalate     | <14        | <14      | <b>_</b> a |
| N-nitrosodiphenylamine | 5.2        | 1.6      | 69         |
| Phenole                | 41         | 19       | <b>5</b> 4 |
| Nitrobenzene           | <30        | <30      | _α         |
| Toluene                | 250        | <0.1     | 100        |
| Carbon tetrachloride   | 4.7        | 0.1      | 98         |
| Chloroform             | 27         | 4.1      | 85         |
| 1,1-Dichloroethylene   | <1.7       | <1.7     | _85<br>_f  |
| Methylene chloride     | <0.1       | 0.9      | <b>-</b> * |
| Tetrachloroethene      | 1.4        | <0.1     | 100        |
| 1,1,1,-Trichloroethane | 1.0        | 3.3      | <b>-</b> f |

<sup>&</sup>lt;sup>a</sup>Values presented are averages of the values observed for the three 24-hr composite samples.

<sup>&</sup>lt;sup>b</sup>Intake measured at 1.5  $\mu$ g/L, making plant's contribution minimal.

CAnalytical methodology for phthalates is questionable. Therefore, significance of values reported is unknown.

dNegligible removal.

<sup>&</sup>lt;sup>e</sup>Screening data indicate reduction to below significant level across treatment.

fNegative removal.

TABLE 17-17. TOXIC POLLUTANT REMOVAL EFFICIENCY AT EMULSION CRUMB RUBBER PLANT 000033 [1]

Treatment technology: Primary flocculation/separation,

aerated lagoons

Discharge point: Surface stream

|                                 | Concentration, a µg/L |             | Percent        |
|---------------------------------|-----------------------|-------------|----------------|
| Pollutant                       | Influent              | Effluent    | removal        |
| Cadmiumb                        | 40                    | 40          | _c             |
| Chromium <sup>b</sup>           | 250                   | 220         | 12             |
| Copper <sup>b</sup>             | 1,400                 | 410         | 71             |
| Mercury <sup>b</sup>            | 3.2                   | 4.9         | _d             |
| Selenium <sup>b</sup>           | <20                   | 20          | _c             |
| Bis(2-ethylhexyl) phthalate     | 65-140 (100)          | 59-130 (94) | <b>~</b> 6     |
| Acrylonitrile <sup>f</sup>      | 32,000                | 23,000      | >28            |
| 2-Nitrophenol                   | 9                     | 3           | 67             |
| Phenol <sup>g</sup>             | 60                    | 19          | 68             |
| Ethylbenzene                    | <0.1                  | <0.1        | _ <sup>C</sup> |
| Toluene                         | <0.1                  | <0.1        | _c             |
| Chloroform                      | 8.2                   | 1.8         | 78             |
| Dichlorobromomethane            | 0.3                   | 0.1         | 67             |
| Methylene chloride <sup>h</sup> | 66                    | 110         | _d             |
|                                 |                       |             |                |

<sup>&</sup>lt;sup>a</sup>Values presented are averages of the values observed for the three 24-hr composite samples.

Date: 6/23/80

bFound at potentially significant levels in treatment effluent although generally higher than during screening.

<sup>&</sup>lt;sup>C</sup>Negligible removal.

d Treatment effluent concentration exceeds that of treatment influent.

<sup>&</sup>lt;sup>e</sup>Analytical methodology for phthalates is questionable. Therefore, significance of values reported is unknown.

 $<sup>^{</sup>f}$  Screening data where purge and trap procedures were used indicated a reduction of 400  $\mu g/L$  to <50  $\mu g/L$  across treatment.

gScreening data indicate reduction to below significant level across treatment.

hSuspected contaminant from glassware cleaning procedures or analytical method.

Tables 17-18 and 17-19 show pollutant removal efficiencies at two selected solution crumb rubber plants.

#### II.17.4.3 Latex Rubber Plants

There are 17 latex rubber production facilities in the United States. Of these, nine plants discharge to POTW's; seven discharge to surface streams; and one employs land application with contractor disposal of solids. All seven plants discharging to surface streams employ biological treatment before discharge. Pretreatment for the POTW dischargers consists of coagulation, flocculation, and primary treatment for seven of the nine dischargers, equalization for one discharger, and biological treatment for the other plant.

In latex rubber production, BPT regulations require that toxic pollutants be removed across an activated sludge treatment which will permit compliance with the regulations when applied to raw wastewater. The application of steam stripping to heavy monomer decanter water, although not practiced, could significantly reduce waste loads to plants employing cold polymerization; however, steam stripping is not a viable option in plants employing hot polymerization with high monomer conversion efficiency.

## II.17.4.4 Tire and Inner Tube Manufacturing

There are a total of 73 tire and inner tube manufacturing facilities in the United States, of which 39 were placed in operation prior to 1959. Twenty-three of the pre-1959 plants do not treat their wastewaters, and six of these plants discharge to POTW's. A total of 17 plants placed in operation since 1959 provide no treatment to their wastewaters, and 10 of these plants discharge into POTW's.

The toxic pollutants present in raw wastewaters from tire and inner tube manufacturing operations are volatile organic pollutants that are used as degreasing agents in tire production. These toxic pollutants (methylene chloride, toluene, trichloroethylene) were found to be reduced to insignificant levels across sedimentation ponds.

The application of oil separation, filtration, or sedimentation followed by oil separation could permit compliance of tire plant treated effluents with BPT regulations.

# II.17.4.5 Rubber Reclamation Plants

There are nine rubber reclaiming plants in the United States. two of these use wet digestion, and all nine use pan, mechanical, and dry digestion. Eight of the plants discharge to POTW's. The other plant employs cartridge filtration and activated carbon

TABLE 17-18. TOXIC POLLUTANT REMOVAL EFFICIENCY AT SOLUTION CRUMB RUBBER PLANT 000005 [1]

Treatment technology: Primary flocculation/clarification (DAF)

Discharge point: Treated effluent is discharged to a nearby oil refinery's cooling water system

|                             | Concentrat | Percent            |            |
|-----------------------------|------------|--------------------|------------|
| Pollutant                   | Influent   | Effluent           | removal    |
| Cadmium                     | <1         | <1                 | _b         |
| Copper                      | 9          | 14                 | _c         |
| Chromium                    | 75         | 410                | _c         |
| Zinc                        | 14,000     | 13,000             | 7          |
| Bis(2-ethylhexyl) phthalate | 180        | 24                 | 87         |
| Phenol                      | 7          | 5                  | 29         |
| Benzene                     | <22        | 110 <sup>e</sup>   | _b         |
| Ethylbenzene                | <46        | <39                | _b         |
| Toluene                     | <26        | <26                | <b>_</b> b |
| Carbon tetrachloride        | 35         | 14                 | 60         |
| Chloroform                  | 2.2        | 1.3                | 41         |
| Methyl chloride             | 4,900      | 2,200 <sup>f</sup> | 55         |
| Methylene chloride          | <1.0       | <1.0               | _b         |
| 1,1,2-Trichloroethane       | <0.1       | <0.1               | _b         |
| Trichloroethylene           | <0.1       | <0.1               | _b         |
|                             |            |                    |            |

<sup>&</sup>lt;sup>a</sup>Values presented are averages of the values observed for the three 24-hr composite samples.

bNegligible removal.

<sup>&</sup>lt;sup>C</sup>Treatment effluent concentration exceeds that of treatment influent.

Analytical methodology for phthalates is questionable. Therefore, significance of values reported is unknown.

<sup>&</sup>lt;sup>e</sup>Average of 320  $\mu$ g/L, <11  $\mu$ g/L and <11  $\mu$ g/L.

fround at significant levels in treatment effluent.

TABLE 17-19. TOXIC POLLUTANT REMOVAL EFFICIENCY AT SOLUTION CRUMB RUBBER PLANT 000027 [1]

Treatment technology: Sedimentation, waste stabilization

lagoons

Discharge point: Surface stream

|                             | Concentration, a µg/L |          | Percent    |
|-----------------------------|-----------------------|----------|------------|
| Pollutant                   | Influent              | Effluent | removal    |
| Cadmium                     | <1                    | 1        | _b         |
| Chromium                    | 440                   | 20       | 95         |
| Copper                      | 7                     | 5        | 29         |
| Mercury <sup>C</sup>        | 1.1                   | 2.0      | _d         |
| Bis(2-ethylhexyl) phthalate | 120                   | 110      | 8          |
| Phenol <sup>f</sup>         | 180                   | 11       | 94         |
| Benzene                     | 3,200                 | <0.1     | 100        |
| Ethylbenzene                | <0.1                  | <0.1     | _b         |
| Toluene                     | <0.1                  | <0.1     | _b         |
| Chloroform                  | 3.0                   | 0.9      | 70         |
| 1,1,2,2-Tetrachloroethane   | <0.1                  | <0.1     | <b>_</b> b |

aValues presented are averages of the values observed for the three 24-hr composite samples.

for oil removal, followed by activated sludge. Table 17-20 shows the pollutant removal efficiency at a dry digestion reclaiming plant.

bNegligible removal.

<sup>&</sup>lt;sup>C</sup>Intake measured at 4  $\mu$ g/L, making plant's contribution zero.

dEffluent concentration greater than influent concentration.

<sup>&</sup>lt;sup>e</sup>Analytical methodology for phthalates is questionable. Therefore, significance of values reported is unknown.

fScreening data indicate reduction to below significant level across treatment.

# TABLE 17-20. TOXIC POLLUTANT REMOVAL EFFICIENCY AT DRY DIGESTION RECLAIMING PLANT 000134 [1]

Treatment technology: Cartridge filtration, activated carbon (oil removal), activated sludge, sedimentation

Discharge point: Noncontact cooling water system, blowdown of this system to surface stream

|                                          |                                    |                                       |                    | Cooling           |                      |
|------------------------------------------|------------------------------------|---------------------------------------|--------------------|-------------------|----------------------|
|                                          | Concentration, µg/L                |                                       |                    | . tower b         |                      |
| Pollutant                                | Treatment<br>influent <sup>a</sup> | Treatment<br>effluent <sup>a</sup> ,b | Percent<br>removal | blowdown,<br>µg/L | Percent<br>removal   |
| Cadmium                                  | 1                                  | 3                                     | _c                 | <1                | 100                  |
| Chromium                                 | 6                                  | 21                                    | _c                 | 2                 | 90                   |
| Copper                                   | 28                                 | 12                                    | <sup>57</sup> _c   | 2                 | 83                   |
| Lead                                     | 70                                 | 670                                   | _c                 | 29                | 96                   |
| Mercury                                  | _e                                 | 2.3                                   | _                  | 0.5               | 78                   |
| Zinc                                     | 100                                | 2,500                                 | _c                 | 100               | 96                   |
| Bis(2-ethylhexyl) phthalate <sup>r</sup> | 16,000                             | 4,200                                 | 74                 | 100               | 98                   |
| 2,4-Dimethylphenol                       | 58,000                             | 25,000                                | 57                 | 120               | 100                  |
| Phenol                                   | 26,000                             | 4,900                                 | 81                 | 27                | 99 <sub>h</sub>      |
| Benzene                                  | 60                                 | <0.1                                  | 100                | <0.1              | - <u>n</u>           |
| Ethylbenzene                             | 8,600                              | <0.1                                  | 100                | <0.1              | - <u>n</u>           |
| <b>Toluene</b>                           | 2,700                              | <0.1                                  | 100                | <0.1              | _h<br>_h<br>_h<br>_h |
| Acenaphthylene                           | <33                                | <8                                    | 76                 | <8                | - <u>n</u>           |
| Flourene                                 | 2,000                              | <12                                   | 100                | <12               | _n                   |
| Naphthalene <sup>1</sup>                 | 100,000                            | 42                                    | 100                | 13                | 69                   |
| Phenanthrene                             | 1,300                              | 300                                   | 7 <b>7</b>         | <4                | 100                  |
| Pyrene                                   | 6,800                              | 11                                    | 100                | 4                 | 64 <sub>c</sub>      |
| Chloroform                               | 1.9                                | 1.4                                   | 26                 | 4.9               | _c                   |

<sup>&</sup>lt;sup>a</sup>Values presented are averages of the values observed for the three 24-hour composite samples.

## II.17.4.6 Rubber Fabricating Operations

Rubber fabricating operations include latex dipped, extruded, and molded goods (LDEM) and general molded, extruded, and fabricated rubber (GMEF). There are an estimated 1,385 rubber fabricating plants in the United States.

Effluent from treatment goes into cooling tower and is discharged with noncontact cooling water as cooling tower blowdown.

cNegative removal.

<sup>&</sup>lt;sup>d</sup>Potentially significant levels observed in cooling tower blowdown.

<sup>&</sup>lt;sup>e</sup>Interferences precluding analysis.

fanalytical methodology for phthalates is questionable. Therefore, significance of values reported is unknown.

<sup>&</sup>lt;sup>g</sup>Potentially significant levels observed in cooling tower blowdown although screening data indicate reduction to below detection limits in treatment effluent.

Negligible removal.

iSignificance of blowdown value questionable due to high detection limit, low values observed in the carbon column effluent (treatment influent), and fact that compound is not a metabolic byproduct of activated sludge treatment.

No treatment method descriptions are currently available for this industry. Wastewater treatment technology consistent with equalization and sedimentation may permit compliance with BPT regulations.

#### II.17.5 REFERENCES

- Review of Best Available Technology for the Rubber Processing Point Source Category (draft contractor's report). Contract 68-01-4673, U.S. Environmental Protection Agency, Washington, D.C., July 1978.
- 2. NRDC Consent Decree Industry Summary Rubber Processing.
- 3. Environmental Protection Agency Effluent Guidelines and Standards for Rubber Processing. 40 CFR 428; 39 FR 6660, February 21, 1974 (amended by 39 FR 26423, July 19, 1974; 40 FR 2334, January 10, 1975; 40 FR 18172, April 25, 1975 [effective May 27, 1975]; and 43 FR 6230, February 14, 1978).

#### II.18 SOAP AND DETERGENT MANUFACTURING

#### II.18.1 INDUSTRY DESCRIPTION

# II.18.1.1 General Description [1, 2]

The uses of soaps, detergents and their derivatives in many of the nation's industries and households make the soap and detergent manufacturing industry one of the most lucrative commercial successes in America. The industry consists of approximately 640 plants which produce a total of 28,000 Mg (62 million pounds) of soap and related products per day [2]. A vast portion of these products or their components will invariably be deposited in the nation's waterways and wastewater treatment facilities from various production plant operations or after actual household use.

Four large companies dominate the industry by owning nearly 5% of all the plants, selling 50% of all soap products, and accounting for 54% of total industry employment. Of these institutions, three are multinational corporations having individual annual sales over one billion dollars from the sale of household products and health and beauty aids [3]. These large corporations are able to own and economically operate innovative production processes and large, efficient wastewater treatment facilities and other pollution control equipment.

The medium to small plant operations that make up the remainder of the industry (approximately 95%), are limited to large population centers and state of the art technology. These plants must, in most cases, use publicly owned treatment facilities and operate with less capital for advanced process technologies and pollution abatement equipment.

The industry is covered under Standard Industrial Classification (SIC) Code 2841 which includes provisions for the manufacture of soap, synthetic organic detergents, and organic alkaline detergents, or any combination of these. SIC code 2841 also includes the manufacture of crude and refined glycerine from vegetable and animal fats and oils. The EPA Effluent Guidelines Division has devised a subcatergorization of this industry based upon the specific types of manufacturing processes undertaken at a given establishment. Table 18-1 gives information regarding the total number of these subcategories, the number of subcategories studied for this report, and the projected discharge status of 637 soap and detergent manufacturing plants in the United States.

#### TABLE 18-1. INDUSTRY SUMMARY [1, 2]

Industry: Soap and detergent manufacture

Total Number of Subcategories:

Number of Subcategories Sutdied: 13

Number of Dischargers in Industry:

Direct: 10Indirect: 535Zero: Unknown

Projected industry statistics by SIC 2841 unit operation subcategories are included in Table 18-2, which lists all subcategories. This profile audit shows that there are an estimated 1,523 process installations which produce 28,000 Mg (62 million pounds) of soap, detergent, and glycerine per day. Liquid detergent and dry blended detergent manufacturing account for 47% of this production. As shown in Table 18-2, over 75% (124,000 m³/d) of the normalized approximate total wastewater flow (143,000 m³/d) is estimated to come from the 40 glycerine recovery (concentration and distillation) installations.

### II.18.1.2 Subcategory Descriptions [1]

The method for subcategorizing the soap and detergent manufacturing industry mentioned above was established to identify potential wastewater sources and controls, provide a permit granting authority with a way to analyze a specific plant regardless of its complexity, and permit monitoring for compliance without undue complication or expense [1]. The categorization consists of 2 major categories and 19 subcategories. The major categories follow the natural division of soap manufacturing (production of alkaline metal salts and fatty acids derived from natural fats and oils) and detergent manufacturing (production of sulfated and sulfonated cleaning agents from manufactured raw materials, primarily petroleum derivatives). The subcategories are based on discrete manufacturing units employed by the industry for conversion of raw materials to intermediate products and conversion of intermediate products to finished/marketed products. A manufacturing unit may contain a single process (e.g., continuous neutralization for production of neat soap by fatty acid neutralization) or a number of processes (e.g., crutching, drying, milling, plodding, stamping, and packaging for production of bar soaps from neat soap).

In general, establishments in SIC 2841 employ between one and nine subcategory technologies. Table 18-3 presents the predominant subcategory combinations employed in such establishments.

TABLE 18-2. PROCESS INDUSTRY STATISTICS BY SIC 2841 UNIT OPERATION SUBCATEGORIES [2]

| Subcat-<br>egory                           | Subcategory title                                         | Projected<br>number of<br>installations | Approx. total<br>production,<br>10 <sup>3</sup> kg/day | Normalized<br>approx. total<br>wastewater<br>flow, m <sup>3</sup> /day |
|--------------------------------------------|-----------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|
| 1                                          | Soap Manufacture by Batch Kettle                          | 151                                     | 590                                                    | 85.9                                                                   |
| 2                                          | Fatty Acid Manufacture by Fat Splitting                   | 22                                      | 1,940                                                  | 4,200                                                                  |
| 3                                          | Soap Manufacture by Fatty Acid Neutralization             | 177                                     | 2,220                                                  | 86.7                                                                   |
| <b>4</b><br>5                              | Glycerine Concentration Glycerine Recovery                | 40                                      | 415                                                    | 124,000                                                                |
| 6                                          | Soap Flakes and Powders                                   | 141                                     | 200                                                    | 1.59                                                                   |
| 7                                          | Bar Soaps                                                 | 69                                      | 1,100                                                  | 26.6                                                                   |
| 8<br>9<br>10<br>11<br>11<br>12<br>13<br>14 | Liquid Soaps<br>Oleum Sulfonation and Sulfation           | 223                                     | 1,600                                                  | 21.1                                                                   |
| 10 a                                       | Air-SO <sub>3</sub> Sulfation and Sulfonation             |                                         |                                                        |                                                                        |
| 11 a                                       | ${ m SO}_3$ Solvent and Vacuum Sulfonation                |                                         |                                                        |                                                                        |
| 12°                                        | Sulfamic Acid Sulfation                                   |                                         |                                                        |                                                                        |
| 13°                                        | Chlorosulfonic Acid Sulfation                             |                                         |                                                        |                                                                        |
|                                            | Neutralization of Sulfuric Acid Esters and Sulfonic Acids |                                         |                                                        |                                                                        |
| 15                                         | Spray Dried Detergent Manufacture                         | 5 <b>4</b>                              | 6,540                                                  | 8,860                                                                  |
| 16                                         | Liquid Detergent Manufacture                              | 341                                     | 9,680                                                  | 1,080                                                                  |
| 17                                         | Detergent Manufacture by Dry Blending                     | 289                                     | 3,390                                                  | 24.1                                                                   |
| 18                                         | Drum Dried Detergents                                     | 5                                       | 36                                                     | 122                                                                    |
| 19                                         | Detergent Bars and Cakes<br>Totals                        | $\frac{11}{1,523}$                      | $\frac{293}{28,000}$                                   | $\frac{4,320}{143,000}$                                                |

<sup>&</sup>lt;sup>a</sup>Intermediate process; statistics are included in other subcategory totals.

TABLE 18-3. PREDOMINANT SUBCATEGORY COMBINATIONS USED BY THE INDUSTRY [2]

| Number of<br>subcategories<br>for each<br>establishment | Total<br>number of<br>establishments<br>involved | Predominant<br>subcategories<br>employed                                                                    | Number of<br>establishments<br>employing<br>subcategories | Percent of<br>establishments<br>involved |
|---------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|
| 1                                                       | 187                                              | a. 16<br>b. 17                                                                                              | 61<br>54                                                  | 33<br>29                                 |
| 2                                                       | 235                                              | a. 16, 17<br>b. 15, 17                                                                                      | 109<br>20                                                 | 46<br>9                                  |
| 3                                                       | 112                                              | a. 3, 16, 17<br>b. 3, 8, 16                                                                                 | 31<br>24                                                  | 28<br>21                                 |
| 4                                                       | 51                                               | a. 1, 3, 8, 16<br>b. 6, 8, 16, 17                                                                           | 1 <b>4</b><br>7                                           | 27<br>14                                 |
| 5                                                       | 17                                               | a. 1, 4 and $5^{b}$ , 7, 15, 16                                                                             | 7                                                         | 41                                       |
| 6                                                       | 17                                               | a. 1, 4 and 5 <sup>b</sup> , 7, 15, 16, 17                                                                  | 7                                                         | 41                                       |
| 7                                                       | 17                                               | a. 2, 3, 4 and 5 <sup>b</sup> , 7, 15, 16, 17                                                               | 10                                                        | 59                                       |
| 8                                                       | 0                                                | a                                                                                                           | 0                                                         | 0                                        |
| 9                                                       | 2                                                | a. 1, 2, 3, 4 and 5 <sup>b</sup> , 6, 7, 16, 17, 19<br>b. 2, 3, 4 and 5 <sup>b</sup> , 6, 7, 15, 16, 17, 19 | 1                                                         | 50<br>50                                 |
| Totals                                                  | 638                                              | D. 2, 3, 4 and 3 , 6, 7, 13, 16, 17, 19                                                                     | $\frac{1}{346}$                                           | 30                                       |

<sup>&</sup>lt;sup>a</sup>The predominant subcategories employed are reported as the two largest groups under each division set up in column one, with a. the largest group, and b. the second largest group.

<sup>&</sup>lt;sup>b</sup>Subcategories 4 and 5 are counted as one subcategory because they are normally used together for glycerine recovery.

As can be seen, 346 out of the total of 638 establishments, or 54% of the total, utilize the 13 subcategory combinations listed. The remaining 292 establishments (46%) utilize another 70 different subcategory combinations.

The subcategories are described below.

# Subcategory 1 - Soap Manufacture by Batch Kettle

Most of the soap made by this process finds its way into toilet bar form for household usage. This use demands freedom from offensive odors and from displeasing colors. In order to meet this requirement, the starting fats and oils must be refined. There is a direct relationship between quality of the fats and quality of the finished soap.

Fat Refining and Bleaching. There are several ways in which fats are refined. One of the most frequently used methods employs activated clay as the extraction agent. Activated clay, having a large ratio of surface area to weight, is agitated with warm oil and filtered. Bleaching occurs as color bodies, dirt, etc., are removed, usually through a plate and frame press. The clay is disposed of as solid waste. A small amount of clay remains in the refined fat.

Other ways in which fats are refined include caustic extraction, steam stripping, and use of proprietary aqueous chemicals.

Soap Boiling. Although a very old process, kettle boiling still makes a very satisfactory product, and in several well integrated manufacturing plants this process has a very low discharge of wastewater effluents. In this process vegetable and animal fats and oils are alternately heated in the presence of alkaline materials and inorganic salts to yield two fractions: (1) a crude, unfinished soap called neat soap; and (2) crude, dilute glycerine.

Salt Usage. In order to maintain suitable solubility for proper processing, salt is added to the soap-making process to maintain the required electrolytic balance. Most of the salt charged into the process is ultimately returned to it from the glycerine concentration step, which will be discussed later. Practically every kettle boiling soap manufacturer concentrates the glycerine stream, although only a few go on to the distillation of glycerine.

## Subcategory 2 - Fatty Acid Manufacture by Fat Splitting

By means of fat splitting very low grade fats and oils are upgraded to high value products by splitting the glycerides into their two components, fatty acids and glycerine. Fat splitting is a hydrolytic reaction which proceeds as follows:

# Fat + Water → Fatty Acid + Glycerine

Vegetable and animal fats and oils are heated to 260°C under pressure, in the presence of various catalysts, to yield two fractions: (1) a crude mixture of fatty acids in water, and (2) crude, dilute glycerine. The glycerine byproduct can be produced at a variety of concentrations depending upon how complete a fat hydrolysis is desired. More concentrated glycerine can be provided at some expense to fatty acid yields. Catalysts employed include zinc, tin, or an aromatic sulfonic acid. The crude mixture of fatty acids is then distilled to recover those applicable to soap manufacturing. Sometimes this fraction is subjected to flash hydrogenation, using nickel as a catalyst, to reduce the amount of unsaturated fatty acids present. As in Subcategory 1, the raw fats and oil are sometimes refined prior to any other processing.

# Subcategory 3 - Soap from Fatty Acid Neutralization

Soap making by fatty acid neutralization exceeds the kettle boil process in speed and minimization of wastewater effluent. Widely used by the large soap producers, it is also very popular with the smaller manufacturer.

This route from the acids is faster, simpler (no by product dilute glycerine stream to handle), and "cleaner" than the kettle boil process. Distilled, partially hydrogenated acids are usually used.

The reaction that takes place is substantially:

Caustic + Fatty Acid → Soap

The resulting neat soap, containing about 30% moisture, is further processed into bars or liquid formulations in the same manner as the product from kettle boiling.

#### Subcategory 4 - Glycerine Concentration

The kettle boiling soap process generates an aqueous stream referred to as sweet water lyes. This stream will contain 8% to 10% glycerine, a heavy salt concentration, and some fatty materials. It is processed by first adding a mineral acid (HCl) to reduce the alkalinity. This is followed by the addition of alum, which precipitates insoluble aluminum soaps. The precipitate carries other impurities down with it. If the stream were not treated with alum, there would be severe foaming in the evaporators, and the contaminant would be carried forward into the glycerine. The cleaned up glycerine solution is sent to the evaporators, which are heated under reduced pressure. As the glycerine is concentrated, the salt comes out of solution and is removed from the evaporation kettle, filtered, and returned to

the soap-making process. In many plants this separating function is performed continuously by a centrifuge, with the filtrate being returned to the evaporator.

The glycerine is usually concentrated to 80% by weight and then either run to a still to be made into finished glycerine, or stored and sold to glycerine refiners.

The sweet water glycerine from fat splitting is flashed to atmospheric pressure, thereby releasing a considerable amount of water very quickly. This can provide a glycerine stream of 20% glycerine or more going to the evaporators. Since there is no salt used in fat splitting there will be none in the sweet water.

# Subcategory 5 - Glycerine Distillation

In this process, the concentrated glycerine (80%) is run into a still which, under reduced pressure, yields a finished product of 98+% purity. At room temperature, the still bottoms (also called glycerine foots) are a glassy, dark brown, amorphous solid rather rich in salt. Water is mixed with the still bottoms before they are run into the wastewater stream.

Some glycerine refining is done by passing the dilute stream over ion exchange resin beds, both cationic and anionic, and then evaporating it to 98+% glycerine content as a bottoms product. There are frequently three sets, in series, of both cation and anion exchange resins used in this process. Each step is designed to reduce the input load by 90%. Some of the fat splitting plants are equipped with this type of unit.

#### Subcategory 6 - Soap Flakes and Powders

Neat soap (65% to 70% hot soap solution) may or may not be blended with other products before flaking or powdering. Neat soap is sometimes filtered to remove gel particles and run into a crutcher for mixing with builders.

After thorough mixing, the finished formulation is run into a flaker. This unit normally consists of a two-roll "mill." The small upper roll is steam heated while the larger, lower one is chilled. The soap solidifies on the lower roll and is slit into ribbons as it sheets off the mill.

The ribbons are fed into a continuous oven heated by hot air. The emerging flakes contain 1% moisture. All of the evaporated moisture goes to the atmosphere, creating no wastewater effluent.

In spray drying, crutched, heated soap solution is sprayed into a spray tower, or flash dried by heating the soap solution under pressure and releasing the steam in the spray dryer under reduced pressure. In either case the final soap particle has a high

ratio of surface area to unit of weight, which makes it readily soluble in water.

# Subcategory 7 - Bar Soaps

In some bar soap processes additives are mixed with the neat soap in a crutcher before any drying takes place. Another approach is to begin the drying process with the hot neat soap going to an "atmospheric" flash dryer followed by a vacuum drying operation in which the vacuum is drawn by a barometric condenser. Soap is then double extruded into short ribbons or curls and sent to plodders for further blending or physical processing. At this point the soap will normally have 8% to 14% moisture depending upon the previous course of processing.

Next, a milling operation affords the opportunity to blend in additives and to modify the physical properties of the soap. The mill consists of two polished rolls rotating at different speeds to maximize the shearing forces. After milling, the soap is cut into ribbons and sent to the plodder.

The plodder extrudes and cuts the soap into small chips, after which further mixing melts all of the individual pieces together into a homogeneous mass.

Plodding completed, the soap is extruded continuously in a cylindrical form, cut to size, molded into the desired form, and wrapped for shipment. Most of the scrap in this operation is returned to the plodder.

The amount of water used in bar soap manufacture varies greatly. In many cases the entire bar soap processing operation is done without generating a single wastewater stream. The equipment is all cleaned dry, without any washups. In other cases, due to housekeeping requirements associated with the particular bar soap process, there are one or more wastewater streams for air scrubbers.

#### Subcategory 8 - Liquid Soaps

In the liquid soap process neat soap (often the potassium soap of fatty acids) is blended in a mixing tank with other ingredients such as alcohols or glycols to produce a finished product, or with pine oil and kerosene for a product with greater solvency and versatility. The final blended product may be, and often is, filtered to achieve a sparkling clarity before being drummed.

In making liquid soap, water is used to wash out the filter press and other equipment. Wastewater effluent is minimal.

# <u>Subcategory 9 - Oleum Sulfonation and Sulfation (Batch and Continuous</u>

One of the most important active ingredients of detergents is alcohol sulfate or alkyl benzene sulfonate, particularly in products made by the oleum route.

In most cases the sulfonation/sulfation process is carried out continuously in a reactor where the oleum (a solution of sulfur trioxide in sulfuric acid) is brought into intimate contact with the hydrocarbon or alcohol. Reaction is rapid. The stream is then mixed with water and sent to a settler.

Prior to the addition of water the stream is a homogeneous liquid. With the addition of water, two phases develop and separate. The dilute sulfuric acid is drawn off and usually returned to an oleum manufacturer for reprocessing up to the original strength. The sulfonated/sulfated material is sent on to be neutralized with caustic.

# Subcategory 10 - Air-SO<sub>3</sub> Sulfation and Sulfonation (Batch and Continuous)

This process for surfactant manufacture has numerous unique advantages and is used extensively. In the oleum sulfation of alcohols, formation of water stops the reaction short of completion because it reaches a state of equilibrium, resulting in low yields. With SO<sub>3</sub> sulfation, no water is generated, hydrolysis cannot occur, and the reaction proceeds in one direction only.

 $SO_3$  sulfonation/sulfation is also quite amenable to batch processing, which can produce products having a minimum of sodium sulfate (all of the excess  $SO_3$ , or sulfuric acid in the case of oleum sulfonation, will be converted into sodium sulfate in the neutralization step with caustic). Another advantage of the  $SO_3$  process is its ability to successively sulfate and sulfonate an alcohol and a hydrocarbon respectively.

## Subcategory 11 - SO<sub>3</sub> Solvent and Vacuum Sulfonation

Undiluted  $SO_3$  and organic reactant are fed into the vacuum reactor through a mixing nozzle in this process. Recycle is accomplished by running the flashed product through a heat exchanger back into the reactor. The main advantage of the system is that under vacuum the  $SO_3$  concentration and operating temperature are kept low, thereby assuring high product quality. Offsetting this is the high operating cost of maintaining the vacuum.

#### Subcategory 12 - Sulfamic Acid Sulfation

Sulfamic acid, a mild sulfating agent, is used only in very specialized quality areas because of the high reagent price. The system is of particular value in the sulfation of ethoxylates.

The small specialty manufacturer may use this route for making high quality alcohol sulfates, equivalent to those from the chlorosulfonic acid route, substituting high reagent cost for the high capital costs of the chlorosulfonic route.

#### Subcategory 13 - Chlorosulfonic Acid Sulfation

For products requiring high quality sulfates, chlorosulfonic acid is an excellent agent. It is a mild sulfating agent, yields no water of sulfation, and generates practically no side reactions. It is a corrosive agent and generates HCl as a by product.

An excess of about 5% chlorosulfonic acid is often used. Upon neutralization it will yield an inorganic salt which is undesirable in some applications because it can result in salt precipitation in liquid formulations, etc.

# <u>Subcategory 14 - Neutralization of Sulfuric Acid Esters</u> and Sulfonic Acids

This step is essential in the manufacture of detergent active ingredients; it converts the acidic hydrophylic portion of the molecule to a neutral salt.

Alcohol sulfates are somewhat more difficult to neutralize than the alkylbenzene sulfonic acids due to the sensitivity to hydrolysis of the alcohol derivative. For this reason, neutralization is usually carried out as a pH above 7 and as rapidly as possible.

## Subcategory 15 - Spray Dried Detergents

In this segment of processing, the neutralized sulfonates and/or sulfates are brought to the crutcher where they are blended with requisite builders and additives. From here the slurry is pumped to the top of a spray tower where nozzles around the top spray out detergent slurry of approximately 70% concentration.

Wastewater streams are rather numerous. They include many washouts of equipment, from the crutchers to the spray tower itself. One wastewater flow with high loadings comes from the air scrubber which cleans and cools the hot gases exiting from the spray tower. This is only one of the several units in series utilized to minimize the particulate matter being sent into the atmosphere.

After the powder comes from the spray tower it is further blended and then packaged. Solid wastes from this area are usually recycled.

## Subcategory 16 - Liquid Detergents

For liquid detergents the sulfonated and sulfated products for the processes described in subcategories 9 through 14 are pumped

into mixing tanks where they are blended with numerous ingredients, ranging from perfumes to dyes. From here, the fully formulated liquid detergent is run down to the filling line.

### Subcategory 17 - Dry Detergent Blending

In this process fully dried "active" (surfactant) materials are blended with additives, including builders, in dry mixers. In the more sophisticated plants mixing time is utilized to the maximum by metering components into weighing bins prior to loading into mixers. When properly mixed, the homogeneous dry product is packed for shipment.

## Subcategory 18 - Drum Dried Detergents

Drum drying of detergents is an old process. Much of the equipment still in use is well over 30 years old. The process yields a fairly friable product which can become quite dusty with any extensive handling.

A thin layer of the filler cake on the drum is removed continuously by a knife blade onto conveyors. The powder is substantially anhydrous. The vapors coming off are often collected and removed through a vapor head between the drums.

This operation should be essentially free of generated wastewater discharge except that from an occasional washdown.

## Subcategory 19 - Detergent Bars and Cakes

In answer to the need for a "bar soap" which performs satisfactorily in hard water, the detergent industry manufactures and markets detergent bars. They constitute about 20% of the toilet bar market.

There are two types of "detergent" bars: those made of 100% synthetic surfactant and those blended from synthetic surfactant and soap. Most products are the latter type.

Blending methods and types of equipment are essentially the same as those used for conventional soap.

#### II.18.2 Wastewater Characterization [1]

There are essentially three types of in-plant pollutants in the wastewater effluent streams:

- · Impurities removed from raw materials
- · By products or degradation products made in the process
- Very dilute product (in aqueous solution) resulting from leaks, spills, and equipment cleanout.

|         | Subcategory                                                        | Major<br>wastewater pollutants                                                                                                  | Source(s) of<br>pollutants in process                                          |
|---------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1       | Soap manufacture by batch kettle                                   | Fats and oils; unrecovered NaCl, Na <sub>2</sub> SO <sub>4</sub> , and NaOH; spilled and lost soaps and by products (glycerine) | Fat refining and bleaching fat heating, neutralization of batch, fat handling. |
| 2       | Fatty acid manufacture by fat splitting                            | Fatty acids, unreacted<br>fats and glycerine;<br>sodium salts and NaOH;<br>zinc and alkaline<br>earth metals, nickel            | Fat heating, catalytic<br>splitting, flash hydroge<br>nation, neutralization   |
| 3       | Soap from fatty acid neutralization                                | Fats and oils; unrecovered NaCl, Na <sub>2</sub> SO <sub>4</sub> , and NaOH; spilled and lost soaps and byproducts (glycerine)  | Fat heating, catalytic splitting, flash hydroge nation, neutralization         |
| 4 and 5 | Glycerine concentration and dis-<br>tillation (glycerine recovery) | Glycerine, glycerine<br>polymers, NaCl, and<br>Na <sub>2</sub> SO <sub>4</sub>                                                  | Lye treatment, glycerine distillation                                          |
| 6       | Soap flakes and powders <sup>a</sup>                               | Pure soap, small amounts<br>of free fatty material,<br>NaCl from spills and<br>leaks                                            | Flaking, crutching and drying, spray drying, pack-<br>aging                    |
| 7       | Bar soaps                                                          | Pure soap, small amounts<br>of free fatty material,<br>NaCl from spills and                                                     | Soap milling, crutching and drying, packaging                                  |

TABLE 18-4 (continued)

| )<br>)     |    |                                                                  | 10 4 (concinued)                                                                                                                                                                                                                           |                                                                                                                               |
|------------|----|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| U8/ EC/ 9  |    | Subcategory                                                      | Major<br>wastewater pollutants                                                                                                                                                                                                             | Source(s) of pollutants in process                                                                                            |
|            | 8  | Liquid soaps                                                     | Solvents (alcohols or<br>glycols), builders,<br>dyes, perfumes, and<br>potassium salts                                                                                                                                                     | Receiving and storage,<br>blending, packaging                                                                                 |
| 1 1        | 9  | Oleum Sulfonation and Sulfation <sup>a</sup>                     | Oily raw materials, sul-<br>furic acid, and sur-<br>factant sulfonic acid                                                                                                                                                                  | Receiving and storage,<br>oleum fume scrubber, cool-<br>ing water, reactor leaks<br>and spills, reactor and<br>mixer washouts |
| β<br>  1.3 | 10 | Air-SO $_3$ sulfation and sulfonation $^{\mathbf{a}}$            | Oily raw materials, sul-<br>furic acid, and sur-<br>factant sulfonic acid                                                                                                                                                                  | Receiving and storage, va-<br>porizer condensate, dryer<br>and reactor washouts                                               |
|            | 11 | SO <sub>3</sub> solvent and vacuum sulfona-<br>tion <sup>a</sup> | Oily raw materials, sul-<br>furic acid, surfactant<br>sulfonic acid, and sul-<br>fate                                                                                                                                                      | Receiving and storage, va-<br>porizer condensate,<br>scrubber and degasser                                                    |
|            | 12 | Sulfamic acid sulfation <sup>a</sup>                             | Unsulfated ethoxy alcohols, sulfamic acid, ammonium ether sulfates, fatty alcohols, alcohol ethoxylates, alkyl phenol ethoxylates, ammonium, sodium, and triethanol amine salts, hydrochloric and sulfuric acid, ammonium and sodium ions. | Receiving and storage, reactor washouts                                                                                       |
|            | 13 | Chlorosulfonic acid sulfationa                                   | No information available                                                                                                                                                                                                                   |                                                                                                                               |

TABLE 18-4 (continued)

|    | Subcategory                                                  | Major<br>wastewater pollutants                                                                                                                                                        | Source(s) of pollutants in process                                                                        |
|----|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 14 | Neutralization of sulfuric acid<br>esters and sulfonic acids | Products of subcategories<br>9, 10, and 11; neutral-<br>ized products; the<br>various cations                                                                                         | Receiving and storage, neu-<br>tralization                                                                |
| 15 | Spray dried detergents <sup>a</sup>                          | LAS, amide, nonionic and alcohol surfactants; sodium phosphate, carbonate and silicate builders; carboxmethyl cellulose, brighteners, perborate, dyes, fillers, and perfume           | Receiving and storage,<br>transfer, fume scrubbers,<br>crutching, spray drying,<br>blending and packaging |
| 16 | Liquid detergents                                            | Organic surface active agents from cleanup and washdown; citrate builders and solvents (ethanol); potassium phosphate; silicates; sodium xylene sulfon- ates, urea, various additives | Storage and transfer areas,<br>blending washes, pack-<br>aging leaks and spills                           |
| 17 | Dry detergent blending                                       | LAS, amide, nonionic and alcohol surfactants; sodium phosphate, carbonate and silicate builders; carboxmethyl cellulose, brighteners, perborate, dyes, fillers, and perfume           | Dry blending and packaging washouts                                                                       |

(continued)

TABLE 18-4 (continued)

|    | Subcategory                           | Major<br>wastewater pollutants                                                                                     | Source(s) of pollutants in process            |
|----|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 18 | Drum dried detergents <sup>a</sup>    | Raw material and sur-<br>factants                                                                                  | Drum drying and packaging washouts            |
| 19 | Detergent bars and cakes <sup>a</sup> | Pure soap, small amounts<br>of free fatty material,<br>NaCl from spills and<br>leaks, and synthetic<br>surfactants | Soap milling, crutching, an drying, packaging |

<sup>&</sup>lt;sup>a</sup>Subcategory process typically requires scrubber use.

Major types of wastewater pollutants from the subcategories of the soap and detergent manufacturing industry can be found in Table 18-4. This table shows that resultant wastewaters depend upon process operating parameters and the kind of soap or detergent material produced.

Of these pollutants, several are of particular environmental concern. Synthetic surface active agents not only create BOD<sub>5</sub> and COD, but they cause water to foam and, in high concentrations, they can be toxic to fish and other organisms. Nutrients, particularly phosphate produced in part by liquid detergent manufacture, are of concern because of their contribution to euthrophication of lakes. Soap production leads to wastewaters with high alkalinity, high salt, and high oxygen demand. Spills of raw materials contribute to oil and grease levels. Most of the suspended solids come from organics (i.e., calcium soaps), and many are of the volatile rather than nonvolatile type. Since strong acids and strong alkalies are used in most of these subcategories, pH can be very high or very low in wastewaters [1].

### II.18.3 PLANT SPECIFIC DESCRIPTION [2]

In 1977, a survey of the industry was undertaken for the U.S. Environmental Protection Agency. Four hundred and nine forms were sent to U.S. establishments, and 170 responses applicable to SIC 2841 were obtained. The survey asked for information on parameters such as production levels, process subcategories at a given facility, and the fate and characteristics of the wastewater generated in each subcategory. This survey included a sampling and analysis review to establish the presence or absence of toxic compounds in wastewaters discharged from the various subcategories.

The results of the review, however, were suspect for all subcategories except subcategory 15. This was due to possible deviations from EPA's analytical protocol involving excessive lag times between sample collection and extraction.

As a result, an additional sampling and analysis review was performed in 1979. Wastewaters from subcategories 6, 8, and 17 were not examined in 1979 because they comprise only 0.03% of the industry's total discharges and because of the difficulty associated with scheduling sampling and analysis surveys coincident with the low intermittent discharge flow rates of these three subcategories. Also, since the only wastewater from subcategory 18 evolves from pump seal water and the washdown of off-specification product, wastewater samples were not collected from subcategory 18. In addition, no sampling data from this effort are available for Subcategories 9 through 14. Based on similarities in raw materials used in each subcategory, process technologies employed for each subcategory, and resultant subcategory final products it was generally felt that if toxic substances were found in the wastewaters from the omitted subcategories, they

TABLE 18-5. TOXIC POLLUTANTS DETECTED IN THE 1979 SAMPLING REVIEW OF THE SOAP AND DETERGENT INDUSTRY [2]

Total wastewater, m<sup>3</sup>/1,000 kg of product: Subcategory 1, 1.9; Subcategory 2, 7.59; Subcategory 3, 0.0075; Subcategories 4 and 5, 180; Subcategory 7, 7.34; Subcategory 15, 4.76; Subcategory 16, 1.02; Subcategory 19, 21.6

|                             |       |            |    |         | ategory<br>ation, µ | a/I |     |    |
|-----------------------------|-------|------------|----|---------|---------------------|-----|-----|----|
| Toxic pollutant             | 1     | 2          | 3  | 4 and 5 | 7                   | 15  | 16  | 1  |
| Metals and inorganics:      |       |            |    |         |                     |     |     |    |
| Antimony                    |       |            |    |         |                     |     | 1.0 |    |
| Arsenic                     |       |            |    |         | 20                  |     | 1.0 |    |
| Cadmium                     |       |            |    |         |                     |     | 1.0 |    |
| Chromium                    |       | 13         |    | 99      |                     | 22  | 4.9 |    |
| Copper                      | 3,400 | <b>6</b> 5 | 67 | 38      | 6.7                 | 19  | 31  | 17 |
| Cyanide                     | 10    | 9.5        |    | 0.1     |                     |     |     | 16 |
| Lead                        |       |            |    | 15      | 13                  | 36  | 13  | 57 |
| Mercury                     | 76    |            |    |         |                     |     |     |    |
| Nickel                      |       | 29         | 67 | 39      |                     | 2.3 | 11  |    |
| Silver                      |       |            |    |         | 1.8                 | 69  | 94  |    |
| Thallium                    |       |            |    |         | 18                  |     | 5.9 |    |
| Zinc                        | 1,600 | 2,500      | 67 | 15      |                     | 26  | 91  | 20 |
| Phthalates:                 |       |            |    |         |                     |     |     |    |
| Bis(2-ethylhexyl) phthalate |       |            |    |         |                     |     | 20  |    |
| Di-n-butyl phthalate        |       | 13         |    | 0.5     |                     | 15  |     |    |
| Phenols:                    |       |            |    |         |                     |     |     |    |
| 2-Chlorophenol              | 96    |            |    |         |                     |     |     |    |
| Pentachlorophenol           |       | 150        |    |         |                     |     | 3.9 |    |
| Phenol                      | 4,400 | 7.1        |    | 34      |                     | 30  | 28  |    |
| 2,4,6-Trichlorophenol       |       |            |    |         |                     | 7.3 |     |    |
| p-Chloro-m-cresol           |       |            |    |         |                     | 2.9 |     |    |

(continued)

## TABLE 18-5 (continued)

Total wastewater, m<sup>3</sup>/1,000 kg or product: Subcategory 1, 1.9; Subcategory 2, 7.59; Subcategory 3, 0.0075; Subcategories 4 and 5, 180; Subcategory 7, 7.34; Subcategory 15, 4.76; Subcategory 16, 1.02; Subcategory 19, 21.6

|                                   |    |     |   |           | ategory |      |    |     |
|-----------------------------------|----|-----|---|-----------|---------|------|----|-----|
|                                   | ·  |     |   | concentra | ation,  | µg/L |    |     |
| Toxic pollutant                   | 1  | 2   | 3 | 4 and 5   | 7       | 15   | 16 | 19  |
| Aromatics:                        |    |     |   |           |         |      |    |     |
| Benzene                           |    | 0.7 |   | 0.1       |         |      |    |     |
| Chlorobenzene                     |    |     |   |           |         | 22   |    | 0.6 |
| Polycyclic aromatic hydrocarbons: |    |     |   |           |         |      |    |     |
| Phenanthrene/trichloroethylene    |    | 1.8 |   | 0.4       |         | 27   |    |     |
| Halogenated aliphatics:           |    |     |   |           |         |      |    |     |
| 1,1-Dichloroethylene              |    |     |   | 18        |         |      | 11 | 25  |
| 1,2-Trans-dichloroethylene        |    |     |   |           |         |      |    | 3.3 |
| Trichloromethane                  |    |     |   |           |         | 4.8  |    | 1.1 |
| Methylene chloride                | 59 |     |   |           |         |      | 19 | 1.1 |
| Chloroethylene                    |    |     |   |           |         |      |    | 12  |
| Trichloroethylene <sup>a</sup>    |    |     |   |           |         |      |    |     |
| Tetrachloroethylene               | 15 |     |   |           |         |      |    |     |
| Pesticides and metabolites:       |    |     |   |           |         |      |    |     |
| r-BHC                             |    |     |   |           |         | 2.2  |    |     |

<sup>&</sup>lt;sup>a</sup>See phenanthrene.

would be comparable to those detected in the wastewaters from subcategories actually involved in the sampling and analysis review.

Raw wastewater data resulting from the sampling and analysis review are presented in Table 18-5. Establishments surveyed in 1979 utilized, among others, Subcategories 7, 8, and 16. At the establishment employing subcategory 7 there were six production lines. Only one line had a continuous wastewater discharge and that amounted to less than 0.5 gal/hr of a salt water solution. In general, all six production lines were cleaned without the use of water; however, there was the possibility of periodic small volumes of washdown water being discharged to the POTW. At the establishment employing subcategory 8, any subcategory wastewaters generated were recycled to extinction and, thus, were never discharged from the establishment. The wastewater was not analyzed because of the nondischarge situation. The establishment employing subcategory 16 had a very small intermittent discharge of wastewater resulting mainly from equipment washdowns. However, noncommingled samples of ths wastewater could not be collected. It should be further noted that this establishment was installing a complete recycle/reuse system for all of the wastewater generated in subcategory 16.

The data from Table 18-5 were used to calculate the volumes of toxic pollutants in the raw wastewaters discharged from all of the subcategories in SIC 2841 for all 638 establishments in the industry. Values are presented in Table 18-6. The missing data for subcategory 3 were calculated by averaging unit wastewater data from subcategories 2 and 7. Unit wastewater data from subcategories 1, 3, and 7 were then averaged to develop the values for subcategories 6 and 8. Similarly, data for subcategories 17 and 18 were obtained from subcategories 15, 16, and 19.

The toxic pollutant data are further summarized, by subcategory, in Table 18-7 where the pollutants are categorized into inorganic and organic fractions. Of the total mass of 100 kg/day (230 lb/day) of toxic pollutants present in the industry's raw wastewaters, 72% are inorganic and 28% are organic in nature.

To project typical establishment raw wastewater characteristics, the subcategory production rates obtained by the 1977 survey were combined with the toxic pollutant information given in Table 18-6 and the predominant subcategory combinations shown in Table 18-3. The projections for small establishments are shown in Table 18-8 and for large establishments in Table 18-9. Table 18-10 presents the volumes of toxic pollutants in the direct discharges from six establishments having NPDES permits. These discharges approximate 11.5% of the total industry's wastewater volume, yet contain only 2.8% of the total industry's inorganic toxic pollutant discharges and 1.6% of the total industry's organic toxic pollutant discharges.

TABLE 18-6. CONCENTRATIONS OF TOXIC POLLUTANTS IN TOTAL INDUSTRY RAW WASTEWATERS [2] (g/d)

|                                     |       |        |       |         |           | Jane | tegory |             |      |                |             |      |
|-------------------------------------|-------|--------|-------|---------|-----------|------|--------|-------------|------|----------------|-------------|------|
| Toxic pollutant                     | 1     | 2      | 3     | 4 and 5 | 6         | 7    | 8      | 15          | 16   | 17             | 18          | 19   |
| etals and inorganics                |       |        |       |         |           |      |        |             |      |                |             |      |
| Antimony                            |       |        |       |         |           |      |        |             | 9.53 | 0. <b>90</b> 7 |             |      |
| Arsenic                             |       |        | 167   |         | 37.6      | 165  | 299    |             | 9.53 | 0.907          |             |      |
| Cadmium                             |       |        |       |         |           |      |        |             | 9.53 | 0.907          |             |      |
| Chromium                            |       | 195    |       | 7,400   |           |      |        | 687         | 48.5 | 124            | 1.36        |      |
| Copper                              | 3,800 | 961    | 2.27  | 2,840   | 9.98      | 54   | 79.8   | 595         | 300  | 553            | 5. <b>9</b> | 130  |
| Cyanide                             | 11.3  | 140    |       | 2.27    |           |      |        |             |      |                |             | 97.  |
| Lead                                |       |        |       | 1,090   | 19.5      | 108  | 156    | 1,100       | 126  | 1,590          | 16.8        | 358  |
| Mercury                             | 84.8  |        |       |         |           |      |        |             |      |                |             |      |
| Nickel                              |       | 425    | 2.27  | 2,940   | 0.454     |      | 1.36   | 72.1        | 107  | 24.5           | 0.454       |      |
| Silver                              |       |        |       | -,      | 2.72      | 14.5 | 20.4   | 2,150       | 929  | 480            | 5.0         |      |
| Thallium                            |       |        |       |         | 26.3      | 144  | 209    | - <b>,</b>  | 58.1 | 6.8            |             |      |
| Zinc                                | 1,850 | 36,800 | 2.27  | 1,100   | 0.454     |      | 1.36   | 1,620       | 900  | 386            | 4.08        | 127  |
|                                     | 2,000 | 30,000 | 2,2,  | -,      | • • • • • |      |        | -,          |      |                |             |      |
| Phthalates                          |       |        |       |         |           |      |        |             |      |                |             |      |
| Bis(2-ethylhexyl) phthalate         |       |        |       |         |           |      |        |             | 194  | 22.7           | 0.454       |      |
| Di-n-butyl phthalate                |       | 186    | 109   | 35.8    | 5.0       |      | 39     | <b>46</b> 5 |      | 80.3           | 9.07        |      |
| Phenols                             |       |        |       |         |           |      |        |             |      |                |             |      |
| 2-Chlorophenol                      | 108   |        |       |         | 18.1      |      | 145    |             |      |                |             |      |
|                                     | 108   | 2 210  | 1,270 |         | 57.2      | 455  | 143    | 38.6        | 4.54 |                |             |      |
| Pentachlorophenol                   | 4 050 | 2,210  |       | 2 572   |           | 400  | 6 710  | 1,880       | 271  | 356            | 3.63        |      |
| Phenol                              | 4,950 | 105    | 59.9  | 2,570   | 844       |      | 6,710  |             | 2/1  | 39.5           | 0.454       |      |
| 2,4,6-Trichlorophenol               |       |        |       |         |           |      |        | 230         |      | 39.5<br>15.9   | 0.454       |      |
| p-Chloro-m-cresol                   |       |        |       |         |           |      |        | 91.6        |      | 15.9           | 0.454       |      |
| romatics                            |       |        |       |         |           |      |        |             |      |                |             |      |
| Benzene                             |       | 9.53   | 5.44  | 9.98    | 0.454     |      | 1.81   |             |      |                |             |      |
| Chlorobenzene                       |       |        |       |         |           |      |        | 674         |      | 130            | 1.36        | 3.6  |
| olycyclic aromatic hydrocarbons     |       |        |       |         |           |      |        |             |      |                |             |      |
| Acenaphthene                        |       |        |       |         |           |      |        |             |      |                |             |      |
| Phenanthrene/trichloroethylene      |       | 27.2   | 15.4  | 30.4    | 0.907     |      | 5.9    | 824         |      | 142            | 1.36        |      |
| rhenanchrene/ crichioloe chylene    |       | 21.2   | 15.4  | 30.4    | 0.307     |      | 3.9    | 024         |      | 142            | 1.50        |      |
| dalogenated aliphatics              |       |        |       |         |           |      |        |             |      | 4.05           |             | 1.00 |
| 1,1,-Dichloroethylene               |       |        |       | 1,310   |           |      |        |             | 107  | 622            | 6.8         | 167  |
| 1,2-Trans-dichloroethylene          |       |        |       |         |           |      |        |             |      | 81.2           | 0.907       | 20.  |
| Trichloromethane                    |       |        |       |         |           |      |        | 151         |      | 53.1           | 0.454       | 6.8  |
| Methylene chloride                  | 66.2  |        |       |         | 11.3      |      | 89.4   |             | 184  | 48.5           | 0.454       | 6.1  |
| Chloroethylene<br>Frichloroethylene |       |        |       |         |           |      |        |             |      | 293            | 3.18        | 75.  |
| Trichloroethylene <sup>a</sup>      |       |        |       |         |           |      |        |             |      |                |             |      |
| Tetrachloroethylene                 | 16.3  |        |       |         | 2.72      |      | 2.22   |             |      |                |             |      |
| Pesticides and metabolites          |       |        |       |         |           |      |        |             |      |                |             |      |
| Y-BHC                               |       |        |       |         |           |      |        | 72.1        |      | 12.7           |             |      |

Blanks indicate no data available

TABLE 18-7. INORGANIC AND ORGANIC TOXIC POLLUTANTS IN TOTAL INDUSTRY RAW WASTEWATERS [2]

|             |         | rganic<br>utants |         | ganic<br>Lutants | All<br>pollutants |                  |  |
|-------------|---------|------------------|---------|------------------|-------------------|------------------|--|
| Subcategory | kg/day  | Percent of total | kg/day  | Percent of total | kg/day            | Percent of total |  |
| Subcategory | kg/ day | totai            | kg/ day | totai            | kg/ day           | totai            |  |
| 1           | 5.74    | 7.78             | 5.14    | 17.80            | 10.9              | 10.60            |  |
| 2           | 38.5    | 52.22            | 2.54    | 8.79             | 41.1              | 40.00            |  |
| 3           | 0.172   | 0.24             | 1.66    | 5.05             | 1.63              | 1.59             |  |
| 4 and 5     | 15.4    | 20.84            | 3.96    | 13.72            | 19.3              | 18.84            |  |
| 6           | 0.095   | 0.13             | 0.939   | 3.25             | 1.03              | 1.01             |  |
| 7           | 0.485   | 0.66             | 0.00    | 0.00             | 0.486             | 0.47             |  |
| 8           | 0.767   | 1.04             | 7.47    | 25.87            | 8.24              | 8.02             |  |
| 15          | 6.23    | 8.45             | 4.39    | 15.18            | 10.6              | 10.34            |  |
| 16          | 2.50    | 3.38             | 0.794   | 2.75             | 3.29              | 3.20             |  |
| 17          | 3.17    | 4.29             | 1.90    | 6.58             | 5.07              | 4.94             |  |
| 18          | 0.032   | 0.05             | 0.018   | 0.07             | 0.050             | 0.05             |  |
| 19          | 0.69    | 0.94             | 0.272   | 0.94             | 0.962             | 0.94             |  |
| Totals      | 73.8    | 100.02           | 28.9    | 00.00            | 103               | 100.00           |  |

TABLE 18-8. CONCENTRATIONS OF TOXIC POLLUTANTS IN SMALL FACILITY PREDOMINANT SUBCATEGORY COMBINATION RAW WASTEWATERS [2] (mg/day)

| Toxic pollutant                 |      | 16    | 302        | category c |      |        |            |
|---------------------------------|------|-------|------------|------------|------|--------|------------|
| TORIC POILUTANT                 | 1a   |       | 2 <b>a</b> | 3a         | 3b   | 48     | <b>4</b> b |
| Metals and inorganics           |      |       |            |            |      |        |            |
| Ant amony                       | 4.50 |       | 4.50       | 4.50       | 4 50 | 4 50   | 4 5        |
| Arsenic                         | 4.50 |       | 4 50       | 9 10       | 13 6 | 13 6   | 72 6       |
| Cadajus                         | 4.50 |       | 4.50       | 4.50       | 4.50 | 4.50   | 4.5        |
| Chromium                        | 13.6 | 213   | 227        | 227        | 13.6 | 13.6   | 227        |
| Copper                          | 81.7 | 948   | 1,030      | 1,030      | 86.2 | 10,300 | 10.300     |
| Cyanide                         |      |       | 1,000      | 2,000      | ٠    | 31 8   | 10,500     |
| Lead                            | 36.3 | 2.720 | 2.760      | 2.760      | 40 8 | 40 8   | 2.800      |
| Mercury                         | 50.5 | 2,120 | 2,700      | 2,700      | 40 4 | 227    | 2,600      |
| Nickel                          | 27 2 | 40 8  | 680        | 72 6       | 27 2 | 27 2   | 72 6       |
| Silver                          | 254  | 821   | 1.080      | 1.080      |      |        |            |
| Thallium                        | 18.1 |       |            |            | 254  | 254    | 1,080      |
| Zinc                            |      | 13.6  | 34.9       | 29 2       | 22 7 | 22 7   | 77 1       |
| Einc                            | 245  | 662   | 54.4       | 54.4       | 245  | 5,210  | 907        |
| Phthalates                      |      |       |            |            |      |        |            |
| Bis(2-ethylhemyl) phthalate     | 54.4 | 40 8  | 54 4       | 90 7       | 54 4 | 54 4   | 90 7       |
| Di-n-butyl phthelate            |      | 136   | 136        | 147        | 4 5  | 4 5    | 145        |
| Phenols                         |      |       |            |            |      |        |            |
| 2-Chlorophenol                  |      |       |            |            | 4 5  | 295    | • • •      |
| Pentachlorophenol               | 9.1  | 90 7  | 182        | 68.1       |      |        | 31 8       |
| Phenol                          | 72.6 | 608   | 681        | 685.1      | 77.1 | 77 1   | 123        |
| 2,4,6-Trichlorophenol           | 72.0 | 68 1  |            |            | 268  | 13,600 | 2,210      |
| p-Chloro-m-cresol               |      | 27.2  | 58 1       | 68 1       |      |        | 68 1       |
| 5-cuto.n-m-c14801               |      | 21.2  | 27 . 2     | 27.2       |      |        | 27 2       |
| iromatics                       |      |       |            |            |      |        |            |
| Chlorobenzene                   |      | 222   | 222        | 222        |      |        | 222        |
| olycyclic aromatic hydrocarbona |      |       |            |            |      |        |            |
| Phenanthrene/trichloroethylene  |      | 245   | 245        | 245        |      |        | 245        |
| slogenated aliphatics           |      |       |            |            |      |        |            |
| 1,1-Dichloroethylene            | 27 2 | 5.070 | I.09G      | 1.090      | 27 2 | 27.2   | 1,100      |
| 1,2-Trans-dichloroethylene      |      | 141   | 141        | 141        | 21 2 | 27.2   |            |
| Trichloromethane                |      | 90.7  | 90 7       | 90 7       |      |        | 141        |
| Methylene chloride              | 49 9 | 81.7  | 13.2       |            |      |        | 90 7       |
| Chlorosthylene                  | 4, , | 504   |            | 13.2       | 54 4 | 54 4   | 154        |
| Trichloroethylene               |      | 504   | 504        | 504        |      |        | 504        |
| Tetrachloroethylene             |      |       |            |            |      | 45 4   | 4 50       |
| •                               |      |       |            |            |      | 73 7   | 4 30       |
| esticides and metabolites v-BHC |      | 22.7  | 22.7       |            |      |        |            |
| Y-BHC                           |      | 22.7  | 22.7       | 22.7       |      |        | 22         |

Blanks indicate no data available

See phenanthrene

TABLE 18-9. CONCENTRATIONS OF TOXIC POLLUTANTS IN LARGE FACILITY PREDOMINANT SUBCATEGORY COMBINATION RAW WASTEWATERS [2] (mg/day)

|                                  |       |       | Subcategor      | y combination | <u> </u> |         |
|----------------------------------|-------|-------|-----------------|---------------|----------|---------|
| Toxic pollutant                  | la la | 1b    | 2a              | 2b            | 3a       | 3b      |
| Metals and inorganics            |       |       |                 |               |          |         |
| Antimony                         | 86.2  | 13.6  | 99.8            | 86.2          | 99.8     | 86.2    |
| Arsenic                          | 86.2  | 13.6  | 99.8            | 86.2          | 3,980    | 12,800  |
| Cadmium                          | 86.2  | 13.6  | 99.8            | 86.2          | 99.8     | 86.2    |
| Chromium                         | 436   | 159   | 203             | 166           | 203      | 435     |
| Copper                           | 2,700 | 6,190 | 9,800           | 16,700        | 9,850    | 5,100   |
| Cyanide                          | -,    | -,    | .,              |               |          |         |
| Lead                             | 1,130 | 2,230 | 21,600          | 27,100        | 21,500   | 5,730   |
| Mercury                          | -,    | -,200 | ,               | 2.,000        |          | - •     |
| Nickel                           | 957   | .313  | 1,270           | 2.650         | 1,320    | 1,050   |
| Silver                           | 8,360 | 6,130 | 14,500          | 59.000        | 1.450    | 8.970   |
| Thallium                         | 521   | 86.2  | 608             | 521           | 608      | 666     |
| Zinc                             | 811   | 4,950 | 13,000          | 46,200        | 13,400   | 8,000   |
| Zinc                             | 611   | 4,930 | 13,000          | 40,200        | 13,400   | 0,000   |
| Phthalates                       |       |       |                 |               |          |         |
| Bis(2-ethyhexyl) phthalate       | 1,740 | 290   | 2,030           | 1,740         | 2,030    | 1,740   |
| Di-n-butyl phthalate             |       | 1,029 | 1,029           | 10,916        | 3,061    | 3,675   |
| Phenols                          |       |       |                 |               |          |         |
| 2-Chlorophenol                   |       |       |                 |               |          | 4,260   |
| Pentachlorophenol                | 341   | 59.0  | 403             | 344           | 29.900   | 43,200  |
| Phenol                           | 2,436 | 4.559 | 7,000           | 46,600        | 8,390    | 201,000 |
|                                  | 2,436 |       | 508             |               | 508      | 201,000 |
| 2,4,6-Trichlorophenol            |       | 508   | 508             | 5,420         | 300      |         |
| p-Chloro-m-cresol                |       |       |                 |               |          |         |
| Aromatics                        |       |       |                 |               |          |         |
| Benzene                          |       |       |                 |               | 1,276    | 182     |
| Chlorobenzene                    |       | 1,670 | 1,670           | 11,300        | 1,670    |         |
|                                  |       |       | _,              | ,             | -,       |         |
| Polycyclic aromatic hydrocarbons |       |       |                 |               |          |         |
| Phenanthrene/trichloroethylene   | 1,830 | 1,830 | 19, <b>4</b> 00 | 2,190         | 531      |         |
| Halogenated aliphatics           |       |       |                 |               |          |         |
| 1,1-Dichloroethylene             | 957   | 7,710 | 8,940           | 957           | 8,940    | 957     |
| 1.2-Trans-dichloroethylene       | 337   | 1,040 | 1.040           | ,,,           | 1.040    | ,       |
| Trichloromethane                 |       | 680   | 680             | 3.840         | 680      |         |
| Methylene chloride               | 1,660 | 621   | 2,280           | 1,660         | 2,280    | 4,100   |
| Chloroethylene _                 | 1,000 | 3,750 |                 | 1,000         | 3,750    | 4,100   |
| Trichloroethylene <sup>a</sup>   |       | 3,750 | 3,750           |               | 3,730    |         |
| Tetrachloroethylene              |       |       |                 |               |          | 653     |
| •                                |       |       |                 |               |          |         |
| Pesticides and metabolites       |       | 163   | 163             | 1,700         | 163      |         |
| 1-DIC                            |       | 163   | 103             | 1,700         | 103      |         |

Blanks indicate no data available.

a See phenanthrene.

