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DISCLAIMER

This document is intended to assist Regional and State personnel in
evaluating ground-water IIOnitor1ng data frQIII RCRA facil1t1es. Conformance
with this guidance is expected to result in statistical ..thods and sampling
procedures that ..et the regulatory standard of protecting human health and
the env1ro...nt. However, EPA will not in all cases l1m1t its approval of
statistical .thods and sampling procedures to those that comport with the
guidance set forth herein. This guidance is not a regulation (i.e-:, it does
not establish a standard of coriduct which has the force of law) and should not
be used as such. Regional and State personnel should exercise their discre­
tion in using this guidance document as well as other relevant information in
choosing a statistical method and sampling procedure that ..et the regulatory
requirements for evaluating ground-water monitoring data frQIII RCRA facilities.

This document has been reviewed by the Office of Solid Waste, U.S. Envi­
ronmental Protection Agency, Washington, D.C., and approved for publication.
Approval does not signify that the contents necessarily reflect the views and
po11cies of the U.S. - Enviroraenta1 Protect1on Agency, nor does ment1on of
trade names, COlllllerc1al products, or pub11cat1ons constitute endorsement or
recommendation for use.
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PREFACE

This guidance dOCUlent has been developed primarily ,for evaluating
ground-water ~nitoring data at RCRA (Resource Conservation and Recovery Act)
facilities •. The statistical ..thodolog1es described in this document can be
applied to both hazardous (Subtitle C of RCRA) and IIIn1c1pal (Subtitle 0 of
RCRA) waste land disposal facilities. .

The recently ..ended regulations concerning the statistical analysis of
gT"Ound-water .an1toring data at RCRA facilities (53 f! 39720: October 11,
1988), provide a wide variety of statistical lethods that MY be used to
evaluate gT"Ound-water quality. To the experienced and inexperienced water
quality professional, the choice of which test to use under a particular set
of conditions lIay not be apparent. The reader is referred to Section 4 of
this. guidance, -Choosing a Statistical Method,- for assistance in choosing an
appropriate' statistical test. For relatively new facilities that have only
limited UIOunts of ground-water monitoring data, it is reca-ended that a form
of hypothesis test (e.g., par..tr1c analysis of variance) be employed to
evaluate the data. Once sufficient data are available (after 12 to 24 months
or eight background samples), another ..thod of analysis such as the control
chart .thodology described in Section 7 of the guidance is reco-ended. Each
_thad of analysis and the conditions under which they will be used can be
written in the facil1ty penlit. This will el1.1nate the need for a permit
lIOd1f1cat1on each tile IIOre information about the hydrogeochel1stry is
collected, and IIOre appropriate _thocls of data analysis becc.e apparent.

This guidance was written priMrl1y for the statistical analysis of
ground-water IIOn1toring data at RCRA facilities. The guidance has wider
applications however. if one 1X..,nes the spatial relationships involved
between the IIOn1toring wells and the potenttal cont..inant source. For
IXlIIPle, section 5 of the guidance describes background well (uwad1ent) vs.
comp11ance well (downgrad1ent) COIIPar1sons. This scenario can be applied to
other non-RCRA situations involving the s... spatial relationships and the
5... null hypothesis. The explicit null ~thes1s (Ho) for testing contrasts
between leans, or where appropriate between _1ans, is that the leans between
groups (here IIOn1tor1ng wells) are equal (i.e•• no releue has been detected),
or that the group leans are below a prescribed action level (e.g., the ground­
water protection standard). Statistical ..thads that can be used to evaluate
these conditions are described in ~1on 5.2 (Analysis of Variance), 5.3
(Tolerance Intervals). and 5.4 (Prediction Intervals).

A different situation exists when COIIPl1ance wells (downgradient) are
caaapared to a fixed standard (e.g., the ground-water protection standard). In
that case, section' of the guidance should be consulted. The value to which
the constituent concentrations at cOllPl1ance wells are COIIPared can be any
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standard establi shed by a Regiona1 Adlai ni strator, State or county health
official, or another appropriate official.

A note of caution applies to section 6. The exa.ples used in Section 6
are used to determine whether ground water has been contaminated as a result
of a release from a facility. When the lower confidence limit is exceeded,
further action or usesS1II!nt may be warranted. If one wishes to determine
whether a cleanup standard hu been attained for a Superfund site or a RCRA
facility in corrective action, another EPA guidance dacu.ent entitled,
·Statistical Methods for the Attainment of Superfund Cleanup Standards
(Volume 2: Ground Water--Draft), should be consulted. This draft Superfund
guidance is a multivolume set that addresses questions regarding the success
of air, ground-water, and soil rlllediation efforts. Inf01"'lllltion about the
availability of this draft gui.dance, currently being developed, can be
obtained by calling the RCRA/Superfund Hotline, telephone (800) 424-9346 or
(202) 382-3000.

'.

Those interested in evaluating individual uncontaminated wells or in an
intrawell comparison are referred to Section 7 of the guidance which describes
the use of Shewhart-CUSUM control charts and trend analysis. Municipal water
supply engineers, for example, who wish to monitor water quality parameters in
supply wells, may find this section useful.

Other sections of this guidance have wide appl1cations in the field of
applied statistics, regardless of the intended use or pUl"Pose. Section 4.2
and 4.3 provide info~tion on enecking distributional ass~tions and
equality of variance, while Sections 8.1 and 8.2 cover 11.1t of detection
problems and outliers. Helpful advice and refel'"lnces for _ny experiments
involving the use of statistics can be found in these sections.

Finally, it should be noted that this guidance is not intended to be the
final chapter on the statistical analysis of ground-water .anitoring data, nor
should it be used u' such. 40 eFR Part 264 Subpart F offers an alternative
[§264.97(h) (5) ] to the _thods suggested and described in this guidance
d~nt. In fact, the guidance recaaends I procedure (confidence intervals)
for comparing IIOnitoring data to I fixed standard that is not _ntioned in the
SUbpart F regulations. This is neither contradictol"Y nor inconsistent, but
rather epitOllizu the ea-plexit1u of the subject utter and exllllPl1fies the .•
need for flexibility due to the site-specific IDnitoring requirements of the
RCRA progrllll.
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EXECUTIVE SOMKARY
t

'l'he hazardous waste requlations under the Resource
Conservation and Recovery Act (RCRA) require owners and operators
of hazardous waste facilities to utilize design features and
control measures that prevent the r.lease of hazardous waste into
qround water. Further, regulat.d units (i ••• , all surface
impoundments, wast. pil.s, land tr.ataent·uniu, and landfills
that receive hazardous wast. after July 26, 1982) are a180
subject to the qround-water aonitoring and corrective action
standards of 40 en Part 264, Subpart F. The.e r.qulations
require that a .tatistical ••thod and .ampling proc.dure approved
by EPA be used to determine whether there are rel.ases from
requlated units into ground w~t.r.

This docum.nt provides quidance to RCRA Facility permit
applicants and writers concerning the .tati.tical analysis of
qround-water .onitoring data at RCRA facilitie.. S.ction 1 is an
introduction to the guidance; it d.scribe. the purpose and intent
of the document, and emphasize. the ne.d for .ite-specific
considerations in implementing the Subpart F regulation. of 40
CFR Part 264.

. .
section 2 provides the reader with an overview of the

recently promulgat.d regulation. concerning the .tatistical
analysis of qround-water .onitoring data (53 D 39720: OCtober
11, 1988). The requirements of 1:I1e regulation are reviewed, and
the need to consider .it••pecific factor. in evaluating data at
a hazardous vaste facility i • .-phasized.

Section 3 di.cu.... the taportant hydrogeologie param.t.rs to
consider When choo.ing a .ampling interval. fte Darcy equation
is used to d.terain. the horizontal coaponent of the average
linear velocity of vround wat.r. fti. parameter provide. a good
estimate of tim. of travel for .o.t solUble constituents in
ground water, and aay be us.d to deteraiDe a suapling interval.
Exampl. calculations are provided at the end of the .ection to
further assist the reader.

Section 4 provide. guidance on choo.ing an appropriate
statistical .ethod. A flowchart to quide 1:I1e reader through this
s.ction, a. well as procedure. to t ••t the di.tributional
assumptions of data are pre.ented. 7inally, 1:I1i. section
outlines procedure. to test specifically for equality of
variance.
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Section 5 covers statistical .ethods that ..y be used to
evaluate ground-water .onitoring data when background ..lls have
been sited hydraulically upqradient fro-. the raqulated unit, and
a second set of wells are sited hydraulically downqradient from
the regulated unit at the point of coapliance. The data from
these compliance wells are compared to data from the background
wells to determine whether a release from a facility has
occurred. Parametric and nonparametric analysis of variance,
tolerance intervals, and prediction intervals are suggested
methods for this type of comparison. Flowcharts, procedures and
example calculations are given for each testing .ethod.

Section 6 inclUdes statistical procedures that are
appropriate when comparing ground-water constituent
concentrations to fixed concentration limits Ce.g., alternate
conctllntration limits or maximum concentration limits). Tbe
methods applicable to this type of comparison are confidence
intervals and tolerance intervals. As in section 5, flowcharts,
procedures, and examples explain the calculations necessary for
each testing method.

Section 7 presents the case where the level of each
constituent within a single,' uncontaminated well is being
compared to its historic background concentrations. This is
known as an intra-well comparison. In ..sence, the data for each
constituent in ea~ well are plotted on a t~e scale and
inspected for obvious feature. such as trends or sudden changes
in concentration levels. Tbe .ethad suggested in this section is
a combined Shewhart-COSOM control chart.

Section 8 contains a variety of special topics that are
relatively short and self contained. The.e topics include
methods to deal with data that 1. below the limit of analytical
detection and method. to test for outliers or extreme values in
the data.

Finally, the quidance pre.ents appendic.. that cover general
statistical consideration., a vlos.ary of stati.tical terms,
statistical tables, and a listing of reference.. Th..e
appendices provide nece••ary and ancillary information to aid the t

user in evaluating ground-water aonitoring data.
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SECTION 1

INTRODUCTION

The U.S. Environmental Protection Agency (EPA) proRJlgated regulations
for detecting contamination of ground water at hazardous waste land disposal
fac111t1es under the Resource Conservation and Recovery Act (RCRA) of 1976.
The statistical procedures specified for use to evaluate the presence of con­
tamination have been criticized and require improvement. Therefore, EPA has
revised those statistical procedures in 40 CFR Part 264, ·Statistical Methods
for Evaluating Ground-Water Monitoring Data Frol Hazardous Waste Facilities.-

In 40 CFR Part 264, EPA has recently amended the Subpart F regulations
with statistical methods and sampling procedures that are appropriate for
evaluating ground-water monitoring data under a variety of situations (53 fB
39720: October 11, 1988). The purpose of this document is to provide guidance
in determining which situation appl1es and consequently which statistical
procedure may be used. In addition to providing guidance on selection of an
appropriate statistical procedure, this document provides instructions, on
carrying out the procedure and interpreting the results.

The regulations provide three levels of .anitoring for a regulated
unit: detection monitoring; compliance IIOni tOri ng; and corrective action.
The regulations define conditions for a regulated un1t to be changed from one
level of .anitor1ng to a more stringent level of IIOn1tor1ng (e.g., from detec­
tion IOn1tor1ng to compliance monitoring). These conditions are that there is
statistically significant evidence of conte-ination (40 CFR §264.91(a)(1) and
(2»).

The regulations allow the benefit of the doubt to reside with the current
stage of IIOnitoring. That is, a unit will rel&1n in its current .anitoring
stage unless there is convincing evidence to change it. This .ans that a
unit will not be changed from detection ICnitoring to compliance monitoring
(or from ca.pliance IIOnitor1ng to corrective action) unless there is statisti­
cally significant evidence of cent.1nat1on (or contuination above the com­
pliance 118it).

The aain purpose of this document is to guide owners, operators, Reg~nal

Administrators, State Directors, and other interested parties in the selec­
tion, use, and interpretat10n of appropriate statistical ..thads for .ani tor­
ing the ground water at each specific regulated unit. Topics to be covered
inclUde sampling needed, sDIPle sizes, selection of appropriate statistical
design, aatching analysis of data to design, and interpretation of results.
Spec1fic recommended ..thods are detailed and a general discussion of evalu­
ation of alternate ..thods is provided. Statisttcal concepts are discussed in

1-1



Appendix A. References for suggested procedures are provided ,S well as
references to alternate procedures and general statistics texts. ~Situations
calling for external consultation are ..ntioned as well as sources ~or obtain­
ing expert assistance when needed.

EPA would like to emphasize the need for site-specific considerations in
implementing the Subpart F regulations of 40 CFR Part 264 (especially as
amended, 53 f! 39720: OCtober 11, 1988). It has been an ongoing strategy to
prOlllJlgate regulations that are specific enough to illP1ement , yet flexible
enough to accommodate a wide variety of site-specific environmental factors.
This is usually achieved by specifying criteria that are appropriate for the
ujority of mn1toring situations, while at the SlIDe time allowing alterna­
tives that are also protective of hulllan health and the environment. This
philosophy is uinta1ned in the recently prOlllllgated ..ndlllents entitled,
·Stat1stical Methods for Evaluating Ground-Water Monitoring Data From Haz­
ardous Waste Facilities· (53 f! 39720: October 11, 1988). The sections that
allow for the use of an alternate sampl1ng procedure and statistical _thod
[§264.97(g)(2) and §264.97(h)(5}, respectively) are as viable as those that
are explicitly referenced [§264.97(g}(l} and §264.97(h)(1-4}), provided they
meet the performance standards of §264.97(i). Due consideration to this
should be given when preparing and reviewing Part B permits and permit
applications.

1-2
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SECTION 2

REGULATORY OVERVIEW

In 1982. EPA proaI.Ilgated ground-water IIOnitoring and response standards
for pennitted facilities in Subpart F of 40 CFR PaTt 264, for detecting
releases of hazardous wastes into ground water from storage. treatment. and
disposal units. at permitted facilities (47 f! 32274: July 26. 1982).

The Subpart F regulations required ground-water data to be uUlined by
Cochran's Approx1ution to the Behrens-Fisher Student's t-test (CABF) to
determine whether there was a significant exceedinCe of backgl"Ound levels. or
other allowable levels. of specified chemical parameters and hazardous waste
constituents. One concern was that this procedure could result in a high rate
of ·false positives· (Type I error). thus requiring an owner or operator
unnecessarily to advance into a IIOre comprehensive and expensive phase of
IIOnitoring. More importantly, another concern was that the procedure could
result in a high rate of ·false negatives· (Type II error), 1.e., instances
where actual cont.ination would go undetected. .

As a result of these concerns, EPA amended the CAlF procedure with five
different statistical _thods that are IIOre appropriate for ground-water IIOni­
toring (53 FR 39720: October 11. 1988). These _m.ents also outline sam­
pling procedUires and perfo~e standards that are designed to help .in'.'ze
the event that a statistical _thod will indicate centUl1nation when it 15 not
present (Type I error). and fa11 to detect cent..inat10n when it is present
(Type II error).

2.1 BACKGROUND '

SUbtitle C of the Resource Conservation Recovery Act of 1976 (RCRA) cre­
ates a cOllPrehensive progr.. for the safe unag_nt of hazardous waste. Sec­
tion 3004 of RCRA requires owners and operators of fact11ties that treat,
store. or dispose of hazardous waste to C08Ply wtth standards established by
EPA that are ·necessary to protect h..an health and the envtro..nt.· Sec­
tion 3005 provides for illlPl_ntation of these standards under pe!"lltts issued
to owners and operators by EPA or authorized States. Sletton 3005 also pro­
vides that owners and operators of existing facilities that apply for a permit
and comply with applicable notice requi,...nts MY operate until a permtt
determination is .ade. These facilities are ea-only known as ·tnterilll
status· facilities. Owners and operators of 1nter1. status facnities also
alst c:caply with standards set under Section 3004.

2-1
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EPA promulgated ground-water monitoring and response standards for per­
.itted facllities in 1982 (47 FR 32274, July 26, 1982), codifi~ in 40 CFR
Part 264, SUbpart F. These standards establish progrus for protecting ground
water from releases of hazardous wastes fro- trea~nt, storage,'and disposal
units. Facility owners and operators were required to s.-pl. ground water at
specified intervals and to use a statistical procedure to dete~ine whether or
not hazardous wastes or constituents f~ the facl1ity are contlllinating
ground water. As explained 1n .ere det~l1 below, the SUbpart F regulations
regarding statistical ..thods used in evaluating ground-water .cn1tor1ng data
that EPA promulgated in 1982 have generated criticism.

The Part 264 regulations prior to the .October 11, 1988 amendlllents pro­
vided that the Cochran's Approx1..t1on to the Behrens-Fisher Student's t-test
(CABF) or an alternate statistical procedure approved by EPA be used to deter­
.1ne whether there is a statistically significant exCeedance of background
levels, or other allowable levels, of specified chemical parameters and haz­
ardous waste constituents. Although the regulations have always provided
latitude for the use of an alternate statistical procedure, concerns were
raised that the CABF statistical procedure in the regUlations was not appro­
priate. It was pointed out that: (1) the replicate sampling ..thod is not
appropriate for the CABF procedure, (2) the CABF procedure does not adequately
consider the number of comparisons that must be .ade, and (3) ,the CABF does
not control for seasonal variation. Specifically, the concerns were that the
CABF procedure could result in ·false positives· (Type I error), thus requir­
ing an owner or operator unnecessarily to collect additional ground-water
sDlP'es, to further characterize ground-water quality, and to apply for a
permit .edification, which is then subject to EPA review. In addition, there
was concern that CABF .ey result 1n ·false negatives· (Type II error), i.e.,
instances where actual contamination goes undetected. This could occur
because the background data, which are often used as the basis of the
statistical comparisons, are highly variable due to temporal, spatial,
analytical, and SllllPling effects.

As a result of these concerns, on OCtober 11, 1988 EPA amended both the
statistical .thods and the sampl1ng procedures of the regulations, by requir­
ing (if necessary) that owners or operators .ere accurately characterize the
hydrogeology and potential contlllinants at the facility, and by inclUding in
the regulations perforRnCe standards that all the statistical _thods and
SUIPl1ng procedures must lleet. Statistical ..thods and slllPling procedures
lleeting these perforMnCe standards would have a low probability of indicating
cont.ination when it is not present, and of fa111ng to detect cent.ination
that actually 11 present. The facility owner or operator would have to demon­
strate that a procedure is appropriate for the site-specific conditions at the
'ac11ity, and to ensure that it lleets the perfo.-nce standards outlined
below. This d.-onstration holds for any of the statistical ..thods and sam­
pling procedUres outlined 1n this regulation as well as any al·.ernate _thods
or procedures proposed by faci11ty owners and operators.

EPA recognizes that the selection of appropriate mnitoring par_ters is
also an essential part of a reliable statistical evaluation. The Agency
addressed this issue 1n a previous Federal Regf.Iter notice (52 f! 25942,
July 9, 1987).
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2.2 OVERVIEW OF METHODOLOGY

•

-.. .

I
EPA has elected to retain the idea of general perlo'I'MI'ICe requirements

that the regulated community .ust ..et. This approach allows for flexibility
in designfng statistical .thods and SllllPl1ng procedures to site-specific
considerations.

EPA has trfed to brfng a _asure of certainty to these .thods, whl1e
accOIIIIIOdatfng the unique nature of lIII1y of the regulated unfts in question.
Consistent wfth this general strategy. the Agency is establishing severa'
options for the samplfng procedures and statistical .thods to be used in
detection IIOnf torf ng and. where appropriate. fn coaspl1ance lIOn1tori ng •

The owner or operator shall submit. for each of the chemical parameters
and hazardous constituents lfsted in the facility permit. one or more of the
statistical methods and sllllPling procedures described in the regulations
pl"ClllUlgated on October 11, 1988. In deciding which statistical test 15
appropriate, he or she will consider the theoretical properties of the test,
the data available. the sfte hydrogeology, and the fate and transport charac­
teristics of potential contaminants at the facility. The Regional Administra­
tor will review, and if appropriate. approve the proposed statistical .ethods
and s~l1ng procedures when 1ssufng the facility permit.

The Agency recognizes that there -ay be situations where anyone statis­
tical test .ay not be appropriate. This is true of new fac1litfes with little
or no ground-water IIOnitoring data. If insufficient data prohibit the owner
or operator frol specifying a statistical _thad of analysis. then contingency
plans containing several .thods of data analysis and the conditions under
which the .thad can be used will be specified by the Regional Administrator
in the permit. In IIIny cases. the paruetric ANOVA can be perlo~ after six
IIOnths of data have been collected. This will el1.inate the need for a permit
IIOdificat1on in the event that data collected during future sampl1ng and
analysis events indicate the need to change to a lOre appropriate statistical
_thad of analysis.

2.3 GENERAL PERFORMANCE STANDARDS

EPA's basic concern in establishing these perlo~e standards for sta­
tistical .thods is to aChieve a proper balance between the risk that the pro­
cedures will falsely indicate that a regulated unit is causing background
values or concentration 11.its to be exceeded (false positives) and the risk
that the procedures wi" fa11 to indicate that background values or concen­
tratfon 11.its are being exceeded (false negatives). EPA's approach is
designed to address that concern directly. Thus any statistical .thod or
sampling procedure. whether specified here or u an alternative to those
specified. should _t the following perf01"'lllnCe standards contained in
40 CFR §264.97(i):

1. The statistical test is to be conducted separately for each haz­
ardous constituent in each well [uncler §264.97(g». If the dis­
tribUtion of the ch.ical parDeten or constituents is shown by the
owner or operator to be inappropriate for a no....l theory test. then
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the data should be transfonaed or a distribution-free theory test
should be used. If the distributions for the constitue~s differ,
.ere than one statistical _thod MY be needed.

2. If an individual well cc.parison procedure is used to cOIIIPare an 't
individual COIIPl1ance well constituent concentration with b&cJcground
constituent concentrations or a ground-water protection standard,
the test shall be done at a Type I error level of no less than 0.01
for each testing period. If a ..lt1ple =-pari sons procedure is
used, the Type I experi.ntwise error rate shall be no less than
0.05 for each testing period; however, the Type I error of no less
than 0.01 tor individual well cc.par1sons ..st be ,,'ntained. This
performance standard does not apply to control Charts, tolerance
intervalS, or precUction intervals unless they are IIOdeled after
hypothesis testing procedures that involve setting significance
levels. .

3. It a control chart approach is used to evaluate ground-water moni­
toring data, the specific type of control chart and its associated
parameters shall be proposed by the owner or operator and approved ..
by the Regional Administrator if he or she finds it to be protective
of "human health and the environment.

4. If a tolerance interval or a prediction interval is used to evaluate
ground-water 8Onitoring data, then the levels of confidence shall be
proposed; in addition, for tolerance 1ntervals~ the proportion of
the population that the interval ..st contain (with the proposed
confidence) shall be proposed by the owner or operator and approved
by the Regional Administrator if he or she finds thes~ parameters to
be protective of huaan health and the environment. These parameters
will be determi ned after cons1deri ng the l'IIIIber of sup1es in the
background data base, the distribution of the data, and the range of
the concentration values for each constituent of concern.

5. The statistical _thad will include procedures for handling data
below the limit of detection with one or 80re procedures that are
protective of hUllan healtn and the env1rorBent. Any practical quan-
t1tat1on 11.,t (PQL) approved by the Regional AdIIin1strator under
§264.97(h) that is used in the statistical _thod shall be the low-
est concentration level that can be reliably achieved within speci-
fied 11.its of precision and accuracy during routine laboratory
operating conditions avanable to the fac111ty.

6. If necessary, the statistical _thod shall inclUde procedures to
control or correct for seasonal and spatial var1ab111ty as well as
tlllPQral correlation in the data.

In referring to ·stat1stical _thad5 , • EPA _ans to eaphas1ze that the
concept of ·statistical significance- IIIst be reflected in several aspects of •
the 8Dn1tor1ng progr... This involves not only the choice of a level of sig­
nificance, but .lso the choice of a statistical test, the slllPl1ng require-
_nts, the nullber of SIlllP1es • and the frequency of SIllP11 ng. S1nee all of
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these parameters interact to determine the ability of the procedure to detect
contllllinat10n, the statistical _thads, l1ke a COIIIPrenensfve ground-water
~n1tor1ng progrllll, .ust be evaluated in their entirety, not by individual
COIIIPOnents. Thus a systIM approach to ground-water ~nitor1ng is endorsed.

The second perlonunce standard requires further cClllllent. For individual
well comparisons in which an 1nd1vidua' calPl1ance we'l is compared to back­
ground, the Type I error level shall be no less than 1S (0.01) for each test­
ing period. In other words, the probability of the test resulting in a false
positive is no less than 1 in 100. EPA believes that this significance level
is sufficient in limiting the false positive rate while at the same time con­
trolling the false negative (_issed detection) rate.

Owners ·and operators of facilities that have an extensive network of
ground-water monitoring wells lilY find it IIOre practical to use a 1IJ1t1p1e
wel 1 compari sons procedUre. Mu1tip1e cOlllPari sons procedures contro1 the
exper1mentw1se error rate for comparisons involving .,ltiple upgrad1ent and
downgrad1ent wells. If this methOd is used, the Type I exper1mentw1se error
rate for each constituent shall be no less than 51 (0.05) for each testing
period.

In using a IIJlttple well comparisons procedure, if the owner or operator
chooseS to use I t-statistic rather than an F-statist1c, the individual well
Type I error level lIIUst be .1ntained at no less than 1S (0.01). This
provision should be considered if a facility owner or operator wishes to use a
procedure that distributes the risk of a false positive evenly throughout all
monitoring wells (e.g., Bonferroni t-test).

Setting these levels of significance at 1S and 51, respectively, ra1ses
an 1111P0rtant question 1n how the false positive rate will be controlled at
facilities with 11 large number of ground-water monitoring wells and monitoring
constituents. The Agency set these levels of significance on the basis of a
single testing period and not on the entire operating 11fe of the facility.
Further, large facilities ean reduce the false positive rate by i~l ...nting a
unit-specific .anitoring approach. Nonetheless, it is evident that facilities
with an extensive nulber of ground-water .cnitor1ng wells which are monitored
for lIany constituents may still generate a large number of comparisons during
each testing period.

In these particular situations, a dete~inatiOn of whether a release from
a facility has occurred ..y require the Regional ~in1strator to evaluate the
site hydrogeology, geoch.1stry, clf.tic factors, and other enviro-enta1
parameters to dete~1ne " a statistically signifieant result is indicative of
an actual release 'T"OII the facility. In ..king this detertl1nat1on, the
Regional Administrator may note the relative .agnitude of the concentration of
the constituent(s). If the exceedanee is based on an obsened CGIIPl1ance well
value that is the same relative ..gnitude as the PQL (practical quant1tation
lillit) or the baeJcground concentration level, then a 'alse positive ..y have
occurred, and further SUIP11 ng and test1ng II&Y be IPpropriate. I', however,
the background concentration level or ~ action level is substan~ially
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exceeded, then the exceedance is II)re likely to be indicative of a release
from the facility.

2.4 BASIC STATISTICAl METHODS AND SAMPLING PROCEDURES

The October 11, 1988 rule specifies five types of statistical methods to
detect contamination in ground water. EPA believes that at 'east one of these
types of procedures will be appropriate for virtually all facilities. To
address situations where these .thads .ay not be appropriate, EPA has
included a provision for the owner or operator to select an alternate Method
which is subject to approval by the Regional Adlllinistrator.

2.4.1 The Five Statistical Methods Outlined in the OCtober 11. 1988 Final
lule . ,

i. A parametric analysis of variance (ANOYA) followed by aJltiple com­
parison procedures to identify specific sources of difference. The
procedures wi 11 include estimation and testing of the contrasts
between the mean of each compl1anee well and the background mean for
each constituent.

2. An analysis of variance (ANOYA) based on ranks followed by multiple
COIlPar1son procedures to identify specific sources of difference.
The procedure will inelude estimation and testing of the contrasts
between the _dian of each cOllPHanee well and the _iln blckground
'evels for each constituent.

3. A procedure in which I tolerance interval or a prediction interval
for each constituent is establ1shed froll the background data, and
the 1eve1 of each const i tuent in each COIIIP 11 anee well is cCllpared to
its upper tolerance or prediction li.it.

4. A control chart approach which will give control limits for each
constituent. If Iny cc.plianee well has a value or I sequence of
values that lie outside the control limits for that constituent; it
Illy constitute statistically significant evidence of contaainat1on.

5. Another statistical _thod submitted by the owner or operator and
approved by the Regional Admin1strator.

A su_ary of these statistical ..thods and their appl1Cability is pre­
sented in Tlble 2-1. The table lists types of ee-plrisons and the rlCCllllllnded
procedure and refers the reader to the appropriate sections where a discussion
and IXlIIPle can be found.

EPA is specifying ,,'tip'e statistical _thods and s_11ng procedures
and has allowed for alternatives because no one _thad or procedure is appro­
priate for all circu.tances. EPA believes that the suggested _thads and
procedures are appropriate for the site-specific design and ana11sis of dlta
fro- ground-water mnitoring systelll and that thQ can account for IIOre of the
site-specific factors that Cochran's Approxi..tion to the Behrens-Fisher
Student's t-test (CABF) and the accompanying s..pling procedures in the past
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TABLE 2-1. $1II4ARY OF STATISTICAL METHODS

SUMMARY OF STATISTICAL METHODS

SECTION OF
COMPOUND TYPE OF COMPARISON RECOMMENDED METHOD GUIDANCE

DOCUMENT

ANY BACKGROUND VS
ANOVA 5.2

COMPOUND COMPUANCE WELL
TOLERANCE UMITS 5.3

IN PREDICTION INTERVAlS 5.4
BACKGROUND.

INTRA-WELL CONTROL CHARTS 7

ACLJMCl FIXED STANDARD
CONFIDENCE INTERVAlS 6.2.1

SPECIFIC TOLERANCE LIMITS 6.2.2

SYNTHETIC MANY NONOETECTS SEE BELOW DETECTION
8.1

IN DATASET UMIT TABLE-8-1 .
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regulations. The statistical _thads specified here address the II.Iltiple
comparison problems and provide for documenting and accounting for'scurces of
natural variation. £PA believes that the specified statistical ..thods and
procedures consider and control for natural u-poral and spatial variation.

t2.4.2 Site-Specific Considerations for S!!p'ing

The dec1 s1on on the l'Ullber of wells needed 1n a .en1tori ng system wi 11 be
aide on a site-specific basis by the Regional Administrator and will consider
the statistical method being used, the site hydrogeology, the fate and trans­
port character1 st1cs of potent1a1 cont.1nants, and the samp1i ng procedure.
The number of wells lUst be SUfficient to ensure a high probability of detect­
ing contamination when it is present. To determine which sampling procedure
should be used, the owner or operator sha'l consider existing data and site
characteristics, inclUding the possibility of trends and seasonality. These
sampling procedures are:

1. Obtain a sequence of at least four samples taken at an interval that
ensures, to the greatest extent technically feasible, that an inde­
pendent sample is obtained, by reference to the uppermost aquifer's
effective porosity, hydraulic conductivity, and hydraulic gradient,
and the fate and transport characteristics of potential contami­
nants. The sampling interval that is proposed must be approved by
the Regional Administrator.

2. An alternate samp11 ng procedure proposed by the owner or operator
and approved by the Regional Administrator if he or she finds it to
be protective of human health and the environment.

EPA believes that the above sampling procedures w11l allow the use of
statistical methods that will accurately detect contamination. These sampling
procedures IDay be used to replace the sampling _thod present in the former
Subpart F regulations. Rather than taking a single ground-water sample and
dividing it into four replicate samples, a sequence of at least four samples
taken at intervals lar enough apart in ti. (daily, weekly, or IIOnthly,
depending on rates of ground-water flow and cont.1nant fate and transport
characteristics) will help ensure the sampling of a discrete portion (i.e., an
independent s.-ple) of ground water. In hydrogeologic environments where the
ground-water velocity prohibits one from obtaining four independent samples on
a semiannual buis, an alternate sampling procedure approved by the Regional
Administrator -ey be utilized [40 CFR §264.97(g)(1) and (2»).

The Regional Adl1n1strator shall approve an appropriate sampling proce­
dure and interval subltitted by the owner or OPerator after considering the
effective porosity, hydraul1c COnductivity, and hydraulic gradient in the
uppermost aquifer under the waste ..nagement area, and ~he fate and transport
characteristics of potential contaminants. Most of this 1nforaat1on is
already required to be subltitted in the facility's 'art 8 pe~1t application
under §270.14(c) and ..y be used by the owner or operator to -ake this deter­
.1nation. Further. the rllllber and kinds of slIIPles collected to e$tabl1sh
background concentration levels should be appropriate to the fOnl of statisti­
cal test .-played, foll~1ng generally accepted statistical ~rinc1ples
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(40 CFR §264.97(g)]. For example. the use of control charts p.-sumes a well­
defined background of at least eight sDlPles per well. 8y contrast. ANOVA
alternatives .fght requfre only four SlllPles per well.

It seems likely that -ost facilities will be ..-pling .aftthly over four
consecutive IIOnths. twice a year. In order to .intain a: cc.plete annual
record of ground-water data, the facl1ity owner 01'" operator lIlY find it
desirable to obtain a sample each -onth of the year. This will help identify
seasonal trends in the data and permit evaluation of the effects of auto-
correlation and seasonal variation if present in the samples. •

The concentrations of a constituent determined in these samples are
intended to be used in one-point-in-time comparisons between background and
compliance wells. This approach wil' help reduce the components of seasonal
variation by providing for silllJltaneous comparisons between background and
compliance well information.

The flexibility for establishing sampling intervals ~re chosen to allow
for the unique nature of the hydrogeologic systems beneath hazardous waste
sites. This sampling scheme will give proper consideration to the temporal
variation of and autocorrelation IIIIOn9 the ground-water constituents. The
specified procedure requires sampling data from background wells. at the
compliance point, and according to a specific test protocol. The owner or
operator should use a background value determined from data collected under
this scenario if a test approved by the Regional Administrator requires it or
if a concentration limit in compliance' -on1tor1ng is to be based upon
background data.

EPA recognizes that there may be situations where the owner or operator
can devise alternate statistical methods and sampling procedures that are .cre
appropriate to the facility and that wl1l provide reHable results. There­
fore. today's regulations allow the Regional AdIIinistrator to approve such
procedures if he or she finds that the procedures balance the risk of false
positives and false negatives in a -.nner CQlParable to that provided by the
above specified, tests and that they _t specified perfonaance standards
[40 CFR §264.97(g)]. In examining the COIIParabl1ity of the procedure to
provide a reasonable balance between the r1sk of false positives and false
negatives, the owner or operator wl1l specify in the altemate plan such
parameters as sampling frequency and sample size.

2.4.3 The ·Reasonable Confidence· Requirement

The .thods indicate that the procedure IIJst provide reasonable confi­
dence that the .1gration of hlZardous constituents f~ a regulated unit into
and through the aqui fer will be detected. (The reference to hazardous con­
stituents does not ..an that this option applies only to CQlPliance -on1tor­
fng; the procedure also applies to -on1tori "9" par~ters and constituents in
the detection -onftoring progrm sfnce they are surrogates indicating the
presence of hazardous constftuents.) The protocols for the spec1ffc tests,
however, will be used as general benehurlc to define lreuonable conffdence­
in the proposed procedure. If the owner 01'" operator shows that his or her
suggested test 15 COIIParable in its results to one of the specified tests.
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then it is likely to be acceptable under the -reasonable confid..,ce· test.
There 8&y be situations, however, where it will be difficult to directly
compare the perlonaance of an alternate test to the protocols for the
specified tests. In such cases the alternate test will have to be evaluated
on its own ..rits.
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SECTIOH 3
.

CHOOSING ASAMPLIHG INTERVAL

This section discusses the important hydrogeologic parameters to consider
when choos1ng a samp11ng 1nterva1. The Darcy !quat1on 1s used to detenni ne
the horizontal component of the average linear velocity of ground water. This
value provides a good estimate of time of travel for .cst soluble constituents
in ground water, and can be used to determine a sampling interval. Example
calculations are provided at the end of the section to further assist the
reader. .

Section 264.97(g) of 40 CFR Part 264 Subpart F provides the owner or
operator of a RCRA facility with a flexible sampling schedule that will allow
him or her to choose a sampling procedure that will reflect site-specific con­
cerns. This section specifies that the owner or operator shall, on a semi­
annual.basis, obtain a sequence of at least four samples from each well, based
on an interval that is determined after evaluating the uppermost aquifer's
effective porosity, hydraulic conductivity, and hydraulic gradient, and the
fate and transport characteristics of potential contaminants. The intent of
this provision is to set a sampling frequency that allows sufficient time to
pass between sUIPling events to ensure, to the greatest extent technically
feasible, that an independent ground-water sample is taken from each well._
For further information on ground-water sampling, refer to the EPA ·Practical
Guide for Ground-Water Sampling,· Barcelona et al., 1985.

The sampling frequency of the four s_iannual slllPl1ng events required in
Part 264 Subpart F can be based on estimates using the average linear velocity
of ground water. ' Two fOrlls of the Darcy equation stated below relate ground­
water velocity '(V) to effective porosity (He), hydrau11c gradient (i), and
hydraulic conductivity (K):

Vh-(Kn*i)/Ne and Vv-(Ky*i)/He

where Vh and Vv are the horizontal and vertical cc.ponents of the average
11near velocity of ground water, respectively; Kh and Ky are the horizontal
and vertical components of hydraulic conductivity; i is the head gradient; and
He 1s the effective porosity. In applying these equations to ground-water

. IIOn1tor1ng, the horizontal COIIPonent of the average linear velocity (Vh) can
be used to detenline an appropriate slllPl1ng interval. Usually, field
investigations will yield bulk values for ~aul1c conductivity. In .cst
cases, the bulk hydraul1c conductivity detenl1ned by I puIIp test, tracer test,
or a slug test w111 be sufficient f01" these calculations. The vertical
component of the average l1near velocity of ground wlter (Vv)' however, ,should
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be considered in estimating flow velocfties in areas with significant com­
ponents of vertical velocity such as recharge and disenarge zones.

To apply the Darcy equation to ground-water .anftorf~, one needs to
determine the parameters K, 1, and Me. The hydraulfc conductivity, K, is the
volume of water at the existing kinematic viscosity that wfll IIOve in unit
time under a unit hydraul1c gradient through a unit area _asured at right
angles to the directfon of flow. The reference to ·existing kinematic vis­
cosity· relates to the fact that hydraulic conductivity is not only determined
by the media (aquifer), but also by fluid properties (ground water or poten­
tfal contaminants). Thus, it is possible to have several hydraulic conduc­
tivity values for many different chemical sUbstances that are present in the
same aquifer. In either case it is advisable to use the greatest value for
velocity that fs calculated using the Darcy equation to determine sampling
intervals. This wfll provide for the earliest detection of a leak from a
hazardous waste facility and expeditious remedial act1o~ procedures. A range
of hydraulic conductivities (the transmitted fluid is water) for various aqui­
fer materials is given in Figure 3-1. The conductivities are given in three
units: the top line is in .ters per day; the middle line. in feet per day.
is commonly used; the last line is expressed fn gallons per day-foot-squared.

The hydraulic gradient. 1, is the change in hydraulic head per unit of
distance in a given direction. It can be determined by d1vidfng the differ­
ence in head between. two points on a potentiometric surface lIap by the
orthogonal distance between those two points (see example calculation). Water
level measurements are normally used to determine the natural hydraulic gradi­
ent at a facility. However, the effects of mounding in the event of a leak
from a waste disposal facility lIaY p~duce a steeper local hydraulic"grad1ent
in the vicinity of the IIOnitor1ng well. These local changes in hydraulic
gradient should be accounted for in the velocity calculations.

The effective porosity, Ne. 15 the ratio. usually expressed as a per­
centage. of the total volume of voids available for fluid transmission to the
total vol~ of the porous .o1U11 dewatered. It can' be estimated during a
pump test by dividing the volume of water relaved ,~ an aquifer by the total
volume of aquifer dewatered (see PIlIP'. calculatfon). Table 3-1 presents
approximate effective porosity values for,a variety of aquifer materials. In
cases where the effective po~sity is unknown, specific yield may be substi­
tuted into the equation. Specific yields of selected rock units are given in
Table 3-2. In the absence of _asured values. drainable porosity 15 often
used to approx1ute effective porosity. Figure 3-2 illustrates representative
values of drainable porosity and total porosity as a function of aquifer
particle size.

Once the values for K, 1. and Ne are determined, the horizontal component
of the average linear velocity of ground water can be calculated. Using the
Darcy equation. we can determine the ti. required for ground water to pass
through the ca.plete monitoring well diameter by dividing the -on1toring well
diameter by the horizontal component of the average linear velocity of ground
water. This value will represent the lIinilUl time interval required between
sampling events that will yield an independent ground-water sample.

---- 3-2



IGNEOUS AND METAMORPHIC ROCKS

Unfractured

Unfractured

Fractured

BASALT

Fractured

SANDSTONE

Lava flow

SHALE

Unfractured

~ractured

Fractured

Se lIIi con soli dated

CARBONATE ROCKS

CLAY

Fractured

SILT. LOESS

SILTY SAND

CLEAN SAND

Cavernous

GLACIAL TILL

10. 1 10.1 10.1 10·' 10·· 10·' 10.1 10·'

m/day

10.1 10·' 'O~, 10·· '0·' 10·Z 10·'

ft/day

Fin. Coarse
GRAVEL

'0 10 Z '0' 10· 10'

10.1 '0·' 10·' 10·· 10·' 10·Z 10·' I 10 '0 Z 10 S '0· 10 5

val/da,-ft2

Source: Heath. R. C. 1983. Basic Ground-Water Hydrology. U.S. Geological
Survey Water Supply Paper. 2220. 84 pp.

Figure 3-1. Hydraulic conductivity (in three units) of selected rocks.
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TABLE 3-1. DEFAULT VALUES FOR EFFECTIVE POROSITY (He) FOR Y6E
IN TIME OF TRAVEL (TOT) ANALYSES

Soil textural classes

Unified soil classification system

GS, SP, GM, SC, $W, SP, SM, SC

Ml, MH

el, Ol, CH, OH, PT

USDA s011 textural classes

Clays. silty clays. sandy clays

Silts. silt loams. silty clay loams

All others

Rock units (all)

Porous media (nonfractured rocks
such as s~stone and some carbonates)

Fractured rocks (.cst carbonates.
shales. granites. etc.)

Effective porosIty
of saturation

0.20
(201)

0.15
(151)

O.Olb
(11)

~i~5b
0.10
(l01)

0.20
(201)

0.15
(151)

0.0001
(0.011)

Source: Barari. A•• and l. S. Hedges. 1985. Movllllent of Water
in Glacial T111. Proceed. o( til. 11th btt.matiDnal Cangras of the
Int.matfonaZ.A.aocfatfGn of Hydrog.ol~. pp. 129-134.

a These values are estimates and there may be differences between
sf.l1ar units. For ex lIPle. recent stud1e.s indicate that
weathered and unweathe~ glacial till .ay have ..rkedly dif­
ferent effect1ve porosities (Barar1 and Hedges. 1985; Bradbury
et al •• 1985).

b Assumes d. minfmUl secondary porosity. If fractures or soil
structure are present. effective porosfty should be 0.001
(0.11).
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TABLE 3-2. SPECIFIC YIELD VALUES FOR
SELECTED ROCK TYPES

,

Rock type

Clay
Sand
Gravel
Limestone
Sandstone (sem1consol1dated)
Granite
Basalt (young)

Specific yield (I)

2
22
19
18
6
0.09
8

Source: Heath, R. c. 1983. Basic Ground-Water
Hydrology. U.S. Geological Survey, Wat~r Supply
Paper 2220. B4 pp.
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(Three-dimensiona' .bing of ground water in the vicinity of the mn1tor1ng
we" wl1' occur when the well is purged before sUIPl1ng, wh1chf is one reason
why this ..thad only provides In Ist1..t1on of travel tt..).

In detenl1ning these ..l1ng intervals, one should note tbat .."y chemi.
cal CQIIPOUnds will not travel at the s.. velocity as ....nd water. Chemica'
characteristics such as adsorptive potential. specific gravity, and mlecular
size will influence the way chelica's travel in the subsurface. Large mole­
cules, for example, will tend to travel slower than the average linear veloc­
ity of ground water because of ..trb interactions. eo.pounds that exhibit a
strong adsorptive potential will undergo a si.11ar fate that will dramatically
change time of travel predictions using the Darcy equation. In some cases
chemical interaction with the .atrix ..terial will alter the matrix structure
and its associated hydraul1c conductivity that .ay result in an increase in
contam1 nant IIIOb111ty • Th1s effeet has bee" observed wi th certa1n organic
solvents in clay units (see Brown and Andersen. 1981). Contaminant fate ~nd

transport IIIOdels -.y be useful in determining the influence of these effects
on .avement in the subsurface. A variety of these mdels are available on the
commercill market for private use.

EXAMPLE CALCULATION NO.1: DETERMINING THE EFFECTIVE POROSffi (Ne)

The effective porosity, Ne, expressed in S, can be determined during a
p~ test using the following ~thod:

Ne • 100S x volume of water removed/volume of .quifer dewatered

--

• Blsed on a pumping rate of the pump of 50 gal/1l1n ancl a pumping
duration of 30 .1n, compute the volume of wlter removed IS:

I

•

50 gil/min x 30 .1n • 1,SOO gal

• To cilculate the volume of aquifer dewltered, use the fOrlUla:

V • (l/3) ..r Zh

where r is the radius (ft) of area affected by pullPing and h (ft) is the drop
in the water level. If, for example, h • 3 ft and r • 18 ft, then:

V• (1/3)*3.14*18%*3 • 1,018 ,t3.
Next, converting ,t. of water to gallons of water,

V• (1,018 ft
'
)(7.48 gll/ft l ) • 7.615 gal

• Substituting the two volu.s in the equation for the effective
porosity. obtain

Me • laos x 1,soon ,615 • 19.71
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EXAMPLE CAlCULATION NO.2: DETERMINING THE HYDRAULIC GRADIENT (1)

The hydraulic gradient, 1, can be deterw1ned froll • po~ntiometric
surface lIap (Figure 3-3 below) as 1 • 6h/", where 6h is the difference
.asured in the gradient at PZ 1 and PZz• and .. is the orthogonal distance
between the two piezometers.

Using the values given in Figure 3-3, obtain

1 • &hI" • (29.2 ft - 29.1 ft)/100 ft • 0.001 ftlft

29.2'

29.1'

29.0'

Figure 3-3. Potentiometric surface lIap for computation"
of hydraulic gradient.

This method provides only a very general estimate of the natural
hydraulic gradient that exists in the vicinity of the two piezometers.
Chemical gradients are known to exist and lIay override the effects of the
hydraul1c gradient. A detailed study of the effects of "ltiple chemical
contaminants _ay be necessary to determine the actual average linear velocity
(horizontal component) of ground water in the vicinity of the monitoring
wells.

EXAMPLE CALQJLATION NO.3: DETERMINING THE IDIZONTAL CI:IFONENT OF THE
AVERAGE UNEAR YE~m Of 6ROUIIJ WATER (Vh)

A land disposal facility has ground-water IIOnitoring wells that are
screened in an uncorfined si lty sand aquifer. Slug tests, pump tests. and
tracer tests conducttJ during a hydrogeologic site investigation have revealed
that the aquifer has a horizontal hydraulic conductivity (Kh) of 15 ft/day and
an effective porosity (He) of 15S. Using a potentiClllltric up (as in
example. 2). the regfonal hydraulic gradient (1) has been detenlined to be
0.003 ft/ft.

3-8
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To est1l1ate the .1n1R.1m time interval between SUlPl1ng ev,-"ts that wil 1
allow one to obtain an independent sUlPle of ground water prooeea as follows.

Calculate the horizontal COIIIPonent ·of the average Hnear velocity of
ground water (Vh) using the Darcy equation, Vh • (~·i)/Ne. .

With Kh • 15 ft/day,
Ne • 15%. and
1 • 0.003 ft/ft, calculate

Vh • (15)(0.003)/(15%) • 0.3 ft/day. or equivalently

Vh • (0.3 ft/day)(12 in/ft) • 3.6 in/day

Discussion: The horizontal component of the average linear velocity of
ground water, Vh, has been calculated and is equal to 3.6 in/day. Monitoring
well: di..ters at this particular facility are 4 in. We can determine the
minimum time interval between sampling events that will allow one to obtain an
independent sample of ground water by diViding the mcn1toring well diameter by
the horizontal component of the average linear v~locity of ground water:

Minimum time interval. (4 1n)/(3.6 in/day) • 1.1 days.

Based on the above calculations. the owner or operator could sample every
other day. However, because the velocity can vary with recharge rates sea­
sonally, a weekly sampling interval would be advised.

Suggested Sampling Interval

~

June 1
June 8
June 15
June 22

Obtain Sample No.

1
2
3
4

-,

Table 3-3 gives some results for common situations.
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TABLE 3-3. DETERMINING A SAMPLING INTERVAL

DETERMINING A SAMPLING INTERVAL

UNIT Kt, (ftlday) Ne (OJo) Vh ~nlmo) SAMPLING INTERVAL

GRAVEL 10· 19 9.6x10· CAlLY

SAND 10 2 22 8.3 x 10 2 , CAlLY

SILTY SAND 10 14 1.3x10 2 WEEKLY

nLL 10-3 2 9.1 X 10.2 MONTHLY·

55 (SEMICON) 1 6 30 WEEKLY
.

BASALT 10·' 8 2.28 MONTHLY·

The horizontal component of the average linear velocities is based on
a hydrauDc gradient. i. of O.OOS ftIft.

• Use a Monthly sampling intervaf or an alternate sampling procedure.
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SECTION 4

CHOOSING ASTATISTICAL METHOD

This section discusses the choice of an appropriate statistical method.
Section 4.1 includes a flowchart to guide this selection. Section 4.2 contains
procedures to test the distributional assumptions of statistical methods and
Section 4.3 has procedures to test specifically for equality of variances.

The choice of an appropriate statistical test depends on the type of mon­
itoring and the nature of the data. The proportion of values in the data set
that are below detection is one important consideration. If most of the
values are below detection, a test of proportions is suggested.

One set of statistical procedures is suggested when the monitoring con­
sists of comparisons of water sample data from the background (hydraulically
upgrad1ent) we11 wi th the samp1e data ·from COIIIP11ance (hydrau11cally down­
gradient) wells. The reconaended approach is analysis of varfance (ANOVA).
Also, for a faci11ty with l1mited lIDOunts of data, it is advisable to ini­
tially use the ANOVA _thad of data evaluation, and later, when sufficient
amounts of data are collected, to change to a tolerance interval or a control
chart approach for each COIIIP11ance we11. However. alternate approaches are
allowed. These inclUde adjustments for seasonality, use of tolerance inter­
vals, and use of prediction intervals. These ..thods are discussed in Sec­
tion 5.

When the IIDnitoring objective is to compare the concentration of a haz­
ardous constituent to a fixed level such IS I IIIXf.. concentration 11mit
(MeL), a different type of approach is needed. This type of cOlllPar1son COlD­
80nly serves as a basis of compliance -an1toring. Control charts -.y be used,
as .ay tolerance or confidence intervals. Methods for ca.par1son with a fixed
level are presented in Section 6. .

When a long history of data from each well is Ivailable, intra-well com­
parisons are appropriate. That is, the data from a single uncontlllinated well
are cQIIPared over ti. to detect shifts in concentration, or gradual trends in
concentration that ..y indicate cont..1nation. Methods for this situation are
presented in Section 7.

4.1 FLOWCHARTS-oVERVIEW AND USE

The selection and use of a statistical procedure for ground-water -ani­
toring is a detailed process. Because a single flowchart would beCQIIII too
complicated for elsy use, a series of f'owcharts hIS been developed. These
flowcharts are found at the beginning of each section and are intended to
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guide the user in the selection and use of procedures in that I~on. The
more detailed flowcharts can be thought of as attaching to the general flow­
charts at the indicated points.

Three general types of statistical procedures are presented in the flow­
chart overview (Figure 4-1): (1) background well to cc.pl1anci well data
comparisons; (2) comparison of compliance well data with a constant limit such
as an alternate concentration limit (ACl) or a lIIXilllUll concentration limit
(MCl); and (3) intra-well COIIIParisons. The first question to be asked in
determining the appropriate statistical procedure is the type of IIOnitoring
program specified in facility permit. The type of .-:lnitoring program may
determi ne if the appropri ate compar1 son is UIOng we11 s , cOllq)ari son of down­
gradient well data to a constant, intra-well comparisons, or a special case.

If the facility is in detection monitoring, the appropriate comparison is
between. wel1s that are hydraulically upgrad1ent from the facility and those
that are·hydraulically downgradient. The statistical prOcedures for this type
of monitoring are presented in Section 5. In detection IIOnitoring, it is
likely that many of the monitored constituents may result in few quantified
results (i.e., much of the data are below the limit of analytical detection).
If this is the ease, then the test of proportions (Section 8.1.3) may be rec­
OIIIIIInded. If the constituent occurs in .asurable concentrations in back­
groUnd, then analysis of variance (Section 5.2) is recommended. This method
of analysis is preferred when the data lack sufficient quantity to allow for
the use of tolerance intervals or control charts.

If the facility is in compliance monitoring, the permit will specify the
type of compliance limit. If the compliance l1mit is detenained from the
backgroUnd, the statistical _thad is chosen 'rail those that cCIDPare back­
ground well to compliance well data. Statistical ..thods for this case are
presented in Section 5. The preferred lethod is the appropriate analysis of
variance method in Section 5.2, or if sufficient data permit, tolerance inter­
vals or control charts. The flow chart in Section 5 aids in detenaining which
method is applicable. /

If a 'acility in compliance IDnitoring has a constant -.xi~ concentra­
tion limit (MCl) or alternate concentration limit (ACL) specified, then the
appropriate comparison is with a constant. Methods for comparison with MCLs
or ACLs are presented in Section 6, which contains a flow chart to aid in
detena1ning which _thad to use.

Finally, when IIOre than one year of data have been collected from each
well. the facility owner or operator ..y find it useful to perform intra-we"
comparison~ over ti. to supplement the other ..thods. This is ~t a regula­
tory requirement, but it could provide the facility owner or operator with
information about the site hydrogeology. This ..thad of analysis _y be used
when s~fficient data from an individual uncont..1nated well exist and the data
allow for the identification of trends. A ree~nded control chart procedure
(Starks. 1988) suggests that a minimum backgroUnd sample of eight Observations
is needed. Thus an intra-wtll control chart ap"roach could begin after the
first cOlllPlete year of data collection. These .tnods ere "resented .1n
Section 7.
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FLOWCHART OVERVIEW

\

Detection Monitoring
Compliance Monitoring

or Corrective Action

Background MCUACL

with
Background!

Compliance Wen
Comparisons -- - - --1
(Section 5) I

I
I
I
I
1._-

Intra-WeD
Comparisons
If more than
1Yr. of Data

Control Charts
(Section 7)

withr----
I
I
I
I
I
I

---""

Comparisons
with MCUACLs

(Section 6)

F1qure 4-1. Flo-ehart overview.
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4.2 CHECKING DISTRIBUTIONAL ASSUMPTIONS
:

The purpose of this section 15 to ,rov1. users with .thods to check the
distributional USUIIPt10ns of the statistical ,rocedures ",u' ended for
ground-water ~n1tor1ng. It is IIIPhasized that one need not do an extensive
study of the distribution of the data unless a nonpar_tric _thod of analy­
sis 15 used to evaluate the data. If the owner or operator wishes to trans­
fOnl the data in lieu of using a nonpar_tric .thad. tt ..st first be shown
that the untransformed data are inappropriate for a nonnl theory test.
Similarly, if the owner or operator wishes to use nonparametric ..thads, he or
she ..st demonstrate that the data do violate no~l1ty assu~tions.

EPA has adopted this approach because ~st of the statistical procedures
that .et the criteria set forth in the regulations are robust with respect to
departures from many of the nonnl distributional assumptions. That is, only
-extreme violations of assumptions will result in an incorrect outcome of a
statistical test. Moreover, it is only in situations where it is unclear
whether cont.-ination is present that departures from assumptions will alter
the outcome of a statistical test. EPA therefore believes that it is protec­
tive of the environment to adopt the approach of not requiring testing of
assumptions of a normal distribution on a wide scale.

It should be noted that the noMIl1 distributional assumptions for
statistical procedures apply to the errors of the observations. Application
of the distributional tests to the observations thllllselves lIlY lead to the
conclusion that the distribution does not fit the observations. In some cases
this lack of fit -.y be due to differences in means for the different wells or
some other cause. The tests for distributional ass~tions are best applied
to the residuals from a statistical analysis. A residual is the difference
between the original observation and the Yalue predicted by a .adel. For
example, in analysis of variance, the predicted values are the group ..ans and
the residual is the difference between each observation and its group .an.

tf the conclusion from testing the assUIIPtions is that the assumptions
are not adequately ..t, then a transfo~tion of the data 8IY be used or a
nonpar_tr1c statistical procedure selected. Many types of concentration
data have been reported in the l1terature to be adequately described by a 109­
noral distribution. That is. the natural logaritM of the original observa­
tions has been found to follow the nonIIl distribution. Consequently, if the
norul distributional uSUllPt10ns are found to be Yiolated for the original
data, a transforllltion by taking the natural logaritM of each observation is
suggested. Thts ass~s that the data are all positive. If the log trans­
fo~tion does not adequately no~l1ze the data or stabil1ze the variance,
one should use a nonpar..tr1c procedure or seek the consultation of a profes­
sional statistician to deteraine an appropriate statistical procedure.

The f01 lowing sections present four selected approaches to check for
nonul1ty. The first option refers to literature citation. the other three
are statistical procedures. The choice is left to the user. The availability
of statistical software and the userls f.111arity with it will be a factor in
the choice of a .thod. The coefficient of variation .thad. for example,
requires only the CQlPUtation of the ..an and standard deviation of the data.
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Plotting on probability paper can -be done by band but ~s, tedious with
.ny data sets. However, the =-erc1al Statistical Analysis System (SAS)
software package provides a cc.puterized version of • prabab111ty plot in its
PROC UNIVARIATE procedure. SYSTAT, a package for PCs also has a probability
plot procedure. The chi-squared test 1s nOt raadl1y ayailabl. tbrough caaaer­
cia' software but can be progrUDed on a PC (for BUlPle in LOtUS 1-2-3) or in
any other (statistical) software language with which the user is furniar.
The lIIIOunt of data available will also influence the choice. All tests of
distributional assumptions require a fairly large sample size to detect
~erate to small deviations from norma11ty. The chi-squared test requires a
minimum of 20 samp'es for a reasonable test.

Other statistical -procedures are available for checking distributional
assump.tions. The .,re advanced user 1.s referred to the KollllOgorov-Smirnov
test (see, for example, Lindgren, 1976) which is used to test the hypothesis
that data come from a specific (that is, completely specified) distribution.
The no.....l distribution assumption can thus be tested for. A .inimum SImPle
s1ze.of 50 is recommended for using this test.

A IIOdif1cation to the Kolmogol"Ov-Smirnov test has been developed by
Li',iefors who uses the sample lean and standard deviation from the data as
the parameters of the distribution (Lil1iefors, 1967). Again, a sample size
of at least 50 is recOIIIIInded.

Another alternative to testing for normality is provided by the rather
involved Shapiro-Wilk's test. The interested user is referred to the relevant
article in Biometrllca by Shapiro and Wilk (1965).

4.2.1 Literature Citation

PURPOSE

An owner or operator lIlY wish to consult literature to determine what
type of distribution the ground-water .,nitor1ng data for a specific con­
stituent are likely to follow. This lIlY avoid unnecessary cOlllPutations and
aake it easter to deteT'lline whether there is statistically significant evi­
dence of cont.inltion.

One silple way to select a procedure based on a specific statistical dis­
tribUtion, is by citing a relevant published reference. The owner or operator
I14Y find papers that discuss data resulting frail SllllPl1ng ground water and
conclude that such data for a particular constituent follow a specified dis­
tribution. Citing such a reference lIlY be SUfficient justification for using
I _thad based on that distribution, provided that the data do not show evi­
dence thlt the assUIPtions are violated.

To justify the use of • l1terature citation, the Owner or operator needs
to .eke sure that the reference cited considers the distrfbut'on of dati for
the specific CQllPOUnd being .,n1tored. In addition, he or she ..st evaluate
the si.11ar1ty of thetr stte to the sfte that was dtscussed in the literature.
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especially si.l1ar hydrogeologic and potential eam.1nant -1:hara~istics.
However. because 1IInY of the CQllPOUnds -.Y not be studied in the T1terature,
extrapolations to CCJlllPOUnds with s1.11ar d8ical characteristics ed to sites
with si.11ar hydrogeologic conditions are .1so acceptable. -autcally. the
owner or operator needs to provide sa. reason or justification for choosing a
particular distribution. \, _

4.2.2 Coefficient-of-Variation Test

Many statistical procedures usu.! that the data are normally distrib­
uted. The concentration of a hazardous constituent in ground water is inher­
ently nonnegative. while the normal distribution allows for negative values.
However. if the ..an of the normal distribution is sufficiently above zero,
the distribution places very little probability on negative observations Ind
is still a valid approximation.

One simple check that can rule out use of the no~l distribution is to
calculate the coefficient of vlriation of the data. The use of this method
was required by the former Part 264 Subpart F regulations pursuant to Sec­
tion 264.97(h)(l). Because IDOst owners and operators as well IS Regional
personnel are already familiar with this procedure. it will probably be used
frequently. The coefficient of variation. tv. is the standard deviation of
the observations, divided by their ..an. If the normal distribution is to be
a valid IIK)del. there should be very little probability of negative values.
The ruaber of standard deviations by which the ..an exceeds zero determines
the probability of negative values. For example. if the ..an exceeds zero by
one standard deviation. the normal distribution will have less than 0.159
probability of a negative observation.

Consequently. one can calculate the standard deviation of the observa­
tions. calculate the ..an. and form the ratio of the standlrd deviation di­
vided by the .-an. If this ratio exceeds 1.00. there is evidence that the
data are not normal and the normal distribution should not be used for those
data. (There are other possibilities for nonnoru1fty. but this is a simple
check that can rule C)\It obviously nonnorul data.)

PURPOSE

This test is a sillPle check for evidence of gross nonnonaality in the
ground-water .anitoring data.

To apply the ooefficient-of-variation check for norulity proceed as fol­
l~s.

Step 1. Calculate the s.-ple lean. i. o~ n observations Xi' i-I•••••n.

n
y - (J: X, )/n

1-1
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Step 2. Calculate the sample standard deviation, S.

S - [~ (X i .- Y) 2/(n • 1)] 1/2
1-1

Step 3. Divide the sample standard deviation by the sample ..an. This
ratio is the CV.

tv - sfi.
Step 4. Determine if the result of Step 3 exceeds 1.00. If so, this is

evidence that the normal distribution does not fit the data adequately.

EXAMPLE

Table 4-1 is an example data set of chlordane concentrations in 24 water
samples from a fictitious site. The data are presented in order from least to
greatest.