TABLE 18-9 (continued)

|                                  |         |            | Subca      | ategory combina | tion    |         |         |
|----------------------------------|---------|------------|------------|-----------------|---------|---------|---------|
| Toxic pollutant                  | 4a      | <b>4</b> b | 5 <b>a</b> | 6a              | 7a      | 9a      | 9b      |
| Metals and inorganics            |         |            |            |                 |         |         |         |
| Antimony                         | 86.2    | 99.8       | 86 2       | 99.8            | 99.8    | 99.8    | 99.8    |
| Arsenic                          | 12,800  | 10,400     | 4,340      | 4,350           | 8,240   | 9,750   | 9,800   |
| Cadmium                          | 86.2    | 99.8       | 86.2       | 99.8            | 99.8    | 99.8    | 99.8    |
| Chromium                         | 435     | 2,030      | 147,000    | 148,000         | 153,000 | 137.000 | 153,000 |
| Copper                           | 83,600  | 12,500     | 147,000    | 154,000         | 99,000  | 176,000 | 112,000 |
| Cvanide                          | 235     | 12,300     | 277        | 277             | 3,500   | 15,000  | 14,700  |
| Lead                             | 5,730   | 17,800     | 49.100     | 69,500          | 69,500  | 85.400  | 111,000 |
| Mercury                          | 1.760   | 17,800     | 1,760      | 1.760           | 09,300  | 1.760   | 111,000 |
| Nickel                           | 1,050   | 1,330      | 54,500     | 54,700          | 65,300  | 63,600  | 65,300  |
| Silver                           | 8,970   |            |            |                 |         |         | 65,600  |
| Thallium                         |         | 15,200     | 59,300     | 65,500          | 65,500  | 15,000  |         |
| Zinc                             | 666     | 7,810      | 4,230      | 4,320           | 4,320   | 5,380   | 5,380   |
| ZINC                             | 8,200   | 13,100     | 104,000    | 109,000         | 984,000 | 999,000 | 999,000 |
| Phthalates                       |         |            |            |                 |         |         |         |
| Bis(2-ethyhexyl) phthalate       | 1,740   | 2,030      | 1,740      | 2,030           | 4,300   | 2,030   | 2,030   |
| Di-n-butyl phthalate             | 3,645   | 2,373      | 11,500     | 12,600          | 19,700  | 9,006   | 19,922  |
| Phenols                          |         |            |            |                 |         |         |         |
| 2-Chlorophenol                   | 6,480   | 4.990      | 2,220      | 2.220           |         | 2.950   | 73.     |
| Pentachlorophenol                | 43,212  | 16,060     | 344.8      | 403.8           | 84,800  | 87,100  | 87,100  |
| Phenol                           | 303,212 | 238,000    | 194,000    | 199,000         | 100,000 | 206,000 | 148,000 |
| 2,4,6-Trichlorophenol            | 303,200 |            |            |                 |         |         |         |
| p-Chloro-m-cresol                |         | 508.2      | 5,420      | 5,920           | 5,920   | 508.2   | 5,920   |
| Aromatics                        |         |            |            |                 |         |         |         |
| Benzene                          | 182     | 72.6       | 177        | 177             | 540     | 558     | 558     |
| Chlorobenzene                    | 102     | 1,690      | 15,800     |                 |         | 2,080   | 180     |
| Chiolopenzene                    |         | 1,690      | 15,800     | 17,500          | 17,500  | 2,080   | 180     |
| Polycyclic aromatic hydrocarbons |         |            |            |                 |         |         |         |
| Phenanthrene/trichloroethylene   | 531     | 2,040      | 19,900     | 21,700          | 22,800  | 3,430   | 22,800  |
| Halogenated aliphatics           |         |            |            |                 |         |         |         |
| 1,1-Dichloroethylene             | 957     | 8,940      | 24,000     | 32,000          | 32,000  | 50,200  | 50.200  |
| 1,2-Trans-dichloroethylene       |         | 1,040      | 21,000     | 1,040           | 1,040   | 3,440   | 3,440   |
| Trichloromethane                 |         | 681        | 3,540      | 4,220           | 4,220   | 147     | 5,000   |
| Methylene chloride               | 5,650   | 5,380      | 3,030      | 3,650           | 2,280   | 4,880   | 3,580   |
| Chloroethylene                   | 0,000   | 3,750      | 3,030      | 3,750           | 3,750   | 12,500  | 12,500  |
| Trichloroethylene <sup>a</sup>   |         | 3,730      |            | 3,730           | 3,730   | 12,500  | 12,300  |
| Tetrachloroethylene              | 989     | 762        | 336        | 336             |         | 445     | 109     |
| esticides and metabolites        |         |            |            |                 |         |         |         |
| y-BHC                            |         | 163        | 1,700      | 1,860           | 1 960   | 163     | 1,860   |
| , Dile                           |         | 103        | 1,700      | 7,000           | 1,860   | 103     | 1,000   |

asee phenanthrene.

TABLE 18-10. POLLUTANTS FOUND IN THE DIRECT DISCHARGES FOR SIX ESTABLISHMENTS HAVING NPDES PERMITS [2]

Wastewater flow, m<sup>3</sup>/day: Establishment I, 3,290; Establishment II, 2,650; Establishment III, 5,220; Establishment IV, 87.1; Establishment V, 2,600; Establishment VI, 2,610; total, 16,500

|                                |        |        | Establishme   |            |         |        | Total       | Average        |  |  |
|--------------------------------|--------|--------|---------------|------------|---------|--------|-------------|----------------|--|--|
|                                | I      | II     | III           | IV         | V       | VI     | discharge,  | concentration, |  |  |
| Pollutant                      |        |        | Concentration | on, kg/day |         |        | kg/day µg/L |                |  |  |
| Conventional pollutants        |        |        |               |            |         |        |             |                |  |  |
| BOD <sub>5</sub>               | 6.13   | 6.13   | 12.3          | 0.045      | 2.63    | 6.13   | 33.3        | 2,000          |  |  |
| TSS                            | 6.13   | 6.13   | 12.3          | 0.091      | 0.091   | 6.13   | 31.5        | 1,900          |  |  |
| Oil and grease                 | 2.65   | 2.63   | 5.30          | 0.045      | 0.045   | 2.63   | 13.2        | 800            |  |  |
| Toxic pollutants               |        |        |               |            |         |        |             |                |  |  |
| Chromium                       | 0.156  | 0.158  | 0.311         | 0.002      | 0.047   | 0.156  | 0.830       | 50             |  |  |
| Copper                         | 0.088  | 0.065  | 0.113         | 0.001      | 0.017   | 0.057  | 0.310       | 19             |  |  |
| Cyanide                        |        | 0.001  |               |            |         |        | 0.001       | 0.1            |  |  |
| Lead                           | 0.023  | 0.023  | 0.046         | 0.0002     | 0.007   | 0.023  | 0.122       | 7.4            |  |  |
| Nickel                         | 0.061  | 0.065  | 0.122         | 0.001      | 0.018   | 0.061  | 0.328       | 20<br>28       |  |  |
| Zinc                           | 0.023  | 0.355  | 0.045         | 0.0002     | 0.007   | 0.023  | 0.453       | 28             |  |  |
| Di-n-butyl phthalate           | 0.001  | 0.002  | 0.002         | 0.000      | 0.00002 | 0.001  | 0.006       | 0.3            |  |  |
| Pentachlorophenol              |        | 0.020  |               |            |         |        | 0.020       | 1.2            |  |  |
| Phenol                         | 0.054  | 0.055  | 0.108         | 0.001      | 0.016   | 0.054  | 0.289       | 18             |  |  |
| Benzene                        | 0.0002 | 0.0002 | 0.0004        | 0.0000     | 0.0000  | 0.0002 | 0.001       | 0.1            |  |  |
| Phenanthrene/trichloroethylene | 0.001  | 0.001  | 0.001         | 0.000      | 0.000   | 0.001  | 0.001       | 0.2            |  |  |
| 1,1-Dichloroethylene           | 0.028  | 0.028  | 0.055         | 0.0002     | 0.008   | 0.028  | 0.147       | 8.9            |  |  |

Blanks indicate no data available.

#### II.18.4 POLLUTANT REMOVABILITY

Pollutants released in the process waters from the soap and detergent industry are generally of a nontoxic nature and can be pretreated, removed, or ultimately disposed of under normal controlled conditions. Treatment techniques currently in use to recover or remove wastewater pollutants at these facilities are standard, well-established processes.

The industry's wastewater pollutants can be greatly reduced by lower process water usage and/or the recycling of process water. In addition, significant recovery of marketable soap products, fats, glycerine, organic surface active agents, etc., can be realized by lower water use, particularly through process redesign or replacement. For example, by changing operating techniques associated with barometric condensers or by replacing such condensers with surface condesers, water use in most processes can be lowered and the amount of organics released to the sewer can be reduced. These organics can be recovered to be purified for a possible profit. In the manufacture of liquid detergents, installation of additional water recycle piping and tankage and the use of air (rather than water) to blow out filling lines can substantially reduce water use and minimize loss of the finished product.

Table 18-11 presents treatment methods for the removal or elimination of pollutants found in wastewaters from soap and detergent manufacture. Important features and details of the various treatment methods and abatement systems can be readily found in the literature. As seen in this table, organics (especially those of a toxic nature) can be treated primarily by bioconversion processes and activated carbon adsorption systems. remainder of the major pollutants can be treated by filtration, sedimentation or clarifying processes, and other treatment techniques. As an example, coagulation and sedimentation of the wastewaters can help remove insoluble precipitate residuals chracteristic of soap manufacturing processes. The relative efficiency of removal of pollutants for these various processes is given in Table 18-12, which shows that for most pollutant treatment processes, removability efficiency can be as high as 90-95%. The efficiency achieved is governed by operating parameters of the various processes and by the types and amounts of pollutants in the wastewater.

TABLE 18-11. TREATMENT METHODS USED IN ELIMINATION OF POLLUTANTS [1]

| Pollutants                                        | Treatments                                                                                                                                                         |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Free and emulsified oils and greases              | <ol> <li>Gravity separation</li> <li>Coagulation and sedimentation</li> <li>Carbon adsorption</li> <li>Mixed media filtration</li> <li>Flotation</li> </ol>        |
| Suspended solids                                  | <ol> <li>Plain sedimentation</li> <li>Coagulation-sedimentation</li> <li>Mixed media filtration</li> </ol>                                                         |
| Dispersed organics                                | <ol> <li>Bioconversion</li> <li>Carbon adsorption</li> </ol>                                                                                                       |
| Dissolved solids (inorganic)                      | <ol> <li>Reverse osmosis</li> <li>Ion exchange</li> <li>Sedimentation</li> <li>Evaporation</li> </ol>                                                              |
| Unacceptable acidity or alkalinity                | 1. Neutralization                                                                                                                                                  |
| Sludge obtained from<br>or produced in<br>process | <ol> <li>Digestion</li> <li>Incineration</li> <li>Lagooning</li> <li>Thickening</li> <li>Centrifuging</li> <li>Wet oxidation</li> <li>Vacuum filtration</li> </ol> |

TABLE 18-12. RELATIVE EFFICIENCY OF SEVERAL METHODS USED IN REMOVING POLLUTANTS [1]

| Pollutant and method                                                      | Removal efficiency                                                                                                                     |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Oil and grease                                                            |                                                                                                                                        |
| API type separation                                                       | Up to 90% of free oils and greases;<br>variable on emulsified oil                                                                      |
| Carbon adsorption                                                         | Up to 95% of both free and emulsi-<br>fied oils                                                                                        |
| Flotation                                                                 | Without the addition of solid phase<br>alum or iron, 70-80% of both free<br>and emulsified oil; with the<br>addition of chemicals, 90% |
| Mixed media filtration                                                    | Up to 95% of free oils, efficiency<br>in removing emulsified oils<br>unknown                                                           |
| Coagulation-sedimentation with iron, alum or solid phase (bentonite etc.) | Up to 95% of free oil; up to 90% of emulsified oil                                                                                     |
| Suspended solids                                                          |                                                                                                                                        |
| Mixed media filtration                                                    | 70-80%                                                                                                                                 |
| Coagulation-sedimentation                                                 | 50-80%                                                                                                                                 |
| Chemical oxygen demand                                                    |                                                                                                                                        |
| Bioconversions (with final clarifier)                                     | 60-95% or more                                                                                                                         |
| Carbon adsorption                                                         | Up to 90%                                                                                                                              |
| Residual suspended solids                                                 |                                                                                                                                        |
| Sand or mixed media filtration                                            | 50-95%                                                                                                                                 |
| Dissolved solids                                                          |                                                                                                                                        |
| Ion exchange or reverse osmosis                                           | Up to 99%                                                                                                                              |

#### II.18.5 REFERENCES

- Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Soap and Detergent Manufacturing Point Source Category. EPA-440/1-74-018a, U.S. Environmental Protection Agency, Washington, D.C., April 1974.
- Project Recommendations for the Soap and Detergent Manufacturing Industry (SIC 2841) BAT/Toxics Study. U.S. Environmental Protection Agency, Washington, D.C., November 1979.
- 3. Economic Analysis of Effluent Guidelines for the Soap and Detergent Industry. EPA-230/2-73-026 (PB 256 313), U.S. Environmental Protection Agency, Washington, D.C., July 1976.

#### II.19 STEAM ELECTRIC POWER GENERATING

#### II.19.1 INDUSTRY DESCRIPTION

#### II.19.1.1 General Description [1-4]

The steam electric power generation industry is defined as those establishments primarily engaged in the steam generation of electrical energy for sale. It is more commonly termed the steam electric utility industry and includes both fossil-fueled and nuclear plants. It does not include steam electric power plants in industrial, commercial, or other facilities. The industry falls under two Standard Industrial Classification (SIC) Codes, SIC 4911 and SIC 4931.

Of the 1,068 steam electric power generating plants in operation in 1977, 22% were built after 1971. These plants (57% of which are 500 MW or larger in size) represent about 40% of existing capacity. Plants built before 1960 represent 41% of the total number of existing plants and account for 18% of total capacity. In the operation of a power plant, combustion of fossil fuels—coal, oil, or gas—supplies heat to produce steam that is used to generate mechanical energy in a turbine. This energy is subsequently converted by a generator to electricity. Nuclear fuels, presently uranium, are used in a similar cycle except that the heat is supplied by atomic fusion.

Wastewaters at steam electric power plants arise from a number of sources and operations, most of which are process related. Continuous discharges result from such sources as cooling water systems, ash handling systems, pollution control ( $SO_2$ ) systems, and boiler blowdown. Regular intermittent wastewaters are produced from such processes as regeneration of water from treatment systems. Wastewaters from maintenance cleaning are usually generated on an irregular, infrequent basis. Drainage from coal and ash piles depends primarily on the amount of rainfall rather than plant operating parameters. Finally, there are a number of miscellaneous activities that can generate wastewater streams. The discharge frequency for these varies from plant to plant. Some or all of the various types of wastewater streams occur at almost all of the plant sites in the industry. However, most plants do not have distinct and separate discharge points for each source of wastewater; rather, they combine certain streams prior to final discharge.

Table 19-1 presents industry summary data for the Steam Electric Power Generating (utility) point source category in terms of the number of subcategories and number of dischargers.

#### TABLE 19-1. INDUSTRY SUMMARY [1-5]

Industry: Steam Electric Power Generating

Total Number of Subcategories: 8 (6 have subdivisions,

totaling 25)

Number of Subcategories Studied: 8
Number of Dischargers in Industry:

Direct: 1,050Indirect: 100

• Zero: 10

Current BPT regulations for the Steam Electronic Power Industry are presented in Table 19-2. "Small units" are defined by the EPA as generating units of less than 25-MW capacity. "Old units" are defined as generating units of 500-MW or greater rated net generating capacity which were first placed into service on or before January 1, 1970, as well as any generating unit of less than 500-MW capacity first placed in service on or before January 1, 1974. The term "10-year, 24-hour rainfall event" refers to a rainfall event with a probable recurrence interval of once in 10 years as defined by the National Weather Service.

## II.19.1.2 Subcategory Descriptions [1, 3, 4]

Subcategories for the steam electric utility point source category, as shown in Table 19-3, consist of different sources of wastewater streams within a plant. This approach is a departure from the usual method of subcategorizing an industry according to different types of plants, products, or production processes. The breakdown in Table 19-3 into divisions and subdivisions is based on similarities in wastewater characteristics throughout the industry. Descriptions of the eight broad subcategories are given in this section.

## Condenser Cooling System

The condenser cooling system condenses spent steam (from expansion in the turbine generator to produce electricity) so it may be recycled to the boiler or discharged. Once-through or recirculating systems may be used.

al,068 as of spring 1977.

TABLE 19-2. CURRENT BPT REGULATIONS FOR THE STEAM ELECTRIC POWER INDUSTRY [6]

| Effluent characteristic                                                            | Daily maximum | 30-day maximum |
|------------------------------------------------------------------------------------|---------------|----------------|
| Generating, Small, and Old Unit Subcategories                                      |               |                |
| Low volume waste sources and                                                       |               |                |
| ash transport water                                                                |               |                |
| TSS, mg/L                                                                          | 100           | 30             |
| Oil and grease, mg/L                                                               | 20            | 15             |
| Metal cleaning wastes and                                                          |               |                |
| boiler blowdown                                                                    |               |                |
| TSS, mg/L                                                                          | 100           | 30             |
| Oil and grease, mg/L                                                               | 20            | 15             |
| Copper (total), mg/L                                                               | 1.0           | 1.0            |
| Iron (total), mg/L                                                                 | 1.0           | 1.0            |
| Once-through cooling water and cooling tower blowdown                              |               |                |
| Free available chlorine, mg/L                                                      | 0.5           | 0.2            |
| pH range (except once-through                                                      |               |                |
| cooling water)                                                                     | 6.0 - 9.0     | 6.0 - 9.0      |
| Polychlorinated biphenyl compounds (PCB's)                                         | No disc       | harge          |
| Area Runoff Subcategory                                                            |               |                |
| Material storage and construction runoff (except 10-year, 24-hour rainfall events) |               |                |
| TSS, mg/L                                                                          | 50            | 50             |
| pH (range)                                                                         | 6.0 - 9.0     | 6.0 - 9.0      |
| -                                                                                  |               |                |

Any untreated overflow from facilities designed, constructed, and operated to treat the volume of material storage runoff and construction runoff which is associated with a 10-year, 24-hour rainfall event is not subject to BPT regulation.

2. Water Treatment
Clarification
Softening
Ion exchange
Evaporation
Filtration
Other treatment

- 3. Boiler or Steam Generator Blowdown
- 4. Maintenance Cleaning
  Boiler or steam generator tubes
  Boiler fireside
  Air preheater
  Miscellaneous small equipment
  Stack
  Cooling tower basin
- 5. Ash Handling
  Oil-fired plants
  Fly ash
  Bottom ash
  Coal-fired plants
  Fly ash
  Bottom ash
- 6. Drainage
  Coal pile
  Contaminated floor and yard drains
  Ash pile
- 7. Air Pollution (SO<sub>2</sub>) Control Devices
- 8. Miscellaneous Waste Streams
  Sanitary wastes
  Plant laboratory and sampling systems
  Intake screen backwash
  Closed cooling water systems
  Low level radiation wastes
  Construction activity

A once-through system withdraws water from a water source, such as an ocean, a river, or a groundwater source, and then discharges the water after passage through the condenser system. Approximately 67% of the steam electric power plants use this method. Chlorine or hypochlorite is usually added to minimize the biofouling of heat transfer surfaces.

Recirculating systems recycle cooling water to the condenser cooling system and may include one or more of the following: evaporative cooling towers (wet); dry cooling towers (closed); hybrid cooling towers (wet and dry combination); cooling lakes and ponds; and spray lakes and ponds. Approximately 33% of the steam electric power plants use this method. A bleed stream (blowdown) generally must be provided, especially for evaporative cooling towers, to control dissolved solids buildup. Chemicals are added to recirculating water for corrosion, scaling, or biofouling control.

#### Water Treatment

Boiler feedwater is treated for the removal of suspended and dissolved solids to prevent scale formation. The basic treatment processes used are clarification, filtration, lime/lime soda softening, ion exchange, reverse osmosis, and evaporation (excluding reverse osmosis). The principal chemical additives used in water treatment are phosphate, caustic soda, lime, and alum. These treatment methods are associated with wastewater discharges.

#### Boiler or Steam Generator Blowdown

As a result of evaporation, total dissolved solids build up in the boiler water. To maintain such solids within allowable limits for boiler operation, a controlled amount of boiler water (blowdown) is intermittently bled off. Approximately 69% of steam electric power plants practice boiler blowdown. Power plant boilers are of either the once-through or the drum-type design. Once-through designs are used almost exclusively in high pressure supercritical boilers and have no wastewater streams associated with their operation. Drum-type boilers operate at subcritical conditions where the steam they generate is in equilibrium with boiler water. Boiler blowdown is usually of high quality; it may even be of higher quality than the intake water.

#### Maintenance Cleaning

As a result of combusion processes in the boiler, residues accumulate on the boiler sections and on the air preheater. To maintain efficient heat transfer rates, these accumulated residues are removed periodically.

The insides of boiler or steam generator tubes are often cleaned with a water wash to which a variety of chemicals may be added depending on the type of deposit, type of metal, type of boiler, prior experience, etc. The waste stream usually contains heavy metals.

Boiler firesides are commonly washed by spraying high pressure water against hot boiler tubes. Waste streams contain dissolved and suspended solids. Acid wastes are common in boilers using high sulfur fuel.

Air preheaters are periodically water washed to remove deposits. Waste streams are high in suspended and dissolved solids, such as sulfates, hardness, and heavy metals. Use of high sulfur fuels will add sulfur oxides to deposits, causing acidic effluents.

The buildup of solids on and/or in miscellaneous small equipment (condensate coolers, hydrogen coolers, air compressor coolers, etc.) and cooling tower basins, and soot buildup in stacks require periodic washings that produce waste streams.

#### Ash Handling

Ash is produced as a result of fossil fuel combustion in the boiler. The ash may be carried in the flue gas (fly ash) and removed by a collection device, then transported (sometimes by water) to a disposal site. Bottom ash, which collects in the boiler bottom, must also be removed and disposed, sometimes by use of water.

Oil-fired boilers generate less ash than coal-fired ones; however, the ash is high in vanadium, sodium, and sulfur. Ash produced from coal firing varies in composition depending on the coal grade.

Wastewater streams may result from water transport of fly ash, water removal of bottom ash, and water transport of bottom ash.

#### Drainage

For coal-fired units, a coal supply of approximately 90 days is usually maintained near the site. The piles are usually not enclosed, so the coal comes into contact with moisture and air which can oxidize metal sulfides to sulfuric acid. Precipitation then results in acidic coal pile runoff with minerals and metals in the stream.

Floor and yard drains within a power plant may become contaminated with dust, fly ash, coal dust or oil, detergent, etc., and may be a source of wastewater.

Fly ash or bottom ash stored in an unenclosed pile will produce contaminated runoff caused by precipitation.

#### Air Pollution (SO<sub>2</sub>) Control Devices

Depending upon the fossil fuel sulfur content, an  $SO_2$  scrubber may be required to remove sulfur emissions in the flue gases. Such operations result in liquid waste streams.

## Miscellaneous Waste Streams

Besides the major waste streams previously discussed, there are miscellaneous waste streams in a steam electric power plant such as sanitary wastes, plant laboratory and sampling systems, backwashes of the intake screen, closed cooling water systems, low level radiation wastes (nuclear only), and runoff from construction activity.

Table 19-4 indicates the occurrence of each subcategory of the steam electric utility industry according to the four major fuel types.

#### II.19.2 WASTEWATER CHARACTERIZATION

Wastewater produced by a steam electric power plant can result from a number of operations at the site. Some wastewaters are discharged more or less continuously as long as the plant is operating. Others are produced intermittently, but on a fairly regular basis such as daily or weekly, and are still associated with the production of electrical energy. Other intermittent wastewaters, produced at less frequent intervals, are generally associated with either the shutdown or startup of a boiler or generating unit. Additional wastewaters exist that are essentially unrelated to production but depend on meteorological or other factors. Figure 19-1 presents a typical flow diagram for fossil-fueled steam electric power plants. Wastewater flowrates for the steam electric power generating industry are shown in Table 19-5. The following sections present data available on these waste streams.

#### II.19.2.1 Condenser Cooling System Wastewater

Wastewater generated from once-through condenser cooling systems will vary widely depending on the quality of the source. Biocides such as chlorine and hypochlorite are usually added to systems of this type to minimize biological growth within the condenser.

Wastewater from a recirculating condenser system (primarily cooling tower blowdown) will depend on the amount of dissolved solids allowable in the system and on the various chemical additives

TABLE 19-4. OCCURRENCE OF SUBCATEGORIES BY FUEL TYPE [1]

|            | Process of operation                     | Nuclear | Coal | Oil | Gas |
|------------|------------------------------------------|---------|------|-----|-----|
| 1.         | Condenser Cooling System                 |         |      |     |     |
| <b>+</b> • | Once-through                             | Х       | x    | х   | х   |
|            | Recirculating                            | X       | X    | X   | X   |
|            | Recliculating                            | Λ       | Λ.   | Λ   | Λ   |
| 2.         | Water Treatment                          |         |      |     |     |
|            | Clarification                            | X       | X    | X   | X   |
|            | Softening                                | X       | X    | X   | X   |
|            | Ion exchange                             | X       | X    | X   | X   |
|            | Evaporation                              | X       | X    | X   | X   |
|            | Filtration                               | X       | X    | X   | X   |
|            | Other treatment                          | X       | X    | Х   | X   |
| 3.         | Boiler or Steam Generator                |         |      |     |     |
| J.         | Blowdown                                 | Х       | х    | х   | х   |
|            | Diongonii                                | 41      | 21   |     |     |
| 4.         | Maintenance Cleaning                     |         |      |     |     |
|            | Boiler or generator tubes                | X       | X    | X   | X   |
|            | Boiler fireside                          |         | X    | X   | X   |
|            | Air preheater                            |         | X    | X   | X   |
|            | Miscellaneous small                      |         |      |     |     |
|            | equipment                                |         | X    | X   | X   |
|            | Stack                                    |         | X    | X   | X   |
|            | Cooling tower basin                      | X       | X    | X   | X   |
| 5.         | Ash Handling                             |         |      |     |     |
|            | Bottom ash                               |         | Х    | _a  |     |
|            | Fly ash                                  |         | X    | X   |     |
|            | ity asii                                 |         |      |     |     |
| 6.         | Drainage                                 |         |      |     |     |
|            | Coal pile                                |         | X    |     |     |
|            | Floor and yard drains                    |         | X    | X   | X   |
| 7.         | Air Pollution (SO <sub>2</sub> ) Control |         |      |     |     |
| •          | Devices                                  |         | Х    | Х   |     |
|            | 2012003                                  |         |      |     |     |
| 8.         | Miscellaneous Streams                    |         |      |     |     |
|            | Sanitary wastes                          | X       | X    | X   | X   |
|            | Plant laboratory and                     |         |      |     |     |
|            | sampling systems                         | X       | X    | X   | X   |
|            | Intake screen backwash                   | X       | X    | X   | Х   |
|            | Closed cooling water                     |         |      |     |     |
|            | systems                                  | X       | X    | X   | X   |
|            | Low level radiation wastes               | 5 X     |      |     |     |
|            | Construction activity                    |         |      |     |     |

aBottom ash may be formed for heavier oils.

Figure 19-1. Fossil-fueled steam-electric power plant - typical flow diagram.

CHEMICALS

OPTIONAL FLOWWASTEWATER

TABLE 19-5. WASTEWATER FLOWRATES [1, 4]

|                                 | Number       |                 | •                                       |             |           |                  |                                                                                |
|---------------------------------|--------------|-----------------|-----------------------------------------|-------------|-----------|------------------|--------------------------------------------------------------------------------|
| Waste stream                    | of<br>plants |                 | Flowrate, m <sup>3</sup> /d (gpd) Range | <del></del> | Median    | Frequency        | Remarks                                                                        |
| <br>Condenser cooling water     |              |                 |                                         |             |           |                  |                                                                                |
| Once-through                    |              |                 | -                                       |             |           | _                | _                                                                              |
| •                               | •            |                 |                                         |             | -         |                  |                                                                                |
| Recirculating                   | 5            | 53 1,100        | (14,000 - 280,000)                      | 240         | (63,000)  | •                | Blowdown depends on water<br>quality and varies from<br>2 to 20 concentrations |
| Water treatment                 |              |                 |                                         |             |           |                  |                                                                                |
| Clarification                   |              |                 |                                         |             |           |                  |                                                                                |
| Coal                            | 88           | 0.026 - 2,300   | (7 - 60,000)                            | 102         | (27,000)  |                  |                                                                                |
| Gas                             | 26           | 0 038 - 4,500   | (10 - 1,200,000)                        | 210         | (58,000)  |                  |                                                                                |
| 011                             | 14           | 0.076 - 380     | (20 - 100,000)                          | 75          | (20,000)  |                  |                                                                                |
| Softening                       |              |                 |                                         |             |           | -                | -                                                                              |
| Coal                            | 37           | 0.11 - 190      | (29 - 50,000)                           | 99          | (26,000)  |                  |                                                                                |
| Gas                             | 40           | 0.057 - 3,400   | (15 - 900,000)                          | 117         | (31,000)  |                  |                                                                                |
| Oil                             | 15           | 0.28 - 840      | (75 - 220,000)                          | 60          | (16,000)  |                  |                                                                                |
| Ion exchange                    |              |                 |                                         |             |           | 52-365 cycles/yr | Extremely variable dependin                                                    |
| Coal                            | 104          | 0.055 - 400     | (14 - 100,000)                          | 35          | (9,300)   | •                | •                                                                              |
| Gas                             | 86           | 0.026 - 620     | (7 - 160,000)                           | 42          | (11,000)  |                  |                                                                                |
| 0il                             | 42           | 0.061 - 500     | (16 - 130,000)                          | 73          | (19,000)  |                  |                                                                                |
| Evaporation                     |              |                 |                                         |             |           | 300-365 cycles/y | Extremely variable depending                                                   |
| Coal                            | 104          | 0.0076 - 3,600  | (2 - 960,000)                           | 110         | (29,000)  | - · · · ·        | -                                                                              |
| Gas                             | 83           | 0.030 - 810     | (8 - 220,000)                           | 52          | (13,000)  |                  |                                                                                |
| 011                             | 57           | 0.057 - 60,000  | (15 - 15,000,000)                       | 1,200       | (320,000) |                  |                                                                                |
| Filtration                      |              |                 |                                         |             |           | -                | -                                                                              |
| Coal                            | 155          | 0.0061 - 1,100  | (1.6 - 300,000)                         | 97          | (25,000)  |                  |                                                                                |
| Gas                             | 58           | 0.15 - 360      | (40 - 94,000)                           | 30          | (7,800)   |                  |                                                                                |
| 0i1                             | 58           | 0.11 - 950      | (20 - 250,000)                          | 95          | (25,000)  |                  |                                                                                |
| Reverse osmosis                 |              |                 |                                         |             |           |                  | -                                                                              |
| Coal                            | 3            | 0.011 - 120     | (3 - 32,000)                            | 40          | (11,000)  |                  |                                                                                |
| Gas                             | 11           | 1.76 - 360      | ( <b>4</b> 70 - 95,000)                 | 69          | (18,000)  |                  |                                                                                |
| Boiler blowdown                 |              |                 |                                         |             |           | 25-365 cycles/yr | -                                                                              |
| Coal                            | 231          | 0.00042 - 2,500 | (0.11 - 650,000)                        | 130         | (33,000)  |                  |                                                                                |
| Gas                             | 189          | 0.015 - 2,600   | (4 - 700,000)                           | 73          | (19,000)  |                  |                                                                                |
| Oil                             | 148          | 0.010 - 14,000  | (2.7 - 3,800,000)                       | 250         | (66,000)  |                  |                                                                                |
| Maintenance (chemical) cleaning |              |                 |                                         |             |           |                  |                                                                                |
| Boiler tubes                    | 7            | 570 - 19,000    | (150,000 - 4,900,000)                   | 870         | (230,000) | Once/7-100 mo    | -                                                                              |
| Boiler fireside                 |              |                 |                                         |             |           | 2-8 yr           | -                                                                              |
| Coal                            | 42           | 0.010 - 77      | (2.7 - 20,000)                          | 10          | (2,700)   | 1.               |                                                                                |
| Gas                             | 40           | 0.0011 - 10     | (0.3 - 2.700)                           | 1.9         | (510)     |                  |                                                                                |
| 011                             | 81           | 0.052 - 130     | (14 - 36,000)                           | 13          | (3,400)   |                  |                                                                                |

(continued)

TABLE 19-5 (continued).

|     |                                                | Number<br>of    |                 | Flowrate, m <sup>3</sup> /d (gpd) |                      |                       |           |                                                                                    |
|-----|------------------------------------------------|-----------------|-----------------|-----------------------------------|----------------------|-----------------------|-----------|------------------------------------------------------------------------------------|
| _   | Waste stream                                   | plants          |                 | Range                             |                      | Median                | Frequency | Remarks                                                                            |
|     | Maintenance (chemical) cleaning (continued)    |                 |                 |                                   |                      |                       |           |                                                                                    |
|     | Air preheater                                  |                 |                 |                                   |                      |                       | 4-12 yr   | -                                                                                  |
|     | Coal (total)                                   | 148             | 0.010 - 590     | (2.7 - 160,000)                   | 41                   | (11,000)              | -         |                                                                                    |
|     | Gas (total)                                    | 56              | 0.0010 ~ 37     | (0.27 - 9,900)                    | 3.7                  | (980)                 |           |                                                                                    |
|     | Oil (total)                                    | 110             | 0.0053 - 2,000  | (1.4 - 530,000)                   | 40                   | (11,000)              |           |                                                                                    |
|     | Coal, 25-MW capacity                           | 3               | 0.021 - 0 21    | (5.5 - 55)                        | 0 091                | (25)                  |           |                                                                                    |
|     | Coal, 100-MW capacity                          | 16              | 0 021 - 10      | (5.5 - 2,700)                     | 2.9                  | (760)                 |           |                                                                                    |
|     | Coal, 500-MW capacity                          | 54              | 0.010 - 180     | (2.7 - 47,000)                    | 17                   | (4,600)               |           |                                                                                    |
|     | Gas, 25-MW capacity                            | 8               | 0.016 - 0.25    | (4.1 - 66)                        | 0.095                | (25.2)                |           |                                                                                    |
|     | Gas, 100-MW capacity                           | 12              | 0.0010 - 4.5    | (0 27 - 1,200)                    | 0.91                 | (240)                 |           |                                                                                    |
|     | Gas, 500-MW capacity                           | 23              | 0 0020 - 26     | (0.56 - 6,800)                    | 4.2                  | (1,100)               |           |                                                                                    |
|     | 011, 25-MW capacity                            | 13              | 0.026 - 37      | (6.8 - 9,900)                     | 7.7                  | (2,000)               |           |                                                                                    |
|     | 011, 25-MW capacity                            | 7               | 0 0051 - 1.6    | (1.4 - 410)                       | 0.29                 | (77)                  |           |                                                                                    |
|     | Oil, 100-MW capacity                           | 8               | 0.45 - 39       | (120 - 10,000)                    | 7 0                  | (1,900)               |           |                                                                                    |
|     | Oil, 500-MW capacity                           | 52<br><b>43</b> | 0.017 - 140     | (4.6 - 38,000)                    | 11<br>88             | (3,000)               |           |                                                                                    |
|     | 011, 500-MW capacity                           | 43              | 0.11 - 2,000    | (20 - 530,000)                    | 88                   | (23,000)              |           |                                                                                    |
|     | Miscellaneous small equipment                  | -               |                 | -                                 |                      | -                     | -         | -                                                                                  |
|     | Stack                                          | -               |                 | -                                 |                      | -                     | -         | Cleaned infrequently                                                               |
|     | Cooling tower basin                            | -               |                 | -                                 |                      | -                     | -         | Cleaned infrequently                                                               |
|     | Ash handling                                   |                 |                 |                                   |                      |                       |           |                                                                                    |
|     | Coal                                           | 24              | 1,800 - 78,000  | (480,000 - 21,000,000)            | 18 000               | (4,700,000)           |           |                                                                                    |
|     | Coal and gas                                   | 5               | 1,900 - 98,000  | (500,000 - 26,000,000)            |                      | (8,700,000)           |           |                                                                                    |
|     | Coal and oil                                   | 4               | 19 - 2,700      | (4,900 - 720,000)                 | 2,600                | (690,000)             |           |                                                                                    |
|     | Coal, oil, and gas                             | 2               | 20,000 - 53,000 |                                   |                      | (9,600,000)           |           |                                                                                    |
| i . | Drainage                                       |                 |                 |                                   |                      |                       |           |                                                                                    |
|     | Coal pile                                      | 4               | 3.1 - 360       | (810 - <del>9</del> 6,000)        | 15                   | (3,900)               | -         | Flow dependent upon frequency,<br>duration, and intensity of<br>rainfall           |
|     | Floor and yard drains                          | 3               | 5.5 - 14        | (1,400 - 3,600)                   | 5.5                  | (1,400)               | -         | Flow dependent upon frequency<br>duration of cleaning and sto<br>water runoff      |
|     | Ash pile                                       | -               |                 | -                                 |                      | -                     | -         | -                                                                                  |
| ٠.  | Air pollution control devices                  |                 |                 |                                   |                      |                       |           |                                                                                    |
|     | Five gas scrubber blowdown                     |                 |                 |                                   |                      |                       |           |                                                                                    |
|     | Coal (total)                                   | 13              | 27 - 57,000     | (7,000 - 15,000,000)              | 6,500                | (1,700,000)           | •         | -                                                                                  |
|     | Scrubber solids pond overflow                  | _               |                 |                                   |                      |                       | -         | =                                                                                  |
|     | Coal (total)                                   | 7               | 0.95 - 8,700    | (250 - 2,300,000)                 | 3, <b>20</b> 0       | (840,000)             |           |                                                                                    |
|     | Coal, 25-MW capacity                           | 1               |                 |                                   | 8,700                | (2,300,000)           |           |                                                                                    |
|     | Coal, 100-HW capacity                          | 1               |                 |                                   | 0.95                 | (250)                 |           |                                                                                    |
|     | Coal, 500-HW capacity<br>Coal, 500-HW capacity | 1<br>4          | 27 - 6,200      | (7,000 - 1,700,000)               | 77<br>3, <b>2</b> 00 | (20,300)<br>(850,000) |           |                                                                                    |
|     | Miscellaneous waste streams                    |                 |                 |                                   |                      |                       |           |                                                                                    |
|     | Sanitary wastes                                | -               |                 |                                   |                      | -                     | -         | Estimated flow 25-35 gal/capite                                                    |
|     | •                                              |                 |                 |                                   |                      |                       |           | day                                                                                |
|     | Plant laboratory and sampling                  |                 |                 | •                                 |                      | -                     | -         | Nominal, variable flow                                                             |
|     | Intake screen backwash                         | -               |                 | -                                 |                      | -                     | •         | Guideline requires collection a<br>removal of debris; flow data<br>not significant |
|     | Closed cooling systems                         | -               |                 | -                                 | 0.019                | (5)                   | -         | •                                                                                  |
|     | Low level radiation wastes                     | -               |                 | -                                 |                      | -                     | -         | Variable, depending on treatmen                                                    |
|     |                                                |                 |                 |                                   |                      |                       |           | technology, leakage, etc.                                                          |
|     | Construction activity                          | -               |                 | -                                 |                      | _                     | •         | Flow dependent on rainfall                                                         |

used to control corrosion, sealing, and biological growth. The fill material in natural draft cooling towers is normally asbestos cement. Erosion of this fill material can result in the discharge of asbestos from cooling water blowdown. Table 19-6 lists the toxic pollutants observed in condenser cooling system wastewater.

#### II.19.2.2 Water Treatment Wastewater

Removal of dissolved and suspended salts from boiler feedwater to prevent or reduce scaling may be accomplished by clarification, softening, ion exchange, evaporation, filtration, or other treatment.

Clarification agglomerates suspended solids and removes them from water by settling. Chemicals such as aluminum sulfate, ferrous sulfate, ferric sulfate, sodium aluminate, polyelectrolytes, and others are used as additives. Wastewater streams from clarifiers usually contain 3,000 mg/L to 15,000 mg/L total solids (of which 75% to 80% are suspended solids and the remainder dissolved solids), 30 mg/L to 100 mg/L BOD, 500 mg/L to 10,000 mg/L COD, and pH of 5 to 9.

Softening removes hardness using chemical precipitation. The two major chemicals used are calcium hydroxide and sodium carbonate.

Ion exchange removes mineral salts in one step using an organic resin which periodically must be regenerated. The pH of the wastewater will vary depending on the type of system and resins used. The neutralized wastewater is high in total dissolved solids.

Evaporator wastewater, with a pH range of 6 to 9, contains concentrated salts from the feedwater.

Filtration is used after several other water treatment operations and requires periodic backflushing.

Reverse osmosis is a process used by some plants to remove dissolved salts. Concentrated salt solution (brine) is discouraged as a waste.

Table 9-7 presents pollutant concentrations observed in water treatment wastewater streams.

## II.19.2.3. Boiler or Steam Generator Blowdown Wastewater

Boiler blowdown is generally of fairly high quality because the boiler feedwater must be maintained at high quality [2]. Boiler blowdown having a high pH may contain a high dissolved solids

TABLE 19-6. CONDENSER COOLING SYSTEM - INTAKE AND RAW WASTEWATER POLLUTANT CONCENTRATIONS [1]

|                                                |              | Once thr<br>Intake  | ough coc     | ling wat     | er systems <sup>2</sup><br>Discharge |                        |              | Recircula<br>Intake        | ting coo | ling wat     | er system <sup>b,c</sup><br>Discharge |              |
|------------------------------------------------|--------------|---------------------|--------------|--------------|--------------------------------------|------------------------|--------------|----------------------------|----------|--------------|---------------------------------------|--------------|
|                                                | Munber       |                     | . d          | Number       |                                      | d                      | Number       |                            | . d      | Number       |                                       | d            |
| Pollutant                                      | of<br>plants | Concentrat<br>Range | Hedian       | of<br>plants | Concentrati<br>Range                 | Median                 | of<br>plants | Concentrat<br>Range        | Median   | of<br>plants | Concentratio<br>Range                 | n"<br>Median |
|                                                |              |                     | ····         | Piunts       |                                      | - i.c. u <u>1 u i.</u> | prants       | - Nation                   | negran   | prantes      | - Narrye                              | Hentall      |
| Metals                                         |              |                     |              |              |                                      |                        |              |                            |          |              |                                       |              |
| Antimony                                       | 3            | <5 - 7              | <5           | 3            | <5 - 10                              | <5                     | 2            | 4 - 7                      | 6        | 3            | BOL - 7                               | 5            |
| Arsenic<br>Asbestos                            |              |                     |              |              |                                      |                        | .3           | BDL - 3                    | 1        | .3           | 4 - 35                                | 7            |
| Aspestos<br>Beryllium                          | 3            |                     | <5           | 3            |                                      | <5                     | 18<br>2      | BDL - 140,000<br>BDL - <10 | BDL      | 14           | BDL - 160,000,000<br>BDL - <10        | BDI          |
| Cadaium                                        | 3            | <5 - <10            | <b>&lt;5</b> | . 3          | <5 - 30                              | <5                     | 7            | BDL - 100                  | 8        | 4<br>8       | BDL - 200                             | 3.4          |
| Chromium                                       | 3            | <5 - 39             | 24           | . 3          | <5 - 17                              | 8                      | 8            | BDL - 439                  | 70       | 8            | 2 - 555                               | 52           |
| Copper                                         | 3            | 6 - 22              | 16           | 3            | 5 - 24                               | 20                     | 8            | 9 - 700                    | 32       | 8            | 34 - 3,800                            | 56           |
| Cyanide                                        | 3            | <20 - 20            | <20          | 3            | <20 - 20                             |                        |              |                            |          | 6            | BDL - <20                             | <20          |
| Lead                                           | 3            | <5 - 19             | 8            | 3            | <5 - 14                              | <5                     | 7            | 6 - 500                    | 20       | 7            | BDL - 800                             | <20          |
| Hercury                                        | 3            | 0.21 - 0.42         | 0.23         | 3            | 0.17 - 0.42                          | 0.34                   |              |                            |          | 3            |                                       | BDI          |
| Nickel                                         | 3            | <5 <b>- 29</b>      | 7            | 3            | <5 <b>- 26</b>                       | 25                     | 7            | 1.5 - 200                  | 5        | 8            | 4 - 200                               | 18           |
| Selenium                                       | 3            | 11 - 35             | 20           | 3            | <5 - 28                              | 18                     |              |                            |          | 3            |                                       | BDI          |
| Silver                                         | 3            | <5 - 12             | <5           | 3            |                                      | <5                     | 6            | BDL - 40                   | 1.3      | 6            | 0.7 - 80                              | 3            |
| Thallium<br>Zinc                               | 3<br>3       | 45 43               | <5           | 3<br>3       | <5 - 13                              | <5                     | 1            | 15 4600                    | BDL      | 3            | BDL - 8                               | BDL          |
|                                                | _            | <5 - 42             | 5            |              | <5 - 26                              | <5                     | 6            | 15 ~ <600                  | 62       | 6            | 26 - 780                              | 248          |
| Phenol (total)                                 | 3            | <10 - <100          | 30           | 3            | <10 - <100                           | 50                     |              |                            |          |              |                                       |              |
| hthalates                                      |              |                     |              |              |                                      |                        |              |                            |          |              |                                       |              |
| Bis(2-ethylhexyl) phthalate                    | 1            |                     | 10           | 4            | 12 - 35                              | 31                     | 1            |                            | 21       | 5            | <10 - 36                              | 22           |
| Butyl benzyl phthalate<br>Di-n-butyl phthalate | 3            | <10 - 38            | 23           | 1<br>5       | 23 - 44                              | 10<br>26               | 4            | 30 - 40                    | 37       | 5            | <10 - 48                              | 10           |
| Diethyl phthalate                              | 3            | (10 - 30            | 23           | 2            | 10 - 11                              | 11                     | •            | 30 - 40                    | 3/       | •            | <10 - 48                              | 10           |
| Di-n-octyl phthalate                           |              |                     |              | í            | 10 - 11                              | 10                     |              |                            |          |              |                                       |              |
| Phenols                                        |              |                     |              | -            |                                      |                        |              |                            |          |              |                                       |              |
| 2,4-Dichlorophenol                             |              |                     |              |              |                                      |                        | 2            |                            | <25      |              |                                       |              |
| 2,4-Dinitrophenol                              |              |                     |              |              |                                      |                        | ì            |                            | <25      |              |                                       |              |
| Pentachlorophenol                              |              |                     |              |              |                                      |                        | 2            |                            | <25      |              |                                       |              |
| Phenol                                         | 4            | 5 - 15              | 10           | 4            | 5 - 18                               | 7                      | 3            | 7 - 16                     | 12       | 3            | 8 - 20                                | ε            |
| 2,4,6-Trichlorophenol                          | i            |                     | 28           | ī            |                                      | <25                    | 3            |                            | <25      | ì            |                                       | 35           |
| romatics                                       |              |                     |              |              |                                      |                        |              |                            |          | _            |                                       |              |
| Benzene                                        |              |                     |              |              |                                      |                        |              |                            |          | 1            |                                       | 45           |
| 1,2-Dichlorobenzene                            | 1            |                     | 18           | 2            | 10 - 30                              | 20                     | 3            | <10 - 18                   | <10      | 3            | <10 - 26                              | 20           |
| 1,3-Dichlorobenzene                            | ī            |                     | 18           | 2            | 10 - 30                              | 20                     | 3            | <10 - 18                   | <10      | 3            | <10 - 26                              | 20           |
| 1,4~Dichlorobenzene                            | 1            |                     | 18           | 2            | 10 - 30                              | 20                     | 3            | <10 - 18                   | <10      | 3            | <10 - 26                              | 20           |
| 1,2,4-Trichlorobenzene                         |              |                     |              | 1            |                                      | 10                     |              |                            |          |              |                                       |              |
| Polycyclic aromatic hydrocarbons               | ,            |                     |              |              |                                      |                        |              |                            |          |              |                                       |              |
| 2-Chloronaphthalene                            |              |                     |              | 1            |                                      | 10                     |              |                            |          |              |                                       |              |
| falogenated aliphatics                         |              |                     |              |              |                                      |                        |              |                            |          |              |                                       |              |
| 8romoform                                      | 1            |                     | <10          | 1            | 97 - 580                             | 340                    | 1            |                            | BDL      | 2            | 13 - 150                              | 82           |
| Chlofodibromomethane                           |              |                     |              |              |                                      |                        | 1            |                            | BDL      | 1            |                                       | 59           |
| l,2-Dichloroethane                             | 1            |                     | 72           | 1            |                                      | 44                     |              |                            |          |              |                                       |              |
| l,l-Dichloroethylene                           |              |                     |              | 1            |                                      | 16                     |              |                            |          |              |                                       |              |
| 1,2-Trans-dichloroethylene                     | _            |                     |              | 1            |                                      | 11                     |              |                            |          | _            |                                       |              |
| Methylene chloride                             | 1            |                     | 240          | 6            | 2,000 - 9,400                        |                        | 1            |                            | 74       | 6            | 65 - 9,400                            | <1,600       |
| Tetrachloroethylene                            |              |                     |              | 1            |                                      | 78                     |              |                            |          | •            | 12 24                                 |              |
| 1,1,1-Trichloroethane                          |              |                     |              | 1            |                                      | 12                     |              |                            |          | 2            | 13 - 26                               | 10           |

Note: Blanks indicate no data available.

<sup>&</sup>lt;sup>a</sup>Metals concentrations are screening data; verification results not available. Organics derived from verification data.

<sup>&</sup>lt;sup>b</sup>Cooling tower blowdown

TABLE 19-7. UTILITY BOILERS - RAW WASTEWATER POLLUTION CONCENTRATIONS [3, 4]

|                                                                               |                   | Sof          | tening <sup>a</sup> disch        | arge     | Io           | n exchange <sup>b</sup> di         | scharge  |      |
|-------------------------------------------------------------------------------|-------------------|--------------|----------------------------------|----------|--------------|------------------------------------|----------|------|
|                                                                               | Clarification     | Number       |                                  |          | Number       |                                    |          |      |
| Parameter                                                                     | discharge<br>Mean | of<br>plants | Range                            | Median   | of<br>plants | Range                              | Median   | Mean |
| Toxic pollutants, µg/L                                                        |                   |              |                                  |          |              |                                    |          |      |
| Antimony                                                                      |                   |              |                                  |          |              |                                    |          |      |
| Arsenic                                                                       |                   |              |                                  |          |              |                                    |          |      |
| Asbestos                                                                      |                   |              |                                  |          |              |                                    |          |      |
| Beryllium                                                                     |                   |              |                                  |          |              |                                    |          |      |
| Cadmium                                                                       |                   | •            | 00 110                           | 100      | -            | 20 - 200                           | 70       |      |
| Chromium                                                                      |                   | 3            | 90 - 110                         | 100      | 5<br>5       |                                    | 70<br>20 |      |
| Copper                                                                        |                   | 3<br>3       | 60 <b>-</b> 150<br>5 <b>-</b> 14 | 120<br>5 | 3            | 20 <b>-</b> 1,300<br><5 <b>-</b> 5 | 20<br>5  |      |
| Cyanide                                                                       |                   | 3            | 5 - 14                           | 5        | 3            | \ <b>5</b> - <b>5</b>              | 3        |      |
| Lead<br>Mercury                                                               |                   |              |                                  |          |              |                                    |          |      |
| Nickel                                                                        |                   | 3            | 70 - 250                         | 90       | 5            | 30 - 200                           | 30       |      |
| Selenium                                                                      |                   | 3            | 70 - 250                         | ,,,      | 9            | 30 200                             | 30       |      |
| Silver                                                                        |                   |              |                                  |          |              |                                    |          |      |
| Thallium                                                                      |                   |              |                                  |          |              |                                    |          |      |
| Zinc                                                                          |                   | 3            | 90 - 320                         | 120      | 4            | 20 - 210                           | 50       |      |
| Phthalates, µg/L                                                              |                   |              |                                  |          |              |                                    |          |      |
| Bis(2-ethylhexyl) phthalate                                                   |                   |              |                                  |          |              |                                    |          |      |
| Phenols, µg/L                                                                 |                   |              |                                  |          |              |                                    |          |      |
| 2-Chlorophenol<br>2,4-Dichlorophenol<br>Phenol                                |                   |              |                                  |          |              |                                    |          |      |
| Aromatics, µg/L                                                               |                   |              |                                  |          |              |                                    |          |      |
| Benzene<br>l,3-Dichlorobenzene<br>Ethylbenzene<br>Toluene                     |                   |              |                                  |          |              |                                    |          |      |
| Halogenated aliphatics, µg/L                                                  |                   |              |                                  |          |              |                                    |          |      |
| Chloroform<br>Methylene chloride                                              |                   |              |                                  |          |              |                                    |          |      |
| Nontoxic pollutants, µg/L                                                     |                   |              |                                  |          |              |                                    |          |      |
| Aluminum<br>Barium<br>Calcium<br>Iron<br>Magnesium<br>Manganese<br>Phosphorus | 350,000           | 3            | 440 - 10,00                      | 9,000    | 3            | 20 - 9,500                         | 1,000    |      |
| Potassium<br>Sodium<br>Tin                                                    |                   |              |                                  |          |              |                                    |          | 3,10 |

TABLE 19-7 (continued).

|                                             |                                           | Sc                     | oftening <sup>a</sup> dischar | ge     | Ion exchange <sup>b</sup> discharge |                |        |       |  |  |
|---------------------------------------------|-------------------------------------------|------------------------|-------------------------------|--------|-------------------------------------|----------------|--------|-------|--|--|
| Parameter                                   | Clarification<br><u>discharge</u><br>Mean | Number<br>of<br>plants | Range                         | Median | Number<br>of<br>plants              |                | Median | Mean  |  |  |
| Conventional parameters <sup>e</sup>        |                                           |                        |                               |        |                                     |                |        |       |  |  |
| Ammonia                                     |                                           |                        |                               |        |                                     |                |        | 46    |  |  |
| BOD <sub>5</sub>                            |                                           | 3                      | 1.8 - 48                      | 10     | 3                                   | 1.0 - 6.0      | 1.0    |       |  |  |
| Bromide                                     |                                           |                        |                               |        | 3                                   | 0.03 - 1.5     | 1.0    |       |  |  |
| Chloride                                    |                                           |                        |                               |        |                                     |                |        | 1,700 |  |  |
| COD<br>Flow <sup>h</sup>                    |                                           | 3                      | 37 - 560                      | 200    | 3                                   | 2.0 - 14       | 9.8    |       |  |  |
|                                             | 320                                       | 3                      | 7,500 - 17,000                | 16,000 | 4                                   | 4,300 - 23,000 | 8,200  |       |  |  |
| Fluoride<br>Oil and grease<br>pH<br>Phenols |                                           | 3                      | 1.0                           | 1.0    | 5                                   | 1.0 - 13       | 1.0    |       |  |  |
| Silica<br>Sulfate<br>TDS<br>TOC             |                                           | 3                      | 190 - 23,000                  | 1,000  | 3                                   | 0.16 - 4,000   | 170    | 2,100 |  |  |
| TSS                                         | 25,000                                    | 3                      | 40 - 9,400                    | 1,800  | 4                                   | 1.0 - 31       | 23     |       |  |  |

|                                                 |                        | Evaporation <sup>C</sup> di | ischarge    | Filt                   | ration discharg                   | <u>e<sup>u</sup> c</u>    | Other treatment-reverse osmosis discharge |                                  |  |
|-------------------------------------------------|------------------------|-----------------------------|-------------|------------------------|-----------------------------------|---------------------------|-------------------------------------------|----------------------------------|--|
| Parameter                                       | Number<br>of<br>plants | Range                       | Median Mean | Number<br>of<br>plants | Range Medi                        | Number<br>of<br>an plants |                                           | dian                             |  |
| Toxic pollutants, µg/L<br>Antimony              | ,                      |                             | •           | ļ                      | (<5,000)                          |                           |                                           | 0)<5,000                         |  |
| Arsenic f<br>Asbestos<br>Beryllium              |                        |                             |             | 1                      | (<13,000)<br>(0)<br>(<5,000)      | 0 1<br><5,000 1           | (0)                                       | 0)<5,000<br>0<br>0)<5,000        |  |
| Cadmium<br>Chromium                             | 2                      | 200 - 80<br>20 - 2,600      | 50          | 1                      | (<5,000)<br>(<5,000)              | 21,000 1                  | (<5,00                                    | 0)<5,000                         |  |
| Copper<br>Cyanide<br>Lead                       | 2                      | 6 - 28                      | 1,300<br>17 | 1 1                    | (<5,000)<br>(<20,000)<br>(<5,000) | 30,000 1                  | (20,00                                    | 0)30,000<br>0)30,000<br>0)<5,000 |  |
| Mercury<br>Nickel                               | 2                      |                             | 30          | 1                      | (0.390)<br>(<5,000)               | 390 1<br>28,000 1         | (53<br>(<5,00                             | 0) 550<br>0)<5,000               |  |
| Selenium<br>Silver<br>Thallium                  |                        |                             |             | 1 1                    | (20,000)<br>(<5,000)<br>(<5,000)  | <5,000 1                  | (9,00                                     | 0)58,000<br>0)<5,000<br>0)<5,000 |  |
| Zinc                                            | 2                      | 110 - 440                   | 280         | i                      | (<5,000)                          |                           |                                           | 0)14,000                         |  |
| Phthalates, µg/L<br>Bis(2-ethylhexyl) phthalate | 2                      |                             |             | 1                      | (1)                               | <1 1                      | (1                                        | ) <1                             |  |
| Phenols, µg/L                                   |                        |                             |             |                        |                                   |                           |                                           |                                  |  |
| 2-Chlorophenol<br>2,4-Dichlorophenol<br>Phenol  |                        |                             |             | 1                      | (<1)<br>(253)                     | 243<br>13 1               | (<1<br>(50                                |                                  |  |

TABLE 19-7 (continued).

|                                                                                  |                        | Evaporation <sup>C</sup> | discharge    |      | Filt         | ration | discharge  | _d                 | 08                     | r treatme<br>smosis di | nt-rever<br>scharge         | i <sup>se</sup>   |
|----------------------------------------------------------------------------------|------------------------|--------------------------|--------------|------|--------------|--------|------------|--------------------|------------------------|------------------------|-----------------------------|-------------------|
| Parameter                                                                        | Number<br>of<br>plants |                          | Median       | Mean | Number<br>of |        | Media      |                    | Number<br>of<br>plants | Range                  | Media                       | ın                |
| Aromatics, µg/L                                                                  |                        |                          |              |      |              |        |            |                    |                        |                        |                             |                   |
| Benzene<br>1,3-Dichlorobenzene<br>Ethylbenzene<br>Toluene                        |                        |                          |              |      | 1            |        | (<1)       | 150                | 1<br>1<br>1            |                        | (3)<br>(<1)<br>(<1)<br>(<1) | 2<br>1<br>3<br>46 |
| Halogenated aliphatics, $\mu g/L$                                                |                        |                          |              |      |              |        |            |                    |                        |                        |                             |                   |
| Chloroform<br>Methylene chloride                                                 |                        |                          |              |      | 1            |        | (3)<br>(3) | 5.2<br>1. <b>4</b> | 1                      |                        | (<1)<br>(1)                 | 23<br><1          |
| Nontoxic pollutants, µg/L                                                        |                        |                          |              |      |              |        |            |                    |                        |                        |                             |                   |
| Aluminum Barium Calcium Iron Magnesium Manganese Phosphorus Potassium Sodium Tin | 2                      | 220 - 380                | 300          |      |              |        |            |                    |                        |                        |                             |                   |
| Conventional parameters <sup>e</sup>                                             |                        |                          |              |      |              |        |            |                    |                        |                        |                             |                   |
| Ammonia<br>BOD <sub>5</sub><br>Bromide                                           | 2                      | 5.1 - 15                 | 10           |      |              |        |            |                    |                        |                        |                             |                   |
| Chloride<br>COD<br>Flow<br>Fluoride                                              | 2                      | 21 - 76                  | 48<br>41,000 | 190  |              |        |            |                    |                        |                        |                             |                   |
| Oil and grease<br>pH <sup>9</sup>                                                | 2                      | 1.0 - 1.9                | 1.5          |      |              |        |            |                    |                        |                        |                             |                   |
| Phenols<br>Silica                                                                |                        |                          |              |      | 1            |        | (50)       | 20                 | 1                      |                        | (10)                        | 20                |
| Sulfate<br>TDS<br>TOC                                                            | 2                      | 2,200 - 2,50             | 0 2,400      | 79   |              |        |            |                    |                        |                        |                             |                   |
| TSS                                                                              | 2                      | 15 - 93                  | 54           |      |              |        |            |                    |                        |                        |                             |                   |

Note: Blanks indicate no data available.

aLime softener blowdown.

<sup>&</sup>lt;sup>b</sup>Demineralizer regeneration.

<sup>&</sup>lt;sup>C</sup>Evaporator blowdown.

d<sub>Intake</sub> concentrations in parentheses.

eValues in mg/L except as noted.

fvalues in fibers/liter.

gValues in pH units.

 $h_{\text{Values in } m^3/d}$ .

concentration depending on boiler pressure. Blowdown from boilers treated with phosphate will contain hydroxide alkalinity while those treated with hydrazine will contain ammonia and, depending on boiler pressure, sulfite. Table 19-8 presents raw waste concentrations for boiler blowdown wastewater streams.

TABLE 19-8. BOILER OR STEAM GENERATOR BLOWDOWN - RAW WASTEWATER POLLUTION CONCENTRATIONS [4]

|                                                                       | Boiler                          | blowdown disc                                                                         | narge                                       |
|-----------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|
|                                                                       | Number<br>of                    |                                                                                       |                                             |
| <u>Parameter</u>                                                      | plants                          | Range                                                                                 | <u> Median</u>                              |
| Toxic pollutants, µg/L                                                |                                 |                                                                                       |                                             |
| Antimony<br>Arsenic<br>Asbestos <sup>a</sup><br>Beryllium<br>Cadmium  |                                 |                                                                                       |                                             |
| Chromium                                                              | 4                               |                                                                                       | 20                                          |
| Copper                                                                | 4<br>2                          | 20190                                                                                 | 40                                          |
| Cyanide<br>Lead                                                       | 2                               | 5 - 14                                                                                | 10                                          |
| Mercury<br>Nickel<br>Selenium<br>Silver<br>Thallium                   | 4                               |                                                                                       | 30                                          |
| Zinc                                                                  | 4                               | 10 - 50                                                                               | 20                                          |
| Conventional parameters                                               | s, mg/L                         |                                                                                       |                                             |
| BOD <sub>5</sub><br>COD<br>Iron<br>Oil and grease<br>pH<br>TDS<br>TSS | 2<br>2<br>4<br>2<br>4<br>2<br>4 | 11 - 12<br>2.0 - 157<br>0.03 - 1.4<br>1.0 - 15<br>9.0 - 12<br>120 - 1,410<br>2.7 - 31 | 11<br>80<br>0.06<br>7.9<br>10<br>760<br>7.6 |

Note: Blanks indicate no data available. a Values in fibers/liter.

bValues in pH units.