TABLE 4-1. EXAMPLE DATA FOR COEFFICIENT.
OF·VARIATION TEST

Chlordane concentration (ppm)

0.04
0.18
0.18
0.25
0.29
0.38
0.50
0.50
0.60

'DissolYed phue 0.93
0.97
1.10
1.16
1.29
1.37
1.38
1.45
1.46-_••••~~-~---~- 2.58
2.69
2.80

1..1sc1ble phue 3.33
4.50
'.60

4-7
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Applying the procedure steps to the data of Table 4-1. we have:

Step 1. -X• 1.52

Step 2. S • 1.56

Step 3. tv· 1.56/1.52 • 1.03

Step 4. Because the result of Step 3 was 1.03. which exceeds 1.00. w~
conclude that there is evidence that the data do not adequately follow the
normal distribution. As will be dfscussed fn other sections one would then
either transform the data. use a nonparametric procedure. or seek professional
guidance.

NOTE. The owner or operator lDay choose to use parametric tests since
1.03 is so close to the limit but should use a transformation or a nonpara­
..tric test if he or she believes that the parametric test results would be
fncorrect due to the departure frOID normality.

4.2.3 Plotting on Probability Paper

PURPOSE

Probability paper is a visual aid and diagnostic tool in determining
whether a set of data follows a normal distribution. Also. approximate esti­
mates of the mean and standard deviation of the distribution can be read from
the plot.

PROCEDURE

/- Let X be the variable; Xl. X2 •••• 'Xi , ••• ,Xn the set of n observations.
The values of Xcan be raw data. residuals. or transformed data. .

Step 1. Rearrange the observations in ascending order:

X(l). X(2) •••••~(n).

Step 2. eo.pute the CUILIlat1ve frequency for each distinct value X{i)
as (1/{n+l» x l00S. The divisor of (n+l) is a plotting convention to avoid
cumulative frequencies of 1001 which would be at infinity on the probability
paper.

If a value of Xoccurs .cre than once. then the corresponding value of 1
increases appropriately. For exuple. if X(2) • X(3), then the cu",'ative
frequency for X(l) 15 100*1/{n+l), but the cumulative frequency for X(2) or
X(3) is lOO*(1+2)/(n+l).

Step 3. Plot the distinct pairs [X(1), (1/n+l» x 100) values on prob­
abil1ty paper (this fNIPe'" is a-erc1al1y available) using an IJ)propr1ate
seale for X Oft tile har1zcmta1 axis. The vertical axis for the CUIIllative
frequencies is already scaled fro- 0.01 to 99.991.

-



If the points fall roughly on a straight line (the line ca. be drawn with
a ruler), then one can conclude that the underlying distribution is approxi-

. , utely normal. Also, an est1l11te of the .an and standard .v1at1on can be
_de froll the plot. The horizontal 11ne drawn through 501 cuts the plotted
line at the .an of the X values. The horizontal line gQ1ng through 84% cuts
the 11ne at a· value corresponding to the .an plus one standard deviation. By
subtraction, one obtains the standard deviation.

REFERENCE

obOrt, W. J., and F. J. Massey, Jr. Introduction to Statfstical Analysis •
McGraW-Hill, Fourth Edition, 1983.

EXAMPLE

Table 4-2 lists 22 distinct chlordane concentration values (X) along with
their frequencies. These are the sue values as those listed in Table 4-1.
There is a total of n-24 observations.

Step 1. Sort the values of X in ascending order (column 1).

Step 2. Compute (100 x (i/25)I, column 4, for each distinct value of X,
based on the values of i (column 2).

Step 3. Plot the pairs (Xi' 100x(i/25») on probability paper (Fig­
ure 4-2).

INTERPRETATION

The points in Figure 4-2 do not fallon a straight line; therefore, the
hypothesis of an Underlying normal distribution is rejected. However, the
shape of the curve indicates a lognormal distribution. This is checked in the
next step.

Also, 1nforNt1on about the solUbility of chlordane in this example is
helpful. Chlordane has a solUbility (in water) that ranges between 0.0156 and
1.85 I19/L. Because the last six _asurements exceed this solUbility range,
contamination is suspected.

Next, take the natural logarithll of the X-values (In(X)) (column 5 1n
Table 4-2). Repeat Step 3 above using the pairs [In(X), lOOx(i/25»). The re­
sulting plot is shown in Figure 4-3. The points fall approx1111tely on a
straight 11ne (hand-drawn) and the hypothesis of lognormal1ty of X, 1.e.,
In(X) is no~lly distributed, can be accepted. The.an can be estimated at
slightly below 0 and the standard deviation at about 1.2 on ·the log scale.

4.2.4 The Chi-Squired Test

The chi-squired test can be used to test whether a set of data properly
fits a specified distribution within I specified probability. Most introdUC­
tory courses in statistics expll1n the chi-sqUired test, and its familiarity
Il1O"9 owners and operltors as well as Regional personnel lIlY IIIke it a
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TABLE 4-2. EXAMPLE DATA COMPUTATIONS FOR
PROBABILITY PLOTTING ,

..-Concentration Absolute
X frequency 1 lOOx(1/(n+l» In(X)

",
0.04 1 1 4 -3.22

\

0.18 2 3 12 -1.71
0.25 1 4 16 -1.39
0.29 1 5 20 -1.24
0.38 1 6 24 -0.97
0.50 2 8 32 -0.69
0.60 1 9 36 -0.51

Dissolved phase 0.93 1 10 40 -0.07
0.97 1 11 44 -0.03
1.10 1 12 48 0.10
1.16 1 13 52 0.15
1.29 1 14 56 0.25
1.37 1 15 60 0.31
1.38 1 16 64 0.32
1.45 1 17 68 0.37

~~___~___• _____~____ 1.46 1 18 72 0.38
2.58 1 19 76 0.95
2.69 1 20 80 0.99

I_1scible phase 2.80 1 21 84 1.03
3.33 1 22 88 1.20
4.50 1 23 92 1.50
6.60 1 24 96 1.89

~
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Figure 4-2. Probability plot of raw chlordane concentrations.
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frequently used .-thod of analysis. In this application the asSkmed distribu­
tion is the normal distribution, but other distributions could .lso be used.
The test consists of defining cells Or ranges of values and dete~in1ng the
expected number of observations that would fall in each eell according to the
hypothesized distribution. The actual number of data points 1n each cell is
compared with that predicted by the distribution to jUdge theldequacy of the
fit.

PURPOSE

The chi-squared test is used to test the adequacy of the assumption of
normality of the data.

PROCEDURE

step 1. Determine the appropriate Nmlber of cells. K. This number
usually ranges from 5 to 10. Divide the ,.nlber of observations, N. by 4.
Dividing the total number of observations by 4 w11l guarantee a .in"mum of
four observations necessary for each of the K • N/4 cells. Use the largest
whole number of this result, using 10 if the result exceeds 10.

Step 2. 'Standardize the data by subtracting the sample mean and divid­
ing by the sample standard deviation:

Li • (Xi .. 1)/S

Step 3. Determine the number of observations that fall in each of the
cells defined according to Table 4-3. The expected nulber of observations for
each cell is N/K, where N is the total I'Ulber of observations and K is the
~er of cells. Let N1 denote the observed l"UIber in cell 1 (for 1 taking
values from 1 to K) and let Ei denote the expected nu-ber of observations in
celli. Note that in this case the cells are chosen to .ake the E1's equal.

TASL£ 4-3. CELL BOUNDARIES FOR THE CHI-SQUARED TEST

5 6
Number of cells (K)

97 8 10

Ce11 boundaries -0.84 -0.97 -1.07 -1.15 -1.22 -1.28
for equal ex- -0.25 -0.43 -0.57 -0.67 -1.08 -0.84
pected cell 0.25 0.00 -0.18 -0.32 -0.43 -0.52
sizes with the 0.84 0.43 0.18 0.00 -0.14 -0.25
nonn.l d1str1- 0.97 0.57 0.32 0.14 0.00
bution 1.07 0.67 0.43 0.25

1.15 1.08 0.52
1.22 0.84

1.28
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Step 4. Calculate the chi-squared statistic by th. fOMIUla ~ow:
~

·K (Hi - £1)1
Xl - z E

1-1 1

Step 5. Compare the calculated result to the table of the chi-squared
distribution with K-3 degrees of freedom (Table 1. Appendix B). Reject the
hypothesis of normality if the calculated value exceeds the tabulated value.

REfERENCE

Remington. R. D.. and M. A. Schork. Statfsti~ with AppUcatfons to the
BfDlogica1 and Health Scienca. Prentice-Hall. 1970. 235-236.

EXAMPLE

The data in Table 4--4 are N - 21 residuals from an analysis of variance
on dioxin concentrations. The analysis of variance assumes that the errors
(estimated by the residuals) are normally distributed. The chi-squared test
is used to check this assumption.

Step 1. Divide the number of observations. 21. by 4 to get 5.25. Keep
only the integer part. 5. so the test will use K- 5 cells.

Steg 2. The sample mean and standard deviation are calculated and found
to be: X - 0.00. S - 0.24.. The data are standardized by subtracting the mean
(0 in this case) and dividing by S. The results are also shown in Table 4--4.

Step 3. DeteT'll1ne the l'IIIIber of (standardiZed) observations that fall 1

into the five cells determined from Table 4--3. These divisions are: (l) less
than or equal to -0.84. (2) greater than -0.84 and less than or equal to
-0.25. (3) greater than -0.25 and less than or equal to +0.25. (4) greater
than 0.25 and less than or equal to 0.84. and (5) greater than 0.84. We find
4 observations in cell 1. 6 in cell 2. 2 in cell 3. 4 in cell 4, and 5 in
cellS.

Step 4. Calculate the chi-squared statistic. The expected rMlber in
each"cell is N/K or 21/5 - 4.2.

2 _ J4 - 4.2) 2 + + ,<5 - 4.2l! _ 2 10
X 4.2 ••• 4.2 •

Step 5. The critical value at the 51 level for a chi-squared test with
2 (K-3 - 5-3 - 2) degrees of freedc. is 5.99 (Table 1. Appendix B). Because
the calculated value of 2.10 is less than 5.99 there is no evidence that these
data are not nanNl.
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TABLE 4-4. EXAMPLE DATA FOR CHI-SQUARED
TEST l

Standardi~ed
Observation Residua' residua'

1 -0.45 -1.90
2 -0.35 -1.48
3 -0.35 -1.484 . .0.22 -0.93
5 -0.16 -0.67
6 -0.13 -0.55
7 -0.11 -0.46
8 -0.10 -0.42
9 -0.10 -0.42

10 -0.06 -0.25
11 -0.05 -0.21
12 0.04 0.17
13 0.11 0.47
14 0.13 0.55
15 0.16 0.68
16 0.17 0.72
17 0.20 0.85
18 0.21 0.89
19 0.30 1.27
20 0.34 1.44

-~ 21 0.41 1.73
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INTERPRETATION ,.
~

The cell boundaries are deteMiined f~ the no~l distribution so that
equal numbers of observations should f.ll in each cell. If there are large
differences between the number of- observations in each cell and that predicted
by the normal distribution, this is evidence that the data\ are Mt normal.
The chi-squared statistic is a nonnegative statistic that increases as the
difference between the predicted and observed number of observations in each
cell increases.

If the calculated value of the chi-squared statistic exceeds the tabu­
lated value, there is statistically significant evidence that the data do not
follow the normal distribution. In that case, one would need to do a trans­
formation, use a nonparametric procedure, or seek consultation before inter­
preting the results of the test of the ground-water data. If the calculated
value of the Chi-squared statistic does not exceed the tabulated critical
value, there is no significant lack of fit to the normal distribution and one
can proceed assuming that the assumption of norllllity is adequately lllet.

REMARK

The chi-squared statistic can be used to test whether the residuals from
an analysis of variance or other procedure are normal. In this case the
degrees of freedom are found by (number of cells .1nus one minus the number of
parameters that have been estil11ted). This I14Y require IIOre than the sug­
gested 10 cells. The ch;-squared test does require a fairly large sample size
in that there should be generally at least four observations per cell.

4.3 CHECKING EQUALITY OF VARIANCE: BARTLETT'S TEST

The analysis of variance procedures presented in Section 5 Ire often mere
sensitive to unequal variances than to melerate departures freal normality.
The procedures described in this section allow for testing to determine
whether group variances are equal or differ significantly. Often in practice
unequal variances and nonnonaal1ty occur together. Sc:.eti_s a transformation
to stabilize or equalize the variances also produces a distribution that is
D)re nearly noT'llll. This scaeti.s occurs if the initial distribution was
positively skewed with variance increasing with the IUlber of observations.
Only Bartlett's test for checking equality, or ~eneity, of variances is
presented here. It encc.passes checking equality of .ere than two variances
with unequal s.-ple sizes. Other tests are available for special cases. The
F-test is I special situation when there are only two groups to be compared.
The user is referred to classical textbooks for this test (e.g., Snedecor and
Cochran, 19BO). In the case of equal sample sizes but .ere than two variances
to be Complred, the user 81ght want to use Hartley'S or .ax1mum F-ratio test
(see Nelson, 1987). This test provides a quick procedure ~o test for variance
homogeneity. -
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PURPOSE
. "

",' Bartlett's test is a test of hoIIogene1ty of variances. 1n other words,
it is a .ans of testing whether a ftIIIber of population variances of noT'llal
distributions are equal. HoIIogeneity of variances is In uSUllPtion ..de in
analysis of variance when COIIPar1ng concentrations of constituents between
background and COIIPl1ance wells, or ~ng ee-pl1ance we11s. It should be
noted that Bart1ett 's test is 1tse1f sens1t he to nonnonR11 ty 1n the data.
With long-tailed distributions the test too often rejects equality (homo­
geneity) of the variances.

PROCEDURE

AssUIM that data froll k wells are available and that there are n1 data
points for well i.

, Z 1
Z Step 1. Compute the k sample variances Sl' ••••Sk. The sample variance,

S ,·1s the square of the sample standard deviation and is given by the general
equation '

2 n 2
S - t (Xi-I) /(n-1)

i-1

where 1 is the average of the X1, ••••Xn values. Each variance' has associated
with it f1 - "1-1 degrees of freedOll. Take the natural, logarithm of each
variance, l"(S~) •••• tln(S:).

Step 2. Compute the test statistic

X2 -

..

thus' is the total s.-ple size .inus the nulber of wells (groups); and

k
Spl • t I f 1S;. is the pooled variance across wells.

1-1

Step 3. Using the chi-squared table (Table 1. Appendix B), find the
critical value for XI with (t-1) degTeeS of f~ at a predeterwined signif­
icance level. for example. 51•
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INTERPRETATION

If the calculated value X2 15 larger than the tabulated value. then con­
clude that the variances are not equal at that significance level. ,

REfERENCE

Johnson N. L.. and F. C. Leone. Statf.ltfcs and £zperimentell Dafgn in
Engine.ring and tM Pltyaical SeLene... Vol. I. John Wiley and Sons. New York.
1977.

EXAMPLE

Manganese concentrations are given for k-6 wells in Table 4-5 below.

TABLE 4-5. EXAMPLE DATA FOR BARTlETT I S TEST

Sampling
date We" 1 Well 2 We" 3 Well 4 Well 5 Well 6

January 1 50 46 272 34 48 68
February 1 73 77 171 3.940 S4 991
March 1 244 32 54
Aprfl 1 202 S3

"1 -
4 2 4 2 2 3

~-- f1 - "1-1 - 3 1 3 1 1 2
~

S1 - 95 22 112 2.762 3 537

S1
2

-
9.076 481 12.454 7.628.418 8 288.349

'1*$1 2
- 27.229 481 37.362 7.628.418 8 576.698

1n(S1 2
) -

,9 6 9 16 2 13

'1'*1"(S1 2
) • 27 6 28 16 2 25

Step 1. i Compute the six sample variances and take their natural
logarithm. In(Sl)) ••••• In(S.). as 9, 6••••• 13, respectively.

.
"

:

Step 2. • CcIIpute
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This is the sum of the last line in Table 4-5.

•

•

6
eo.pute f· Z f i • 3 + 1 +•••+ 2 • 11

1·1

CoIIpute S~

I

2In(Sp) - 14

(8,270,195) - 751,836

.-

S
2 1 6 2 1" 1
P - rr Z f i S1 • rr (27.299 +•••+ 576.698) - rr

1-1

• Take the natural logarithm of S;:
• Compute X2 - 11(14) - 105 - 44

Step 3. The critical X2 value with 6-1 - 5 degrees of freedom at the 5%
significance level is 11.1 (Table 1 in Apiend1x ,). Since 44 is larger than
11.1. we conclude that the six variances S •••••S , are not homogeneous at the
51 significance level. 1 I

INTERPRETATION

The sllllPle variances of the data from the six wells were compared by
..ans of Bartlett's test. The test was significant at the 5% level. suggest-

'1ng that the variances are significantly uneq-ual (heterogeneous). A 10g­
transform of the data can be done and the same test performed on the trans­
formed data. Generally. if the data followed skewed distribution, this ap­
proach resolves the problem of unequal variances and the user can proceed with
an ANOVA for example.

On the other hand. unequal variances among well data could be a direct
indication of well contlllinat1on, since the individual data could come from
different distributions (i.e•• different ..ans and variances). Then the user
Illy wish to test which variance differs f~ which one. The reader is
referred here to, the literature for a gap test of variance (Tukey. 1949;
David. 1956; or Melson. 1987).

NOTE

• In the Clse of k-2 variances, the test of equality of variances is
the F-test (Snedeeor and Cochran. 1980).

• Bartlett's test simplifies in the case of ~a' s~'e sizes. ni-n,
i·l •••• ,k. The test used then is Cochran's test. ~hran~test focuses on
the largest variance and compares it to the sum of all the variances. Hartley
introduced a quick test of homogeneity of variances that uses the ratio of the
largest over the saal1est variances. Technical aids for the procedures under
the usumpt10n of equal s&IIPle sizes are given by L. S. Melson in the Journal
of Quality Technology, Vol. 19, 1987, pp. 107 and 165.
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SECTION 5

BACKGROUND WELL TO COMPLIANCE WELL COMPARISONS

. There are any situations in ground-water IIOnitoring that call for the
CQIlParison of data f'rOll different wells. The assumption is that a set of
uncontaminated wells can be defined. Generally these are background wells and
have been sited to be hydraul1cally upgradient f1"Oll the regulated unit. A
second set of wells are sited hydraul1cally downgradient fram the regulated
unit and are otherwise known as COIIPliance wells. The data froar these com­
pliance wells are compared to the data fram the background wells to determine
whether there 15 any evidence of contuinat1on 1n the comp11ance we11 s that
would presumably result from a release from the regulated unit.

If the owner or operator of a hazardous waste faci11ty does not have
reason to suspect that the test assulIPtions of equal variance or normal1ty

. will be violated, then he or she .ay simply choose the parametric analysis of
variance as a default ..thod of statistical analysis. In the event that this
.thod indicates a statistically significant difference between the groups
being tested, then the test uSUIIPt10ns should be evaluated.

This situation, where the relevant CQIIIPar1son is between data froll back­
ground. wells and data f'rOll cDIIPltance wells. is the topic of this section.
Compari sons between background well data and COIIPli ance well data ..y be
cilled for in all phases of mnitor1ng. This type of COIIParison is the gen­
erll case for detection mn1tor1ng. It is also the usual approach for com­
pliance .an1tor1ng if the cc.pl1ance 11.1ts are deteT'liined by the background
well constituent concentration levels. CoIIpounds that are present in back­
ground wells (e.g.. naturally occurring ..tals) are IIOst appropriately
evaluated using this COIIParison ..thod.

Section 5.1 provides 4 flowchart and overview for the selection of
.thods for cOllParison of backg1'"OUnd well and cc.pl1ance well data. Sec­
tion 5.2 contafns analysis of variance ..thoas. These provide ..thods for
directly CQIIparing badcgrourid well data to CQIII)l1ance well data. Section 5.3
describes a tolerance interval approach. where the background well data are
used to define tile tolerance 11.1ts for COIIParison with the cc.pl1ance wel 1
data. Section 5.4 contains an approach based on prediction intervals. again
using the background well data to detanrtne the prediction interval for com­
parison with the CQIIpl1ance well data. Methods for CCIIIPIJ'"1ng data to a fixed
COIIIPl1ance 11.it (an MeL or ACL) will be described in section I.
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5.1 SUMMARY FLOWCHART FOR BACKGROUND WELL TO COMPLIANCE WELL COMPARISONS,.
Figure 5-1 is a flowchart to aid in selecting the appropriate statistical

procedure for background well to COIIPliance ~ll comparisons. The "rst step
is to determine whether .cst of the observations are quantified (that is,
Ibove the detection limits) or not. Generally, if -ere than 50S of the obser­
vations are below the detection li.it (as .ight be the case with detection or
compHance IIOnftoring for volatl1i organics) then the appropriate compari son
is a test of proportions. The test of proportions compares the proportion of
detected values in the background wells to those in the COIPl1ance wells. See
Section 8.1 for a discussion of dealing with data below the detection limit.

If the proportion of detected values is 50% or -ere, then an analysis Of
variance procedure is the first choice. Tolerance limits or prediction i~ter­

vals are acceptable alternate choices that the user 8IY select. The analysis
of varance procedures give a -ere thorough picture of the situation at the
facility. However, the tolerance 11mit or prediction interval approach 15
acceptable and requires less CQDputation in .any situations.

Figure 5-2 is a flowchart to guide the user if a tolerance limits
approach is selected. The first step in using Figure 5-2 is to determine
Whether the facility is in detection monitoring. If so, much of the data may
be below the detection limit. See Section 8.1 for a discussion of this case.
which may call for consulting a statistician. If most of the data are quanti­
fied, then follow the flow chart to determine if normal tolerance limits can
be used. If the data are not normal (as determined by one of the procedures
in Section 4.2), then the logarithm transformation ..y be done and the trans­
formed data checked for normality. If the log data are normal, the lognormal
tolerance limit should be. used. If neither the original data nor the log­
transformed data are nonaal, seek consultation with 'a professional
statistician.

If a prediction interval is selected as the ..thod of choice, see Sec­
tion 5.4 for guidance in performing the procedure.

If analysis of variance is to be used, then continue with Figure 5-1 to
select the specific .thod that 11 appropriate. A one-way analysis of vari­
ance is recOIIBInded. If the data show evidence of sluonal1ty (observed, for
example, in a plot of the data over t1..), a trend analysis or perhaps a two­
way analysis of variance 8IY be the appropriate choice. These instances lDay
require consultation with a professional statistician.

If the one-way analysis of variance is appropriate, the cQlPutat10ns are
performed, then the residuals are cheeked to see l' they ...t the assumptions
of normality and equal variance. If so, the analys1s concludes. If not, a
logarithm transfonilat·10n uy be tried and the residuals f~ the anal.'s1s of
variance on the log data are checked for u$Ullpt10ns. If these sttll do not
adequately sattsfy the asSUllPt1ons. then a one-wQ nonpar..tr1c analysis of
variance .ay be done, or professional consultation -.y be sought.
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Figure 5-1. Background well to compliance we]l comparisons.
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Figure 5-2. Tolerance 11.its: alternate approach to background
we11 to COIIP11ance we11 campar1 sons.
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5.2 ANALYSIS OF VARIANCE

If cont.inltion of the ground water occurs f.,. the waste disposal
facility and if the .cnitoring wells are hydraulically upgradient Ind
hydraulically downgradient fl"Oll the stte, then cont.inat1on is unlikely to
change the levels of a constituent in all wells by the s.. ~nt. Thus,
contamination from I disposal site can be seen IS differences in average con­
centration IIIOng wells, and such differences can be detected by analysis of
variance.

Analysis of vlrilnce (ANOVA) is the nile given to I wide variety of sta­
tistical procedures. All of these procedures compare the leans of different
groups of observations to dete~ine whether there are any significant differ­
ences IJDOng the groups, and .1f so, contrast procedures Illy be used to
detenaine where the differences l1e. Such procedures are also known in the
stltistical literature as general linear .cdel procedures.

Because of its flexibility and power, analysis of variance 15 the pre­
ferred lethod of statistical analysis when the ground-water IIOnitoring is
based on a coarparison of background and campl1ance well data. Two types of
analysis of variance are presented: parlllltric and nonparametric one-way
analyses of variance. Both _thods are appropriate when the only factor of
coneern is the different ICnitoring wells at a given sampling period.

The hypothesis tests with parametric analysis of variance usually assume
that the errors (residuals) are normally distributed with constant variance.
These assumptions can be checked by saving the residuals (the difference
between the observations Ind the values predicted b~ the analysis of variance
lledel) and using the tests of USUIIPtions presented in section 4. Since the
data will generally be concentrations and since concentration data Ire often
found to follow the lognoT'llll distribution, the log transfol"lll&tion is sug­
gested if substantial violations of the usu.ptions Ire found in the analysis
of the original concentration data. If the residuals f~ the transformed
data do not ...t the par..tric ANOVA requ1~nts, then nonparametric
approaches to analysis of variance are ava1llble using the ranks of the obser­
vations. A one-way analysis of vlriance using the ranks is presented in
Section 5.2.2•.

When slveral sampling periods have been used and it is 1~ortant to con­
sider the sampling periods as I second factor, then two-way analysis of vari­
ance, plr...tric or nonparametric, is appropriate. This would be one way to
test for and adjust the data for seasonality. Also, trend Inalysis (e.g ••
ti. series) lIlY be used to identify seasonal1ty in the data set. If neces­
sary, data that exhibit sluanal trends can be adjusted. Usually, however,
seuona' variation w111 affect all wells at a facility by ..arly the same
IIIOUnt, and in .cst ci~stances, corrections will not be neceSSlry. Fur­
ther, the effects of seasonality will be SUbstantially rtduCid by silUltane­
ously COIIParing aggregate COIIPl1ance well data to background well data.
Situations that require an analysis procedure other than a one-way ANOVA
should be referred to a professional statistician.
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5.2.1 One-Way Parametric Analysis of Variance
~

•In the context of ground-water .cn1tor1ng, two situations exist for which
a one-way analysis of variance 11 .cst applicable:

• Data for a water quality parameter are available ,fro- several wells
but for only one ti. period (e.g., .cn1tor1ng has just "begun).

• Data for a water quality parameter are available fro. several wells
for several ti. periods. However, the data do not exhibit sea-
sonality. '

In order to apply a par_tric one-way analysis of variance. a minimum
number of observations is needed to give leaningful results. At least p ~ 2
groups are to be cQIIIPared (i.e., two or 80re wells). It is recOlllDended that
each group (here, wells) have at least three observations and that the total
sample size, N, be large enough so thlt N-p ~ 5. A variety of combinations of
groups and number of observations in groups will fulfill this .in1l11UlD. One
sampling interval with four independent samples per well and at least three
wells would fulfil' the minimum slmP,e size requirements. The wells should be
spaced so as to maximize the probability of intercepting I plume of contamina­
tion. The samples should be tlken far enough apart in time to guard against
autocorrelation.

PURPOSE

One-way analysis of variance is a statistical procedure to determine
whether differences in ..an concentrations' among wells, or groups of wells,
are statistically significant. For exa.ple, is there significant contamina­
tion of one or 11)" coaapl1ance wells as CClIIPared to background wells?

PROCEDURE

Suppose the regulated unit has p wells and that n1. data points (concen­
trations of a constituent) are available for the 1th well. These data can be
frca lither a single slllPl1ng period or froll .ere than one. In the latter
case, the user could check for seasonal1ty before proceeding by plotting the
data over time. Usually the COIIPUtation will be done on a CCIIIPuter using a
commercially available progr... However. the procedure is presented so that
cOIIPUtations can be done using a desk calculator. 1f necessary.

p
Step 1. Arrange the N· I n, data points in a data table as follows

, 1.1
(N is the total s1IP1. size at this specific regulated unit):
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Well Tota' well Mean
(fnll ! roll

Observations SteD 1\ teD 2\

We" No. 1 -Xl1··········X1n Xl. I.. Xl.
2 • 1
3 •
• • -u Xul Xu. Xu.
• •
• • -p Xpl··········Xpn Xp. Xp.

"D

-X X
•• • •

step 2. Compute well tatals and wel' ..ans as' fallows:

n1Xi - % x1j ' tatal of all n1 observations at well 1
• j-1

Ii - -1 Xi • average af all n1 observations at we" 1
• n1 •

p n1X - % z X1j ,. grand total of all n1 observations
•• 1-1 j-l

i .. - *X~. • grand lean of all observations

These totals and .ans are shown in the last two col.,.s of the table above.

Step 3•. COIIPute the SUII of squares of differences between wel 1 .ans
and the grand lean:

P P 1 1
. tt· 1ls - E n1 (Ii - I )2 - E - Xf - I X2--we 1-1 • •• i-I n1 • ••

(The foraula on the far right is usually mst convenient for calculation.)
This SUII of squares has (p-l) degrees of 'rude. usociated with it and 15 a
leasure of the variabil1ty between wells.
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Compute the corrected total sum of squaresstep 4.

p n1 p
S~otal· Z Z (X1j - Y )2. Z
-~ 1-1 j-1 •• 1-1

.;
n
z1 X~j _ (X 2 1M)
j-1' ••

\ ,-

(The fOrDIJla on the far right is usually .cst convenient for calculation.)
This sum of squares has (N-1) degrees of freedom associated with it and is a
measure of the variability in the whole data set.

Step 5. Compute the sum of squares of differences of observations
within wellS fro- the well means. This is the sum of squares due to error and
is obtained by SUbtraction:

. SSErrcr - SSTotal - SSWells

It has issoc1ated with it (N-p) degrees of freedom and is a measure of the
variability within wells.

Step 6. Set up the ANOVA table as shown below in Table 5-1. The sums
of squares and their degree of freedom were obtained from Steps 3 through 5.
The mean square quantities are simply obtained by dividing each sum of squares
by its corresponding degrees of freedom.

TABLE 5-1. ONE-WAY PARAMETRIC ANOVA TABLE

--
Source of Degrees of
Variation Sums of squares freedom Mean squares F

, MS
Between wells SSwells 1)-1 MSwells F. Wells

MSError
• SSwells/(p-l)

Error (within SSError N-p MSError
well s)

• SSError/(N_p)
Total SSrotal N-1

Step 7. To test the hypothesis of ~al .ans for all ~ wells, cOllPute
F - MSwells/MS£rror (last colUin in Table 5-1). eo.pare this statistic to the
tabulated F statistic with (p-l) and (N-p) degrees of freedOll (Table 2. Appen­
dix B) at the 51 signiftcance level. If the calculated F value exceeds the
tabulated value, reject the hypothesis of equal we" .ans. Otherwise.
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'- conclude that there is no significant diffe,.nce Mtween the c:oItcentrations at
the p wells and thus no evidence of __11 contl81nation.

In the case of a significant F (calculated F greater thin tabulated F in
Step 7). the user will conduct the next few steps to deter8ine which compli­
ance well(s) is (are) cont.1nated. This will be done by calparing each com­
pHance well with the backgl'"OUnd well (s). Concentration differences between a
pair of background wells and COIIPHance wells or between a COIIPl1ance well and
a set of background wells are called contrasts in the ANOVA and .ult1ple com­
parisons fra.ework.

- Step 8. Detenaine if the significant F is due to differences between
background and compliance wells (computation of Bonferroni t-statistics)

Assume that of the p we11 s • u are backgroUnd we11 s and • are comp li ance
wells (thUS u + • - p). Then _ differences.-- compliance wells each compared
witt- the average of the background wells--need to be COIIPuted and tested for
statistical significance. If there are .ere than five downgradient wells. the
individual comparisons are done at the cCIIIIParisonwise significance level of
11. which may make the expe~i..ntw1se significance level greater than 5%.

• Obtain the total sample size of all u background wells.

u
nup - z n1i-1

• Compute the average concentration from the u background wells •

u
Y • ..!... II

up nup 1-1 i.