Date: 6/23/80

# II.19.2.4 Maintenance Cleaning Wastewater

Boiler tubes must be cleaned occasionally to remove accumulations of scale. Cleaning mixtures used for this purpose include alkaline chelating rinses, proprietary chelating rinses, organic solvents, acid cleaning mixtures, and alkaline mixtures with oxidizing agents for copper removal. Wastes from these cleaning operations will contain iron, copper, zinc, nickel, chromium, hardness, and phosphates. In addition to these constituents, wastes from alkaline cleaning mixtures will contain ammonium ions, oxidizing agents, and high alkalinity; wastes from acid cleaning mixtures will contain fluorides, high acidity, and organic compounds; wastes from alkaline chelating rinses will contain high alkalinity and organic compounds; and wastes from most proprietary processes will be alkaline and will contain organic and ammonium compounds. Pollutants observed in selected boiler tube wastewater streams are presented in Table 19-9.

Table 19-10 presents pollutant concentrations observed for boiler fireside and air preheater wastewater streams. No data were available to describe wastewater streams generated by stack, cooling tower basin, and small equipment cleaning.

### II.19.2.5 Ash Handling Wastewater

Ash handling is the conveyance of accumulated waste products to a disposal system. Table 19-11 presents pollutant concentrations observed in ash handling wastewater during a verification study of ash pond overflows.

#### II.19.2.6 Drainage Wastewaters

Rainfall can become a wastewater stream after running through coal piles, floor and yard drains, or ash piles. Table 19-12 presents data on coal pile runoff and floor and yard drains. Data on ash pile wastewater streams are not available.

# II.19.2.7 Air Pollution (SO<sub>2</sub>) Control Wastewater

Wastewater characteristics of streams from air pollution control devices will depend on the type of process used. Existing flue gas desulfurization (FGD) processes may be divided into two categories: nonregenerable (throwaway) and regenerable. Non-regenerable FGD processes include lime, limestone, lime/limestone combinations, and double alkaline systems. Magnesium oxide and Wellman-Lord are the regenerable processes. Tables 19-13 and 19-14 present pollutant concentrations for selected nonregenerable FGD wastewater streams. There are no wastewater or sludge streams associated with the Wellman-Lord process. No data are available to describe magnesium oxide wastewater streams.

Date: 6/23/80 II.19-18

TABLE 19-9. MAINTENANCE CLEANING-BOILER OR GENERATOR TUBE WASH SOLUTIONS-RAW WASTEWATER POLLUTANT CONCENTRATIONS [1]

| Ammoniated citric aci              | d discharge             |                        |           | Ammon i    | ated EDTA discharge   |           |
|------------------------------------|-------------------------|------------------------|-----------|------------|-----------------------|-----------|
|                                    | Number                  | <del></del>            |           | Number     |                       |           |
|                                    | of _                    |                        |           | of         |                       |           |
| Parameter                          | operations <sup>a</sup> | Range                  | Median    | operations | Range                 | Median    |
| oxic pollutants, µg/L <sup>b</sup> |                         |                        |           |            |                       |           |
| Antimony                           |                         |                        |           |            |                       |           |
|                                    |                         |                        |           |            |                       |           |
| Arsenic<br>Asbestos <sup>C</sup>   |                         |                        |           |            |                       |           |
| Beryllium                          |                         |                        |           |            |                       |           |
| Cadmium                            |                         |                        |           |            |                       |           |
| Chromium                           |                         |                        |           | 3          | 10,000 - 27,000       | 12,000    |
| Copper                             | 4                       | 8,000 - 220,000        | 20,000    | 7          | 170 - 12,000,000      | 120,000   |
| Cyanide                            |                         |                        |           |            |                       |           |
| Lead                               |                         |                        |           |            |                       |           |
| Mercury                            |                         |                        |           |            |                       |           |
| Nickel                             | 1                       |                        | 130,000   | 3          | 12,000 - 140,000      |           |
| Selenium                           |                         |                        |           |            |                       |           |
| Silver                             |                         |                        |           |            |                       |           |
| Thallium                           |                         |                        |           |            |                       |           |
| Zinc                               | 1                       |                        | 390,000   | 3          | 79,000 - 140,000      | 120,000   |
| Nontoxic pollutants, $\mu g/L$     |                         |                        |           |            |                       |           |
| Aluminum                           |                         |                        |           | 1          |                       | 31,000    |
| Barium                             |                         |                        |           |            |                       |           |
| Calcium                            |                         |                        |           | 2          | 21,000 - 45,000       | 33,000    |
| Iron                               | 3                       | 8,300,000 - 11,000,000 | 9,800,000 | 7          | 2,300,000 - 8,300,000 | 6,900,000 |
| Manganese                          |                         |                        |           | 2          | 50,000 - 73,000       | 61,000    |
| Magnesium                          | _                       |                        |           | 2          | 11,000 - 21,000       | 16,000    |
| Phosphorus                         | 1                       |                        | 200,000   | 1          |                       | 260,000   |
| Potassium                          |                         |                        |           |            |                       |           |
| Sodium                             |                         |                        |           | 1          |                       | 370,000   |
| Tin<br>Conventional parameters, mo | ı/I. <sup>b</sup>       |                        |           |            |                       |           |
| pH                                 | <i>,,</i> –             |                        |           | 7          | 8.8 - 10              | 9.2       |
| TDS                                |                         |                        |           | 2          | 60,000 - 74,000       | 67,000    |
| TSS                                |                         |                        |           | 1          | 60,000 - 74,000       | 24        |
| BOD <sub>5</sub>                   |                         |                        |           | 1          |                       | 2.        |
| COD                                |                         |                        |           |            |                       |           |
| TOC                                |                         |                        |           |            |                       |           |
| Oil and grease                     |                         |                        |           | 1          |                       | 4]        |
| Phenols                            |                         |                        |           | •          |                       | **        |
| NH <sub>3</sub> -N                 |                         |                        |           | 1          |                       | 5,200     |
| Org-N                              |                         |                        |           | •          |                       | 3,200     |
| NO2+NO3-N                          |                         |                        |           |            |                       |           |
| Silica                             | 1                       |                        | 40        | 1          |                       | 94        |
| Bromide                            | •                       |                        | 40        | •          |                       | ,         |
| Chloride                           |                         |                        |           |            |                       |           |
| Fluoride                           |                         |                        |           |            |                       |           |
| Sulfate                            |                         |                        |           |            |                       |           |

TABLE 19-9 (continued)

|                                            |                         |                      |         | Ну         | drochloric acid without           |                 |
|--------------------------------------------|-------------------------|----------------------|---------|------------|-----------------------------------|-----------------|
|                                            |                         | sodium bromate dis   | charge  |            | pper complexer discharge          |                 |
|                                            | Number                  |                      |         | Number     |                                   |                 |
|                                            | of a                    | _                    |         | of.        |                                   |                 |
| Parameter                                  | operations <sup>a</sup> | Range                | Median  | operations | Range                             | <b>Hedian</b>   |
| Γοχις pollutants, μg/L <sup>b</sup>        |                         |                      |         |            |                                   |                 |
| Antimony                                   |                         |                      |         |            |                                   |                 |
| Arsenic                                    | 3                       | <5 - 310,000         | 48      | 6          | 8 - 60                            | 33              |
| Asbestos <sup>c</sup>                      |                         |                      |         |            |                                   |                 |
| Beryllium                                  | 2                       | 10                   | <10     | 4          | <10                               | <10             |
| Cadmium                                    | 3                       | <1 - <20             | <1      | 6          | <1 - 100                          | 2)              |
| Chromium                                   | 4                       | ND - <50             | <5      | 6          | <5 - 8,800                        | 1,300           |
| Copper                                     | 6                       | 100,000 - 790,000    |         | 7          | 690 - 47,000                      | 13,000          |
| Cyanide                                    |                         |                      |         |            |                                   |                 |
| Lead                                       | 3                       | <10 - 100            | <10     | 5          | <10 - 5,200                       | 860             |
| Mercury                                    | 3                       | <.02 - 15,000        | < .02   | 4          | <2                                | <2              |
| Nickel                                     | 5                       | ND - 260,000         | 520     | 7          | 770 - 300,000                     | 160,000         |
| Selenium                                   | 3                       | <2 - 24.000          | <2      | 4          | <2 - <4                           | < 2             |
| Silver                                     | 2                       | <10 - 20             | 20      | 4          | 20 - 70                           | 30              |
| Thallium                                   | _                       | <u>-</u>             |         | -          |                                   |                 |
| Zinc                                       | 5                       | 0.050 - 1,000        | 500     | 7          | 940 - 170,000                     | 20,000          |
| Nontoxic pollutants, µg/L                  |                         |                      |         |            |                                   |                 |
| Aluminum                                   | 2                       | 200                  | <200    | 4          | 6,500 - 8,200                     | 6,800           |
| Barium                                     | 2                       | 100                  | <100    | 4          | <100 - 400                        | 200             |
| Calcium                                    | 3                       | ND -3,000            | 400     | 6          | 16,000 - 74,000                   | 59,000          |
| Iron                                       | 5                       | ND - 4,900           | 1,700   | 7          | 1,100,000 - 4,200,000             | 2,800,000       |
| Manganese                                  | 3                       | 10 - 40              | 30      |            | 6,900 - 29,000                    | 21,000          |
| Magnesium                                  | 3                       | ND - 2,900           | 670     | 4          | 5,700 - 8,800                     | 7,600           |
| Phosphorus                                 | 2                       | 10,000 - 30,000      | 20.000  | 6          | 1,200 - 50,000                    | 40,000          |
| Potassium                                  | 2                       | 70,000 - 220,000     | 150,000 | 4          | 1,400 - 2,300                     | 1,700           |
| Sodium                                     | 3                       | 3,700 - 59,000       | 15,000  | 4          |                                   |                 |
| Tin                                        | 2                       | <1,000               | 13,000  | 4          | 31,000 - 74,000<br><1,000 - 7,300 | 45,000<br>1,900 |
|                                            |                         | 1,000                |         | •          | (1,000 - 7,300                    | 1,500           |
| Conventional parameters, mg/L <sup>t</sup> |                         | 10 11                |         |            |                                   |                 |
| pH                                         | 2                       | 10 - 11              | 10      |            | 0.5 - 3.3                         | 0.7             |
| TDS                                        | 3                       | 340 - 1, <b>4</b> 00 | 1,000   |            |                                   |                 |
| TSS                                        | 3                       | 8 - 77               | 71      | 6          | 8 - 120                           | 34              |
| BOD <sub>5</sub>                           |                         |                      |         |            |                                   |                 |
| COD                                        |                         |                      |         | 6          | 1,200 - 9,900                     | 1,500           |
| TOC                                        | 2                       | 24 - 120             | 72      | -          | 90 - 4,600                        | 230             |
| Oil and grease                             | _                       |                      |         | 6          | <5 <b>- 2</b> 3                   | 16              |
| Phenols                                    | 2                       | <5                   | <5      |            | 0.020 - 0.070                     | 0.043           |
| NH <sub>3</sub> -N                         | _                       |                      |         | 6          | 80 - 330                          | 190             |
| Org-N                                      | 2                       | 700 - 2,000          | 1,000   | -          | 0.06 - 870                        | 108             |
| NO <sub>2</sub> +NO <sub>3</sub> -N        | 2                       | <10 - 40             | 25      |            | <0.01 - 0.07                      | <0.03           |
| Silica                                     | 2                       | 0.04 - 0.51          | 0.27    |            | 19 - 240                          | 66              |
| Bromide                                    | 2                       | 7.2 - 14             | 11      |            |                                   |                 |
| Chloride                                   | 2                       | <5 <b>-</b> 52       | 28      |            |                                   |                 |
| Fluoride                                   | 1                       |                      | 60      |            |                                   |                 |
| Sulfate                                    | 2                       | 1.5 - 6.1            | 3.8     | 4          | <1 - 10                           | <1              |

TABLE 19-9 (continued)

|                                     |                  | Mydrochloric acid with<br>oper complexer discharge |           |                  | Hydroxyacetic/formic<br>acid discharge |           |
|-------------------------------------|------------------|----------------------------------------------------|-----------|------------------|----------------------------------------|-----------|
|                                     | Number           |                                                    |           | Number           |                                        |           |
| Parameter                           | of<br>operations | Range                                              | Median    | of<br>operations | Range                                  | Median    |
| Toxic pollutants, μg/L <sup>b</sup> |                  |                                                    |           |                  |                                        |           |
| Antimony                            |                  |                                                    |           |                  |                                        |           |
| <del>.</del>                        |                  |                                                    |           |                  |                                        |           |
| Arsenic<br>Asbestos                 |                  |                                                    |           |                  |                                        |           |
| Beryllium                           |                  |                                                    |           |                  |                                        |           |
| Cadmium                             |                  |                                                    |           |                  |                                        |           |
| Chromium                            | 1                |                                                    | 17,000    |                  |                                        |           |
| Copper                              | 6                | 20,000 - 960,000                                   | 370,000   | 1                |                                        | 2,000     |
| Cyanide                             |                  |                                                    |           |                  |                                        |           |
| Lead                                |                  |                                                    |           |                  |                                        |           |
| Mercury                             |                  |                                                    |           |                  |                                        |           |
| Nickel                              | 5                | 3,000 - 500,000                                    | 270,000   | 1                |                                        | 5,00      |
| Selenium                            |                  |                                                    |           |                  |                                        |           |
| Silver                              |                  |                                                    |           |                  |                                        |           |
| Thallium                            |                  |                                                    |           |                  |                                        |           |
| Zinc                                | 4                | 10,000 - 840,000                                   | 410,000   | 1                |                                        | 8,00      |
| Nontoxic pollutants, µg/L           |                  |                                                    |           |                  |                                        |           |
| Aluminum                            |                  |                                                    |           |                  |                                        |           |
| Barium                              |                  |                                                    |           |                  |                                        |           |
| Calcium                             | 2                | 67,000 - 980,000                                   | 520,000   |                  |                                        |           |
| Iron                                | 6                | 1,900,000 - 6,500,000                              | 3,900,000 | 4                | 2,900,00 - 8,800,00                    | 4,600,000 |
| Manganese                           | 1                |                                                    | 8,200     |                  |                                        |           |
| Magnesium                           |                  |                                                    |           |                  |                                        |           |
| Phosphorus                          | 2                | 100,000 - 300,000                                  | 200,000   |                  |                                        |           |
| Potassium                           |                  |                                                    |           |                  |                                        |           |
| Sodium                              | 1                |                                                    | 9,200     |                  |                                        |           |
| Tin                                 | h                |                                                    |           |                  |                                        |           |
| Conventional parameters, mg/L       |                  |                                                    |           |                  |                                        |           |
| b <sub>Hq</sub>                     |                  |                                                    |           |                  |                                        |           |
| TDS                                 | 1                |                                                    | 2,400     |                  |                                        |           |
| TSS                                 | •                |                                                    | 2,400     |                  |                                        |           |
| BOD <sub>5</sub>                    |                  |                                                    |           |                  |                                        |           |
| COD                                 |                  |                                                    |           |                  |                                        |           |
| TOC                                 |                  |                                                    |           |                  |                                        |           |
| Oil and grease                      |                  |                                                    |           |                  |                                        |           |
| Phenols                             |                  |                                                    |           |                  |                                        |           |
| NH3-N                               |                  |                                                    |           |                  |                                        |           |
| Org-N                               |                  |                                                    |           |                  |                                        |           |
| NO2+NO3-N                           |                  |                                                    |           |                  |                                        |           |
| Silica                              | 2                | 30 - 280                                           | 160       |                  |                                        |           |
| Bromide                             | -                | 5- 25-                                             | 200       |                  |                                        |           |
| Chloride                            |                  |                                                    |           |                  |                                        |           |
| Fluoride                            |                  |                                                    |           |                  |                                        |           |
| Sulfate                             |                  |                                                    |           |                  |                                        |           |

Note: Blanks indicate no data available

 $<sup>^{\</sup>rm a}$ Number of independent boiler chemical cleaning operations.

bExcept as noted.

CValues in Fibers/liter.

dValues in pHunits.

TABLE 19-10. MAINTENANCE CLEANING - BOILER FIRESIDE AND AIR PREHEATER [1]

|                                      | ******     | Boiler fire | side was | h <sup>a</sup> |            |                     |          | Air p      | eheater b |
|--------------------------------------|------------|-------------|----------|----------------|------------|---------------------|----------|------------|-----------|
|                                      |            |             | Hean     | loading,       | Air pr     | reheater wash water | <u> </u> | and fires: |           |
|                                      | Concent    |             |          | leaning        | Number of  | Concentrat          |          | concent    |           |
| Parameter                            | Maximum    | Mean        | (1b/c    | leaning)       | operations | Range               | Median   | Intake     | Discharg  |
| Toxic pollutants, µg/L               |            |             |          |                |            |                     |          |            |           |
| Antimony                             |            |             |          |                |            |                     |          |            |           |
| Arsenic                              |            |             |          |                |            |                     |          |            |           |
| Beryllium                            |            |             |          |                |            |                     |          | 6          |           |
| Cadmium                              |            |             |          |                |            |                     |          | 6          | 20        |
| Chromium (total)                     | 15,000     | 1,500       | 6.8      | (15)           | 3          | 1,000 - 1,500       | 1,300    | ) 10       | 200       |
| Chromium <sup>*6</sup>               | <1,000     | 20          | 0.09     | (0.2)          |            |                     |          |            |           |
| Copper                               | 250,000    | 6,000       | 27       | (60)           |            |                     |          | 7          | 200       |
| Cyanide                              |            |             |          |                |            |                     |          |            |           |
| Lead                                 |            |             |          |                |            |                     |          | 03         | 600       |
| Mercury                              |            |             |          |                |            |                     |          |            |           |
| Nickel                               | 900,000    | 70,000      | 317      | (700)          | 3          | 18,000 - 25,000     | 21,000   | ) BDL      | 100       |
| Selenium                             |            |             |          |                |            |                     |          |            |           |
| Silver                               |            |             |          |                |            |                     |          |            |           |
| Thallium                             |            |             |          |                |            |                     |          |            |           |
| Zinc                                 | 40,000     | 4,000       | 18       | (40)           | 3          | 1,100 - 1,400       | 1,200    | ) BDL      | 900       |
| Nontoxic pollutants, µg/L            |            |             |          |                |            |                     |          |            |           |
| Aluminum                             | 21,000     | 2,000       | 9        | (20)           |            |                     |          |            |           |
| Calcium                              | ,          | _,          | _        | (,             | 3          | 29,000 - 38,000     | 34,000   | )          |           |
| Iron                                 | 14,000,000 | 2,500,000   | 11.000   | (25,000)       | _          | ,                   |          |            |           |
| Magnesium                            | ,,         | _,          | ,        | (==,===,       | 3          | 260,000 - 330,000   | 330,000  | )          |           |
| Manganese                            | 40,000     | 3,500       | 16       | (35)           | •          | 200,000             | 550,550  |            |           |
| Sodium                               | 10,000     | 2,000       |          | (30)           | 3          | 360,000 - 380,000   | 370,000  | )          |           |
| Conventional parameters, mo          | g/L        |             |          |                |            |                     |          |            |           |
| рН <sup>С</sup>                      |            |             |          |                | 3          | 3.2 - 3.5           | 3.5      |            |           |
| TDS                                  | 50,000     | 5,000       | 23,000   | (50,000)       | 3          | 606 - 750           | 730      |            |           |
| TSS                                  | 25,000     | 250         | 1,100    | (2,500)        | 3          | 29 - 83             | 34       |            |           |
| COD                                  | 23,000     | 230         | 1,100    | (2,300)        | 3          | 50 - 70             | 60       |            |           |
| Chloride                             |            |             |          |                | 3          | 17 - 27             | 19       |            |           |
| Sulfate                              | 10,000     | 1,000       | 4,500    | (10,000)       | 3          | 1,900 - 2,700       | 2,300    |            |           |
| Oil and grease                       | BDL        | BDL.        | •        | (10,000)<br>DL | 3<br>3     | 0.25 - 8.5          | 0.25     |            |           |
|                                      | BDL        | PDL         | В        | UL.            | 3          | 1,400 - 1,600       | 1,500    |            |           |
| Total hardness, as CaCO <sub>3</sub> |            |             |          |                | 3          | 1,400 - 1,600       | 1,500    | ,          |           |

Note: Blanks indicate data not available.

<sup>&</sup>lt;sup>a</sup>Data from one plant.

b Verification data.

 $<sup>^{\</sup>rm C}{
m Values}$  in pH units.

TABLE 19-11. ASH HANDLING - INTAKE, INFLUENT, AND EFFLUENT POLLUTANT CONCENTRATIONS [1]

|                                        |        |            |        |        | Bottom Asha,b     |          |        |             |            |
|----------------------------------------|--------|------------|--------|--------|-------------------|----------|--------|-------------|------------|
|                                        |        | Influent   |        |        | Effluent          |          |        | Intake      |            |
|                                        | Number |            |        | Number |                   |          | Number |             |            |
|                                        | of     |            |        | of     |                   |          | of     |             |            |
| Pollutant                              | plants | Range      | Median | plants | Range             | Median   | plants | Range       | Mediar     |
| Metals,μq/L                            |        |            |        |        |                   |          |        |             |            |
| Antimony                               |        |            |        | 3      | 5 - 7             | 6        | 3      | 3 - 7       | 4          |
|                                        |        |            |        | 3      | BDL - 74          | 9        | 2      | BDL - 3     | _          |
| Arsenic<br>Asbestos                    |        |            |        |        |                   |          |        |             |            |
| Beryllium                              | 6      | 2 - 30     | 6      | 5      | BDL - 2.5         | <1.0     | 2      | BDL - <1    |            |
| Cadmium                                | 6      | 8 - 100    | 45     | 5      | BDL - 10          | 2        | 4      | BDL - 40    | 2          |
| Chromium                               | 6      | 60 - 900   | 200    | 8      | BDL - 1,000       | 9        | 6      | BDL - 2,000 | g          |
| Copper                                 | 6      | 50 - 200   | 100    | 8      | 13 - 80           | 26       | 7      | <6 - 700    | 16         |
| Cyanide                                |        |            |        | 8      | BDL - 22          | <20      | 2      | 4 - 5       | 5          |
| Lead                                   | 6      | 50 - 1,000 | 200    | 8      | BDL - 30          | 13       | 4      | 9 - 20      | 13         |
| Mercury                                |        | •          |        | 6      | BDL ~ 1.5         | <0.5     | 1      |             | <0.5       |
| Nickel                                 | 6      | 20 - 500   | 95     | 8      | 2.5 - <b>49</b> 0 | 14       | 8      | BDL - 1,000 | 9          |
| Selenium                               |        |            |        | 3      | 3 - 42            | 8        | 3      | BDL - 2     | 2          |
| Silver                                 | 3      | 2 - 20     | 8      | 4      | 0.5 - 6           | 3.3      | 4      | BDL - 1.6   | 1.2        |
| Thallium                               |        |            |        | 3      | BDL - 9           | BDL      | 1      |             | BDI        |
| Zinc                                   | 6      | 100 - 900  | 500    | 8      | BDL - 300         | <60      | 6      | 15 - 70     | 57         |
| Phthalates, µg/L                       |        |            |        |        |                   |          |        |             |            |
| Bis(2-ethylhexyl) phthalate            |        |            |        | 6      | 21 - 309          | 22       | 2      | <10 - 21    | 16         |
| Butyl benzyl phthalate                 |        |            |        | 1      |                   | 10       | 1      |             | <10        |
| Di-n-butyl phthalate                   | 1      |            | 65     | 3      | 31 - 46           | 36       | 4      | <10 - 33    | <10        |
| Diethyl phthalate                      |        |            |        |        |                   |          | 1      |             | <10        |
| Di-n-octyl phthalate                   |        |            |        |        |                   |          | ī      |             | <10        |
| Phenols, µg/L                          |        |            |        |        |                   |          |        |             |            |
| 2.4-Dichlorophenol                     |        |            |        | 1      |                   | 83       | 3      |             | <25        |
| 2,4-Dinitrophenol                      |        |            |        | ī      |                   | 50       | 3      |             | <25        |
| Pentachlorophenol                      |        |            |        | ī      |                   | 51       | -      |             |            |
| Phenol                                 |        |            |        | 5      | 6 - 40            | 14       | 5      | 6 - 36      | 12         |
| 2,4,6-Trichlorophenol                  |        |            |        | _      |                   |          | 2      | <25 · 28    | 27         |
| Aromatics, µg/L                        |        |            |        |        |                   |          |        |             |            |
| 1,2-Dichlorobenzene                    |        |            |        | 2      | 64 - 65           |          | 3      |             | <b>~10</b> |
| 1,3-Dichlorobenzene                    | 1      |            | 35     | 2      | 64 - 65           | 65<br>65 |        |             | <10        |
| 1,4-Dichlorobenzene                    | 1      |            | 33     | 2      | 64 - 65           | 65<br>65 | 3      |             | <10        |
| 1,2,4-Trichlorobenzene                 |        |            |        | 2      | 64 - 65           | 65       | 3<br>1 |             | <10<br><10 |
| Polycyclic aromatic hydrocarbons, µg/L |        |            |        |        |                   |          |        |             |            |
| Acenaphthylene                         | 1      |            | 16     | _      |                   |          | 1      |             | <10        |
| 2-Chloronaphthalene                    |        |            |        | 1      |                   | 52       |        |             |            |
| Halogenated aliphatics, µg/L           |        |            |        |        |                   |          |        |             |            |
| l,2-Dichloroethane                     |        |            |        | 1      |                   | 27       |        |             |            |
| Methylene chloride                     | 1      |            | 5,400  | 6      | 300 - 9,400       | >1,800   | 1      |             | 48         |

TABLE 19-11 (continued).

|                                        |        |                  |         |        | Fly Ash <sup>a</sup> |        |              |            |            |
|----------------------------------------|--------|------------------|---------|--------|----------------------|--------|--------------|------------|------------|
|                                        |        | Influent         |         |        | Effluent             |        |              | Intake     |            |
|                                        | Number |                  |         | Number |                      |        | Number       |            |            |
| B 11                                   | of     |                  | M- M    | of     | Dan                  | Median | of<br>plants | Damma      | Median     |
| Pollutant                              | plants | Range            | Median  | plants | Range                | nedian | prants       | Range      | nedian     |
| Metals <sup>C</sup>                    |        |                  |         |        |                      |        |              |            |            |
| Antimony                               |        |                  |         |        |                      |        |              |            |            |
| Arsenic                                |        |                  |         |        |                      |        |              |            |            |
| Asbestos                               |        |                  |         |        |                      |        |              |            |            |
| Beryllium                              | 2      | 30 <b>- 4</b> 00 | 215     |        |                      |        |              |            |            |
| Cadmium                                | 2      | 80 - 200         | 140     |        |                      | 90     | 1            |            | <          |
| Chromium                               | 2      | 400 - 2,00       |         |        | 9 - 49               | 29     | 2            | 12 - 2,000 | 1,00       |
| Copper                                 | 2      | 400 - 2,00       | 0 1,200 | 2      | 12 - 19              | 16     | 2            | 13 - 90    | 5          |
| Cyanide                                |        |                  |         |        |                      |        |              |            |            |
| Lead                                   | 2      |                  | 4,000   |        | 23 - 70              | 47     | 1            |            | 1          |
| Mercury                                |        |                  |         | 2      |                      | <0.5   | _            |            |            |
| Nickel                                 | 2      | 400 - 2,00       | 0 1,200 | 2      | 32 - 75              | 54     | 2            | <5 - 1,000 | 52         |
| Selenium                               | _      |                  |         |        |                      |        |              |            |            |
| Silver                                 | 2      | 10 - 100         | 55      | •      |                      |        |              |            |            |
| Thallium                               | _      |                  |         |        |                      |        | _            |            | <60        |
| Zinc                                   | 2      | 8,000 - 10,0     | 9,000   | 2      | <60 - 1,200          | 630    | 2            |            | <b>160</b> |
| Phthalates, µg/L                       |        |                  |         |        |                      |        |              |            |            |
| Bis(2-ethylhexyl) phthalate            |        |                  |         | 2      | 17 - 25              | 21     |              |            |            |
| Butyl benzyl phthalate                 |        |                  |         |        |                      |        |              |            |            |
| Di-n-butyl phthalate                   | 1      |                  | 46      | 2      | 7 - 48               | 28     | 2            | <10 - 42   | 26         |
| Diethyl phthalate                      |        |                  |         |        |                      |        |              |            |            |
| Di-n-octyl phthalate                   |        |                  |         |        |                      |        |              |            |            |
| Phenols, µg/L                          |        |                  |         |        |                      |        |              |            |            |
| 2,4-Dichlorophenol                     |        |                  |         |        |                      |        |              |            |            |
| 2,4-Dinitrophenol                      |        |                  |         |        |                      |        |              |            |            |
| Pentachlorophenol                      |        |                  |         |        |                      |        |              |            |            |
| Phenol                                 |        |                  |         | 1      |                      | 35     | 1            |            | 38         |
| 2,4,6-Trichlorophenol                  |        |                  |         |        |                      |        |              |            |            |
| Aromatics, µg/L                        |        |                  |         |        |                      |        |              |            |            |
| 1,2-Dichlorobenzene                    |        |                  |         | 1      |                      | 41     | 1            |            | <10        |
| 1,3-Dichlorobenzene                    |        |                  |         | ī      |                      | 41     | ī            |            | <10        |
| 1,4-Dichlorobenzene                    |        |                  |         | ī      |                      | 41     | ī            |            | <10        |
| 1,2,4-Trichlorobenzene                 |        |                  |         | _      |                      |        | -            |            |            |
| Polycyclic aromatic hydrocarbons, µg/L |        |                  |         |        |                      |        |              |            |            |
| Acenaphthylene                         |        |                  |         |        |                      |        |              |            |            |
| 2-Chloronaphthalene                    |        |                  |         |        |                      |        |              |            |            |
| Halogenated aliphatics, µg/L           |        |                  |         |        |                      |        |              |            |            |
| 1,2-Dichloroethane                     |        |                  |         |        |                      |        |              |            |            |
| Methylene chloride                     |        |                  |         | 2      | >140 - >9,400        | >4 800 |              |            |            |

Note: Blanks indicate no data available.

<sup>&</sup>lt;sup>a</sup>Verification data.

bCoal-fueled plants only.

Cvalues in fibers/liter.

TABLE 19-12. DRAINAGE - RAW WASTEWATER POLLUTION CONCENTRATIONS [2]

|                                     |              |                      |           |              |    |             | and yar | d drains     |               |       |
|-------------------------------------|--------------|----------------------|-----------|--------------|----|-------------|---------|--------------|---------------|-------|
|                                     | Coal         | pile drainage discha | rge       |              | Di | scharge     |         |              | Intake        |       |
|                                     | Number       |                      |           | Number       |    |             |         | Number       |               |       |
| Parameter                           | of<br>plants | Range                | Median    | of<br>plants |    | Range       | Median  | of<br>plants | Range         | Media |
|                                     |              |                      |           |              |    |             |         |              |               |       |
| Toxic pollutants, µg/L <sup>b</sup> |              |                      |           |              |    |             |         |              |               |       |
| Antimony                            |              |                      |           |              |    |             |         |              |               |       |
| Arsenic<br>Asbestos                 |              |                      |           |              |    |             |         |              |               |       |
|                                     |              |                      |           | 4            |    |             |         |              |               |       |
| Beryllium                           | (1)          |                      |           | (4)          |    |             |         |              |               |       |
| Cadmium                             | (1)          |                      |           | (10)         | _  |             |         |              |               | _     |
| Chromium                            | 6 (1)        |                      | 1,800     | (200)        | 1  |             | 20      |              |               | 2     |
| Copper                              | 4 (1)        | 1,600 - 3,400        | 1,700     | (10)         |    |             |         | 1            |               | 5     |
| Cyanide                             |              |                      |           |              |    |             |         |              |               |       |
| Lead                                | (1)          |                      |           | (900)        |    |             |         |              |               |       |
| Mercury                             |              |                      |           |              |    |             |         |              |               |       |
| Nickel                              |              |                      |           |              |    |             |         |              |               |       |
| Selenium                            |              |                      |           |              |    |             |         |              |               |       |
| Silver                              |              |                      |           |              |    |             |         |              |               |       |
| Thallium                            |              |                      |           | 4            |    |             |         |              |               |       |
| Zinc                                | 7 (1)        | 6 - 23,000           | 1,600     | (1,000)      | 1  |             | 10      | 3            | 4 - 10        |       |
| Nontoxic pollutants, mg/L           |              |                      |           |              |    |             |         |              |               |       |
| Aluminum                            | 2            | 830 - 1,200          |           |              |    |             |         |              |               |       |
| Barium                              |              |                      |           |              |    |             |         |              |               |       |
| Calcium                             |              |                      |           |              |    |             |         |              |               |       |
| Iron                                | 9            | 60 - 93,000,000      | 900       |              |    |             |         | 1            |               | 4     |
| Manganese                           |              |                      |           |              |    |             |         |              |               | 3     |
| Magnesium                           | 2            | 89,000 - 170,000     |           |              |    |             |         | 3            |               | 1,00  |
| Phosphorus                          |              |                      |           |              |    |             |         |              |               |       |
| Potassium                           |              |                      |           |              |    |             |         |              |               |       |
| Sodium                              | 3            | 160,000 - 1,300,000  | 1,300,000 |              |    |             |         | 3            | 4,000 - 5,000 | 4,00  |
| Tin                                 |              |                      |           |              |    |             |         |              |               |       |
| Conventional parameters             |              |                      |           |              |    |             |         |              |               |       |
| <sub>Hq</sub>                       | 9            | 2.1 - 7.8            | 3         |              | 3  | Low - Neutr | -1      |              |               |       |
| TDS                                 | 7            | 250 - 44,000         | 5,800     |              | 3  | 75 - 180    | 180     | ) 3          | 70 - 180      | 18    |
| TSS                                 | 7            | 22 - 3,300           | 610       |              | 3  | 0 - 5       | 180     |              | 0 - 5         | 10    |
| BOD <sub>5</sub>                    | 4            | 0 - 10               | 1.5       |              | 3  | 2 - 4       | 4       |              | 2 - 4         |       |
| COD                                 | 5            | 85 - 1,100           | 1,100     |              | 3  | 2 - 4       | 4       | -            | 2 - 4         |       |
| Bromide                             | 3            | 85 - 1,100           | 1,100     |              | 3  | 2 - 4       | 9       | , ,          | 2 - 4         |       |
| Chloride                            | 4            | 3.6 - 480            | 13        |              | 3  | 8 - 10      | 10      | 3            | 8 - 10        | 1     |
| Fluoride                            | •            | 3.6 - 460            | 13        |              | 3  | 8 - 10      | 10      | , ,          | 8 - 10        | 1     |
| Sulfate                             | 8            | 130 - 22,000         | 3,046     |              | 1  |             | 1.3     | 3            | 0.5 - 1.3     | 0.    |
| Ammonia                             | 5            | 0 - 1.8              | 0.35      |              | 3  | 0.01 - 0.07 | 0.07    |              | 0.01 - 0.07   | 0.0   |
| Nitrate                             | 5            | 0.3 - 2.3            | 1.8       |              | 3  | 0.5 - 2     | 0.07    |              | 0.5 - 2.1     | 0.0   |
| Alkalinity, as CaCO                 | -            |                      |           |              | -  |             |         | _            |               |       |
|                                     | 8            | 0 - 82               | 10.2      |              | 3  | 14 - 35     | 35      | 3            | 14 - 35       | 3     |
| Acidity, as CaCO3                   | 5            | 8.7 - 27,000         | 10.3      |              |    |             |         | _            |               | _     |
| Total hardness                      | 4            | 130 - 1,900          | 620       |              |    |             | _       | 3            | 7 - 29        | 2     |
| Oil and grease                      |              |                      |           |              | 1  |             | 5       |              | 1 - 4         |       |
| Phenols                             |              |                      |           |              | 1  |             | 0.001   |              |               |       |
| Flov                                |              |                      |           |              | 3  | 5.5 - 14    | 5.5     | •            |               |       |

<sup>&</sup>lt;sup>a</sup>Verification data in parentheses. bExcept as noted.

Note: Blanks indicate no data available.

CValues in fibers/liter.

dvalues in pH units.

eValues in m3/d.

### II.19.2.8 Miscellaneous Waste Streams

The amount of sanitary wastewater depends on the number of people at the plant, which depends on the size, age, and type of plant. Such water is very similar to municipal wastewater except that it does not normally contain laundry or kitchen wastes. Table 19-15 presents estimated pollutant concentrations for sanitary wastewater streams on a per capita basis.

Wastewater from laboratories varies depending on the use of the facilities and type of power plant.

Characteristics of wastewater from backwash of the intake screen depend on the debris in the source water.

Closed cooling water systems have blowdown with a 1 mg/L to 2 mg/L settleable solids content.

Low level radioactive wastewaters contain boron. The concentration and flow discharged depends on the type of water system at the reactor.

Construction activity will generate wastewaters whose types and amounts depend on the size and nature of the activity. Table 19-16 presents pollutant concentrations associated with construction activity at a number of selected sites.

# II.19.3 PLANT SPECIFIC DESCRIPTION [1, 4]

Tables 19-17 through 19-26 present pollutant data for selected steam electric power plants. As data for all subcategories were not available for all plants, individual plants were chosen to represent as many subcategories as possible. Verification data were used unless otherwise noted. Analyses of verification samples were performed by Richardson, Radian, GSR1, and Chicago. Detection limits for these contractors are listed below:

| Richardson                                             | Limit, $\mu g/L$ |  |  |  |
|--------------------------------------------------------|------------------|--|--|--|
| Acid extractables<br>Base-neutral compounds<br>Phenols | 25<br>10<br>5    |  |  |  |
| Richardson and Chicago                                 | Limit, µg/L      |  |  |  |
| Zinc                                                   | 60               |  |  |  |
| Antimony                                               | 25               |  |  |  |
| Arsenic                                                | 25               |  |  |  |
| Selenium                                               | 25               |  |  |  |
| Cyanide                                                | 20               |  |  |  |
| Lead                                                   | 20               |  |  |  |
| Thallium                                               | 10               |  |  |  |
| Copper                                                 | 6                |  |  |  |

Date: 6/23/80 II.19-26

TABLE 19-13. AIR POLLUTION CONTROL DEVICES - NONREGENERABLE FLUE GAS DESULFURIZATION (FGD) PROCESSES - RAW WASTEWATER POLLUTANT CONCENTRATIONS [1]

|                                            | (wet lim      | estone) d<br>ncentrati | on         | lime/limestone) <sup>a</sup><br>discharge | double-alkali s     | e/limestone and<br>ystemb discharge |
|--------------------------------------------|---------------|------------------------|------------|-------------------------------------------|---------------------|-------------------------------------|
| Parameter                                  | Flowr<br>40.7 | ate, L/mi<br>20.35     | 10.18      | concentration<br>range                    | Concentration range | Loading<br>range, mg/kg             |
| rat anecet                                 | 40.7          | 20.33                  | 10.10      | range                                     | range               | range, mg/kg                        |
| Toxic pollutants, µg/L                     |               |                        |            |                                           |                     |                                     |
| Antimony                                   |               |                        |            | 90 - 2,300                                |                     |                                     |
| Arsenic                                    | 2             | 2                      | 10         | < <b>4</b> - 300                          | 4 - 1,800           | 0.6 - 52                            |
| Beryllium                                  | 10            | <10                    | <10        | <2 - 140                                  | 2 - 180             | 0.05 - 6                            |
| Cadmium                                    | 42            | 13                     | 31         | 4 ~ 110                                   | 4 - 110             | 0.08 - 4                            |
| Chromium                                   | <50           | <50                    | <50        | 10 - 500                                  | 15 - 500            | 10 - 250                            |
| Copper                                     | 20            | 20                     | 30         | <2 - 200                                  | 2 ~ 560             | 8 - 76                              |
| Cyanide                                    | <10           | <10                    | <10        |                                           |                     |                                     |
| Lead                                       | 33            | 11                     | 16         | 10 - <b>4</b> 00                          | 10 - 520            | 0.23 - 21                           |
| Mercury                                    | <0.2          | <0.2                   | <0.2       | 0.4 - 70                                  | 0.4 - 70            | 0.001 - 5                           |
| Nickel                                     | <50           | <50                    | <50        | 50 - 1,500                                |                     |                                     |
| Selenium                                   | 12            | 24                     |            | <1 - 2,200                                | 0.6 - 2,700         | 2 - 17                              |
| Silver                                     | <10           | <10                    | <10        | 10 - 600                                  | -,                  | <u>-</u>                            |
| Zinc                                       | 70            | 20                     | 140        | 10 - 350                                  | 10 - 590            | 45 - 430                            |
| Nontoxic pollutants, ug/L                  |               |                        | _          |                                           |                     |                                     |
| Aluminum                                   | <200          | <200                   | <200       | 30 - 300                                  | 30 - 2,000          |                                     |
| Barium                                     | <100          | <100                   | <100       |                                           |                     |                                     |
| Boron                                      |               |                        |            | 8.000 - 46.000                            |                     |                                     |
| Calcium                                    | 220,000       | 440,000                | 430,000    |                                           | 180,000 - 2,600,000 | 105.000 - 270.000                   |
| Cobalt                                     | ,             | ,                      | ,          | 1,000 - 700                               |                     |                                     |
| Iron                                       | 5.800         | 70                     | 5,500      | 200 - 8.100                               |                     |                                     |
| Manganese                                  | 160           | 140                    | 370        | 90 - 2,500                                |                     |                                     |
| Magnesium                                  | 6,500         | 8,300                  | 18,000     | 3,000 - 2,700,000                         | 4,000 - 2,800,000   |                                     |
| Molybdenum                                 | 0,000         | 0,000                  | 20,000     | 910 - 6,300                               | 1,000 2,000,000     |                                     |
| Potassium                                  | 2,200         | 3,000                  | 2,600      | 5,900 - 32,000                            | 5,900 - 100,000     |                                     |
| Sodium                                     | 8,100         | 8.800                  | 11,000     | 14,000 - 2,400,000                        | 10,000 - 28,000,000 | 0 - 48,000                          |
| Tin                                        | 0,100         | 0,000                  | 11,000     | 3,100 - 3,500                             | 20,000 20,000,000   | 0 40,000                            |
| Vanadıum                                   |               |                        |            | 1 - 670                                   |                     |                                     |
| Conventional parameters, mg/L <sup>C</sup> |               |                        |            | 2 0,0                                     |                     |                                     |
| pH <sup>d</sup>                            | 3.1           |                        | 2.7        | 3.04 - 11                                 | 4.3 - 12.7          |                                     |
| TDS                                        | 1,000         | 1,900                  | 2,200      | 3,200 - 15,000                            | 2,800 - 92,000      |                                     |
| COD                                        | 1,000         | 1,900                  | 2,200      | 60 - 390                                  | 1 - 390             |                                     |
|                                            | 580           | 1,100                  | 1,100      | 41 - 150                                  | 1 - 390             |                                     |
| Alkalinity, as CaCO <sub>3</sub>           | 64            | 1,100                  | 1,100      | 41 - 150                                  |                     |                                     |
| Acidity, as CaCO <sub>3</sub>              |               | 1 600                  |            | 2 25                                      |                     |                                     |
| Conductance                                | 1,300<br><1   | 1,600<br><1            | 2,700<br>2 | 3 - 15                                    |                     |                                     |
| Turbidity<br>Silica                        | ζ1            | <1                     | 2          | <3 - <10                                  |                     |                                     |
| Silica<br>Fluoride                         |               |                        |            | 0.2 - 3.3                                 | A C - E0            |                                     |
| Chloride                                   | 24            | 40                     | 120        | 0.07 - 10                                 | 0.6 - 58            | 0 0 000                             |
| Chloride<br>Sulfate                        | 700           |                        |            | 420 - 4,800                               | 420 - 33,000        | 0 - 9,000                           |
| Sulfite                                    | 700           | 1,000                  | 1,200      | 720 - 10,000                              | 600 - 35,000        | 35,000 - 470,00                     |
| Ammonia                                    | 0.21          | 0.25                   | 0.34       | 0.8 - 3,500                               | 0.9 - 3,500         | 1,600 - 300,00                      |
|                                            |               |                        |            | 0.00.0.43                                 |                     |                                     |
| Phosphate                                  | 0.11          | 0.03                   | 0.03       | 0.03 - 0.41                               |                     |                                     |

Note: Blanks indicate no data available

aData from three plants.

<sup>&</sup>lt;sup>b</sup>Data from seven plants burning coal and using lime, limestone, or double-alkali absorbents.

Except as noted

dValues in pH units.

evalues in µmhos/cm.

f<sub>Values in JTU.</sub>

TABLE 19-14. POLLUTION CONTROL DEVICES - NONREGENERABLE FGD PROCESSES - SETTLING POND INFLUENT AND TREATED EFFLUENT MEDIAN CONCENTRATIONS [1]

|                                                  | Pon                       | d A             | Pon                                    | d B          |                                       | ond C       | Pon                 | d D       |
|--------------------------------------------------|---------------------------|-----------------|----------------------------------------|--------------|---------------------------------------|-------------|---------------------|-----------|
|                                                  | Input                     |                 | Input                                  |              | Input                                 |             | Input               |           |
| Parameter                                        | liquor                    | Supernate       | liquor                                 | Supernate    | liquor                                | Supernate   | liquor              | Supernate |
| Toxic pollutants, µg/L                           |                           |                 |                                        |              |                                       |             |                     |           |
| Arsenic                                          | 24                        | 5               |                                        | 5            |                                       | 6           | 240                 | 70        |
| Lead                                             | 10                        | 16              |                                        | 20           |                                       | 26          | 260                 | 10        |
| Mercury                                          | 0.5                       | 0.0002          |                                        | 1            |                                       | 0.2         | 0.1                 | 0.2       |
| Selenium                                         | 2                         | 2               |                                        | 21           |                                       | 3,          |                     |           |
| Nontoxic pollutants, µg/L                        |                           |                 |                                        |              |                                       |             |                     |           |
| Boron                                            | 16,000                    | 5,500           |                                        | 60,000       |                                       | 300         | 90,000 <sup>b</sup> | 43,000    |
| Calcium                                          | 2,000,000                 | 880,000         | 1,400,000 b                            | 1,700,000    | 2,600                                 | 470,000     | 1,300,000           | 910,000   |
| Magnesium                                        | 210,000                   | •               | 390,000 <sup>D</sup>                   | 900          | 240                                   | 1,700       | 260,000             | 96,000    |
| Sodium                                           | 68                        | 20, <b>0</b> 00 | 38,000 <sup>b</sup>                    | 34,000       | 60                                    |             |                     |           |
| Conventional parameters,<br>mg/L                 |                           |                 |                                        |              |                                       |             |                     |           |
| p <sub>H</sub> d                                 | 0.2                       | 8.0             | 7.1 <sup>b</sup><br>6,100 <sup>b</sup> | 0.6          | o 1b                                  | 11          | 8.2                 | 8.4       |
| pn<br>TDS                                        | 8.2<br>7,110 <sub>b</sub> | 2,800           | 6 100b                                 | 9.6<br>2,200 | 9,000 <sup>b</sup>                    | 1,600       | 5,900               | 3,400     |
| TSS                                              | ',110b                    | 2,800           | 6,100                                  | 2,200        | 9,000                                 | 9           | 3,900               | 98        |
| COD                                              | 16b<br>20b<br>81          | 37              |                                        | 43           |                                       | 19          |                     | 19        |
|                                                  | 20<br>91                  | 49              |                                        | 190          |                                       | 100         |                     | 97        |
| Alkalinity, as CaCO <sub>3</sub><br>Conductivity | 10.0                      | 3.2             | 5.4 <sup>b</sup>                       | 8.3          | 8.2 <sup>b</sup>                      | 2.4         | 5.2                 | 3.9       |
| Chloride                                         | 3,604                     | 630             | 2,400                                  | 1,500        | 4,200 <sub>L</sub>                    | 500         | 1,800               | 980       |
| Sulfate                                          | 1,400                     | 1,100           | 1,700b                                 | 900          | 1,200b                                |             | 2,300               | 1,000     |
| Sulfite                                          | 32                        | 0.8b            | 1,700 <sup>b</sup><br>120 <sup>b</sup> | 70           | 1,600 <sup>b</sup><br>80 <sup>b</sup> | 200<br>0.85 | 2,300               | 1,000     |

<sup>&</sup>lt;sup>a</sup>Analyses of input liquors to four disposal ponds and subsequent supernates at one plant. All four disposal ponds were filled with effluents representing a cross section of lime or limestone scrubber effluent conditions.

 $<sup>^{\</sup>rm b}$ Median derived from less than three plants.

<sup>&</sup>lt;sup>C</sup>Values in mg/L except as noted.

dValues in pH units.

eValues in µmhos/cm.

TABLE 19-15. MISCELLANEOUS WASTE STREAMS - SANITARY WASTES - RAW WASTEWATER POLLUTANT CONCENTRATIONS [3]

|                                    | Flow, m <sup>3</sup> /d | BOD <sub>5</sub> , a | TSS, g |
|------------------------------------|-------------------------|----------------------|--------|
| Location                           | (gpd)                   | (lb)                 | (lb)   |
| Office-administrative (per capita) | 0.095                   | 30                   | 70     |
|                                    | (25)                    | (0.071)              | (0.15) |
| Plant (per capita)                 | 0.13                    | 40                   | 85     |
|                                    | (35)                    | (0.09)               | (0.19) |

TABLE 19-16. MISCELLANEOUS WASTE STREAMS - CONSTRUCTION ACTIVITY - RAW WASTEWATER POLLUTANT CONCENTRATIONS [1]

| Location                                                | Number<br>of<br>days | Median<br>pH | Median<br>turbulence,<br>JTU | Median<br>TSS,<br>mg/L |
|---------------------------------------------------------|----------------------|--------------|------------------------------|------------------------|
| Bellefonte Construction                                 | Monitori             | ng           |                              |                        |
| Drainage ditch, foot of Barge Dock Road                 | 11<br>12             | 7.5          | 25                           | 36                     |
| West drainage ditch culvert at project entrance road    | 30<br>36             | 7.6          | 25                           | 25                     |
| East drainage ditch culvert at project entrance road    | 38<br>46             | 7.8          | 80                           | 75                     |
| Settling pond effluent, Town Creek 2.9                  | 33<br>40<br>39       | 7.8          | 37                           | 30                     |
| Settling pond effluent, Town Creek 3.0                  | 5                    | 7.1          | 10                           | 6                      |
| Drainage ditch, foot of Bellefonte Road                 | 11<br>13<br>12       | 7.40         | 11                           | 15                     |
| Intake cofferdam pump discharge                         | 3<br>6               | 7.6          | 130                          | 120                    |
| Permanent pond influent, east ditch <sup>a</sup>        | 12                   |              | 1,100                        | 1,700                  |
| Permanent pond influent, west ditch <sup>a</sup>        | 12                   |              | 150                          | 170                    |
| Permanent pond influent, southwest ditch                | 6                    |              | 16                           | 20                     |
| Construction pond influent, permanent pond $effluent^a$ | 12                   |              | 29                           | 32                     |
| Construction pond influent, berm ditch <sup>a</sup>     | 8                    |              | 270                          | 400                    |
| Construction pond effluent <sup>a</sup>                 | 12                   |              | 60                           | 62                     |
| Hartsville Construction                                 | Monitori             | ng           |                              |                        |
| Corley Branch 0.03                                      | 13                   | 7.6          | 9.8                          | 15                     |
| Mouth of unnamed tributary at CRM 283.52                | 13                   | 7.6          | 14                           | 16                     |
| Mouth of unnamed tributary at CRM 284.8                 | 9                    | 7.5          | 31                           | 38                     |
| Mouth of unnamed tributary at Dixon Creek 0.46          | 4                    | 8.0          | 16                           | 13                     |
| Mouth of unnamed tributary at Dixon Creek 1.06          | <b>4</b><br>5        | 7.8          | 23                           | 26                     |

apH data not available.

TABLE 19-17. WASTEWATER CHARACTERIZATION, PLANT 0630 [1]  $(\mu g/L)$ 

Fuel: Oil and gas Capacity: 169 MW

| Pollutant                                                                                               | Cooling<br>tower<br>intake                                                  | Cooling<br>tower<br>effluent <sup>a</sup>                                      | Reverse<br>osmosis<br>intake                                    | Reverse<br>osmosis<br>effluent                                |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
| Metals                                                                                                  |                                                                             |                                                                                |                                                                 |                                                               |
| Antimony Arsenic Beryllium Cadmium Chromium Copper Cyanide Lead Mercury Nickel Selenium Silver Thallium | <5<br><5<br><5<br>10<br>37<br>25<br>130<br><5<br>0.41<br>8<br><5<br>9<br><5 | 6<br>13<br><5<br>25<br>75<br>150<br>360<br>17<br>0.91<br>100<br>23<br>32<br><5 | <5<br><5<br><5<br><5<br>10<br>20<br><5<br>0.53<br><5<br>13<br>9 | <5<br><5<br><5<br><5<br>30<br>30<br><5<br>5<br>58<br><5<br><5 |
| Zinc Phenol (total)                                                                                     | 41<br>20                                                                    | 67<br>40                                                                       | 13<br>10                                                        | 14<br>20                                                      |
| Phenols 2-Chlorophenol                                                                                  | <1                                                                          | <1                                                                             | <1                                                              | 27                                                            |
| 2,4-Dichlorophenol<br>Phenol                                                                            | <1<br>30                                                                    | <1<br><1<br>15                                                                 | <1<br>255                                                       | 240<br>13                                                     |
| Aromatics                                                                                               |                                                                             |                                                                                |                                                                 |                                                               |
| Toluene Halogenated aliphatics                                                                          | <1                                                                          | <1                                                                             | <1                                                              | 150                                                           |
| Chloroform<br>Methylene chloride                                                                        | <1<br>15                                                                    | <1<br>21                                                                       | 3<br>3                                                          | 5.2<br>1.4                                                    |

Note: All unlisted organics were found in concentrations of less than 1 µg/L.

<sup>&</sup>lt;sup>a</sup>Screening data: Values for organics are blank adjusted (composite sample concentration minus blank concentration). Metals concentrations are from grab samples.

# TABLE 19-18. WASTEWATER CHARACTERIZATION, PLANT 1226 [1] $(\mu g/L)$

Water source. Wells

Fuel: Bituminous coal, oil, and gas

Capacity: 1,229 MW

|                                                                                                              |                                                                                    |                                                                     | Coolin                | g tower | blowdown              | a        |                  |                                                                                 |                                                                            | Ash po                | nd over              | flow -          | bottom   | asha            |                                                |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------|---------|-----------------------|----------|------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------|----------------------|-----------------|----------|-----------------|------------------------------------------------|
| Pollutant                                                                                                    |                                                                                    | Radian                                                              |                       | ardson  | GSR1                  | Cì       | nicago<br>total) | Ra                                                                              | dian                                                                       |                       | ırdson               | GSR1            | Ch       | nicago<br>otal) | Chicago<br>influen<br>(total                   |
| Metals                                                                                                       |                                                                                    |                                                                     |                       |         |                       |          |                  |                                                                                 |                                                                            |                       |                      |                 |          |                 |                                                |
| Antimony Arsenic Beryllium Cadmium Chromium Copper Cyanide Lead Mercury Nickel Selenium Silver Thallium Zinc | 7<br>4<br>BDL<br>1.8<br>5<br>47<br>BDL<br>3<br>BDL<br>6<br>BDL<br>0.7<br>BDL<br>26 | (7)<br>(3)<br>(2.1)<br>(7)<br>(12)<br>(10)<br>(1.5)<br>(1.3)<br>(9) | 28<br>6<br>BDL<br>BDL | (10)    | •                     | 20<br>50 | (7)<br>(10)      | 7<br>9<br>BDL<br>2<br>6<br>14<br>BDL<br>4<br>BDL<br>5.5<br>8<br>0.5<br>BDL<br>7 | (7)<br>(3)<br>(2)<br>(7)<br>(12)<br>(10)<br>(1.5)<br>(BDL)<br>(1.3)<br>(9) | 18<br>BDL<br>9<br>BDL | (10)<br>(12)<br>(27) |                 | 10<br>10 | (7)<br>(10)     | 9<br>8<br>300<br>100<br>200<br>100<br>8<br>700 |
| Phthalates Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate                                                  |                                                                                    |                                                                     |                       |         | 22 <sup>b</sup><br>10 |          |                  |                                                                                 |                                                                            |                       |                      | 21 <sup>c</sup> |          |                 |                                                |
| Phenols                                                                                                      |                                                                                    |                                                                     |                       |         |                       |          |                  |                                                                                 |                                                                            |                       |                      |                 |          |                 |                                                |
| 2,4-Dinitrophenol<br>Phenol                                                                                  |                                                                                    |                                                                     | 8                     | (12)    |                       |          |                  |                                                                                 |                                                                            | 50<br>17              | (<10)<br>(12)        |                 |          |                 |                                                |
| Halogenated aliphatics                                                                                       |                                                                                    |                                                                     |                       |         |                       |          |                  |                                                                                 |                                                                            |                       |                      |                 |          |                 |                                                |
| Bromoform Chlorodibromomethane Methylene chloride 1,1,1-Trichloroethane                                      | 150<br>59                                                                          | (BDL)                                                               |                       |         | >1,800                |          |                  |                                                                                 |                                                                            |                       |                      | 300<br>27       |          |                 |                                                |

<sup>&</sup>lt;sup>a</sup>Intake values given in parentheses.

Note: Blanks indicate no data available.

Note: All unlisted organics were found in concentrations of less than 1  $\mu$ g/L.

 $<sup>^{\</sup>mathrm{b}}\mathtt{Mixture}$  of butyl benzyl and bis(2-ethylhexyl) phthalate.

 $<sup>^{</sup>c}$ Combined with di-n-octyl phthalate.

TABLE 19-19. WASTEWATER CHARACTERIZATION, PLANT 1720 [1]  $(\mu g/L)$ 

Fuel: Oil and gas Capacity: 1,269 MW

| Pollutant                   | Once-<br>through<br>fresh <sup>a</sup> | Fresh<br>intake<br>water | Cooling<br>discharge | Filtration<br>plant<br>effluent <sup>a</sup> | Water<br>treatment<br>wastes |
|-----------------------------|----------------------------------------|--------------------------|----------------------|----------------------------------------------|------------------------------|
| Metals                      |                                        |                          |                      |                                              |                              |
| Antimony                    | 7                                      | <5                       | <5                   | <5                                           | 7                            |
| Arsenic                     | 18                                     | 13                       | 25                   | 14                                           | <5                           |
| Beryllium                   | <5                                     | <5                       | <5                   | <5                                           | <5                           |
| Cadmium                     | <5                                     | <5                       | <5                   | 5                                            | <5                           |
| Chromium                    | 24                                     | <5                       | 17                   | 21                                           | 24                           |
| Copper                      | 16                                     | <5                       | 20                   | 40                                           | 506                          |
| Cyanide                     | 20                                     | <20                      | 20                   | 30                                           | <20                          |
| Lead                        | 8                                      | <5                       | 14                   | 20                                           | 5                            |
| Mercury                     | 0.42                                   | 0.39                     | 0.42                 | 0.39                                         | 0.42                         |
| Nickel                      | 29                                     | <5                       | 26                   | 28                                           | 9                            |
| Selenium                    | 20                                     | 20                       | 18                   | 12                                           | 25                           |
| Silver                      | <5                                     | <5                       | <5                   | <5                                           | 37                           |
| Thallium                    | <5                                     | <5                       | <5                   | <5                                           | 5                            |
| Zinc                        | 42                                     | <5                       | 36                   | 41                                           | <5                           |
| Phenols (total)             | 30                                     | 50                       | 50                   | 20                                           | 40                           |
| Phthalates                  |                                        |                          |                      |                                              |                              |
| Bis(2-ethylhexyl) phthalate | 15                                     | 1                        | <1                   | <1                                           | <1                           |
| Phenols                     |                                        |                          |                      |                                              |                              |
| Phenol                      | 30                                     | 50                       | <1                   | <1                                           | <1                           |
| Aromatics                   |                                        |                          |                      |                                              |                              |
| Benzene                     | <1                                     | 3                        | 1                    | 2                                            | 3                            |
| 1,3-Dichlorobenzene         | <1                                     | <1                       | <1                   | 1                                            | <1                           |
| Ethylbenzene                | 20                                     | <1                       | 2                    | 3                                            | 2                            |
| Toluene                     | 26                                     | <1                       | 22                   | <b>4</b> 6                                   | 55                           |
| Halogenated aliphatics      |                                        |                          |                      |                                              |                              |
| Chloroform                  | <1                                     | 7                        | 14                   | 23                                           | 8                            |
| 1,2-Trans-dichloroethylene  | <1                                     | <1                       | <1                   | <1                                           | 2                            |
| Methylene chloride          | 630                                    | 1                        | 24                   | <1                                           | 120                          |
| Tetrachloroethylene         | <1                                     | <1                       | 3                    | <1                                           | <1                           |
| 1,1,1-Trichloroethane       | 2                                      | 1                        | 3<br>2<br>2          | 2                                            | 1                            |
| Trichloroethylene           | 2<br>2                                 | <1                       |                      | <1                                           | <1                           |
| Trichlorofluoromethane      | 40                                     | <1                       | <1                   | <1                                           | <1                           |

<sup>&</sup>lt;sup>a</sup>Screening data: Values for organics are blank adjusted (composite sample concentration minus blank concentration )metals concentrations are from grab samples.

Note: All unlisted organics were found in concentrations of less than 1  $\mu g/L$ .

Date: 6/23/80 II.19-32

# TABLE 19-20. WASTEWATER CHARACTERIZATION, PLANT 1741 [1] $(\mu g/L)$

Water source: River

Fuel: Bituminous coal and oil

Capacity: 99 MW

|                                                                         |                |                         | _        |         | A                | sh pond ove                    | rflow <sup>a</sup> |                         |           |           |                  |                                |                |                    |                    |
|-------------------------------------------------------------------------|----------------|-------------------------|----------|---------|------------------|--------------------------------|--------------------|-------------------------|-----------|-----------|------------------|--------------------------------|----------------|--------------------|--------------------|
|                                                                         |                |                         | F        | ly ash  |                  |                                |                    |                         | В         | ottom     | ash              | Ob i                           | Co-1 -         |                    |                    |
| Pollutant                                                               | Rich           | ardson                  | GSR1     |         | icago<br>otal)   | Chicago<br>influent<br>(total) | Rich               | ardson                  | GSR1      |           | hicago<br>total) | Chicago<br>influent<br>(total) | Richardson     | ile runo           | Chicago<br>(total) |
| FOIIULANC                                                               | KICH           | ar uson                 | USKI     |         | oca1/            | (10141)                        | 11201              | 4. 450                  | JUNI      |           |                  |                                |                |                    | (000027            |
| Metals                                                                  |                |                         |          |         |                  |                                |                    |                         |           |           |                  |                                |                |                    |                    |
| Antimony<br>Arsenic                                                     |                |                         |          |         |                  |                                |                    |                         |           |           |                  |                                |                |                    |                    |
| Beryllium                                                               |                |                         |          |         | /=== \           | 30                             |                    |                         |           | BDL       | (222)            | 2                              |                |                    | 4                  |
| Cadmium                                                                 | 12             | (6)                     |          | 90<br>6 | (BDL)<br>(4,000) | 200<br>400                     | 9                  | (5)                     |           | 10<br>BDL | (BDL)<br>(4,000) | 10<br>60                       |                |                    | 10<br>200          |
| Chromium<br>Copper                                                      | 12<br>15       | (5)                     |          | 9       | (90)             | 400                            | 35                 | (3)                     |           | 10        | (90)             | 50                             |                |                    | 10                 |
| Cyanide                                                                 | 10             |                         |          | ,       | (,,,,            |                                | BDL                |                         |           |           | (50)             |                                |                |                    |                    |
| Lead                                                                    | 120            | (9)                     |          | BDL     | (20)             | 4,000                          | 14                 | (9)                     |           | BDL       | (20)             | 50                             |                |                    | 30                 |
| Mercury                                                                 | BDL            |                         |          |         |                  |                                |                    | <b>(</b> )              |           |           | /\               |                                |                |                    |                    |
| Nickel                                                                  | 100            | (79)                    |          | 50      | (2,000)          | 400                            | 15                 | (79)                    |           | BDL       | (2,000)          | 20                             |                |                    | 900                |
| Selenium<br>Silver                                                      |                |                         |          |         |                  | 10                             |                    |                         |           |           |                  |                                |                |                    |                    |
| Thallium                                                                |                |                         |          |         |                  | 10                             |                    |                         |           |           |                  |                                |                |                    |                    |
| Zinc                                                                    | 1,400          |                         |          | 1,000   | (BDL)            | 10,000                         |                    |                         |           | 70        | (BDL)            | 100                            |                |                    | 1,000              |
| Phthalates                                                              |                |                         |          |         |                  |                                |                    |                         |           |           |                  |                                |                |                    |                    |
| Bis(2-ethylhemyl) phthalate<br>Di-n-butyl phthalate                     | 40             | (<10)                   | 25<br>13 |         |                  |                                | 26                 | (<10)                   | 309<br>46 |           |                  |                                | 32             | 12 <sup>b</sup>    | •                  |
| Phenols                                                                 |                |                         |          |         |                  |                                |                    |                         |           |           |                  |                                |                |                    |                    |
| 2,4-Dichlorophenol<br>Pentachlorophenol                                 |                |                         |          |         |                  |                                | 83<br>51           | (<25)<br>(<25)          |           |           |                  |                                |                |                    |                    |
| Aromatics                                                               |                |                         |          |         |                  |                                |                    |                         |           |           |                  |                                |                |                    |                    |
| 1,2-Dichlorobenzenec<br>1,3-Dichlorobenzenec<br>1,4-Dichlorobenzenec    | 41<br>41<br>41 | (<10)<br>(<10)<br>(<10) |          |         |                  |                                | 65<br>65<br>65     | (<10)<br>(<10)<br>(<10) |           |           |                  |                                | 20<br>20<br>20 |                    |                    |
| Halogenated aliphatics                                                  |                |                         |          |         |                  |                                |                    |                         |           |           |                  |                                |                |                    |                    |
| Chloroform<br>1,2- <u>Trans</u> -dichloroethylene<br>Methylene chloride |                |                         | >9,400   |         |                  |                                |                    |                         |           |           |                  |                                |                | 17<br>53<br>>3,900 | ı                  |

aIntake values given in parentheses.