• Compute the a differences between the _verage concentrations from
each COIIP11ance we11 and the average background we11s.

Ii. - I up ' 1 - 1..... a

• CoIpute the standard error of each difference as

'.-

•

where MSError 15 determined frail ttIe AIIOVA table (Table 5-1) and n1
is the ..,lIIDer of observations at well 1.

Obtain the t-stat1st1c t - t("_p).(l~) fral Bonferron1's t-table
(Table 3. Appendix B) with. • 0.05 and (N-p) degrees of freedOll.
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• Compute the a quantities D1 - SE1 x t for each COIPltanc, well f.
If • > 5 use the entry for t(N_p) (1-0.01). That ts. use the entry
at a - 5. •

INTERPRETATION

If the difference Xi. - XuP exceeds the value 0i' conclude that the ith
compliance well has significantly higher concentrations than the average back­
ground we11s. Otherwise cane1ude that the we11 1s nat contlJlinated. Th is
exercise needs to be performed for each of the _ compliance wells individu­
ally. The test is designed so that the overall experi..ntwise error is 5~ -if
there are no more than five compliance wells.

CAUTIONARY NOTE

Should the regulated unit consist of II)re than five compHance wells,
then the Bonferroni t-test should be aodified by doing the individual compari­
sons at the 1% level so that the Part 264 Subpart F regulatory requirement
pursuant to §264.97{i){2) wil' be met. Alternately, a different analysis of
contrasts, such as Scheffe's, may be used. The more advanced user is referred
to the second reference below for a discussion of IUltiple comparisons.

REFEREHCES

Johnson, Harman L., and F. C. Leone. 1977. Sttzti.rtics and Experimental
Daign in Engin••ring and the Phyaical Sciencu. Vo1. II, Second Ed1t ion,
John Wiley and Sans, New York.

Miller, Ruppert G., Jr. 1981. Simultan.ous Stati.rtical Inference. Second
Edition, Springer-Verlag, New York.

EXAMPLE

Four lead concentration values at each of six wells are given in
Table 5-2 below. The wells consist of u-2 background and .4 comp11ance
wells. (The values in Table 5-2 are actually the natural logarithms of the
original lead concentrations.)

Step 1. Arrange the 4 x 6 - 24 observations in a data table as follows:

5-10
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TABLE 5-2. "EXAMPLE DATA FOR ONE-WAY PARAMETRIC ANALYSIS Oi VARIANCE

Natural log of Pb concentrations(p9(L)
Wi" * 1total " _an Well

Well No. Date: Jan 1 Feb 1 Mar 1 Apr 1 (Xi.) , (Xi'> std. dev.

1 Background wells 4.06 3.99 3.40 3.83 15.28 3.82 0.295
2 3.83 4.34 3.47 4.22 15.86 3.96 0.398

3 Compliance wells 5.61 5.14 3.47 3.97 18.18 4.55 0.996 (max)
4 3.53 4.54 4.26 4.42 16.75 4.19 0.456
5 3.91 4.29 5.50 5.31 19.01 4.75 0.771
6 5.42 5.21 5.29 5.08 n.:2! 5.25 0.142 (min)-

X••• 106.08 i .. • 4.42

Step 2. The calculations are shown on the right-hand side of the data
table above. Sample standard deviations have been computed also.

Step 3. Compute the between-well sum of squares.

SSwel's • *(15.28 2 + •••• + 21.01 2) - li X 106.08 2 • 5:76

",

Step 4.

.
with [6 (wells) - IJ • S degrees of freedom.

Compute the corrected tota1 SUII" of squares.

1SSTotal • 4.062 + 3.992 + •••• + 5.082 - }4 x 106.082 • 11.94

with [24 (observations) - 1) • 23 degrees of freedom.

Step 5. Obtain the within-well or error sum of squares by sUbtraction.

SSError • 11.94 - 5.76 • 6.18

with (24 (observations) - 6 (wells)} ."18 degrees of freedom.

Step 6. Set up the one-way ANOVA as in Table 5-3 below:
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TABLE 5-3. EXAMPLE COMPUTATIONS IN ONE-WAY PARAMETRIC AHOVA TABLE
I

Source of SulDs of Degrees of
variation squares freedom Mean squares F

Between wells 5.76 5 5.76/5 • 1.15 1.15/0.34 • 3.38

Error 6.18 18 6.18/18 • 0.34
(within we"s) -
Total 11.94 23

Step 7. The calculated F statistic is 3.38. The tabulated F value with
5 and 18 degrees of freedom at the CI • 0.05 level is" 2.17 (Table 2, Appen­
dix B). Since the calculated value exceeds the tabulated value, the hypothe­
sis of equal well means must be rejected, and post hoc co~arisons are
necessary.

Step 8. Computation of Bonferroni t-statist1cs.

• Note that there are four compl1Qnce wells, 50 m• 4 comparisons will
be _de

"up • 8 total number ~f samples in background wells
IXup • 3.89 average concentration of background wells

Compute the differences betWeen the four compliance wells and the
average of the two background wells:

is. - Xup • 4.55 - 3.89 • 0.66

i~. - Xup • 4.19 - 3.89 • 0.3

i •. - i up • 4.75 - 3.89 • 0.86

I •. - XuP • 5.25 - 3.89 • 1.36

• Compute the standard error of each difference. Since the number of
observations is the same for all cOlllPl1ance wells, the standard
errors for the four differences will be ec"lal.

ItSEi • (0.34 (1/8 + 1/4)] • 0.357 for 1 • 3••••• 6
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From Table 3. Appendix B. obtain the critical t w1th,(24 - 6) • 18
degrees of freedom. _ • 4. and for CI • 0.05. The approx1111te value
1s 2.43 obtained by linear interpolat10n between 15 Mel 20 degrees
of freedom.

\

Compute the quantities Di • Again. due to equal sample sizes. they
will all be equal.

Di • SEi x t • 0.357 x 2.43 • 0.868 for i • 3••••• 6

-

INTERPRETATION

The F test was significant at the 51 level. The Bonferron1 IIIlt1ple
comparisons procedure was then used to determine for which wells there was
statistically significant evidence of conte-ination. Of the four differences- - --Xi. - Xup • only Xle - Xup • 1.36 exceeds the critical value of 0.868. From
this it is concluded that there is significant evidence of contamination at
Well 6. WellS is right on the boundary of significance. It 1s likely that
Well 6 has intercepted a plume of contamination with Well 5 being on the edge
of the plume.

All the compliance well concentrations were somewhat above the mean con­
centration of the background levels. The.well means should be used to indi­
cate the location of the plume. The findings should be reported to the
Regional Administrator.

5.2.2 One-Way Nonparametr1c Analysis of Variance

This procedure is appropriate for interwell ea-parisons when the data or
the residuals from a parametric ANOVA have been found to be significantly dif­
ferent from norul and when a log transfoJ"lllt10n fatls to adequately norul1ze
the data. In ~ne-way nonparlJlletric ANOVA. the assUIIPt10n under the null
hypothesi's is that the data frail each well came frail the sue contiNlous dis­
tribution and hence have the sue -.dian concent1"'at1ons of a specific hazard­
ous constituent. The alternat1ves of interest are that the data f1"'Oll SOllIe
wells show increased levels of the hazardous constituent in question•

. The procedure fs called the Kruskal-Wall1s test. For _an1ngful results.
there should be at least three groups with a .fni.ul s.-ple size of three in
each group. For large data sets use of a cQIIPUte1'" program is TeCCllllended. In
the case of large data sets a good approx1Mt1on to the procedure is to re­
place each observatfon by fts rank (its "'rfcal place when the data are
ordered froll least to greatest) and pertOMI the (parl8etr1c) one-way analysis
of variance (Sectfon 5.2.1) on the ranks. Such an approach can be done with
SOllIe coaaerc1ally statfstfcal packages such as SAS.
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PURPOSE

The purpose of the procedure is to test the hypothesis that an wells (or
groups Of wells) around regulated units have the s.. -.dian concentration of
a hazardous constituent. If the wells are found to differ. poft-hDc compari­
sons are again necessary to detena1ne if contlll1nation is present!'

Note that the wells define the grgups. All wells will have at least four
observations. Denote the number of groups by K and the number of observations
in each group by n1' with N being the total number of all observations. Let
X11. denote the jth observation in the ith grgup, where j runs from 1 to the
number of observations in the grouP. n1' and 1 runs from 1 to the number of
groups, K.

PROCEDURE

step 1. Rank all N observations of the grgups from least to greatest.
Let Ri j denote the rank of the jth observat1on 1n the 1th group. As a
convention, denote the backgrgund welles) as group 1.

Step 2. Add the ranks of the observations in each group. Call the sum
of the ranks for the ith group Ri • Also calculate the average rank for each-group, R1 • Ri /ni.

Step 3. Compute the Kruskal~Wall1s statistic:

H • [Nth!) ~ i-] -3(N+l). i-I 1

Step 4. ConIpare the calculated value H to the tabulated chi-squared
value with (K-l) degrees of freedClll, where K is the Nlllber of groups (Table 1.
Appendix B). Reject the null hypothesis if the computed value exceeds the
tabulated critical v~lue.

Step 5. If the COIIPUteci value exceeds the value froll the chi-squared
table, ce-pute the critical difference for well ea-par1sons to the background.
assumed to be grgup 1:

for 1 taking values 2, ••• , K,

where Z(ca/(K-l» is the upper (aI(l-I»-percent11e f~ the standard nona.l

distribution found in Table 4, Appendix B. Note: If there are 80re thin five
campHanee wells at the. regulated. unit (K > 6), use Z.OIt the upper one­
percentile froll the standard nonaal distribution.
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Step 6. Form the differences of the average ranks for eaeh group to the
background and compare these with the critical values found in step 5 to de-- -termine which wells give evidence of containation. That is. CCIIPare Ri-Rl to
C1 for i taking the values 2 through K. (Recall that group 1 is the back­
ground. )

\

'While the above steps are the general procedure, some details need to be
specified further to handle special cases. First, it -.y happen that two or
more observations are ,...rically equal or tied. When this occurs, determine
the ranks that the tied observations ~ld have received if they had been
slightly different frol each other, but still in the same places with respect
to the rest of the observations. Add these ranks and divide by the number of
observations tied at that value to get an average rank. This average rank is
used for each of the t1ed observat1ons. Th1s s... procedure is repeated for
any other groups of tied observations. Second, if there. are any values below
detection, consider all values below detection IS tied at zero. (It is
irrelevant what number is assigned to nondetected values as long as all such
values are assigned the sue number, and it is ..l1er than any detected or
quantified value.)

The effect of tied observations is to increase the value of the sta­
tistic, H. Unless there are IIIny observations tied at the same value, the
effect of ties on the computed test statist1c is negligible (in practice, the
effect of ties can probably be neglected unless some group contains 10 percent
of the observations all tied, which is .est likely to occur for concentrations
below detection 11.it). In the present context, the term -negligible- can be
-ere specifically defined as follows. COIIIPute the Kruskal-Wall1s statistic
without the adjustment for ties. If the test statistic is significant at the
5% level then conclude the test since the statistic with correction for ties
will be significant IS well. If the test statistic falls between the lOS and
the 5% critical values, then proceed with the adjustment for ties as shown
below.

ADJUSTMENT fOR TIES
/

If there' are 501 or .ere observations that fell below the detection
li.it, then this ..thad for adjus~nt for ties is inappropriate. The user is
referred to Section 8 -Miscellaneous Topics.· Otherwise, if there are tied
values present in the data, use the following correction for the Hstatistic

H' _ H

1 - ~ Ti/(III-N~
1-1. 'l

where 9 - the nulber of groups of distinct tied observations and T, - (ti-ti)'
where t, is the lUlber of observations in the tied group 1. Note that unique
observations can be considered groups of size I, with the corresponding
T, - (11-1) - O.
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EXAMPLE

Nonparam.trfc StCltirtical

The data in Table 5-4 represent benzene concentrations in water samples
taken at one background and five cOlPl1ance wells.

Step 1. The 20 observations have been ranked frona least to greatest.
The limit of detection was 1.0 ppm. Note that two values in Well 4 were below
detection and were assigned value zero. These two are tied for the smallest
value and have consequently been assigned the average of the two ranks 1 and
2, or 1.5. The ranks of the observations are ~ndicated in parentheses after
the observation in Table 5-4. Hote that there are 3 observations tied at 1.3
that would have had ranks 4, 5, and 6 if they had been slightly different.
These three have been assigned the average rank of 5 resulting from averaging
4, 5, and 6. Other ties occurred at 1.5 (ranks 7 and 8) and 1.9 (ranks 11 and
12).

Step 2. The values of the sums of ranks and average ranks are indicated
at the bottom of Table 5-4.

Step 3. Compute the Kruskal-Wallis statistic

12H- 20(2o:I) (34 2/4 + ••• + 35.5 2/3) - 3(20+1) - 14.68

ADJUS1MElfT FOR TIES

There are four groups of ties in the data of Table 5-4:

for the 2 observations of 1,900.
for the 2 observations of 1,500.
for the 3 observations of 1.300.
for the 2 observations of O.

4
Thus Z T1 - 6+6+24+6 - 42

1-1

and HI - 1-{4};(~J-20)li. ~~9:; -14.76, a negligible change from 14.68.

Step 4. To test the nul1 hypothesis of no cont.inat1on. obtain the
critical chi-squared value with (6-1) • 5 degrees of freedOll at the 51 signif­
icance level fro- Table I, Appendix B. The value is 11.07. eo.pare the cal­
culated value, HI, ~ith the tabulated value. Since 14.76 is greater than
11.07, reject the hypothesis of no cont.-inat10n at the 51 level. If the site
was in detection ~nitoring it should ~ve into COIIIPl1ance ~nitor1ng. If the
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TABLE 5-4. EXAMPLE DATA fOR ONE-WAY NONPARAMETRIC ANOVA--BENZENE CONCENTRATIONS (p.)

Background
Well 2 well 3

Ca.pltance wells wen 5 Well liDate Well 1 wen 4

Jln 1 1.7 (loj 11.0 (20) 1.3 (5) o (1.5) 4.9 {17) 1.6 (9)

Feb 1 1.9 (11.5) 8.0 (18) 1.2 (3) 1.3 (5) 3.7 (16) 2.5 (15)

. Mar 1 1.5 (7.5) 9.5 (19) 1.5 (7.5) o (1.5) 2.3 (14) 1.9 (11.5)

'It Apr 1 1.3 (5) 2.2 (13)I.........

". • 4 "I • 3 "J • 3 ".. • 4 ", • 3 n. • 3

StIlI 0' rinks: A. • 34 II • 57 AJ • 15.5 R.. • 21 A, • 47 I. • 35.5
- - - - i, • 15.67 i. • 11.83Averlge r.": A. • 8.5 R. • 19 A. • 5.17 R.. • 5.25

•
K• 6. the ...-her of wells

6
N· I n, • 20. the total nuMber of observattons. ....t-l

"



site was in compliance .an1toring it should lOve into corrective aFtion. If
the site was in correct~ve action it should stay there.

In the case where the ~drau11cally upgrad1ent wells serve as the back­
ground against which the c_l1ance wells are to be COIIPared, COIIParisons of
each compliance well with the background wells should be perfo~_ tn addition
to the analysis of variance procedure. In this example, data from each of the
compliance wells would be compared with the background well data. This com-
parison is accomplished as follows. The Iverlge ranks for each group, Ri • are
used to compute differences. If a group of compliance wells for I regulated
unit have larger concentrations than those found in the blckground wells, the
average rank for the compliance wells at that unit will be larger than the
average rank for the background wells.

Step 5. Calculate the critical values to CCIIIPare each compHance well
to the b~ckground well.

In this example, K-6, so there are 5 comparisons of the compliance wells
with the background wells. Using an experimentwise significance level of a ­
0.05, we find the upper 0.05/5. 0.01 percentile of the standard nonna'
distribution to be 2.33 (Table 4, Appendix B). The total sample size, N, is
20. The approximate critical value, C2 , is computed for compHance Well 2,
-which has the largest average rank, as:

[ ]
1/2 [ ] 1/2

C2- 2.32 2°f~1) i + i · 10.5

The critical values for the other wells are: 10.5 for Wells 3, 5, and 6; and
9.8 for Well 4.

Step 6. Compute the differences between the average rank of each com­
pliance well and the average rank of the blckground well:

Differences

O2 • 19.0 - 8.5 • 10.5
Os • 5.17 - 8.5 • -3.33
D_ • 5.25 - 8.5 • -3.25
Os • 15.67 - 8.5 • 7.17
O. • 11.83 - 8.5 • 3.13

Crit1cll values

C2 • 10.5
Cs • 10.5
Cit • 9.8
C. • 10.5
C. • 10.5

Complre each difference witt the corresponding critical difference. O2 • 10.5
equlls the critical value ot Ct • 10.5. We conclUde that the concentration of
benzene averaged over compliance Well 2 is significantly greater than that at
the background well. None of the other cc.pl1ance well concentration of .t

benzene is significantly higher than the averlge background value. Based upon
these results, only c:capl1ance Well 2 can be singled out as being
conta1nated.
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For data sets with ~re than 30 observations, the par_trJc analysis of
variance perf'o...d on the rank values is a good approxiut1on to the Kruskal­
Wallis test (Quade, 1966). If the user has access to SAS, the-PROC RANK pro­
cedure is used to obtain the ranks of the dati. The .a11l1s of vari anc:e pro­
cedure detailed 1ft Section 5.2.1 is then perf~ on tt)e ranks. Contrasts
are tested IS in the par..tr1c analysis of variance. '.

INTERPRETATION

The Kruskal-Wall1s test statistic is CQlPared to the tabulated critical
value fl"Oll the chi-squared distribution. If the test statistic does not
exceed the tabulated value, there is no statistically significant evidence of
contamination and the analysis would stop and report this finding. If the
test statistic exceeds the tabulated value, there is significant evidence that
the hypothesis of no differences in compliance concentrations from the back­
ground level 15 not true. Consequently, if the test stattstic exceeds the
critical value, one concludes that there is significant evidence of contami­
nation. One then proceeds to investigate where the differences lie, that is,
which wells are indicating contamination.

The aJltiple comparisons procedure described in steps 5 and 6 compares
each compliance well to the background well. This deter'llines which compliance
wells show statistically significant evidence of contamination at an expert­
.ntwise error rate of 5 percent. In aany cases, inspect1on of the lIIf!an or
-.dian concentrations will be sufficient to indicate where the problem lies.

5.3 TOLERANCE INTERVALS BASED ON THE NORMAL DISTRIBUTION

An alternate approach to analysis of variance to determine whether there
15 statistically significant evidence of contamination 15 to use tolerance
intervals. A tolerance interval is constructed fT'Clll the -data on (uncontam­
inated) background wells. The concentrations fl"Oll ea-pl1anc:e wells are then
compared with the tolerance interval. With the exception of pH, if the com­
pliance concentrations do not fall in the tolerance interval, this provides
statistically significant evidence of cont..ination.

Tolerance intervals are mst appropriate for use at facilities that do
not exhibit high degrees of spatial variation between background wells and
cOlllPliance wells. Facilities that overl1e extensive, m-ogeneous geologic
deposits (for exlllPle, thick, ~eneous lacustrine cle.ys) that do not natu­
rally display hydrogeochemical variations aay be suitable for this statistical
..thod of analysis.

A tolerance tnterval establishes a concentration range that is con­
structed to contain I specified proportion (PS) of the PGlNlation with a
specified confidence coefficient. Y. The proportton of the population
included, P, ts referred to as the coverage. The probability with which the
tolerance interval tncludes the proportion PI of the populatton is referred to
as the tolerance coefficient.

A coverage of '5S ts rece••nded. If this ts used. r~ ObSef"iat10ns
frol the s... distribution as the background well data would exceed the upper
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tolerance limit less than 5% of the time. Similarly, a tolerance coefficient
of 95% is rece-ended. This .ans that one has a confidence levil ~ 95% that
the upper 95% tolerance u.n will conta1n at leut 951 of the distribution of
observations fl"Oll b&CIcground .-11 data. These values were chosen to be con­
sistent with the perforwance standards described in Section 2. The use of
these values corresponds to the selection of • of 51 in the .lt1ple well
testing situation.

The procedure can be applied with as few as three observations from the
background distribution. Howeyer, doing so would result in a large upper
tolerance limit. A sample size of eight or -ore results 15 an adequate toler­
ance interval. The .ini.um sampling schedule called for 1n the regulations
would result in at least four observations from each background well. Only if
~ single background well 15 sampled at a single point in time 15 the sample
size so SIIll as to alke use of the procedure questionable.

Tolerance tntervals can be constructed assuming that the data or the
transfoT'llled data are nonaally distributed. Tolerance intervals can also be
constructed assUlling other distributions. It is also possible to construct
nonparametric tolerance 1ntervals using only the assumption that the data came
from same continuous population. Howeyer, the nonparametric tolerance
intervals require such a large number of observations to proyide a reasonable
coyerage and tolerance coefficient that they are i~ractical in this
application. . .

The range of the concentration data in the background well samples should
be considered in dete~1ning whe~her the tolerance interval approach should be
used, and 1f so, what d1str1but1on is appropriate. The background well con­
centration dati shou1d be inspected for out11ers and tests of nonnali ty
appl1ed before selecting the tolerance 1nterval approach. Tests of normality
were presented in Sect10n 4.2. Note that 1n this· case, the test of normality
would be app11ed to the backgroUnd well data that are used to construct the
to1erance interval. These data shou1d a" be frma the sue nonDa1
d1str1but1on.

In this application, unless pH is being -onitored, • one-sided tolerance
tnterval or an upper toleranee 11.'t 1s desired, sinee cont.ination 1s indi­
cated by large concentrations of the hazardous constituents -onitored. Thus,
for concentrations, the appropriate tolerance interval is (0, TL), with the
COIIPar1son of 1111)Ortance being the larger 11.it, TL.

PURPOSE

The purpose of the taleranee 1nterval approach 1s to def1ne a concentra­
tion range fl"Oll background .-11 data, within which a large proportion of the
IIOnitoring observations should fall with high probabl1ity. Once th15 15 done,
dltl fl"Oll c_Hance .-l1s can be checked for evidence of contlll1natfon by
SflllPly deterll1ning whether they fall in the tolerance interval. If they do
not, this is evidence of cont81nation.

In this case the dati are assUied to be approx1..tely·~11y distrib­
uted. Section 4.2 proVided .thads to check for norul1ty. If. the data are
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not normal, take the na~ural logarithm of the data and see if the transformed
data are approx1_tely "arMl. If so, this .thod can .,. USed on the loga­
rithms of the data. : Otherwise, seek the assistance of • professional
statistician. !

PROCEDURE
-Step 1. Calculate the .an, X, and the standard deviation, S, from the

background well data.

-Step 2. Construct the one-sided upper tolerance limit as

-TL • X+ KS,

where K is the one~s1ded normal tolerance factor found in Table 5, Appendix B.

Step 3. Compare each observation frol compliance wells to the tolerance
liartt found in Step 2. If any observation exceeds the tolerance limit, that
is statistically significant evidence that the we" is contaminated. Mote
that if the tolerance interval was constructed on the logarithms of the orig­
inal background observations, the logarithms of the compliance well observa­
tions should be compared to the tolerance limit. Alternatively the tolerance
limit lilY be transferred to the original data scale by taking the anti­
logarithm.

RUEREHCE

Lieberman, Gerald J. 1958. -Tables for One-sided Statistical Tolerance
Li.1ts.· lndu.ttrfal QuaLftyControl. Vol. XIV, No•.10.

EXAMPLE

Table 5-5 contains example data that represent lead concentration levels
in parts per .ill1on in water sllllPles at a hypothetical facnity. The
background we" ,data are in C01U81S 1 and 2, while the other four columns
represent ca-pliance well data.

Step 1. The ..an and standard deviation of the n • 8 observations have
been cal cu1ated for the background well. The .an 15 51.4 and the standard
deviation is 16.3.

S"' 2. The tolerance factor for a one-sided norMl tolerance interval
is found f..- Table 5, Appendix B u 3.188. This is for 951 coverage with
probability 951 and for n • 8~ "The upper tolerance l18it is then calculated
as 51.4 + (3.188)(16.3) • 103.4.

Step 3. The tolerance 118it of 103.3 is COIlPared with the cOIIPHance
well data. Any value that exceed. the tolerance 118it indicates statistically
significant evidence of c:ont.1nat1on. Two observations froll wen 1, two
obse1"'Yat1ons 'rca well 3. and all four observations frail Well 4 exceed the
tolerance 1181t. Thus there is statistically significant evidence of con­
ta.1nat10n at We'ls 1, 3, and 4.
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TABLE 5-5. EXAMPLE DATA FOR NORMAL TOLERANCE INTERVAL
~~

Date

Lead concentrations (ppm)

Background wel'
A B

~liance wells
Well 4

Jan 1 58.0 46.1 273.1* 34.1 49.9 225.9*
Feb 1 54.1 76.7 170.7* 93.7 73.0 183.1*
Mar 1 30.0 32.1 32.1 70.8 244.7* 198.3*
Apr 1 46.1 68.0 53.0 83.1 202.4* 160.8*

n • 8 The upper 951 coverage tolerance limit
Mean .""51.4 with tolerance coefficient of 951 is

SO • 16.3 51.4 + (3.188)(16.3) • 103.4

* Indicates contamination

INTERPRETATION

A tolerance 1im1t with 95~ coverage gives an upper bound below which 95%
of the observations of the distribution should fall. The tolerance coeffi­
cient used here is 95%, implying that at least 95% of the observations should
fall below the tolerance limit with probability 95%, if the compliance well
data come from the same distribution as the background data. In other words,
in this example, we are 951 certain that 95% of the background lead concentra­
tions are below 104 ppm. If observations exceed the tolerance limit. this is
evidence that the compliance well data are not from the same distribution, but
rather are from a distribution with higher concentrations. This is inter­
preted as statistically significant evidence of cont..ination.

5.4 PREDICTION INTERVALS

A prediction interval is a statistical jnterval calculated to include one
or .ere future observations from the same population with a specified confi­
dence. This approach is algebraically equivalent to the average repHcate
(AR) test that is presented in the Technical EnforcBllnt Guidance Document
(TEGa) , Septllllber 1986. In ground-water IIOnitoring. a predict10n interval
approach lIlY be used' to Mke COIIIPari sons between background and CCIIIPli ance
well data. Th1s .thod of analys1$ 1s s1al1ar to that for calculating a
tolerance lim1t, Iftd familiarity with prediction intervals or personal prefer­
ence would be th~ only reason for selecting the- over the ..thad for tolerance
Hmits. The concentratfons of a hazardous constituent in the background wells
are used to establish an interval within which Kfuture observations from the
same population are expected to 11e with. specified conf1dence. Then each of
K future observat10ns of CQIIPl1ance well concentrations 15 CCIIIPa1"ld to the
prediction interval. The interval is constructed to contain all of K future
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observations with the stated confidence. If any future obseretion exceeds
the prediction interval. this is statistically significant ev1dence of contam­
ination. In applfcation. the IUlber of future observations to be collected,
Ie. II1st be specified. Thus. the prediction interval 11 constructed for a
specified ti. period in the future. One year fs sunested. The interval can
be constructed either to contain all Ie individual observations with a speci­
fi ed probab111 ty , or to contain the Ie I .ans observed at the Ie' SIlllP11 ng
periods.

The prediction interval presented here is constructed assuming that the
background data all follow the same normal distribution. If that is not the
case (see Section 4.2 for tests of normality). but a log transformation
results in data that are adequately normal on the log scale, then the interval
.ay still be used. In this case, use the data after transforming by taking
the logarithm. The future observations need to also be transformed by taking
logarithms before comparison to the interval. (Alternatively, the end points
of the interval could be converted back to the original scale by taking their
anti-logarithms.)

PURPOSE

The prediction interval is constructed so that Ie future compliance well
observations can be tested by determining whether they lie in the interval or
not. If not. evidence of contamination is found. Note that the number of
future observations, Ie, for which the interval is to be used. BUst be speci­
ffed in advance. In practice, an owner or operator would need to construct
the prediction interval on a periodic (at least yearly) basis, using the most
recent background data. The interval is described using the 95% confidence
factor appropriate for ir~ividual well comparisons. It is recommended that a
one-sided prediction interval be constructed for the ..an of the four observa­
tions from each compliance well at each sampling period.

PROCEDURE

Step 1. Calculate the .an. X. and the standard deviation. S, for the
background well data (used to form the prediction interval).

Step 2. Specify the number of future observations for a compliance well
to be included in the interval. Ie. Then the interval is given by

(0, Y + S V1/m + lin t )(n-1. Ie. 0.95)

....

where it is assumed that the Man of the 8 observations taken at the Ie sam­
pling periods will be used. Here n is the nulber of observations in the back­
ground data. and t(n-l. K, 0.95) is found frQI Table 3 in Appendix B. The

table is ente~ with Ie u the fUlber of future observations, and degrees of
freedOlll. v • n-1. If Ie > 5, use the eol.., for K • 5.
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Step 3. Once the interval hu been calculated, at each sap,1~ng period,
the _an _of the - COIIIPl1ance well observations is obtained. This _an is com­
pared to see if it falls in the interval. If it does, this is Teported and
.,nitoring conti,.,es. If a _an concentration at a slllPl1ng period does not
fall in the prediction interval, this is statistically significant evidence of
contUl1nat1on. This is also reported and the appropriate act1on-talcen.

REMARK

For a single future observation, t is given by the t-d1str1but1on found
in Table 6 of Appendix B. In general, the interval to contain Kfuture means
of sample size _ each is given by

(0, i + SVlIra + l/n t )(n-1, K, 0.95)

where t is as before from Table 3 of Appendix B and where ~ is the number of
observations in each mean. Note that for K single observations, "1, while
for the mean of four samples from a compliance well, ..4.

Hate, too, that the prediction intervals are one-sided, giving a value
that should not be exceeded by the future observations. The 5% exper1mentwise
significance level is used with the Sonferron1 approach. However, to ensure
that the significance level for the individual comparisons does not go below
1%, ./K is restricted to be 1% or larger. If IIOre than K comparisons are
used, the cDmpar1sonw1se significance level of 1% is used, implying that the
compar1sonw1se level may exceed 5%.

EVWLE

Table 5-6 contains chlordane concentrations _asured at a hypothetical
facility. Twenty-four background observations are available and are used to
develop the prediction interval. The prediction interval is applied to K-2
sampling periods with .-4 observations at a single ca-pliance well each.

Step 1. Find the .an and standard deviation of the 24 background well
.asurements. These are 101 and 11, respectively.

Step 2. There are-K • 2 future observations of .ans of 4 observations
to be included in the prediction interval. Entering Table 3 of Appendix B at
K • 2 and 20 degrees of freedOll (the nearest entry to the 23 degrees of
freedom), we find t(20, 2, 0.95) • 2.09. The interval is given by

[0, 101 + (11)2.09(1/4 + 1/24)1/2) • (0, 113.4).

Step 3. The .an of each of the four cc.pUance well observations at
sampling period one and two is found and compared with the interva' found in ..
Step 2. The.an of the first sapling period is 122 and that for the second
sampling period is 113. eo.paring the first of these to the prediction inter-
val for two .ans based on suples of size 4, we find that the .an exceeds
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TABLE 5-6• EXAMPLE DATA FOR PREDICTION INTERVAL--tH~E LEVELS
...

Background well data--Well 1 Compliance well data--Wel' 2
Chlordane -Chlordane

concentration concentration
SIIIIP'1ng date (ppb) Supl1ng date (ppb)

January 1, 1985 97 July 1, 1986 123
103 120
104 116
85 ill

April 1, 1985 120 •• 4
105 Meln • 122
104 SO • 5
108

July 1, 1985 110 October 1, 1986 116
95 117

102 119
78 ill

October 1, 1985 105 ... 4
94 Meln • 113

110 SO • 8
111

January 1, 1986 80
106
115
105

April 1, 1986 100
93
89
ill

n • 24
Mean • 101

SO • 11

" .
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the upper limit of the prediction interval. This is statisticall~'ignificant
evidence of contamination and should be reported to the Regional ~inistra­

tor. Since the second sapling period .an is within the prediction interval,
the Regional Ad111n1stritor lIlY allow the fac111ty to reNin in its current
stage of .cnitor1ng.

INTERPRETATION

A prediction interval is a statistical interval constructed from back­
ground sample data-to contain a specified number of future observations from
the same distribution with specified probabl1ity. That is, the prediction
interval is constructed so as to have a 95S probability of containing the next
Ie sampling period .ans, provided that there is no contamination. If the
future observations are found to be in the prediction interval, this is evi­
dence that there has been no change at the facility and that no contamination
is occurring. If the future observation falls outside of the prediction
interval, this is statistical evidence that the new observation does not come
from the same distribution, that is, frona the population of uncontaminated
water samples previously sampled. Consequently, if the observation is a con­
centration above the prediction interval· s upper limit, it is statistically
significant evidence of contamination.

The prediction interval could be constructed in several ways. It can be
developed for means of observations at each sampling period, or for each in­
dividual observation at each sampling period.

It should also be noted that the estimate of the standard deviation, S,
that is used should be an unbiased estimator. The usual estimator, presented
above, assumes that there is only one source of variation. If there are other
sources of variation, such as time effects, or spatial variation in the data
used for the background, these should be included in the estimate of the vari­
ability. This can be accomplished by use of an appropriate analysis-of-vari­
ance lIIOdel to include the other factors affecting the variability. Determina­
tion of the components of variance in complicated .adels is beyond the scope
of this document and requires consultation with a professional statistician.

REFEREHCE

Hahn, G. and Wayne Nelson. 1973. eA Survey of Prediction Intervals and Their
Applications. e Journal of Quality rec:l1nology. 5:178-188.
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SECTION 6

COMPARISONS WITH Mels OR ACls

This section includes statistical procedures appropriate when the moni­
toring aillS at determining whether ground-water concentrations of hazardous
constituents are below or above fixed concentration limits. In this situation
the maximum concentration limit (Mel) or alternate concentration limit (ACL)
is a specified concentration limit rather than being determined by the back­
ground well concentrations. Thus the applicable statistical procedures are
those that compare the compliance well concentrations estimated from sampling
with the prespecified fixed 1fllfts. Methods for coaaparing ~1fance we11
concentrations to a (variable) background concentration were presented in
Section 5. .

The ..thods applicable to the type of comparisons described in this sec­
tion include confidence intervals and tolerance intervals. A special section
deals with cases where the observations exhibit very small or no variability.

6.1 SUMMARY CHART FOR COMPARISON WITH MCls OR ACls

Figure 6-1 is a flow chart to aid the user in selecting and applying a
statistical ..thod when the permit specifies an MCl or ACl.

As with each type of ca-par1son, a determination is 8&de first to see if
there are enough data for intra-well CQlpar1sons. If so, these should be done
in parallel with the other comparisons.

Here, whether the COIIPHance 11.ft is a 1IIX1.. concentration Hmft (MCl)
or an alternate concentration limit (ACL), the reca-Dended procedure to'com­
pare the .an cQIIPliance well concentration against the cQIIIPHanee limit is
the construction of a confidence interval. This approach is presented in
Section 6.2.1. Section 6.2.2 adds a special case of limited variance in the
data. If the perllit requires that a compliance l1mft is not to be eXceeded
.are than a specified fraction of the t1., then the construction of tolerance
lillfts is the recOlllll!nded procedure, discussed in Section 6.2.3.

6.2 STATISTICAL PROCEDURES

ThiS section presents the statistical procedures appropriate for compari­
son of ground-water. IIOn1tor1ng data to a constant COlllPltance 1181t, a fixed
standard. The interpretation of the fixed COllPl1ance 118it (MeL or ACl) is
that the .an concentration should not exceed this fixed 1t.it. An alternate
interpretation lIlY be specified. The penlit could specify. COIIPliance limit
as a concentration not to be exceeded by 110" than a ..11, specified
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proportion of the aservations. A tolerance interval approath for such a
... situation is also presented.

6.2.1 Confidence Intervals

When a regulated unit is in CCIIIPl1ance .:»nitaring with a fixed CQIIIpl1ance
11.it (either an MeL or an ACL), confidence intervals are the rec:c-ended pro­
cedure pursuant to §264.97(h)(S) in the Subpart F regulations. The unit will
remain in compliance .:»nitoring unless there is statistically significant evi­
denee that the .an concentration at one or -are of the downgradient wells
exceeds the compliance li.,t. A confidence interval for the -ean concentra­
tion is constructed from the suple data for each COIIPl1ance well individu­
ally. These confidence tntervals are compared with the compliance limit. If
the entire confidence interval exceeds the ca.pl1ance li.'t, this is statisti­
cally significant evidence that the lean concentration exceeds the compliance
limit.

Confidence intervals can generally be constructed for any specified dis­
tribution. General methods can be found in texts on statistical inference
some of which are referenced in Appendix C. A confidence limit based on the
normal distribution is presented first, followed by I -edification for the
log-normal distribution. A nonparametric confidence interval is also
presented.

6.2.1.1 Confidence Interval Based on the Normal Distribution

PURPOSE

The confidence interval for the ..an .concentration J is constructed from
the compliance well data. Once the interval has been constructed, it can be
compared with the MCL or ACL by inspection to dete~ine whether the ..an con·
centration significantly exceeds the MCL or ACL. .

PROCEDURE

Step 1. calculate the _an, i, and standard deviation, S. of the slJlJ)le
concentration values. Do this separately for each compliance well.

Step 2. For each well calculate the confidence interval as

t t t(O.99, n-l) S/,"

where t(O.99, n-l) is obtained fral the t-table (Table 6, Appendix B).
Generally, there will be at least four observations at each sa-pling period,
so t will usually have at least 3 degrees of freedoa.

Step 3. CoIIpare the 1ntervals calculated in Step 2 to the COIIPlfance
l1mit (the MeL or ACL. as appropriate). If the cc.p11anc:e 11.it 15 contained
in t~e interval or 1s above the upper l'.'t, the unit reaains in compliance.
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If any well confidence interval I S lower limit exceeds the COIIPl'1ance limit,
this is statistically significant evidence of contamination.

REMARK

The 99th percentile of the t-distribution is used in constructing the
confidence interval. This is consistent w1th an alpha (probability of Type I
error) of 0.01, since the decision on COIIIPl1ance is ..de by COIIIParing the
lower confidence limit to the MeL or ACL. Although the interval as con­
structed with both upper and lower li.its is a 981 confidence interval, the
use of it is one-sided, which is consistent with the 11 alpha level of
individual well comparisons.

EXAMPLE

Table 6-1 lists hypothetical concentrations of Aldicarb in three compli­
ance wells. For illustration purposes, the MeL for Aldicarb has been set at
7 ppb. There is no evidence of nonnormality, so the confidence interval based
on the normal distribution is used.

TABLE 6-1. EXAMPLE DATA FOR NORMAL CONFIDENCE IHTERVAL--ALDICARB
CONCENTRATIONS IN COMPLIANCE WELLS (ppb)

SlIIIPling
date Well 1 Well 2 Well "3

. -
Jan. 1 19.9 23.7 5.6
Feb. 1 29.6 21.9 3.3
Mar. 1 18.7 2-6.9 2.3
Apr. 1 24.2 26.1 6.9

I. 23.1 24.6 4.5
S • 4.9 2.3 2.1

MeL • 7 ppb

step 1. Calculate the ..an and standard deviation of the concentrations
for each ca.pliance well. These statistics are shown in the table above.

Step 2. Obtain the 99th percentile of the t-distribution with (4-1) • 3
degrees of freeda. from Table 6, Appendix B as 4.541. Then calculate the con­
fidence interval for each wen's ..an concentration.

Well 1: 23.1 t 4.541(4.9}/~. (12.0, 34.2)

Well 2: 24.6 t 4.541(2.3}/~. (19.4, 29.8)

Well 3: 4.5 t 4.541(2.1)/~. (-0.3, 9.3)
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where the usual convention of expressing the upper and loweTll1l11ts of the
confidence interval in parentheses separated by a COlma has bien followed.

Step 3. CoIIpare each confidence interval to the Mel of 7ppb. When thi s
is done, the confidence interval for well 1 Hes entirel, IboYe the MeL of 7,
indicating that the Man concentration of Aldicarb in well -1 significantly
exceeds the Mel. 5i.f1arly, the confidence interval for we" 2 Hes entirely
above the MCL of 7. This is significant evidence that the Man concentration
in Well 2 exceeds the Mel. However, the confidence interval for Well 3 is
.cstly below the MeL. Thus, there is no statistically significant evidence
that the .an concentration in Well 3 exceeds the Mel.

INTERPRETATION

The confidence interval is an interval constructed so that it should con­
tain the true or population .an with specified confidence (98~ in this
case). If this interval does not contain the compliance li.it, then the mean
concentration lUst differ from the compliance l1.it. If the lower end of the
interval 15 above the compliance limit, then the ..an concentration ~st be
significantly greater than the compliance li.it, indicating noncompliance.

6.2.1.2 Confidence Interval for Log-Normal Data

PURPOSE

The purpose of a confidence interval for the lean concentration of 109­
no~al data is to determine whether there is statistically significant
evidence that the .an concentration exceeds a fbed compliance lillit. The
interval gives a range that includes the true lean concentration with
confidence 981. The lower li.,t will be below the true Man with confidence
991. corresponding to an alpha of 11.

PROCEDURE

This procedure is used to construct a confidence interval for the mean
concentration froll the cc.pl1ance well data when the data are log-noT'llal (that
1s, when the logar1thas of the data are ftOrIIIlly distributed). . Once the
interval has been constructed, it can be COIIPared with the MeL or ACL by
inspection to deteT'lline whether the ..an concentration significantly exceeds
the MeL Or ACL. Throughout the following procedures and IXamples, natura'
logar1thls (In) are used.

Step 1. Take the natural logar1thl of each data point (concentration
..asu~nt). Also. take the natural logar1tt. of the cQIII)l1ance limit•

Step 2. Calculate the sample .an and standard deviation of the log­
transformed data frol each CQlPliance well. (This is Step 1 of the previous
section, working now with logarithms.)
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step 3. form the confidence intervals for each COIPliance well as

Y:!: t(O.99. n-l) S/Ift

where t(0.99. n-l) is from the t-d1str1but10n in Table 6 of Appendix B. Here
t will typically have 3 degrees of freedom.

. .
Step 4. Compare the confidence intervals found in Step 3 to the

logarithm of the compliance l1.it found in Step 1. If the lower limit of the
confidence interval lies entirely above the logarithm of the compliance limit,
there is statistically significant evidence that the unit is out of compli­
ance. Otherwise, the unit.is in compliance.

EXAMPLE

Table 6-2 contains EDB concentration data from three compliance wells at
a hypothetical site. The MCl is assumed to be 20 ppb. For demonstration pur­
poses, the data are assumed not normal; a natural log-transformation
normalized them adequately. The lower part of the table contains the natural
logarithms of the concentrations.

TABLE 6-2. EXAMPLE DATA FOR lOG-NORMAL CONFIDENCE INTERVAl--EDB
CONCENTRATIONS IN COMPLIANCE WELLS (ppb)

Sl1llPl1 ng
date

Jan. 1
Apr. 1,
Jul. ,1
Oct. 1

i •
S •

Well 1

24.2
10.2
17.4
39.1

22.9
12.6

Well 2

Concentrations
39.7
75.1
60.2
10.9

46.6
28.0

Well 3

55.7
17.0
97.8
25.3

49.0
36.6

latural log concentrations
3.19 3.68
2.32 4.33
2.85 4.10
3.68 2.39

Mel • 20 ppb

Jan. 1 .
Apr. 1
Jul. 1
Oct. 1

i •
S •

3.01
0.57

3.62
0.86

4.02
2.84
4.58
3.23

3.67
0.78

..'

ln (Mel) • 3.00
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step 1. The logarithms of the data are used to calculatt a confidence
interval. Take the natural log of the concentrations in the top part of
Table 6-2 to find the values given in the lower part of the table. For exam­
ple, In(24.2) • 3.19, ••• , In(25.3) • 3.23. Also, take the logarithm of the
MeL to find that In(2O) • 3.00. .

Step 2. Calculate the lean and standard deviation of the log concentra­
tions for each compliance well. These are shown in the table.

Step 3. Form the confidence intervals for each compliance well.

Well 1: 3.01 t 4.54l(0.57)/~. (1.72, 4.30)

Well 2: 3.62 t 4.54l(0.86)/~. (1.67, 5.57)

Well 3: 3.67 t 4.S4l(0.78)/~. (1.90, 5.44)

where 4.541 is the value obtained from the t-table (Table 6 in Appendix B) as
in the previous example.

Step 4. Compare the individual well confidence intervals with the MCl
(expressed on the log scale). The natural log of the Mel of 20 ppm is 3.00.
None of the individual well confidence intervals for the mean has a lower
limit that exceeds this value, so none of the individual well mean concentra­
tions is significantly different from the MCl.

Note: The lower arod upper lillits of the confidence interval for each
well IS .an concentration could be converted back to the original scale by
taking antilogs. For example, on the original scale, the confidence intervals
would be:

Well 1: (exp(1.72), exp(4.30» or (5.58. 73.70)

Well 2: (exp(l.57), exp(S.Sl» or (5.31. 262.43)

Well 3: (exp(I.90). exp(S.44» or (6.69. 230.44)

These l1.,ts could be compared directly with the MeL of 20 ppb. It is gen­
erally easier to take the logarithl of the MeL rather than the antilogarithm
of all of the intervals for COIIParison.

IHTERPRETATIOH

If the or1g1nal data are not nonlll. but the log-transfonnation ade­
quately normalizes the data. the confidence interval (on tht log scale) is an
interval constructed so that the lower confidence Hait should be less than
the true or population .an (on the log scale) with specified confidence (99%

6-7



in this cue). If the lower end of the confidence tnterva1 exceeds the appro­
priate COIIPl1ance l1ait, then the .an concentration ..st exceed aat compli­
ance Hait. These results provide statistically significant evidence of
cont_ination.

6.2.1.3 Nonparametric Confidence Interval

If the data do not adequately follow the norM1 distribution even after
the logarithm transf01"lliltion, a nonpara.etric confidence interval can be con­
structed. This interval is for the -.dian concentration (which equal s the
..an if the distribution is symmetric). The nonparametric confidence interval
is generally wider and requires .ere data than the corresponding normal dis­
tribution interval, and so the no1"ll4l or log-noMll4l distribution interval
should be used whenever it is appropriate. It requires a .ini~ of seven (7)
observations in order to construct an tnterval with a two-sided confidence
coefficient of 981, c01"1"'lsponding to a one-sided confidence coefficient of
991. Consequently, it is appl1cab1e only for the pooled concentration of
compliance wells at a single point in ti.. or for special sampling to produce
a minimum of seven observations at a single well during the sampling period.

PURPOSE

The nonparametric confidence interval is used when the raw data have been
found to violate the normal1ty assumption, a log-transformation fails to
norMl1ze the data, and no other specific distribution is usumed. It pro­
duces a sillP1e confidence interval that is designed to contain the true or
population -.dian concentration with specified confidence (here 991). If this
confidence interval contains the compliance limit, it is conclUded that the
aedian concentration does not differ significantly from the compliance
l1mit. If the interval's lower l1mit exceeds the COIIPl1ance limit, this is
statistically significant evidence that the concentration exceeds the compli­
ance limit and the unit is out of compliance.

PROCEDURE

Step 1. Within each cOllPl1ance well. order the n data fT"Oll least to
greatest. denoting the ordered data by X(l) •••• , X(n), where XCi) is the ith
value in the ordered data.

Step 2. Dete,.ine the critical values of the order statistics as
follows. If the ainiaua seven observations is used. the critical values are 1
and 7. Otherwise,· find the ..llest integer. M, such that the CUBJlat1ve
binomial distribution with par...ters n (the sample size) and p • 0.5 is at
least 0.99. Table 6-3 gives the values of Mand n+l-M together with the exact
confidence coefficient for sup1e sizes froll 4 to 11. For larger samples,
take u an approx1aatton the nearest integer value to -:

. M• n/2 + 1 + Za.99 I(ii14f

where Zo.99 is the 99th pe1"Centl1~ f1"Cll the no1"'ll&l distribution (Table 4,
Appendix B) and equals 2.33.
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TABLE 6-3. VALUES OF MAND n+1-M AND CONFIDENCE:
COEFFICIENTS FOR SMALL SAMPLES

,-

Two-s1ded
n M n+l-M confidence

4 4 1 87.S~

5 5 1 93.U
6 6 1 96.9~

7 7 1 98.41
8 8 1 99.2~

9 9 1 99.6~

10 9 2 97.9~

11 10 2 98.8%

Step 3. Once Mhas been determined in Step 2, find n+l-M and take as the
confidence limits the order statistics, X(M) and X(n+l-M). (With the minimum
seven observations, use X(l) and X(7).}

Step 4. Compare the confidence limits found in Step 3 to the comp'~ance

limit. If the lower limit, X(M) exceeds the compliance limit, there is sta­
tistically significant evidence of contamination. Otherwise, the unit remains
in compliance.

The nonparametric confidence interval procedure requires at least seven
observations in order to obtain a (one-sided) significance level of 11 (cmnfi­
dence of 991). This .ans that data f.". two (or IIOre) wells or sampling
periods would have to be pooled to achieve this level. If only the four
observations fro. one well taken at a single sa.pl1ng period were used, the
one-sided significance level would be 6.251. This would also be the false
alaJ"'lll rate.

Ties do not affect the pl"OCedure. If there are t1es, order the observa­
tions as before, including all of the tied values u separate observations.
That is, each of the observations with a cOllllOn value ts inclUded in the
ordered ltst (e.g., 1, 2, 2, 2, 3, 4, etc.). For ties, use the average of the
tied ranks as 1n sect10n 5.2.2, Step 1 of the IX.-ple. The ordered statistics
are found by counting positions up fram the bottOll of the Hst as before.
Multiple values fral separate observations are counted separately.

EXAMPLE

Table 6-4 conta1ns concentrations of S1lvex tn parts per .'11'on from two
hypothetical CCIIPl1ance wells. The data are usu.d to constst of four Sim­
ples taken each quarter for a year, so that sixteen observattons are available
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fraa each well. The data are not normally distributed, neither as raw data
nor when log transf01"llled. Thus, the nonpar_tric confidence 1nterva' is
used. The MeL is tu", to be 25 ppm.

Step 1. Order the 16 .asurements f". least to greatest within eachwe" separately. The IUlbers in parentheses beside each concentration in
Table 6-4 are the ranks or order of the observation. For ex..,le, in well 1,
the lllanest observation is 2.32, which has rank 1. The second lllanest is
3.17, which has rank 2, and so forth, with the largest observation of 21.36
having rank 16.

Step 2. The slIIP'e size is large enough so that the approxiMtion is
used to find M. .

M• 16/2 + 1 + 2.33 I(Rii)' • 13.7 • 14

Step 3. The approxi..te tSl confidence li.1ts are given by the
16 + 1 - 14 • 3rd largest observation and the 14th largest observation. For
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well 1, the 3rd obsenation is 3.39 and the 14th l.....est c£.ervation is
10.25. Thus the confidence 118its for well 1 are (3.39. 10.25). Siml1arly
for well 2, the 3rd largest obsenat1on and the 14th largest observation are
found to give the confidence interval (2.20, 11.02). ,.te that for Well 2
there were two values below detection. These were assigned • value of zero
and received the two ..nest ranks. Had there been three -or aore values
below the limit of detection, the lower 11.'t of the confidence interval would
have been the limit of detection because these values would have been the
smallest values and so would have included the third order statistic.

Step 4. Neither of the two confidence intervals' lower limit exceeds the
Mel of 25. In fact, the upper limit is less than the Mel, implying that the
concentration in each well is significantly below the Mel.

INTERPRETATION

The rank.order statistics used to fon the c.onf1dence interval in the
nonparametric conffdence interval procedure will contain the population median
with confidence coefficient of 98S. The population aedian equals the mean
whenever the distribution is symmetric. The nonparametric confidence interval
fs generally wider and requires -are data than the corresponding norma' dis­
tribution interval, and so the nonnal or log-nonaal distribution interval
should be used whenever it is appropriate.

If the confidence tnterval contatns the coaplianee li.tt (either MCl or
ACl), then it is reasonable to conclude that the ..dian compliance well con­
centration does not differ stgnificantly fl"Cll the COIIPl1ance limit. If the
lower end of the confidence interval exceeds the cOllPliance Hmit. this is
statistically significant evidence at the is level that the ..dian compliance
well concentration exceeds the COlIPl1anee limit and the unit is out of
cQIIPliance.

6.2.2 Tolerance Intervals for Compliance l1.its

In some cases a penit 8IY specify that a ca.pliance 11.,t (Mel or ACl)
is not to. be exceeded -ere than a specified fraction of the time. Since lim­
ited data will be ava1lable f~ each aon1tor1ng well, these data can be used
to estillate a tolerance interval for concentrations froM that well. If the
upper end of the tolerance interval (i •••• upper tolerance l1.it) is less than
the ca.pliance It.,t. the data indicate that the unit is in ea-plianee. That
is. concentrations should be less than the ea-plianee 1i.it at ~east a speci­
fied fraction of the tile. If the upper tolerance H.tt of the tnterval
exceeds the COIIPl1anee H.n. then the concentration of the hazardous con­
stituent could exceed the ea-pltanc. It.tt -ere than the specified proportion
of the ti••

. .
This procedure COIIPares an upper tolerance H.tt to the MClor ACL. With

small sample sizes the upper tol.rance li.,t can be fairly large. particularly
if large coverage with high confidence is desired. If the owner or operator
wishes to use a tolerance 11111t in this appltcation, he/she should suggest
values for the par_tars of the procedure subject to the approval of the
Regional AdII1n1strator. For exuple. the owner or operator could suggest a
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95% coverage with 95% confidence. This ..ans that the upper toler~e limit
is a value which, with 15% confidence, wl1l be exceeded less tban~5% of the
ti••

PURPOSE

The purpose of the tolerance interval approach is to construct an inter-"
val that should contain a specified fraction of the concentration ..asurements
fro- COIPliance wells with a specified degree of confidence. In this appli­
cation it is generally desired to have the tolerance interval contain 95~ of
the ..asurements of concentration with confidence at least 95S.

It is assumed that the data used to construct the tolerance interval are
approximately normal. The data -ay consist of the concentration ..asurements
themselves if they are adequately normal (see section 4.2 for tests of normal­
1ty), or the data used RY be the natural logarite.s of the concentration
data. It is 1~rtant that the ea-pl1ance 11.,t (MeL or ACL) be expressed in
the same units (either concentrations or logar1thl of the concentrations) as
the observations.

-Step 1. Calculate the .an, X, and the standard deviation, S, of the
compliance well concentration data.

Step 2. Detenline the factor. K, froll Table 5, Appendix B. for the sam­
ple size, n, and fo~ the one-sided tolerance interval

[0, i + ICSJ

Table 5, Appendix B contains the factors lor a 95S coverage tolerance interval
with confidence factor 95S.

Step 3. CoIIpare the upper 11.tt of the tolerance ~ trval COIIPuted in
Step 2 to the compliance 11.1t. If the upper If.tt of the colerance tnterval
exceeds that 11.it. ~this is statistically significant evidence of contamina­
tion.

EXAMPLE

Tabl. 6-5 contains Aldicarb concentrations at a hypothetical facility in
COIIPl1anc• .anitoring. The data are concentrations in parts per .nl1on (ppm)
and represent observations at three COIIPl1anc:e wells. As~ than the pe1"llit
estab11shes an ACL of 50 PPII that 1s not to be exceeded .are than 5S of the
t1••

Step 1. Calculate the .an and standard deviation of the observations
fr08 each well. Thesl are given in the table.
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TABLE 6-5. EXAMPLE DATA FOR ATOLERANCE" J
INTERVAL COMPARED TO AN ACL

SlIIPl1ng
date

A1dicarb concentrations~
we" 1 Wi" }

Jan. 1 19.9 23.7 25.6
Feb. 1 29.6 21.9 23.3
Mar. 1 18.7 26.9 22.3
Apr. 1 24.2 26.1 26.9

Mean • 23.1 24.7 24.5
SO • 4.93 2.28 2.10

ACL • 50 ppll

step 2. For n • 4, the factor, K, in Tlble 5, Appendix B, is found to
be 5.145. Form the upper tolerance interval li.its as:

Well 1: 23.1 + 5.145(4.93) • 48.5

Well 2: 24.7 + 5.145(2.28) • 36.4

Well 3: 24.5 + 5.145(2.10) • 35.3

Step 3. Compare the tolerance 1i.,ts with the ACL of 50 PPM. Since the
upper tolerance li.its are below the ACL, there is no statistically signifi­
cant evidence of cont.'nation at any well. The site ....,ns in detection
IIOnitoring.

INTERPRETATION

It lIlY be desirable in a perwit to specify a CCIIIPHance Han that is not
to be exceeded 110" than 51 of the ti.. A tolerance interval constructed
f~ the ca-pliance well data provfdes an est1..ted interval that will contain
951 of the data wfth confidence 951. If the upper li.it of thfs fnterval is
below the selected cCllP'1ance l1.it. concentrations .asured at the CQlIPliance
wells should exceed the COIIPl1ance Haft less than 51 of the t1.. If the
upper Han of the tolerance interval exceeds the coapl1ance Haft. then lIOre
than 51 of the concentration .asul"llllnts would be expected to exceed the
compliance li.it.

6.2.3 Special Cases with Limited Variance

OCcasionally, an four concentrations froll a coapHance well at a par­
ticular SIIIP'ing period could be identical. If this 15 the case, the formula
for est1..t1ng the standard deviation at that specific sampling period would
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give zero, and the .thads for calculating par_tric confidence intervals
would give the s_ Haits for the upper and lower IndS of the ,intervals,
which is not approprtate. .. --;:- ",

In the case of identical concentrations. one -should u a-t there 15
SOIII variation in the data, but that the concentrations rounded and give
the sue values after rounding. To account for the var11bt11:ty that was
present before rounding, take the least significant digit in the reported
concentration as having resulted fral rounding. Assu.e that roundfng results
in a unifOrll error on the interval centered at the reported value with the
interval ranging up or down one half unit fral the reported value. This
assuaed rounding 15 used to obtain a nonzero estill4te of the variance for use
in cases where all the ..asured concentrations were found to be identical.

PURPOSE

The purpose of this procedure ts to obtain a nonzero estil1&te of the
variance when all observations fro- a well during a given sa.pling period gave
identical results. Once this -edified variance is obtained, tts .square root
is used in place of the usual saIPle standard deviation, 5, to construct con­
fidence intervals or tolerance intervals.

step 1. Dete~ine the least significant value of any data point. That
is. dete~ine whether the data were reported to the nearest 10 PPII, ",arest 1
ppm, nearest 100 PPII. etc. Denote this· value by 2R.

Step 2. The data are aSSUled to have been rounded to the nearest 2R, so
each observation is actually the reported value:tR. Assuaing that the obser­
vations were tdentical because of rounding. the variance is esti.ted to be
RI/3, assuaing the unifo,.. distribution for the rounding error. This gives
the esti.ted standard deviation as

5' • RII'I

Step 3. Take this .sti.ted value fro- 5tep 2 and use tt u the estt.te
of the standard deviation in the appropriate par_tr1c procedure. That 1s,
replace 5 by 5'.

EXAMPLE

In calculating a confidence tnterval for a single ea-pliance well, sup­
pose that four observations were taken during a SlIIPling period and all
resulted in 590 ppa. There is no variance ~~ the four values 590, 590,
590, and 590.

Step 1. Ass.. that each of the values 590 c_ f..- round'ng the con­
centration to tile nearest 10 ppa. .That ts. 590 c:auld actually" any. value
between 585.0 and 594.99. Thus, 2R is 10 .. (rounded off), so R is 5 Ppll.
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Step 2. The est1..te of the standard deviation is

S' • 5/15:. 5/1.732 • 2.89 ppm

Step 3. Use S' • 2.89 and i · 590 to calculate the confidence interval
(see Section 6.2.1) for the ..an concentration from this well. This gives

590 t (4.541)(2.89/14) • (583.4, 596.6)

as the 98% confidence interval of the average concentration. Note that 4.541
is the 99th percentile fro. the t-distribut1on (Table 6, Appendix 8) with 3
degrees of freedom since the s.-ple size was 4.

INTERPRETATION .

When identical results are obtained from several different samples, the
interpretation is that the data are not reported to enough significant figures
to show the random differences. If there is no extrinsic evidence invalidat­
ing the data, the data are regarded as having resulted from rounding more
precise results to the reported observations. The rounding is assumed to

.result in variability that follows the uniform distribution on the range tR,
where 2R is the SIIllest unit of reporting. This assumption is used to calcu­
late a standard deviation for the bbservations that otherwise appear to have
no variability.

Assuming that the data are reported correctly to the units indicated,
other distributions for the rounding variability could be assu..d. The-ax­
imul standard deviation that could result from rounding when the observation
is tR is the value R.
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SECTION 7

CONTROL CHARTS FOR INTRA-WELL QJPARISONS

The previous sections cover various situations where the compliance we~l

data are compared to the bacJcground well data or to specified concentration
11.fts (ACl or Mel) to detect possible cont..ination. This section d1scusses
the case where the level of each constituent within a single uncontaminated
well 1s be1ng monitored over time. In essence. the data for each constituent
~ach well are plotted on a time scale and inspected for obvious features
such as trends or sudden changes in concentration levels. The .thod sug­
gested here 1s a ea-b1ned Shewhart-tUSUM control chart for each well and
constituent. .

The control chart method is recoaaended for uncontu1nated wells only,
when data comprising at least eight independent samples over lone-year period
are available. This requirement is specified under current RC~ regulations
and applies to each constituent in each well.

As discussed 1n sect10n 2. a CQIIOn s.-pl1ng plan w11l obtain four inde­
pendent samples froa each well on a sel1-annual bas1s. W1th this plan I con­
trol chart can be i..,l_nted when one year's data are available. As a result
of Monte Carla si.,latians. Starles (1988) reca-ended at least four samp"ng
periods at a unit of eight or 80re wells, and at least eight sa.pl1ng periods
.at a unit with fewer than four wells.

The use of control charts can be an effeaive technique for 8On1tor1ng
the levels of a constituent at a given well over ti.. It also provides a
visual means of detecting deviations froa a ·state of control.· It is clear
that plotting of the data is an illlPOl"tant part of the analysis process. Plot­
ting is an easy task, although tt.-e:onsu.1ng if ..,y data sets need to be
plotted. Advantage should be taken of Vaph1cs software_ since plott1ng of
t1l11 series data w1l1 be an ong01ng process. New data points will be added to
the already existing data base each t1. new data are available. The follow­
1ng few sections will discuss, 1n general teras, the advantages of plotting
time ser1es data: the corrective steps one could tlke to adjust when season­
ality in the data is ,,"sent; and ftnally, the detafled procedure for con­
st1'"Uct1ng a Shewhart-CUStJI control chlrt, along with a d~nstrat10n of that
procedure, t s p1"Isented.