Note: Blanks indicate no data available.

Note: All unlisted organics were found in concentrations of less than 1  $\mu$ g/L.

 $<sup>^{\</sup>rm b}$ Combined with di-n-octyl phthalate.

 $<sup>^{\</sup>mathrm{C}}$ Richardson did not distinguish between 1,2-, 1,3-, and 1,4-dichlorobenzene compounds.

 $<sup>^{</sup>d}$ Combination of both  $\underline{cis}$  and  $\underline{trans}$  forms.

TABLE 19-21. WASTEWATER CHARACTERIZATION, PLANT 3306 [1]

|                                                            |                                                  | Fireside                              | wash                              |                                        |
|------------------------------------------------------------|--------------------------------------------------|---------------------------------------|-----------------------------------|----------------------------------------|
| Parameter                                                  | Conce<br>Maximum                                 | entration, µg/I<br>Average            | <u>a</u> kg∕c                     | loading,<br>leaning<br>leaning)        |
| Toxic pollutants                                           |                                                  |                                       |                                   |                                        |
| Chromium (total)<br>Chromium 6<br>Copper<br>Nickel<br>Zinc | 15,000<br><1,000<br>250,000<br>900,000<br>40,000 | 1,500<br>20<br>6,000<br>70<br>4,000   | 6.8<br>0.09<br>27<br>320<br>18    | (15)<br>(0.2)<br>(60)<br>(700)<br>(40) |
| Nontoxic pollutants                                        |                                                  |                                       |                                   |                                        |
| Aluminum<br>Iron<br>Manganese                              | 21,000<br>14,000,000<br>40,000                   | 2,000<br>2,500,000<br>3,500           | 9<br>11,000<br>16                 | (20)<br>(25,000)<br>(35)               |
| Conventional paramet                                       | ers                                              |                                       |                                   |                                        |
| TDS<br>TSS<br>Sulfate<br>Oil and grease                    | 50,000<br>25,000<br>10,000                       | 5,000<br>250<br>1,000<br>Virtually ak | 23,000<br>1,135<br>4,500<br>osent | (50,000)<br>(2,500)<br>(10,000)        |

aExcept conventionals, which are given in mg/L

TABLE 19-22. WASTEWATER CHARACTERIZATION, PLANT 3404 [1]  $(\mu g/L)$ 

Water source: Wells Fuel Bituminous coal and oil apacity: 475.6 MW

| Pcllutant                                                                                                                     | Fresh<br>intake<br>water                          | Saline<br>intake<br>water                                                    | Cooling<br>tower<br>blowdown                                           | Treatment<br>plant<br>effluent                                 | Ash<br>pond<br>effluent                                                | Slag tank<br>overflow                                                  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| Metals                                                                                                                        |                                                   |                                                                              |                                                                        |                                                                |                                                                        |                                                                        |
| Antimony Arsenic Beryllium Cadmium Chromium Copper Cyanide Lead Mercury Nickel Selenium Silver Thallium                       | <5 <5 <10 <5 <5 <20 <5 <0.23 <5 <5 <5 <5 <5 <0.23 | 11<br><5<br><5<br>15<br>16<br>25<br><20<br>5<br>0.34<br>21<br>55<br>40<br><5 | 14<br>8<br><5<br>40<br>23<br>13<br><20<br><5<br>0.58<br>29<br>87<br>64 | 8<br>9<br><5<br>10<br>22<br>30<br><20<br>8<br>0.47<br>80<br>55 | 12<br>14<br><5<br>13<br>20<br>29<br><20<br>5<br>0.32<br>33<br>42<br>19 | 13<br>8<br><5<br>25<br>16<br>23<br><20<br><5<br>0.47<br>21<br>48<br>41 |
| Zinc                                                                                                                          | 12                                                | <5                                                                           | 9<br><5                                                                | 5<br>10                                                        | < 5<br>8                                                               | 6 5                                                                    |
| Phenol (total) Phtnalates                                                                                                     | 10                                                | 36                                                                           | <10                                                                    | 20                                                             | 20                                                                     | 70                                                                     |
| Bis(2-ethylhexyl) phthalate Pnenols                                                                                           | <1                                                | 11                                                                           | 62                                                                     | 18                                                             | 9                                                                      | 16                                                                     |
| Pnenol<br>Aromatics                                                                                                           | <1                                                | <1                                                                           | <1                                                                     | 1                                                              | 1                                                                      | 1                                                                      |
| Benzene<br>l,4-Dichlorobenzene<br>Toluene                                                                                     | 2<br><1<br><1                                     | 1<br><1<br>3                                                                 | <1<br>1<br>3                                                           | <1<br><1<br>5                                                  | 1<br><1<br>3                                                           | 1<br><1<br>4                                                           |
| Halogenated aliphatics                                                                                                        |                                                   |                                                                              |                                                                        |                                                                |                                                                        |                                                                        |
| Bromoform Chlorodibromomethane Chloroform Dichlorobromomethane 1,1-Dichloroethylene Methylene chloride Trichlorofluoromethane | <1<br>1<br>47<br>17<br><1<br><1<br><1             | <1 <1 3 <1 1 20 <1                                                           | 4<br>3<br>1<br><1<br>2<br><1<br>1                                      | 26<br>1<br>1<br><1<br>1<br>3<br><1                             | <1<br><1<br><1<br><1<br>1<br>4                                         | <1<br>3<br><1<br>1<br>1                                                |

a Screening data: Values for organics are blank adjusted (composite sample concentration minus blank concentration). Metals concentrations are from grab samples.

Note: Blanks indicate no data available. Note: All unlisted organics were found in concentrations of less than 1  $\mu g/L$ .

TABLE 19-23. WASTEWATER CHARACTERIZATION, PLANT 3410 [1]

|                                                              | A                  | ïr | preheate                                | r                              |
|--------------------------------------------------------------|--------------------|----|-----------------------------------------|--------------------------------|
| Parameter                                                    | R                  | ın | 7e                                      | Median                         |
| Toxic pollutants, µg/L                                       |                    |    |                                         |                                |
| Chromium<br>Nickel                                           |                    |    | 1,500                                   | 1,300                          |
| Zinc                                                         |                    |    | 25,000<br>1,500                         | 21, 000<br>1,200               |
| Nontoxic pollutants, µg/L                                    |                    |    |                                         |                                |
| Calcium<br>Iron<br>Magnesium<br>Sodium                       | 340,000<br>260,000 | -  | 38,000<br>520,000<br>330,000<br>380,000 |                                |
| Conventional parameters, mg/La                               |                    |    |                                         |                                |
| TDS<br>TSS<br>COD<br>pH<br>Oil and grease<br>Total hardness, | 29<br>50           | -  | 750<br>83<br>70<br>3.5<br>8.5           | 730<br>34<br>60<br>3.3<br>0.25 |
| as CaCO <sub>3</sub><br>Conductance<br>Chloride<br>Sulfate   | 2,700<br>17        | -  | 1,600<br>3,200<br>27<br>2,700           | 1,500<br>2,700<br>19<br>2,500  |

aExcept as noted.

TABLE 19-24. WASTEWATER CHARACTERIZATION, PLANT 4222 [1]  $(\mu g/L)$ 

Water source: River Fuel: Bituminous coal Capacity: 1,500 MW

| Pollutant                   | River<br>water<br>intake | Det.<br>basin<br>effluent <sup>a</sup> | Ash<br>sluice<br>wastes | Storm<br>water<br>effluent | POTW<br>water<br>intake |
|-----------------------------|--------------------------|----------------------------------------|-------------------------|----------------------------|-------------------------|
| Metals                      |                          |                                        | . <u> </u>              |                            |                         |
| Antimony                    | < 5                      | 29                                     | 48                      | <5                         | <5                      |
| Arsenic                     | <5                       | 160                                    | 120                     | <5                         | 12                      |
| Beryllium                   | <5                       | 20                                     | 100                     | <5                         | < 5                     |
| Cadmium                     | <5                       | <5                                     | 10                      | <5                         | < 5                     |
| Chromium                    | <5                       | 11                                     | 196                     | <5                         | <5                      |
| Copper                      | 16                       | 6                                      | 300                     | 6                          | 6                       |
| Cyanide                     | <20                      | <20                                    | <20                     | <20                        | <20                     |
| Lead                        | <5                       | <5                                     | 240                     | <5                         | <5                      |
| Mercury                     | 0.26                     | 0.21                                   | 0.62                    | 0.29                       | 0.36                    |
| Nickel                      | 6                        | . 8                                    | 250                     | 21                         | 8<br>5<br>< 5           |
| Selenium                    | < 5                      | 32                                     | < 5                     | 5                          | 5                       |
| Silver                      | < 5                      | <5                                     | <5                      | <5                         | <5                      |
| Thallium                    | <5                       | <5                                     | 29                      | <5                         | <5                      |
| Zinc                        | 14                       | 10                                     | 400                     | 10                         | 23                      |
| Phenol (total)              | <100                     | 260                                    | <100                    | <100                       | <100                    |
| Phthalates                  |                          |                                        |                         |                            |                         |
| Bis(2-ethylhexyl) phthalate | 1                        | <1                                     |                         |                            |                         |
| Halogenated aliphatics      |                          |                                        |                         |                            |                         |
| Methylene chloride          | <1                       | 5                                      |                         |                            |                         |
| Trichlorofluoromethane      | ₹1                       | 5<br>2                                 |                         |                            |                         |

<sup>&</sup>lt;sup>a</sup>Screening data: Values for organics are blank adjusted (composite sample concentrations minus blank concentration). Metals concentrations are from grab samples.

Note: Blanks indicate no data available. Note: All unlisted organics were found in concentrations of less than 1  $\mu g/L$ .

Date: 6/23/80 II.19-35

bValues in pH units.

CValues in µmhos/cm.

TABLE 19-25. WASTEWATER CHARACTERIZATION, PLANT 6387 [4]

|                                  | Lime so  | ftner    |            |               | Combined    |
|----------------------------------|----------|----------|------------|---------------|-------------|
|                                  | blowd    |          | Evaporator | Ash transport | discharge t |
| Parameter                        | Sample 1 | Sample 2 | blowdown   | blowdown      | POTW        |
| Conventional and Nonconventional |          |          |            |               |             |
| pollutants, mg/L                 |          |          |            |               |             |
| BOD <sub>5</sub>                 | 1.8      | 10       | 15         | 1.2           | 8.4         |
| COD                              | 200      | 560      | 76         | 290           | 49          |
| TDS                              | 1,000    | 23,000   | 2,200      | 1,900         |             |
| TSS                              | 9,400    | 44       | 93         | 1,700         | 240         |
| TS                               | 10,000   | 23,000   | 2,300      | 3,500         | 1,700       |
| Oil and grease                   | 1.0      | 1.0      | 1.0        | 1.0           | <1.0        |
| Phosphate                        |          |          | 6.2        | 0.02          |             |
| Surfactants                      |          |          |            |               | 0.024       |
| Flow <sup>a</sup>                | 17       | 7.6      | 41         | 45            | 520         |
| <b>Γοχίς pollutants, μg/L</b>    |          |          |            |               | -           |
| Chromium (total)                 | 110      | 100      | 20         | 120           | 20          |
| Chromium <sup>™6</sup>           | 4        | 7        | 5          | 9             | 6           |
| Copper                           | 150      | 120      | 20         | 200           | 20          |
| Cyanide                          | 14       | 5        | 6          | 112           | 6           |
| Nickel                           | 90       | 90       | 110        | 80            | 70          |
| Zinc                             | 320      | 90       | 110        | 80            | 70          |
| Nontoxic pollutants, µg/L        |          |          |            |               |             |
| Iron                             | 10,000   | 440      | 380        | 6,200         | 640         |

Note: Blanks indicate data not available.

<sup>&</sup>lt;sup>a</sup>Values in  $m^3/d$ .

TABLE 19-26. WASTEWATER CHARACTERIZATION, PLANT 8392 [4]

|                        | Demineralizer                          | Boiler b                    | lowdown           |                             | discharge<br>POTW |  |
|------------------------|----------------------------------------|-----------------------------|-------------------|-----------------------------|-------------------|--|
| Parameter              | regeneration<br>concentration,<br>µg/L | Concen-<br>tration,<br>µg/L | Loading,<br>g/MWh | Concen-<br>tration,<br>µg/L | Loading,<br>g/MWh |  |
| Toxic pollutants       |                                        |                             |                   |                             |                   |  |
| Chromium (total)       | 20                                     | 20                          | 0.0001            | 8,100                       | 6.1               |  |
| Chromium <sup>76</sup> | 5                                      | 9                           | -p                | 8,000                       | 6.0               |  |
| Copper                 | 20                                     | 60                          | 0.0003            | 40                          | 0.03              |  |
| Cyanide                | 5                                      | 14                          | -B                | 5                           | <0.005            |  |
| Nickel                 | 30                                     | 30                          |                   | <30                         | <0.03             |  |
| Zinc                   | 20                                     | 20                          | 0.0001            | 2,600                       | 2.0               |  |
| Nontoxic pollutants    |                                        |                             |                   |                             |                   |  |
| Iron •                 | 70                                     | 80                          | 0.0004            | 710                         | 0.54              |  |
| Conventional paramet   | ers                                    |                             |                   |                             |                   |  |
| TDS                    | 170                                    | 120                         | 0.61              | 16                          | 12                |  |
| TSS                    | 1.0                                    | 6.9                         | 0.036             | <1.0                        | <1.0              |  |
| TS                     | 170                                    | 125.0                       | 0.65              | 16                          | 12                |  |
| BOD <sub>5</sub>       | 1.0                                    | 11                          | 0.06              | 20                          | 15                |  |
| COD                    | 2.0                                    | 2.0                         |                   | 12                          | 8.9               |  |
| Oil and grease         | 1.0                                    | 1.0                         |                   | 1.2                         | 0.91              |  |
| Bromide                | 1.0                                    |                             |                   |                             |                   |  |
| Phosphate              | 0.05                                   | 20                          | 0.1               |                             |                   |  |
| Surfactants            | 0.011                                  | -                           |                   | _                           |                   |  |
| Flow                   |                                        | 1.7 <sup>C</sup>            |                   | 240 <sup>C</sup>            | 0.76              |  |

<sup>\*</sup>Except conventional parameters, which are given in mg/L (unless otherwise noted).

Note: Blanks indicate no data available.

| Richardson and Chicago                               | Limit, µg/L        |
|------------------------------------------------------|--------------------|
| Chromium<br>Nickel<br>Cadmium<br>Beryllium<br>Silver | 5<br>5<br>2<br>1   |
| Mercury<br>GSR1                                      | 0.5<br>Limit, µg/L |
| All tested pollutants                                | 10                 |

Detection limits for Radian were not available. Richardson analyzed the indicated metals only. Arsenic, thallium, antimony, selenium, and mercury were not analyzed in Chicago metal samples.

Date: 6/23/80 II.19-37

b<sub>Negligible</sub>.

 $<sup>^{\</sup>rm C}$  Values in  ${\rm m}^3/{\rm d}$ .

dvalue in m3/MWh.

### II.19.4 POLLUTANT REMOVABILITY [1, 3, 4]

Wastewater effluents discharged to publicy owned treatment facilities are sometimes treated by end-of-process physical or chemical systems to remove pollutants potentially hazardous to the POTW or which may be treated inadequately in the POTW. Such treatment methods are numerous, but they generally fall into one of three broad categories in accordance with their process objectives. These include pH control, removal of dissolved materials, and separation of phases.

Table 19-27 lists potential treatment methods and Table 19-28 provides a similar list of solid/liquid separation processes. Available technologies and efficiencies removal for major pollutants are listed in Table 19-29. Most of the processes listed in these tables are in use for treatment of steam electric or other industrial or municipal wastewaters.

Three specific plants were cited in Reference 1 in terms of pollutant removability. Specifics for these three plants are presented in Tables 19-30 through 19-35.

#### II.19.5 REFERENCES

- 1. Draft Technical Report for Revision of Steam Electric Effluent Limitations Guidelines. U.S. Environmental Protection Agency, Washington, D.C., September 1978. 607 pp.
- Development Document for Proposed Effluent Limitations Guidelines and New Source Performance Standards for the Steam Electric Power Generating Point Source Category. EPA-440/1-73/029, U.S. Environmental Protection Agency, Washington, D.C., March 1974. 677 pp.
- 3. Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Steam Electric Power Generating Point Source Category. EPA-440/1-74/029-a, U.S. Environmental Protection Agency, Washington, D.C., October 1974. 842 pp.
- 4. Supplement for Pretreatment to the Development Document for the Steam Electric Power Generating Point Source Category. EPA-440/1-77/084, U.S. Environmental Protection Agency, Washington, D.C., April 1977. 244 pp.
- 5. NRDC Consent Decree Industry Summary Steam Electric Power Generating Industry.
- 6. Environmental Protection Agency Effluent Guidelines and Standards for Steam Electric Power Generating. 40 CFR 423; 39 FR 36186, October 8, 1974, effective November 7, 1974; 40 FR 7095, February 19, 1975; 40 FR 23987, June 4, 1975; 42 FR 15690, March 23, 1977; 43 FR 43025, September 22, 1978; 43 FR 44848, September 29, 1978.

Date: 6/23/80 II.19-38

TABLE 19-27. END-OF-PIPE TREATMENT TECHNOLOGIES [4]

| Method                      | 0bjectives                                                                | Chemicals or equipment used                                                    | Process<br>requirements                               | Efficiency<br>of removal                                                                                                                                                                                     | Demonstration status                                                               |
|-----------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Neutralization              | pH adjustment,<br>usually to within the<br>range of 6 to 9                | Acid or base as<br>required, usually<br>sulfuric acid or lime                  |                                                       |                                                                                                                                                                                                              | Practiced extensively by industry                                                  |
| Chemical reduction          | Reduction of hexa-<br>valent chromium to<br>trivalent chromium            | Sulfur dioxide,<br>sodium bilsufite,<br>sodium metabisulfite,<br>ferrous salts | pH range of<br>2 to 3                                 | 99.7% (removal<br>to <1 mg/L)                                                                                                                                                                                | Practiced extensively by industry                                                  |
| Precipitation               | Removal of ions by<br>forming insoluble<br>salts                          | Lime, hydrogen sul-<br>fide, organic pre-<br>cipitants, soda ash               | Optimum pH<br>depends on the<br>ions to be<br>removed | Copper - 96.6% (removal to <1 mg/L) nickel - 91.7% chromium - 98.8% (removal to 0.006 mg/L) zinc o 0.5-2.5 mg/L) phosphate - 93.6% iron (removal to 0.3 mg/L)                                                | -                                                                                  |
| Ion exchange                | Removal of ions by<br>sorption on surface<br>of a solid matrix            | Synthetic cation and<br>anion exchange<br>resins                               | May require pH<br>adjustment                          | Cyanide - 99% chromium - 98% (removal to 0.01 mg/L) copper - 95% (removal to 0.03 mg/L) iron - 100% cadmium - 92% nickel - 100% zinc - 75% (removal to 20 mg/L) phosphate - 90% sulfate - 97% aluminum - 98% | Used primarily in water treatment operation for production of boiler feedwater     |
| Liquid/liquid<br>extraction | Removal of soluble<br>organics or chemi-<br>cally charged pol-<br>lutants | Immiscible solvents<br>that may contain<br>chelating agents                    | May require pH<br>adjustment                          | Phenol - 99%<br>chromium - 99%<br>nickel - 99%<br>zick - 99%<br>fluoride - 68%<br>iron - 99%<br>molybdenum - 90%                                                                                             | Process is not highly develope<br>for industrial use (except<br>phenol extraction) |

TABLE 27 (continued)

| Hethod             | Objectives                                                                                  | Chemicals or equipment used                                                                                                                             | Process<br>requirements                                 | Efficiency<br>of removal                                                  | Demonstration status                                                                          |
|--------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| ne cliqu           | oplectives                                                                                  | edarbment asea                                                                                                                                          | reduttements                                            | OT LEWOAGT                                                                | Demonstraction Status                                                                         |
| Disinfection       | Destruction of microorganisms                                                               | Chlorine, hypo-<br>chlorite salts,<br>phenol, phenol<br>derivatives, ozone,<br>salts of heavy<br>metals, chlorine<br>dioxide                            | May require pH<br>adjustment                            |                                                                           | Disinfection by chlorine is<br>practiced extensively by<br>industry                           |
| Adsorption         | Removal of sorbable<br>contaminants                                                         | Activated carbon,<br>synthetic sorbents                                                                                                                 | May require pH<br>adjustment                            | Depends on the<br>nature of pol-<br>lutants and com-<br>position of waste | Practiced extensively by industry                                                             |
| Chemical oxidation | Destruction of<br>cyanides                                                                  | Chlorine, hypochlo-<br>rite salts, ozone,<br>hydrogen peroxide                                                                                          | pH = 9.5-10<br>(first step),<br>pH = 8 (second<br>step) | 99.6%                                                                     | Practiced extensively by industry                                                             |
| Distillation       | Separation of dis-<br>solved matter by<br>evaporation of the<br>water                       | Multistage flash distillation, multiple-effect long-tube verti- cal evaporation, submerged tube evaporation, vapor compression                          | May require pH<br>adjustment                            | 100%                                                                      | Practiced only to a moderate<br>extent by industry, primarily<br>the submerged tube type unit |
| Reverse osmosis    | Separation of dis-<br>solved matter by<br>filtration through<br>a semipermeable<br>membrane | Tubular membrane<br>hollow fiber<br>modules, spiral-<br>wound flat sheet<br>membrane                                                                    |                                                         | TDS - 93%                                                                 | Very limited use in industrial wastewater treatmen                                            |
| Electrodialysis    | Removal of<br>dissolved<br>polar compounds                                                  | Solute is exchanged between two liquids through a selective semipermeable membrane in response to differences in chemical potential between two liquids |                                                         | TDS - 62-96%                                                              | Not practiced by industry                                                                     |
| Freezing           | Separation of so-<br>lute from liquid<br>by crystallizing the<br>solvent                    | Direct refriger-<br>ation, indirect<br>refrigeration                                                                                                    |                                                         | >99.5%                                                                    | Unproven method in waste treatment application                                                |

TABLE 19-28. SOLID/LIQUID SEPARATION SYSTEMS [4]

| Unit operation | Process objectives                                                                  | Methods or<br>units used                                                                                                 | Retention<br>time | Chemicals used                                                        | Efficiency<br>of removal              | Demonstration status                                                                    |
|----------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------|
| Skimming       | Removal of floating<br>solids or liquid wastes<br>from the water                    |                                                                                                                          | 1-15 min          | None                                                                  | 70-90%                                | Practiced extensively by industry                                                       |
| Clarification  | Removal of suspended solids by settling                                             | Settling ponds,<br>clarifiers                                                                                            | 45 min            | Coagulants,<br>coagulant aids,<br>pH adjustment                       | To 15 mg/L                            | Practiced extensively by industry                                                       |
| Flotation      | Separation of suspended solids by flotation followed by skimming                    | Froth flotation,<br>dispersed air<br>flotation,<br>dissolved air<br>flotation,<br>gravity flotation,<br>vacuum flotation | 20-30 min         | Aluminum and<br>ferric salts,<br>activated silica<br>organic polymers | 90-99%                                | Practiced extensively by industry                                                       |
| Microstraining | Removal of suspended solids<br>by passing the wastewater<br>through a microscreen   |                                                                                                                          | N/A               | None                                                                  | 70-80%<br>(23 μm)<br>50-60%<br>(3 μm) | Practiced only to a moderate extent, primarily in municipal wastewater treatment plants |
| Filtration     | Removal of suspended<br>solids by filtration<br>through a bed of sand<br>and gravel | Multimedia bed,<br>mixed media bed                                                                                       | N/A               | None                                                                  | 50-99%                                | Practiced extensively primarily in water treatment plant                                |
| Screening      | Removal of large solid<br>matter by passing through<br>screens                      | Coarse screens,<br>bar screens,                                                                                          | N/A               | None                                                                  | 50-99%                                | Practiced extensively by industry                                                       |
| Thickening     | Concentration of sludge<br>by removing water                                        | Gravity thickening,<br>air flotation<br>thickening                                                                       | N/A               | None                                                                  | Depends on<br>the nature<br>of sludge | Practiced extensively by industry                                                       |

TABLE 19-28 (continued).

| Unit operation         | Process objectives                                                                                                                               | Methods or<br>units.used                                                          | Retention<br>time      | Chemicals used                                        | Efficiency<br>of removal                      | Demonstration status                                 |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|-------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| Pressure<br>filtration | Separation of solid from<br>liquid by passing through<br>a semipermeable membrane<br>under pressure                                              | Plate and frame<br>pressure filter                                                | 1-3 hr                 | None                                                  | To 50-75%<br>moisture<br>content              | Practiced by industry for<br>sludge dewatering       |
| Heat drying            | Reduce the water content<br>of sludge                                                                                                            | Flash drying, spray<br>drying, rotary<br>kilm drying<br>multiple hearth<br>drying | N/A                    | None                                                  | To 8%<br>moisture                             | Rotary kilns are used by<br>industry to small extent |
| Ultrafiltration        | Separation of macro-<br>molecules of suspended<br>matter from the waste by<br>filtration through a semi-<br>permeable membrane under<br>pressure |                                                                                   | N/A                    | None                                                  | Total solid<br>removal of<br>95% and<br>above | Used by industry primarily<br>to treat oily waste    |
| Sandbed drying         | Removal of moisture from<br>sludge by evaporation and<br>drainage through sand                                                                   | Covered beds,<br>uncovered beds                                                   | Filtration<br>1-2 days | None                                                  | As filter<br>15-20%                           | Practiced extensively by industry                    |
| Vacuum<br>filtration   | Solid liquid separation<br>by vacuum                                                                                                             | Rotary vacuum<br>filter                                                           | 1~5 minutes            | None                                                  | Produces 30%<br>solid in<br>in filter<br>cake | Practiced extensively<br>by industry                 |
| Centrifugation         | Liquid/solid separation<br>by centrifugal force                                                                                                  | Disc centrifuge,<br>basket centrifuge,<br>conveyor type<br>centrifuge             | N/A                    | None                                                  | Moisture is<br>reduced to<br>65-70%           | Practiced by industry for sludge devatering          |
| Emulsion<br>breaking   | Separation between emulsified oil and water                                                                                                      |                                                                                   | 2-8 hr                 | Aluminum salts,<br>iron salts, pH<br>adjustment (1-4) | >99%                                          | Practiced extensively by industry                    |

TABLE 19-29. CHEMICAL WASTES CONTROL AND TREATMENT TECHNOLOGY [3]

| Pollutant/parameter                                                                 | Control and/or<br>treatment<br>technology                          | Effluent<br>reduction<br>achievable                | Industry usage                                                                                          |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| н                                                                                   | Neutralization with chemicals                                      | Neutral pH                                         | Common                                                                                                  |
| issolved solids                                                                     | 1. Concentration and evaporation                                   | Complete removal                                   | Not generally in use -<br>desalinization technology                                                     |
|                                                                                     | 2. Reverse osmosis                                                 | 50-95%                                             | Not in use - desalinization technology                                                                  |
|                                                                                     | 3. Distillation                                                    | 60~90%                                             | Not in use - desalinization technology                                                                  |
| uspended solids                                                                     | 1. Sedimentation                                                   | 90-95%                                             | Extensive                                                                                               |
|                                                                                     | 2 Chemical coagulation and precipitation                           | 95-99%                                             | Moderate                                                                                                |
|                                                                                     | 3. Filtration                                                      | 95% (removal to 2-10 μg/L)                         | Not generally practiced-water treatment technology                                                      |
| OD/COD, Sanitary wastes                                                             | Biological treatment                                               | Neutral pH and >95% removal                        | Limited usage                                                                                           |
| OD, Water treatment, chemical                                                       | 1. Chemical oxidation                                              | 85-95%                                             | Limited usage                                                                                           |
| leaning                                                                             | 2. Acration                                                        | 85-95%                                             | Not practiced                                                                                           |
|                                                                                     | 3. Biological treatment                                            | 85-95%                                             | Not practiced                                                                                           |
| hosphate, Blowdown, chemical leaning, floor and yard drains,                        | <ol> <li>chemical coagulation and and precipitation</li> </ol>     |                                                    | Not generally practiced-water treatment technology                                                      |
| lant laboratory and sampling                                                        | 2. Deep well disposal                                              | Ultimate disposal                                  | Not practiced                                                                                           |
| ron, Water treatment, chemica.<br>leaning, coal ash handling,<br>coal pile drainage | <pre>Oxidation, chemical coagulation and precipitation</pre>       | Removal to 0.1 mg/L                                | Limited usage                                                                                           |
|                                                                                     | 2 Deep well disposal                                               | Ultimate disposal                                  | Not practiced                                                                                           |
| opper, Once-through condenser<br>cooling                                            | 1 Replace condenser tubes<br>with stainless steel or<br>titanium   | Elimination of discharge                           | Done in several plants where<br>tubes have erroded or corroded<br>not done for environmental<br>reasons |
| opper, Blowdown, chemical<br>leaning                                                | <ol> <li>Chemical coagulation<br/>and precipitation</li> </ol>     | Removal to 0.1 mg/L                                | Limited usage                                                                                           |
|                                                                                     | 2 Ion exchange                                                     | Removal to 0.1 mg/L                                | Not practiced                                                                                           |
|                                                                                     | 3. Deep well disposal                                              | Ultimate disposal                                  | Not practiced                                                                                           |
| ercury, Coal ash handling                                                           | 1 Reduction and precipitation                                      | Removal to 0.3 mg/L                                | Limited usage                                                                                           |
| nd coal pile drainage                                                               | 2. Ion exchange                                                    | Removal to 0.1 mg/L                                | Not practiced                                                                                           |
|                                                                                     | 3. Adsorption                                                      | Removal to 50 µg/L                                 | Not practiced                                                                                           |
| anadium, Chemical cleaning                                                          | <ol> <li>H<sub>2</sub>S treatment and<br/>precipitation</li> </ol> | Removal of low concentrations difficult to achieve | Not practiced                                                                                           |
|                                                                                     | 2. Ion exchange                                                    |                                                    | Not practiced                                                                                           |

TABLE 19-29 (continued).

| Pollutant/parameter                                                                                                       | Control and/or<br>treatment<br>technology                                                     | Effluent<br>reduction<br>achievable      | Industry usage                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vanadium, Oil ash handling                                                                                                | 1. Convert to dry collection                                                                  | Ultimate disposal                        | Practiced in several plants                                                                                                                                |
|                                                                                                                           | Total recycle with blowdown     and precipitation                                             | · ·                                      | Not generally practiced                                                                                                                                    |
| Chlorine, Once-through<br>condenser cooling                                                                               | <ol> <li>Control of residual Cl<sub>2</sub><br/>with automatic<br/>instrumentation</li> </ol> | Control to 0.2 mg/L                      | Limited usage in the industry-<br>Technology from sewage treatmer<br>practiced in some plants-all                                                          |
|                                                                                                                           | 2. Utilize mechanical cleaning                                                                | g Eliminates Cl <sub>2</sub> discharge   | systems are not capable of<br>being converted to mechanical<br>cleaning                                                                                    |
| Chlorine, Recirculating                                                                                                   | <ol> <li>Control of residual Cl<sub>2</sub><br/>with automatic<br/>instrumentation</li> </ol> | Control to 0.2 mg/L                      | Limited usage in the industry                                                                                                                              |
|                                                                                                                           | <ol> <li>Reduction of Cl<sub>2</sub> with<br/>sodium bisulfite</li> </ol>                     | Below detectable limits                  | Being installed in a new<br>nuclear facility; however<br>excess NaHSO <sub>3</sub> is discharged                                                           |
| Aluminum/zinc, Water treatment,                                                                                           | 1. Chemical precipitation                                                                     | Removal to 1.0 mg/L                      | Limited usage                                                                                                                                              |
| chemical cleaning, coal ash<br>mandling, coal pile drainage                                                               | <ol> <li>Ion exchange</li> <li>Deep well disposal</li> </ol>                                  | Removal to 0.1 mg/L<br>Ultimate disposal | Not practiced                                                                                                                                              |
| Dil, Chemical cleaning, ash mandling, floor and yard drains                                                               | Oil-water separator     (sedimentation with skimmin                                           | Removal to 15 mg/L<br>g)                 | Common usage                                                                                                                                               |
|                                                                                                                           | 2. Air flotation                                                                              | Removal to 10 mg/L                       | Limited usage                                                                                                                                              |
| Phenols, Ash handling, coal                                                                                               | 1. Biological treatment                                                                       | Removal to 1 mg/L                        | Not practiced                                                                                                                                              |
| pile drainage, floor and yard<br>drains                                                                                   | 2. Ozone treatment                                                                            | Removal to <0.01 mg/L                    | Not practiced                                                                                                                                              |
| al ariis                                                                                                                  | 3. Activated carbon                                                                           | Removal to <0.01                         | Not practiced                                                                                                                                              |
| Sulfate/sulfite, Water treat-<br>ment, chemical cleaning, ash<br>handling, coal pile drainage,<br>SO <sub>2</sub> removal | Ion exchange (sulfate) Oxidation and ion exchange (sulfite)                                   | 75-95%                                   | Not practiced                                                                                                                                              |
| Ammonia, Water treatment,<br>blowdown, chemical cleaning,                                                                 | 1 Stripping                                                                                   | 50-90%                                   | Not practiced; several installa-<br>tions in sewage treatment                                                                                              |
| closed cooling water systems                                                                                              | 2. Biological nitrification                                                                   | Removal to 2 mg/L                        | Not practiced for these waste streams                                                                                                                      |
|                                                                                                                           | 3. Ion exchange                                                                               | 80-95%                                   | Not practiced                                                                                                                                              |
| Oxidizing agents, Chemical cleaning                                                                                       | Neutralization with reducing<br>agent and precipitation where<br>necessary                    | Neutral pH and >95% removal              | Limited usage                                                                                                                                              |
| Fluoride, Chemical cleaning                                                                                               | Chemical precipitation                                                                        | Removal to 1 mg/L                        | Limited usage                                                                                                                                              |
| Boron, Low level radwastes                                                                                                | Ion exchange                                                                                  | Removal to 1 mg/L                        | Not generally practiced-radio-<br>active material would concen-<br>trate on ion exchange resin<br>requiring inclusion in solid<br>radwaste disposal system |

TABLE 19-30. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW AND TREATED WASTEWATER, PLANT 1226 [1]

|                                                                        |                  |                  |                      |             |               |                    |             |         | Chemical p         |         | ion          |                    |
|------------------------------------------------------------------------|------------------|------------------|----------------------|-------------|---------------|--------------------|-------------|---------|--------------------|---------|--------------|--------------------|
|                                                                        | Coolin           |                  | Reverse<br>blowdown  |             | pond ef       | fluent             |             | g tower | Li<br>blowdown     | Ash     | pond ef      |                    |
| Toxic pollutant                                                        | μq<br>Inlet      | /L<br>Outlet     | Percent<br>removal   | μς<br>Inlet | I/L<br>Outlet | Percent<br>removal | μς<br>Inlet | Outlet  | Percent<br>removal | Inlet   | /L<br>Outlet | Percent<br>removal |
| Metals and inorganics                                                  |                  |                  |                      |             |               |                    |             |         |                    |         |              |                    |
| Antimony                                                               | 7                | 10               | 0 <sup>a</sup>       | 7           | BDL           | 100 <sup>b</sup>   | 7           | 4       | 43                 | 7       | 10           | o <sup>a</sup>     |
| Arsenic                                                                | 4                | 1                | 75 <sub>c</sub>      | 9           | <1            | >89 <sub>c</sub>   | 4           | 3       | 25 <sub>a</sub>    | 9       | 1            | 89 <sub>c</sub>    |
| Beryllium                                                              | <0.5             | <0.5             | o <sup>a</sup>       | <0.5        | <0.5          |                    | <0.5        | 0.9     | $\hat{o}^{a}$      | <0.5    | <0.5         |                    |
| Cadmium                                                                | 1.8              | 2.5              |                      | 2.0         | 1.3           | 35                 | 1.8         | 3.0     | 0 a                | 2.0     | 2.0          | 0<br>0             |
| Chromium<br>Copper                                                     | 5<br><b>4</b> 7  | <2<br>10         | 60<br>79             | 6<br>14     | <2<br>10      | >67<br>29          | 4<br>47     | 9<br>18 | 62                 | 6<br>14 | 11<br>10     | 29                 |
| Cyanide                                                                | 5                | 10               | 80                   | <1          | 8             | 29 <b>a</b>        | 47          | 10      | 62                 | 14      | 10           |                    |
| Lead                                                                   | 3                | <3               | >0                   | 4           | <3            | >25                | 3           | 5       | o <sup>a</sup>     | 4       | <3           | >25<br>0a          |
| Mercury                                                                | 0.2              | 0.3              | o <sup>a</sup>       | <0.2        | <0.2          | c                  | 0.2         | 0.7     | õa                 | <0.2    | 0.3          | oa                 |
| Nickel                                                                 | 6.0              | 3.0              | <sup>50</sup> c      | 5.5         | 5.0           | 9                  | 6.0         | 2.9     | <sup>52</sup> c    | 5.5     | 6.0          | o <sup>a</sup>     |
| Selenium                                                               | <2               | <2               |                      | 8           | 2             | 75                 | <2          | <2      |                    | 8       | 8            | 0                  |
| Silver                                                                 | 0.7              | 0.6              | 14 <sub>c</sub>      | 0.5         | <0.2          | >60_               | 0.7         | 0.9     | 0 <b>a</b>         | 0.5     | 0.4          | 20 <sub>c</sub>    |
| Thallium                                                               | <1               | <1               |                      | <1          | <1            |                    | <1          | <1      | c                  | <1      | <1           |                    |
| Zinc                                                                   | 27               | <2               | >92                  | 7           | <2            | >57                | 26          | 2       | 92                 | 7       | 2            | 57                 |
| Ethers                                                                 | -0               |                  |                      |             |               |                    |             |         |                    |         |              |                    |
| 4-Chlorophenol                                                         | <1               |                  |                      |             |               |                    |             |         |                    |         |              |                    |
| Phthalates                                                             |                  |                  |                      |             |               |                    |             |         |                    |         |              |                    |
| Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate                     | 3.2              | 1.2              | 63<br>0 <sup>8</sup> |             |               |                    |             |         |                    |         |              |                    |
| Di-n-butyl phthalate<br>Diethyl phthalate<br>Dimethyl phthalate        | 5.0<br><1<br>6.1 | 11.3<br><1<br><1 | _c<br>>84            | 2 3         | 9.9<br>5.5    | o <sup>a</sup>     |             |         |                    |         |              |                    |
| Phenols                                                                | 6.1              | (1               | 20 <del>4</del>      | 2 3         | 5.5           | U                  |             |         |                    |         |              |                    |
| Phenol                                                                 | 1.7              | NA               | _c                   | 2.0         | NA            | _c                 |             |         |                    |         |              |                    |
| Aromatics                                                              | 2                | ••••             |                      | 2.0         | м.            |                    |             |         |                    |         |              |                    |
| Benzene                                                                | 3.8              |                  |                      |             | 1.9           |                    |             |         |                    |         |              |                    |
| 1,3-Dichlorobenzene                                                    | <1               |                  |                      |             | 1.7           |                    |             |         |                    |         |              |                    |
| Ethylbenzene                                                           | -                | <1               |                      |             |               |                    |             |         |                    |         |              |                    |
| Toluene                                                                |                  |                  |                      | <1          |               |                    |             |         |                    |         |              |                    |
| 1,2,4-Trichlorobenzene                                                 | 4.6              |                  |                      |             |               |                    |             |         |                    |         |              |                    |
| Polycyclic aromatic hydrocarbons                                       |                  |                  |                      |             |               |                    |             |         |                    |         |              |                    |
| Acenapthene                                                            | 1.1              | <1               | >9 <sub>c</sub>      | <1          | <1            | _c<br>0ª           |             |         |                    |         |              |                    |
| Acenaphthylene                                                         | <1               | <1               | _c                   | <1          | 1.6           | oª                 |             |         |                    |         |              |                    |
| Anthracene d Benz(a)anthracene                                         |                  | 1.5              |                      |             | <1            |                    |             |         |                    |         |              |                    |
| Benz(a)anthracene                                                      | 3.2              | 1.2              | 63                   |             |               |                    |             |         |                    |         |              |                    |
| Benzo(b)fluoranthene <sup>g</sup><br>Benzo(k)fluoranthene <sup>g</sup> | 2.9              |                  |                      | <1          |               |                    |             |         |                    |         |              |                    |
| 2-Chlorogaphthalene                                                    | 2.9<br>2.1       |                  |                      | <1          |               |                    |             |         |                    |         |              |                    |
| Chrysene                                                               | 3.2              | 1.2              | 63                   |             |               |                    |             |         |                    |         |              |                    |
| Fluoranthene                                                           | ٠.ـ              | <1               |                      |             | 2.7           |                    |             |         |                    |         |              |                    |
| Fluorene                                                               |                  | <1               |                      | <1          |               |                    |             |         |                    |         |              |                    |
| Indeno(1,2,3-cd)pyrene                                                 |                  |                  |                      |             |               |                    |             |         |                    |         |              |                    |
| Naphthalene<br>Phenanthrene                                            |                  | <1               |                      |             | 1.4           |                    |             |         |                    |         |              |                    |
|                                                                        |                  | 1.5              |                      |             | <1            |                    |             |         |                    |         |              |                    |
| Pyrene                                                                 |                  |                  |                      |             | <1            |                    |             |         |                    |         |              |                    |

TABLE 19-30 (continued).

|                                                        |           |          | Reverse               | osmosis   |               |                 |           |           | Chemical p     |           | ion       |         |
|--------------------------------------------------------|-----------|----------|-----------------------|-----------|---------------|-----------------|-----------|-----------|----------------|-----------|-----------|---------|
|                                                        | Coolin    | g tower  |                       |           | pond ef       | luent           | Cooling   | tower k   | lowdown        |           | pond ef   | fluent  |
|                                                        |           | ration,  |                       |           | ration,       |                 | Concentra | ation,    |                | Concent   |           |         |
| - · · · · ·                                            |           | 1/L      | Percent               |           | / <u>L</u>    | Percent         | µg/1      |           | Percent        |           | /L        | Percent |
| Toxic pollutant                                        | Inlet     | Outlet   | removal               | Inlet     | Outlet        | removal         | Inlet (   | Outlet    | removal        | Inlet     | Outlet    | remova] |
| Halogenated aliphatics                                 |           |          |                       |           |               |                 |           |           |                |           |           |         |
| Bromoform<br>Chlorodibromomethane                      | 150<br>59 | ND<br>ND | 100<br>100            | <1<br><1  | <1<br><1      | _c<br>_c        |           |           |                |           |           |         |
| Hexachlorobutadiene                                    | 4.6       | NU       | 100                   | <b>\1</b> | 1             |                 |           |           |                |           |           |         |
| Hexachlorocyclopentadiene                              | <1        | <1       | _c                    | <1        | <1            | _c<br>_c        |           |           |                |           |           |         |
| Tetrachloroethylene                                    | <2        | 1.3      | Λa                    | <1        | <1            | -c              |           |           |                |           |           |         |
| 1,1,1-Trichloroethane                                  | ND        | <1       | oa<br>o_              |           |               |                 |           |           |                |           |           |         |
| Trichloroethylene                                      | ND        | <1       | ŏª                    |           |               |                 |           |           |                |           |           |         |
| Pesticides and metabolites                             |           |          |                       |           |               |                 |           |           |                |           |           |         |
| Aldrin                                                 | <1        |          |                       | .,        |               | c               |           |           |                |           |           |         |
| σ-BHC <sup>H</sup>                                     | <1        |          |                       | <1        | <1            | _c<br>_c        |           |           |                |           |           |         |
| у-внс <sup>h</sup><br>4,4'-DDT                         | <1<br><1  |          |                       | <1        | <1            | -               |           |           |                |           |           |         |
| Endosulfan sulfate                                     | <1        |          |                       |           |               |                 |           |           |                |           |           |         |
| Endrin aldehyde                                        | <1        |          |                       |           |               |                 |           |           |                |           |           |         |
| Heptachlor epoxide                                     | <1        |          |                       |           | <1            |                 |           |           |                |           |           |         |
| •                                                      |           |          |                       |           |               |                 |           |           |                |           |           |         |
|                                                        |           |          | precipita             | tion      |               |                 |           |           |                |           |           | -       |
|                                                        |           | Lim      | e + Fe <sup>'2</sup>  |           |               |                 |           | Activa    | ated carbo     | <u>n</u>  |           | -       |
| Metals and inorganics                                  |           |          |                       |           |               |                 |           |           |                |           |           |         |
| Antimony                                               | 7         | 9        | 0 <sup><b>a</b></sup> | 7         | 9             | o <b>a</b>      |           |           |                |           |           |         |
| Arsenic                                                | 4         | 3        | 25<br>_c              | 9         | 3             | 67 <sub>C</sub> |           |           |                |           |           |         |
| Beryllium                                              | <0.5      | <0.5     |                       | <0.5      | <0.5          | oa              |           |           |                |           |           |         |
| Cadmium<br>Chromium                                    | 1.8<br>5  | 1.6      | 11                    | 2.0       | 3.2           |                 |           |           |                |           |           |         |
| Copper                                                 | 47        | 3<br>4   | 40<br>91              | 6<br>14   | <b>4</b><br>7 | 33<br>50        |           |           |                |           |           |         |
| Cyanide                                                | 4,        | •        | 27                    | 14        | ,             | 50              |           |           |                |           |           |         |
| Lead                                                   | 3         | <3       | >0                    | 4         | <3            | >25             |           |           |                |           |           |         |
| Mercury                                                | 0.2       | 0.2      | Ö                     | <0.2      | 0.6           | n.a.            |           |           |                |           |           |         |
| Nickel                                                 | 6.0       | 6.0      | 0 <sub>C</sub>        | 5.5       | 9.0           | ŏª              |           |           |                |           |           |         |
| Selenium                                               | <2        | <2       | _c                    | 8         | 7             | 12              |           |           |                |           |           |         |
| Silver                                                 | 0.7       | 0.4      | 43 <sub>c</sub>       | 0.5       | 0.4           | 20 <sub>c</sub> |           |           |                |           |           |         |
| Thallium                                               | <1        | <1       |                       | <1        | <1            |                 |           |           |                |           |           |         |
| Zinc                                                   | 26        | 2        | 92                    | 7         | 6             | 14              |           |           |                |           |           |         |
| Ethers                                                 |           |          |                       |           |               |                 |           |           |                |           |           |         |
| 4-Chlorophenol                                         |           |          |                       |           |               |                 | <1        |           |                |           |           |         |
| Phthalates<br>Bis(2-ethylhexyl) phthalate <sup>d</sup> |           |          |                       |           |               |                 |           | <b>41</b> | 60             | <b>41</b> | <b>~1</b> | _c      |
| Butyl benzyl phthalate                                 |           |          |                       |           |               |                 | 3.2       | <1        | 69             | <1        | <1        | -       |
| Di-n-butyl phthalate                                   |           |          |                       |           |               |                 | 5.0       | 6.8       | o <sup>a</sup> |           |           |         |
| Diethyl phthalate                                      |           |          |                       |           |               |                 | <1        | ND.       | 100            |           | <1        |         |
| Dimethyl phthalate                                     |           |          |                       |           |               |                 | 6.1       | ND        | 100            | 2.3       | 1.5       | 35      |
| Phenols                                                |           |          |                       |           |               |                 |           |           |                |           |           |         |
|                                                        |           |          |                       |           |               |                 |           |           |                |           |           |         |
| Phenol                                                 |           |          |                       |           |               |                 | 1.7       | NA        | _c             | 2.0       | NA        | _c      |

TABLE 19-30 (continued).

|                                                                        |        |           | Chemical p |       | ion      |         |               | Li       | me             |          |           |                  |
|------------------------------------------------------------------------|--------|-----------|------------|-------|----------|---------|---------------|----------|----------------|----------|-----------|------------------|
|                                                                        | Coolin | q tower l |            |       | pond ef  | fluent  | Coolin        | ng tower |                |          | n pond ef | fluent           |
|                                                                        |        | ration,   |            |       | tration, |         |               | tration, |                |          | tration,  |                  |
|                                                                        |        | J/L       | Percent    |       | ı/L      | Percent | μο            | J/L      | Percent        | μο       | g/L       | Perc <b>e</b> nt |
| Toxic pollutant                                                        | Inlet  | Outlet    | removal    | Inlet | Outlet   | removal | Inlet         | Outlet   | removal        | Inlet    | Outlet    | removal          |
| Aromatics                                                              |        |           |            |       |          |         |               |          |                |          |           |                  |
| Benzene                                                                |        |           |            |       |          |         | 3.8           |          |                |          |           |                  |
| 1,3-Dichlorobenzene                                                    |        |           |            |       |          |         | <1            |          |                |          |           |                  |
| Ethylbenzene                                                           |        |           |            |       |          |         |               |          |                |          | 2.3       |                  |
| Toluene                                                                |        |           |            |       |          |         |               |          |                | <1       |           |                  |
| 1,2,4-Trichlorobenzene <sup>e</sup>                                    |        |           |            |       |          |         | 4.6           |          |                |          |           |                  |
| Polycyclic aromatic hydrocarbons                                       |        |           |            |       |          |         |               |          |                |          |           |                  |
| Acenapthene                                                            |        |           |            |       |          |         | 1.1           |          | _c             | <1       |           |                  |
| Acenaphthylene                                                         |        |           |            |       |          |         | <1            | <1       |                | <1       |           |                  |
| Anthracene Benz(a)anthracene                                           |        |           |            |       |          |         | 3.2           | <1       | 60             | <1       | <1        | _c               |
| Benz(a)anthracene                                                      |        |           |            |       |          |         | 2.9           | 5.9      | 69<br>0a       | <1       | 1.2       | _c<br>0a<br>0a   |
| Benzo(b)fluoranthene <sup>g</sup><br>Benzo(k)fluoranthene <sup>g</sup> |        |           |            |       |          |         | 2.9           | 5.9      | o <sup>a</sup> | <1       | 1.2       | ña               |
|                                                                        |        |           |            |       |          |         | 2.1           | 3.9      | U              | `1       | 1.2       |                  |
| 2-Chloronaphthalene<br>Chrysene                                        |        |           |            |       |          |         | 3.2           | <1       | 69             | <1       | <1        | _c               |
| Fluoranthene                                                           |        |           |            |       |          |         | 3.2           | <1       | 0,             | 1.0      |           |                  |
| Fluorene                                                               |        |           |            |       |          |         |               | •        |                | <1       |           |                  |
| Indeno(1,2,3-cd)pyrene                                                 |        |           |            |       |          |         |               |          |                | _        | 2.1       |                  |
| Naphthalene .                                                          |        |           |            |       |          |         | <1            |          |                |          |           |                  |
| Phenanthrene                                                           |        |           |            |       |          |         |               |          |                |          |           |                  |
| Pyrene                                                                 |        |           |            |       |          |         | <1            |          |                | 7.1      | <1        | >86              |
| Halogenated aliphatics                                                 |        |           |            |       |          |         |               |          |                |          |           |                  |
| Bromoform                                                              |        |           |            |       |          |         | 150           | ND       | 100            | <1       | ND        | 100 <sub>C</sub> |
| Chlorodibromomethane                                                   |        |           |            |       |          |         | 59            | ND       | 100            | <1       | <1        |                  |
| Chloroform                                                             |        |           |            |       |          |         | <1            | ND       | 100            |          |           |                  |
| l,2-Dichloroethane<br>Hexachlorobutadiene                              |        |           |            |       |          |         |               | <1       |                |          |           |                  |
|                                                                        |        |           |            |       |          |         |               |          |                | 41       |           |                  |
| Hexachlorocyclopentadiene                                              |        |           |            |       |          |         | <1            |          |                | <1<br><1 |           |                  |
| Tetrachloroethylene                                                    |        |           |            |       |          |         | <2            |          |                | 1        | <1        |                  |
| 1,1,1-Trichloroethane                                                  |        |           |            |       |          |         |               |          |                |          | <1        |                  |
| Trichloroethylene Pesticides and metabolites                           |        |           |            |       |          |         |               |          |                |          | <b>\1</b> |                  |
|                                                                        |        |           |            |       |          |         | <b>&lt;</b> 1 |          |                |          |           |                  |
| Aldrin<br>б-внс<br>у-внс <sup>h</sup>                                  |        |           |            |       |          |         | <1            |          |                |          |           |                  |
| v-RHCh                                                                 |        |           |            |       |          |         | <1            |          |                |          |           |                  |
| 4,4'-DDT                                                               |        |           |            |       |          |         | ₹1            |          |                |          |           |                  |
| Endosulfan sulfate <sup>1</sup>                                        |        |           |            |       |          |         | <1            |          |                |          |           |                  |
| Endrin aldehyde                                                        |        |           |            |       |          |         | ₹1            |          |                |          |           |                  |
|                                                                        |        |           |            |       |          |         | ₹1            |          |                |          |           |                  |
| Heptachlor epoxide                                                     |        |           |            |       |          |         | <1            |          |                |          |           |                  |

a Negative removal.

<sup>&</sup>lt;sup>b</sup>Effluent concentration below detectable limits.

 $<sup>^{\</sup>rm d}$ Combination of bis(2-ethylhexyl) phthalate, benz(a)anthracene, and chrysene.  $^{\rm i}$ Combination of endosulfan sulfate and endrin aldehyde.

fCombination of phenanthrene and anthracene.

 $g_{\mbox{Combination of benzo(b)}}$  fluoranthene and benzo(k) fluoranthene.

 $<sup>^{</sup>h}$ Combination of  $\delta$ -BHC and  $\gamma$ -BHC.

eCombination of 1,2,4-trichlorobenzene and hexachlorobutadiene.

TABLE 19-31. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN RAW AND TREATED WASTEWATER, PLANT 1226 [1]

|                                           |             |         | Reverse          | osmosis             |         |                |
|-------------------------------------------|-------------|---------|------------------|---------------------|---------|----------------|
|                                           |             |         | blowdown         | Ash                 | pond ef | fluent         |
|                                           | Concen      | tration | Percent          | Concen              | tration | Percent        |
| Pollutant                                 | Inlet       | Outlet  | removal          | Inlet               | Outlet  | removal        |
| TOC, mg/L<br>pH                           | <20<br>6.8  | <20     | _a               | <20<br>9.1          | <20     | _a             |
| Methoxyclor, µg/L<br>Vanadium, µg/L       | 1.1<br>27   | 58      | $o^{\mathbf{b}}$ | 78                  | 14      | 82             |
|                                           |             | Ch      | emical pr        | ecipita             | tion    |                |
|                                           |             |         |                  | me                  |         |                |
| TOC, mg/L<br>pH                           | <20<br>11.5 | <20     | _a               | <20<br>11.5         | <20     | _a             |
| Methoxyclor, µg/L<br>Vanadium, µg/L       | 27          | 6       | 78               | 78                  | 78      | 0              |
|                                           |             | Ch      | nemical pr       | ecipita             | tion    |                |
|                                           |             |         | Lime             | + Fe <sup>+</sup> 2 |         |                |
| TOC, mg/L                                 | <20         | <20     | _a               | <20                 | <20     | _a             |
| pH<br>Methoxyclor, μg/L<br>Vanadium, μg/L | 1.1         | 12      | 56               | 78                  | 82      | 0 <sub>p</sub> |

a Indeterminate.

bNegative removal.

TABLE 19-32. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW AND TREATED WASTEWATER, PLANT 5409 [1]

|                                          |        |                 |                  |         |                 |                 |        |            | Chemical p                       |       | tion                  |                                   |
|------------------------------------------|--------|-----------------|------------------|---------|-----------------|-----------------|--------|------------|----------------------------------|-------|-----------------------|-----------------------------------|
|                                          | 01     |                 |                  | osmosis |                 | 61              | Coolid | +          | Lir                              |       | nand of               | £1                                |
|                                          |        | ng tower        | blowdown         |         | n pond ef       | rluent          |        | ng tower i | DIOMGOMU                         |       | n pond ef<br>tration, | riuent                            |
|                                          |        | tration,<br>g/L | Percent          |         | tration,<br>g/L | Percent         |        | g/L        | Percent                          |       | g/L                   | Percent                           |
| Toxic pollutant                          | Inlet  | Outlet          | removal          | Inlet   | Outlet          | removal         | Inlet  | Outlet     | removal                          | Inlet | Outlet                | removal                           |
| TOXIC POTTUCANT                          | Illiet | outlet          | Temoval          | Inter   | outlet          | Temoval         | 111160 | Odtiet     | Temoval                          | Intec | ouciet                | Temoval                           |
| Metals and inorganics                    |        |                 |                  |         |                 |                 |        |            |                                  |       |                       |                                   |
| Antimony                                 | <1     | <1              | _a<br>_a         | 5       | 2.5             | 50              | <1     | 4          | $_{0_{\mathbf{p}}}^{\mathbf{p}}$ | 5     | 4                     | 20                                |
| Arsenic                                  | <1     | <1              |                  | 74      | <1              | >99             | <1     | 2.5        |                                  | 74    | <1                    | >99<br>_a                         |
| Beryllium                                | 3.4    | <0.5            | >85              | <0.5    | <0.5            | _a              | 3.4    | 0.8        | 76                               | <0.5  | <0.5                  | - "                               |
| Cadmium                                  | 0.8    | <0.5            | >37              | <0.5    | <0.5            | _a              | 0.8    | <0.5       | >38                              | <0.5  | <0.5                  | _a                                |
| Chromium                                 | 37     | <2              | >94              | <2      | <2              | _a              | 37     | 8.8        | 76                               | <2    | <2                    | _a                                |
| Copper                                   | 620    | 51              | 92 <sub>b</sub>  | 26      | 9               | 65              | 620    | 70         | 89                               | 26    | 12                    | 54                                |
| Cyanide                                  | 5      | 24              | 0,2              | 13      | 10              | <sup>23</sup> b |        |            |                                  |       |                       |                                   |
| Lead                                     | 70     | <3              | >96              | <3      | 6.5             | 00              | 70     | <3         | >96                              | <3    | <3                    | _a<br>_a<br>12 <sub>b</sub><br>0b |
| Mercury                                  | 0.5    | <0.2            | >60              | <0.2    | <0.2            | Ľa              | 0.5    | <0.2       | >60                              | <0.2  | <0.2                  | _ª                                |
| Nickel                                   | 4.0    | 3.6             | 10               | 2.5     | 1.5             | 40              | 4      | 2.3        | 43,                              | 2.5   | 2.2                   | 12,                               |
| Selenium                                 | <2     | <2              | 10<br>_a         | 42      | 6.1             | 85              | <2     | 2.3        | 43 <sub>b</sub>                  | 42    | 52                    | O <sub>D</sub>                    |
| Silver                                   | 14     | 1.1             | 92               | 1       | 1               | 0               | 14     | 7.8        | 44                               | 1     | 1.1                   | 0,0                               |
| Thallium                                 | 8      | 4               | 50               | 9       | ī               | 89              | 8      | <1         | >88                              | 9     | 8                     | 11                                |
| Zinc                                     | 61     | <2              | >97              | 11      | 2               | 92              | 61     | <2         | >97                              | 11    | <2                    | >82                               |
| Phthalates                               |        | -               |                  |         | _               |                 |        |            |                                  |       |                       |                                   |
| D:-(2 -41-313) -141-3-4-C                |        | _               | 43               | . •     |                 | _a              |        |            |                                  |       |                       |                                   |
| Bis(2-ethylhexyl) phthalate <sup>C</sup> | 3.4    | 2               | 41               | <1      | <1              | -               |        |            |                                  |       |                       |                                   |
| Di-n-butyl phthalate                     | 10     | ND              | 100              | 12      |                 |                 |        |            |                                  |       |                       |                                   |
| Diethyl phthalate                        | 2.7    | <1_             | >63              | <1      |                 |                 |        |            |                                  |       |                       |                                   |
| Dimethyl phthalate                       | 11     | 4.7             | 56               | 6.7     |                 |                 |        |            |                                  |       |                       |                                   |
| Phenols                                  |        |                 |                  |         |                 |                 |        |            |                                  |       |                       |                                   |
| Phenoi                                   | 4.1    | NA              | _a               | 4.1     | NA              | _a              |        |            |                                  |       |                       |                                   |
| Aromatics                                |        |                 |                  |         |                 |                 |        |            |                                  |       |                       |                                   |
| Benzene                                  | 1.5    | <1              | >33              | 1.0     | <1              | >0              |        |            |                                  |       |                       |                                   |
| Ethylbenzene                             |        |                 |                  |         | 1.7             |                 |        |            |                                  |       |                       |                                   |
| Toluene                                  |        |                 |                  |         | 3.3             |                 |        |            |                                  |       |                       |                                   |
| 1,2,4-Trichlorobenzene <sup>d</sup>      |        |                 |                  | <1      |                 |                 |        |            |                                  |       |                       |                                   |
| Polycyclic aromatic hydrocarbon          | s      |                 |                  |         |                 |                 |        |            |                                  |       |                       |                                   |
| Acenapthene                              | 1.7    | <1              | >41 <sub>a</sub> | 1.0     |                 |                 |        |            |                                  |       |                       |                                   |
| Acenaphthylene                           | <1     | < <b>1</b>      | a                | <1      |                 |                 |        |            |                                  |       |                       |                                   |
| Anthracene                               | 6.2    | -               |                  |         |                 |                 |        |            |                                  |       |                       |                                   |
| Benz(a)anthracene                        | 3.4    | 2               | 41               | <1      | <1              | _a              |        |            |                                  |       |                       |                                   |
| Benzo(b)fluoranthene                     | 2.8    | ND              | 100              |         | ••              |                 |        |            |                                  |       |                       |                                   |
| Benzo(k)fluoranthene                     | 2.8    | ND              | 100              |         |                 |                 |        |            |                                  |       |                       |                                   |
| 2-Chloronaphthalene                      | <1     | 1.4             | <sup>100</sup> a |         |                 |                 |        |            |                                  |       |                       |                                   |
| Chrysene                                 | 3.4    | 2               | 41               | <1      | <1              | _a              |        |            |                                  |       |                       |                                   |
| Fluoranthene                             | 5.5    | 7.4             | <b>"</b> _b      |         | <1              | _a<br>_a        |        |            |                                  |       |                       |                                   |
| Fluoranthene<br>Fluorene                 |        |                 | 41<br>0<br>a     | <1      | <1              | -               |        |            |                                  |       |                       |                                   |
|                                          | <1     | <1              | -                | <1      |                 |                 |        |            |                                  |       |                       |                                   |
| Naphthalene                              | <1     |                 |                  |         |                 |                 |        |            |                                  |       |                       |                                   |
| Phenanthrene                             | 6.2    |                 |                  |         | _               |                 |        |            |                                  |       |                       |                                   |
| Pyrene                                   | 3.5    | <1              | >71              |         | <1              |                 |        |            |                                  |       |                       |                                   |

TABLE 19-32 (continued).

|                                                                                                             |       |          | _               |                    |          |          |                |          | recipitation   |        |
|-------------------------------------------------------------------------------------------------------------|-------|----------|-----------------|--------------------|----------|----------|----------------|----------|----------------|--------|
|                                                                                                             |       | ,        |                 | osmosis            |          |          |                |          | me             | £3     |
|                                                                                                             |       | ng tower | DIOWDOWN        |                    | pond ef  | fluent   | Cooling tower  | DIOMGOMU | Ash pond ef    | riuent |
|                                                                                                             |       | tration, |                 |                    | tration; |          | Concentration, |          | Concentration, |        |
|                                                                                                             |       | 1/L      | Percent         |                    | 1/L      | Percent  | pg/L           | Percent  | µg/L           | Percen |
| Toxic pollutant                                                                                             | Inlet | Outlet   | removal         | Inlet              | Outlet   | removal  | Inlet Outlet   | removal  | Inlet Outlet   | remova |
| Halogenated aliphatics                                                                                      |       |          |                 |                    |          |          |                |          |                |        |
| Chlorodibromomethane                                                                                        | <1    |          |                 |                    |          |          |                |          |                |        |
| Chloroform                                                                                                  | 2.4   | <1       | >58             | <1                 |          |          |                |          |                |        |
| Hexachlorobutadiene <sup>d</sup>                                                                            |       |          |                 | <1                 |          |          |                |          |                |        |
| Hexachlorocyclopentadiene                                                                                   | <1    | <1       | _a              | _                  |          |          |                |          |                |        |
| Trichloroethylene                                                                                           | <1    | ND       | 100             |                    |          |          |                |          |                |        |
| Pesticides and metabolites                                                                                  |       |          |                 |                    |          |          |                |          |                |        |
| Aldrip                                                                                                      |       |          |                 | <1                 |          |          |                |          |                |        |
| R-BHC <sup>L</sup>                                                                                          |       | 1.1      |                 | •                  |          |          |                |          |                |        |
| 6-BHC <sup>g</sup>                                                                                          |       |          |                 |                    | <1       |          |                |          |                |        |
| у-вис <sup>д</sup>                                                                                          |       |          |                 |                    | <1       |          |                |          |                |        |
| 4,4'-DDD                                                                                                    |       | <1       |                 |                    | 1        |          |                |          |                |        |
| 4,4'-DDT                                                                                                    |       | 1        |                 | <1                 |          |          |                |          |                |        |
|                                                                                                             |       | -13      |                 | <1                 |          |          |                |          |                |        |
| β-Endosulfan                                                                                                |       | <1       |                 |                    |          |          |                |          |                |        |
| Endrin f                                                                                                    | <1    |          |                 | <1                 |          |          |                |          |                |        |
| Heptachlor <sup>f</sup>                                                                                     |       | 1.1      |                 |                    |          |          |                |          |                |        |
|                                                                                                             |       |          | Chemical p      |                    | tion     |          |                |          |                |        |
|                                                                                                             |       |          | Lime            | + Fe <sup>'Z</sup> |          |          |                | Activa   | ted carbon     |        |
| Metals and inorganics                                                                                       |       |          |                 |                    |          |          |                |          |                |        |
| Antimony                                                                                                    | <1.0  | <1.0     | _a<br>_a        | 5.0                | 3.5      | 30       |                |          |                |        |
| Arsenic                                                                                                     | <1.0  | <1.0     | _a              | 74                 | <1.0     | >99_     |                |          |                |        |
| Beryllium                                                                                                   | 3.4   | <0.5     | >85             | <0.5               | <0.5     | _a       |                |          |                |        |
| Cadmium                                                                                                     | 0.8   | 0.5      | 37              | <0.5               | <0.5     | _a       |                |          |                |        |
| Chromium                                                                                                    | 37    | <2.0     | >95             | <2.0               | <2.0     | _a       |                |          |                |        |
| Copper                                                                                                      | 620   | 48       | 92              | 26                 | 18       | 31       |                |          |                |        |
| Cyanide                                                                                                     | 020   |          | ,,              | 20                 | 10       | 31       |                |          |                |        |
| Lead                                                                                                        | 70    | <3       | >96             | <3.0               | <3.0     | _a       |                |          |                |        |
|                                                                                                             | 0.5   | <0.2     | >60             | <0.2               |          | _a       |                |          |                |        |
| Mercury                                                                                                     | 4.0   | 3.6      |                 | 2.5                | <0.2     |          |                |          |                |        |
| Nickel                                                                                                      |       |          | 10 <sub>a</sub> |                    | 2.0      | 20       |                |          |                |        |
| Selenium                                                                                                    | <2.0  | <2.0     |                 | 42                 | 32       | 24<br>0b |                |          |                |        |
| Silver                                                                                                      | 14    | 1.0      | 93              | 1.0                | 1.1      |          |                |          |                |        |
| Thallium                                                                                                    | 8.0   | 1.0      | >88             | 9.0                | 7.0      | 22       |                |          |                |        |
| Zinc                                                                                                        | 61    | <2       | >97             | 11                 | <2.0     | >82      |                |          |                |        |
| Phthalates                                                                                                  |       |          |                 |                    |          |          |                |          |                |        |
| Bis(2-ethylhexyl) phthalate <sup>C</sup><br>Di-n-butyl phthalate<br>Diethyl phthalate<br>Dimethyl phthalate |       |          |                 |                    |          |          |                |          |                |        |
| Phenols                                                                                                     |       |          |                 |                    |          |          |                |          |                |        |
|                                                                                                             |       |          |                 |                    |          |          |                |          |                |        |

Phenols

Phenol

TABLE 19-32 (continued).

|                                                                                                                                                                                      |           |           | Chemical p | recipitat         | tion     |         |                | ) at inst | ed carbon      |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|------------|-------------------|----------|---------|----------------|-----------|----------------|---------|
|                                                                                                                                                                                      | Cooli     | ng tower  |            | + Fe <sup>2</sup> | pond ef  | fluent  | Cooling tower  |           | Ash pond ef    | fluent  |
|                                                                                                                                                                                      |           | tration,  | 220        | Concent           | tration, |         | Concentration, |           | Concentration, |         |
|                                                                                                                                                                                      |           | g/L       | Percent    | u                 | J/L      | Percent | μg/L           | Percent   | μg/L           | Percent |
| Toxic pollutant                                                                                                                                                                      | Inlet     | Outlet    | removal    | Inlet             | Outlet   | removal | Inlet Outlet   | removal   | Inlet Outlet   | removal |
| Aromatics                                                                                                                                                                            |           |           |            |                   |          |         |                |           |                |         |
| Benzene<br>1,4-Dichlorobenzene<br>Ethylbenzene<br>Toluene<br>1,2,4-Trichlorobenzene <sup>d</sup>                                                                                     | 1.5       | <1<br>1.8 | >33        | 1.0               | <1       | >0      |                |           |                |         |
| Polycyclic aromatic hydrocarbons                                                                                                                                                     | :         |           |            |                   |          |         |                |           |                |         |
| Acenapthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene 2-Chloronaphthalene Chrysene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene | <1        |           |            |                   |          |         |                |           |                |         |
| Halogenated aliphatics                                                                                                                                                               |           |           |            |                   |          |         |                |           |                |         |
| Chlorodibromomethane<br>Chloroform<br>Hexachlorobutadiene <sup>d</sup>                                                                                                               | <1<br>2.4 | ND<br><1  | >58        | <1                |          |         |                |           |                |         |
| Hexachlorocyclopentadiene<br>Trichloroethylene                                                                                                                                       | <1<br><1  | ND        | 100        | <1                |          |         |                |           |                |         |
| Pesticides and metabolites                                                                                                                                                           |           |           |            |                   |          |         |                |           |                |         |
| Aldrin<br>β-BHC <sup>F</sup><br>δ-BHC <sup>G</sup><br>γ-BHC <sup>G</sup><br>4,4'-DDD<br>4,4'-DDT                                                                                     |           | <1<br><1  |            | <1                |          |         |                |           |                |         |
| β-Endosulfan<br>Endrin<br>Heptachlor <sup>f</sup>                                                                                                                                    | <1        |           |            | <1                |          |         |                |           |                |         |

<sup>&</sup>lt;sup>a</sup>Interdeterminate.

 $<sup>^{\</sup>mathbf{e}}$ Combination of benzo(b)fluoranthene and benzo(k)fluoranthene.

b Negative removal.

fCombination of heptachlor and  $\beta$ -BHC.

<sup>&</sup>lt;sup>C</sup>Combination of bis(2-ethylhexyl) phthalate, benz(a)anthracene, and chrysene.  $^{g}$ Combination of  $\delta$ -BHC and  $\gamma$ -BHC.

 $<sup>^{\</sup>mathbf{d}}_{\text{Combination of 1,2,4-trichlorobenzene}}$  and hexachlorobutadiene.

TABLE 19-33. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN RAW AND TREATED WASTEWATER, PLANT 5409 [1]

|                      |           | Reverse osmosis                      |                  |           |         |                |  |  |  |  |
|----------------------|-----------|--------------------------------------|------------------|-----------|---------|----------------|--|--|--|--|
| Pollutant            | Coolin    | Cooling tower blowdown Ash pond effl |                  |           |         |                |  |  |  |  |
|                      | Concen    | Concentration                        |                  | Concen    | Percent |                |  |  |  |  |
|                      | Inlet     | Outlet                               | removal          | Inlet     | Outlet  | remova         |  |  |  |  |
| TOC, mg/L            | 21        | <20                                  | > 5              | <20       | <20     | _ <sup>a</sup> |  |  |  |  |
| pH<br>Vanadium, μg/L | 6.8<br>11 | 16                                   | $^{0}\mathbf{p}$ | 6.7<br>31 | 21      | 32             |  |  |  |  |
|                      |           | Chemical precipitation               |                  |           |         |                |  |  |  |  |
|                      |           | Lime                                 |                  |           |         |                |  |  |  |  |
| TOC, mg/L            | 21        | <20                                  | >5               | <20       | <20     | _a             |  |  |  |  |
| pH<br>Vanadium, μg/L | 11        | 6                                    | 45               | 31 19     |         | 39             |  |  |  |  |
|                      |           | Chemical precipitation               |                  |           |         |                |  |  |  |  |
|                      |           | Lime + Fe <sup>+2</sup>              |                  |           |         |                |  |  |  |  |
| TOC, mg/L            | 21        | NA                                   |                  | <20       | NA      |                |  |  |  |  |
| pH<br>Vanadium, μg/L | 11        | 46                                   | $^{0}\mathbf{p}$ | 31        | 19      | 39             |  |  |  |  |
|                      |           |                                      |                  |           |         |                |  |  |  |  |

a Indeterminate.

bNegative removal.

TABLE 19-34. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN RAW AND TREATED WASTEWATER, PLANT 5604 [1]

|                                                                 |       |         |                |         |            |                 |       |          | Chemical p       |       | tion      |                |
|-----------------------------------------------------------------|-------|---------|----------------|---------|------------|-----------------|-------|----------|------------------|-------|-----------|----------------|
|                                                                 |       |         |                | osmosis |            |                 |       |          | L <sub>1</sub>   |       |           |                |
|                                                                 |       |         | blowdown       |         | pond ef    | fluent          |       | ng tower | blowdown         |       | n pond ef | fluent         |
|                                                                 |       | ration, |                |         | ration,    |                 |       | tration, |                  |       | tration,  | D              |
| Toxic pollutant                                                 |       | I/L     | Percent        |         | /L         | Percent         | µg/L  |          | Percent          | µg/L  |           | Percent        |
|                                                                 | Inlet | Outlet  | removal        | Inlet   | Outlet     | removal         | Inlet | Outlet   | removal          | Inlet | Outlet    | removal        |
| Metals and inorganics                                           |       |         |                |         |            |                 |       |          |                  |       |           |                |
| Antimony                                                        | 5     | 2       | 60             | 6       | 3          | <sup>50</sup> b | 5     | 3        | 40               | 6     | 5         | 14,            |
| Arsenic                                                         | 7     | 49      | o a            | <1      | <1         | -               | 7     | <1       | >86 <sub>b</sub> | <1    | 1         | oa             |
| Beryllium                                                       | <0.5  | <0.5    |                | 2.5     | 5          | 0 <b>ª</b>      | <0.5  | <0.5     | Ъ́               | 2.5   | 0.5       | <80            |
| Cadmium                                                         | <0.5  | 2       | o <sup>a</sup> | 1       | <1         | >0              | <0.5  | <0.5     |                  | 1     | 0.5       | <50            |
| Chromium                                                        | 2     | 2       | 0              | 4       | <1         | >75             | 2     | <2       | >0               | 4     | 2         | 50             |
| Copper                                                          | 180   | 32      | 82_            | 80      | 9          | 89              | 180   | 48       | 73               | 80    | 23        | 71             |
| Cyanide                                                         | 3     | 6       | oª             | 22      | 4          | 82              |       |          |                  |       |           |                |
| Lead                                                            | <3    | 20      | oa<br>oa       | <3      | <1         | 67              | <3    | <3       | _b               | <3    | 3         | o*             |
| Hercury                                                         | <0.2  | <1      | ŏª             | <0.2    | <1         | oa              | <0.2  | <0.2     | _p               | <0.2  | 0.2       | o <sup>a</sup> |
| Nickel                                                          | 6     | <1      | >83            | 9.5     | < <b>1</b> | >89             | 6     | 12       | o <b>a</b>       | 9.5   | 0.5       | < <b>9</b> 5   |
| Selenium                                                        | <2    | <1      | 50_            | 3       | ₹î         | >67             | <2    | ₹2       | •                | 3     | 3         | 0              |
| Silver                                                          | 3     | 4       | o a            | 5.5     | 2          |                 | 3     | 4        | o.a.             | 5.5   | 5         | 9.             |
|                                                                 |       |         | o <sub>b</sub> |         |            | 64              |       |          | o <b>a</b>       |       |           | 0ª             |
| Thallium                                                        | <1    | <1      | -              | <1      | 2          | 0*              | <1    | <1       |                  | <1    | 1         |                |
| Zinc                                                            | 780   | 3       | 99             | 300     | 53         | 82              | 780   | 140      | 82               | 300   | 31        | 90             |
| Phthalates                                                      |       |         |                |         |            |                 |       |          |                  |       |           |                |
| Bis(2-ethylhexyl) phthalate <sup>C</sup> Butyl benzyl phthalate | 1.3   | <1      | >23            | 1.0     | 2.1        | oª              |       |          |                  |       |           |                |
| Di-n-butyl phthalate                                            | 2.9   | ND      | 100            | 1.6     | <1         | >38             |       |          |                  |       |           |                |
| Diethyl phthalate                                               |       | <1      |                | 4.9     | <ī         | >80             |       |          |                  |       |           |                |
| Dimethyl phthalate                                              | <1    | 2.5     | oª             | •       | <1         |                 |       |          |                  |       |           |                |
| Phenols                                                         |       |         |                |         |            |                 |       |          |                  |       |           |                |
| Phenol                                                          | 2.4   | NA      |                |         | NA         |                 |       |          |                  |       |           |                |
| Aromatics                                                       |       |         |                |         |            |                 |       |          |                  |       |           |                |
| Benzene                                                         | <1    |         |                | 2.0     | 1.4        | 30              |       |          |                  |       |           |                |
| Ethylbenzene                                                    | -     | 2.6     |                |         | 2.1        |                 |       |          |                  |       |           |                |
| Toluene                                                         | 24    | 20      | 15             | 3.5     | 2.8        | 20              |       |          |                  |       |           |                |
| Polycyclic aromatic hydrocarbon                                 | 6     |         |                |         |            |                 |       |          |                  |       |           |                |
| Acenapthene                                                     | <1    |         |                |         | <1         |                 |       |          |                  |       |           |                |
|                                                                 | <1    | -1      |                |         | <1         |                 |       |          |                  |       |           |                |
| Acenaphthylene                                                  |       | <1      | _b             |         | <1         |                 |       |          |                  |       |           |                |
| Anthracene                                                      | <1    | <1      |                |         |            | o*              |       |          |                  |       |           |                |
| Benz(a)anthracene d                                             | 1.3   | <1      | >23<br>0       | 1.0     | 2.1        | 0.              |       |          |                  |       |           |                |
| Benzo(b) fluoranthened                                          | 7.8   | 12      | 0-             |         |            |                 |       |          |                  |       |           |                |
| Benzo(K) Lluoranthene                                           | 7.8   | 12      | o <sup>a</sup> |         |            |                 |       |          |                  |       |           |                |
| Chrysene                                                        | 1.3   | <1      | >23            | 1.0     | 2.1        | o <sup>a</sup>  |       |          |                  |       |           |                |
| Fluoranthene                                                    | 2.7   | <1      | >63            |         | 8.9        |                 |       |          |                  |       |           |                |
| Fluorene                                                        | 1     | <1      | >0             |         | <1         |                 |       |          |                  |       |           |                |
| Indeno(1,2,3-cd)pyrene                                          | 18.8  |         |                |         |            |                 |       |          |                  |       |           |                |
| Phenanthrene                                                    | <1    | <1      | _ь             |         |            |                 |       |          |                  |       |           |                |
| Pyrene                                                          | 4.8   | 3.9     | 19             |         |            |                 |       |          |                  |       |           |                |
| Halogenated aliphatics                                          |       |         |                |         |            |                 |       |          |                  |       |           |                |
| Chloroform                                                      |       | <1      |                | <1      | ND         | 100             |       |          |                  |       |           |                |
| Pesticides and metabolites                                      |       |         |                |         |            |                 |       |          |                  |       |           |                |
| β-внс <sup>е</sup>                                              |       | <1      |                |         |            |                 |       |          |                  |       |           |                |
| Heptachlor <sup>e</sup>                                         |       |         |                |         |            |                 |       |          |                  |       |           |                |

TABLE 19-34 (continued).

|                                                                                                                           |       |              | Chemical p         |                                | ion     |                    |                       |                          |                       |            |                             |                       |
|---------------------------------------------------------------------------------------------------------------------------|-------|--------------|--------------------|--------------------------------|---------|--------------------|-----------------------|--------------------------|-----------------------|------------|-----------------------------|-----------------------|
|                                                                                                                           |       | g tower l    | Lime<br>blowdown   | + Fe <sup>+2</sup> Ash Concent | pond ef | fluent             |                       | g tower                  |                       |            | pond ef<br>ration,          | fluent                |
| Toxic pollutant                                                                                                           |       | /L<br>Outlet | Percent<br>removal | μq<br>Inlet                    |         | Percent<br>removal |                       | /L<br>Outlet             | Percent<br>removal    |            | /L<br>Outlet                | Percent<br>remova1    |
| Metals and inorganics                                                                                                     |       |              |                    |                                |         | •                  |                       |                          |                       |            |                             |                       |
| Antimony                                                                                                                  | 5     | 5            | 0                  | 6                              | 30      | 0 <b>a</b>         |                       |                          |                       |            |                             |                       |
| Arsenic                                                                                                                   | 7     | <1           | >86 <sub>b</sub>   | <1                             | <1      | _B                 |                       |                          |                       |            |                             |                       |
| Beryllıum                                                                                                                 | <0.5  | <0.5         | - <u>P</u>         | 2.5                            | 0.5     | 80                 |                       |                          |                       |            |                             |                       |
| Cadmium                                                                                                                   | <0.5  | <0.5         | _p                 | 1                              | <0.5    | >50                |                       |                          |                       |            |                             |                       |
| Chromium                                                                                                                  | 2     | <2           | >0                 | 4                              | 2       | 50                 |                       |                          |                       |            |                             |                       |
| Copper                                                                                                                    | 180   | 26           | 86                 | 80                             | 23      | 80                 |                       |                          |                       |            |                             |                       |
| Cyanide                                                                                                                   |       |              |                    |                                |         |                    |                       |                          |                       |            |                             |                       |
| Lead                                                                                                                      | <3    | <3           | -p                 | <3                             | <3      | -/p                |                       |                          |                       |            |                             |                       |
| Mercury                                                                                                                   | < 0 2 | <0.2         | _p                 | <0.2                           | <0.2    | _p                 |                       |                          |                       |            |                             |                       |
| Nickel                                                                                                                    | 6     | 3            | 50.                | 9.5                            | <0.5    | >95                |                       |                          |                       |            |                             |                       |
| Selenium                                                                                                                  | ٧2    | <2           | 50 <sub>b</sub>    | 3                              | 3       | 0                  |                       |                          |                       |            |                             |                       |
| Silver                                                                                                                    | 3     | 10           | 0 <b>a</b>         | 5.5                            | 5       | 9 <sub>b</sub>     |                       |                          |                       |            |                             |                       |
| Thallium                                                                                                                  | <1    | <1           | _b                 | <1                             | <1      | _ь                 |                       |                          |                       |            |                             |                       |
| Zinc                                                                                                                      | 780   | 36           | 95                 | 300                            | 25      | 92                 |                       |                          |                       |            |                             |                       |
| Phthalates                                                                                                                |       |              |                    |                                |         |                    |                       |                          |                       |            |                             |                       |
| Bis(2-ethylhexyl) phthalate <sup>C</sup> Butyl benzyl phthalate Di-n-butyl phthalate Diethyl phthalate Dimethyl phthalate |       |              |                    |                                |         |                    | 1.3<br>2.9            | 1.2<br>1.9<br>4.2<br>7.5 | 7.7<br>0 <sup>a</sup> | 1.6<br>4.9 | <1<br>2.4<br><1<br><1<br><1 | >0<br>>38<br>>80      |
| Phenols                                                                                                                   |       |              |                    |                                |         |                    | 1                     |                          |                       |            | 1                           |                       |
| Phenol                                                                                                                    |       |              |                    |                                |         |                    | 2.4                   | NA                       |                       |            | NA                          |                       |
| Aromatics                                                                                                                 |       |              |                    |                                |         |                    |                       |                          |                       |            |                             |                       |
| Benzene<br>1,4-01chlorobenzene<br>Ethylbenzene<br>Toluene                                                                 |       |              |                    |                                |         |                    | <1<br>24              | <1<br>3.3                | _b<br>>86             | 2.0<br>3.5 | <1<br>5.3                   | >50<br>0 <sup>a</sup> |
| Polycyclic aromatic hydrocarbons                                                                                          |       |              |                    |                                |         |                    |                       |                          |                       |            |                             |                       |
| Acenapthene<br>Acenaphthylene<br>Anthracene<br>Benz(a)anthracene <sup>C</sup>                                             |       |              |                    |                                |         |                    | 41<br>41<br>41<br>1.3 | 1.2                      | 7.7                   | 1.0        | <1                          | >0                    |
| Benzo(b)fluoranthene                                                                                                      |       |              |                    |                                |         |                    | 7.8                   | 3.7                      | 52                    |            |                             |                       |
| Benzo(k)fluoranthene                                                                                                      |       |              |                    |                                |         |                    | 7.8                   | 3.7                      | 52                    |            |                             |                       |
| Chrysene                                                                                                                  |       |              |                    |                                |         |                    | 1.3                   | 1.2                      | 7.7                   | 1.0        | <1                          | >0                    |
| Fluoranthene                                                                                                              |       |              |                    |                                |         |                    | 2.7                   | 11                       | 5 <b>9</b>            |            | 69                          |                       |
| Fluorene                                                                                                                  |       |              |                    |                                |         |                    | <1                    |                          |                       | <1         |                             |                       |
| Indeno(1,2,3-cd)pyrene                                                                                                    |       |              |                    |                                |         |                    | 19                    |                          |                       |            | 2.0                         |                       |
| Phenanthrene                                                                                                              |       |              |                    |                                |         |                    | <1                    |                          |                       |            |                             |                       |
| Pyrene                                                                                                                    |       |              |                    |                                |         |                    | 4.8                   | 1.5                      | 69                    |            | <1                          |                       |
| Halogenated aliphatics                                                                                                    |       |              |                    |                                |         |                    |                       |                          |                       |            |                             |                       |
| Chloroform                                                                                                                |       |              |                    |                                |         |                    |                       |                          |                       | <1         | ND                          | 100                   |
| Pesticides and metabolites                                                                                                |       |              |                    |                                |         |                    |                       |                          |                       |            |                             |                       |
| β-BHC <sup>e</sup><br>Heptachlor <sup>e</sup>                                                                             |       |              |                    |                                |         |                    |                       |                          |                       |            |                             |                       |

<sup>&</sup>lt;sup>a</sup>Negative removal

 $d_{\mbox{Combination of benzo(b)}}$ fluoranthene and benzo(k)fluoranthene.

b Inde**t**erminate

eCombination of β-BHC and heptachlor.

 $<sup>^{</sup>C}$ Combination of bis(2-ethylhexyl) phthalate, benz(a)anthracene, and chrysene

TABLE 19-35. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN RAW AND TREATED WASTEWATER, PLANT 5604 [1]

|                        |       |         | Reverse        | osmosis             |         |         |
|------------------------|-------|---------|----------------|---------------------|---------|---------|
|                        |       |         | blowdown       |                     | pond ef |         |
|                        |       | tration | Percent        |                     | tration |         |
| Pollutant              | Inlet | Outlet  | removal        | Inlet               | Outlet  | removal |
| TOC, mg/L<br>TSS, mg/L | 14    |         |                | 7.6                 |         |         |
| рН                     | 6.9   |         |                | 5.6                 |         |         |
| Vanadium, μg/L         | 24    | 22      | 8              | 27                  | 5       | 81      |
|                        |       | Ch      | emical pr      | ecinita             | tion    |         |
|                        |       |         |                | me                  |         |         |
| TOC, mg/L              | 14    |         |                | 7.6                 |         |         |
| TSS, mg/L              | 42    |         |                | 15                  |         |         |
| pH<br>Vanadium, μg/L   | 24    | 77      | 0 <sup>a</sup> | 27                  | 17      | 37      |
|                        |       | Ch      | emical pr      | ecipita             | tion    |         |
|                        |       |         | Lime           | + Fe <sup>+</sup> 2 |         |         |
| TOC, mg/L              | 14    |         |                | 7.6                 |         |         |
| TSS, mg/L              | 42    |         |                | 15                  |         |         |
| pH<br>Vanadium, μg/L   |       |         |                |                     |         |         |

aNegative removal.

Date: 6/23/80 II.19-55

#### II.20 TEXTILE MILLS

### II.20.1 INDUSTRY DESCRIPTION [1]

## II.20.1.1 General Description

The United States textile industries are covered by 2 of the 20 major groups of manufacturing industries in the Standard Industrial Classification (SIC). They are Textile Mill Products, Major Group 22, and Apparel and Other Textile Mill Products, Major Group 23. The Textile Mill Products group includes 30 separate industries that manufacture approximately 90 classes of products. The Apparel and Other Textile Products group includes 33 separate industries that manufacture some 70 classes of products.

Major Group 22 facilities are principally engaged in receiving and preparing fibers; transforming these materials into yarn, thread, or webbing; converting the yarn and web into fabric or related products; and finishing these materials at various stages of the production. Many produce a final consumer product such as thread, yarn, bolt fabric, hosiery, towels, sheets, carpet, etc., while the rest produce a transitional product for use by other establishments in Major Groups 22 and 23.

The facilities in Major Group 23, Apparel and Other Textile Mill Products, are principally engaged in receiving woven or knitted fabric for cutting, sewing, and packaging. Some of the products manufactured are dry cleaned and some undergo auxiliary processing to prepare them for the consumer. In general, all processing is dry and little or no discharge results.

The exact number of wet processing mills and the total number of mills in the textile industry are difficult to establish because of the relatively large numbers involved, the dynamic state of the industry, and differing classification criteria. The number of wet processing mills is estimated to be approximately 2,000, and the total mills between 5,000 and 7,500. Nearly 80% of the facilities are located in the Mid-Atlantic and Southern regions. The remaining 20% are distributed about equally between the New England region and the North Central and Western regions. Some industries, particularly yarn manufacturing, weaving, and carpet manufacturing, are heavily concentrated in a few southeastern states.

Facilities in the textile industry are engaged in various processing operations required to transform fiber -- the industry's basic raw material -- into yarn, fabric, or other finished textile products. Approximately 70% of the facilities are believed to perform manufacturing operations that require no process water and an additional 10% are believed to use only small quantities of process water. In contrast, the remaining 20% of the facilities that scour wool fibers, clean and condition other natural and man-made fibers, and dye or finish various textile products generally require large quantities of process water.

Depending on the primary fiber type (wool, cotton, or man-made), a variety of production processes, some completely dry in terms of water requirements and some resulting in wastewater discharge, are used to manufacture the various products of this industry. In general, most of the dry- or low water use-processing operations (spinning, tufting, knitting, weaving, slashing, adhesive processing, and functional finishing) precede the wet processing operations in the manufacturing sequence.

Most high water use textile manufacturing processes occur during the conventional finishing of fiber and fabric products. The most significant are desizing, scouring, mercerizing, bleaching, dyeing, and printing. In the case of wool products, the distinct nature of this fiber often makes additional wet processing necessary prior to conventional finishing. Additional specific processes for wool include raw wool scouring, carbonizing, and fulling.

It is not uncommon for two or more wet process operations to occur sequentially in a single batch unit or on a continuous range. For example, it is not unusual for desizing, scouring, and mercerizing operations to be placed in tandem with the continuous bleaching range to enable cotton to be finished more efficiently. It should be understood that a variety of wet finishing situations of this type may occur, depending upon factors such as processes employed, type and quality of materials and product, and original mill and equipment design.

Table 20-1 presents industry summary data for the Textile Mills point source category in terms of the number of subcategories, number of dischargers, pollutants and toxics found in significant quantities, total number of toxic pollutants detected, and candidate treatment and control technologies [1], [2].

### II.20.1.2 Subcategory Descriptions

Based on similarities in raw materials, final products, manufacturing processes, and waste characteristics, the following subcategories of the textile industry were established:

- Wool Scouring
- 2. Wool Finishing
- 3. Low Water Use Processing
- 4. Woven Fabric Finishing
  - a. Simple Processing
  - b. Complex Processing
  - c. Complex Processing Plus Desizing
- 5. Knit Fabric Finishing
  - a. Simple Processing
  - b. Complex Processing
  - c. Hosiery Products
- 6. Carpet Finishing
- 7. Stock and Yarn Finishing
- 8. Nonwoven Manufacturing
- 9. Felted Fabric Processing

TABLE 20-1. INDUSTRY SUMMARY [1], [2]

Industry: Textile Mills

Total Number of Subcategories: 13 Number of Subcategories Studied: 9

Number of Dischargers in Industry: 1,165

· Direct: 239

· Indirect: 926

· Zero: 0

Pollutants and Toxics Found in Significant Quantities:

- · 11 Heavy metals
- · Cyanide
- · Total phenol

Number of Toxic Pollutants Detected in:

- · Raw wastewater: 58
- · Treated effluent: 46

Candidate Treatment and Control Technologies:

- · Chemical coagulation
- · Multimedia filtration
- · Coagulation plus filtration

# Subcategory 1 - Wool Scouring

This subcategory covers facilities that scour natural impurities from raw wool and other animal hair fibers as the majority of their processing. Wool scouring is conveniently separated from other segments of the textile industry because wool and other animal hair fibers require extensive preliminary cleaning.

Wool scouring, the first treatment performed on wool, is employed to remove the impurities peculiar to wool fibers. These impurities are present in great quantities and variety in raw wool and include natural wool grease and sweat, and acquired impurities such as dirt, feces, and vegetable matter. Disinfectants and insecticides applied in sheep dips for therapeutic purposes may also be present. Practically all of the natural and acquired impurities in wool are removed in the scouring process.

Two methods of wool scouring, solvent and detergent scouring, are practiced. In the United States, the latter is used almost exclusively. In the detergent process the wool is raked through a series of 1,500- to 3,000-gallon scouring bowls known as a "scouring train." Unless the first bowl is used as a steeping or desuinting bowl, the first two bowls contain varying concentrations of either soap and alkali, or nonionic detergents of the ethylene oxide condensate class. The soap-alkali scouring baths are generally characterized by a temperature of 32°C to 40°C (115°F to 130°F) and a pH of 9.5 to 10.5; neutral detergent baths normally have a pH of 6.5 to 7.5 and a temperature of 43°C to 57°C (135°F to 160°F). The last two bowls of the scouring train are for rinsing, and a counterflow arrangement is almost always employed using the relatively clean waters from these bowls in preceding bowls.

Scouring emulsifies the dirt and grease and produces a brown, gritty, turbid waste that is often covered with a greasy scum. has been estimated that for every pound of fibers obtained, 1.5 lb of waste impurities are produced. Since the wool grease present in the scour liquor is not readily biodegradable and is of commercial value, grease recovery is usually practiced. In the most typical recovery process, the scour liquor is first piped to a separation tank where settling of grit and dirt occurs. supernatant from the tank is then centrifuged (one or more stages) into high density, medium density, and low density streams. high density stream consists mainly of dirt and grit, and is discharged as waste. The medium density stream is recycled to the wool scouring train. The low density stream contains concentrated grease that is normally refined further to produce lanolin. Acid-cracking, utilizing sulfuric acid and heat, is an alternative method of grease recovery, but it is not widely practiced at this time.

### Subcategory 2 - Wool Finishing

This subcategory covers facilities that finish fabric, a majority of which is wool, other animal hair fiber, or blends containing primarily wool or other animal hair fibers, by employing any of the following processing operations on at least 5% of their total production: carbonizing, fulling, bleaching, scouring (not including raw wool scouring), dyeing, and application of functional finish chemicals. Mills that primarily finish stock or yarn of wool, other animal hair fibers, or blends containing primarily wool or other animal hair fibers and that perform carbonizing are included in this subcategory, and wool stock or yarn mills that do not perform carbonizing and scouring are covered under Subcategory 7, Stock and Yarn Finishing. Wool finishing is differentiated from other finishing categories because of the manufacturing processes (principally carbonizing and fulling) and dyes and other chemicals associated with wool operations. As a result, wool finishing operations generate high volume wastes with pH fluctuations and oil and grease.

Processes comprising a typical wool finishing operation include carbonizing, fulling, fabric scouring, and dyeing. Carbonizing removes burns and other vegetable matter from loose wool or woven wool goods. These cellulosic impurities may be degraded to hydrocellulose, without damaging the wool, when acted upon by acids. It is important to remove these impurities from the wool to prevent unequal absorption of dyes.

The first operation in carbonization is acid impregnation. Typically this consists of soaking the wool in a 4% to 7% solution of sulfuric acid for a period of 2 to 3 hr. The excess acid is squeezed out and the wool is baked to oxidize the cellulosic contaminants to gases and a solid carbon residue. The charred material, primarily hydrocellulose, is crushed between pressure rollers so that it may be shaken out by mechanical agitation. Some solid waste is generated, but, with the exception of an occasional dump of contaminated acid bath, no liquid waste results. However, after the residue has been shaken out, the acid must be removed. This is achieved by preliminary rinsing to remove most of the acid followed by neutralization with sodium carbonate solution. A final rinse is then used to remove the alkalinity. As a result, the overall water requirements for the carbonization of wool are substantial.

Fulling gives woven woolen cloth a thick, compact, and substantial feel, finish, and appearance. To accomplish it, the cloth is mechanically worked in fulling machines in the presence of heat, moisture, and sometimes pressure. This allows the fibers to felt together, which causes shrinkage, increases the weight, and obscures the woven threads of the cloth.

There are two common methods of fulling, alkali and acid. In alkali fulling, soap or detergent is used to provide the needed lubrication and moisture for proper felting action. The soap or detergent is usually mixed with sodium carbonate and a sequestering agent in a concentrated solution. In acid fulling, which may be used to prevent bleeding of color, an aqueous solution of sulfuric acid, hydrogen peroxide, and small amounts of metallic catalysts (chromium, copper, and cobalt) is used.

Fabric scouring is employed to remove natural and acquired impurities from the fabric. Either light or heavy scouring of wool goods may be performed during wool finishing to remove the acquired impurities.

Dyeing is the most complex of all the wet process operations. It is performed essentially for aesthetic reasons in that it does not contribute to the basic structural integrity, wearability, or durability of the final product. In short, the function of dyeing is to anchor dyestuff molecules to textile fibers by a variety of processes.

### Subcategory 3 - Low Water Use Processing

Low water use processing operations include establishments primarily engaged in manufacturing greige goods, laminating or coating fabrics, texturizing yarn, tufting and backing carpet, producing tire cord fabric, and similar activities in which either cleanup is the primary water use or process water requirements are small, or both.

While there are a large number of facilities of these types, the process-related wastewater generated and discharged from each is, for the most part, comparatively small.

## Subcategory 4 - Woven Fabric Finishing

This subcategory covers facilities that primarily finish fabric, a majority of which is woven, by employing any of the following processing operations on at least 5% of their production: desizing, scouring, bleaching, mercerizing, dyeing, printing, and application of functional finish chemicals. Integrated mills that finish a majority of woven fabric along with greige manufacturing or other finishing operations such as yarn dyeing are included in this subcategory, and total finishing production should be applied to the applicable Woven Fabric Finishing effluent limitations to calculate discharge allowances. Denim finishing mills are also included in this category. Woven fabric composed primarily of wool is covered under Subcategory 2 - Wool Finishing.

A wide variety of processes are used in finishing woven fabric, and in terms of cumulative flow this subcategory is the largest.

Desizing is a major contributor to the BOD load in woven fabric finishing. This results in a major difference in waste characteristics between woven and knit fabric finishing, and is responsible for differences in the waste characteristics within the Woven Fabric Finishing subcategory as well. In addition, the number of processes performed at a particular mill may vary from merely scouring or bleaching to all of those previously listed. The following subdivisions describe the process differences.

Simple Processing. This Woven Fabric Finishing subdivision covers facilities that perform fiber preparation, desizing, scouring, functional finishing, and/or one of the following processes applied to more than 5% of total production: bleaching, dyeing, or printing. This subdivision includes all Woven Fabric Finishing mills that do not qualify under either the Complex Processing or Complex Processing Plus Desizing subdivisions.

Complex Processing. This Woven Fabric Finishing subdivision covers facilities that perform fiber preparation, desizing of less than 50% of their total production, scouring, mercerizing, functional finishing, and more than one of the following, each applied to more than 5% of total production: bleaching, dyeing, and printing.

Complex Processing Plus Desizing. This Woven Fabric Finishing subdivision covers facilities that perform fiber preparation, desizing of greater than 50% of their total production, scouring, mercerizing, functional finishing, and more than one of the following, each applied to more than 5% of total production: bleaching, dyeing, and printing.

## Subcategory 5 - Knit Fabric Finishing

This subcategory covers facilities that primarily finish fabric made of cotton and/or synthetic fibers, a majority of which is knit, by employing any of the following processing operations on at least 5% of their production: scouring, bleaching, dyeing, printing, and application of lubricants, antistatic agents, and functional finish chemicals. Integrated mills that finish a majority of knit fabric along with greige manufacturing or other finishing operations such as yarn dyeing are included in this subcategory. Total finishing production should be applied to the applicable Knit Fabric Finishing effuent limitations to calculate discharge allowances.

Basic knit fabric finishing operations are similar to those in the Woven Fabric Finishing subcategory and may include scouring, bleaching, dyeing, printing, and application of lubricants, antistatic agents, and functional finish chemicals. Knitting is performed in conjunction with finishing at most of these facilities. Desizing is not required in knit fabric finishing and

mercerizing is uncommon in practice. The generally lower waste loads of the subcategory can be attributed to the absence of these processes.

As with woven fabric finishing, the number of processes performed at a mill may vary considerably. In addition, hosiery manufacture is distinct in terms of manufacturing and raw wastewater characteristics. Consequently, internal subdivision is required for this subcategory.

Simple Processing. This Knit Fabric Finishing subdivision covers facilities that perform fiber preparation, scouring, functional finishing, and/or one of the following processes applied to more than 5% of total production: bleaching, dyeing, or printing. This subdivision includes all Knit Fabric Finishing mills that do not qualify under either the Complex Processing or Hosiery Products subdivisions.

Complex Processing. This Knit Fabric Finishing subdivision covers facilities that perform fiber preparation, scouring, functional finishing, and/or more than one of the following processes each applied to more than 5% of total production: bleaching, dyeing, or printing.

Hosiery Products. This Knit Fabric Finishing subdivision covers facilities that are engaged primarily in dyeing or finishing hosiery of any type. Compared to other Knit Fabric Finishing facilities, Hosiery Finishing mills are generally much smaller (in terms of wet production), more frequently employ batch processing, and more often consist of only one major wet processing operation. All of these factors contribute to their lower water use and much smaller average wastewater discharge.

### Subcategory 6 - Carpet Finishing

This subcategory covers facilities that primarily finish textilebased floor covering products, of which carpet is the primary element, by employing any of the following processing operations on at least 5% of their production: scouring, bleaching, dyeing, printing, and application of functional finish chemicals.

Integrated mills that finish a majority of carpet along with tufting or backing operations or other finishing operations such as yarn dyeing are included in this subcategory, and total finishing production should be applied to the applicable Carpet Finishing effluent limitations to calculate discharge allowances. Mills that only perform carpet tufting and/or backing are covered under Subcategory 3 - Low Water Use Processing. Carpet Finishing is a distinct segment of the textile industry because of the lower degree of processing required and the typically weaker wastes that result.

# Subcategory 7 - Stock and Yarn Finishing

This subcategory covers facilities that primarily finish stock, yarn, or thread of cotton and/or synthetic fibers by employing any of the following processing operation on at least 5% of their production: scouring, bleaching, mercerizing, dyeing, or application of functional finish chemicals. Facilities finishing stock, yarn, or thread principally of wool also are covered if they do not perform carbonizing as needed for coverage under Subcategory 2 - Wool Finishing. Denim finishing is included under Subcategory 4 - Woven Fabric Finishing.

Typical stock and yarn finishing may include scouring, bleaching, mercerizing, dyeing, or functional finishing. As a result of process differences, the water usage and pollutant loadings of this subcategory are lower than those found in most other subcategories.

### Subcategory 8 - Nonwoven Manufacturing

This subcategory covers facilities that primarily manufacture nonwoven textile products of wool, cotton, or synthetics, singly or as blends, by mechanical, thermal, and/or adhesive bonding procedures. Nonwoven products produced by fulling and felting processes are covered in Subcategory 9 - Felted Fabric Processing.

The Nonwoven Manufacturing subcategory includes a variety of products and processing methods. The processing is dry (mechanical and thermal bonding) or low water use (adhesive bonding) with the major influence on process-related waste characteristics resulting from the cleanup of bonding mix tanks and application equipment. Typical processing operations include carding, web formation, wetting, bonding (padding or dipping with latex acrylic or polyvinyl acetate resins) and application of functional finish chemicals. Pigments for coloring the goods are usually added to the bonding materials.

### Subcategory 9 - Felted Fabric Processing

This subcategory covers facilities that primarily manufacture nonwoven products by employing fulling and felting operations as a means of achieving fiber bonding. Wool, rayon, and blends of wool, rayon, and polyester are typically used to process felts. Felting is accomplished by subjecting the web or mat to moisture, chemicals (detergents), and mechanical action. Wastewater is generated during rinsing steps that are required to prevent rancidity and spoilage of the fibers.

#### II.20.2 WASTEWATER CHARACTERIZATON [1]

Wastewater characteristics for the textile industry, in general, reflect the products and the methods employed to manufacture them. Because there is such a diversity in products, in processing, in raw materials, and in process control, there is a wide range in the characteristics. The variation extends vertically within each subcategory, as well as horizontally among the subcategories. Nonprocess-related variables such as raw water quality and discharge of nonprocess-related wastes (sanitary, boiler blowdown, cooling water, etc.) contribute to this lack of uniformity.

## II.20.2.1 Subcategory 1 - Wool Scouring

Wool scouring waste contains significant quantities of natural oils, fats, suint, and adventitious dirt that, even after inprocess grease recovery steps, cause the characteristics to be distinctly different from those of the other subcategories. These materials are collectively responsible for high concentrations and quantities of  $BOD_5$ , COD, TSS, and oil and grease. Since the natural fat is technically a wax, it is not readily biodegradable and must be removed by physical or chemical treatment. Wastewater from the wool scouring process is usually brown, thickly turbid, and noticeably greasy. It is strongly alkaline and very putrescible.

### II.20.2.2 Subcategory 2 - Wool Finishing

Wool finishing wastes are typically high volume, low concentration wastes (for the conventional pollutant parameters) that, in terms of mass loadings, contribute large quantities of conventional pollutants per unit of production. The nonconventional pollutants (sulfide and color) and the toxic pollutants that have been historically monitored (phenol and chromium) are both high in concentration and quantity. These conditions can be attributed to the numerous steps required in processing and finishing wool yarn and wool fabric and to the wide variety of chemicals used.

#### II.20.2.3 Subcategory 3 - Low Water Use Processing

Low water use processing refers, almost exclusively, to facilities that perform weaving or adhesive-related processing. Regardless of mill size, process-related wastewaters from both types of mills are typically very low in volume. The only mills with large flows are those engaged in water-jet weaving and mills discharging large volumes of cooling or other nonprocess water. Where process-related wastewater is a large portion of the total discharge, the wastewater characteristics are determined primarily by the slashing process (conventional weaving), the weaving process (water-jet weaving mills), or the dipping, padding, or saturating process (adhesive-related mills).

### II.20.2.4 Subcategory 4 - Woven Fabric Finishing

The wastewater generated from the finishing of woven fabric is represented by a rather broad range in concentration and mass quantity for the conventional pollutant parameters. The internal subdivisions of this subcategory (Simple Processing, Complex Processing, Complex Processing Plus Desizing) group the estimated 336 mills into 3 reasonably distinct segments.

The differences between the three subdivisions are a function of the complexity of the wet processing. Mills classified in the Complex Processing subdivision perform simple processing plus one or more additional major wet processing steps. Mills classified in the Complex Processing Plus Desizing subdivision perform complex processing plus desizing on the majority of their production. The typical water use and waste mass loading values are progressively greater for each subsequent subdivision and generally reflect an increase in the same basic pollutant parameters.

### II.20.2.5 Subcategory 5 - Knit Fabric Finishing

The wastewater generated from the finishing of knit fabric are, like those from the finishing of woven fabric, represented by a rather broad range in concentration and mass quantity for the conventional pollutant parameters. The typical waste is not generally as great in terms of concentration as woven fabric finishing waste, and the variability from mill to mill is also somewhat less.

### II.20.2.6 Subcategory 6 - Carpet Finishing

The wastewater volume from carpet mills is typically quite large, although water use (gal/lb of product) is low relative to other subcategories. This is due to the specialized nature of carpet manufacturing and the heavy weight of carpet relative to other textile products. The wet processing employed by a carpet mill can include various combinations of the following operations: scouring, bleaching, dyeing, printing, functional finishing, and backing. Wastes from dyeing and printing are the major contributors to the high flows at these mills, but these processes do not lead to extreme levels of conventional and nonconventional pollutants. Scouring and bleaching are performed very little at carpet finishing mills. Functional finishing and carpet backing make small contributions to the total flow; the latter often results in a latex waste that should be segregated from the rest of the waste discharge for separate treatment.

#### II.20.2.7 Subcategory 7 - Stock and Yarn Finishing

The volume of wastewater discharged by Stock and Yarn Finishing facilities is comparable to that from mills in other finishing subcategories. The wastes generated are generally not as strong as those found in the other subcategories, and depend substantially on whether natural fibers, blends, or synthetic fibers alone are processed.

### II.20.2.8 Subcategory 8 - Nonwoven Manufacturing

The nature of nonwoven manufacturing is such that a typical facility has relatively small hydraulic and pollutant loadings. The wastewater may contain latex and numerous other contaminants. At a few facilities, special manufacturing operations or activities common to other subcategories might be performed with resultant higher water use.

## II.20.2.9 Subcategory 9 - Felted Fabric Processing

Felted fabric processing typically results in high volume wastes of a generally dilute nature. The wet processing operations may include felting, dyeing, and functional finishing. The rinses that follow felting (fulling) and dyeing, if employed, result in considerable water use and contribute most of the pollutants. Functional finishing may also make minor contributions to the waste load.

Table 20-2 presents the toxic pollutants found in detectable concentrations for plant water supply, raw wastewater, and secondary effluents. Tables 20-3 and 20-4 present the conventional and classical pollutant raw wastewater concentrations and pollutant loadings, respectively, by subcategory. Values in parentheses indicate the median of field sampling results. The remaining values are generated from historical data and from three or more plants.

### II.20.3 PLANT SPECIFIC DESCRIPTION [3]

Tables 20-5 through 20-9 present toxic pollutant and classical pollutant data for five textile mills.

TABLE 20-2. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN TEXTILL MILL WASTEWATER [1]

|                             |         |               |         |        |          | served, p |        |          |            |
|-----------------------------|---------|---------------|---------|--------|----------|-----------|--------|----------|------------|
|                             |         | ater sup      | ply     |        | w wastew | ater      |        | ndary ef | fluent     |
|                             | Number  |               |         | Number |          |           | Number |          |            |
|                             | of      |               |         | of     |          |           | of     |          |            |
| Toxic pollutant             | plants  | Median        | Maximum | plants | Median   | Maximum   | plants | Median   | Maximum    |
| Metals and inorganics       |         |               |         |        |          |           |        |          |            |
| Antimony                    | 6       | < 5           | 48      | 23     | 7        | 170       | 16     | 4.5      | 680        |
| Arsenic                     | 4<br>_a | < 5           | < 5     | 14     | 10       | 200       | 8      | 39       | 160        |
| Asb <b>e</b> stos           |         | -             | -       | -      | -        | -         | -      | -        | -          |
| Beryllium                   | 4       | <5            | < 5     | 5      | < 5      | 40        | 5      | < 5      | < 5        |
| Cadmium                     | 5       | <10           | <10     | 22     | < 5      | 46        | 15     | 6        | 13         |
| Chromium                    | 5       | < 5           | < 5     | 37     | 14       | 880       | 27     | 20       | 1,800      |
| Copper                      | 6       | 10            | 47      | 40     | 40       | 2,400     | 28     | 32       | 290        |
| Cyanide                     | 4       | 11            | 22      | 10     | 8.0      | 39        | 5      | 12       | 980        |
| Lead                        | 6       | < 5           | 45      | 26     | 35       | 750       | 16     | 46       | 120        |
| Mercury                     | 4       | 0.2           | 0.8     | 10     | 0.6      | 4         | 7      | 0.4      | 0.7        |
| Nickel                      | 6       | <5            | 47      | 32     | 54       | 300       | 18     | 70       | 150        |
| Selenium                    | 6       | <b>&lt;</b> 5 | 23      | 10     | 35       | 740       | 4      | 47       | 97         |
| Silver                      | 6       | < 5           | 17      | 26     | 32       | 130       | 15     | 25       | 140        |
| Thallium                    | 4       | 3             | 3       | 5      | 3        | 9         | 4      | 3        | 18         |
| Zinc                        | 12      | 60            | 4,540   | 45     | 190      | 7,900     | 30     | 200      | 38,000     |
|                             | 12      | 60            | 4,540   | 45     | 190      | 7,900     | 30     | 200      | 38,000     |
| Phthalates                  |         |               |         |        |          |           |        |          |            |
| Bis(2-ethylhexyl) phthalate | 6       | 8.2           | 39      | 27     | 26       | 860       | 23     | 18       | 231        |
| Butyl benzyl phthalate      |         |               |         | 2      | 42       | 73        |        |          |            |
| Di-n-butyl phthalate        | 1       |               | 1.6     | 7      | 16       | 67        | 1      |          | 3.6        |
| Diethyl phthalate           | 3       | 2.1           | 5.5     | 10     | 6.0      | 86        | 4      | 1.5      | 9.4        |
| Dimethyl phthalate          |         |               |         | 4      | 12       | 14        | 1      |          | 1.0        |
| Nitrogen compounds          |         |               |         |        |          |           |        |          |            |
| Acrylonitrile               |         |               |         | 1      |          | 1,600     | 1      |          | 400        |
| 1,2-Diphenylhydrazine       |         |               |         | ī      |          | 22        | •      |          |            |
| N-nitrosodiphenylamine      |         |               |         | 3      | 15       | 72        |        |          |            |
| N-nitroso-di-n-propylamine  |         |               |         | 3      | 13       | , 2       | 2      | 10       | 19         |
| Phenols                     |         |               |         |        |          |           | -      | 10       |            |
|                             |         |               |         | ,      |          | ~~        |        |          |            |
| 2-Chlorophenol              |         |               |         | 1      | 26       | 78        | 1      |          | 5.9        |
| 2,4-Dichlorophenol          |         |               |         | 2      | 26       | 41        |        |          |            |
| 2,4-Dimethylphenol          |         |               |         |        |          |           | 1      |          | 8.0        |
| 2-Nitrophenol               |         |               |         |        |          |           | 1      |          | 4.1        |
| 4-Nitrophenol               |         |               |         |        |          |           | 1      |          | <10        |
| Pentachlorophenol           |         |               |         | 11     | 52       | 940       | 2      | 12       | 15         |
| Phenol                      | 5       | 10            | 36      | 25     | 55       | 4,900     | 7      | 14       | 5 <b>0</b> |
| 2,4,6-Trichlorophenol       |         |               |         | 4      | 20       | 27        | 1      |          | 19         |
| Cresols                     |         |               |         |        |          |           |        |          |            |
|                             |         |               |         | 1      |          | 170       | 1      |          | 32         |
| -Chlorocresol               |         |               |         | 1      |          | 170       | 1      |          | 32         |
|                             |         |               |         |        |          |           |        |          |            |

aDashes indicate pollutant not analyzed for.

(continued)

TABLE 20-2 (continued)

|                                                                                                                |        |                 |             |                        |                        | served, µ                    | g/L              |                 |                        |
|----------------------------------------------------------------------------------------------------------------|--------|-----------------|-------------|------------------------|------------------------|------------------------------|------------------|-----------------|------------------------|
|                                                                                                                | Number | ater sup        | ply         | Ra<br>Number           | w wastew               | ater                         | Seco<br>Number   | ndary ef        | fluent                 |
|                                                                                                                | of     |                 |             | of                     |                        |                              | of               |                 |                        |
| Toxic pollutant                                                                                                | plants | Median          | Maximum     | plants                 | Median                 | Maximum                      | plants           | Median          | Maximum                |
| Monocyclic aromatics                                                                                           |        |                 |             |                        |                        |                              |                  |                 |                        |
| Benzene Chlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene                                                  | 2      | <4              | <5          | 10<br>5<br>7<br>2      | <5<br>25<br>2.0<br>110 | 200<br>300<br>290<br>215     | 4<br>1<br>4<br>2 | <5<br>10<br>0.8 | 64<br>3.9<br>20<br>1.9 |
| 2,6-Dinitrotoluene<br>Ethylbenzene<br>Hexachlorobenzene                                                        |        |                 |             | 1<br>20<br>2           | 54<br>1.3              | 54<br>2,840<br>2             | 8                | 63              | 3,000                  |
| Toluene<br>1,2,4-Trichlorobenzene                                                                              | 4      | 0.8             | 2.4         | 25<br>8                | 26<br>410              | 620<br>2,700                 | 16<br>4          | 14<br>610       | 1,400<br>1,580         |
| Polycyclic aromatics                                                                                           |        |                 |             |                        |                        |                              |                  |                 |                        |
| Acenaphthene<br>Anthracene<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene                                     | 3      | 0.2             | 0.4         | 3<br>1<br>1            | 8.7                    | 12<br>0.1<br><10<br><10      | 1                |                 | 0.5<br>4.4             |
| Fluorene<br>Naphthalene<br>Pyrene                                                                              | 2      | 0.2             | 0.4         | 1<br>19<br>1           | 44                     | 15<br>110<br>0.9             | 5<br>4           | 22<br>0.2       | 255<br>0.3             |
| Polychlorinated biphenyls and related compounds                                                                |        |                 |             |                        |                        |                              |                  |                 |                        |
| 2-Chloronaphthalene                                                                                            |        |                 |             | 1                      |                        | <10                          |                  |                 |                        |
| Halogenated aliphatics                                                                                         |        |                 |             |                        |                        |                              |                  |                 |                        |
| Chloroform Dichlorobromomethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloropropane | 6<br>2 | <b>39</b><br><5 | 1,360<br><5 | 11<br>1<br>1<br>1<br>1 | 48                     | 640<br>6.6<br>14<br><5<br><5 | 6                | 8.5             | 58                     |
| 1,3-Dichloropropane<br>Methyl chloride                                                                         | 1      |                 | 0.8         | 1                      |                        | <5                           |                  |                 |                        |
| Methylene chloride<br>Tetrachloroethylene                                                                      | 2<br>1 | < 5             | <5<br><5    | 3<br>7<br>4            | 47<br><5<br>7.8        | 110<br>2,100<br>17           | 3<br>2<br>1      | <5<br>11        | <5<br>17<br><5         |
| l,l,l-Trichloroethane<br>Trichloroethylene<br>Trichlorofluoromethane<br>Vinyl chloride                         | 1      |                 | 13          | 10<br>3<br>1           | 47<br>90               | 840<br>2,140<br>11           | 4                | 4.9             | 87                     |
| Pesticides and metabolites                                                                                     |        |                 |             |                        |                        |                              |                  |                 |                        |
| 4,4'-DDT<br>Dieldrin<br>TCDD                                                                                   | _a     | _               | -           | _                      | _                      | _                            | 1 1 -            | -               | 0.5<br>0.2             |

 $<sup>^{\</sup>mathbf{a}}$ Dashes indicate pollutant not analyzed for.

TABLE 20-3. RAW WASTEWATER POLLUTANT CONCENTRATIONS BY SUBCATEGORY [1]

|                         |                        | Subcategory 1                                |                       |                        | Subcategory 2       |                       |                        | Subcategory 3                                |                       |
|-------------------------|------------------------|----------------------------------------------|-----------------------|------------------------|---------------------|-----------------------|------------------------|----------------------------------------------|-----------------------|
|                         | Number<br>of<br>plants | Range                                        | Median                | Number<br>of<br>plants | Range               | Median                | Number<br>of<br>plants | Range                                        | Median                |
|                         |                        |                                              |                       |                        |                     |                       |                        |                                              |                       |
| Flow, gpd               | 11                     | 1 ж 10 <sup>4</sup> -7.5 ж 10 <sup>5</sup>   | $7.0 \times 10^4$     | 15                     | 5.0 x 104-4.2 x 106 | 5.0 x 10 <sup>5</sup> | 13                     | $6.1 \times 10^{3}$ - $2.8 \times 10^{5}$    | 6.1 x 10 <sup>4</sup> |
| BOD <sub>5</sub> , mg/L | 9                      | 310-6,680                                    | 2,270                 | 10                     | 66-750              | 170                   | 13                     | 37-2,550                                     | <b>29</b> 0           |
| COD, mg/L               | 4                      | 1,140-17,800                                 | 7,030                 | 7                      | 280-2,000           | 590                   | 8                      | 115-2, <b>96</b> 0                           | 690                   |
| TSS, mg/L               | 8                      | 120-13,200                                   | 3,310                 | 10                     | 17-245              | 62                    | 12                     | 10-530                                       | 185                   |
| Sulfide, µg/L           |                        |                                              | (500)ª                |                        |                     | (3,500)               |                        |                                              |                       |
| Oil and grease, mg/     | L 7                    | 80-5,000                                     | 580                   | 1                      |                     | (70)                  |                        |                                              | (80)                  |
| Phenol, µg/L            |                        |                                              |                       | 2                      | 50-155              | (102)                 | 1                      |                                              | 91                    |
| Chromium, µq/L          |                        |                                              | (120)                 |                        |                     | (500)                 |                        |                                              | (4)                   |
| Color, APHA units       |                        |                                              | (2,200)               |                        |                     | (1,500)               |                        |                                              | (10)                  |
|                         |                        | Subcategory 4a                               |                       |                        | Subcategory 4b      | ·                     |                        | Subcategory 4c                               |                       |
| Flow, gpd               | 48                     | 1.5 x 10 <sup>4</sup> -5.5 x 10 <sup>6</sup> | 1.7 x 10 <sup>5</sup> | 39                     | 1.1 x 104-7.6 x 106 | 4.0 x 10 <sup>5</sup> | 51                     | 9 ж 10 <sup>3</sup> -5.5 ж 10 <sup>6</sup>   | 1.7 x 10 <sup>5</sup> |
| BOD <sub>5</sub> , mg/L | 32                     | 19-2,050                                     | 270                   | 23                     | 83-2,160            | 350                   | 36                     | 125-2,600                                    | 420                   |
| COD, mg/L               | 28                     | 200-5,020                                    | 900                   | 12                     | 240-5,140           | 1,060                 | 29                     | 370-2,780                                    | 1,240                 |
| TSS, mg/L               | 26                     | 16-2,440                                     | 62                    | 18                     | 40-870              | 110                   | 28                     | 1-,1260                                      | 150                   |
| Sulfide, µg/L           | 6                      | 25-580                                       | 72                    | 3                      | 100-120             | 100                   |                        | ·                                            | (1,700)               |
| Oil and grease, mg/     | L 11                   | 6~1,440                                      | 69                    | 6                      | 34-160              | 46                    | 5                      | 5-100                                        | 68                    |
| Phenol, µg/L            | 10                     | 10-600                                       | 49                    | 6                      | 10-600              | 54                    | 5                      | 14-1,220                                     | 150                   |
| Chromium, µg/L          | 16                     | 1-530                                        | 38                    | 7                      | 19-1,180            | 110                   | 11                     | 14-12,500                                    | 100                   |
| Color, APHA units       | 9                      | 20-10,000                                    | 800                   |                        | <b>,</b>            | (1,400)               |                        | •                                            | (1,900)               |
|                         |                        | Subcategory 5a                               |                       |                        | Subcategory 5b      |                       |                        | Subcategory 5c                               |                       |
| Flow, gpd               | 71                     | 2.9 x 10 <sup>3</sup> -2.8 x 10 <sup>6</sup> | 5.6 x 10 <sup>5</sup> | 35                     | 3.0 x 104-3.5 x 106 | 6.4 x 10 <sup>5</sup> | 57                     | 1.1 x 10 <sup>3</sup> -4.1 x 10 <sup>5</sup> | 6.0 x 10 <sup>4</sup> |
| BOD <sub>5</sub> , mg/L | 35                     | 60-1.860                                     | 210                   | 19                     | 120-920             | 270                   | 39                     | 38-790                                       | 320                   |
| COD, mg/L               | 29                     | 340-19,400                                   | 870                   | 11                     | 545-3.150           | 790                   | 27                     | 450-4,980                                    | 1,370                 |
| TSS, mg/L               | 32                     | 21-2.160                                     | 53                    | 19                     | 18-740              | 60                    | 29                     | 9-180                                        | 82                    |
| Sulfide, µg/L           | 3                      | 20-7,100                                     | 55                    | 4                      | 50-1,470            | 155                   | 4                      | 10-8,000                                     | 560                   |
| Oil and grease, mg/     | _                      | 14-455                                       | 83                    | 6                      | 6-110               | 52                    | 13                     | 15~275                                       | 99                    |
| Phenol, µg/L            | 9                      | 1-1.680                                      | 110                   | 5                      | 72-230              | 100                   | 10                     | 26-580                                       | 62                    |
| Chromium, µg/L          | 13                     | 13-600                                       | 78                    | 8                      | 10-180              | 80                    | 17                     | 10-1,200                                     | 80                    |
| Color, APHA units       | 9                      | 170-1,460                                    | 400                   | 7                      | 37-940              | 750                   | -8                     | 40-1,060                                     | 450                   |

<sup>&</sup>lt;sup>a</sup>Parentheses indicate value is median of field sampling results.