7.1 ADVANTAGES OF PLOTTING DATA

Wh11e analYZing the data by ..ans of any of the appropriate statistical
procedures dtsQlssed in earlier sections is ",cc••nded, we .lso recQlllllend
platting the data. Each data point should be plotted against time using a
tt. scale Ce.g., lmnth, quarter). A plot should be glnerated for each
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constituent -easured in each well. For visual cOlParison purposes, the scale
should be kept identical fro- well to well for a given constituent. I

........
Another i.rtant application of the plotting procedure is fOIl' detecting

possible trends or drifts in the data fro- a given well. furtherwore. when
visually cOllParing the plots f". several wells within a unit....ible con­
t,,'nat'on of one rather than all downgrad1ent wells could be detected which
would then warrant a closer look at that well. 1ft general. graphs can provide
highly effective illustrations of the ti. series, allowing the analyst to
obtain a aJch greater sense of the data. seasonal fluctuations or sudden
changes, for IX.le, 8IY bec:c. quite evident. thereby supporting the analyst
in his/her decision of which statistical procedure to use. 8eneral upward or
downward trends, if present, can be detected and the analyst can follow-up
with a test for trend, such IS the nonpar..tric Mann-Kendall test (Mann,
1945; Kenda", 1975). If, in addition, seasonality is suspected, the user can
perlOnl the slasonal Kendall test for trend devel~ed by Hirsch et al.
(1982). The reader is also referred to Chapters 16 -Detecting and £st1l11ting
Trends· and 17 -Trends and seasonality· of .'Ubert's -Statistical Methods 'for
£nv1rorBIntal Pollution Monitoring.· 1987. In any of the above eases. the
hllp of a professional statistician is rtCaliended.

Another 1.,ortant use of data plots is that of .~ent1fying unusual data
points (e.g •• outliers). Thesl points should then be investigated for pos­
sible QC probl.... data entry errors. or whether tbey are truly outliers.

Many software packages are availabl. for CCIIIPUter graphics. develOPed for
.'nframes••'ni-. or .icrocCIIPUters. For exUlP'e. $AS features an easy-to­
use plotting procedure. PROC PLOT; where the hardware and SOftware are avail­
Ible. a series of lare sophisticated plotting routines can be accessed through
$AS GRAPH. On .'croeQIIPUters. almst everybody has his or her favorite
graphics software that they use on a regular basis and no "co_endation Wi 11
be made as to the last appropriate one. The plots shown in this cmcu.nt were
generlted using LOTUS 1-2-3.

Once the data for each constituent and each well are plotted. the plots
should be ex..,ned for seasonal1ty and a correction is reea-ended should
seasonality be present. A fairly Si8P'e-to-use procedure for deseasonal1z1ng
data is Presented in the following paragraphs.

7.2 CORRECTING FOR SEASONALITY

A necessary precaution before constructing a control chart is to take
into account seasonal yar1ation of the data to .1ni.iz. the chance of .istak­
1ng seasonal effect for evidence of .,1 cant.inat1on. This could result
fral variations in chel1cal concentrations with recharge rates during
different seasons throughout the years. If seasonal1ty is present. then
deseuonal1zing the data prior to using the com1ned Shewhart-CUSUM control
chart procedure is rtCOIIIInded. _.

Many approaches to deseasonal1ze data exist. If the ..asonal-,attern is
regular. it MY be lade led with a sine or cosine function. Moving averages
can be used. or differences (Of order 12 for enthly data for ex.'e) can be
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used. However, time series .aclels IIQ include rather COIIP1fca~ .thads for
deseasonal1z1ng the data. Another 51.ler .thod exists ..tell fbould be ade­
quate for the situations described in this ~nt. It tau tItI advantage of
being easy to understand and apply, and of providing natur~l esttutes of the
-onthly or quarterly effects via the 80nthly or quarterly( ..an5. The method
proposed here can be applied to any seaso~al cycle-typically in anl'llal cycle
for IGnthly or quarterly data.

NOTE

Corrections for seasonality should be used with great caution IS they
represent extrapolation into the future. There should' be a good scientific
explanation for the seasonality IS well as good _irical evidence for the
seasonality before corrections are ..de. Larger than average rainfalls for
two or three Augusts in a row does not justify the beHef that there will
never be • drought in August, and this idea extends directly to groundwater
quality. In addition, the quality (bias, robustness, and variance) of the
esti.tes of the proper corrections .ust be considered even in cases where
corrections are .called for. If seasonality is suspected, the user .ight want
to seek the help of a professional statistician.

PURPOSE

When seasonality is known to exist in a t1. series of concentrations,
then 'the data should be deseasonal1zed prior to constructing control charts in
order to take into account seasonal variation rather than .'staking seasonal
effects for evidence of cont..ination.

PROCEDURE

The following instructions to adjust a ti. series for seasonality are
based on IIOnthly data with a yearly cycle. The procedure can be eas11y .acli­
fied to accommodate a yearly cycle of quarterly data.

Assu. that). years of IGnthly data are available. Let Xij denote the
unadjusted observation for the ith 80nth during the Jth year.

Step 1. 'OIIIPUte the average concentration for IGnth 1 over the "-year
period:

This is the average of all observations taken in different ~ears but during
the s.. 8Onth. That is, calculate the .an concentrations for all Januarys,
then the .an for all FebruarYs and so on for each of the 12 .,nths.,'.

Step 2. Calculate the grand .an. i. of all "*12 observations,

. 12 M 12
I - ~ I X,j/N*12 - I Ii112

i-1 j-l i-I
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step 3. Compute the adjusted concentrations,
.. - .-.. ,;;.;:.

Callput1ng X1j - !1 1"8Oves the average effect of ~nth t froll the IIOnthly
data, and ad~ng X, the overall ..an, places the adjusted Z1j values about ~e
SIIIII ..an, X. It follows that the overall ..an adjusted observation, Z,-equals the overall ..an unadjusted value, X.

EXAMPLE

eolUins 2 through 4 of Table 7-1 show IIOnthly unadjusted concentrations
of a fictitious Inalyte over a 3-year period.

TABLE 7-1. EXAMPLE COMPUTATION FOR DESEASONALIZING DATA

. '.Unadjusted ' '," Monthly adjusted
concentrations 3~h concentrations

1983 1984 1985 average 1983 1984 1985

January 1.99 2.01 2.15 2.05 2.10 2.13 2.27
...-" February 2.10 2.10 2.17 2.12 2.14 2.15 2.21

March 2.12 2.17 2.27 2.19 2.10 2.15 2.25
April 2.12 2.13 2.23 2.16 2.13 2.14 2.24
May 2.11 2.13 2.24 2.16 2.12 2.13 2.25
.June 2.15 2.18 2.26 2.20 2.12 2.15 2.23
July 2.19 2.25 2.31 2.25 2.11 2.16 2.23
August 2.18 2.24 2.32 2.25 2.10 2.16 2.24
5eptllllber 2.16 / 2.22 2.28 2.22 2.11 2.17 2.22
OCtober 2.08 2.13 2.22 2.14 2.10 2.U; 2.24
Novlllber 2.05 2.08 2.19 2.11 2.U 2.14 2.25
Decllllber 2.08 2.16 2.22 2.16 2.09 2.17 2.23

Overall 3-year average • 2.17

step 1. CoIIpute the 80nthly averages across the 3 18ars. T'-8se values
are shown in the fifth col.., of Tabl. 7-1.

Step 2. The grand ..an over the 3-year period is calculated to be 2.17.
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step 3. Within each .,nth and year, subtract the average t1Ionthly con­
centration for that IIOnth and add the grand _an. For ex1llP1., for January
1983, the adjusted concentration bec:OIIIS

1.99 - 2.05 + 2.17 • 2.11

The adjusted concentrations are shown in the last three columns of Table 7-1.

The reader can check that the average of 111 36 adjusted concentrations
equals 2.17, the Iverlge unadjusted concentration. Figure 7-1 shows the plot
of the unadjusted Ind adjusted data. The raw dlta clearly exhibit seasonality
as well as an upwards trend which is less evident by simply looking at the
data table.

INTERPRETATION

. °As can be seen in Ffgure 7-1, seasonal effects were present in the
data. After adjusting for monthly effects, the seasonality was removed as can
be seen in the adjusted data plotted fn the same ffgure.

7.3 COMBINED SHEWHART-CUSUM CONTROL CHARTS FOR EACH WELL AND CONSTITUENT

Control charts are widely used as I stltistical tool in industry as well
IS reselrch Ind developllllnt laboratories. The concept of control charts is
relatively s1l1Ple, which ukes the. Ittractive to use. Frail the population
distribution of I g1v.n variable, such IS concentrlt1ons of I given constit­
uent, repeated randQl samples are taken It intervals over tile. Statistics,
for eXlIIPle the mean of replicate vllues It I point in t1., are computed and
plotted together with upper and/or lower predete~fned li.its on a chart where
the x-lXis represents tile. If I result falls outside these boundaries, then
the process is declared to be ·out of control·; otherwise, the process is
declared to be ·in control.· The widespread use of control charts is due to
their ease of construction and the fact that they can provide a quick visual
evaluatton of a situltion, and reledtll actton can be taken, tf necesslry.

In the context of gl"OUnd wlter IIOnttor1ng, control charts Clft be used to
IIOnitor the inherent statistical variation of the data collected withfn a
single well, and to 'lag IftOIIIlous 1"'Uults. Further investigation of data
points lying outside the established boundaries will be necessary before any
direct action is taken.

A control chart that can be used on a real ti_ basis ..st be constructed
froll a dati set large enough to characterize the behavior of i specific
well. It is reco-ended thlt dati fraa I .1nt.. of etght s.les within .a
year be collected for lach·constituent It each well to p.~1t an Ivalultion of
the consistency of IIOnitor1ng results w1th the current concept of the hydro­
geology of the stte. Starks (1988) reca-ends a .'n1... of four sUIPling
periods It • unit with .tght or IIOre wells and a .'n1.. 0' .ight s_11ng
periods It I unit w1th °lISS than tour wells. Once the control chart for the
spectf1c constituent at I given well is acceptable, then subsequent ~ata
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points can be plotted on it to provide a quick evaluation es ~ whether the
process is in control.

The standard assu.pt1ons in the use of control· chart$ are that the data
generated by the process, when it is in control, are 1,ndentb (see Sec­
tion 2.4.2) and normally distributed with a fixed ..an _ constant variance
cr 2 • The IIOst illPortant USUllPtion 15 that ortnCiependence; control charts are
not robust with respect to departure fro- independence (e.g., serial correla­
tion, see glossary). In general, the s.-pl1ng Schllll w11l be such that the
possibility of obtaining serially correlated results is .1n1.1zed, as noted in
Section 2. The assumption of norlll,11ty is of sOlllWhat less concern, but
should be investigated before plotting the charts. A transformation (e.g.,
log-transform, square root transfo~) can be applied to the raw data so as to
obtain errors normally distributed about the .an. An additional situation
which aay decrease the effectiveness of control charts is seasonality in the
data. Tne problem of seasonality can be handled by removing the seasonality
effect frQII the data, provided that sufficient data to cover at least two
seasons of the same type are ava1lable (e.g., 2 years when IIOnthly or quart­
erly seasonal effect). A procedure to correct a time series for seasonality
was shown above 1n Section 7.2.

PURPOSE

Combined Shewhart-CUaJlat1ve SUII (CUSUM) control charts are conStructed
for each constituent at each well to provide a visual tool of detecting both
trends and abrupt changes in concentration levels.

PROCEDURE

Assume that data froll at least eight independent suples of IIOn1toring
are available to provide reliable estilll4tes of the .an, II, and standard
deviation, cr, of the const1tuent's concentration levels in a given well.

S", 1. To construct a COIIIb1ned Shewhart-CUSlI4 chart, three parameters
need to be selected prior to plotting:

h - a decision internal value
k - a reference value
SCL - Shewhart control li.it (denoted by U in Starks (1988»

The parlDlter k of the CUSUM scheme is directly obtained from the value.
0, of the displac...nt that should be quickly detected; k • 0/2. It is reco-­
.nded to select k • 1, which will allow a displac_nt of two standard devia-
tions to be detected quickly. .

When k is selected to be 1, the parameter h is usually set at values of 4
or S. The par..ter h is the value against which the cu.lat1ve SUII in the
CUSUM sche- will be COIIPared. In the context of groundwater 8On1toring , a
value of h • 5 is rec:o-ended (Starks, 1988; Lucas. 1982).
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The upper Shewhart 11.1t is set at SCL • 4.5 in units of standard devia­

tion. This COIIbination of k • I, h • 5. end SCL • 4.5 was found .st appro­
priate for the application of COIbined Shewhart-CUSUM chlrts for trQUndwater
mn1toring (Starks. 1988).

Step 2. Ass.. that It t1. period Tf • "1 cpnc:entratton .asu....nts
Xl' ••• , Xnt , are avanable. Calpute their IVlrage Xi.

'Step 3. Calculate the standardtZed .an

where u and • are the lean and standard deviation obtained fral prior -an1tor-'
1ng at the Slllll well <at least four sUIPl1ng periods in a year).

Step 4. At each time period, Ti , compute the CUlUlat1ve sum, Si' as:

where .ax {A, B} is the .aximum of A and B, starting with So • o.
S.tep 5. Plot the values of S1 versus Ti on a t1. chart for this 'com­

b1ned Shewhart-CUSUM scheme. Declare an ·ou~-of-eo"trol· sttuation at sam­
pling period T, if for the first time, S, ~ h or Zi ~ SCL. This will indicate
Probable cont,,'nation at the well and further investigations will be
necessary.

Lucas, J. M. 1982. ·Ca-bined Shewhart-CUSUM Qual tty Control Schemes.· Jour­
nal of QuaUty Technology. Vol. 14. pp. 51-59.

Starks, T. H. 1988 (Draft). ·Evaluation of Control Chart Methodologies for
RCRA Waste Sites.-

Hock1llln, IC. IC., and J. M. Lucas. 1987. ·Variability Reduction Through Sub­
vesse1 CUSUM Contro1. • JoumaJ. of Qu41fty Technology. Vo1. 19, pp. 113-121.

EWFL£

The procedure is demonstrated on a set of carbon tetrachloride _asure­
.nts taken ~nthly at a CGIIIPHance well over I 1-year "riod. The ~nthly
.ans of two .asu.-.ents each (n1 • 2 for all f I s) Ire p' !Sented in the third
col~ of Tabl. 7-2 below. Esti.tes of • and •• the .an Pel standard
deviation of carbon tetrachloride .asu....nts at that particular .11 Wire
obtained freJII .. preceding 8Onitoring period at that well; •• 5.5 I19/L and
• • 0.4 119/L.
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TABLE 7-2. EXAMPLE DATA FOR COMBINED SHEWHART-tUSUM oNT-­
CARBON TETRACHLORIDE CONCENTRATION (II9/L)

SUpl1ng -perfod Mean concentration, Standardized Xf. CUSUM,
Date T, Xf 1, 1, - k S1

Jan 6 1 5.52 0.07 ..-0.93 0
Feb 3 2 5.60 0.35 -0.65 0
Mar 3 3 5.45 -0.18 -1.18 0
Apr 7 4 5.15 -1.24 -2.24 0
May 5 5 5.95 1.59 0.59 0.59
Jun 2 6. 5.54 0.14 -0.86 0.00
Jul 7 7 5.49 -0.04 -1.04 0.00
Aug 4 8 6.08 2.05a 1.05 1.05

bSep 1 9 6.91 4.99a 3.99 5.04
bOCt 6 10 6.78 4.53 3.53 8.56
bNoy 3 11 ,6.71 4.28 3.28 11.S4
bDec 1 12 6.65 4.07 3.07 14.91

Parameters: Mean. 5.50; std • 0.4; k • 1; "h • 5; SCL • 4.5.

a Indicates ~out.af-control· process via Shewhlrt control It.'t (Z, > 4.5).

b CUSUM 'out-of-eontrol' s1gnll (S, > 5).

step 1. The three plrameters necessary to construct I combined
Shewhart-CUSUM chart were selected IS h· 5; k. 1; SCL. 4.5 in units of
standard deviation.

Step Z. The .,nthly .ans Ire presented in the th1rd colUlin of
Table 7-2.

Step 3. Standardize the .ans w1thfn elch slllPl1ng period. These
cQIIPutat10ns Ire shown tn the fourth col.-n of Table 7-2. For uuple.
Zl • (5.52 - 5.50)*1270.4 • 0.07.

Step 4. CoIIpute the quantities S,. 1 • 1, •••• 12. For eXlIIIPle,

Sl • .ax (0, -0.93 + O) • 0
S2 • .ax {Of -0.65 + O} • 0
•
•
•
S. • .ax {Of 0.59 + S_}
S. • .ax (0. -0.86 + SI)
•
etc.

• .ax (0. 0.59 + OJ • 0.59
• .ax (0. -0.86 + 0.59) • .ax (0. -O.27) • 0

7-9



F

These quantities are shown in the last colUlin of Table 7-2. •

Step 5. Construct the control chart. The 1-axis is in units of stan­
dard deviations. The x-u1s represent t1., or_the sapling ""ods. For
each s_ling pertod, Tf • record the value of Xt and S1. Draw horizontal
lines at values h • 5 and SCL • 4.5. These two lines represent the upper con­
trol 11.Us for the CUSUM sch_ and the Shewhart control 11.U. respec­
tively. The chart for this example data set is shown in Figure 7-2.

The combined chart indicates statistically significant evidence of con­
tllllination starting at sgpl1ng period Tt. Both the CUSUM scheme and the
Shewhart control 11.U were exceeded by S, and Z" respectively. Investi­
gation of the situation should begin to conf1na contllll1nation and action
should be required to bring the variability of the data back to its previous
level.

IflTERPRETATIOH

The combined Shewhart-CUSUM control scheme WIS applied to an example data
set of carbon tetrachloride ..asurements taken on a -anthly basis at a well.
The statistic used in the construction of the chart was the _an of two
-easurements per sampling period. (It should be noted that this method can be
used on an 'n4'v'dual -easurement as well, in which case n1 • 1). Estimates
of the .an and standard deviation. of the .asure-ents were available from
previous data collected at that well over at least four slllPling periods.

The par_ters of the COIIb1ned chart were selected to be" k • 1 unit. the
reference value or allowable slack for the process; h • 5 units, the decision
interval for the CUSUM sch...; and SCL • 4.5 units, the upper Shewhart centrol
11.1t. All parameters are in units of ., the standard deviation obtained" from
the previous -an1toring results. Various COIb1nat1ons of parameter values can
be selected. The particular values reco-ended here appear to be the best for
the initial use of the procedure fro- a review of the s1lUlat1ons and reca.­
..ndat1ons in the references. A discussion on this subject is given by Lucas
(1982), Hockman and L~cas (1987), and Starks (1988). The choice of the parllll­
eters h and k of I CUSUM chart is based on the desired perlorunce of the
chart. The crUer10n used to evaluate a contl"ol sc.... is the average MUllber
of slllPles or ti. periods before an out-of-eontrol signal 15 obtained. This
criterion is denoted by AlL or average run length. The ARL should be large
when the .an concentration of a hazardous constituent is near its target
value and SIIIll when the .an has shifted too far fro- the target. Tables
have been developed by s1lUlat1on ..thads to est1..te ARLs for given combina­
tions of the par_ters (LuCIS, Hocman and Luea. and Starks). The user 15
referred to these articles for further reading.

7.4 UPDATE OF A CONTROL CHART

The contro1 chart 1s based on preselected perlonllnCe par_ters as well
as on est1aates of • and ., the par...ters of the distribution of the .asure­
-ents in question. As mn1tor1ng cont1n1es and the process is found to be in
control, these par...te" need periodic updating so as to incorporate this new
"1nfo"..t1on into the control charts. Starks (1988) has suggested that in
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general, adjustants in $lllple .ans and standard deviations. -.de after
sapling periods 4, 8, 12, 20, and 32, following the initial ..ttOring period
rKCllllllnded to be at leut eight s.,1ng periods. Also. the ..,.,.,ol'lllftCe
parameters h, k. and SCL would need to be updated. The author suggests that
h • 5, k • I, and SCl • 4.5 be kept at those values for the first 12 sa.pling
periods following the initial monitoring plan, and that t be reduced to 0.75
and SCL to 4.0 for all subsequent sapling periods. These values and sapling
period nuDlbers are nat lIIftdatory. In the event of an out-of-control state or
a trend, the control chart should nat be updated.

7.5 NONDETECTS IN ACONTROL CHART

Regulations require that four independent water s-.ples be taken at each
well at a given sampling period. The.an of the four concentration measure­
lents of a particular constituent is used in the construction of a control
chart. Now situations will arise when the concentration of a constituent is
below detection limit for one or more s.les. The following approach is
suggested for treating nondeteets when plotting control charts.

If only one of the four measurements is a nondeteet, then replace it with
one half of the detection limit (MOL/2) or with one half of the practical
quantitation li.it (PQL/2) and proceed u described in section 7.3.

If either two or three of the ..asurements are nandeteets, use only the
quantitated values (two or one, respectively) for the control chart and pro­
ceed u discussed earlilr in section 7.3.

If all four .asure-ents are nandeteets, then use one half of the detec­
tion li.it or practical quantitation li.it u the vilue for the construction
of the control chart. This is an obvious situation of na cont.ination of the
well.

In the event thlt I control chart requires updlting and I certlin propor­
tion of the .Isu~nts is below detection 11.tt, then adjust the ..an and
standlrd deviation necessary for the control chart by using Cohen's .thad
described in Section 8.1.4. In that cue, the proport10n of nondltectS
applies to the pool of data Ivanable at the t1. of the updlting and would
include all nandeteets up to that ti., nat just the four .Isu~nts taken
It the lut SlllPl ing period.

CAUTIONARY NOTE: Control charts are I useful suppl...nt to other statistical
teehniques because they are graphical and s .lIple to use. However, it is
inapproprilte to construct a control chart on wells that hive shown evidence
of cont..ination or an increasing trend (see §264.97(a)(1)(1». Further, con­
tlllinition .y not be present in a well in the f01"ll of I steadily increlsing
concentration praftle--ft ..y be present inte1"llittently or -ay increase in I
step function. Therefore,' the absence of an increasing trend does not
necessarily prove that a releue has nat occurred. -
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SECTION 8

MISCELLANEOUS TOPICS

This chapter contains a variety of special topics that are relatively
short and self contained. These topics include .thads to deal with data
below the If.ft of detection Ind ..thads to check for, Ind deal with outliers
or extreme values in the data.

8.1 LIMIT OF DETECTION

In I chemicil anllys1s some compounds ..y be below the detection limit
COL) of the analytical procedure. These are generally reported IS not
detected (rather than IS zero or not present) and the appropriate limit of
detection is usually given. Data that include not detected results are a
special case referred to IS censored data in the statistical literature. For
CCIIIPounds not detected, the concentrit1on of the cc.pound 15 not known.
Rather. it is only known that the concentration of the compound is less than
the detection 11.1t.

There are a variety of ways to deal with data that inclUde values below
detect ion. There 1s no general procedure that 1s app11cab1e 1n all cases.
However there are SOlll general gu1deUnes that usually prove adequate. If
these do not cover a specif1c s1tuation, the user should consult a profes­
sional statistician for the lOSt appropriate way to deal with the values below
detection.

A summary of suggested approaches to deal with data below the detection
li.it is presented as Table 8-1. The ..thad suggested depends on the UIOunt
of data below the detection 11.n. For ..ll I8DUnts of below detection
values. S111P1.y replacing a -NO- (not detected) report with a SlAll number, say
the detection li.it divided by two, and proceeding with the usual analysis is
satisfactory. For ~erate aounts of below detection 11.1t data, a llare
detal1ed adjust-.nt 15 appropriate, while for large UIOUnts one laY need to
only consider whether a COIIPound was detected or not as the variable of
analysis.

The ..an1ng of sall, lIOderate. and large above 15 subject to jUdgment.
Table 8-1 contains some suggested values. It should be recognfzed that these
values are not hard and fast rules. but are based on jUdpent. If there is I
question about how to handle values below detection, consult • statistician.
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TABLE 8-1. METHODS FOR BELOW DETECTION LIMIT VAWES

Percentage
Statistical s.ction ofof Nondetects

in the Data Base Analysis Method Guidance Document

Less than 15% Replace NOs with section 8.1.1
MDLJ2 or PQLJ2.
then proceed with
parametric procedures:

• ANOVA Section 5.2.1
• Tolerance Units Section 5.3
• Prediction Intervals Section 5.4
• Control Charts Section 7

Between 15 and SOO/. Use NOs as ties.
then proceed with
Nonparametric ANOVA Section 5.2.2 i

or I

use Cohen's adjustment, Section 8.1.3
I

i
then proceed with:

I.

• Tolerance Umits Section 5.3
• Confidence Intervals Se'" ~n 6.2.1
• Control Charts Se ~n 7

More than 50% Test of Proportions section 8.1.2
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It shoUld be noted that the nonparmetric _thads presented earHer auto­
..tically deal with values below detection by regarding t~ IS .11 tied at a
level below any quantitated results. The nonpar..tr1c _thods MY be used if
there is a 80derate l80unt of data below detect10n. If the. proportion of non­
quantified values 1n the data axceeds 251, these _thads should be used with
caution. They should probably not be used tf less than half of the data con­
sists of quantified concentrations.

8.1.1 The OL/2 Method

The IIIOUnt of data that are below detection plays an 1l11Portant role in
selecting the ..thod to dell with the l,.,t of detection problem. If I sma"
proportion of the observations are not detected, these ~ be replaced with a
SIIll number, usuilly the ..thad detection l1.it divided by 2 (MDL/2), and the
usual analysis perfo~d. This is the reca-ended _thad for use with the
analysis of various procedure of Section 5.2.1. Seek professional help if in
doubt about dell1ng with values below detection U.it. The results of the
analysis Ire generilly not sensitive to the specific choice of the replacement
nulDber.

As I gU1delfne, if 151 or fewer of the values are not detected, replace
them with the _thad detection limit divided by two and proceed with the
appropriate analysis using these IIOd1fied values. Practical quant1tat10n
11.'ts (PQL) for Appendix IX cOllPounds were publfshed by EPA in the Federal
Register (Vol 52, No 131, July 9, 1987, pp 25947-2595Z). These give practical
quantftation If.its by COIIPOUnd and analytical _thod that lIlY be used in
replacing a SIII11 .aunt of nondetected data with the quant1tat1on limit
divided by 2. If approved by the Regional Adlinistrator, s1te specific PQL's
lIlY be used in this procedure. If IIOre than 151 of the values are reported IS
not detected, 1t is preferable to use a nonparmetric _thad or a test of pro­
portions.

•
8.1.2. Test of proportions

If .ore than 50S of the data Ire below detection but at least 101 of the
observations are quantified, a test of proportions lIlY be used to COIIPare the
background well data with the CQlPliance well dati. Clearly, if none of the
background well observations were above the detection It.ft, but all of the
COIIPl1ance well observations were above the detection U.it. one would suspect
cant.ination. In general the diffet"'lnce lIlY not be as obvious.· However, I
higher proportion of quantitated values in ea-pliance wells could provide evi­
dence of com-ination. The test of proportions is a _thad to dete",'ne
whether a difference in Proportion of detected values in the background well
observations and ca.pliance well observations Provides statistically signifi­
cant evidence of conta.1nation.

The test of proportfons should be used when the proportion of quantified
values 1s 511&11 to lIOderate (f.e., between 101 and SOl). If ..ry few quanti­
fted values are found, a _thod based on the Poisson d1st1"1button MY be used
as an alternative approach. A _thad bued on • tolerance 11.1t for the
l'Ulber of detected CQIIPOUnds and the IUXf.. concentration found for any
detected cOlllPound has been proposed by Gibbons (1988). Thfs alternative would
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be appropriate when the ~r of detected cQlPOUnds is qu4-! s-allJ~lat1ve
to the fUlber of CQIIPOUnds analyzed for as .ight OCc.f" '1n _bet1on
8On1toring. _.

PURPOSE

The test of proportions deteT'llines whether the proportion of- CQIIPOUnds
detected in the compliance well data differs significantly f~ the proportion
of compounds detected in the background well data. If there is a significant
difference. this is statistically significant evidence of cont..inat1on.

PROCEDURE

The procedure uses the norlal distribution approximation to the binomial
distribution. This assumes that the s-.ple size is reasonably large. Gener~

ally. if the proportion of detected values is denoted by p. and the sample
size is n. then the noT'll&l approx1.tion is Idequate.· provided that nP and
n(1-P) both are greater than or equal to 5.

Step 1. Determine X. the number of background well samples in which the
compound was detected. Let n be the total number of background well samples·
analyzed. Compute the proportion of detects:..

Pu • x/n

Step 2. Deterlline Y. the IUlber of COIIPl1anc:e well suples in which the
COlllPound was detected. Lit M be the total number of c_l1ance we11 samp1es
analyzed. CoIIpute the proportion of detects:

Pd • y/a

Step 3. Compute the standard error o'f the difference in proportions:

So. ([(x+Y)/(~»)[l - (x+y)/(~»)[l/n + 1/m)}1/2

and form the statistic: .. ..
. Z • (Pu - Pd)/SD

Step 4. Caalpare the absolute value of Z to the 97.5th percentile fran­
the standard normal distribution. 1.96. If the absolute value of Z exceeds
1.96. this provides statistically significant evidence at the 51 significance
level that the proportion of CGIIPl1ance well s_les where the cc.pound was
detected exceeds the proportion of background well s_les where the CQllPOund
was detected. This would be tnterpreted as evidence of contmination. (The
two-sided test is used to provide tnforlation about differences in either
direction.)

EXAMPLE

Tabl. 8-2 contains data on cadlli.. concentrations .asum in background
well and CGIIPl1ance wells at • facil1ty. In the table. aSOLa ts used for
below detection l1ait.
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TABLE 8-2. £XNFlE DATA fOR A TEST OF PROPORTIONS:
r·

';.
,

Cadll1U11 concentration (1I9/L) c.d11i. concentration (,.gIL). at background .11 at CQIIplianc:e wells
(24 suples) (&4 sUIPles)

0.1 BOl 0.12 BOL 0.024
0.12 BOl 0.08 BOl BOl
BDL· BOl BOL BOL BOl
0.26 BOl 0.2 0.11 BOL
BOL BOL 0.06 BOL
0.1 0.1 BOL BOl
BOL BOl 0.23 0.1
0.014 0.012 BOl 0.04
BOL BDl 0.11 BOL
BOl BOl BOl BOL
BOL BOL 0.031 0.1
BOl BOL BOL BOL
BOL BOL BOL 0.01
0.12 0.12 BOL BOL
BOl 0.07 BOL BOL
0.21 BOL BOl BOL
BOL 0.19 0.12 BOL
0.12 BOL 0.08 BDL.
BOL 0.1 BOl
BOl BOL 0.26

~-- 0.01 BOL
BOL 0.02

. BOL BOL

•BoL .ans below detection U.1t.
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step 1. Estill&te the proportion above detection In tM ,McJcground
wells. As shown in TUle 8-2, there were 24 1IIIP1es f~·.JIIck""" wells
analyzed for cadlliUII, so It- 24. Of these, l' were .law detect"" .. x • 8
were above detection, 10 'u • 8/24 • 0.333. . - ,,'..:4

. . ----Step 2. £sti.te the proportion above detection tn. the'!' CQIIpl1ance
wells. There were 64 slllPles froll COIIPltance wells Malyzed for CldIIium, with
40 below detection and 24 detected values. This gives. • 14, y • 24, so Pd.
24/64 • 0.375.

Step 3. Calculate the standard e1TC;lr of the difference in proportions.

So • {[(8+24)/(24+64») [1-(8+24)/(24+64)](1/24 +1/64)}1/2 • 0.115

Step 4. FOnD the statistic Z and COIIPare it to the normal
distribution.

Z • 0.375 - 0.333 • 0 37
. 0.115 •

which is less in absolute value than the value fraa the normal distribution,
1.96. Consequently, there is no statistically significlnt evidence thlt the
proportion of sa.ples with cldmiu. levels above the detection li.1t differs 1n
the background we11 and CCIIP11ance we11 S&IIP1es.