(continued)

TABLE 20-3 (continued)

|                         |                        | Subcategory 6                                |                       |                        | Subcategory 7                                |                       |                        | Subcategory 8                           |          |
|-------------------------|------------------------|----------------------------------------------|-----------------------|------------------------|----------------------------------------------|-----------------------|------------------------|-----------------------------------------|----------|
|                         | Number<br>of<br>plants | Range                                        | Median                | Number<br>of<br>plants | Range                                        | Median                | Number<br>of<br>plants | Range                                   | Median   |
| Flow, gpd               | 37                     | 2.0 x 10 <sup>4</sup> -1.8 x 10 <sup>6</sup> | 4.2 x 10 <sup>5</sup> | 116                    | 1.2 x 10 <sup>4</sup> -2.6 x 10 <sup>6</sup> | 2.5 x 10 <sup>5</sup> | 11                     | $2.9 \times 10^{3} - 4.0 \times 10^{5}$ | 1.5 x 10 |
| BODs, mg/L              | 10                     | 190-565                                      | 440                   | 62                     | 43~1,630                                     | 185                   | 4                      | 55~380                                  | 200      |
| COD, mg/L               | 14                     | 280-2,120                                    | 1,190                 | 46                     | 140-4,760                                    | 680                   | 4                      | 230-2,090                               | 550      |
| TSS, mg/L               | 12                     | 37-210                                       | 67                    | 59                     | 2-4,200                                      | 38                    | 4                      | 68-285                                  | 120      |
| Sulfide, µg/L           | 4                      | 10-450                                       | 175                   | 9                      | 1-4,440                                      | 200                   |                        |                                         | (1,200)  |
| Oil and grease, mg/     | L 5                    | 3-93                                         | 18                    | 18                     | 1-180                                        | 21                    | 3                      | 8-160                                   | 28       |
| Phenol, µg/L            | 7                      | 1-1,140                                      | 130                   | 12                     | 3-620                                        | 170                   | 3                      | 70-1,100                                | 575      |
| Chromium, pg/L          | 7                      | 4-300                                        | 30                    | 25                     | 4-1,600                                      | 100                   | 2                      | 60-500                                  | 275      |
| Color, APHA units       | 4                      | 65-1,900                                     | 490                   | 11                     | 57-3,000                                     | 570                   |                        |                                         | (200)    |
|                         |                        | Subcategory 9                                |                       |                        |                                              |                       |                        |                                         |          |
| Flow, gpd               | 11                     | 1.4 x 10 <sup>4</sup> -5 x 10 <sup>5</sup>   | 1.0 x 10 <sup>5</sup> |                        |                                              |                       |                        |                                         |          |
| BOD <sub>5</sub> , mg/L | 4                      | 64-630                                       | 180                   |                        |                                              |                       |                        |                                         |          |
| COD, mg/L               | 3                      | 205-3, <b>94</b> 0                           | 2,360                 |                        |                                              |                       |                        |                                         |          |
| TSS, mg/L               | 4                      | 5 <b>9-180</b>                               | 78                    |                        |                                              |                       |                        |                                         |          |
| Dil and grease, mg/     | L                      |                                              | (60)                  |                        |                                              |                       |                        |                                         |          |
| Phenol, µg/L            |                        |                                              | (40)                  |                        |                                              |                       |                        |                                         |          |
| Chromium, µg/L          | 3                      | 10-370                                       | 50                    |                        |                                              |                       |                        |                                         |          |
| Color, APHA units       |                        |                                              | (90)                  |                        |                                              |                       |                        |                                         |          |

<sup>&</sup>lt;sup>a</sup>Parentheses indicate value is median of field sampling results.

TABLE 20-4. RAW WASTEWATER POLLUTANT LOADINGS BY SUBCATEGORY [1]

|                          |              | Subcategory | 1      |              | ubcategory | 2          |              | Subcategory | 3          |
|--------------------------|--------------|-------------|--------|--------------|------------|------------|--------------|-------------|------------|
|                          | Number<br>of |             |        | Number<br>of |            |            | Number<br>of |             |            |
| Characteristic           | plants       | Range       | Median |              | Range      | Median     | plants       | Range       | Media      |
| BODs, kg/Mg              | 9            | 3.8-210     | 42     | 10           | 22-140     | 60         | 13           | 0.2-22      | 2.3        |
| COD, kg/Mg               | 4            | 20-750      | 130    | 7            | 97-445     | 200        | 8            | 2.7-26      | 14.5       |
| SS, kg/Mg                | 8            | 1.9-240     | 43     | 10           | 9.5-97     | 17         | 12           | 0.3-4       | 1.6        |
| Sulfide, g/Mg            |              |             |        |              |            |            | 1            |             | 3.8        |
| il and grease, kg/Mg     | 7            | 1.3-62      | 10     | 1            |            | 7.8        | 1            |             |            |
| henol, g/Mg              |              |             |        | 2            | 11-75      | 43         | ī            |             | 2.3        |
| Chromium, g/Mg           |              |             |        | 2            | 66-160     | 110        | 2            | 1.5-3.4     | 2.4        |
|                          |              | Subcategory | 44     |              | ubcategory | <b>4</b> b |              | Subcategory | <b>4</b> c |
| BODs, kg/Mg              | 32           | 3.8-215     | 23     | 23           | 3.6-96     | 33         | 36           | 5.9-190     | 45         |
| OD, kg/Hg                | 28           | 12-440      | 92     | 12           | 10-388     | 110        | 29           | 48-900      | 120        |
| rss, kg/Mg               | 26           | 0.8-220     | 8      | 18           | 2-62       | 9.6        | 28           | 0.2-84      | 15         |
| Sulfide, g/Mg            | 6            | 0.6-130     | 7.6    | 3            | 7.8-20     | 12.5       | 2            | 15.7-290    | 155        |
| oil and grease, kg/Hg    | 11           | 0.6-150     | 9.1    | 6            | 2.2-14     | 3.8        | 5            | 0.4-15      | 4.1        |
| Phenol, g/Mg             | 10           | 1.8-51      | 8.2    | 4            | 0.9-25     | 7.7        | 6            | 0.9-150     | 13         |
| Chromium, g/Mg           | 16           | 0.1-44      | 4.3    | 7            | 2.4-49     | 2.6        | 11           | 0.6-1,520   | 21         |
|                          |              | Subcategory | 5a     |              | ubcategory | 5b         |              | Subcategory | 5c         |
| BOD <sub>5</sub> , kg/Mg | 35           | 4.4-85      | 28     | 19           | 8.0-140    | 22         | 39           | 1.6-140     | 26         |
| COD, kg/Mg               | 29           | 18-380      | 81     | 11           | 49-500     | 115        | 27           | 26-630      | 89         |
| ISS, kg/Mg               | 32           | 2.9-42      | 6.3    | 19           | 1.3-110    | 6.9        | 29           | 0.3-24      | 6.7        |
| Sulfide, g/Mg            | 3            | 3.1-770     | 13     | 4            | 8.3-110    | 14         | 4            | 2.0-400     | 100        |
| oil and grease, kg/Hg    | 9            | 0.5-46      | 4      | 6            | 0.4-18     | 3.5        | 13           | 1.4-28      | 6.6        |
| Phenol, g/Mg             | 9            | 0.1-400     | 8.7    | 5            | 3.4-37     | 12         | 10           | 1.8-150     | 4.2        |
| Chromium, g/Mg           | 13           | 0.6-85      | 7.8    | 8            | 1.4-35     | 4.7        | 17           | 0.4-270     | 6.4        |
|                          |              | Subcategory | 6      |              | ubcategory | 7          |              | Subcategory | 8          |
| BOD <sub>5</sub> , kg/Mg | 10           | 14-41       | 26     | 62           | 0.8-110    | 21         | 4            | 15-310      | 6.7        |
| COD, kg/Mg               | 14           | 22-135      | 82     | 46           | 2.5-380    | 63         | 4            | 64-380      | 38         |
| rss, kg/Mg               | 12           | 1.6-9.3     | 4.7    | 59           | 0.1-480    | 4.6        | 4            | 16-120      | 64         |
| Sulfide, g/Mg            | 4            | 0.8-22      | 9.4    | 9            | 0.6-170    | 28         | 1            |             | 117        |
| Oil and grease, kg/Mg    | 5            | 0.2-9.4     | 1.1    | 18           | 0.1-22     | 1.6        | 3            | 2.4-130     | 11.2       |
| Phenol, g/Mg             | 7            | 0.1-59      | 11     | 12           | 0.5-83     | 15.0       | 3            | 16~500      | 247        |
| Chromium, g/Mg           | 7            | 0.2-12      | 3.4    | 25           | 0.8-360    | 12.0       | 2            | 11.7-139    | 75.4       |
|                          |              | Subcategory | 9      |              |            |            |              |             |            |
| BOD <sub>5</sub> , kg/Mg | 4            | 3.3-16      | 70     |              |            |            |              |             |            |
| COD, kg/Mg               | 3            | 10-99       | 186    |              |            |            |              |             |            |
| TSS, kg/Mg               | 4            | 0.2-15      | 2.2    |              |            |            |              |             |            |
| Sulfide, g/Mg            | 1            | 15          | 0.5    |              |            |            |              |             |            |
| Oil and grease, kg/Mg    | 1            |             | 3.4    |              |            |            |              |             |            |
| Phenol, g/Mg             | 1            |             | 0.2    |              |            |            |              |             |            |
| Chromium, g/Mg           | 3            | 0.4-16      | 0.5    |              |            |            |              |             |            |

TABLE 20-5. WASTEWATER CHARACTERIZATION, PLANT 100 [3]

Category: Textile Mills

Wastewater treatment description: Neutralization, aeration, clarification, carbon/sand filtration, chlorine contact Influent flowrate, gpd: 960,000 av (650,000 to 1,400,000 range

during sampling)

|                             | Po         | llutant conce | ntration,   | ig/L        |
|-----------------------------|------------|---------------|-------------|-------------|
|                             | Intake     | Raw           | Clarifier   | Filter      |
| Pollutant                   | water      | wastewater    | effluent    | effluent    |
| Toxic pollutants            |            |               |             |             |
| Acrylonitrile               |            |               | <100        | <100        |
| Benzene                     |            |               | <1          | <1          |
| Benzidine                   | 0.4        |               | `1          | `*          |
| 1,2,4-Trichlorobenzene      | 0.4        | 270           | 40          | 11          |
| Hexachlorobenzene           | 1.3        | 270           | 40          | 11          |
|                             | 1.3        | 50            |             |             |
| Bis(chloromethyl) ether     |            | 59            | <b>/</b> 5  | <b>.</b> 5  |
| 2,4,6-Trichlorophenol       |            | 16            | <5          | <5          |
| p-Chloro-m-cresol           |            | 29            | 5           | 3           |
| Chloroform                  |            | a             | <5          | <5          |
| l,2-Dichlorobenzene         |            | <br>a         | 3           | 3           |
| 1,3-Dichlorobenzene         |            | _a<br>_a      |             |             |
| l,4-Dichlorobenzene         |            | <b>-</b> "    |             |             |
| 2,4-Dichlorophenol          |            | 20            |             |             |
| 1,2-Dichloropropane         |            | 56            |             |             |
| 2,4-Dimethylphenol          |            | 190           |             |             |
| Ethylbenzene                | 2.8        | 5.9           | <0.3        | <0.3        |
| Methylene chloride          | 7.4        | 8.7           |             |             |
| Naphthalene                 | 0.3        | 18            | 9           | 2.8         |
| N-nitrosodi-n-propylamine   |            |               | <5          | <5          |
| Pentachlorophenol           |            |               | 18          | 12          |
| Phenol                      |            | 1.6           | <5          | <5          |
| Bis(2-ethylhexyl) phthalate |            | 425           | 100         | 75          |
| Di-n-butyl phthalate        | 1.8        | 24            |             |             |
| Diethyl phthalate           | 0.9        |               |             |             |
| Dimethyl phthalate          | 0.5        | 18            |             |             |
| Anthracene                  | 0.4        | 10            |             |             |
| Fluorene                    | 0.06       | 1.0           |             |             |
| Tetrachloroethylene         | 0.6        | 310           | <0.8        | 3.8         |
| Toluene                     | 2.1        | 2.8           | 13          | <0.5        |
|                             | 2.1        | 10            | -           | -           |
| Trichloroethylene           | <b>~10</b> |               |             |             |
| Antimony (total)            | <10        | 160           | 160         | 160         |
| Arsenic (total)             | <1<br>b    | 19            | 4           | 4           |
| Asbestos (fibrous)          | NA         | NA            | NA<br>(0.04 | NA<br>10 04 |
| Beryllium (total)           | <0.04      | <0.04         | <0.04       | <0.04       |
| Cadmium (total)             | 2.9        | <2            | <2          | <2          |
| Chromium (total)            | <4         | 34            | 76          | 34          |

(continued)

TABLE 20-5 (continued)

|                              | Pol                      | llutant conce | ntration, µ | g/L      |  |  |  |
|------------------------------|--------------------------|---------------|-------------|----------|--|--|--|
|                              | Intake                   | Raw           | Clarifier   | Filter   |  |  |  |
| Pollutant                    | water                    | wastewater    | effluent    | effluent |  |  |  |
|                              |                          |               |             |          |  |  |  |
| Toxic pollutants (continued) |                          |               |             |          |  |  |  |
| Copper (total)               | 63                       | 49            | 120         | 51       |  |  |  |
| Cyanide (total)              | <2                       | <2            | <2          | <2       |  |  |  |
| Lead (total)                 | <22                      | <22           | <22         | <22      |  |  |  |
| Mercury (total)              | <0.5                     | <0.5          |             |          |  |  |  |
| Nickel (total)               | <36                      | <36           | <36         | 45       |  |  |  |
| Selenium (total)             | 1                        | <1            |             |          |  |  |  |
| Silver (total)               | <5                       | <5            | <5          | 13       |  |  |  |
| Thallium (total)             | <50                      | <50           |             |          |  |  |  |
| Zinc (total)                 | 420                      | 490           | 250         | 240      |  |  |  |
| TCDD                         | NA                       | NA            | NA          | NA       |  |  |  |
|                              | Pollutant concentration, |               |             |          |  |  |  |
|                              |                          | units as      | specified   |          |  |  |  |
| Criteria pollutants          |                          |               |             |          |  |  |  |
| BOD, mg/L                    | NA                       | NA            | NA          | NA       |  |  |  |
| COD, mg/L                    | 15                       | 230           | 130         | 130      |  |  |  |
| TSS, mg/L                    |                          | 25            | 130         | 74       |  |  |  |
| Oil and grease, mg/L         | NA                       | NA            | NA          | NA       |  |  |  |
| Total phenols, mg/L          | 0.002                    | 0.81          | 0.02        | 0.018    |  |  |  |
| Sulfide, mg/L                | <0.003                   | 0.044         | 0.006       | 0.009    |  |  |  |
| Color (ADMI @ pH 7.6)        | <5                       | 130           | 110         | 110      |  |  |  |
| pH, pH units                 | 7.3                      | 6.9           | 7.6         | 7.6      |  |  |  |
| Other pollutants             |                          |               |             |          |  |  |  |
| Color (ADMI @ original pH)   | <5                       | 130           | 120         | 110      |  |  |  |

Note: Blanks indicate that concentrations were below detection limit.

<sup>&</sup>lt;sup>a</sup>Total of 56  $\mu$ g/L.

b<sub>Not analyzed.</sub>

TABLE 20-6. WASTEWATER CHARACTERIZATION, PLANT 200 [3]

Category: Textile Mills
Wastewater treatment description: Lime and ferric chloride reactors,
polyelectrolyte addition, primary clarification, aeration, secondary
clarification, chlorination, multimedia pressure filter
Influent flowrate, gpd: 440,000 av (90,000 to 840,000 range during sampling)

|                             |            | Pollutant  | concentrat:  | ion, μg/L |          |
|-----------------------------|------------|------------|--------------|-----------|----------|
|                             | ·          |            | Primary      | Secondary |          |
|                             | Intake     | Raw        | clarifier    | clarifier | Filter   |
| Pollutant                   | water      | wastewater | effluent     | effluent  | effluent |
| Toxic pollutants            |            |            |              |           |          |
| Acrylonitrile               | 0.4        | 0.8        | <100         | <100      | <100     |
| Benzene                     |            |            | 1            | <1        | <1       |
| 1,2,4-Trichlorobenzene      |            |            | <2           | <2        | <2       |
| l, l, l-Trichloroethane     |            | 9.3        |              |           |          |
| 2,4,6-Trichlorophenol       |            |            | <5           | <5        | <5       |
| p-Chloro-m-cresol           |            |            | <5           | <5        | <5       |
| Chloroform                  | 360        | 26         | 2 <b>8</b> 5 | <5        | <5       |
| 1,2-Dichlorobenzene         |            |            | <0.5         | <0.5      | <0.5     |
| Ethylbenzene                | 6.0        | 0.5        | 4.1          | <0.3      | <0.3     |
| Fluoranthene                | 0.2        | 0.2        |              |           |          |
| Methyl chloride             | 9.0        | 7.0        |              |           |          |
| Naphthalene                 |            |            | 30           | 3.8       | <1       |
| N-nitrosodi-n-propylamine   |            |            | <5           | <5        | <5       |
| Pentachlorophenol           |            |            |              | <5        | 1.2      |
| Phenol                      |            | 14         | 11           | <5        | <5       |
| Bis(2-ethylhexyl) phthalate |            | 550        | 13           | 31        | 33       |
| Butyl benzyl phthalate      | 0.8        |            |              |           |          |
| Di-n-butyl phthalate        | 8.0        | 3.5        |              |           |          |
| Diethyl phthalate           | 5.0        | 1.8        |              |           |          |
| Anthracene                  |            | 1.2        |              |           |          |
| Fluorene                    | 0.4        |            |              |           |          |
| Pyrene                      | 0.3        | 0.1        |              |           |          |
| Tetrachloroethylene         |            |            |              | <0.8      | <0.8     |
| Toluene                     | 1.9        | 19         | 6.4          | 0.8       | <0.5     |
| Trichloroethylene           | 3.2        |            |              | <1        | <1       |
| Antimony (total)            | <10        | 130        | 33           | <10       | 51       |
| Arsenic (total)             | <1         | 5          |              |           |          |
| Asbestos (fibrous)          | NA a       | NA         | NA           | NA        | NA       |
| Beryllium (total)           | <0.04      | <0.04      | <0.04        | <0.04     | 1.5      |
| Cadmium (total)             | <2         | 3.1        | <2           | <2        | 4.8      |
| Chromium (total)            | < <b>4</b> | 3,170      | 130          | 9.4       | 20       |
| Copper (total)              | <4         | 1,460      | 330          | 30        | 46       |
| Cyanide (total)             | <2         | <2         | <2           | 14        | 18       |
| Lead (total)                | <22        | 460        | 39           | <22       | 81       |

(continued)

TABLE 20-6 (continued)

|                              |        | Pollutant      | concentrat  | ion, µg/L    |          |
|------------------------------|--------|----------------|-------------|--------------|----------|
|                              |        |                | Primary     | Secondary    |          |
|                              | Intake | Raw            | clarifier   | clarifier    | Filter   |
| Pollutant                    | water  | wastéwater     | effluent    | effluent     | effluent |
| Toxic pollutants (continued) |        |                |             |              |          |
| Mercury (total)              | <1     | <1             |             |              |          |
| Nickel (total)               | <36    | 230            | 180         | 150          | 220      |
| Selenium (total)             | <1     | <1             |             |              |          |
| Silver (total)               | <5     | 22             | 10          | <5           | 10       |
| Thallium (total)             | <50    | <50            |             |              |          |
| Zinc (total)                 | 45     | 1,040          | 460         | 51           | 150      |
| TCDD                         | NA     | NA             | NA          | NA           | NA       |
|                              | Po     | llutant concer | tration, un | its as speci | fied     |
| Criteria pollutants          |        |                |             |              |          |
| BOD, mg/L                    | NA     | NA             | NA          | NA           | NA       |
| COD, mg/L                    | 15     | 4,530          | 1,000       | 110          | 96       |
| TSS, mg/L                    | 5      | 885            | 40          | 10           | 7        |
| Oil and grease, mg/L         | NA     | NA             | NA          | NA           | NA       |
| Total phenols, mg/L          | <0.002 |                | 0.030       | <0.002       |          |
| Sulfide, mg/L                | 0.059  | 9 0.45         | 0.098       | 0.02         | <0.003   |
| Color (ADMI @ pH 7.6)        | 5      | 30             | 35          | 30           | 13       |
| pH, pH units                 | 7.4    | 5.5            | 5.3         | 8.2          | 8.0      |
| ther pollutants              |        |                |             |              |          |
|                              |        |                |             |              |          |

Note: Blanks indicate that concentrations were below detection limit.

analyzed.

TABLE 20-7. WASTEWATER CHARACTERIZATION, PLANT 400 [3]

Category: Textile Mills

Wastewater treatment description: Holding basin, aeration basins,

clarification, sand filtration, chlorine contact

Influent flowrate, gpd: 260,000av (230,000 to 320,000 range during

sampling)

|                             | Pol         | lutant conc | entration,     | μg/L           |
|-----------------------------|-------------|-------------|----------------|----------------|
|                             | <del></del> | Holding     | Secondary      |                |
|                             | Intake      | pond        | clarifier      | Filter         |
| Pollutant                   | water       | effluent    | effluent       | effluent       |
| Toxic pollutants            |             |             |                |                |
| Acrolein                    |             |             |                | 120            |
| Acrylonitrile               |             | 200         | <100           | <100           |
| Benzene                     |             | 90          | <1             | <1             |
| 1,2,4-Trichlorobenzene      |             |             | <2             | <2             |
| 2,4,6-Trichlorophenol       |             |             | <5             | <5             |
| p-Chloro-m-cresol           |             |             | <5             | <5             |
|                             |             |             | <5             | <b>7</b> 7     |
| 1,2-Dichlorobenzene         |             |             | <0.5           | <0.5           |
| Ethylbenzene                |             | 2.1         | <0.3           | <0.3           |
| Methylene chloride          | 22          | 30          |                |                |
| Naphthalene                 |             |             | <1             | <1             |
| N-nitrosodi-n-propylamine   |             |             | <5             | <5             |
| Pentachlorophenol           |             |             | <5             | <5             |
| Phenol                      |             | 0.9         | <5             | <5             |
| Bis(2-ethylhexyl) phthalate |             | 110         |                |                |
| Pyrene                      |             | 8.7         |                |                |
| Tetrachloroethylene         |             |             | <0.8           | <0.8           |
| Toluene                     | 4.8         | 3.7         | <0.5           | <0.5           |
| Trichloroethylene           |             | 4.8         | 39             | 5 <b>9</b>     |
| Antimony (total)            | <10         | 190         | 84             | 81             |
| Arsenic (total)             | <1          | 1           |                |                |
| Asbestos (fibrous)          | NA a        | NA          | NA             | NA             |
| Beryllium (total)           | <0.04       | <0.04       | <0.04          | <0.04          |
| Cadmium (total)             | <2          | 5.3         | <2             | <2             |
| Chromium (total)            | <4          | <4          | <4             | <4             |
| Copper (total)              | 11          | 17          | 8              | 6              |
| Cyanide (total)             | <5          | <5          | <5             | <5             |
| Lead (total)                | <22         | 99          | <b>4</b> 0     | 71             |
| Mercury (total)             | <0.2        | <0.2        | _              | _              |
| Nickel (total)              | <36         | 69          | 20             | 54             |
| Selenium (total)            | <1          | 3           | <del>-</del> - | - <del>-</del> |
| Silver (total)              | <5          | 19          | 16             | 12             |
| Thallium (total)            | <50         | <50         | <50            |                |

<sup>&</sup>lt;sup>a</sup>Not analyzed.

(continued)

Date: 6/23/80

II.20-22

TABLE 20-7 (continued)

|                                                                                                                                    | Pollutant concentration,<br>units as specified       |                                                          |                                                      |                                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--|--|
| Pollutant                                                                                                                          | Intake<br>water                                      | Holding<br>pond<br>effluent                              | Secondary clarifier                                  | Filter<br>effluent                                    |  |  |
| Toxic pollutants (continued)                                                                                                       |                                                      |                                                          |                                                      |                                                       |  |  |
| Zinc (total)<br>TCDD                                                                                                               | 33<br>NA                                             | 340<br>NA                                                | 58<br>NA                                             | 71<br>NA                                              |  |  |
| Criteria pollutants                                                                                                                |                                                      |                                                          |                                                      |                                                       |  |  |
| BOD, mg/L<br>COD, mg/L<br>TSS, mg/L<br>Oil and grease, mg/L<br>Total phenols, mg/L<br>Sulfide, mg/L<br>Color (ADMI @ pH 7.6)<br>pH | NA<br>6.3<br>12<br>NA<br>0.011<br><0.003<br>8<br>8.0 | NA<br>1,740<br>200<br>NA<br>0.034<br>0.050<br>160<br>7.2 | NA<br>190<br>50<br>NA<br>0.007<br>0.012<br>79<br>7.6 | NA<br>130<br>35<br>NA<br>0.006<br><0.003<br>73<br>7.6 |  |  |
| Other pollutants                                                                                                                   |                                                      |                                                          |                                                      |                                                       |  |  |
| Color (ADMI @ original pH)                                                                                                         | 50                                                   | 160                                                      | 83                                                   | 74                                                    |  |  |

Note: Blanks indicate that concentrations were below detection limit analyzed.

TABLE 20-8. WASTEWATER CHARACTERIZATION, PLANT 500 [3]

Category: Textile Mills

Wastewater treatment description: Holding basin, aerated lagoon, clarifier, dissolved air flotation, chlorine contact, polishing pond

Influent flowrate, gpd: 276,000 (252,000 to 288,000 range during sampling)

|                             | Po.    | llutant conce | ntration, p | ıg/L       |
|-----------------------------|--------|---------------|-------------|------------|
|                             |        |               | Secondary   |            |
|                             | Intake | Raw           | clarifier   | DAF        |
| Pollutant                   | water  | wastewater    | effluent    | effluent   |
| Toxic pollutants            |        |               |             |            |
| Acrylonitrile               |        |               | <100        | <100       |
| Benzene                     | 0.3    | 0.3           | <1          | <100       |
| 1,2,4-Trichlorobenzene      |        |               | <2          | <2         |
| 1,1,1-Trichloroethane       |        | 2.8           | _           | _          |
| 1,1,2,2-Tetrachloroethane   |        | 21            |             |            |
| 2,4,6-Trichlorophenol       |        |               | <5          | <5         |
| p-Chloro-m-cresol           |        |               | <5          | <5         |
| Chloroform                  |        |               | •           | 21         |
| 1,2-Dichlorobenzene         |        |               | <0.5        | <0.5       |
| 1,2-Trans-dichloroethylene  |        | 4.5           | 0.0         | 0.0        |
| 2,4-Dimethylphenol          |        | 20            |             |            |
| Ethylbenzene                | 1.1    |               | <0.3        | <0.3       |
| Methylene chloride          | 11     | 82            | .0.5        | .0.0       |
| Naphthalene                 |        | 210           | <1          | <1         |
| N-nitrosodi-n-propylamine   |        | 210           | <5          | <5         |
| Pentachlorophenol           |        | 2.1           | <5          | <5         |
| Phenol                      |        |               | <5          | <5         |
| Bis(2-ethylhexyl) phthalate |        |               | <0.5        | .0         |
| Butyl benzyl phthalate      | 1.6    | 160           | .0.5        |            |
| Di-n-butyl phthalate        | 0.6    | 3.0           |             |            |
| Diethyl phthalate           | 0.0    | 150           |             |            |
| Acenaphthylene              |        | 4,400         |             |            |
| Anthracene                  | 0.05   | 1,100         |             |            |
| Tetrachloroethylene         | 1.8    | 890           | 320         | 220        |
| Toluene                     | 7.3    | 2.9           | 2.0         | 1.2        |
| Trichloroethylene           | 0.6    | 3.1           | 24          | 2.8        |
| Antimony (total)            | 24     | 515           | 450         | 375        |
| Arsenic (total)             | 2      | 4             | 450         | 373        |
| Beryllium (total)           | <0.04  | <0.04         | <0.04       | <0.04      |
| Asbestos (fibrous)          | NA a   | NA            | NA          | NA         |
| Cadmium (total)             | 2      | <2            | <2          | <2         |
| Chromium (total)            | 6      | 4             | 6           | < <u>4</u> |
| Copper (total)              | 46     | 44            | 14          | <4         |
| copper (total)              | 70     | 77            | 14          | `*         |

a<sub>Not analyzed</sub>

(continued)

Date: 6/23/80

II.20-24

TABLE 20-8 (continued)

|                              | Pol                      | lutant conce | ntration, µ | g/L      |  |  |  |
|------------------------------|--------------------------|--------------|-------------|----------|--|--|--|
|                              |                          |              | Secondary   |          |  |  |  |
|                              | Intake                   | Raw          | clarifier   | DAF      |  |  |  |
| Pollutant                    | water                    | wastewater   | effluent    | effluent |  |  |  |
| Toxic pollutants (continued) |                          |              |             |          |  |  |  |
| Cyanide (total)              | <2                       | 12           | <2          | <2       |  |  |  |
| Lead (total)                 | 53                       | 62           | 46          | 25       |  |  |  |
| Mercury (total)              | <1                       | <1           |             |          |  |  |  |
| Nickel (total)               | 130                      | 130          | 150         | 110      |  |  |  |
| Selenium (total)             | <2                       | <2           |             |          |  |  |  |
| Silver (total)               | 14                       | 11           | 16          | 15       |  |  |  |
| Thallium (total)             | <50                      | <50          |             |          |  |  |  |
| Zinc (total)                 | 19                       | 75           | 54          | 45       |  |  |  |
| TCDD                         | NA                       | NA           | NA          | NA       |  |  |  |
|                              | Pollutant concentration, |              |             |          |  |  |  |
|                              |                          | units as     | specified   |          |  |  |  |
| Criteria pollutants          |                          |              |             |          |  |  |  |
| BOD, mg/L                    | NA                       | NA           | NA          | NA       |  |  |  |
| COD, mg/L                    | 8.0                      | 2,380        | <b>4</b> 80 | 150      |  |  |  |
| TSS, mg/L                    | 6                        | 100          | 26          | 8        |  |  |  |
| Oil and grease, mg/L         | NA                       | NA           | NA          | NA       |  |  |  |
| Total phenols, mg/L          | 0.006                    | 0.048        | 0.021       | 0.10     |  |  |  |
| Sulfide, mg/L                | <0.003                   | <0.003       | <0.003      | <0.003   |  |  |  |
| Color (ADMI @ pH 7.6)        | 280                      | 120          | 82          | 49       |  |  |  |
| pH, pH units                 | 7.6                      | 7.9          | 7.7         | 7.3      |  |  |  |
| Other pollutants             |                          |              |             |          |  |  |  |
| Color (ADMI @ original pH)   | 280                      | 140          | 81          | 48       |  |  |  |

Note: Blanks indicates that concentrations were below detection limit.

<sup>&</sup>lt;sup>a</sup>Not analyzed.

TABLE 20-9. WASTEWATER CHARACTERIZATION, PLANT 700 [3]

Category: Textile Mills

Wastewater treatment description: Aerated equalization, ferric chloride addition, flocculation, clarification

Influent flowrate, gpd: 467,000 av (400,000 to 525,000 range
 during sampling)

|                           |                 |          | entration, | μg/L     |
|---------------------------|-----------------|----------|------------|----------|
|                           | Intake          | Aeration | Clarifier  | Filter   |
| Pollutant                 | water           | effluent | effluent   | effluent |
| Toxic pollutants          |                 |          |            |          |
| Acrylonitrile             |                 |          | <100       | <100     |
| Benzene                   |                 | 0.2      | <1         | <1       |
| Chlorobenzene             | 0.2             | 0.4      | -          | -        |
| 1,2,4-Trichlorobenzene    | 0.2             | 0.1      | 17         | 19       |
| 1,1,2,2-Tetrachloroethane |                 | 0.1      |            |          |
| 2,4,6-Trichlorophenol     |                 | 8.5      | 7.4        | 11       |
| p-Chloro-m-cresol         |                 | 0.5      | <5         | <5       |
| Chloroform                |                 | 1.0      | <5         | 55       |
| 2-Chlorophenol            |                 | 10       | • •        | 30       |
| 2,4-Dimethylphenol        |                 | 2.3      |            |          |
| Ethylbenzene              | 0.3             | 0.3      | 0.3        | 0.3      |
| Methylene chloride        | 6.3             | 4.0      | 0.5        | 0.5      |
| Naphthalene               | 0.5             | 5.5      | 38         | 38       |
| 4-Nitrophenol             |                 | 240      | 30         | 30       |
| N-nitrosodi-n-propylamine |                 | 240      | 20         | 69       |
| Pentachlorophenol         |                 |          | <5         | 03       |
| Phenol                    |                 |          | 49         |          |
| Di-n-butyl phthalate      | 2.6             | 33       | 17         |          |
| Di-n-octyl phthalate      | 1.7             | 33       |            |          |
| Diethyl phthalate         | 0.1             | 5.1      |            |          |
| Anthracene                | 0.2             | 3.1      |            |          |
| Phenanthrene              | 0.2             | 1.4      |            |          |
| Tetrachloroethylene       |                 | 0.2      | 24         | <0.8     |
| Toluene                   | 0.7             | 1.6      | 2          | 1.6      |
| Trichloroethylene         | 0.4             | 0.3      | 15         | 23       |
| Antimony (total)          | 36              | 200      | 67         | 60       |
| Arsenic (total)           | <1              | 3        |            |          |
| Asbestos (fibrous)        | NA <sup>a</sup> | NA       | NA         | NA       |
| Beryllium (total)         | <0.04           | <0.04    | <0.04      | <0.04    |
| Cadmium (total)           | <3              | 4        | 7          | 6        |
| Chromium (total)          | 8               | 23       | 19         | 14       |
| Copper (total)            | 48              | 40       | 8.3        | 7.7      |
| Cyanide (total)           | <5              | <5       | <5         | <5       |
| Lead (total)              | 55              | 63       | 71         | 63       |
| Mercury (total)           | <1              | <1       |            |          |
| Nickel (total)            | 150             | 150      | 140        | 150      |
|                           |                 |          |            |          |

(continued)

Date: 6/23/80

II.20**-**26

TABLE 20-9 (continued)

|                              | Pol                      | lutant conc | entration,  | μg/L       |  |  |  |
|------------------------------|--------------------------|-------------|-------------|------------|--|--|--|
|                              | Intake                   | Aeration    | Clarifier   | Filter     |  |  |  |
| Pollutant                    | water                    | effluent    | effluent    | effluent   |  |  |  |
| Toxic pollutants (continued) |                          |             |             |            |  |  |  |
| Selenium (total)             | 2                        | 3           |             |            |  |  |  |
| Silver (total)               | 43                       | 51          | 45          | 49         |  |  |  |
| Thallium (total)             | <50                      | <50         |             |            |  |  |  |
| Zinc (total)                 | 270                      | 140         | <b>64</b> 0 | 45         |  |  |  |
| TCDD                         | NA                       | NA          | NA          | NA         |  |  |  |
|                              | Pollutant concentration, |             |             |            |  |  |  |
|                              | <del></del>              | units as    | specified   |            |  |  |  |
| Criteria pollutants          |                          |             |             |            |  |  |  |
| BOD, mg/L                    | $\mathtt{NA}^\mathtt{a}$ | NA          | NA          | NA         |  |  |  |
| COD, mg/L                    | 21                       | 740         | 530         | 420        |  |  |  |
| TSS, mg/L                    | 8                        | 58          | 50          | 18         |  |  |  |
| Oil and grease, mg/L         | NA                       | NA          | NA          | NA         |  |  |  |
| Total phenols, mg/L          | 0.013                    | 0.069       | 0.084       | 0.096      |  |  |  |
| Sulfide, mg/L                | <0.003                   | 0.420       | 0.086       | <0.003     |  |  |  |
| Color (ADMI @ pH 7.6)        | 10                       | 110         | 92          | <b>6</b> 8 |  |  |  |
| pH, pH units                 | 8.2                      | 7.45        | 7.0         | 6.4        |  |  |  |
| Other pollutants             |                          |             |             |            |  |  |  |
| Color (ADMI @ original pH)   | 14                       | 140         | 94          | 67         |  |  |  |

Note: Blanks indicate that concentrations were below detection limit.

a Not analyzed.

### II.20.4 POLLUTANT REMOVABILITY [1]

This section addresses current treatment technologies and pollutant removability associated with the Textile Industry.

## II.20.4.1 Industry Application of Wastewater Treatment

The following is a summary of methods and removal efficiencies for systems for which data were obtained.

(1) Aerated lagoons (see Table 20-10)

Used by: Direct dischargers - 33
Indirect dischargers - 12

(2) Activated sludge (see Table 20-11)

Used by: Direct dischargers - 94
Indirect dischargers - 11

(3) Stabilization lagoons (see Table 20-12)

Used by: Direct dischargers - 44
Indirect dischargers - 17

(4) Polishing ponds

Subcategory 7, one plant sampled (see Table 20-13) Subcategory 9, one plant sampled (see Table 20-14)

(5) Coagulation, chemical or polymer (see Table 20-15)

Used by: Direct dischargers - 16 Indirect dischargers - 15 Zero dischargers - 3

TABLE 20-10. EFFECTIVENESS OF AERATED LAGOONS [1]

|            | Dis-     | hp/   | Detention | BOD, r | mg/L | COD,  | mg/L  | TSS, | mg/L |
|------------|----------|-------|-----------|--------|------|-------|-------|------|------|
| egory o    | charge   | Mgala | time, hr  | Inf    | Eff  | Inf   | Eff   | Inf  | Eff  |
| 4c         | Direct   | 45    | 60        | 370    | 94   | 835   | 810   | _    | 89   |
| 4a         | Indirect | 400   | 24        | 69     | 69   | 640   | 580   | 54   | 68   |
| 4c         | Indirect | 780   | 86        | 1,740  | 160  | -     | -     | 560  | 600  |
| 5 <b>a</b> | Indirect | 150   | 18        | 390    | 190  | 1,760 | 1,220 | -    | -    |
| 7          | Direct   | 25    | 75        | 110    | 14   | -     | -     | 21   | 12   |
| 7          | Direct   | 1,000 | 0.5       | 250    | 250  | 560   | 430   | -    | 110  |

amgal = Million gallons.

TABLE 20-11. EFFECTIVENESS OF ACTIVATED SLUDGE [1]

| Subcat-    | Dis-     | hp/                      | Detention  | n BOD, | mg/L | COD,   | mg/L  | TSS,  | mg/L  |
|------------|----------|--------------------------|------------|--------|------|--------|-------|-------|-------|
| egory      | charge   | hp/<br>Mgal <sup>a</sup> | time, h    |        | Eff  | Inf    | Eff   | Inf   | Eff   |
|            |          |                          |            |        |      |        |       |       |       |
| 1          | Direct   | 160                      | 99         | 1,560  | 125  | 16,200 | 2,600 | 3,970 | 1,230 |
| 4c         | Direct   | 120                      | 110        | 475    | 19   | -      | -     | -     | 91    |
| 4a         | Direct   | 60                       | 24         | 130    | 22   | 472    | 310   | 34    | 38    |
| 4c         | Direct   | 41                       | <b>7</b> 5 | 270    | 24   | 840    | 340   | -     | 27    |
| 4c         | Direct   | 58                       | 130        | 400    | 8    | -      | 250   | 80    | 8     |
| 4c         | Direct   | 250                      | 97         | 330    | 23   | 2,970  | 590   | -     | 44    |
| 4c         | Direct   | 80                       | 78         | 640    | 105  | 1,240  | 660   | 170   | 180   |
| <b>4</b> a | Direct   | 60                       | 120        | 180    | 9    | 470    | 160   | 26    | 18    |
| 4b         | Direct   | 90                       | 80         | 250    | 5    | -      | -     | 220   | 48    |
| 5b         | Direct   | 60                       | 48         | 270    | 45   | 690    | 350   | 28    | 55    |
| 5 <b>a</b> | Direct   | 74                       | 82         | 190    | 19   | 340    | 160   | 97    | 63    |
| 5 <b>a</b> | Direct   | 40                       | 420        | 200    | 13   | 745    | 230   | 49    | 62    |
| 5 <b>b</b> | Direct   | 75                       | 110        | 180    | 5    | -      | 120   | 18    | 18    |
| 5 <b>b</b> | Direct   | 160                      | 76         | 1,100  | 11   | _      | 260   | 280   | 45    |
| 6          | Direct   | 44                       | 130        | 210    | 29   | 610    | 230   | 93    | 50    |
| 7          | Direct   | 80                       | 33         | 150    | 6    | 500    | 126   | 36    | 27    |
| 7          | Indirect | 500                      | 44         | 1,630  | 230  | 4,760  | 1,840 | 140   | 195   |
| 7          | Indirect | 80                       | 50         | 125    | 5    | _      | 160   | 46    | 21    |

aMgal = Million gallons.

<sup>&</sup>lt;sup>b</sup>Calculated based on average flow and basin volume available for the year 1976.

TABLE 20-12. EFFECTIVENESS OF STABILIZATION LAGOONS [1]

|                                                 |                                                                                                         | Effluent<br>concentration,<br>mg/L                              |                                                             |                                                          |  |  |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|--|--|
| Subcategory                                     | Discharge                                                                                               | BOD                                                             | COD                                                         | TSS                                                      |  |  |
| 4c<br>4c<br>4b<br>5b<br>5a<br>5c<br>7<br>7<br>8 | Direct Direct Indirect | 53<br>35<br>480<br>325<br>145<br>140<br>210<br>230<br>110<br>17 | 175<br>115<br>2,190<br>810<br>-<br>860<br>550<br>630<br>790 | 14<br>35<br>18<br>40<br>-<br>-<br>59<br>945<br>29<br>180 |  |  |

a Influent data were not presented.

TABLE 20-13. EFFECTIVENESS OF A POLISHING POND, SUBCATEGORY 7 [1]

| Conventional and no         | onconventiona | al        |
|-----------------------------|---------------|-----------|
| pollutant tre               | atability     |           |
| Pollutant                   | Influent      | Effluent  |
|                             |               |           |
| COD, mg/L                   | 78            | 140       |
| TSS, mg/L                   | 37            | 28        |
| Phenols, µg/L               | 36            | 51        |
| Sulfide, µg/L               | 2             | NDa       |
| Color, ADMI                 | 210           | 220       |
|                             |               |           |
| Priority pollutant          |               |           |
|                             | Influent,     | Effluent, |
| Priority pollutant          | μg/L          | μg/L      |
|                             |               |           |
| Trichlorofluoromethane      | <b>4</b> 8    | ND        |
| Bis(2-ethylhexyl) phthalate | 40            | 11        |
| Lead                        | 36            | ND        |
| Zinc                        | 865           | 120       |
|                             |               |           |

aNot detected.

TABLE 20-14. EFFECTIVENESS OF A POLISHING POND, SUBCATEGORY 9 [1]

|                             | <del></del>  |          |  |  |
|-----------------------------|--------------|----------|--|--|
| Conventional and n          | onconvention | al       |  |  |
| pollutant tre               | atability    |          |  |  |
| Parameter                   | Influent     | Effluent |  |  |
|                             |              |          |  |  |
| COD, mg/L                   | 550          | 260      |  |  |
| TSS, mg/L                   | 91           | 22       |  |  |
| Phenols, µg/L               | 52_          | 28       |  |  |
| Sulfide, µg/L               | NDa          | ND       |  |  |
| Color, ADMI                 | 280          | 300      |  |  |
| ·                           |              |          |  |  |
| Priority pollutant          | treatabilit  | y        |  |  |
|                             | Influent,    | Effluent |  |  |
| Priority pollutant          | µg/L         | μg/L     |  |  |
|                             |              |          |  |  |
| Naphthalene                 | 56           | nd a     |  |  |
| Bis(2-ethylhexyl) phthalate | 18           | ND       |  |  |
| Chromium                    | 35           | ND       |  |  |
| Copper                      | ND           | 18       |  |  |
| Selenium                    | 32           | 18       |  |  |
| Zinc                        | 45           | 1,00     |  |  |
| •                           |              |          |  |  |

a<sub>Not detected.</sub>

TABLE 20-15. EFFECTIVENESS OF COAGULATION [1]

| Subcat-<br>egory | Coagulants                       | Treatment step                   | BOD,<br>Inf | mg/L<br>Eff | COD,  | mg/L<br>Eff | TSS,<br>Inf | mg/L<br>Eff |
|------------------|----------------------------------|----------------------------------|-------------|-------------|-------|-------------|-------------|-------------|
|                  | Coagulants                       | Direct disc                      |             |             | 1111  | EII         | 1111        | EII         |
| 2                | Alum,<br>polymer                 | Secondary<br>clarifier           | 150         | 11          | 900   | -           | 175         | 64          |
| <b>4</b> b       | Alum                             | Secondary<br>clarifier           | 83          | 14          | 310   | 150         | 43          | 35          |
| 4b <sup>a</sup>  | -                                | Flotation<br>unit                | -           | 51          | _     | 480         | -           | 190         |
| <b>4</b> c       | -                                | Secondary<br>clarifier           | 200         | 51          | 845   | 660         | 82          | 140         |
| <b>4</b> c       | Polymer                          | Secondary<br>clarifier           | _           | 7           | 850   | 160         | _           | 54          |
| 4c <sup>a</sup>  | Ferric chloride,                 | Coag/floc<br>raw waste           |             | _           |       |             |             |             |
| . a              | lime                             |                                  |             | 4           | 1,400 | 99          | 170         | 30          |
| 4c <sup>a</sup>  | -                                | -                                | 760         | 12          | 1,600 | 250         | 420         | 99          |
| 5 a              | -                                | Coag/floc<br>secondary           | 330         | 24          | 1,265 | 210         | -           | 40          |
| 5 a              | Polymer                          | Secondary<br>clarifier           | _           | 24          | -     | 270         | -           | 65          |
| 5 <b>a</b>       | Polymer                          | Injection<br>prefiltra-<br>tion  | 280         | 5           | 930   | 200         | 41          | 7           |
| 7                | Alum,<br>polymer                 | Secondary<br>clarifier           | 330         | 20          | 1,570 | 480         | 26          | 23          |
| 7                | Chlorinated<br>copperas,<br>lime | Secondary<br>clarifier           | 60          | 15          | 330   | 130         | 31          | 11          |
| 8                | -                                | Flotation<br>postbio-<br>logical | -           | 6           | -     | -           | -           | 14          |
|                  |                                  | Indirect dis                     | schar       | gers        |       |             |             |             |
| 2                | Lime                             | Coag/floc<br>raw waste           | -           | _           | 1,330 | 560         | -           | 560         |
| 4a <sup>a</sup>  | Lime,<br>alum                    | Flotation                        | -           | 250         | -     | 400         | -           | 30          |
| 4cª              | Ferric<br>chloride               | Coag/clarify print waste         | -           | 420         | -     | 695         | -           | 120         |
| 4a <sup>b</sup>  | Aluminum<br>chloride             | Flotation print waste            | _           | 340         | -     | 885         | -           | 210         |
| 4a <sup>a</sup>  | Alum                             | Coag/clarify print waste         | 320         | 130         | 1,980 | 260         | 460         | 72          |
|                  |                                  | Recycle                          | plan        | it          |       |             |             |             |
| 4a               | Alum                             | Flotation                        | 300         | 10          | _     | 1,550       | -           | 5           |

<sup>&</sup>lt;sup>a</sup>Fabric printing is a signficant portion of production.

b<sub>Latex</sub> and PVC coating operations.

# II.20.4.2 Other Methods and Industry Applications

Other full-scale treatment methods that have been cited in the literature, but for which no data were presented, include: screening, neutralization, equalization, biological processes, and biological beds.

#### II.20.5 REFERENCES

- 1. Technical Study Report BATEA-NSPS-PSES-PSNS Textile Mills Point Source Category (draft contractor's report). Contracts 68-01-3289 and 68-01-3884, U.S. Environmental Protection Agency, Washington, D.C., November 1978.
- 2. NRDC Consent Decree Industry Summary Textile Mills.
- 3. MRC internal sampling data on file at Effluent Guidelines Division of EPA, 1978.

#### II.21 TIMBER PRODUCTS PROCESSING

#### II.21.1 INDUSTRY DESCRIPTION [1]

### II.21.1.1 General Description

The Timber Products Processing Industry encompasses manufacturers and processors who use forest materials to produce their goods and merchandise. The Environmental Protection Agency recognizes 15 distinct subcategories of manufacturers and/or processors engaged in utilization of timber. This section addresses three major subsections of the entire industry, (encompassing five subcategories): wood preserving, both steaming and Boulton processes; insulation board manufacturing; and both SIS and S2S hardboard manufacturing.

Table 21-1 presents industry summary data for the Timber Products Processing point source category in terms of the number of subcategories and number of dischargers [1, 2].

## II.21.1.2 Subcategory Descriptions

This section presents general descriptions and process descriptions for the following five subcategories of the Timber Products Processing point source category: wood preserving (steaming and Boulton processes), insulation board manufacturing, and hardboard manufacturing (SIS and S2S). The remaining ten subcategories have been classified as Paragraph 8 exclusions and will not be discussed in this report.

#### Wood Preserving

According to information from the American Wood Preserver's Association there are approximately 300 companies, with a total employment of about 11,000, engaged in wood preserving in the United States. Fifty percent of the industry capacity is controlled by 10 companies. Over three-quarters of the plants are concentrated in two distinct regions. One area extends from east Texas to Maryland and corresponds roughly to the natural range of the Southern pines, the major species utilized. The second, smaller area is located along the Pacific Coast, where Douglas fir and western red cedar are the predominant species.

The three most prevalent types of preservatives used in wood preserving are creosote, pentachlorophenol (PCP), and various

Industry: Timber Products Processing Total Number of Subcategories: 15 Number of Subcategories Studied: 5

Number of Dischargers in Industry:

• Direct: 15 • Indirect: 49 • Zero: 363

formulations of water-soluble inorganic chemicals, the most common of which are the salts of copper, chromium, and arsenic. Fire retardants are formulations of salts, the principal ones being borates, phosphates, and ammonium compounds. Eighty percent of the plants in the United States use at least two of the three types of preservatives. Many plants treat with one or two preservatives plus a fire retardant.

The wood preserving process consists of two basic steps:
(1) preconditioning the wood to reduce its natural moisture content and to increase the permeability, and (2) impregnating the wood with the desired preservatives.

The preconditioning step may be performed by one of several methods including (1) seasoning or drying wood in large, open yards; (2) kiln drying; (3) steaming the wood at elevated pressure in a retort followed by application of a vacuum; (4) heating the stock in a preservative bath under reduced pressure in a retort (Boulton process); or (5) vapor drying, heating of the unseasoned wood in a solvent to prepare it for preservative treatment. All of these preconditioning methods have as their objective the reduction of moisture content of the unseasoned stock to a point where the requisite amount of preservative can be retained in the wood.

Conventional steam conditioning (open steaming) is a process in which unseasoned or partially seasoned stock is subjected to direct steam impingement at an elevated pressure in a retort. The maximum permissible temperature is set by industry standards at 118°C and the duration of the steaming cycle is limited by these standards to no more than 20 hours. Steam condensate that forms in the retort exits through traps and is conducted to oil-water separators for removal of free oils. Removal of emulsified oils requires further treatment.

In closed steaming, a widely used variation of conventional steam conditioning, the steam needed for conditioning is generated in-situ by covering the coils in the retort with water from a reservoir and heating the water by passing process steam through the coils. The water is returned to the reservoir after oil separation and reused during the next steaming cycle. There is a slight increase in volume of water in the storage tank after each cycle due to water exuded from the wood. A small blowdown from the storage tank is necessary to account for this excess water and also to control the level of wood sugars in the water.

Modified closed steaming is a variation of the steam conditioning process in which steam condensate is allowed to accumulate in the retort during the steaming operation until it covers the heating coils. At that point, direct steaming is discontinued and the remaining steam required for the cycle is generated within the retort by utilizing the heating coils. Upon completing the steaming cycle, the water in the cylinder is discarded after recovery of oils.

Preconditioning is accomplished in the Boulton process by heating the stock in a preservative bath under reduced pressure in the retort. The preservative serves as a heat transfer medium. After the cylinder temperature has been raised to operating temperature, a vacuum is drawn, and water removed in vapor form from the wood passes through a condenser to an oil-water separator where low-boiling fractions of the preservative are removed. The Boulton cycle may have a duraction of 48 hours or longer for large poles and piling, a fact that accounts for the lower production per retort day as compared to plants that steam condition.

The vapor-drying process consists of exposing wood in a closed vessel to vapors from any one of many organic chemicals that are immiscible with water and have a narrow boiling range.

Table 21-2 presents a summary of information pertaining to the wood preserving category.

# Insulation Board Manufacturing

Insulation board is a form of fiberboard, which in turn is a broad generic term applied to sheet materials constructed from ligno-cellulosic fibers. Insulation board is a "noncompressed" fiberboard, which is differentiated from "compressed" fiberboards, such as hardboard, on the basis of density. Densities of insulation board range from about 0.15 to 0.50 g/cm<sup>3</sup> (9.5 to 31 lb/ft<sup>3</sup>).

There are 18 insulation board plants in the United States with a combined annual production capacity of over 330 million square meters (3,600 million square feet) on a 13-mm (0.5-in.) basis. Sixteen of the plants use wood as a raw material for some or all

TABLE 21-2. WOOD PRESERVING SUBCATEGORY SUMMARY [1, 2]

# Number of Dischargers<sup>a</sup>:

|                             | Boulton | Steaming | Inorganic salt | Nonpressure |
|-----------------------------|---------|----------|----------------|-------------|
| • Direct:                   | 0       | 10       | 1              | 0           |
| <ul><li>Indirect:</li></ul> | 11      | 23       | 5              | 0           |
| • Zero:                     | 24      | 57       | 56             | 23          |

Pollutants and Toxics Found in Significant Quantities:

| Pentachlorophenol  | Arsenic                    |
|--------------------|----------------------------|
| Phenol             | BOD                        |
| 2,4-Dimethylphenol | TSS                        |
| 2,4-Dichlorophenol | COD                        |
| Copper             | Oil and grease             |
| Chromium           | Phenols (standard methods) |

Number of Toxic Pollutants Found in:

- Raw wastewater: 39
- Treated effluent: 39

Candidate Treatment and Control Technologies:

Primary oil water separation Secondary oil water separation Biological treatment Reuse and recycle Evaporation

of their production. One plant uses bagasse exclusively, and one plant uses waste paper exclusively for raw material. Four plants use mineral wool, a nonwood-based product, as a raw material for part of their insulation board production. Production of mineral wood board is classified under SIC 3296 and is not within the scope of this section. Five plants produce hardboard products as well as insulation board at the same facility.

Insulation board can be formed from a variety of raw materials including wood from softwood and hardwood species, mineral fiber, waste paper, bagasse, and other fibrous materials. In this section, only those processes employing wood as raw materials are considered. Plants utilizing wood may receive it as roundwood, fractionated wood, and/or whole tree chips. Fractionated wood can be in the form of chips, sawdust, or planer shavings.

athose plants responding to questionnaires for industry study.

At the time of this compilation only limited data were available on this subcategory. Available data are contained in the tables in Section II.21.2. Table 21-3 summarizes information pertaining to the insulation board manufacturing subcategory.

TABLE 21-3. INSULATION BOARD MANUFACTURING SUBCATEGORY SUMMARY [1, 2]

Number of Dischargers: a

- Direct: 8<sup>b</sup>
- Indirect: 6
- Zero: 2

Pollutants and Toxics Found in Significant Quantities:

Copper Chromium Arsenic BOD TSS

Number of Toxic Pollutants Found in:

- Raw wastewater: 17
- Treated effluent: 13

Candidate Treatment and Control Technologies:

Biological treatment Reuse and recycle Evaporation

# Hardboard Manufacturing

Hardboard is a form of fiberboard, which is a broad generic term applied to sheet materials constructed from ligno-cellulosic fibers. Hardboard is a "compressed" fiberboard, with a density over  $0.50~\rm g/cm^3$  (31 lb/ft³). The thickness of hardboard products ranges between 2 and 13 mm (nominal 1/12 to 7/16 in.).

Production of hardboard by the wet process method is accomplished by thermo-mechanical fiberization of the wood furnish. One plant produces wet-dry hardboard using primarily mechanical refining.

Those plants responding to questionnaires for industry study.

bIncludes three self-contained dischargers-spray irrigation.

Dilution of the wood fiber with fresh or process water then allows forming of a wet mat of a desired thickness on a forming machine. This wet mat is then pressed either wet or after drying. Chemical additives help the overall strength and uniformity of the product. The uses of manufactured products are many and varied, requiring different processes and control measures. The quality and type of board are important in the end use of the product.

Hardboard which is pressed wet immediately following forming of the wet-lap is called wet-wet or smooth-one-side (SlS) hardboard; that which is pressed after the wet-lap has been dried is called wet-dry or smooth-two-side (S2S) hardboard.

There are 16 wet process hardboard plants in the United States, representing an annual production in excess of 1.5 million metric tons per year. Seven of the plants produce only SIS hardboard. Nine plants produce S2S hardboard. Of these nine, five plants also produce insulation board, while three plants also produce SIS hardboard.

Table 21-4 presents a summary of pertinent information pertaining to the hardboard manufacturing subcategory.

TABLE 21-4. HARDBOARD MANUFACTURING SUBCATEGORY SUMMARY [1, 2]

Number of Dischargers: a

• Direct: 12

• Indirect: 2

• Zero: 2

Pollutants and Toxics Found in Significant Quantities:

Copper Chromium Arsenic BOD TSS

Number of Toxic Pollutants Found in:

- Raw wastewater: 23
- Treated effluent: 17

Candidate Treatment and Control Technologies:

Biological treatment Reuse and recycle Evaporation

<sup>&</sup>lt;sup>a</sup>Those plants responding to questionnaires for industry study.

### II.21.2 WASTEWATER CHARACTERIZATION [1]

## II.21.2.1 Wood Preserving

The quantity of wastewater generated by a wood preserving plant is a function of the method of conditioning used, the moisture content of the wood being treated, and the amount of rainwater draining toward the treating cylinder. Most wood preserving plants treat stock having a wide range of moisture contents. Although most plants will predominantly use one of the major conditioning methods, many plants will use a combination of several conditioning methods, and the actual quantity of wastewater generated by a specific plant may vary considerably. The average wastewater volume from 14 Boulton plants is reported to be 21,210 L/d (5,600 gal/d) or 139 L/m<sup>3</sup>  $(1.03 \text{ gal/ft}^3)$ . average wastewater volume for eight closed loop steaming plants is 5,200 L/d (1,370 gal/d) or  $60.0 \text{ L/m}^3$  (0.45 gal/ft<sup>3</sup>). average wastewater volume for 10 plants which treat significant amounts of dry stock is 13,300 L/d (3,510 gal/d) or  $121 \text{ L/m}^3$ (0.91 gal/ft<sup>3</sup>). Additionally the average wastewater volume for 13 open steaming plants is 24,700 L/d (8,810 gal/d) or 324 L/m<sup>3</sup>  $(2.43 \text{ gal/ft}^3)$ .

Table 21-5 presents concentrations of toxic pollutants found in the raw wastewater (for both steaming and Boulton processes) and treated effluent (for steaming and Boulton processes combined). Table 21-6 similarly presents toxic pollutant loadings in kg/m³ of product derived from the concentrations given in Table 21-5 for the wood preserving subcategory. Conventional pollutant concentrations are shown in Table 21-7 and corresponding pollutant loads in Table 21-8.

### II.21.2.2 Insulation Board Manufacturing

Insulation board plants responding to the data collection portfolio reported fresh water usage rates ranging from 95 to 5,700 liters per day for process water (0.025 to 1.5 MGD). One insulation board plant, Plant 543, which also produces hardboard in approximately equal amounts, uses over 15 million liters per day (4 MGD) of fresh water for process water.

Water becomes contaminated during the production of insulation board primarily through contact with the wood during fiber prepaparation and forming operations, and the vast majority of pollutants are fine wood fibers and soluble wood sugars and extractives.

More specifically potential sources of wastewater in an insulation board plant include:

TABLE 21-5. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN STEAMING AND BOULTON SUBCATEGORY WASTEWATER [1]  $$(\mu g/L)$$ 

|                                  |        |                  | Raw wast        |        |                          |        |        | Treated effluent |            |
|----------------------------------|--------|------------------|-----------------|--------|--------------------------|--------|--------|------------------|------------|
|                                  |        | Steaming process | 1               |        | Boulton process          |        |        | ing and Boulton  | process    |
|                                  | Number |                  |                 | Number |                          |        | Number |                  |            |
|                                  | of     |                  |                 | of     |                          |        | of     |                  |            |
| Toxic pollutant                  | plants | Range            | Median          | plants | Range                    | Median | plants | Range            | Median     |
| Metals and inorganics            |        |                  |                 |        |                          |        |        |                  |            |
| Antimony                         | 8      | BDL - 47         | 1.5             |        |                          |        | 7      | BDL - 14         | 1          |
| Arsenic                          | 12     | BDL - 14,200     | 24              |        |                          |        | 11     | BDL - 6,980      | <b>2</b> 9 |
| Beryllium                        | 8      | BDL - 19         | BDL             |        |                          |        | 7      | BDL - 13         | BDL        |
| Cadmium                          | 8      | BDL - 10         | 1               |        |                          |        | 7      | BDL - 7          | ~0.5       |
| Chromium                         | 11     | BDL - 13,900     | 23              |        |                          |        | 11     | 1 - 6,600        | 22.5       |
| Copper                           | 12     | 8 - 3,910        | 165             |        |                          |        | 11     | 18 - 4,000       | 92         |
| Lead                             | 8      | 1 - 91           | 12.5            |        |                          |        | 7      | BDL - 37         | 4          |
| Mercury                          | 8      | BDL - 3.7        | ∿0.1            |        |                          |        | 7      | BDL - 2          | ~0.09      |
| Nickel                           | 8      | 3 - <b>2</b> 10  | 24              |        |                          |        | 7      | 2 - 150          | 14.5       |
| Selenium                         | 8      | BDL - 53         | 1               |        |                          |        | 7      | BDL - 39         | 1          |
| Silver                           | 8      | BDL - 6          | BDL             |        |                          |        | 7      | BDL - 4          | BDL        |
| Thallium                         | 8      | BDL - 10         | 1               |        |                          |        | 7      | BDL - 7          | BDL        |
| Zinc                             | 8      | 119 - 78,200     | 360             |        |                          |        | 8      | 47 - 41,000      | 252        |
| Phthalates                       |        |                  |                 |        |                          |        |        |                  |            |
| Bis(2-ethylhexyl) phthalate      | 5      | BDL - 437        | 126             | 3      | BDL - 1,460              | 433    | 7      | BDL - 305        | 9          |
| Phenols                          |        |                  |                 |        |                          |        |        |                  |            |
| 2-Chlorophenol                   | 5      | BDL - 42         | 15              | 1      |                          | BDL    | 5      | BDL - 4          | BDL        |
| 2,4-Dimethylphenol               | Ś      | BDL - 6,600      | 1,300           | ī      |                          | BDL    | 5      | BDL - 140        | BDL        |
| Pentachlorophenol                | 12     | BDL - 306,000    | 23,600          | 2      | BDL - 27,000             | 10     | 17     | 32 - 134,000     | 5,300      |
| Phenol                           | 5      | 1.400 - 87.000   | 16.000          | ī      | 202 27,000               | 71     | 5      | BDL - 16,000     | 15         |
| 2,4,6-Trichlorophenol            | 5      | BDL - 533        | 252             | î      |                          | BDL    | 5      | BDL - 10,000     | BDL        |
| Monocyclic aromatics             | •      | 302 303          | 232             | •      |                          | 202    | •      | 302 3            | 555        |
| Benzene                          | 4      | 3 - 2,800        | 1.050           | 1      |                          | BDL    | 5      | BDL - 33         | 10         |
| Ethylbenzene                     | - 1    | 37 - 2,100       | 380             | î      |                          | BDL    | 5      | BDL - 20         | BDL        |
| Toluene                          | 4      | 27 - 3,200       | 500             | î      |                          | BDL    | 5      | BDL - 140        | 23         |
| Polycyclic aromatic hydrocarbons |        |                  |                 |        |                          |        |        |                  |            |
| Acenaphthene                     | 5      | 1,060 - 55,000   | 1.700           | 3      | BDL - 2,830              |        | 7      | BDL - 18,000     | 90         |
| Acenaphthylene                   | 5      | BDL - 1,210      | 933             | 3      | BDL - 2,060              | _a     | ź      | BDL - 190        | 4          |
| Anthracene/phenanthrene          | 5      | 195 - 39,000     | 6,720           | 3      | BDL - 1,510              | 920    | ź      | BDL - 37,000     | 59         |
| Benzo (a) anthracene             | 5      | BDL - 7,700      | 157             | ,      | BDL - 1,510              | 720    | 7      | BDL - 3,400      | BDL        |
| Benzo (a) pyrene                 | 5      | BDL - 2,700      | 7               | 3      | BDL                      | BDL    | ,      | BDL - 290        | BDL        |
| Benzo(b) fluoranthene            | 5      | BDL - 1,680      | BDL             | 3      | BDL                      | BDL    | 7      | BDL - 2,500      | BDL        |
| Benzo(ghi) perylene              | 5      | BDL - 315        | BDL             | 3      | BDL                      | BDL    | ź      | BDL - 63         | BDL        |
| Benzo(k) fluoranthene            | 5      | BDL - 3,900      | 17              | 3      | BDL                      |        | 'n     | BDL - 03         | BDL        |
| Chrysene                         | 5      | BDL - 4,700      | 98              | 1      | BDL - 18                 | BDLa   | ź      | BDL - 19,000     | BDL        |
| Dibenzo (ah) anthracene          | 5      | BDL - 430        | <sup>90</sup> a | 3      | BDL - 18                 | PD1    | 7      | BDL - 19,000     | BDL        |
| Fluoranthene                     | 5      | 633 - 35,000     | 1,600           | 3      | BDL - 282                | BDL    | 7      | BDL - 17,000     | 106        |
| Fluorene                         | 5      | 820 - 48,000     | 2,310           | 3      | BDL - 824                | a      | 7      | BDL - 16,000     | 36         |
| Indeno(1,2,3-cd)pyrene           | 5      | BDL - 5,500      | BDL             | 3      | BDL - 624                | BDL    | 7      | BDL - 110        | BDL        |
| Naphthalene                      | 5      | 464 - 45,000     | 3,470           | 3      | BDL - 3,140              | , _c   | ź      | BDL - 36,000     | 33         |
| Pyrene                           | 5      | 360 - 22,000     | 1,100           | 3      | BDL - 3,140<br>BDL - 194 | _c     | 7      | BDL - 9,400      | 77         |
| Halogenated aliphatics           |        | •                |                 |        |                          |        |        | •                |            |
| Methyl chloride                  | 4      | BDL - 702        | <sup>77</sup> c | 1      |                          | 2,600  | 5      | 13 - 1,900       | 140        |
| Methylene chloride               | 4      | BDL - 20         | _c              | 1      |                          | 9      | 5      | BDL - 23         | BDL        |

a Includes plants treating with organic preservatives only plus those treating with both organic and inorganic preservatives; steaming and/or Boulton process or both.

bSee also conventional pollutants.