INTERPRETATIOtI

Since the proportion of water sllllPles with detected uounts of cldllium in
the camp11ance wells wu not significantly different froll that in the
background wells, the dati Ire interpreted to provide no evidence of contam­
ination. Hid the proportion of samples with detectable levels of cldllium in
the CQIIPliance wells been significantly higher than that in the background
wells this would have been evidence of contmination. Had the proportion been
significantly higher in the background wells, additional study would have been
requ1red. This could 1neticate thlt contmination was .igrlt1ng froll In off­
site source, or f.t cquld .In that the hydraul1c gradient had been incorrectly
estil1&ted or had changed and thlt cant.'nation was occurring froll the flcl1­
ity, but the ground-wlter flow was not in the direction originally uti.ted.
Mounding of cont.inants in the ground water near the background wells could
also be a possible explanation of this observance.

8.1.3 Cohen's Method

If a confidence 1ntervll or a tolerance intervll based upon the nonaal
distribution is being constructed, a technique presented by Cohen (1959)
specifies I ..thad to adjust the s.-ple ..an and s.-ple standard deviation to
account for dlta below the detection '. I.it. The only requi....nts for the use
of this technique fs that the data are norRl1y distributed &nd thlt the
detection li.1t be always the s... This technique is a.:»nstrated .low.
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PURPOSE

Cohen's ..thad provides est1..tes of the s8IPle ..an and standard devia­
tion when SOllll (~ SOl) observations are below detection. ,These esti..tes can
then be used to construct tolerance, confidence, or prediction intervals.

PROCEDURE

let n be the total nulber of observations, _ represent the number of data
. points above the detection limit (Ol), and Xi represent the value of the ith

constituent value above the detection limit.
-Step 1. CoIIIpute the suple _an xd froll the data above the detection

li.it as follows:

Step 3. Compute the two parutters, h and T (l~rcase gaJIIIIa) , as
follows:

h • !!!:!ln

S2
d

T· -----(i-Ol)1

where n is the total ruiber of observations (i.e., above and below the
detection limit), and where Ol is equal to the detection limit.

These values are then used to determine the value of the parameter i from
Table 7 in Appendix 8.

Step 4. Est1.te the corrected sample .an, which accounts for the data
below detection li.it, as follows~

•

Step 5. Est1..te the corrected sample standard deviation, which accounts
for the data below detection limit, as follows:
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2 • - I 1/2S • (Sd + l(Xd - DL) ) :

Step 6. Use the corrected values of Xand S in the procedur'e 'or con­
structing a tolerance tnterval (Section 5.3) or a confidence interval (Sec­
tion 6.2.1).

REfERENCE

Cohen, A. C., Jr. 1959. ·Silllpl1f1ed EstiMtors for the Normal Distribution
When Samples are Singly Censored or Truncated.· rechnometrfca. 1:217-237.

EXAMPLE

Table 8-3 contains data on sulfate concentrations. Three observations of
the 24 were below the detection 11.1t of 1,450 I19/L and are denoted by
.< 1,450· in the table.

TABLE 8-3. EXAMPLE DATA FOR COHEN'S TEST

Sulfate concentration (mg/L)

1,850
1,760

< 1,450
1,710
1.575
1,475
1,780
1.790
1,780

< 1,450
1,790
1,800

< 1,450
1,800
1.840
1,820
1,860
1,780
1,760
1,800
1.900
1,770
1,790
1,780

DL • 1,450 IIg/L

NOte: A sYilibOl 1<' before a numer 1ncUcates that the value
is not detected. The fllllber following is then the 11.n of
detection.
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Step 1. Calculate the .an f1"Oll the _ • 21 values above detktion
-xd • 1,771.9

Step 2. Calculate the suple variance froll the 21 quantified values
2

Sd • 8,593.69

Step 3. Detenline

h • (24-21)/24 • 0.125

and

T • 8593.69/(1771.9-1450)2 • 0.083

Enter. Tlble 7 of Appendix B at h • 0.125 and T • 0.083 to determine the
value of 1. Since the table does not cODta1n these entries exactly, double
linear interpolation was used to estimate 1 • 0.14986.

For the interested reader, the details of the double linear interpolation
are provided.

The values from Table 7 between which the user needs·to interpolate are:

%

0.05
0.10

h • 0.10

0.11431
0.11804

h • 0.15

0.17935
0.18479

0.06504 • 0.50 .,0.03252

0.06675 • 0.50 • 0.033375

There are 0.025 units between 0.01 and 0.125 on the h-scale. There are
0.05 units between 0.10 and 0.15. Therefore. the value of interest (0.125)
lies (0.025/0.05 • 100) • 501 of the distance along the interval between 0.10
and 0.15. To linearly interPOlate between the tabulated v.lues on the h axis,
the range between the values ..st be calculated. the value that 15 SOS of the
distance along the range ..st be COIIPUted and then that value ..st be added to
the lower point on the tabulated values. The result is the interpolated
value. The interpolated points on the h-scale for the current example are:

0.17935 - 0.11431 • 0.06504
0,11431 + 0.03252 • 0.14683

0.18479 - 0.11804 • 0.06675
0.11804 + 0.033375.'0.151415

On the T-1X1s there are 0.033 untts between 0.05 and 0.083. There are
0.05 units between 0.05 and 0.10. The value of interest (0.OS3). lies
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0.004585 • 0.66 • 0.0030261

-(0.0330.05 * 100) • 661 of the distance along the interval MtweeII 0.05 and
0.10. The interpolated point on the ..-axis is: •

0.141415 - 0.14683 • 0.004585
0.14683 + 0.0030261 • 0.14986

Thus, i · 0.14986.

Step 5. The corrected sample ..an and standard deviation are then esti­
.ated as follows:

i • 1,771.9 - 0.14986 (1,771.9 - 1,450) • 1,723.66

S • [8,593.69 + 0.14986(1,771.9 - 1,450)2)1/2 • 155.31

Step I. These IIOd1fted estt.tes of the .an, i • 1723.66, and of the
standard deviation, S • 155.31, would be used in the tollrance or confidence
interval procedure. For exuple. if the sulfate concentrations represent
background at a fac111ty. the upper 951 tolerance 11.,t bee...s

1723.7 + (1$5.3)(2.309) • 2082.3 mg/L

Observations froll cc.pl1ance wells in excess of 2.082 IIg/L would give sta­
tistically significant evidence of conta.1nation.

IIITERPR£TATIOH

Cohen's .thod provides -.xi.... l1kelihood estil11tes of the .an and
variance of a censored nora1 distribution. That is. of observations that

.- follow a norul distribution except for those below a 11.it of detection,
which are reported as -not detected.- The lIOd1f1ed est1.tes reflect the fact
that the not detected observations are below the l,.,t of detection, but not
necessarily zero. The large s.-ple properties of the lIOd1f1ed estil11tes allow
for them to be used with the nonlal theory procedures as a .ans of adjusting
for not detected values in the data. Use of Cohen's .thod in IIOre compli­
cated calculations such IS those required for analysis of variance procedures,
requires special considlrat10n fral a professional statistician.

8.2 OUTLIERS

A ground-water constituent concentration value that is 8Uch different
fral IIOst other values in a dati set for the SI8l ground-water constituent
concentration can be referred to as an ·outlier.· PoSSible reasons for
out11ers can be:

• A catutrophtc unnatural occurrence such as a spill;

• Inconsistent supltng or analytical chemistry .thodology that .ay
result in -laboratory cont.inati.on or other &nOMl1es;

• Errors in the transcription of data values or deci.' points; and
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• !!:y! but ext,... ground-water constituent concentralion .asure­
_nts.

The" are several tests to detera1ne if there 11 statistical evidence
that an observation 11 an outlier. The "ference for the test ,resented here
is ASTM paper £178-75. .

PURPOSE

The purpose of a test for outliers 15 to deteT'1l1ne whether there 15
statistical evidence that an observation that appears extreme does not fit the
distribution of the rest of the data. If a suspect observation is identified
as an out11er. then steps need to be taken to detenai ne whether 1tis the
result of an error or a valid extreme observation.

PROCEDURE

Let the sample of observations of a hazardous constftuent of ground water
be denoted by Xu •••• Xn• For specificity, USlmI that the data have been
ordered and that the largest observation, denoted by Xn, is suspected of being
an outlier. Generally. inspection of the data suggests Yalues that do not
appear to belong to the data set. For example, if the largest observation is
an order of aagnitude larger than the other observations. it would be suspect.

Step 1. Calculate the _an, Xand the standard deviation, S. of the data
inclUding all observations.

Step 2. FOrll the statistic, Tn:

I Tn • (Xn - X)/S

Note that Tn is the difference betwee.n the largest observation and the sample
_an. divided by the slllPle standard deviation.

Step 3. talpa" the statistic Tn to the critical value given the sample
size, n, in Table 8 in Appendix B. If the Tn statistic exceeds the critical
Yalue froll the table. this is evidence that the suspect observation, Xn, is a
statistical outlier.

Step 4. If the value is identified as an outlier, one of the actions
outlined below should be taken. (The appropriate action depends on what can
be learned about the observation.) The records of the s.-pl1ng and analysis
of the s.-pl, that led to it should be investigated to deterlline whether the
outlier resulted f.... an error that can be identified.

• If an error (in transcription, dilution, analytical procedure. etc.)
can be identified and the correct value recoyered, the observation should be
replaced by fts corrected value and the approprfate stattst1cal analysis done
with the corrected value.
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• If it can be determined that the observation is 1n error, but the
correct value cannot be detenlined, then the observation should..be deleted
froll the data set and the appropriate statistical analysis perfo,.d. The
fact that the observation was deleted and the reason for its .lation should
be reported when reporting the results of ~e statistical .,alys1s.

• If no error in the value can be docaented then it ..st be assumed
that the observation is a true but extreme value. In this case it lUst not be
altered. It.ay be desirable to obtain another sample to conf1n1 the observa­
tion. However, analysis and reporting should retain the observation and state
that no error was found in tracing the saIPle that led to the extreme observa­
tion.

EXAMPLE

Table 8-4 contains 19 values "1)"f total organic carbon (TOC) that were
obtained f~ a .anitoring well. Inspection shows one value which at 11,000
~/L is nearly an order of ..gnitude larger than lOst" of the other observa­
tions. It is a suspected outlier.

Step 1. Calculate the mean and standard deviation of the data.

i • 2300 and S • 2325.9

TABLE 8-4. EXAMPLE DATA FOR TESTING FOR AN OUTLIER

Total organic carbon (1Ig/L)

1,700
1,900
1,500
1,300

11,000
-1,250
1,000
1,300
1,200
1,450
1,000
1,300
1,000
2,200
4.900
3,700
1,600
2,500
1,900
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step 2. Calculate the statistic T1,.

Til • (11000-2300)/2325.9 • 3.74

Step 3. Referring to Table 8 of Appendix 8 for the u~per 5S significance
level, with n • 19, the critical value is 2.532. Since the value of the
statistic Tit· 3.74 is greater than 2.532, there 15 statistical evidence
that the largest observation is an outlier.

Step 4. In this case, tracking the data revealed that the unusual value
of 11,000 resulted from a keying error and that the correct value was 1,100.
This correction was then .ade in the data.

INTERPRETATION

An observation that is 4 or 5 t1..s as large as the rest of the data is
generally viewed with suspicion. An observation that-is an order of aagnitude
different could arise by a common error of .isplac1ng a decimal. The test for
an outlier provides a statistical basis for dete~in1ng whether an observation
is statistically different from the rest of the data. If it is, then it is a
statistical outlier. However, a statistical outlier ..y not be dropped or
altered just because it has been identified as an outlier. The test provides
a fo~l identification of an observation as an outlier, but does not identify
the cause of the difference.

Whether or not a statistical test is done, any suspect data point should
be checked. An observation .y be corrected or dropped only if it can be
deterlllined that an error has occurred. If the error can be identified and
corrected (as in transcription or keying) the correction should be _de and
the corrected values used. A value that 15 dlllOnstrated to be incorrect .ay
be deleted from the data. However, if no SPeCific error can be documented,
the observation lUst be retained in the data. Identification of an observa­
tion as an outlier but with no error documented could be used to suggest
resampling to confi~ the value.

8-13
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6EJIERAL STATISTICAL CONSIDERATIONS

FALSE ALARMS OR TYPE 1 ERRORS

The statistical analysis of data f". ground-water IIOn1tor1ng at ReRA
sites has as its goal the dete~1nat1on of whether the data provide evidence
of the presence of, or an increase in the level of cant.1nation. In the case
of detection monitoring, the gOll of the statistical analysis is to determine
whether statistically significant av1dence of contminat1on extsts. In the
case of compliance IIOn1tor1ng, the goal is to detera1ne whether statistically
significant evidence of concentration levels exceeding COIIPl1ance 11.1ts
exists. In IIOn1tor1ng sites in corrective action, the gOll is to determine
whether levels of the hlZardous constituents are still above ca.pliance limits
or have been reduced to, It, or below the calP'1anc:e li.1t.

These questions are addressed by the use of hypothesis tests. In the
clSe of detection IOn1tor1"9, it 15 hypothesized thlt I site is not contami­
nated; that is, the hazardous constituents are not ,resent in the ground
water. S.-ples of the ground water are taken and analyzed for the constitu­
ents in question. A hypothesis test 15 used to decide whether the data indi­
cate the presence of the hazardous constituent. The test consists of calcu­
lating one or IIOre statistics from the data and c.-paring the calculated
results to lODe prespecified critical llvels.

In performing a statistical test, thlre are four possible outCQlllls. Two
of the possible outeolles result in the correct decision: <al the test lIlY
correctly indicate that no cont.1nat1on 11 present or (bl the test lIlY cor­
rectly indicate the presence of cont.inat1on. Thl other two possibilities
are errors: (c)' the test lIlY indicate that cont.1nation 1s present when in
fact it 15 not or (d) the test lIllY fa11 to datect cant.1nat1on when it is
present.

If the stated hypothesis is that no cant.ination ts present (usually
called the ...11 hypothesis) and the test tndicatls that cont.1nat1on i$
present when in fact it is not, this is called a Type I arror. Stat1st1ca'
hypothesis tasts Ire generally set up to control the probability of TYl)e I
error to be no IIOre than a specified Yalue, called the significance lavel, Ind
usually denoted by.. Thus in detection IIOn1tor1ng, the ...11 hypothesis would
be that the lave' of aach hazardous const1tuant is zero (or at 'aast ~low
detection). The test would reject this hypothesis if SOle ...sure of concen­
tration were too 'arge, indicating cant.1nat1on. A Type I error would be I
fllse alanl or I triggering event that is inawropr1ata.

In CCIIIPltanct .,n1tor1ng, the ...11 hypothesis 11 that the lavel of each
hlZardous constituent is lass tIIan or equal to the appropriate COIIPl1ance
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limit. For the purpose of setting up the statistical procedure, the simple
null hypothesis that the llvel is equal to the CQIIPUance Hait "'OUld be
used. As in detection -an'1toring, the test wuld indicate cenu-i.tion tf
SOlll .asure of concentration fs too large. A 'alse .'a...... -l". I error
would occur 1f the statist1cal P1"OCedure lnd1cated that llvels _ceed the
appropriate cc.pl1anc:e 11.its when, 1n fact, they do not. Such an error would
be a false ala7"ll in that lt wuld lndicate falsely that Qllpl1ance 11.,ts were
be1ng exceeded. -

PROBABILITY OF OmCTION ANO TYPE II ERROR

The other type of error that can occur 15 ca11eel a Type II error. It
occurs if the test fails to detect cont.ination that is present. Thus a
Type II error is a .'ssed detection. While the probability of a Type I error
can be specified, s1nce it 15 the probability that the test w111 give a false
a'arll, the probability of a Type II error depends on several 'actors, includ­
ing the statistical test, the s.-ple slze, and the s1gn1flcance level or prob­
ability of Type I error. In addltion, it depends on the degree of cant.tna­
t10n present. In general, the probabillty of a Type II error decreases as the
level of cont.ination increases. Thus a test -.y be 11kely to .iss low lev­
els of contamination, less likely to .'55 80derate cont.ination, and very
unlikely to .iss high levels of conte-1nation.

One can d1scuss the probability of a Type II error as the probability of
a .'ssed detection, or one can d1scuss the COIIP'_nt (one .inus the prob­
ab111ty of Type II e1'TOr) of this probability. The CQIIpl_nt, or probab111ty
of detection, 1s also called the power of the test. It depends on the ..gni­
tude of the cont.ination so that the power or probabillty of detecting con­
t.inat10n increases with the degree of co~lnatlon.

If the probability of a Type I error ls spec1fled, then for a g1ven sta­
t1stical test, the JOWer depends on the slllPle slze and the alternative of
1nterest. In order to specify a des1red power or probab1lity of detection,
one ..st specify the alternat1ve that should be dltected. Since generally the
power will increase as the altemathe difflrs 1101"8 and IIOre fro. the null
hypothesis, one usually trles to specify the alternat1ve that ls closest to
the null hypothesis, ~t enough dlfferent that lt ls 111POrtant to detect.

In the detection -anitoring s1tuation, the ,.,11 hypothes1s ls that the
concentration of the hazardous constituent is zero (or at least below detec­
tion). In thls case the alternative of interest ls that there ls a concen­
tration of the hazardous const1tuent that 15 above the detectlon 11.1t and is
large enough so that the 8Onltorlng procedure should detect It. Slnce lt 1s a
very dlff1cult probl. to select • concentratlon of aach hazardous const1tuent
that should be detlCtlbla wlth specified power, a .are useful approach is to
dete,..ine the power of a test at slveral .'ternatlves and declde whether the
procedure ls acceptable 011 the basls of thts power 'unction rather than on the
power agatnst a slngle alternative.

In order to increue the power, a largar s.'a ..st be tlJcen. Th1s
would .an supl1ng at .are frequent lntervals. There ls a 11.it to how ..ch
can be achieved, however. In CUIS with 11.,ted water flow, it lIlY not be
posslble to s.-ple wells u frequently as deslred. If slllPlas close together
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in ti. prove to ... correlated, this correlation reduces uae tnforution
available f~ the different I.'es. The addittonal COlt of 1_11ng and
IftIlys1s will allo t~se practtcal ltaitattons on the 1..,1. lize that can be
used. '

Additional wells could also be used to tncrease the perfonlance of the
test. The additional .cnitor1ng wells .auld pr1..r1ly be helpful tn ensuring
that a plume would not escape detection by .iss1ng the aon1tor1ng wells. How­
ever, in SOllIe situations the additional .11s would contribute to a larger
sample stze and so illProve the power.

In cOlllPl1ance aon1tor1ng the IIIPhasis is on deterain1ng whether addi­
tional contllllination has occurred, rais1ng the concentration above a compli­
ance limit. If the compliance l1an 1s determined frona the background we"
levels, the null hypothesis ts that the difference between the background and
compliance well concentnt1ons fs zero. The alternative of tnterest is that
the compliance well concentration exceeds the background concentration. This
situation is essentially the s.. for power considerations as that of the
detection monitoring situation.

If compliance aonitortng is relative to a compliance lfait (MeL or ACL),
specified as a constant, then the situation ts different. Here the null hypo­
thes1s is that the concentration is less than or equal to the compliance
11.tt, with equality used to establish the test. The alternattve is that the
concentration is above the COIIPl1ance l1ait. In order 'to specify power. a
.inimua amount above the ea-pl1ance 118it lUst be established and power speci­
fied for that alternative or the power function evaluated for several possible
alternatives.

SAMPLE DESIGNS AND ASSUMPTIONS

As discussed in Section Z, the slIIP'e design to be 1IIP10yed at a regu­
lated unit will pr1.rl1y depend on the hydTogeologic evaluation of the
site. Wells should be sited to provide ,,'t1ple background wells hydrauli­
cally upgradient froll the regulated unit. The background wells allow for
determination of natural spattal variabl1ity tn ground-water quality. They
also allow for .stt.tton of background '.vels with greater precision than
would be poss1bl. froll a s1ngl. upgrldtent well. CoIIpl1ance wells should be
sited hydraultcally downgrldtent to .ach regulated unit. The location and
spac1ng of the .11s, IS well IS the depth of SlllPltng, wuld be detem1ned
f~ the hydrogeology to ensure that at l.ast one of the wells shoUld inter­
cept a pluae of cont..1nat10n of reasonable size.

Thus the us~ SlllPle design 11 for a slllPle of wells to inclUde a
nuaber of background wells for the site, together with a nuablr of ea-pl1ance
wells for each regulated unit at the site. In the event that a site has only
a single regulated unit, there .auld be bfo ITOUpS of wells .. background and
caapltance. It. lite his IUltipl. regulated units, there would be a set of
coapl1ance wells for each regulated unit, allowing for detection aonitoring or
COIIPl1ance aon1toring separately at each regulated unit. .

Data froll the analysis of the water at each well are fttittally assUiled to
follow a no".., d1str1bution. This is l1kely to be the case for detection
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IIOn1tor1ng of analytes in that levels should be near zero and errors would
likely represent tnstraent or other sampling and analysis variabfl1ty. If
contu1nat1on ts present, then the distribution of the data IIQ .. skewed to
the right, giving a few~ large values. The uSUllPtion of <no,., tty of
errors in the detection IIOnitoring cue is quite reasonable, with deviations
froll noY'llll1ty 1fkely indicating SOM degree of c:onu.1nation. Tlsts of nor­
ality are recaa.nded to ensure that the data are adequately represented by
the norul distribution.

In the compliance IIOn1toring case, the data for each analyte will again
initially be assumed to follow the nonlll distribution. In this case, how­
ever, since there is a nonzero concentration of the analyte in the ground
water, normality is IIOre of an issue. Tests of norality are reca-ended. If
evidence of nonnoral1ty is found, the data should be transformed or a
distribution-free test be used to dete~1ne whether statistically significant
evidence of contamination exists.

The standard situation would result in IUltiple s-.ples (taken at dif­
ferent times) of water froll each well. The wells would fo~ groups of back­
ground wel15 and CCIIPliance wells for each regulated unit. The statistica'
procedures recaa.ended would allow for testing each cOllPliance well group
against the background group. . Further, tests BOng the camp11ance we11 s
within a group are recomended to detena1ne whether a single well .1ght be
tntercepttng an isolated pl.... The specific procedures discussed and recom­
_nded in the preceding sections should cover the ..jor1ty of cases. They did
not cover all of the possibilities. In the event that none of the procedures
described and l1lustrated appears to apply to a particular cue at a given
regulated site, consultation with a statistician should be sought to determine
an appropriate statistical procedure.

The following approach is recoaaencled. If a .regulated unit is in detec­
tion .anitor1ng, it will remain in detection .an1tor1ng until or unless there
is statistically significant evidence of cont..ination, in which case it would
be placed in cOlllPl1ance IIOn1tor1ng. Likewise, if a regulated unit 15 in com­
pliance IIOnitor1ng. it will reaain in ca.pl1ance IIOn1toring unllss or until
there is statistically significant evidence of further cont..1nat1on, in which
cue it would .ave into corrective action.

In IIOn1tor1ng a'regulated unit with IUlt1ple CGIIPl1ance wells, two types
of significance levels are considered. One is an exper1_ntw1se significance
level and the other is a ea-par1sonwisl significance llve'. When a procedure
such as analysis of variance is used that considers several COIPl1ance wells
Si8Ultaneously, the significance is 1ft experi_ntw1se significance. If
individual well COIParisons are ..de, each of those CQlParisons is done at a
comparisonwis1 significance level.

n,e fact that lIIfty CtIIIParisons win be lIIde at a regulated unit wtth
IUlt1ple cCIIPl1anee wells .Ift me the probabl1ity that at laut one of the
cOllParisons will be incorrectly significant too high. To control the false
positive rate, 8Ultiple CQlPar1sons procedures are anowed that control the
experf.ntwfse sign1ffcance 'eve' to be SS. That is, the probabl1ity that one
or IIOre of the CClllPlMsons wl1l falsely indicate conu.1nation is controlled
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at 5~. However, to provide some assurance of adequate power tt detect real
contamination, the ca.parisonw1se significance level for ea-par1ng each
individual well to the background 15 required to be no less than 1S.

Control of the experi..ntwise significance level via IUltiple CQlParisons
procedures is allowed for ea-par1sons ..eng several wells. However, use of an
experimentwise significance level for the ca.par1sons .-ong the different haz­
ardous constituents is not permitted. Each hazardous constituent to be moni­
tored for in the permit .ust be treated separately•
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81 OSSARY OF STATISTICAL TERMS
(underlined te~ are explained subsequently)

Alpha (ca)

Alpha-error

Alternative hypothesis

Arithmetic average

Confidence coefficient

Confidence interval

Cumulative d1st~1but10n

function

Distribution-free

A greek letter used to denote the significance
l!:!!l or probabil1 ty of a Type I error.

SoIet1..s used for Type I erro,.

An alternative hypothesis specifies that the
Underlying distribution differs from the null
hypothesis. The alternative hypothe~'s usually
specifies the value of a parameter, ·~r example
the .an concentration, that one is trying to
detect.

The arithmetic average of a set of observations
is their sum divided by the nullber of
observations.

The confidence coefficient of a confidence
interval for a par..ter is the probability that
the rlridc. interval constructed from the sample
data contains the true value of the parameter.
The confidence coefficient is related to the
significance level of an associated hypothesis
test by the fact that the significance level (in
percent) is ont: hundred .inus the confidence
coefficient (in percent).

A confidence interval for a' parueter is a
randc. interval constructed froll suple data in
such a way that the probability that the
interval will contain the true value of the
par..ter is a specified value.

Distribution function.

This is sa.t1.s used as a. synonYli for
non,aruetr1c. A statistic is distribution-free
tf ts di stribut10n does not depend upon which
specific distribution function (in a large
class) the observations follow.
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Distribution 'unction

Experimentwise error rate

Hypothesis

Independence

Mean

Median

Multi~le cQlParison
procedure

The distribution function 'or. W-anfOli variable,
X. 15 a function that specifies the probability
that X 15 less than or equal to t. 'or all real
.alues 0' t.

This terti refers to 1I!1tiple et!!parisons. If a
total of n decisions are ..ae about comparisons
(for exUIPle of COIIP11ance wells to background
wells) and x 0' the decisions are wrong, then
the experi.ntwise error rat it In.

Thisis a fa,...1 statement 0, ,parameter of
interest and the distribut,., a statistic.
It is usually used as a n~:1 hypothesis or an
alternative hypothesis. For example. the null
hypothesis aight specify that ground water had a
zero concentration of benzene and that analyti­
cal errors 'allowed a, norul distribution with
.an zero and standard deviation 1 ppm.

A set of events are independent 1f the
probability of the joint occurrence of any
subset 0' the events factors into the product of
the probabl1ities of the events. A set of
observations 15 independent if the joint
distribution function of the random errors
associated with the observations factors into
the product-of the distribution functions.

Arithmetic average.

This is the .iddle value of a sDIPle when the
observations have been ordered '1"'CIII least to
greatest. I' the ftUlber 0' observations is odd.
it is the .'ddle observation. If the ftUlber of
observations is Iven. it 15 CUStOMry to take
the .'dpo'nt between the two .'ddle observa­
tions. For a distribution, the aedian 15 a
value such that the probability is one-half that
an observation will fall above or below the
aed1an.

This is a statistical procedure that ukes a
large nulber of decisions or ea.parisons on one
Sit of data. For exlll;)le, at a sup11ng period,
slvlral COIIPl1ance well concentrations l14y be
COIIPared to the badcground well concentration.
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One-sided test

Null hypothesis

One-sided tolerance li.1t

NOrMl population,
norMlity

Honparlletric statistical
procedure

A nonparuetric sutistical procedure ,. a
statistical procedure that ... .:.' 1iesir&ble
properties that hold under 1I11d _SUllPtions
regarding the data. Typically the procedure is
valid for a large class of distributtlns rather
than for a specific distribution of tile data
such as the no~l. -

The errors associated with the observations
follow the no~l or Gaussian distribution
function.

A null hypothesis specifies the Underlying
distribution of the data CQlPletely. Often the
null distribution specifies that there is no
difference between the .an concentration in
background well water IUlPles and compliance
well water s&IIPles.

A one-sided test is appropriate if concentra­
tions higher than those specified by the null
hypothesis are of concern. A one-sided test
only rejects for differences that are large and
in a prespecified direction.

This is an upper 11.1t on observations from a
specified distribution. .

One-sided confidence li.1t This is an upper li.1t on a parlllllter of a
distribution.

Order statistics

OUtlier

Par_ter

Percentile

The sample values observed after they have been
arranged in inc:reasi ng order.

An outlier is an observation that is found to
11e an unusually long wlY froll the rest of the
observations tn a sertes of replicate
observations.

A par_ter ts an unknown constant associated
with a population. For ex.-ple, the mean
concentration of a huardous constituent in
f1"OUnd water 15 a par..ter of interest.

A pen=entne of • distribution is a value below
whtch • specified proportion or percent of the
observations fraa that distribution will fall. -I'
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Power

Sample standard deviation

Sample variance

Serial correlation

Significance level

Type I error

Type II error

The power of a test ts the probabi"ty that the
test will reject under a specified alternative
hypothesis. Th1sis one .1nus the probab11i ty
of a TyPe I I error. The power 1s a _asure of
the test is .1l1ty to detect a1l1fferenee of
SPeCified size fral the null hYPothesis.

This is the square root of the sample variance.

1h1 ~ a statistic (computed on a sample of
(: u ions rather than on the whole popula­
t lr, lat _asures the variability or spread of
tnt tv .:-ervations about the sample .an. It is
the lUll of the squared differences from the
sample .an, divided by the nu.ber of observa­
ttons less one.

This ts the correlation of observations spaced a
constant interval apart in a series. For exam­
ple, the first order serfal correlatfon fs the
correlation between adjacent observations. The
f1rs~ order serial correlation is found by. cor­
relating the pairs consisting of the first and
second, second and third, thfrd and fourth,
etc., observattons.

Sometimes referred to as the alpha level, the
sfgn1f1cance level of a test is the probability
of falsely rejecting a true null hypothesis.
The probability-of a Type I error.

A Type I error occurs when I true null
hypothesis is rejected erroneously. In the
~n1tor1ng context I Type I error occurs when a
test incorrectly indicates cont.-1nlt1on or an
1ncrelse in cont.-1nltion It I regUlated unit.

A Type II error occurs when one fll1s to reject
a null hypothesis that is fllse. In the moni­
toring context, a Type II error occurs when
~nitoring fa11s to detect contlll1nltion or an
increase in I concentration of a hazardous
constituent.
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TABLE 1. PERCENTILES OF THE x2 DISTRIBUTION WITH ,
" DEGREES OF FREEDOM, X:,p



NOTE: "1: Degrees of freedOil for ,...rator
"2: Degrees of freedOll for dal1Ollinator

StcrtVtfca and Experimental
Second Edition. John

Johnson, Norun L. and F. C. Leo... 1977.
Vol. I.

SOURCE:
Dafgn in £ngfneerfng and tile Phyafcczl Selene...
W11ey and Sons, New York.

•-
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TABLE 3. 95th PERCENTILES OF THE 80"FERRONI
t-STATISTICS, t(v, _/m)

where v - degrees of freedOll associated with the .an
squares error

_ - nulber of cOMParisons
_ - 0.05, the experimentwise error level

I

4
5
6
7
8
9

10
15
20
30
•

2
O.C' 0.025

2.13 2.78
2.02 2.57
1.94 2.45
1.90 2.37
1.86 2.31
1.83 2.26
1.01 '2.23
1.75 2.13
1.73 2.09
1.70 2.04
1.65 1.96

3
0.0167

3.20
2.90
2.74
2.63
2.55
2.50
2.45
2.32
2.27
2.21
2.13

4
0.0125

3.51
3.17
2.97
2.83
2.74
2.67
2.61
2.47
2.40
2.34
2.24

5
0.01

3.75
3.37
3.14
3.00
2.90
2.82

-2.76
2.60
2.53
2.46
2.33

SOURCE: For _/m - 0.05, 0.025, and 0.01, the percentiles
were extracted froll the t-table (Table 6, Appendix 8) for
values of F-1-_ of 0.95, 0.975, and 0.99, respectively.