CDetected in one sample only.

TABLE 21-6. TOXIC POLLUTANT LOADINGS FOUND IN STEAMING AND BOULTON SUBCATEGORY WASTEWATER [1] [1b/ft³ (kg/m³)]

|                              |        |                               | Raw wastew     | ater   |                 |         |        | Treated effluent    |        |
|------------------------------|--------|-------------------------------|----------------|--------|-----------------|---------|--------|---------------------|--------|
|                              |        | Steaming process              |                |        | Boulton process |         |        | ning and Boulton pr | ocess  |
|                              | Number |                               |                | Number |                 |         | Number |                     |        |
|                              | of     |                               |                | of     |                 |         | of     |                     |        |
| Toxic pollutant <sup>a</sup> | plants | Range                         | Median         | plants | Range           | Median  | plants |                     | Median |
| Metals and inorganics        |        |                               |                |        |                 |         |        |                     |        |
| Antimony                     | 8      | <0.01 - 0.82                  | 0.01           |        |                 |         | 11     | <0.01 - 0.27        | <0.02  |
| •                            |        | (<0.16 - 13.2)                | (0.16)         |        |                 |         |        | (<0.2 - 4.3)        | (<0.3) |
| Arsenic                      | 12     | <0.01 - 246                   | 0.2            |        |                 |         | 11     | <0.01 - 135         | 0.32   |
|                              |        | (<0.16 - 3,960)               | (3.2)          |        |                 |         |        | (<0.2 - 2,170)      | (0.5)  |
| Beryllium                    | 8      | <0.01 - 0.01                  | <0.01          |        |                 |         | 7      | <0.01 - 0.1         | <0.01  |
| •                            |        | (<0.16 - 0.16)                | (<0.16)        |        |                 |         |        | (<0.2 - 1.6)        | (<0.16 |
| Cadmium                      | 8      | <0.01 - 0.03                  | <0.01          |        |                 |         | 7      | <0.01 - 0.06        | <0.01  |
|                              |        | (<0.16 - 0.48)                | (<0.16)        |        |                 |         |        | (<0.2 - 1.0)        | (<0.2) |
| Chromium                     | 11     | <0.01 - 116                   | 0.4            |        |                 |         | 11     | 0.01 - 29.1         | 0.58   |
|                              |        | (<0.16 - 1,870)               | (6.4)          |        |                 |         |        | (0.2 - 468)         | (9.3)  |
| Copper                       | 12     | 0.06 - 9.59                   | 1.5            |        |                 |         | 11     | 0.17 - 7.42         | 1.71   |
|                              |        | (1.0 - 154)                   | (24.2)         |        |                 |         |        | (2.7 - 119)         | (27.5) |
| Lead                         | 8      | 0.01 - 1.6                    | 0.07           |        |                 |         | 7      | <0.01 - 0.72        | 0.9    |
|                              |        | (0.16 - 25.8)                 | (1.1)          |        |                 |         |        | (<0.2 - 11.6)       | (1.4)  |
| Mercury                      | 8      | <0.01 - 0.03                  | <0.01          |        |                 |         | 7      | <0.01 - 0.03        | <0.01  |
| nercury                      | Ü      | (<0.16 - 0.48)                | (<0.16)        |        |                 |         |        | (<2 - 0.5)          | (<0.16 |
| Nickel                       | 8      | 0.02 - 5.97                   | 0.13           |        |                 |         | 7      | 0.01 - 1.21         | 0.34   |
| HICKET                       | ŭ      | (0.32 - 96.1)                 | (2.09)         |        |                 |         | -      | (2 - 19.5)          | (5.5)  |
| Selenium                     | 8      | <0.01 - 0.35                  | 0.03           |        |                 |         | 7      | <0.01 - 0.26        | 0.01   |
| Selenium                     | 0      | (<0.16 - 5.6)                 | (0.48)         |        |                 |         | •      | (2 - 4.2)           | (<0.16 |
| Silver                       | 8      | <0.01 - 0.03                  | <0.01          |        |                 |         | 7      | <0.01 - 0.03        | <0.01  |
| Silver                       |        |                               |                |        |                 |         | •      | (<2 - 0.5)          | (<0.16 |
|                              | _      | (<0.16 - 0.48)                | (<0.16)        |        |                 |         | 7      | <0.01 - 0.05        | 0.01   |
| Thallium                     | 8      | <0.01 - 0.13                  | 0.01           |        |                 |         | ,      | (<2 - 0.8)          | (<0.16 |
| -1                           |        | (<0.16 - 2.09)                | (0.16)         |        |                 |         | 7      | 0.72 - 205          | 3.06   |
| Zinc                         | 8      | 0.66 - 652<br>(10.6 - 10,500) | 3.38<br>(54.4) |        |                 |         | ,      | (11.6 - 3,300       | (49.3) |
| Phthalates                   |        | (3370 237300)                 | ,              |        |                 |         |        |                     |        |
| n/-/2 -/1 11 11 11           | -      | .0.1                          | 1.4            | 3      | <0.1 - 17.1     | 10.8    | 7      | <0.01 - 1           | <0.01  |
| Bis(2-ethylhexyl) phthalate  | 5      | <0.1 - 6.4<br>(<1.6 - 103)    | (22.5)         | 3      | (<1.6 - 275)    | (174)   | ,      | (<0.2 - 16.1)       | (<0.2) |
| Phenols                      |        | ,                             | ,              |        |                 |         |        |                     |        |
|                              | _      |                               |                |        |                 |         | -      | 40.1                | 40.1   |
| 2-Chlorophenol               | 3      | BDL - 0.7                     | 0.3            | 1      |                 | BDL     | 5      | <0.1                | <0.1   |
|                              |        | (BDL - 11.3)                  | (4.8)          |        |                 |         | _      | (<2)                | (<2)   |
| 2,4-Dimethylphenol           | 3      | 2.3 - 107                     | 24.3           | 1      |                 | BDL     | 5      | <0.1 - 2.7          | <0.1   |
|                              |        | (37.0 - 1,720)                | (391)          |        |                 |         |        | (<0.2 - 43.5)       | (<2)   |
| Pentachlorophenol            | 15     | <0.1 - 1,970                  | 214            | 3      | <0.1 - 179      | <0.1    | 10     | 0.3 - 2,440         | 44.6   |
|                              |        | (<1.6 - 31,700)               | (3,440)        |        | (8.1 - 2,880)   | (2,930) |        | 4.8 - 39,300)       | (718)  |
| Phenol                       | 3      | 311 - 425                     | 321            | 1      | 6.6             |         | 5      | <0.1 - 123          | <0.1   |
|                              |        | (5,010 - 6,840)               | (5,170)        |        |                 | (106)   |        | (<2 - 1,980)        | (<2)   |
| 2,4,6-Trichlorophenol        | 3      | BDL - 10.4                    | 4.4            | 1      |                 | BDL     | 5      |                     |        |
|                              |        | (BDL - 167)                   | (70.8)         |        |                 |         |        |                     |        |

TABLE 21-6 (continued)

|                                     |              |                  | Raw wastew |        |                 |             |        | Treated effluent   |        |
|-------------------------------------|--------------|------------------|------------|--------|-----------------|-------------|--------|--------------------|--------|
|                                     |              | Steaming process |            |        | Boulton process |             |        | ming and Boulton p | rocess |
|                                     | Number       |                  |            | Number |                 |             | Number |                    |        |
| Toxic pollutanta                    | of<br>plants | Dange            | W-3:       | of     | <b>5</b>        | w-3:        | of     | D                  | M. 3:  |
| 10x1c pollucant                     | plants       | Range            | Median     | plants | Range           | Median      | plants | Range              | Median |
| Monocyclic aromatics                |              |                  |            |        |                 |             |        |                    |        |
| Benzene                             | 3            | 10.3 - 31.5      | 18.3       | 1      |                 | <0.1        | 5      | <0.1 - 0.6         | 0.1    |
|                                     | _            | (165 - 506)      | (294)      |        |                 | (1.6)       |        | (<2 - 9.7)         | (2)    |
| Ethylbenzene                        | 3            | 7.4 - 15.1       | 7.7        | 1      |                 | <0.1        | 5      | <0.1 - 0.2         | <0.1   |
| _                                   |              | (119 - 243)      | (124)      |        |                 | (<1.6)      |        | (<2 - 3.2)         | (<2)   |
| Toluene                             | 3            | 9.7 - 49.5       | 11.8       | 1      |                 | <0.1        | 5      | <0.1 - 2.1         | 0.3    |
|                                     |              | (156 - 797)      | (190)      |        |                 | (<1.6)      |        | (<2 - 33.8)        | (4.8)  |
| Polycyclic aromatic<br>hydrocarbons |              |                  |            |        |                 |             |        |                    |        |
| Acenaphthene                        | 5            | 8.3 - 75.9       | 33.0       | 3      | <0.1 - 33.1     | <0.1        | 7      | <0.01 - 13.8       | 0.1    |
|                                     |              | (134 - 1,220)    | (531)      |        | (<1.6 - 533)    | (<1.6)      |        | (<0.2 - 222)       | (1.6)  |
| Acenapthalene                       | 5            | 0.1 - 23.2       | 9.2        | 3      | <0.1 - 24.1     | <0.1        | 7      | <0.01 - 0.6        | 0.01   |
|                                     |              | (1.6 - 374)      | (148)      |        | (<1.6 - 388)    | (<1.6)      |        | (<0.2 - 9.7)       | (0.2)  |
| Anthracene/phenanthrene             | 5            | 13.5 - 200       | 94.7       | 3      | <0.1 - 17.7     | 6.1         | 7      | <0.01 - 28.5       | 0.09   |
| · -                                 |              | (217 - 3,220)    | (1,530)    |        | 1.6 - 285)      | (98.2)      |        | ( 0.2 - 459)       | (1.4)  |
| Benzo (a) anthracene                | 5            | <0.1 - 27.3      | 3.0        | 3      | <0.1 - 0.4      | <0.1        | 7      | <0.01              | <0.01  |
|                                     |              | (<1.6 - 440)     | (48.3)     | _      | (<1.6 - 6.4)    | (<3.6)      | ·      | (<0.2)             | (<0.2) |
| Benzo (a) pyrene                    | 5            | BDL - 23.5       | 0.1        | 3      | <0.1            | <0.1        | 7      | <0.01 - 0.6        | <0.01  |
|                                     |              | (BDL - 378)      | (1.6)      | -      | (<1.6)          | (<1.6)      | •      | (<0.2 - 9.7)       | (<0.2) |
| Benzo(b) fluoranthene               | 5            | BDL - 29.3       | 0.2        | 3      | <0.1            | <0.1        | 7      | <0.01 - 1.9        | <0.01  |
|                                     |              | (BDL - 472)      | (3.2)      | _      | (<1.6)          | (<1.6)      | •      | (<0.2 - 31.9)      | (<0.2) |
| Benzo(ghi) perylene                 | 5            | 0.1 - 5.5        | <0.1       | 3      | <0.1            | <0.1        | 7      | <0.01 - 0.1        | <0.01  |
|                                     |              | (<1.6 - 88.6)    | (<1.6)     | _      | (<1.6)          | (<1.6)      | •      | (<0.2 - 1.6)       | (<0.2) |
| Benzo(k) fluoranthene               | 5            | BDL - 29.3       | 0.2        | 3      | <0.1            | <0.1        | 7      | <0.01 - 0.4        | <0.01  |
| (1), 122024110112110                | •            | (BDL - 472)      | (3.2)      | •      | (<1.6)          | (<1.6)      | ,      | (<0.2 - 6.4)       | (<0.2) |
| Chrysene                            | 5            | <0.1 - 24.9      | 3.1        | 3      | <0.1 - 0.2      | <0.1        | 7      | <0.01 - 1.5        | <0.01  |
|                                     | -            | (<1.6 - 401)     | (49.9)     | •      | (<1.6 - 3.2)    | (<1.6)      | •      | (<0.2 - 24.2)      | (<0.2) |
| Dibenzo(ah)anthracene               | 5            | <0.1 - 1.6       | <0.1       | 3      | <0.1            | <0.1        | 7      | <0.01              | <0.01  |
|                                     |              | (<1.6 - 25.8)    | (1.6)      | _      | (<1.6)          | (<1.6)      | •      | (<0.2)             | (<0.2) |
| Fluoranthene                        | 5            | 4.9 - 112        | 20.3       | 3      | <0.1 - 3.3      | <0.1        | 7      | <0.01 - 13.1       | <0.08  |
|                                     |              | (78.9 - 1,800)   | (327)      | -      | (<1.6 - 53.1)   | (1.6)       | •      | (<0.2 - 211)       | (1.3)  |
| Fluorene                            | 5            | 6.4 - 61.1       | 29.1       | 3      | <0.1 - 9.6      | <0.1        | 7      | <0.01 - 12.3       | 0.06   |
|                                     |              | (103.0 - 984)    | (469)      | -      | (<1.6 - 155)    | (<1.6)      | •      | (<0.2 - 198)       | (1.0)  |
| Indeno(1,2,3-cd)pyrene              | 5            | <0.1 - 20.3      | 0.1        | 3      | <0.1            | <0.1        | 7      | <0.01 - 0.2        | <0.01  |
|                                     |              | (<1.6 - 327)     | (1.6)      | •      | (<1.6)          | (<1.6)      | •      | (<0.2 - 3.2)       | (<0.2) |
| Naphthalene                         | 5            | 4.1 - 540        | 17.2       | 3      | <0.1 - 36.8     | <0.1        | 7      | <0.01 - 27.7       | <0.1   |
| •                                   |              | 66.0 - 8,690     | (277)      |        | (<1.6 - 593)    | (<1.6)      | •      | (<0.2 - 446)       | (1.6)  |
| Pyrene                              | 5            | 2.8 - 84.4       | 16.1       | 3      | <0.1 - 2.3      | <0.1        | 7      | 0.01 - 7.2         | 0.05   |
| -                                   |              | (45.1 - 1,360)   | (259)      |        | (<1.6 - 37.0)   | (1.6)       | ,      | (<0.2 - 116)       | (0.8)  |
| Halogenated aliphatics              |              |                  |            |        |                 |             |        |                    |        |
| Methyl chloride                     | 1            | 1 - 12.2         | 1.5        | 1      |                 | 17.2        | 5      | 0.3 - 12.6         | 2.7    |
|                                     | =            | (16.1 - 196)     | (24.2)     | •      |                 | 27 <b>7</b> | J      | (4.8 - 203)        | (43.5) |
| Methylene chloride                  | 3            | <0.1 - 0.1       | -          | 1      |                 | <0.1        | 5      | <0.1 - 0.3         | <0.1   |
|                                     | -            | (<1.6 - 1.6)     |            | -      |                 | (<1.6)      | ر      | (<2 - 4.8)         | (<2)   |

a Includes plants treating with organic preservatives only plus those treating with both organic and inorganic preservatives. Steaming and/or Boulton process or both.

TABLE 21-7. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN STEAMING AND BOULTON SUBCATEGORY WASTEWATER [1] (mg/L)

|                |              |                 |        | Treated effluent |                       |        |              |                  |        |
|----------------|--------------|-----------------|--------|------------------|-----------------------|--------|--------------|------------------|--------|
|                |              | Steaming proces | s      |                  | <b>Boulton proces</b> | S      | Steami       | ng and Boulton p | rocess |
|                | Number<br>of |                 |        | Number<br>of     | _                     |        | Number<br>of | _                |        |
| Pollutant      | plants       | Range           | Median | plants           | Range                 | Median | plants       | Range            | Median |
| Phenols        | 15           | 0.640 - 501     | 53.6   | 3                | BDL - 1,270           | 184    | 17           | 0.048 - 680      | 18.9   |
| PCP            | 15           | BDL - 306       | 23.6   | 3                | BDL - 27              | 0.01   | 14           | 0.032 - 134      | 5.8    |
| Oil and grease | 15           | 11 - 1,900      | 627    | 3                | 12.3 - 1,360          | 39.4   | 17           | 9.3 - 1,220      | 52.3   |
| COD            | 15           | 1,360 - 15,700  | 6,730  | 3                | 520 - 7,320           | 3,700  | 17           | 100 - 10,600     | 2,290  |
| TSS            |              |                 |        | 1                | 81                    |        |              |                  |        |

TABLE 21-8. LOADINGS OF CONVENTIONAL POLLUTANTS FOUND IN STEAMING AND BOULTON SUBCATEGORY WASTEWATER [1] [1b/1,000 ft<sup>3</sup> (kg/1,000 m<sup>3</sup>)]

|                |                        | Raw wastewater Treated effluen     |                 |                        |                                     |                    |                              |                                  |                 |  |
|----------------|------------------------|------------------------------------|-----------------|------------------------|-------------------------------------|--------------------|------------------------------|----------------------------------|-----------------|--|
|                |                        | Steaming proces                    | ss              |                        | Boulton proces                      | s                  | Steaming and Boulton process |                                  |                 |  |
| Pollutant      | Number<br>of<br>plants |                                    | Median          | Number<br>of<br>plants | Range                               | Median             | Number<br>of<br>plants       | Range                            | Median          |  |
| - 1            |                        |                                    |                 |                        |                                     |                    |                              |                                  |                 |  |
| Phenols        | 15                     | 0.011 - 11.4<br>(0.1771 - 184)     | 1.06<br>(17.1)  | 3                      | <0.0001 - 14.9<br>(<0.0016 - 240)   | 1.53<br>(24.6)     | 17                           | 0.0003 - 6.92<br>(0.0048 - 111)  | 0.385<br>(6.20) |  |
| PCP            | 15                     | <0.0001 - 1.97<br>(<0.0016 - 31.7) | 0.214<br>(3.44) | 3                      | <0.0001 - 0.179<br>(<0.0016 - 2.88) | 0.0001<br>(0.0016) | 14                           | 0.0004 - 2.44<br>(0.0064 - 39.3) | 0.033<br>(0.541 |  |
| Oil and grease | 15                     | 0.0627 - 30.4<br>(1.01 - 489)      | 7.72<br>(124)   | 3                      | 0.0718 - 38.6<br>(1.16 - 621)       | 0.461<br>(7.42)    | 17                           | 0.0626 - 13.5<br>(1.01 - 217)    | 0.706<br>(11.4) |  |
| COD            | 15                     | (10.2 - 283)<br>(164 - 4,560)      | 47.7<br>(768)   | 3                      | 3.44 - 208<br>(55.4 - 3,350)        | 21.6<br>(348)      | 17                           | 0.821 - 162<br>(13.2 - 2,610)    | 23.8<br>(383)   |  |
| TSS            |                        |                                    |                 | 1                      |                                     | 0.537<br>(8.65)    |                              |                                  |                 |  |

Chip wash water
Process whitewater generated during fiber preparation
(refining and washing)
Process whitewater generated during forming
Wastewater generated during miscellaneous operations
(dryer washing, finishing, housekeeping, etc.)

Reference 1 considers an average unit flow for Plant 97, which is 8.3 L/kg (2,000 gal/ton) to be representative of an insulation board, mechanical refining plant which produces a full line of insulation board products and which practices internal recycling to the extent practicable.

Table 21-9 presents concentrations of toxic pollutants found in insulation board manufacturing raw wastewater. Table 21-10 similarly presents toxic pollutant metals loading for this subcategory.

# II.21.2.3 Hardboard Manufacturing

Production of hardboard by wet process requires significant amounts of water. Plants responding to the data collection portfolio reported fresh water usage rates for process water ranging from approximately 190 thousand to 19 million liters per day (0.05 to 5 MGD). One plant, 543, which produces both hardboard and insulation board in approximately equal amounts, reported fresh water use of over 15 million liters per day (4 MGD).

Water becomes contaminated during the production of hardboard primarily through contact with the wood raw material during the fiber preparation, forming, and—in the case of SIS hardboard—pressing operations. The vast majority of pollutants consist of fine wood fibers, soluble wood sugars, and extractives. Additives not retained in the board also add to the pollutant load.

The water used to process and transport the wood from the fiber preparation stage through mat formation is referred to as process whitewater. Process whitewater produced by the dewatering of stock at any stage of the process is usually recycled to be used as stock dilution water. However, due to the buildup of suspended solids and dissolved organic material which can cause undesirable effects in the board, there may be a need to bleed off a quantity of excess process whitewater.

More specifically, potential wastewater sources in the production of wet process hardboard include:

TABLE 21-9. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN INSULATION BOARD SUBCATEGORY RAW WASTEWATER [1] (µg/L)

|                                   | Number<br>of |                        |                    |
|-----------------------------------|--------------|------------------------|--------------------|
| Toxic pollutant                   | plants       | Range                  | Median             |
| Metals and inorganics             |              |                        |                    |
| Antimony                          | 4            | 0.67 - 3               | 1.46               |
| Arsenic                           | 4            | 1.6 - 3.3              | 2.5                |
| Beryllium                         | 4            | 0.5 - 0.83             |                    |
| Cadmium                           | 4            | 0.5 - 1.0              | 0.565              |
| Chromium                          | 4            | 1.3 - 11               | 4.9                |
| Copper                            | 4            | 200 - 450              | 310                |
| Lead                              | 4            | 1.3 - 21               | 3.3                |
| Mercury                           | 4            | 1 - 7.5                | 5.8                |
| Nickel                            | 4            | 8.8 - 240              | 58.5               |
| Selenium                          | 4            | 3.3 - 5.0              | 4.5                |
| Silver                            | 4<br>4       | 0.5 - 0.6 $0.5 - 0.83$ | 0.5                |
| Thallium<br>Zinc                  | 4            | 250 <b>-</b> 720       | 0.7<br>5 <b>34</b> |
| Zinc                              | 4            | 250 - 720              | 334                |
| Halogenated aliphatics            |              |                        |                    |
| Chloroforma                       | 3            | BDL-20                 | BDL                |
| Phenols                           |              |                        |                    |
| Phenol                            | 3            | BDL-40                 | BDL                |
| Monocyclic aromatics <sup>b</sup> |              |                        |                    |
| Benzene                           | 3            | BDL-70                 | 40                 |
| Toluene                           | 3<br>3       | BDL-60                 | 40                 |

a One sample of raw wastewater contained 20  $\mu g/L$  of chloroform. Plant intake water contained 10  $\mu g/L$  of chloroform.

 $<sup>^{</sup>b}Plant$  97 intake water contained 50  $\mu g/L$  and 30  $\mu g/L$  of benzene and toluene, respectively.

TABLE 21-10. LOADINGS OF TOXIC POLLUTANT METALS FOUND IN INSULATION BOARD SUBCATEGORY RAW WASTEWATER [1] [1b/106 ton (kg/106 Mg)]

| Toxic pollutant      | Rang           | Median          |       |
|----------------------|----------------|-----------------|-------|
| etals and inorganics |                |                 |       |
| Antimony             | 4.2 - 49       | (2.1 - 25)      | 157   |
| Arsenic              | 25 - 120       | (13 - 60)       | 44    |
| Beryllium            | 8.3 - 20       | (4.2 - 10)      | 12.   |
| Cadmium              | 5.6 - 20       | (2.8 - 10)      | 13.   |
| Chromium             | 11 - 840       | (5.5 - 470)     | 175   |
| Copper               | 82 - 7,200     | (41 - 3,600)    | 4,150 |
| Lead                 | 11 - 340       | (6 - 170)       | 81.   |
| Mercury              | 41 - 1,600     | (21 - 80)       | 62    |
| Nickel               | 180 - 1,700    | (90 - 850)      | 1,040 |
| Selenium             | 14 - 27        | (7 - 14)        | 70    |
| Silver               | 4.2 - 20       | (2.1 - 10)      | 10.   |
| Thallium             | 5.6 - 33       | (2.8 - 17)      | 10.   |
| Zinc                 | 5,900 - 12,000 | (3,000 - 6,000) | 9,200 |

Chip wash water
Process whitewater generated during fiber preparation
(refining and washing)
Process whitewater generated during forming
Hot press squeezeout water
Wastewater generated during miscellaneous operations
(dryer washing, finishing, housekeeping, etc.)

A unit flow of 12 L/kg (2,800 gal/ton) is considered to be representative in Reference 1 of an S1S hardboard plant which produces a full line of hardboard products and which practices internal recycling to the extent practicable. A unit flow of 24.6 L/kg (5,900 gal/ton) is considered to be representative in Reference 1 of an S2S hardboard manufacturing plant which produces a full line of hardboard products and practices internal recycling to the extent possible.

Available data analyses list primarily metals and inorganics as toxic pollutants; no base/neutrals data are presented. Table 21-11 presents concentrations and pollutant loadings for toxic pollutants found in hardboard manufacturing raw wastewater. Table 21-12 similarly presents concentrations and loadings for conventional pollutants.

# II.21.3 PLANT SPECIFIC DESCRIPTIONS

Due to the nature of available plant specific data, only subcategory wastewater characteristics could be derived, and plant specific wastewater characterization information is not presented.

# II.21.4 POLLUTANT REMOVABILITY

The following sections address the current level of in-place treatment technology and the raw and treated effluent loads and percent reduction for several pollutants and several plants. Information is organized with respect to the aforementioned subcategories [wood preserving including steaming and Boulton processes, insulation board manufacturing, and hardboard manufacturing (SIS and S2S)].

### II.21.4.1 Wood Preserving

Tables 21-13 through 21-17 present the current level of in-place treatment technology for Boulton-no dischargers, Boulton-indirect dischargers, steaming-no dischargers, steaming-direct dischargers, and steaming-indirect dischargers, respectively.

Tables 21-18 through 21-20 present average raw and treated waste loads and percent removal for COD, phenols, oil and grease, and pentachlorophenol for plants with less than BPT technology in place, current pretreatment technology in place, and current BPT technology in place.

TABLE 21-11. CONCENTRATIONS AND LOADINGS OF TOXIC POLLUTNATS FOUND IN HARDBOARD MANUFACTURING SUBCATEGORY RAW WASTEWATER [1]

|                          | Number | Concentratio           | n. ug/L | Loading, lb/ton (kg             | /Mq)         |        |
|--------------------------|--------|------------------------|---------|---------------------------------|--------------|--------|
| Toxic pollutant          | plants | Range                  | Median  | Range                           | Mediar       |        |
| Metals and inorganics    |        |                        |         |                                 |              |        |
| Antimony                 | 6      | 0.5 - 8                | 2.65    | 17 - 200 (9 - 100)              |              | (52)   |
| Arsenic                  | 6      | 1 - 1.3                | 1.2     | 23 - 51 (12 - 26)               | 31           | (15.5) |
| Beryllium                | 6      | 0.5 - 0.67             | 0.5     | 1 - 25 (0.5 - 13)               | 14.5         | (7.5)  |
| Cadmium                  | 6      | 0.5 - 5                | 0.5     | 13 - 120 (7 - <b>6</b> 0)       | <b>3</b> 5.5 | (18)   |
| Chromium                 | 6      | 1 - 420                | 52.5    | 34 - 11,000 (17 - 5,500)        | 475          | (240)  |
| Copper                   | 6      | 33 - 530               | 355     | 880 - 27,000 (440 - 14,000)     | 7,150        | (3,600 |
| Lead                     | 6      | 2 - 55                 | 4       | 40 - 1,500 (20 - 750)           | 102          | (51)   |
| Mercury                  | 6      | 0.05 - 18              | 1.35    | 2.5 - 620 (1.2 - 310)           | 28           | (14.5) |
| Nickel                   | 6      | 3.3 - 270              | 7.5     | 110 - 4,700 (55 - 2,400)        | 190          | (100)  |
| Selenium                 | 6      | 0.8 - 3.8              | 2.15    | 35 - 110 (18 - 55)              | 46.5         | (23.5) |
| Silver                   | 6      | 0.5 - 7                | 0.585   | 10 - 350 (5 - 180)              | 17           | (9)    |
| Thallium                 | 6      | 0.5 - 1.5              | 0.585   | 10 - 26 (5-13)                  | 21           | (11)   |
| Zinc                     | 6      | 190 - 2,300            | 665     | 5,000 - 48,000 (2,500 - 24,000) | 15,500       | (8,000 |
| Phenols                  |        |                        |         |                                 |              |        |
| Phenol                   | 2      | BDL - 680 <sup>b</sup> |         |                                 |              |        |
| 116.101                  | 3      | BDL - 300              | BDLC    |                                 |              |        |
| Monocyclic aromatics     |        |                        |         |                                 |              |        |
| Benzene                  | 2      | BDL - 80 <sup>b</sup>  |         |                                 |              |        |
| Denzene                  | 3      | BDI 90                 | BDLC    |                                 |              |        |
| Ethylbenzene             | 2      | BDL - 20.b             |         |                                 |              |        |
| Toluene                  | 2      | 15 - 70 <sup>b</sup>   |         |                                 |              |        |
| Halogenated aliphatics   |        |                        |         |                                 |              |        |
| Chloroform               | 2      | BDL - 20 <sup>b</sup>  | BDLC    |                                 |              |        |
| 1.1.1-Trichloroethane    | 3      | BDL - 90               | BDLC    |                                 |              |        |
| Pesticides and metabolit | esd    |                        |         |                                 |              |        |
| Aldrin                   |        |                        | <0.001  |                                 |              |        |
| BBC's                    |        |                        | 0.015   |                                 |              |        |
| Chlordane                |        |                        | <0.001  |                                 |              |        |
| Heptachlor               |        |                        | <0.001  |                                 |              |        |

asis and S2S combined for metals - no observed difference.

TABLE 21-12. CONCENTRATIONS AND LOADINGS OF CONVENTIONAL POLLUTANTS FOUND IN HARDBOARD MANUFACTURING SUBCATEGORY RAW WASTEWATER<sup>a</sup> [1]

|                  | Untreated wastewater mg/L | concentration, | Untreated wastewater loading,<br>lb/ton (kg/Mg) |               |  |  |  |
|------------------|---------------------------|----------------|-------------------------------------------------|---------------|--|--|--|
| Pollutant        | Range                     | Median         | Range                                           | Median        |  |  |  |
| BOD <sub>5</sub> |                           |                | 3.77 - 232 (1.89 - 116)                         | 74.7 (37.4)   |  |  |  |
| Total phenols    | BDL - 8.9                 | 0.335          | 0.006 - 0.086 (0.003 - 0.043)                   | 0.019 (0.009) |  |  |  |

 $<sup>^{\</sup>mathrm{b}}\mathrm{SIS}$  type hardboard; no loading data.

cs2S type hardboard; no loading data.

dslS and S2S processes combined; number of plants was not specified.

TABLE 21-13. CURRENT LEVEL OF IN-PLACE TECHNOLOGY, BOULTON, NO DISCHARGERS<sup>a</sup> [1]

|                             | Number<br>of<br>plants | Percent |
|-----------------------------|------------------------|---------|
| Primary oil separation      | 20                     | 83      |
| Oil separation by DAF       | i                      | 4       |
| Evaporation ponds           | 15                     | 63      |
| Spray or soil irrigation    | 1                      | 4       |
| Cooling tower evaporation   | 4                      | 17      |
| Thermal evaporation         | 1                      | 4       |
| Effluent recycle to boilers |                        |         |
| or condensers               | 4                      | 17      |
| No discharge                | 2                      | 8       |

aPlants may use more than one technology.

TABLE 21-14. CURRENT LEVEL OF IN-PLACE TECHNOLOGY, BOULTON, INDIRECT DISCHARGERS<sup>a</sup> [1]

|                                                      | Number<br>of |         |
|------------------------------------------------------|--------------|---------|
|                                                      | plants       | Percent |
| Primary oil separation<br>Chemical flocculation and/ | 11           | 100     |
| or oil absorbent media '                             | 4            | 36      |
| Biological treatment                                 | 2            | 18      |

aPlants may use more than one technology.

TABLE 21-15. CURRENT LEVEL OF IN-PLACE TECHNOLOGY, STEAMING, NO DISCHARGERS<sup>a</sup> [1]

|                                                              | Number<br>of | D       |
|--------------------------------------------------------------|--------------|---------|
|                                                              | plants       | Percent |
| Gravity oil-water separation<br>Chemical flocculation or oil | 44           | 77      |
| absorptive media                                             | 5            | 8.8     |
| Sand filtration                                              | 8            | 14      |
| Oxidation lagoon                                             | 3            | 5       |
| Aerated lagoon                                               | 10           | 17      |
| Spray irrigation                                             | 9            | 16      |
| Holding basin                                                | 22           | 39      |
| Thermal evaporation                                          | 2            | 3.5     |
| Solar evaporation pond<br>Spray assisted solar               | 20           | 35      |
| evaporation                                                  | 17           | 30      |
| Effluent recycle to boiler or condenser                      | 10           | 17      |

a Some plants use more than one technology.

TABLE 21-16. CURRENT LEVEL OF IN-PLACE TECHNOLOGY, STEAMING, DIRECT DISCHARGERS<sup>a</sup> [1]

|                                                              | Number<br>of |         |
|--------------------------------------------------------------|--------------|---------|
|                                                              | plants       | Percent |
| Gravity oil-water separation<br>Chemical flocculation or oil | 10           | 100     |
| absorptive media                                             | 3            | 30      |
| Sand filtration                                              | 2            | 20      |
| Oxidation lagoon                                             | 2            | 20      |
| Aerated lagoon                                               | 2            | 20      |
| Spray irrigation                                             | 1            | 10      |
| Holding basin                                                | 2            | 20      |
| Solar evaporation pond<br>Spray assisted solar               | 5            | 50      |
| evaporation                                                  | 2            | 20      |
| Effluent recycle to boiler or condenser                      | 2            | 20      |

a Some plants use more than one technology.

TABLE 21-17. CURRENT LEVEL OF IN-PLACE TECHNOLOGY, STEAMING, INDIRECT DISCHARGERS<sup>a</sup> [1]

|                                                              | Number<br>of | _       |  |
|--------------------------------------------------------------|--------------|---------|--|
|                                                              | plants       | Percent |  |
| Gravity oil-water separation<br>Chemical flocculation or oil | 23           | 100     |  |
| absorptive media                                             | 7            | 30      |  |
| Sand filtration                                              | 3            | 13      |  |
| Oxidation lagoon                                             | 1            | 4       |  |
| Aerated lagoon                                               | 2            | 9       |  |
| Holding basin<br>Spray assisted solar                        | 17           | 74      |  |
| evaporation                                                  | 2            | 9       |  |
| Effluent recycle to boiler                                   | _            | _       |  |
| or condenser                                                 | 2            | 9       |  |

a Some plants use more than one technology.

TABLE 12-18. WOOD PRESERVING CONVENTIONAL POLLUTANT DATA AVERAGES FOR PLANTS WITH LESS THAN EQUIVALENT OF BPT TECHNOLOGY IN-PLACE [1]

|                   | Number<br>of | Waste | Percent |         |
|-------------------|--------------|-------|---------|---------|
| Pollutant         | plants       | Raw   | Treated | removal |
| COD               | 3            | 92.8  | 31.2    | 66.4    |
| Phenols           | 3            | 1.77  | 1.01    | 42.9    |
| Oil and grease    | 3            | 8.71  | 1.75    | 79.9    |
| Pentachlorophenol | 3            | 0.498 | 0.151   | 69.7    |

TABLE 21-19. WOOD PRESERVING CONVENTIONAL POLLUTANT DATA AVERAGES FOR PLANTS WITH CURRENT PRETREATMENT TECHNOLOGY IN-PLACE [1]

|                   | Number<br>of |        | load,<br>000 ft <sup>3</sup> | Percent |
|-------------------|--------------|--------|------------------------------|---------|
| Pollutant         | plants       | Raw    | Treated                      | removal |
| COD               | 10           | 80.7   | 41.5                         | 48.6    |
| Phenols           | 10           | 3.11   | 2.03                         | 34.7    |
| Oil and grease    | 10           | 7.82   | 0.908                        | 88.4    |
| Pentachlorophenol | 7            | <0.294 | 0.0716                       | <75.6   |

TABLE 21-20. WOOD PRESERVING CONVENTIONAL POLLUTANT DATA AVERAGES FOR PLANTS WITH LESS THAN THE EQUIVALENT OF BPT TECHNOLOGY IN-PLACE [1]

|                   | Number<br>of |        | load,<br>000 ft <sup>3</sup> | Percent |
|-------------------|--------------|--------|------------------------------|---------|
| Pollutant         | plants       | Raw    | Treated                      | removal |
| COD               | 6            | 31.3   | 6.00                         | 80.8    |
| Phenols           | 6            | 2.41   | 0.0061                       | 99.7    |
| Oil and grease    | 6            | 4.32   | <0.821                       | >81.0   |
| Pentachlorophenol | 5            | <0.268 | 0.0135                       | <95.0   |

Table 21-21 presents average raw and treated waste loads and percent removals of methylene chloride, trichloromethylene, benzene, ethylbenzene, and toluene for plants with current BPT technology in place. Tables 21-22 and 21-23 present similar data for base/neutral toxic pollutants for current pretreatment technology and current BPT technology in place.

Tables 21-24 and 21-25 present similar data for wood preserving phenols for plants with current pretreatment technology in place and current BPT technology in place.

Additionally, Tables 21-26 through 21-30 present average metals raw and treated waste loads and removals in a similar manner for the wood preserving subcategory.

# II.21.4.2 Insulation Board Manufacturing

Table 21-31 summarizes the current level of in-place treatment technology for six plants. Tables 21-32 through 21-37 present treated effluent characteristics and various average raw and treated waste characteristics and removals for the insulation board manufacturing subcategory.

# II.21.4.3 Hardboard Manufacturing

Table 21-38 summarizes the current level of in-place treatment technology for 13 hardboard manufacturing plants. Tables 21-39 through 21-45 present treated effluent characteristics and various raw and treated waste characteristics and removals for the hardboard manufacturing subcategory.

TABLE 21-21. WOOD PRESERVING VOLATILE ORGANIC ANALYSIS DATA FOR PLANTS WITH CURRENT BPT TECHNOLOGY IN-PLACE [1]

|                    | Number<br>of |         | Waste load,<br>lb/1,000 ft <sup>3</sup> |         |  |
|--------------------|--------------|---------|-----------------------------------------|---------|--|
| Pollutant          | plants       | Raw     | Treated                                 | removal |  |
| Methylene chloride | 3            | 0.0049  | 0.0043                                  | 12.2    |  |
| Trichloromethylene | 3            | <0.0001 | <0.0002                                 |         |  |
| Benzene            | 3            | >0.0200 | <0.0003                                 | >98.5   |  |
| Ethylbenzene       | 3            | 0.101   | <0.0001                                 | >99.9   |  |
| Toluene            | 3            | 0.0237  | <0.0009                                 | 96.2    |  |

TABLE 21-22. WOOD PRESERVING BASE NEUTRALS DATA AVERAGES FOR PLANTS WITH CURRENT TREATMENT TECHNOLOGY IN-PLACE [1]

|                             | Number<br>of |       | e load,<br>l06 ft³ | Percent        |
|-----------------------------|--------------|-------|--------------------|----------------|
| Pollutant                   | plants       | Raw   | Treated            | removal        |
| Fluoranthene                | 3            | <5.7  | <0.3               | <94.7          |
| Benzo(b)fluoranthene        | 3            | <0.1  | <0.1               | _a             |
| Benzo(k) fluoranthene       | 3            | <0.1  | <0.1               | _ <sup>a</sup> |
| Pyrene                      | 3            | <3.8  | <0.1               | 97.4           |
| Benzo(a) pyrene             | 3            | <0.1  | <0.1               | _a             |
| Indeno(1,2,3-cd)pyrene      | 3            | <0.1  | <0.1               | _a             |
| Benzo(ghi)perylene          | 3            | <0.1  | <0.1               | _a             |
| Phenanthrene/anthracene     | 3            | 32.4  | 0.8                | 97.5           |
| Benz(a)anthracene           | 3            | <0.6  | <0.1               | 83.3           |
| Dibenz(ah)anthracene        | 3            | <0.1  | <0.1               | _a             |
| Naphthalene                 | 3            | <13.7 | <7.2               | 47.4           |
| Acenaphthene                | 3            | <15.8 | <0.8               | 94.9           |
| Acenaphthylene              | 3            | <11.7 | <1.0               | 91.5           |
| Fluorene                    | 3            | <11.6 | <0.3               | 97.4           |
| Chrysene                    | 3            | <0.3  | <0.1               | 66.7           |
| Bis(2-ethylhexyl) phthalate | 3            | <6.2  | <1.0               | 83.9           |

a Negligible removal.

TABLE 21-23. WOOD PRESERVING BASE NEUTRALS DATA AVERAGES FOR PLANTS WITH CURRENT BPT TECHNOLOGY IN-PLACE [1]

| Pollutant                   | Number<br>of |       | e load,<br>l06 ft <sup>3</sup> | Percent |
|-----------------------------|--------------|-------|--------------------------------|---------|
|                             | plants       | Raw   | Treated                        | removal |
| Fluoranthene                | 4            | 53.0  | 8.8                            | 85.4    |
| Benzo(b)fluoranthene        | 4            | <9.1  | <1.4                           | 85.7    |
| Benzo(k)fluoranthene        | 4            | 12.7  | <1.5                           | >89.7   |
| Pyrene                      | 4            | 39.5  | 3.2                            | 93.0    |
| Benzo(a)pyrene              | 4            | <10.5 | <1.8                           | 83.9    |
| Indeno(1,2,3-cd)pyrene      | 4            | <7.3  | <1.0                           | 89.6    |
| Benzo(ghi)perylene          | 4            | <1.5  | <0.4                           | 78.9    |
| Phenanthrene/anthracene     | 4            | 121   | <7.1                           | >94.0   |
| Benz(a)anthracene           | 4            | <12.9 | <2.4                           | 86.0    |
| Dibenz(ah)anthracene        | 4            | <0.5  | <0.1                           | 83.3    |
| Naphthalene                 | 4            | >186  | <0.4                           | >99.8   |
| Acenaphthene                | 4            | 43.6  | 2.2                            | 95.3    |
| Acenaphthylene              | 4            | 4.9   | <0.2                           | >97.0   |
| Fluorene                    | 4            | 34.4  | <1.5                           | >95.9   |
| Chrysene                    | 4            | <11.2 | <1.5                           | 83.1    |
| Bis(2-ethylhexyl) phthalate | 4            | <0.2  | <0.1                           | 66.7    |

a Negligible removal.

TABLE 21-24. WOOD PRESERVING PHENOLS DATA AVERAGES FOR PLANTS WITH CURRENT PRETREATMENT TECHNOLOGY IN-PLACE [1]

|                       | Number<br>of | Waste load,<br>lb/l0° ft° |         | Percent    |
|-----------------------|--------------|---------------------------|---------|------------|
| Pollutant             | plants       | Raw                       | Treated | removal    |
| Phenols               | 2            | 6.6                       | 0.2     | 97.1       |
| 2-Chlorophenol        | 2            | <0.1                      | <0.1    | _ <u>a</u> |
| 2,4-Dimethylphenol    | 2            | <0.1                      | <0.1    | _a         |
| 2,4,6-Trichlorophenol | 2            | <0.1                      | <0.1    | _a         |
| Pentachlorophenol     | 7            | 419                       | 69.7    | 83.4       |

<sup>&</sup>lt;sup>a</sup>Negligible removal.

TABLE 21-25. WOOD PRESERVING PHENOLS DATA AVERAGES FOR PLANTS WITH CURRENT BPT TECHNOL-OGY IN-PLACE [1]

|                       | Number<br>of | Waste load,<br>lb/l0 <sup>3</sup> ft <sup>3</sup> |         | Percent |
|-----------------------|--------------|---------------------------------------------------|---------|---------|
| Pollutant             | plants       | Raw                                               | Treated | removal |
| Phenols               | 3            | 352                                               | <0.2    | >99.9   |
| 2-Chlorophenol        | 3            | <0.4                                              | <0.1    | 75.0    |
| 2,4-Dimethylphenol    | 3            | 44.5                                              | <1.0    | >97.8   |
| 2,4,6-Trichlorophenol | 3            | <5.0                                              | <0.1    | 98.0    |
| Pentachlorophenol     | 5            | 73.6                                              | 13.5    | 97.6    |

TABLE 21-26. WOOD PRESERVING METALS DATA, ORGANIC PRESERVATIONS ONLY, AVERAGES FOR PLANTS WITH CURRENT PRETREATMENT TECHNOLOGY IN-PLACE [1]

|                                                                                                                                          | Number<br>of                                                                                |                                                                                           | e load,<br>06 ft³                                                                                | Percent                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Pollutant                                                                                                                                | plants                                                                                      | Raw                                                                                       | Treated                                                                                          | removal                                                      |
| Antimony<br>Arsenic<br>Beryllium<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Mercury<br>Nickel<br>Selenium<br>Silver<br>Thallium<br>Zinc | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | <0.01<br>0.03<br><0.01<br><0.01<br>0.01<br>1.37<br>0.08<br><0.01<br>0.05<br>0.01<br><0.01 | 0.02<br>0.05<br><0.01<br><0.01<br>0.09<br>0.97<br>0.02<br><0.01<br>0.05<br><0.01<br>0.02<br>9.99 | _a<br>_a<br>_b<br>_a<br>29.2<br>75.0<br>_a<br>_a<br>_b<br>_a |

a Negative removal.

TABLE 21-27. WOOD PRESERVING METALS DATA, ORGANIC PRESERVATIONS ONLY, AVERAGES FOR PLANTS WITH CURRENT BPT TECHNOLOGY IN-PLACE [1]

|           | Number<br>of |       | e load,<br>06 ft <sup>3</sup> | Percent |
|-----------|--------------|-------|-------------------------------|---------|
| Pollutant | plants       | Raw   | Treated                       | removal |
| Antimony  | 4            | 0.22  | <0.08                         | >63.6   |
| Arsenic   | 4            | 61.6  | 34                            | 44.8    |
| Beryllium | 4            | <0.01 | <0.01                         | a       |
| Cadmium   | 4            | <0.01 | <0.02                         | _p      |
| Chromium  | 4            | 0.12  | 0.1                           | 16.7    |
| Copper    | 4            | 0.48  | 0.35                          | 27.1    |
| Lead      | 4            | 0.43  | <0.21                         | >51.2   |
| Mercury   | 4            | <0.01 | <0.01                         | _a      |
| Nickel    | 4            | 0.10  | 0.1                           | _a      |
| Selenium  | 4            | 0.02  | 0.02                          | _a      |
| Silver    | 4            | <0.01 | <0.01                         | _a      |
| Thallium  | 4            | <0.01 | <0.01                         | _a      |
| Zinc      | 4            | 1.63  | 0.96                          | 41.1    |

a<sub>Negative</sub> removal.

bNegligible removal.

b Negligible removal.

TABLE 21-28. WOOD PRESERVING METALS DATA, ORGANIC AND INORGANIC PRESERVATIVES. AVERAGES FOR PLANTS WITH LESS THAN CURRENT BPT TECHNOLOGY IN-PLACE [1]

|                               |                      | te load,<br>106 ft³  | Percent        |
|-------------------------------|----------------------|----------------------|----------------|
| Pollutant                     | Raw                  | Treated              | removal        |
| Arsenic<br>Chromium<br>Copper | 0.43<br>0.53<br>1.67 | 0.44<br>0.56<br>1.71 | _a<br>_a<br>_a |

a Negative removal.

TABLE 21-29. WOOD PRESERVING METALS DATA, ORGANIC AND INORGANIC PRESERVATIVES, AVERAGES FOR PLANTS WITH CURRENT PRETREATMENT TECHNOLOGY IN-PLACE [1]

|           | Wact  | e load,                |                    |  |  |  |  |
|-----------|-------|------------------------|--------------------|--|--|--|--|
|           |       | lb/106 ft <sup>3</sup> |                    |  |  |  |  |
| Pollutant | Raw   | Treated                | Percent<br>removal |  |  |  |  |
| Antimony  | <0.05 | <0.03                  | 40.0               |  |  |  |  |
| Arsenic   | <0.30 | <0.60                  | - <u>a</u>         |  |  |  |  |
| Beryllium | <0.01 | <0.01                  | _~<br>a            |  |  |  |  |
| Cadmium   | <0.02 | <0.03                  | u                  |  |  |  |  |
| Chromium  | <7.28 | <6.34                  | 12.9               |  |  |  |  |
| Copper    | 3.9   | 2.64                   | 32.3               |  |  |  |  |
| Lead      | 0.03  | 0.05                   | -a                 |  |  |  |  |
| Mercury   | <0.01 | <0.01                  | _p                 |  |  |  |  |
| Nickel    | 0.62  | 0.67                   | _a                 |  |  |  |  |
| Selenium  | 0.19  | 0.14                   | 26.3               |  |  |  |  |
| Silver    | 0.02  | <0.01                  | >50.0,             |  |  |  |  |
| Thallium  | <0.01 | <0.01                  | _p                 |  |  |  |  |
| Zinc      | 60.1  | 56.1                   | 6.7                |  |  |  |  |

a Negative removal.

bNegligible removal.

TABLE 21-30. WOOD PRESERVING METALS DATA, ORGANIC AND INORGANIC PRESERVATIVES, AVERAGES FOR PLANTS WITH CURRENT BPT TECHNOLOGY IN-PLACE [1]

|                                                                                                                                          |                                                                                                 | e load,<br>0° ft³                                                 | Percent                                               |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------|
| Pollutant                                                                                                                                | Raw                                                                                             | Treated                                                           | removal                                               |
| Antimony<br>Arsenic<br>Beryllium<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Mercury<br>Nickel<br>Selenium<br>Silver<br>Thallium<br>Zinc | <0.01<br>2.53<br><0.01<br>0.02<br>0.45<br>1.5<br>0.31<br>0.03<br>1.94<br><0.01<br><0.01<br>2.33 | <0.01 2.5 <0.01 0.1 0.95 1.8 0.3 0.01 0.34 <0.01 <0.01 <0.01 3.06 | _a<br>_a<br>_b<br>_b<br>_a<br>66.7<br>82.5<br>a<br>_a |

a Negligible removal.

TABLE 21-31. IN-PLACE TREATMENT TECHNOLOGY AT SIX INSULATION BOARD MANUFACTURING PLANTS [1]

| Plant<br>number | Product/process                                                | Treatment system                                                         |
|-----------------|----------------------------------------------------------------|--------------------------------------------------------------------------|
| 125             | Structural/decorative insulation board, thermomechanical       | Clarifier, aerated lagoon                                                |
| 37 <b>3</b>     | <pre>Insulation board/   hardboard, thermo-   mechanical</pre> | Oxygen-activated sludge system, clarifier                                |
| 531             | Mechanical process insulation board                            | Aerated lagoon, evaporation pond, self-contained discharger (irrigation) |
| <b>5</b> 55     | Structural/decorative insulation board, mechanical process     | Clarifier, activated sludge                                              |
| 931             | Structural/decorative insulation board, mechanical process     | Floc clarifier, aerated lagoon, discharge to POTW                        |
| 1071            | Insulation board/S2S hardboard, thermo-mechanical              | Settling ponds, aerated lagoon, oxidation pond                           |

b<sub>Negative removal.</sub>

TABLE 21-32. INSULATION BOARD THERMOMECHANICAL REFINING TREATED EFFLUENT CHARACTERISTICS (ANNUAL AVERAGE) [1]

| Plant Production |            |                  | Flow         |               |              | TSS          |              |              |
|------------------|------------|------------------|--------------|---------------|--------------|--------------|--------------|--------------|
| number           | Mg/d       | tons/d           | 1,000 L/Mg   | 1,000 gal/ton | kg/Mg        | Ib/ton       | kg/Mg        | lb/ton       |
| 125 <sup>a</sup> | 139<br>145 | 153<br>160       | 1.88<br>1.75 | 0.45<br>0.419 | 2.03<br>1.94 | 4.06<br>3.87 | 1.71<br>1.13 | 3.42<br>2.26 |
| 373 <sup>b</sup> | 605        | 665 <sup>C</sup> | 51.3         | 12.3          | 4.06         | 8.12         | 12.3         | 24.5         |
| 1071             | 359        | 395 <sup>C</sup> | 21.9         | 5.26          | 2.15         | 4.31         | 0.94         | 1.88         |

<sup>&</sup>lt;sup>a</sup>First line of data lists 1976 average annual daily data; second line lists 1977 average annual data, except as noted.

TABLE 21-33. INSULATION BOARD MECHANICAL REFINING ANNUAL AVERAGE RAW AND TREATED WASTE CHARACTERISTICS [1]

|                  | BOD                        | , kg/Mg (lb/ton)           |                      | TSS, kg/Mg (lb/ton)        |                            |                      |  |  |
|------------------|----------------------------|----------------------------|----------------------|----------------------------|----------------------------|----------------------|--|--|
| Plant<br>number  | Raw waste                  | Treated<br>effluent        | Percent<br>reduction | Raw waste                  | Treated effluent           | Percent<br>reduction |  |  |
| 931 <sup>a</sup> | 4.33 (8.67)                | 1.05 (2.10)                | 76                   | 0.71 (1.42)                | 1.15 (2.30)                | _p                   |  |  |
| 555 <sup>C</sup> | 20.8 (41.6)<br>20.9 (41.8) | 0.28 (0.56)<br>0.28 (0.56) | 99<br>99             | 45.2 (90.5)<br>31.4 (62.9) | 2.64 (5.29)<br>1.46 (2.91) | 94<br>95             |  |  |
| 531              | 1.27 (2.54)                | 0.07 (0.14)                | 94                   | 0.46 (0.923)               | 0.16 (0.32)                | 65                   |  |  |

Raw waste loads were calculated from 1977 verification sampling data.

 $<sup>^{\</sup>mathrm{b}}\mathrm{Data}$  are taken before paper wastewater is added.

 $<sup>^{\</sup>mathrm{c}}$  Includes both insulation board and hardboard production.

b<sub>Negative removal.</sub>

 $<sup>^{\</sup>mathrm{C}}$  First line of data lists 1976 average annual daily data, second line lists 1977 average annual daily data.

TABLE 21-34. INSULATION BOARD THERMOMECHANICAL REFINING ANNUAL AVERAGE RAW AND TREATED WASTE CHARACTERISTICS [1]

|                  | BOI                                                  | , kg/Mg (lb/ton)           |                      | TSS                                                  | , kg/Mg (lb/ton)           |                      |
|------------------|------------------------------------------------------|----------------------------|----------------------|------------------------------------------------------|----------------------------|----------------------|
| Plant<br>number  | Raw waste                                            | Treated<br>effluent        | Percent<br>reduction | Raw waste                                            | Treated<br>effluent        | Percent<br>reduction |
| 125 <sup>a</sup> | 17.0 (34.1) <sup>b</sup><br>23.5 (47.0) <sup>b</sup> | 2.03 (4.06)<br>1.94 (3.87) | 88<br>92             | 42.8 (85.7) <sup>b</sup><br>38.6 (77.3) <sup>b</sup> | 1.71 (3.42)<br>1.13 (2.26) | 96<br>97             |
| 373              | 29.8 (59.5)                                          | 4.06 (8.12)                | 86                   | 28.6 (57.1)                                          | 12.3 (24.5)                | 57                   |
| 1071             | 43.2 (86.3)                                          | 2.15 (4.31)                | 95                   |                                                      | 0.94 (1.88)                |                      |

<sup>&</sup>lt;sup>a</sup>First line of data lists 1976 average annual daily data, second line lists 1977 average annual daily data.

TABLE 21-35. RAW AND TREATED EFFLUENT LOADS AND PERCENT REDUCTION FOR TOTAL PHENOLS, INSULATION BOARD<sup>a</sup> [1]

| Plant  | Raw wa  | ste load | Treated wa | aste load      | Percent   |  |
|--------|---------|----------|------------|----------------|-----------|--|
| number | kg/Mg   | lb/ton   | kg/Mg      | lb/ton         | reduction |  |
| 555    | 0.00095 | 0.0019   | 0.00010    | 0.00021        | 89        |  |
|        | 0.007   | 0.014    | 0.00012    | 0.00025        | 98        |  |
| 231    | 0.0024  | 0.0048   |            |                |           |  |
|        | 0.009   | 0.018    |            |                |           |  |
| 931    | 0.00040 | 0.00079  | 0.00008    | <b>0.00015</b> | 81        |  |
| 125    | 0.0022  | 0.0045   | 0.00014    | 0.00029        | 94        |  |
|        | 0.0055  | 0.011    | 0.00065    | 0.0013         | 88        |  |

<sup>&</sup>lt;sup>a</sup>Total phenols concentration data obtained during 1977 and 1978 verification sampling programs. Average annual daily waste flow and production data for 1976 and 1977 supplied by plants in response to data collection portfolio were used to calculate waste loads.

 $<sup>^{\</sup>mathrm{b}}\mathrm{Data}$  obtained during 1977 and 1978 verification sampling programs.

TABLE 21-36. RAW AND TREATED EFFLUENT LOADINGS AND PERCENT REDUCTIONS FOR INSULATION BOARD METALS [1]

|           | Plant 931 Waste load, kg/10 <sup>6</sup> Mg (1b/10 <sup>6</sup> ton) Perce |                  | Percent    | Plant 231 Waste load, kg/10 <sup>6</sup> Mg (1b/10 <sup>6</sup> ton) Percent |                     | Plant 125 Waste load, kg/10 <sup>6</sup> Mg (1b/10 <sup>6</sup> ton) Percent |                       |              | Plant 555<br>Waste load, kg/10 <sup>6</sup> Mg<br>(1b/10 <sup>6</sup> ton) |                   | Percent             |            |
|-----------|----------------------------------------------------------------------------|------------------|------------|------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------|-----------------------|--------------|----------------------------------------------------------------------------|-------------------|---------------------|------------|
| Pollutant | Raw                                                                        | Treated          | reduction  | Raw                                                                          | Treated             | reduction                                                                    | Raw                   | Treated      | reduction                                                                  | Raw               | Treated             | reduction  |
| Antimony  | 2.1<br>(4.2)                                                               | 18<br>(35)       | _a         | 25<br>( <b>4</b> 9)                                                          | 21<br>(42)          | 14                                                                           | (27)                  | 2.8<br>(5.6) | 79                                                                         | 22<br>(44)        | 48<br>(95)          | _a         |
| Arsenic   | 13<br>(25)                                                                 | 6<br>(11)        | 56         | 27<br>(54)                                                                   | 13<br>(26)          | 52                                                                           | 60<br>(120)           | 6<br>(12)    | 90                                                                         | 17<br>(34)        | 20<br>( <b>4</b> 0) | _a         |
| Beryllium | 4.2<br>(8.3)                                                               | 2.1<br>(4.2)     | 49         | 7<br>14                                                                      | 12<br>(24)          | _a                                                                           | 10<br>(20)            | 1<br>(1.0)   | 90                                                                         | 5.5<br>(11)       | 6<br>(11)           | _a         |
| Cadmium   | 2.8<br>(5.6)                                                               | 3.5<br>(6.9)     | _a         | 8<br>(16)                                                                    | 13<br>(26)          | _a                                                                           | 10<br>(20)            | 1<br>(1.0)   | 90                                                                         | 5.5<br>(11)       | 6<br>(11)           | _ <b>a</b> |
| Chromium  | 6<br>(11)                                                                  | 22<br>(44)       | _a         | 60<br>(120)                                                                  | 20<br>( <b>4</b> 0) | _a                                                                           | 470<br>(940)          | 6<br>(11)    | 98                                                                         | 120<br>(220)      | 90<br>(170)         | 26         |
| Copper    | 1,900<br>(3,700)                                                           | 900<br>(1,900)   | 51         | 2,300<br>(4,600)                                                             | 20<br>( <b>4</b> 0) | 13                                                                           | 41<br>(82)            | 180<br>(350) | _a                                                                         | 360<br>(7,200)    | 1,200<br>(23,000)   | 68         |
| Lead      | 6<br>(11)                                                                  | 6<br>(11)        | _b         | 170<br>(34)                                                                  | 21<br>(41)          | _a                                                                           | 27<br>(53)            | 3.8<br>(7.5) | 85                                                                         | 55<br>(11)        | 18<br>(16)          | 85         |
| Mercury   | 2.1<br>(4.2)                                                               | 0.4<br>(0.8)     | 80         | 41<br>(82)                                                                   | 13<br>(26)          | _ <b>a</b>                                                                   | 21<br>(41)            | 1.9<br>(3.8) | 91                                                                         | 80<br>(160)       | 0.7<br>(1.3)        | 99         |
| Nickel    | 800<br>(1,600)                                                             | 600<br>(1,100)   | 31         | 850<br>(1,700)                                                               | 9<br>(18)           | 5                                                                            | 250<br>( <b>4</b> 90) | 13<br>(26)   | 94                                                                         | 90<br>(180)       | 37<br>(7 <b>4</b> ) | 58         |
| Selenium  | 14<br>(27)                                                                 | 7<br>(13)        | 52         | 35<br>(70)                                                                   | 25<br>(49)          | 30                                                                           | 70<br>(140)           | 4.4<br>(8.7) | 93                                                                         | 35<br>(7)         | 32<br>(63)          | 10         |
| Silver    | 2.1<br>(4.2)                                                               | 2.1<br>(4.2)     | _p         | 4.9<br>(9.8)                                                                 | 17<br>(33)          | _ <b>a</b>                                                                   | 10<br>(20)            | 1.3<br>(2.5) | 88                                                                         | 5<br>(11)         | 7<br>(13)           | _ <b>a</b> |
| Thallium  | 2.8<br>(5.6)                                                               | 8<br>(15)        | _ <b>a</b> | 4.1<br>(8.2)                                                                 | 4.1<br>(8.2)        | <b>-</b> p                                                                   | 17<br>(33)            | 1.3<br>(2.5) | 92                                                                         | 6.5<br>(13)       | 8<br>(16)           | _ <b>a</b> |
| Zinc      | 3,000<br>(5,000)                                                           | 1,400<br>(2,800) | 44         | 4,200<br>(8,400)                                                             | 4,700<br>(9,500)    | _a                                                                           | 5,000<br>(10,000)     | 170<br>(330) | 96                                                                         | 6,000<br>(12,000) | 800                 | 86         |

a Negative removal.

TABLE 21-37. INSULATION BOARD TOXIC POLLUTANT DATA, ORGANICS [1]

|            |           | Average concentration, µg/L |           |           |           |  |  |  |  |  |  |
|------------|-----------|-----------------------------|-----------|-----------|-----------|--|--|--|--|--|--|
|            | R         | aw wastewate:               | r         | Treated   | effluent  |  |  |  |  |  |  |
| Pollutant  | Plant 231 | Plant 555                   | Plant 125 | Plant 555 | Plant 125 |  |  |  |  |  |  |
|            |           | $\mathtt{BDL}_{\mathbf{b}}$ |           |           |           |  |  |  |  |  |  |
| Chloroform | 20        | BDL                         | BDL       | BDL       | BDL       |  |  |  |  |  |  |
| Benzene    | 70        | 40 <sup>C</sup>             | BDL       | BDL       | BDL       |  |  |  |  |  |  |
| Toluene    | 40        | 40 <sup>C</sup>             | BDL       | BDL       | BDL       |  |  |  |  |  |  |
| Phenol     | BDL       | 40                          | BDL       | BDL       | BDL       |  |  |  |  |  |  |

and One treated effluent sample contained 40 µg/L of trichlorofluoromethane.

TABLE 21-38. IN-PLACE TREATMENT TECHNOLOGY AT 13 HARDBOARD MANUFACTURING PLANTS [1]

| Plant<br>number | Product     | Treatment system                                                                   |
|-----------------|-------------|------------------------------------------------------------------------------------|
| 24              | S1S, S2S    | Activated sludge, aerated lagoon                                                   |
| 28              | sıs         | Lime neutralization, discharge to POTW                                             |
| 42              | S1S, S2S    | Activated sludge, humus ponds, aerated lagoons, settling pond                      |
| 64              | SlS         | Settling ponds                                                                     |
| 248             | S2S         | Kinecs air pond, Infilco aero accelerators,<br>aerated lagoons, facultative lagoon |
| 262             | SlS         | Settling pond, aerated lagoon                                                      |
| 373             | S2S         | Not specified                                                                      |
| 428             | S1S, S2S    | Settling pond, aerated lagoon                                                      |
| 444             | SlS         | Settling ponds, aerated lagoon                                                     |
| 606             | SIS         | Settling ponds, activated sludge, aerated lagoon                                   |
| 824             | Sls         | Aerated lagoons, settling ponds                                                    |
| 888             | <b>S</b> ls | Settling ponds, activated sludge, aerated lagoon; no discharge                     |
| 1071            | \$2S        | Clairfier, aerated lagoon, oxidation ponds                                         |

 $<sup>^{\</sup>rm b}$  One sample of raw wastewater contained 20  $\mu g/L$  of chloroform. Plant intake water contained 10  $\mu g/L$  of chloroform.

 $<sup>^{\</sup>text{C}}\textsc{Plant}$  intake water contained 50  $\mu\textsc{g}/\textsc{L}$  and 30  $\mu\textsc{g}/\textsc{L}$  of benzene and toluene, respectively.

TABLE 21-39. SIS HARDBOARD TREATED EFFLUENT CHARACTERISTICS (ANNUAL AVERAGE) [1]

| Plant            | Produc | tion   |            | Flow              | BO    | DD                | TS    | SS                |
|------------------|--------|--------|------------|-------------------|-------|-------------------|-------|-------------------|
| number           | Mg/d   | tons/d | 1,000 L/Mg | 1,000 gal/ton     | kg/Mg | lb/ton            | kg/Mg | lb/ton            |
| 444              | 88.7   | 97.5   | 46.6       | 11.2 <sup>b</sup> | 9.00  | 18.0 <sup>b</sup> | 17.1  | 34.1 <sup>b</sup> |
| 606              | 194    | 213    | 7.38       | 1.78              | 5.05  | 10.1              | 4.05  | 8.10              |
|                  | 194    | 213    | 9.35       | 2.24              | 9.35  | 18.7              | 8.50  | 17.0              |
| 824              | 117    | 129    | 8.84       | 2.12              | 6.85  | 13.7              | 10.1  | 20.2              |
|                  | 115    | 127    | 15.2       | 3.65              | 3.06  | 6.13              | 10.2  | 20.4              |
| 888 <sup>C</sup> | 91.9   | 101    |            |                   |       |                   |       |                   |
| 42               | 343    | 377    | 4.16       | 1.00              | 0.13  | 0.26              | 0.12  | 0.24              |
| 24               | 1,450  | 1,590  | 9.40       | 2.26              | 0.97  | 1.93              | 1.14  | 2.27              |
| 64 <sup>đ</sup>  | 111    | 122    | 4.24       | 1.02              | 18.5  | 36.9              | 1.59  | 3.18              |
| • •              | 111    | 122    | 0.62       | 0.15              | 5.10  | 10.2              | 0.59  | 1.17              |
| 262              | 67.0   | 73.8   | 21.4       | 5.14              | 5.85  | 11.7              | 13.8  | 27.6              |
|                  | 64.1   | 70.7   | 17.2       | 4.12              | 5.35  | 10.7              | 12.2  | 24.5              |

<sup>&</sup>lt;sup>a</sup>First line of data lists 1976 average annual daily data; second line lists 1977 average annual data, except as noted.

TABLE 21-40. S2S HARDBOARD ANNUAL AVERAGE RAW AND TREATED WASTE CHARACTERISTICS [1]

|                  |              |                         |              |                  | BOD,                     | kg/Mg (lb/ton)             |                      | TSS, kg/Mg (lb/ton) |                  |                      |
|------------------|--------------|-------------------------|--------------|------------------|--------------------------|----------------------------|----------------------|---------------------|------------------|----------------------|
| Plant<br>number  | Proc<br>Mg/d | (tons/d)                | 1,000 L/Mg   | (1,000 gal/ton)  | Raw waste                | Treated effluent           | Percent<br>reduction | Raw waste           | Treated effluent | Percent<br>reduction |
| 248 <sup>a</sup> | 210<br>218   | (231)<br>(2 <b>4</b> 0) | 18.3<br>21.6 | (4.39)<br>(5.17) | 66.5 (133)<br>62.0 (124) | 4.44 (8.88)<br>2.54 (5.07) | 93<br>96             | <br>11.7 (23.4)     | 5.05 (10.1)      | <br>57               |
| 1071             | 359          | (395 <sup>b</sup> )     | 21.9         | (5.26)           | 43.2 (86.3)              | 2.15 (4.31)                | 95                   |                     | 0.4 (1.88)       |                      |
| 373              | 605          | (665 <sup>b</sup> )     | 51.3         | (12.3)           | 29.8 (59.5)              | 4.06 (8.12)                | 86                   | 28.6 (57.1)         | 12.3 (24.5)      | 57                   |
| 428              | 611          | (343)                   | 25.8         | (6.18)           | 116 (232)                | 20.8 (41.5)                | 82                   | 20.0 (40.0)         | 43.8 (87.6)      | _p                   |

<sup>\*</sup>First line of data lists 1976 average annual daily data, second line lists 1977 average annual daily data.

b<sub>Hardboard</sub> and paper waste streams are comingled.

<sup>&</sup>lt;sup>C</sup>All of the treated effluent is recycled.

<sup>&</sup>lt;sup>d</sup>Second line lists data from October 1976 through February 1977.

Negative removal.

TABLE 21-41. SIS HARDBOARD ANNUAL AVERAGE RAW AND TREATED WASTE CHARACTERISTICS<sup>a</sup> [1]

|                  | BOD,                     | kg/Mg (lb/ton)      |                      | TSS, kg/Mg (lb/ton)      |                     |                      |  |  |
|------------------|--------------------------|---------------------|----------------------|--------------------------|---------------------|----------------------|--|--|
| Plant<br>number  | Raw waste                | Treated<br>effluent | Percent<br>reduction | Raw waste                | Treated<br>effluent | Percent<br>reduction |  |  |
| 444 <sup>b</sup> | 32.7 (65.4)              | 9.00 (18.0)         | 72                   | 6.90 (13.8)              | 17.1 (34.1)         | _c                   |  |  |
| 606              | 29.3 (58.6)              | 5.05 (10.1)         | 83                   | 12.4 (24.8)              | 4.05 (8.10)         | 67                   |  |  |
|                  | 25.4 (50.7)              | 9.35 (18.7)         | 63                   | 12.8 (25.7)              | 8.50 (17.0)         | 34                   |  |  |
| 824              | 35.6 (71.2)              | 6.85 (13.7)         | 81                   | 22.5 (44.9)              | 10.1 (20.2)         | 55                   |  |  |
|                  | 33.8 (67.7)              | 3.06 (6.13)         | 91                   | 13.0 (25.9)              | 10.2 (20.4)         | 21                   |  |  |
| 262              | 37.4 (74.8)              | 5.85 (11.7)         | 84                   | 12.6 (25.2)              | 13.8 (27.6)         | _c<br>_c             |  |  |
|                  | 42.0 (84.0)              | 5.35 (10.7)         | 87                   | 6.45 (12.9)              | 12.2 (24.5)         | <b>-</b> C           |  |  |
| 42               | 1.89 (3.77) <sup>d</sup> | 0.13 (0.26)         | 93                   | 0.56 (1.15) <sup>d</sup> | 0.12 (0.24)         | <b>7</b> 9           |  |  |
| 24               | 21.9 (43.8) <sup>e</sup> | 0.97 (1.93)         | 96                   | 5.85 (11.7) <sup>e</sup> | 1.14 (2.27)         | 81                   |  |  |

<sup>&</sup>lt;sup>a</sup>First line of data lists 1976 average annual daily data, second line lists 1977 average annual daily data.

bHardboard and paper waste streams are comingled.

CNegative removal.

 $<sup>\</sup>ensuremath{^{\text{d}}}_{\text{Raw}}$  waste loads shown are for combined weak and strong wastewater streams.

e Raw waste load taken after primary clarification, pH adjustment, and nutrient addition.

TABLE 21-42. RAW AND TREATED EFFLUENT LOADS AND PERCENT REDUCTION FOR TOTAL PHENOLS, HARDBOARD [1]

| Plant              | Raw was        | te load       | Treated was       | ste loada       | Percent           |
|--------------------|----------------|---------------|-------------------|-----------------|-------------------|
| number             | kg/Mg          | lb/ton        | kg/Mg             | lb/ton          | reduction         |
| 262 <sup>b</sup>   | 0.005          | 0.01          | 0.0000            |                 |                   |
| 262                | 0.005          | 0.01          | 0.00030           | 0.00059         | 94                |
| ,                  | 0.0010         | 0.021         | 0.00020           | 0.00040         | 98                |
| 42                 | 0.01           | 0.02          | 0.00015           | 0.0003          | 98                |
| 24                 | 0.003          | 0.006         |                   |                 |                   |
| 824 <sup>b</sup>   | 0.055<br>0.031 | 0.11<br>0.062 | 0.00046<br>0.065  | 0.00092<br>0.13 | 99<br>_c          |
| 28                 |                |               | 0.003             | 0.006           |                   |
| 22                 | 0.0015         | 0.003         | 0.0028            | 0.0055          | _c                |
| 428 <sup>b,d</sup> | 0.10           | <br>0.21      | 0.0005<br>0.00095 | 0.001<br>0.0019 | <del></del><br>99 |

<sup>&</sup>lt;sup>a</sup>Total phenols concentration data obtained during 1977 and 1978 verification sampling programs. Average annual daily waste flow and production data supplied by plants in response to data collection portfolio were used to calculate waste loads.

bFirst line lists 1976 data, second line lists 1977 data.

CNegative removal.

d 1976 historical data supplied by plant in response to data collection portfolio.

TABLE 21-43. RAW AND TREATED EFFLUENT LOADINGS AND PERCENT REDUCTIONS FOR HARDBOARD METALS [1]

|           |                     | Plant 824 |           |                     | Plant 248 |           |                     | Plant 42              |            |
|-----------|---------------------|-----------|-----------|---------------------|-----------|-----------|---------------------|-----------------------|------------|
|           | Waste load,         | kg/106 Mg |           | Waste load,         |           |           | Waste load,         | kg/10 <sup>6</sup> Mg |            |
|           | (1b/10 <sup>6</sup> | ton)      | Percent   | (1b/10 <sup>6</sup> | ton)      | Percent   | (1b/10 <sup>6</sup> | ton)                  | Percent    |
| Pollutant | Raw                 | Treated   | reduction | Raw                 | Treated   | reduction | Raw                 | Treated               | reduction  |
| Antimony  | 200                 | 8.5       | 96        | 80                  | 9         | 89        | 80                  | 10                    | 87         |
|           | (400)               | (17)      |           | (150)               | (18)      |           | (150)               | (20)                  |            |
| Arsenic   | 12                  | 20        | _a        | 26                  | 24        | 8         | 16                  | 17                    | 5 <b>6</b> |
|           | (23)                | (40)      |           | (51)                | (48)      |           | (32)                | (14)                  |            |
| Beryllium | 6                   | 4.5       | 25        | 13                  | 9         | 31        | 8                   | 2.8                   | 65         |
|           | (12)                | (9)       |           | (25)                | (18)      |           | (16)                | (5.6)                 |            |
| Cadmium   | 290                 | 4.5       | 98        | 60                  | 37        | 38        | 7                   | 8                     | _a         |
|           | (5 <b>7</b> 0)      | (9)       |           | (120)               | (74)      |           | (13)                | (16)                  |            |
| Chromium  | 290                 | 6         | 98        | 190                 | 43        | 77        | 100                 | 24                    | 76         |
|           | (580)               | (11)      |           | (370)               | (85)      |           | (190)               | (47)                  |            |
| Copper    | 3,900               | 1,400     | 64        | 14,000              | 9,000     | 36        | 440                 | 17                    | 96         |
|           | (7,800)             | (2,800)   |           | (27,000)            | (17,000)  |           | (880)               | (33)                  |            |
| Lead      | 60                  | 20        | 67        | 120                 | 37        | 69        | 800                 | 33                    | 96         |
|           | (120)               | (40)      | _         | (240)               | (74)      |           | (1,500)             | (65)                  |            |
| Mercury   | 18                  | 18        | _b        | 1.3                 | 37        | _a        | 27                  | 1.1                   | 59         |
|           | (35)                | (35)      |           | (2.5)               | (74)      |           | (05.3)              | (2.2)                 |            |
| Nickel    | 2,400               | 200       | 92        | 1,800               | 330       | 82        | 800                 | 24                    | 97         |
|           | (4,700)             | (4,700)   |           | (3,500)             | (660)     |           | (1,500)             | (47)                  |            |
| Selenium  | 18                  | 6         | 33        | 20                  | 19        | 8         | 50                  | 20                    | 60         |
|           | (35)                | (12)      |           | (40)                | (37)      |           | (100)               | (39)                  |            |
| Silver    | 6                   | 0.5       | 92        | 180                 | 85        | 53        | 7                   | 33                    | 53         |
|           | (12)                | (1)       |           | (350)               | (170)     |           | (13)                | (66)                  |            |
| Thallium  | 13                  | 7         | 46        | 13                  | 13        | _p        | 13                  | 23                    | 82         |
|           | (26)                | (14)      |           | (25)                | (25)      |           | (26)                | (45)                  |            |
| Zinc      | 9,000               | 2,500     | 72        | 4,800               | 800       | 83        | 3,000               | 260                   | 91         |
|           | (17,000)            | (4,900)   |           | (9,600)             | (1,600)   |           | (5,000)             | (520)                 |            |

(continued)

TABLE 21-43 (continued)

|           |                                           | Plant 824         |                      |                             | Plant 248                |                      | 1                                         | Plant 42              |                      |
|-----------|-------------------------------------------|-------------------|----------------------|-----------------------------|--------------------------|----------------------|-------------------------------------------|-----------------------|----------------------|
| Pollutant | Waste load,<br>(1b/10 <sup>6</sup><br>Raw | kg/10 <b>6</b> Mg | Percent<br>reduction | Waste load<br>(1b/10<br>Raw |                          | Percent<br>reduction | Waste load,<br>(lb/10 <sup>6</sup><br>Raw | kg/10 <sup>6</sup> Mg | Percent<br>reduction |
| Antimony  | 24<br>(48)                                |                   |                      | 9<br>(17)                   | 9<br>(17)                | _b                   | 100<br>(200)                              | 11<br>(23)            | 89                   |
| Arsenic   | 14<br>(27)                                |                   |                      | 17<br>(34)                  | 17<br>(34)               | _b                   | 15<br>(31)                                | 0.4<br>(0.9)          | 97                   |
| Beryllium | 15<br>(10)                                |                   |                      | 9<br>(17)                   | 9<br>(17)                | _p                   | 7<br>(13)                                 | <b>4.</b> 8 (9.6)     | 31                   |
| Cadmium   | 15<br>(10)                                |                   |                      | 9<br>(17)                   | 9<br>(17)                | _p                   | 7<br>(13)                                 | <b>4.</b> 8 (9.6)     | 31                   |
| Chromium  | 90<br>(1 <b>7</b> 0)                      |                   |                      | 17<br>(34)                  | 35<br>(69)               | _a                   | 6,000<br>(11,000)                         | 820<br>(160)          | 86                   |
| Copper    | 1,100<br>(2,100)                          |                   |                      | 9,000<br>(17,000)           | <b>4,</b> 000<br>(7,900) | 56                   | 3,300<br>(6,500)                          | 4.8<br>(96)           | 99                   |
| Lead      | 20<br>( <b>4</b> 0)                       |                   |                      | 35<br>(69)                  | 26<br>(52)               | 26                   | 42<br>(83)                                | 36<br>(71)            | 14                   |
| Mercury   | 11<br>(21)                                |                   |                      | 310<br>(62)                 | 70<br>(1 <b>4</b> 0)     | 77                   | 22<br>(43)                                | 0.4<br>(0.7)          | 98                   |
| Nickel    | 60<br>(120)                               |                   |                      | 60<br>(110)                 | 35<br>(69)               | 42                   | 120<br>(230)                              | 60<br>(110)           | 50                   |
| Selenium  | 24<br>(48)                                |                   |                      | 60<br>(110)                 | 47<br>(93)               | 15                   | 23<br>(45)                                | 19<br>(38)            | 17                   |
| Silver    | 5<br>(10)                                 |                   |                      | 9<br>(17)                   | 9<br>(17)                | _p                   | 9<br>(17)                                 | 60<br>(110)           | _a                   |
| Thallium  | 5<br>(10)                                 |                   |                      | 9<br>(17)                   | 9<br>(17)                | _b                   | 9<br>(17)                                 | 8<br>(16)             | 11                   |
| Zinc      | 24,000<br>(48,000)                        |                   |                      | 14,000<br>(27,000)          | 6,000<br>(13,000)        | 53                   | 7,000<br>(14,000)                         | 1,900<br>(3,800)      | 73                   |

a Negative removal.

bNegligible removal.

TABLE 21-44. SIS HARDBOARD SUBCATEGORY TOXIC POLLUTANT DATA, ORGANICS [1]

|              | Average concentration, µg/L |           |                  |           |  |  |  |  |  |
|--------------|-----------------------------|-----------|------------------|-----------|--|--|--|--|--|
|              | Raw wast                    | ewater    | Treated effluent |           |  |  |  |  |  |
| Pollutant    | Plant 262 <sup>a</sup>      | Plant 824 | Plant 262        | Plant 824 |  |  |  |  |  |
| Chloroform   | BDL                         | 20        | BDL              | BDL       |  |  |  |  |  |
| Benzene      | BDL                         | 80        | 10               | 80        |  |  |  |  |  |
| Ethylbenzene | 20                          | BDL       | BDL              | BDL       |  |  |  |  |  |
| Toluene      | 15                          | 70        | BDL              | 70        |  |  |  |  |  |
| Phenol       | BDL                         | 680       | BDL              | 20        |  |  |  |  |  |

aPlant 262 intake water contained 10  $\mu$ g/L toluene and 97  $\mu$ g/L phenol.

TABLE 21-45. S2S HARDBOARD SUBCATEGORY TOXIC POLLUTANT DATA, ORGANICS [1]

|                       | Average concentration, µg/L |                 |           |                  |              |           |  |  |  |  |
|-----------------------|-----------------------------|-----------------|-----------|------------------|--------------|-----------|--|--|--|--|
|                       | R                           | aw wastewate:   | r         | Tre              | eated efflue | nt        |  |  |  |  |
| Pollutant             | Plant 248                   | Plant 428       | Plant 663 | Plant 248        | Plant 428    | Plant 663 |  |  |  |  |
| Chloroform            | BDL                         | 20              | BDL       | BDL              | BDL          | BDL       |  |  |  |  |
| 1,1,2-Trichloroethane | BDL                         | BDL_            | 90        | BDL              | BDL          | BDL       |  |  |  |  |
| Benzene               | BDL                         | 90 <b>a</b>     | BDL       | BDL,             | 40           | BDL       |  |  |  |  |
| Toluene               | BDL                         | 60 <sup>a</sup> | 10        | 100 <sup>b</sup> | 30           | BDL       |  |  |  |  |
| Phenol                | BDL                         | 300             | BDL       | BDL              | BDL          | BDL       |  |  |  |  |

 $<sup>\</sup>overline{a}_{ exttt{Plant}}$  intake water was measured at 120  $\mu g/L$  benzene and 80  $\mu g/L$  toluene.

<sup>&</sup>lt;sup>b</sup>Plant reported a minor solvent spill in final settling pond prior to sampling.

# II.21.5 REFERENCES

- 1. Revised Technical Review of the Best Available Technology, Best Demonstrated Technology, and Pretreatment Technology for the Timber Products Processing Point Source Category (draft contractors report). Contract 68-01-4827, U.S. Environmental Protection Agency, Washington, D.C., October 1978.
- 2. NRDC Consent Decree Industry Summary Timber Products Processing.

### II.22 PUBLICLY OWNED TREATMENT WORKS (POTW'S)

### II.22.l INDUSTRY DESCRIPTION [1]

# II.22.1.1 General Description

Publicly owned treatment works (POTW's), although not a true industry, are discussed in this manual to support the evaluation of industrial treatment facilities and practices. POTW's often treat a variety of wastes including treated and untreated industrial wastewater. Discharge at these facilities is normally directly to a stream or lake. This section presents the results of a pilot study of two selected POTW's. These two POTW's are the initial effort to study 40 POTW's to determine the fate of toxic pollutants entering POTW's, sponsored by the U.S. Environmental Protection Agency, Effluent Guidelines Division. At this time, only the two plants discussed here have been sampled and analyzed. Descriptions of these facilities are included in the plant-specific description section of this report.

# II.22.1.2 Subcategory Description

No subcategories are currently defined for POTW's.

# II.22.2 WASTEWATER CHARACTERIZATION

POTW's do not generate wastewater to be treated. Instead, the wastewater that is treated in the POTW originates from several sources. The pollutant loading from these sources varies considerably depending on the percentage of industrial and municipal flow rates and loadings. Because of this variability each POTW will have influent characteristics unique to that facility. This section presents raw influent wastewater characterization data on two individual POTW's.

POTW A accepts a large proportion of its influent total flow from industrial sources, yielding a higher incidence of toxic pollutants than POTW B. In all, 52 organic toxic pollutants and nine toxic metals were found in the influent to this facility. Eighteen organic toxic pollutants were measured above the minimum detection limit and seven toxic metals were found in higher concentrations than in POTW B. POTW A generally had higher concentrations than POTW B of both toxic and conventional (BOD, COD, TSS, etc) pollutants. Only a small percentage of industrial

wastewater is mixed with the predominantly municipal influent at POTW B. Thirty-three toxic organic pollutants were detected and only five of these were detected above the minimum quantifiable limit. Nine metallic toxic pollutants were found. Only zinc had a higher concentration in POTW B than in POTW A.

Tables 22-1 through 22-4 presents an initial screening study of raw wastewater characterization data for these two facilities.

TABLE 22-1. CONCENTRATONS OF CONVENTIONAL POLLUTANTS FOUND IN THE RAW WASTEWATER ENTERING POTW A [1]

|                  |                     | Number of<br>Times  |         | -     |                      |              |
|------------------|---------------------|---------------------|---------|-------|----------------------|--------------|
| Pollutant        | Samples<br>analyzed | detected above min. | Average |       | tion, mg/<br>Minimum | L<br>Maximum |
| BOD <sub>5</sub> | 27                  | 27                  | 220     | 180   | 80                   | 450          |
| COD              | 26                  | 26                  | 430     | 440   | 180                  | 630          |
| TOC              | 27                  | 27                  | 210     | 240   | 39                   | 340          |
| TSS              | 27                  | 27                  | 180     | 130   | 77                   | 560          |
| Total phenols    | 83                  | 82                  | < 0.130 | 0.050 | <0.006               | 5.20         |
| Oil and grease   | 78                  | 78                  | 49      | 40    | 18                   | 340          |

### II.22.3 PLANT-SPECIFIC DESCRIPTIONS

Plant A has a design capacity of  $4.5 \times 10^5 \, \text{m}^3/\text{d}$  (120 MGD) with approximately 70% of its organic loading and 30% of its flow contributed by industry. Plant B has a design capacity of  $5.7 \times 10^4 \, \text{m}^3/\text{d}$  (15 MGD) with approximately 2% industrial flow. The following paragraphs describe these facilities in greater detail.

#### Plant A

The design capacity of Plant A is 1.1 x  $10^6$  m<sup>3</sup>/d (300 MGD) primary flow and 4.5 x  $10^5$  m<sup>3</sup>/d (120 MGD) secondary flow. Under normal dry weather conditions, the flow through this system varies between 85% and 90% of its secondary capacity. During the first week of sampling at the plant, the flow averaged only 3.4 x  $10^5$  m<sup>3</sup>/d (91.0 MGD).

The original primary treatment facility was constructed in 1924, and most of the sewers are as old or older than the primary system. It is estimated that the collection system is 60% separate sewers and 40% combined sewers.

TABLE 22-2. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE RAW WASTEWATER ENTERING POTW A [1]

|                                            | Samples  | Number of<br>Times | Detected        | · c             | oncentra   | tion, µg/  | 'L         |
|--------------------------------------------|----------|--------------------|-----------------|-----------------|------------|------------|------------|
| Toxic Pollutant                            | analyzed | detected           | above min.      | Average         |            | Minimum    | Maximu     |
| Metals and inorganics                      |          |                    |                 |                 |            |            |            |
| Antimony                                   | 23       |                    | 0               | 1 - 50          | <50        | <50        | <50        |
| Arsenic                                    | 23       |                    | 0               | 1 - 50          | <50        | <50        | < 50       |
| Beryllium                                  | 23       |                    | Ö               | 1 - 2           | <2         | < 2        | < 2        |
| Cadmium                                    | 23       |                    | 21              | <12             | 9          | <2         | 40         |
| Chromium                                   | 23       |                    | 23              | 450             | 370        | 63         | 1400       |
| Copper                                     | 23       |                    | 23              | 190             | 150        | 35         | 860        |
| Cyanide                                    | 84       |                    | 57              | 120 - 130       | 24         | 10         | 1300       |
| Lead                                       | 23       |                    | 16              | 55 - 61         | 41         | 20         | 220        |
| Mercury                                    | 23       |                    | 15              | 0.0 - 0.3       | 0.3        | 0.2        | 0.8        |
| Nickel                                     | 23       |                    | 22              | < 98            | 66         | <10        | 350        |
| Selenium                                   | 23       |                    | -0              | 1 - 50          | <50        | ₹50        | <50        |
| Silver                                     | 23       |                    | 18              | * <8            | ` 9        | <2         | 18         |
| Thallium                                   | 23       |                    | 0               | 1 - 50          | <50        | <50        | <50        |
| Zinc                                       | 23       |                    | 23              | 260             | 260        | 23         | 500        |
| Ethers                                     | 23       |                    | 23              | 200             | 200        | 23         | 300        |
| Bis(2-chloroethoxy)methane                 | 28       | 2                  | 0               | 0 - 1           | ND         | ND         | <10        |
| Phthalates                                 |          | -                  | -               |                 |            |            |            |
| Bis(2-ethylhexyl) phthalate                | 28       | 26                 | 14              | 25 - 29         | 5          | ND         | 250        |
| Butyl benzyl phthalate                     | 28       | īĭ                 | i               | 1 - 4           | ND         | ND         | 12         |
| Di-n-butyl phthalate                       | 28       | 19                 | 14              | 1 - 8           | <10        | ND         | 44         |
| Diethyl phthalate                          | 28       | 17                 | 0               | 1 - 6           | <10        | ND         | <10        |
| Di-n-octyl phthalate                       | 28       |                    |                 |                 |            |            |            |
| Dimethyl phthalate                         | 28       | 1<br>11            | 0               | 0 - 1<br>1 - 3  | NTD<br>NTD | NTD<br>NTD | <10<br><10 |
| Phenols                                    | 20       | 11                 | U               | 1 - 3           | MD         | שא         | 10         |
| Pentachlorophenol                          | 28       | 7                  | 0               | 1 - 2           | ND         | ND         | <10        |
| Phenol                                     | 28       | 27                 | 9               | 1 - 2 $13 - 19$ | <10        | ND<br>ND   | 200        |
| 2,4,6-Trichlorophenol                      |          |                    | 0               |                 |            |            |            |
| p-Chloro-m-cresol                          | 28<br>28 | 1                  | 0               | 0 - 1           | ND<br>ND   | ND<br>ND   | <10<br><10 |
| Aromatics                                  |          | -                  | •               | v - 1           | ,40        | MD.        | -10        |
| Benzene                                    | 82       | 0.1                | 46              | 200             | 37         | •          | E 6 0 0    |
| Chlorobenzene                              |          | 81                 | 45              | 290             |            | ND         | 5600       |
|                                            | 82       | .9                 | 0               | 0 - 1           | ND         | ND         | <10        |
| 1,2-Dichlorobenzene                        | 28       | 15                 | 0               | 1 - 5           | <10        | ND         | <10        |
| 1,3-Dichlorobenzene                        | 28       | 6                  | 0               | 1 - 2           | NTD        | ND         | <10        |
| r,4-Dichlorobenzene                        | 28       | 14                 | 0               | 1 - 5           | < 5        | ND         | 10         |
| Ethylbenzene                               | 82       | 75                 | 28              | 21 - 27         | <10        | ND         | 890        |
| Hexachlorobenzene                          | 28       | 1                  | 0               | 0 - 1           | ND         | ND         | <10        |
| Toluene                                    | 82       | 81                 | 56              | 35 <b>-</b> 38  | 13         | ND         | 440        |
| 1,2,4-Trichlorobenzene                     | 28       | 1                  | 0               | 0 - 1           | ND         | ND         | <10        |
| Polycyclic aromatic hydrocarbons           |          |                    |                 |                 |            |            |            |
| Acenaphthene                               | 28       | 2                  | 0               | 0 - 1           | ND         | ND         | <10        |
| Acenaphthylene                             | 28       | 1                  | 0               | 0 - 1           | ND         | ND         | <10        |
| Anthracene                                 | 28       | 21                 | 0               | 1 - 7           | <10        | ND         | <10        |
| Chrysene                                   | 28       | 5                  | 0               | 0 - 1           | ND         | ND         | <10        |
| Fluoranthene                               | 28       | 8                  | Ō               | 1 - 2           | ND         | ND         | <10        |
| Flourene                                   | 28       | 8                  | ŏ               | ī - 2           | ND         | ND         | <10        |
| Indeno(1,2,3-cd)pyrene                     | 28       | 2                  | ŏ               | 0 - 1           | ND         | NTO        | <10        |
| Naphthalene                                | 28       | 23                 | ĭ               | 1 - 8           | <10        | ND         | 13         |
| Phenanthrene                               | 28       | 21                 | ō               | 1 - 7           | <10        | ND         | <10        |
| Pyrene                                     | 28       | 10                 | ĭ               | 3 - 6           | ND         | NTD        | 84         |
| Halogenated aliphatics                     |          |                    | _               | -               |            | *          |            |
| Bromoform                                  | 82       | 1                  | 0               | 0 - 1           | ND         | ND         | <10        |
| Carbon tetrachloride                       | 82       | 6                  | ĭ               | 0 - 1           | ND         | ND         | 39         |
| Chlorodibromomethane                       | 82       | ì                  | ō               | 0 - 1           | ND         | ND         | <10        |
| Chloroform                                 | 82       | 79                 | 67              |                 | 21         | ND<br>ND   | 440        |
| Dichlorobromomethane                       |          |                    |                 |                 |            |            |            |
| 1,1-Dichloroethane                         | 82       | ,1                 | 0               | 0 - 1           | ND         | ND         | <10        |
|                                            | 82       | 19                 | 0               | 1 - 2           | ND         | ND         | <10        |
| 1,2-Dichloroethane                         | 82       | 1                  | 0               | 0 - 1           | ND         | ND         | <10        |
| 1,1-Dichloroethylene                       | 82       | 60                 | 5               | 1 - 7           | <10        | ND         | 15         |
| 1,2-Trans-dichloroethylene                 | 82       | 69                 | 18              | 4 - 11          | <10        | ND         | 64         |
| Rexachlorobutadiene                        | 28       | 1                  | 0               | 0 - 1           | ND         | ND         | <10        |
| Methylene chloride                         | 82       | 82                 | 20              | 8 - 16          | <10        | <10        | 100        |
| Tetrachloroethylene                        | 82       | 81                 | 58              | 47 - 50         | 16         | ND         | 1500       |
| 1,1,1-Trichloroethane                      | 87       | 71                 | 45              | 15 - 18         | īŏ         | ND         | 220        |
|                                            |          | ´±                 |                 | <3              | MD         | ND         | 270        |
| 1,1,2-Trichloroethane                      | 82       |                    |                 |                 |            |            |            |
| 1,1,2-Trichloroethane<br>Trichloroethylene | 82<br>82 | 81                 | 1<br><b>4</b> 9 | 28 - 32         | 11         | ND         | 440        |

Note: Pollutants not detected in any sample are not listed.

TABLE 22-3. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN THE RAW WASTEWATER ENTERING POTW B [1]

|                  | Numb                | er of                           |        |                    |           |       |
|------------------|---------------------|---------------------------------|--------|--------------------|-----------|-------|
| Pollutant        | Samples<br>analyzed | Times<br>detected<br>above min. |        | oncentra<br>Median | tion, mg/ | L     |
| BOD <sub>5</sub> | 7                   | 7                               | 95     | 96                 | 73        | 130   |
| COD              | 7                   | 7                               | 180    | 180                | 150       | 230   |
| TOC              | 7                   | 7                               | 70     | 69                 | 61        | 82    |
| TSS              | 7                   | 7                               | 97     | 87                 | 55        | 230   |
| Total phenols    | 42                  | 40                              | <0.020 | 0.012              | <0.001    | 0.160 |
| Oil and grease   | 40                  | 40                              | 24     | 26                 | 5         | 48    |

TABLE 22-4. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN THE RAW WASTEWATER ENTERING POTW B [1]

|                                  |          | Number of |            | _                                                 |            | /-       |         |  |
|----------------------------------|----------|-----------|------------|---------------------------------------------------|------------|----------|---------|--|
|                                  | Samples  | Times     | Detected   | Concentration, µg/L Average Median Minimum Maximu |            |          |         |  |
| Toxic Pollutant                  | analyzed | detected  | above min. | Average                                           | Median     | Minimum  | Maximum |  |
| Metals and inorganics            |          |           |            |                                                   |            |          |         |  |
| Antimony                         | 7        |           | 0          | 1 - 50                                            | < 50       | < 50     | < 50    |  |
| Arsenic                          | 7        |           | Ō          | 1 - 50                                            | <50        | < 50     | < 50    |  |
| Beryllium                        | 7        |           | Ö          | 1 - 2                                             | < 2        | < 2      | < 2     |  |
| Cadmium                          | ź        |           | 6          | - <4                                              | 4          | < 2      | 9       |  |
| Chromium                         | 7        |           | 7          | 71                                                | 67         | 12       | 130     |  |
| Copper                           | 7        |           | 7          | 54                                                | 55         | 39       | 72      |  |
| Cyanide                          | 41       |           | 34         | 77 - 78                                           | 66         | <10      | 240     |  |
| Lead                             | 7        |           | 2          | 16 - 30                                           | <20        | <20      | 79      |  |
| Mercury                          | 7        |           | 5          | 0.0 - 0.3                                         | 0.2        | <0.2     | 0.4     |  |
| Nickel                           | 7        |           | 7          | 30                                                | 31         | 11       | 48      |  |
| Selenium                         | 7        |           | ó          | 1 - 50                                            | <50        | <50      | <50     |  |
| Silver                           | 7        |           | 2          | 1 - 30                                            | < 2        | <2       | 6       |  |
|                                  | 7        |           | 0          | 1 - 50                                            | <50        | <50      | <50     |  |
| Thallium                         |          |           | 7          |                                                   |            |          | 440     |  |
| Zinc                             | 7        |           | 7          | 280                                               | 300        | 110      | 440     |  |
| hthalates                        |          |           |            |                                                   |            |          |         |  |
| Bis(2-ethylhexyl) phthalate      | 6        | 6         | 3          | 8 - 14                                            | 1          | <10      | 19      |  |
| Butyl benzyl phthalate           | 6        | 6         | o o        | 1 - 10                                            | <10        | <10      | <10     |  |
| Di-n-butyl phthalate             | 6        | 5         | Ö          | 1 - 8                                             | <10        | ND       | <10     |  |
|                                  | 6        | 5         | 0          | 1 ~ 8                                             | <10        | ND       | <10     |  |
| Diethyl phthalate                |          |           | o o        | 1 - 5                                             | <5         | ND       | <10     |  |
| Dimethyl phthalate               | 6        | 3         |            |                                                   | <10        | ND<br>ND | <10     |  |
| Di-n-octyl phthalate             | 6        | 4         | 0          | 1 - 6                                             | (10        | ND       | 10      |  |
| Phenols                          |          |           |            |                                                   |            |          |         |  |
| Pentachlorophenol                | 6        | 1         | 0          | 0 - 1                                             | ND         | ND       | <10     |  |
| Phenol                           | 6        | 4         | Ö          | 1 - 6                                             | <10        | ND       | <10     |  |
|                                  | O        | 4         | U          | 1 - 0                                             | 110        | ND.      | 110     |  |
| Aromatics                        |          |           |            |                                                   |            |          | 2.0     |  |
| Benzene                          | 42       | 31        | 4          | 7 - 14                                            | <10        | ND       | 260     |  |
| Chlorobenzene                    | 42       | 2         | 0          | 0 - 1                                             | ND         | ND       | <10     |  |
| 1,2-Dichlorobenzene              | 6        | 5         | 0          | 1 - 8                                             | <10        | ND       | <10     |  |
| l,3-Dichlorobenzene              | 6        | 1         | 0          | 0 - 1                                             | ND         | ND       | <10     |  |
| l,4-Dichlorobenzene              | 6        | 1         | 0          | 0 - 1                                             | ND         | ND       | <10     |  |
| 2,6-Dinitrotoluene               | 6        | 1         | 0          | 0 - 1                                             | ND         | ND       | <10     |  |
| Ethylbenzene                     | 42       | 18        | 0          | 1 - 4                                             | ND         | ND       | <10     |  |
| Toluene                          | 42       | 32        | 1          | 1 - 8                                             | <10        | ND       | 37      |  |
| Polycyclic aromatic hydrocarbons |          |           |            |                                                   |            |          |         |  |
| Anthracene                       | 6        | 3         | 0          | 1 - 5                                             | < 5        | ND       | <10     |  |
| Fluoranthene                     | 6        | 3         | Ö          | ī <b>-</b> 5                                      | <5         | ND       | <10     |  |
| Naphthalene                      | 6        | 4         | ŏ          | 1 - 6                                             | <10        | ND       | <10     |  |
| Phenanthrene                     | 6        | 3         | ŏ          | 1 - 5                                             | `<5        | ND       | <10     |  |
| Pyrene                           | 6        | 3         | Õ          | 1 - 5                                             | ₹5         | ND       | <10     |  |
| •                                | v        | 2         | U          | 1 - 3                                             | 1,2        |          | .10     |  |
| Halogenated aliphatics           |          |           |            |                                                   |            |          |         |  |
| Chlorodibromomethane             | 42       | 3         | 0          | 0 - 1                                             | <b>N</b> D | ND       | <10     |  |
| Chloroform                       | 42       | 40        | 0          | 1 - 9                                             | <10        | ND       | <10     |  |
| Dichlorobromomethane             | 42       | 4         | 0          | 0 - 1                                             | ND         | ND       | <10     |  |
| 1.1-Dichloroethane               | 42       | 2         | 0          | 0 - 1                                             | ND         | ND       | <10     |  |
| 1,2-Dichloroethane               | 42       | 2         | 0          | 0 - 1                                             | ND         | ND       | 13      |  |
| 1,1-Dichloroethylene             | 42       | 16        | ŏ          | ĭ - 3                                             | ND         | ND       | <10     |  |
| 1,2-Dichloropropane              | 42       | ĭ         | ŏ          | 0 - 1                                             | ND         | ND       | <10     |  |
| Methylene chloride               | 42       | 39        | 5          | 6 + 14                                            | <10        | ND       | 180     |  |
| Tetrachloroethylene              | 42       | 41        | 0          | 1 - 9                                             | <10        | ND       | <10     |  |
| 1,1,2-Trichloroethane            | 42       | 14        | 0          | 1 - 3                                             | ND.        | ND       | <10     |  |
|                                  | 42       | 14        | U          | 1 - 3                                             | ND         | ND       | 10      |  |
| Pesticides and metabolites       |          |           |            |                                                   |            |          |         |  |
| Isophorone                       | 6        | 1         | 0          | 0 - 1                                             | ND         | ND       | <10     |  |

Note: Pollutants not detected in any sample are not listed.

Sludge handling at this POTW involves primary sludge thickening by gravity thickeners, secondary sludge thickening by dissolved air flotation (DAF), vacuum filtration, and incineration. During the sampling period at Plant A, the primary sludge flow averaged 1.2 x  $10^3$  m $^3$ /d (325,000 gal/d) and the secondary (waste activated) sludge flow averaged 5.7 x  $10^3$  m $^3$ /d (1.5 MGD).

Industrial contributions to the flow are primarily from several major industries: pharmaceutical manufacture, petrochemicals, plating operations, and automotive foundries. Also contributing to Plant A's sewage collection system are some coking operations and some food processing plants.

The treatment unit operations at this conventional activated sludge POTW begin with gravity flow from the drainage area to the bar screens and grit chambers, from which lift pumps elevate the wastewater for gravity flow through the rest of the plant. After the lift pumps, the wastewater passes through pre-aeration, primary settling, and clarification, and then proceeds into the aeration chambers. After aeration, clarification, and chlorination, the wastewater is discharged to a local stream.

Tables 22-5 and 22-6 present conventional and toxic pollutant data for the influent and final effluent streams of this facility. Data are also presented for the effluent prior to chlorination, and for the primary and secondary sludges.

TABLE 22-5. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS, FOUND IN PUBLICLY OWNED TREATMENT WORKS (POTW), PLANT A [1]

| Pollutant        | Conce       | ntration,                       | mg/L              |                    | Concentration, mg/L |                     |                 |  |  |
|------------------|-------------|---------------------------------|-------------------|--------------------|---------------------|---------------------|-----------------|--|--|
|                  | Influent    | Effluent<br>pre-Cl <sub>2</sub> | Final<br>Effluent | Percent<br>removal | Primary<br>sludge   | Secondary<br>sludge | Combined sludge |  |  |
| BOD <sub>5</sub> | 200         | 22                              | 13                | 94                 | 20,000              | 6,000               | 6,700           |  |  |
| COD              | <b>4</b> 20 | 69                              | 68                | 84                 | 58,000              | 6,700               | 18,000          |  |  |
| TOC              | 260         | 55                              | 65                | 75                 | 24,000              | 2,700               | 8,200           |  |  |
| TSS              | 140         | 10                              | 20                | 86                 | 47,000              | 6,300               | 1,800           |  |  |
| Total phenols    | 0.18        |                                 | 0.013             | 92                 | 0.670               | <0.037              | -               |  |  |
| Oil and grease   | 53          | -                               | 4 - 6             | 89 - 92            | 9,100               | <480                | -               |  |  |

Note: Pollutants not detected in any sample are not listed.

# Plant B

The design capacity of Plant B is  $5.7 \times 10^4 \text{ m}^3/\text{d}$  (15 MGD), but under normal operations between  $3.0 \times 10^4 \text{ m}^3/\text{d}$  and  $3.7 \times 10^4 \text{ m}^3/\text{d}$  (8 and 10 MGD) receive secondary treatment. During the sampling period of this pilot study the influent flow to the facility

<sup>&</sup>lt;sup>a</sup>Week l average results.

bPrechlorination

TABLE 22-6. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN PUBLICLY OWNED TREATMENT WORKS (POTW), PLANT A [1]

|                             | Concent  | ration range          |          | Percent  |                | Concentration, µg/ |            |  |
|-----------------------------|----------|-----------------------|----------|----------|----------------|--------------------|------------|--|
|                             |          | Effluent              | Final    | removal  | Primary        | Secondary          | Combined   |  |
| Toxic pollutant             | Influent | pre-Cl <sub>2</sub> D | effluent | range    | sludge         | sludge             | stuage     |  |
| Metals and inorganics       |          |                       |          |          |                |                    |            |  |
| Antimony                    | 0 - 50   | < 50                  | 0 - 50   |          | 150            | <22                | 66         |  |
| Arsenic                     | 0 - 50   | <50                   | 0 - 50   |          | 1,300          | 63                 | 180        |  |
| Beryllium                   | 0 - 2    | <2                    | 0 - 2    |          | 37             | 10                 | <12        |  |
| Cadmium                     | 12       | <4                    | 4 - 5    | 60 - 65  | 1,200          | 340                | 600        |  |
| Chromium                    | 440      | 42                    | 46       | 90       | 15,000         | 18,000             | 18,000     |  |
| Copper                      | 190      | 13                    | 27       | 86       | 77,000         | 9,000              | 24,000     |  |
| Cyanide                     | 18       | -                     | 3 - 11   | 15 - 83  | 630            | <75                | -          |  |
| Lead                        | 56       | < 20                  | 0 - 20   | 58 - 100 | <b>4</b> 7,000 | 1,600              | 11,000     |  |
| Mercury                     | 0.3      | <0.4                  | 0.4      | 24       | <3.1           | <2.6               | <2.7       |  |
| Nickel                      | 98       | 50                    | 40       | 59       | 13,000         | 3,300              | 3,200      |  |
| Selenium                    | 0 - 50   | < 50                  | 0 - 50   |          | 10             | 23                 | <12        |  |
| Silver                      | 8        | <2                    | 0 - 2    | 74 - 100 | 25             | 180                | 82         |  |
| Thallium                    | 0 - 50   | <50                   | 0 - 50   |          | 2              | <1                 | <1         |  |
| Zinc                        | 252      | 42                    | 90       | 64       | 150,000        | 13,000             | 48,000     |  |
| Ethers                      | _        |                       |          |          |                |                    |            |  |
| Bis(2-chloroethoxy)methane  | 0 - 1    | ND                    | ND       |          | ND             | ND                 | <b>N</b> D |  |
| Phthalates                  |          |                       |          |          |                |                    |            |  |
| Bis(2-ethylhexyl) phthalate | 32 -36   | <19                   | 11 - 16  | 50 ~ 69  | 2,200          | 42                 | 1,200      |  |
| Butyl benzyl phthalate      | 1 - 4    | ND                    | 0 - 4    |          | 1              | ND                 | ND         |  |
| Di-n-butyl phthalate        | 2 - 9    | <3                    | 0 - 6    |          | ND             | ND                 | ND         |  |
| Diethyl phthalate           | 0 - 6    | ND                    | 0 - 3    |          | ND             | ND                 | ND         |  |
| Dimethyl phthalate          | 0 - 4    | ND                    | 0 - 1    |          | ND             | ND                 | ND         |  |
| Di-n-octyl phthalate        | ND       | ND                    | 0 - 1    |          | ND             | ND                 | ND         |  |
|                             | 112      | 112                   | • •      |          |                | •                  |            |  |
| Nitrogen compounds          |          |                       |          |          |                | •                  |            |  |
| Acrylonitrile               | ND       | ND                    | ND       |          | ND             | 3                  |            |  |
| 3,3'-Dichlorobenzidine      | ND       | ND                    | 0 - 1    |          | ND             | ND                 | NI         |  |
| Phenols                     |          |                       |          |          |                |                    |            |  |
| 2-Chlorophenol              | ND       | ND                    | 0 - 1    |          | ND             | ND                 | N1         |  |
| 2,4-Dimethylphenol          | ND       | <3                    | 0 - 1    |          | ND             | ND                 | NI         |  |
| Pentachlorophenol           | 0 - 3    | <7                    | 0 - 1    |          | 93             | 110                | 19         |  |
| Phenol                      | 13 - 19  | <10                   | 18 - 23  | 0 - 5    | 94             | 68                 | 3          |  |
| 2,4,6-Trichlorophenol       | ND ND    | ND<br>ND              | ND ND    | 0 - 3    | ND             | ND                 | 0.         |  |
| p-Chloro-m-cresol           | ND       | ND                    | ND       |          | ND             | ND                 | NI         |  |
| p-chioro-m-cresor           | ND       | MD                    | MD       |          | MD             | 112                | 312        |  |

(continued)

TABLE 22-6 (continued)

|                                  | Concent        | ration range          | e, μg/L       | Percent        |         | Concentration, µg/L |          |  |
|----------------------------------|----------------|-----------------------|---------------|----------------|---------|---------------------|----------|--|
|                                  |                | Effluent              | Final         | removal        | Primary | Secondary           | Combined |  |
| Toxic pollutant                  | Influent       | pre-Cl <sub>2</sub> D | effluent      | range          | sludge  | sludge              | sludge   |  |
| Aromatics                        |                |                       |               |                |         |                     |          |  |
| Benzene                          | 5 - 13         | <1                    | 0 - 5         |                | 170     | 10                  | _        |  |
| Chlorobenzene                    | 0 - 2          | ND                    | ND            |                | ND      | ND                  | -        |  |
| 1,2-Dichlorobenzene              | 0 - 4          | ND                    | 0 - 1         |                | ND      | ND                  | ND       |  |
| 1,3-Dichlorobenzene              | 0 - 4          | ND                    | $0 - \bar{1}$ |                | ND      | ND                  | ND       |  |
| 1,4-Dichlorobenzene              | 0 - 4          | ND                    | 0 - 3         |                | ND      | ND                  | ND       |  |
| Ethylbenzene                     | 30 - 36        | ND                    | 0 - 7         | 77 - 99        | 280     | <4                  | -        |  |
| Hexachlorobenzene                | ND             | ND                    | ND            |                | ND      | ND                  | ND       |  |
| Nitrobenzene                     | ND             | ND                    | ND            |                | ND      | ND                  | ND       |  |
| Toluene                          | 18 - 23        | <10                   | 0 - 9         | 51 - 100       | 280     | 2                   | -        |  |
| 1,2,4-Trichlorobenzene           | ND             | ND                    | ND            | 31 100         | ND      | ND                  | ND       |  |
| Polycyclic aromatic hydrocarbons |                |                       |               |                |         |                     |          |  |
| Acenaphthene                     | 0 - 1          | ND                    | ND            |                | 170     | ND                  | 75       |  |
| Acenaphthylene                   | ND             | ND                    | ND            |                | ND      | ND                  | ND       |  |
| Anthracene                       | 0 - 7          | ND                    | 0 - 4         |                | 1,600   | 4                   | 840      |  |
| Fluoranthene                     | 0 - 3          | ND                    | 0 - 4         |                | ND      | ND                  | ND       |  |
| Indeno(1,2,3-cd)pyrene           | ND             | ND                    | 0 - 1         |                | ND      | 8                   | ND       |  |
| Naphthalene                      | 1 - 8          | ND                    | 0 - 4         |                | 200     | 4                   | <23      |  |
| Phenanthrene                     | 0 - 7          | ND                    | 0 - 4         | 1,600          | 4       | 840                 |          |  |
| Pyrene                           | 0 - 3          | ND                    | 0 - 6         | _,             | 760     | ND                  | 350      |  |
| Halogenated aliphatics           |                |                       |               |                |         |                     |          |  |
| Carbon tetrachloride             | 1 - 2          | ND                    | ND            | 100            | 11      | 6                   | -        |  |
| Chlorodibromomethane             | ND             | ND                    | ND            |                | 17      | 29                  | -        |  |
| Chloroform                       | <b>49 -</b> 50 | < 28                  | 15 - 21       | 57 <b>-</b> 70 | ND      | ND                  | -        |  |
| Dichlorobromomethane             | ND             | ND                    | 0 - 2         |                | 57      | 56                  | -        |  |
| l,l-Dichloroethane               | 0 - 2          | ND                    | ND            |                | 11      | ND                  | -        |  |
| 1,2-Dichloroethane               | ND             | ND                    | ND            |                | ND      | ND                  | -        |  |
| 1,1-Dichloroethylene             | 1 - 8          | <5                    | 0 - 7         |                | 9       | ND                  | -        |  |
| 1,2-Trans-dichloroethylene       | 0 - 8          | ND                    | 0 - 2         |                | 23      | ND                  | _        |  |
| 1,2-Dichloropropane              | ND             | ND                    | ND            |                | ND      | ND                  | -        |  |
| Hexachlorobutadiene              | ND             | ND                    | ND            |                | ND      | ND                  | ND       |  |
| Methylene chloride               | 6 - 14         | <10                   | 1 - 10        | 0 - 91         | 220     | 250                 | -        |  |
| Tetrachloroethylene              | 53 - 57        | <10                   | 1 - 9         | 83 - 98        | 290     | 7                   | _        |  |
| 1,1,1-Trichloroethane            | 17 - 20        | <10                   | 0 - 7         | 59 - 100       | 24      | ND                  | _        |  |
| Trichloroethylene                | 24 - 29        | < 9                   | 0 - 9         | 65 - 100       | 280     | <1                  | _        |  |
| Trichlorofluoromethane           | ND             | ND                    | 0 - 1         |                | ND      | ND                  | _        |  |

Note: Blanks indicate sufficient data are not available.

<sup>&</sup>lt;sup>a</sup>Week 1 average results.

bPriority pollutant not detected in any sample are not listed.

averaged 3.0 x  $10^4$  m<sup>3</sup>/d (8.09 MGD). This 18-year old treatment facility (updated and expanded most recently in 1973) is designed for a discharge with an effluent quality of not more than 10 mg/L biochemical oxygen demand (BOD) and 12 mg/L of suspended solids. The average BOD and total suspended solids discharges during the week of sampling were 25 mg/L and 19 mg/L, respectively.

The treatment unit operations utilized at this conventional activated sludge facility are as follows. Wastewater flows from the sewer system to a diversion chamber from which it is pumped to a height which allows gravity flow to the rest of the plant. The wastewater then passes through parallel detritus tanks (grit chambers), communitors, preaeration chambers and into the primary settling tank. After primary settling, wastewater flows to the aeration tanks, secondary settling, and chlorination, and, then is discharged.

The primary sludge flow at this POTW is pumped to holding tanks where it is combined with the thickened (via DAF) waste-activated sludge. From this point, the combined sludge passes to the sludge conditioning facilities where it is heated and pressurized prior to vacuum filtration. The decant from the sludge conditioning system and the filtrate is either returned to the sludge conditioning building, or bled to the head of the aeration tanks. The filter cake is incinerated and the resulting ash is slurried to a diked lagoon on the plant property.

During the sampling period, the primary sludge flow averaged  $110 \text{ m}^3/\text{d}$  (29,400 gal/d).

The sewer system for Plant B consists primarily of combined sewers. Four main trunk lines cover the far sections of the 7.61  $\times$  10<sup>6</sup> m<sup>2</sup> (29.4 mi<sup>2</sup>) drainage area. The sewer lines are mostly concrete construction and average 20 years in age, with some lines over 50 years old. The age of the sewer lines accounts for the estimate that as much as 40% to 50% of the total flow to the POTW can be attributed to infiltration in the subsystems and interceptors, according to the facilities plan, completed under the authority of Section 201 of the Clean Water Act (PL 95-217). industrial contribution to the wastewater flow to Plant B can be considered minimal. The areawide waste treatment management plan under Section 208 of the Clean Water Act lists the zoning breakdown of the drainage area as 96.6% residential, 1.0% retail business and offices, and 2.4% industrial. The industries associated with this drainage area are grain elevators, oil and fuel terminals, machine tool and metalworking companies, box and insulation companies, and one major chemical facility with its own National Pollutant Discharge Elimination System (NPDES) discharge permit. With such a small industrial flow, Plant B is considered to give a general approximation of a typical residential treatment facility.

Tables 22-7 and 22-8 present conventional and toxic pollutant data for the influent, final effluent, prechlorination effluent, and sludge streams for this facility.

TABLE 22-7. CONCENTRATIONS OF CONVENTIONAL POLLUTANTS FOUND IN PUBLICLY OWNED TREATMENT WORKS (POTW), PLANT Ba [1]

|                  |              | Concent  | ration, mg         | Concentration, mg/L |                    |                     |                    |                |  |
|------------------|--------------|----------|--------------------|---------------------|--------------------|---------------------|--------------------|----------------|--|
| Pollutant        | Tap<br>water | Influent | Effluent<br>pre-cl | Final<br>effluent   | Percent<br>removal | Secondary<br>sludge | Combined<br>sludge | DAF<br>blanket |  |
| BOD <sub>5</sub> | <10          | 95       | 20                 | 25                  | 74                 | 8,500               |                    |                |  |
| COD              | <1           | 180      | 52                 | <b>5</b> 7          | 69                 |                     | 32,000             |                |  |
| TOC              | 22           | 70       | 29                 | 33                  | 53                 |                     | 12,000             |                |  |
| TSS              | 3            | 97       | 12                 | 19                  | 80                 |                     | 22,000             |                |  |
| Total phenols    | 0.006        | 0.020    |                    | <0.004              | 84                 | 0.008               | 0.460              | 2.800          |  |
| Oil and grease   | 7            | 24       |                    | <8                  | 67                 | <250                | 3,500              | 11,000         |  |

a Week 1 average

### II.22.4 POLLUTANT REMOVABILITY

Wastewater treatment at POTW's can significantly reduce the concentration of pollutant parameters in the influent to the facility. In the sampling at Plant A, BOD was reduced from an average influent concentration of 200 mg/L to 13 mg/L (94% removal) and the TSS level was reduced from 140 mg/L to 20 mg/L (86% removal). Chromium and copper were reduced to less than 50  $\mu$ g/L (90% and 86% removal, respectively). Cadmium, nickel, and zinc were removed to a lesser extent (59% to 65% removal). Nine organic toxic pollutants were detected in the influent at an average concentration over 10  $\mu$ g/L. Eight of the nine were reduced by a minimum of 50%. Only phenol at the levels measured was not effectively removed.

Plant B achieves typical removals of BOD and TSS (74% and 80% removal, respectively). Toxic metals, already in low concentrations, were often reduced below their detection limit. Cadmium, copper, and zinc levels were reduced to between 69% and 81%. Lead and nickel were removed less effectively. Organic toxic pollutants at Plant B occurred at low levels and removal efficiencies are not meaningful.

Removal percentages for these facilities are given in Tables 22-4 through 22-7 in the plant-specific description section.

b Prechlorination

TABLE 22-8. CONCENTRATIONS OF TOXIC POLLUTANTS FOUND IN PUBLICLY OWNED TREATMENT WORKS (POTW), PLANT B [1]

|                                   |             | Concentr           | ation, µg/       | Concentration, µg/L |          |                     |                 |                |
|-----------------------------------|-------------|--------------------|------------------|---------------------|----------|---------------------|-----------------|----------------|
| Torio nellutant                   | Tap         | Influent           | Effluent         | Final effluent      | Percent  | Secondary<br>sludge | Combined sludge | DAF<br>blanket |
| Toxic pollutant                   | water       | Influent           | pre-Cl           | ellident            | removal  | Bludge              | Bludge          | DIAMEC         |
| Metals and inorganics             |             |                    |                  | <b>.F</b> 0         |          |                     | 20              |                |
| Antimony                          | <50         | 0 - 50             | <50              | <50                 |          |                     | 39<br>150       |                |
| Arsenic                           | <50<br><2.0 | 0 ~ 50<br><2.0     | <50<br><2.0      | <50<br><2.0         |          | 890.0               | <12.0           | 890.0          |
| Beryllıum<br>Cadmium              | <2.0        | 4 - 5              | <2.0             | <2.0                | 55 - 100 | 650.0               | 310             | , 650.0        |
| Chromium                          | <5          | 71                 | 26               | 22                  | 69       |                     | 8,100           |                |
| Copper                            | `6          | 54                 | 11               | 10                  | 81       |                     | 11,000          |                |
| Cyanide                           | <10         | 77 - 78            |                  | <140                |          | 340                 | 1,700           | 2,900          |
| Lead                              | <20         | 16 - 30            | <23              | <20                 |          | _                   | 7,400           |                |
| Mercury                           | <0.2        | <0.3               | <0.2             | <0.2                | 5 - 100  |                     | 5.1             | l              |
| Nickel                            | <10         | 30                 | 21               | 20                  | 33       |                     | 3,100           |                |
| Selenium                          | <50         | 0 - 50             | <50              | <50                 |          |                     | <28             |                |
| Silver                            | <2          | 1 - 3              | < 7              | <2                  | 0 - 84   |                     | <79             |                |
| Thallium                          | <50         | 0 - 50             | < 50             | <50                 | - •      |                     | <2              | <50            |
| Zinc                              | 7           | 280                | 83               | 52                  | 81       |                     | <27,000         |                |
| Phthalates                        |             |                    |                  |                     |          |                     |                 |                |
| Bis(2-ethylhexyl) phthalate       | <10         | 9 - 14             | <11              | <9                  |          |                     | 1,500           |                |
| Butyl benzyl phthalate            | <10         | 0 - 10             | <3               | <5                  |          |                     | ND              |                |
| Di-n-butyl phthalate              | <10         | 0 - 8              | < 6              | <6                  |          |                     | ND              |                |
| Diethyl phthalate                 | <10         | 0 - 8              | <3               | <3                  |          |                     | ND              |                |
| Dimethyl phthalate                | ND          | 0 - 5              | <1               | <3                  |          |                     | ND              |                |
| Di-n-octyl phthalate              | ND          | 0 - 7              | <1               | <1                  |          |                     | ND              |                |
| Nitrogen compounds                |             |                    |                  |                     |          |                     |                 |                |
| Acrylonitrile                     | ND          | ND                 | ND               | ND                  | ND       | ND                  | 41              | ND             |
| 3,3'-Dichlorobenzidine            | ND          | ND                 | ND               | <1                  |          |                     | ND              |                |
| Phanala                           |             |                    |                  |                     |          |                     |                 |                |
| Phenols                           | ND          | ND                 | <8               | <4                  |          |                     | ND              |                |
| 2-Nitrophenol 4-Nitrophenol       | ND          | ND<br>ND           | <34              | <14                 |          |                     | ND              |                |
| Pentachlorophenol                 | ND          | 0 - 2              | <4               | <1                  |          |                     | ND              |                |
| Phenol                            | <10         | 0 - 7              | <9               | <9                  |          |                     | 4               |                |
|                                   |             | • .                |                  |                     |          |                     | -               |                |
| Aromatics                         | NT)         | 7 14               | -1               | -4                  | 44 04    | < 5                 | 33              | 10             |
| Benzene<br>1,2-Dichlorobenzene    | NTD<br><10  | 7 - 14<br>0 - 8    | <1<br><1         | <4<br><4            | 44 - 84  | ()                  | ND              | 10             |
| 1,3-Dichlorobenzene               | ND          | 0 - 2              | <3               | < <b>5</b>          |          |                     | ND              |                |
| 1,4-Dichlorobenzene               | ND          | 0 - 2              | ND<br>V3         | ND                  |          |                     | ND              |                |
| 2,6-Dinitrotoluene                | ND          | 0 - 2              | ND               | ND                  |          |                     | ND              |                |
| Ethylbenzene                      | ND          | 0 - 4              | <0.5             | <1                  |          | 5                   | 2               | 10             |
| Toluene                           | <10         | 1 - 8              | <5               | <7                  |          | 25                  | 340             | 230            |
|                                   | -•          | - 0                |                  | .,                  |          |                     | 2.5             |                |
| Polycyclic aromatic hydrocarbons  | <b></b>     | 1770               | 43               | 42                  |          |                     | <b>1</b>        |                |
| Acenaphthylene                    | ND<br>ND    | ND                 | <1<br>ND         | <3                  |          |                     | ND<br>91        |                |
| Anthracene                        | NTD         | 0 <b>-</b> 5<br>ND | NTD<br>NTD       | ND                  |          |                     | 8               |                |
| Chrysene<br>Fluoranthene          | ND<br>ND    | 0 <b>-</b> 5       | ND<br>ND         | <1<br>ND            |          |                     | ND              |                |
| Naphthalene                       | ND          | 0 - 7              | <b>Ŋ</b> D<br><1 | ND<br><4            |          |                     | 91              |                |
| Phenanthrene                      | ND          | 0 - 5              | ND               | ND                  |          |                     | 91              |                |
| Pyrene                            | ND          | 0 - 5              | ND<br>ND         | ND                  |          |                     | 45              |                |
|                                   |             | - •                |                  | •••                 |          |                     |                 |                |
| Halogenated aliphatics            | <10         | M                  | NT.              | 377                 | P44.     | NT.                 | ND              | ND             |
| Bromoform<br>Chlorodibromomethane | <10<br>20   | ND<br>0 - 1        | ND               | ND                  | ND       | ND<br>ND            | ДИ<br>9         | ND<br>ND       |
| Chloroform                        | 75          | 0 - 10             | <2<br><10        | <3<br><10           | 0 - 91   | ND<br>ND            | ND              | ND<br>ND       |
| Dichlorobromomethane              | ND          | 0 - 10             | <2               | <3                  | 0 - 31   | 35                  | 74              | 35             |
| 1,2-Dichloroethane                | ND          | 0 - 1              | <2               | <2                  |          | ND                  | ND              | ND             |
| 1,1-Dichloroethylene              | ND          | 0 - 4              | <2               | <3                  |          | ND<br>ND            | ND              | ND             |
| 1,1-Trans-dichloroethylene        | ND          | ND                 | <0.5             | ND                  | ND       | ND                  | ND              | ND             |
| Methylene chloride                | 30          | 6 - 14             | <9               | <10                 |          | 180                 | 250             | 250            |
| 1,1,1-Trichloroethane             | ND          | 0 - 2              | <1               | <0.5                |          | ND                  | NTD             | ND             |
| Trichloroethylene                 | ND          | <0 - 3             | <0.5             | 0.5                 |          | ND                  | ND              | ND             |
|                                   | _           |                    |                  |                     |          |                     |                 |                |
| Pesticides and metabolites        |             |                    |                  |                     |          |                     |                 |                |
| Isophorone                        | ND          | 0 - 2              | ND               | ND                  |          |                     | ND              |                |

Note: Blanks indicate sufficient data are not available; priority pollutants not detected in any sample are not listed.

<sup>&</sup>lt;sup>a</sup>week l average.

bPrechlorination.

# II.22.5 REFERENCES

 Fate of Priority Pllutants in Publicly Owned Treatment Works - Pilot Study. EPA-440/1-79-300, U.S. Environmental Protection Agency, Washington, D.C., October 1979.