For _/_ - 0.05/3 and 0.05/4, the percentiles were .
estimated using aA Nomograph of Studentls t a by "elson,
L. S. 1975. Joumal of QuaUty Technology, Vol. 7,
pp. 200-201.
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TABLE 4. PERCENTILES OF THE STANDARD NORMAL DISTRIBUTION, "p
•

,. 0.000 0.001 0.001. 0.003 o.CIM O.OOS 0.006 0.007 o.ooa
O.SO OOסס.0 0.001S 0.00.50 O.OO7S 0.0100 0.0115 G.OlSO 0.0115 0.0201 0.0226
o.SI 0.0lS1 G.0l76 0.0301 0.0316 0.03S1 0.0376 0.0401 0.0426 0.04.51 0.0476
0-'2 0.0$02 0.0521 I.OSS2 O.om 0.0602 0.06Z7 0.06S1 0.0677 0.0'702 0.0728
0.S3 0.0'7S3 0.0771 G.OI03 0.0121 0.0153 G.OI'7I 0.09CM G.0929 1.0954 0.0979
CU4 0.1004 0.1030 o.IISS 0.1010 o.UOS o.U3O o.U" 0.1111 0.11Q6 0.1231
0.5.5 0.12S'7 0.1211 0.1J07 0.1332 . 0.1351 0.1313 0.1_ 0.1..34 0.1459 0.1414
0." o.lSIO 0.ISlS 0.1S60 0.1$16 0.1611 0.1637 0.1661 0.1611 0.1113 0.1'731
0•.51 0.1'764 0.1719 0.111$ 0.1140 0.1_ 0.1191 0.1917 0.1942 0.1961 0.1993
0.51 0.2019 O.%04S 0.2m0 0.20M 0.2121 0.214'7 0.2173 0.2.91 O.m. 0.22'0
0.J9 0.227.5 0.2301 0.2317 O.23S3 0.23'71 0.2404 0.2430 0.24.56 0.2...2 0.2S08
0.60 0.2.533 0.2.5.59 o.25IS 0.1611 0.2631 Q.2M3 0.2619 0.271.5 0.2741 0.2'76'7
0.61 0.2'793 0.2119 0.2W 0.2111 G.2I9I 0.2924 0.29.50 0.29'76 o.JOO2 0.3019
0.62 o.lOSS O.lOli G.3107 G.3134 0.3160 G.3116 0.3213 0.3239 0.3266 0.3292
0.63 0.3319 0.334.5 0"J372 G.3391 0.3415 O.34SI 0.3471 O.3.50S 0.3.531 0.3S'8
0.64 O.3S., 0.3611 G.363I 0.366.5 0.J692 0.3719 G.31.., 0.3772 0.3'799 0.3126
0.6.5 O.3IS3 0.3lIO CU907 0.3934 0.3961 G.3M9 0.4016 0.4043 0.40'70 0.4097
0." 0.4115 o...ln 0."'19 0.G07 0.4234 O,mi G•.Qe-; 0.4316 0.4344 0.4372
0.67 0.4399 0.44%7 0.4454 0.4412 0."'10 0...,31 0."'" 0."'" 0.4621 0.4649
0.61 0.4677 0.4'20S 0.4733 0.4761 0.4719 0.4117 0.414$ a....,.. 0.4902 0.4930
0.69 0.4959 0.491'7 G.SOI' G.S044 o.so72 0.5101 0.5129 0.51S1 0.5117 0.52 IS

----
0.'70 0.»44 cum o..sJQ2 0.5330 4U3S9 G.S3II 0..541'7 U446 Q.S476 O.S50.5
0.71 O.S'34 G.SS6J fUm cum G.J6S1 fU6ll Q.S710 fU140 Q.S769 0..5"199
0.72 O.Jl21 0.51S1 CUIII 0.5911 G.S94I U91I 0.6001 0.6031 0.6061 0.6098
0.73 0.6121 0.61S1 0.6119 0.6219 0.62S0 0.6210 0.6311 0.6341 0.6372 0.6403
0.'" 0.6433 0.6464 0.649' 0.6.516 US.51 0.6Sl8 0.6620 0.66.51 0.6612 0.6713

!Q!i: For values of P below 0.5, obtain the yalue of U(l.P) f~ Table 4 and
change its sign. For exa.ple. UO•45 • -U(l-o.45) • -U0.55 • -0.1257.

(Cont11'11ed)
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TABLE 4 (Cont1rued)

, 0.000 0.001 o.em 0.003 0.004 0.005 1.006 G.OO7 G.OOI 0.009

0.75 0.674.s 0.6776 0.610I 0.6M» G.6171 0.6903 0.693.s G.6967 G.6999 0.7031
0.76 0.7063 0.'709.s . 0.7111 0.7160 0.7192 O.mJ 0.'72S7 0.'7290 0.7323 0.73S6
0.77 0.'731' 0.7421 0.74.54 O.UII 0.7521 0.75.54 0.7'" G.162I . G.7"S 0.7688
0.7' 0.7712 0.7756 0.7790 0.1124 0.'71$1 0.1192 0.1926 0.1961 0.199' 0.8030
0.19 0.1064 0.1099 0.1134 0.1169 G.I2CM G.I239 0.1%74 G.1310 G.I345 0.8381
0.10 0.1416 o.l4n 0..... 0.1.524 0.1560 0.1'" G.l633 G.8669 G.1'7OS 0.8742
0.81 0.1'" 0."16 0....s3 0.1190 G.1927 0.196.5 0.9001 0.9011O G.907I 0.9116
0.12 0.91.54 0.9192 0.9230 0.'169 0.'301 0.'346 0.'31' 0.9424 0.9463 0.9502
0.83 0.'542 0.9581 0.9621 0.9661 0.9701 0.9741 ..9112 0.9112 G.9I63 0.9904
0.14 0.994.s 0.9916 1.00%7 1.G069 1.0110 l.oln 1.0194 1.02J7 1.0279 1.0312
0085 1.0364 1.G401 1.0450 1-0494 1.0537 I.OSlI 1.GQ5 1.G669 1.0714 1.0758
0.16 1.0103 1.0141 '.0193 1.0939 1.09I.s 1.1031 1.1077 1.1123 1.11'70 1.1217
0.87 1.1264 1.1311 1.1359 1.1.t07 1.14SS 1.1,.3 usn 1.1601 1.16S0 1.1700
0." 1.I7SO I.IIGO I.IISO 1.1901 1.1951 1.2004 I.2OS' 1.2107 1.2160 1.2212
0.89 1.22" 1.2319 1.23n 1.2426 1.2411 1.2.S36 1.2591 1.2646 1.2702 1.%759
0.90 1.2116 1.2173 1.2930 1.2911 1.304'7 1.3106 1.31" 1.3n.5 1.3285 1.3346
0.91 1.3401 1.3469 1.3.s31 1.359' 1.36.51 1.3722 1.3787 l.3In 1.3917 1.3914
0.92 1.40,. 1.4111 1.4117 ....2SS U32.s 1.4395 1.4466 U.s3S 1.4611 1.4684
0.93 1.47.51 1M33 1.4909 1••5 1..s063 1.5141 uno 1.5301 1.5312 1.5*4
0.94 ..,,S4I 1.5632 1.5711 l..sao.s 1.5193 1.5912 U072 1.6164 I.W8 1.6352
0.95 I.,", 1.6.546 1-"" 1.6747 I•...., 1.69.54 1.1060 1.7169 1.'7279 1.7392
0.96 1.7S0'7 1.7624 1.7744 1.7166 1.1991 1.1119 l.a.so 1.1314 1.I.s12 1.1663-- 0.97 1.110I 1.1957 1.9110 1.9261 1.9431 1.9600 l.m4 1.9954 2.0141 2.033S
0.98 2.0537 2.07.., 2.0969 2.1201 2.1444 2.1'701 2.lm 2.2262 2.2J71 2.2904
0.99 2.3263 2.36S6 2.4019 2.4m 2.5121 2.57.51 2.6521 2.1471 2.1712 3.0902

SOURCE: Johnson, NorMn L. and F. C. Leone. 1977. Statbtica and !%perimental
DaignfnEngfneerofngandthaPPlyaic:alScienca. Vol. I, Second Edition. John
W11ey and Sons, New York •

.'
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TABLE 5. TOLERANCE FACTORS (K) FOR ONE-SIDED NORMAL TOLERANGE
. INTERVALS WITH PROBABILITY lEVEL (CONFIDENCE FACTOR)

Y • 0.95 AND COVERAGE P • 951 . • <

===-='-_._.11:
3
4
5
6
1
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
30
35
40
45
50

It

7.655
5.145
4.202
3.101
3.399
3.188
3.031
2.911
2.815
2.136
2.670
2.614
2.566
2.523
2.488
2.543
2.423
2.396
2.311
2.350
2.329
2.309
2.292
2.220
2.166
2.126
2.092
2.065

,
I
f
I
I
I·
I,

f I,
I,

,
I
I,,
l

••, t,,
, I·,

75
100
125
150
115
200
225
250
215
300
325 ,
350
315
400
425
450
415
500
525
550
515
600
825
850
875
100
'72!
150 f

775
800
825
850
m
900
92!
850 :
915 :

1000 :

1.972
1.924
1.891
1.868
1.850
1.836
1.824
1.814
1.806
1.199
1.192
1.187
1.182
1.171
1.773
1.169.
1.166
1.163
1.160
1.157
1.154
1.152
1.150
'1.748
1.146
1."'44
1.7'-'2
1.740
1.739
1.137
0.738
1.734
1.733
1.732
1.731
1.'729
1.728
1.17:1

'.

SOURCE: Ca> for sup'e sfzes s 50: LfebenIM, Gerald F. 1958. -Tables for
One-sided Statfstfcal Tolerance L1.1ts.· lnduatrfal Quality ContI'"oL Vol. XIV,
No. 10. Cb) for suple sizes ~ 50: K values wen calculated ,.,. large
sliple approxi..t1on.
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TABLE 6. PERCENTILES OF STUDENT ··s t-DISTRI8UTION

(F • 1-.; n • degrees of freedom)

I

.. ­.-
"

.-
'.

t

-::<. .. 31 .. .. .. .. .. .-
• •• I•• .... • ••U II." 11.11• ••• _ .•It

t •• .1.' I .• I.• ... ..... ••• 11.•
I .m .N I .• I.IA I." ....1 ..... .'.161• .m .T41 I .• 1.la I.m 1.741 .... I .•IC

• •• .fIr I.• 1.0" 1.171 I .• ••• '.Ii-
• •• .TI' I.... I." '.H? '.141 I.m I .•, •• .nl I.U I .• I.• I.• I .• I.tt• •• •• I .• I•• I .• ••• ..... ••OC •
t .•1 .M I.• I .• I.• 1.111 ••• •.711

to •• •• 1.172 1.111 I.• 1.116 I .•• •. IIT

II •• •• I.• I.'" I .• I.TII I." •••g •• •• .... I .• 1.1" 1.•1 I .• ..111
D •• .IN I.• I.m 1.1. I .... 1.011 ..:lZ.
It .. •• I .... I."• I .•• I." 1.177 •.•40·
II •• ••1 1.Ml 1.7. 1.111 I.• I.KI ••071

•• •• ... 1:_ 1.7. l.lID I .• I .•• ..011
IT •• •• I .• 1.140 I.no I.• I.• I ....
II •• •• I.• ••1M 1 .•01 I.'" 1.111 I .•
lt •• •• I.• I.'" I.• ••• 1.•1 •••10 •• •• I .• a.1II I.• I.• I.NI '.110.
11 •• •• I .• ..121 I.• 1.'11 1.8. '.1"II •• •• 1.111 1.Tl1 1.•4 I.• 1.'lt I.m
II •• •• 1.'lt l.n4 I .• I .• I .• '.m
If •• •• 1.'11 I.na I." I .• I.m ..1.• .III .... 1.111 Ual I.• .... I.• '.111
• •• .... 1.111 I .• I .• I.'" 1.711 ..m., •• ... 1.•1. 1." I.• I.CI I.m 1.110• .tII •• 1.ID l.m I .... ••• I." l.e4• .tII •• I.'U I .• I.OM I.• I." ....
10 .tII •• 1.'10 I .• I.• I.• I.• ....... •• ••1 I .• I." ...11 I .• I .• 1.lIa

• •• ... I•• 1.1n I.GIID I .• I.• ....
DD •• •Ir1 I .• I .• I .• I ... 1.'11 '.m
• •• .If. I .• I .... I .• I .• I.m I .••

SOURCE: eRe BtJItIIbooIc of Tabla for Probabafty and StcltWtfcs. 1966.w. R. Beyer, Editor. Published by the Ch.ical Rubber CcIIpany. Cleveland,
Ohio•
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TABLE a (Continued) ~

•
" -

...... '" 1.:..... 1": "......'" "·... I~ ",..lJ" "-" =::.a..r-_ Ed ••• Spi' II' I .. ' .. .. ' I

• '-' Ltotl LtotI '-" ..... UoII.. .... I.", JAIJ ..- 1.:• WI
Ie2 &lit: "'II JM9 • .11I UM I.e:.!
It) U'IS UU I .... UtI un un
lOA ..... UN ,.... U" J.::lI ,..
Illt "II: un un ..- ~ uu- ....., I.'" u:ll ' ..u J.::! 1.117
II' ...1Ot "n ,.t:J ,..-. UJO 1.0-
KlI ...11: ,,.. ,t:6 ,AI un U'U
lOt ...11. ,.,.. U." 1..1: 1.:.11 I ....
110 4119 J,,.' JAn 'Alf ,.2Jt I ....

IU "'2: I.,. ..... ..... '-Je ,OJ:
U: a.1~ '.~J 1.tIt IAI: U4f J.D,!
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DISCLAIMER

This document is intended to assist Regional and State personnel in evaluating ground-water

monitoring data from RCRA facilities. Conformance with this guidance is expected to result in

statistical me,~and sampling procedures that meet the regulatory standard of protecting human

health and ~~onment. However, EPA will not in all cases limit its approval of statistical

methods and sampling procedures to those that comport with the guidance set forth herein. This

guidance is not a regulation (i.e., it does not establish a standard of conduct which has the force of

law) and should not be used as such. Regional and State personnel should exercise their discretion

in using this guidance document as well as other relevant information in choosing a statistical

method and sampling procedure that meet the regulatory requirements for evaluating ground-water

monitoring data from ReRA facilities.

This document has been reviewed by the Office of Solid Waste, U.S. Environmental

Protection Agency, Washington, D.C., and approved for publication. Approval does not signify

that the contents necessarily reflect the views and policies of the U.S. Environmental Protection

Agency, nor does mention of trade names, commercial products, or publications constitute

endorsement or recommendation for use.
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--GROUND-WATER MONITORING DATA

AT RCRA FACILITIES

ADDENDUM TO INTERIM FINAL GUIDANCE

JULY 1992

This Addendum offers a series of recommendations and updated advice concerning the

Interim Final Guidance document for statistical analysis of ground-water monitoring data. Some

procedures in the original guidance are replaced by alternative methods that reflect more current

thinking within the statistics profession. In other cases, further clarification is offered for currently

recommended techniques to answer questions and address public comments that EPA has received

both formally and informally since the Interim Final Guidance was published.

1. CHECKING ASSUMPTIONS FOR STATISTICAL
PROCEDURES

Because any statistical or mathematical model of actual data is an approximation of reality, all

statistical tests and procedures require certain assumptions for the methods to be used correctly and

for the results to have a proper interpretation. Two key assumptions addressed in the Interim

Guidance concern the distributional propenies of the data and the need for equal variances among

subgroups of the measurements. In the Addendum, new techniques are outlined for testing both

assumptions that offer distinct advantages over the methods in the Interim Final Guidance.

1.1 NORMALITY OF DATA

Most statistical tests assume that the data come from a Normal distribution. Its density

function is the familiar bell-shaped curve. The Normal distribution)s the assumed underlying

model for such procedures as parametric analysis of variance (ANDYA), t-tests, tolerance

intervals, and prediction intervals for future observations. Failure of the data to follow a Normal

distribution at least approximately is not always a disaster, but can lead to false conclusions if the

data really follow a more skewed distribution like the Lognormal. This is because the extreme tail

behavior of a data distribution is often the most critical factor in deciding whether to apply a

statistical test based on the assumption of Normality.
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The InteriIE_ Final Guidance suggests that one begin by assuming that the original data are

Normal prior to testing the distributional assumptions. If the statistical test rejects the model of

Normality, the data can be tested for Log'nonnality instead by taking the narurallogarithm of each

observation and repeating the test If the. original data are Lognonnal, taking the natural logarithm

of the observations will result in data that are Nonnal. As a consequence, tests for Normality can

also be used to test for Lognonnality by applying the tests to the logarithms of the data.

Unfortunately, all of the available tests for Nonnality do at best a fair job of rejecting non­

Nonnal data when the sample size is small (say less than 20 to 30 observations). That is, the tests

do not exhibit high degrees of statistical power. As such, small samples of untransformed

Lognonnal data can be accepted by a test of Normality even though the skewness of the data may

lead to poor statistical conclusions later. EPA's experience with environmental concentration data,

and ground-water data in particular, suggests that a Lognonnal distribution is generally more

appropriate as a default statistical model than the Nonnal distribution, a conclusion shared by

researchers at the United States Geological Survey (USGS, Dennis Helsel, personal

communication, 1991). There also appears to be a plausible physical explanation as to why

pollutant concentrations so often seem to follow a Lognonnal pattern (On, 1990). In Ott's model,

pollutant sources are randomly diluted in a multiplicative fashion through repeated dilution and

mixing with volumes of uncontaminated air or water, depending on the surrounding medium.

Such random and repeated dilution of pollutant concentrations can lead mathematically to a

Lognonnal distribution.

Because the Lognormal distribution appears to be a better default statistical model than the

Nonnal distribution for most ground-water data, it is recommended that all data fIrst be logged

prior to checking distributional assumptions. McBean and Rovers (1992) have noted that

"[s]uppon for the lognormal distribution in many applications also arises from the shape of the

distribution, namely constrained on the low side and unconstrained on the high side.... The

logarithmic transform acts to suppress the outliers so that the mean is a much bener representation

of the central tendency of the sample data."

Transformation to the logarithmic scale is not done to malee "large numbers look smaller."

Perfonning a logarithmic or other monotonic transformation preserves the basic ordering within a

data set, so that the data are merely rescaled with a different set of units. Just as the physical

difference between 80· Fahrenheit and 30· Fahrenheit does not change if the temperatures are

rescaled or transformed to the numerically lower Celsius scale, so too the basic statistical

relationships between data measurements remain the same whether or not the log transformation is

2
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applied. What d~s change is that the logarithms of Lognorrnally distributed data are more nearly

Nonnal in character, thus satisfying a key assumption of many statistical procedures. Because of

this fact, the same tests used to check Nonnality, if run on the logged data, become tests for

Lognormality.

If the assumption of Lognonnality is not rejected, further statistical analyses should be

perfonned on the logged observations, not the original data. If the Lognonnal distribution .ll
rejected by a statistical test, one can either test the Nonnality of the original data, if it was not

already done, or use a non-parametric technique on the ranks of the observations.

If no data are initially available to test the distributional assumptions, "referencing" may be

-employed to justify the use of, say, a Normal or Lognormal assumption in developing a statistical

testing regimen at a particular site. "Referencing" involves the use of historical data or data from

sites in similar hydrogeologic settings to justify the assumptions applied to currently planned

statistical tests. These initial assumptions must be checked when data from the site become

available, using the procedures described in this Addendum. Subsequent changes to the initial

a~sumptions should be made if formal testing contradicts the initial hypothesis.

1.1.1 Interim Final Guidance Methods for Checking Normality

The Interim Final Guidance outlines three different methods for checking Normality: the

Coefficient-of-Variation (CV) test, Probability Plots, and the Chi-squared test. Of these three,

only Probability Plots are recommended within this Addendum. The Coefficient-of-Variation and

the Chi-squared test each have potential problems that can be remedied by using alternative tests.

These alternatives include the Coefficient of Skewness, the Shapiro-Wilk test, the Shapiro-Francia

test, and the Probability Plot Correlation Coefficient.

..
The Coefficient-of-Variation is recommended within the Interim Guidance because it is easy

to calculate and is amenable to small sample sizes. To ensure that a Normal model which predicts a

significant fraction of negative concentration values is not fitted to positive data, the Interim Final

Guidance recommends that the sample Coefficient of Variation be less than one; otherwise this

"test" of Normality fails. A drawback to using the sample CV is that for Normally distributed data,

one can often get a sample CV greater than one when the true CV is only between 0.5 and 1. In

other words, th~ sample CV, being a random variable, often estimates the true Coefficient of
. .

Variation with some error. Even if a Normal distribution model is appropriate, the Coefficient of

Variation test may reject the model because the sample CV (but not the true CV) is too large.

3
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The real purpose of the CV is to estimate the skewness of a dataset, not to test Normality.

Truly Nonnal data can have any non-zero Coefficient of Variation, though the larger the CV, the

greater the proportion of negative values predicted by the model. As such, a Normal distribution

with large CV may be a poor model for positive concentration data. However, if the Coefficient of

Variation test is used on the logarithms of the data to test Lognormality, negative logged

concentrations will often be expected, nullifying the rationale used to suppon the CV test in the

fIrst place. A better way to estimate the skewness of a dataset is to compute the CoeffIcient of

Skewness directly, as described below.

The Chi-square test is also recommended within the Interim Guidance. Though an acceptable

goodness-of-fit test, it is n6t considered the most sensitive or powerful test of Normality in the

current literature (Gan and Koehler, 1990). The major drawback to the Chi-square test can be

explained by considering the behavior of parametric tests based on the Nonnal distribution. Most

tests like the t-test or Analysis of Variance (ANOVA), which assume the underlying data to be

Normally distributed, give fairly robust results when the Normality assumption fails over the

middle ranges of the data distribution. That is, if the extreme tails are approximately Normal in

shape even if the middle part of the density is not, these parametric tests will still tend to produce

valid results. However, if the extreme tails are non-Normal in shape- (e.g., highly skewed),

Normal-based tests can lead to false conclusions, meaning that either a transformation of the data

or a non-parametric technique should be used instead.

The Chi-square test entails a division of the sample data into bins or cells representing

distinct. non-overlapping ranges of the data values (see figure below). In each bin, an expected

value is computed based on the number of data points that would be found if the Normal

distribution provided an appropriate model. The squared difference between the expected number

and observed number is then computed and summed over all the bins to calculate the Chi-square

test statistic.

CHI SQUARE GOODNESS OF FIT

4
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If the Chi-~quare test indicates that the data are not Normally distributed, it may not be clear

what ranges of the data most violate the Normality assumption. Departures from Normality in the

middle bins are given nearly the same weight as departures from the extreme tail bins, and all the

depanures are summed together to form the test statistic. As such, the Chi-square test is not as

powerful for detecting depanures from Normality in the extreme tails of the data, the areas most

crucial to the validity of parametric tests like the t-test or ANDVA (Miller, 1986). Furthermore,

even if there are departures in the tails, but the middle ponion of the data distribution is

approximately Normal, the Chi-square test may not register as statistically significant in certain

cases where better tests of Normality would. Because of this, four alternative, more sensitive tests

of Normality are suggested below which can be used in conjunction with Probability Plots.

1.1.2 Probability Plots

As suggested within the Interim Finai Guidance, a simple, yet useful graphical test for

Normality is to plot the data on probability paper. The y-axis is scaled to represent probabilities

according to the Normal distribution and the data are arranged in increasing order. An observed

value is plotted on the x-axis and the proportion of observations less than or equal to each observed

value is ploned as the y-coordinate. The scale is constructed so that, if the data are Normal, the

points when plotted will approximate a straight line. Visually apparent curves or bends indicate

that the data do not follow a Normal distribution (see Interim Final Guidance, pp. 4-8 to 4-11).

Probability Plots are particularly useful for spotting irregularities within the data when

compared to a specific distributional model like the Normal. It is easy to determine whether

departures from Normality are occurring more or less in the middle ranges of the data or in the

extreme tails. Probability Plots can also indicate the presence of possible outlier values that do not

follow the basic pattern of the data and can show the presence of significant positive or negative

skewness.

If a (Normal) Probability Plot is done on the combined data from several wells and Normality

is accepted, it implies that all of the data came from the same Normal distribution. Consequently,

each subgroup of the data set (e.g., observations from distinct wells), has the same mean and

standard deviation. If a Probability Plot is done on the data residuals (each value minus its

subgroup mean) and is not a straight line, the interpretation is more complicated. In this case,

either the residuals are not Normal, or there is a subgroup of the data with a Normal distribution

but a different mean or standard deviation than the other subgroups. The Probability Plot will

indicate a deviation from the underlying Normality assumption either way.

5
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The same Probability Plot technique may be used to investigate whether a set of data or

residuals follows the Lognonnal distribution. The procedure is the same, except that one first

replaces each observation by its natural logarithm. After the data have been transfonned to their

natural logarithms, the Probability Plot is constructed as before. The only difference is that the

natural logarithms of the observations are used on the x-axis. If the data are Lognonnal, the

Probability Plot (on Normal probability paper) of the logarithms of the observations will

approximate a straight line.

Many statistical software packages for personal computers will construct Probability Plots

automatically with a simple command or two. If such software is available, there is no need to

construct Probability Plots by hand or to obtain special ~aph paper. The plot itself may be

generated somewhat differently than the method described above. In some packages, the observed

value is plotted as before on the x-axis. The y-axis, however, now represents the quantile of the

Nonnal distribution (often referred to as the "Nonnal score of the observation") corresponding to

the cumulative probability of the observed value. The y-coordinate is often computed by the

following fonnula:

where <1>-1 denotes the inverse of the cumulative Nonnal distribution, n represents the sample size,

and i represents the rank position of the ith ordered concentration. Since the computer does these

calculations automatically, the fonnula does not have to be computed by hand

EXAMPLE 1

Detennine whether the following data set follows the Nonnal distribution by using a

Probability Plot.

6
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Nickel Concentration (ppb)

Month WeIll Well 2 Well 3 Well 4

1 58.8 19 39 3.1
2 1.0 81.5 151 942
3 262 331 27 85.6
4 56 14 21.4 10
5 8.7 64.4 578 637

SOLUTION

Step 1. List the measured nickel concentrations in order from lowest to highest.

Nickel
Concentration Order Probability Normal

(ppb) (i) l00*(i!(n+l)) Quantile

1 1 5 -1.645
3.1 2 10 -1.28
8.7 3 14 -1.08
10 4 19 -0.88
14 5 24 -0.706
19 6 29 -0.55

21.4 7 33 -0.44
27 8 38 -0.305
39 9 43 -0.176
56 10 48 -0.05

58.8 11 52 0.05
64.4 12 57 0.176
81.5 13 62 0.305
85.6 14 67 0.44
151 15 71 0.55
262 16 76 0.706
331 17 81 0.88
578 18 86 1.08
637 19 90 1.28
942 20 95 1.645

Step 2. The cumulative probability is given in the third column and is computed as l00*(i!(n+1))
where n is the total number of samples (n=20). The last column gives the Normal
quantiles corresponding to these probabilities.

Step 3. If using special graph paper, plot the probability versus the concentration for each
sample. Otherwise, plot the Normal quantile versus the concentration for each sample,
as in the plot below. The curvature found in the Probability Plot indicates that there is
evidence of non-Normality in the data.

7
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PROBABILITY PLOT
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1.1.3 Coefficient of Skewness

Nickel (ppb)

The Coefficient of Skewness (Yl) indicates to what degree a data set is skewed or

asymmetric with respect to the mean. Data from a Nonna! distribution will have a Skewness

Coefficient of zero, while asymmetric data will have a positive or negative skewness depending on

whether the right- or left-hand tail of the distribution is longer and skinnier than the opposite tail.

Since ground-water monitoring concentration data are inherently nonnegative, one often

expects the data to exhibit a certain degree of skewness. A small degree of skewness is not likely

to affect the results of statistical tests based on an assumption of Nonnality. However, if the

Skewness Coefficient is larger than 1 (in absolute value) and the sample size is small (e.g., n<25),

statistical research has shown that standard Nonnal theory-based tests are much less powerful than

when the absolute skewness is less than 1 (Gayen, 1949).

Calculating the Skewness Coefficient is useful and not much more difficult than computing

the Coefficient of Variation. It provides a quick indication of whether the skewness is minimal

enough to assume that the data are roughly symmetric and hopefully Nory:nal in distribution. If the

original data exhibit a high Skewness Coefficient, the Normal distribution will provide a poor

approximation to the data set. In that case, Yl can be computed on the logarithms of the data to test

for symmetry of the logged data

8
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The Skewness Coefficient may be computed using the following formula:

where the numerator represents the average cubed residual and SO denotes the standard deviation

of the measurements. Most statistics computer packages (e.g., Minitab, GEO-EAS) will compute

the Skewness Coefficient automatically via a simple command.

EXAMPLE 2

Using the data in Example I, compute the Skewness Coefficient to test for approximate

symmetry in the data.

SOLUTION

Step 1. Compute the mean, standard deviation (SD), and average cubed residual for the nickel
concentrations:

x= 169.52 ppb

SO =259.72 ppb

.!. '" (XI - X)3 = 2.98923 *108 ppb3
n~l

Step 2. Calculate the Coefficient of Skewness using the previous formula to get 'Y1=1.84. Since
the skewness is much larger than I, the data appear to be significantly positively
skewed. Do not assume that the data follow a Normal distribution.

Step 3. Since the original data evidence a high degree of skewness, one can attempt to compute
the Skewness Coefficient on the logged data instead. In that case, the skewness works
out to be 1'Y11= 0.24 < I, indicating that the l"gged data values are slightly skewed, but
not enough to reject an assumption of Nonnality in the logged data. In other words, the
original data may be Lognonnally distributed.

1.1.4 The Shapiro-Wilk Test of Normality (nSSO)

The Shapiro-Wilk: test is recommended as a superior alternative to the Chi-square test for

testing Nonnality of the data. It is based on the premise that if a set of data are Nonnally

distributed, the ordered values should be highly correlated with corresponding quantiles taken from

a Normal distribution (Shapiro and Wilk, 1965). In particular, the Shapiro-Wilk: test gives

9
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substantial weight to evidence of non-Normality in the tails of a distribution, where the robustness

of statistical tests based on the Nonnality assumption is most severely affected. The Chi-square

test treats departures from Nonnality in the tails nearly the same as depanures in the middle of a

distribution, and so is less sensitive to the types of non-Normality that are most crucial. One

cannot tell from a significant Chi-square goodness-of-fit test what sort of non-Normality is

indicated.

The Shapiro-Wilk. test statistic (W) will tend to be large when a Probability Plot of the data

indicates a nearly straight line. Only when the plotted data show significant bends or curves will

the test statistic be small. The Shapiro-Wille test is considered to be one of the very best tests of

Normality available (Miller, 1986; Madansky, 1988).

To calculate the test statistic W, one can use the following formula:

where the numerator is computed as

In this last fonnula, xU) represents the jth smallest ordered value in the sample and

coefficients aj depend on the sample size n. The coefficients can be found for any sample size

from 3 up to 50 in Table A-I of Appendix A. The value of k can be found as the greatest integer

less than or equal to n/2.

Normality of the data should be rejected if the Shapiro-Wi1k statistic is too low when

compared to the critical values provided in Table A-2 of Appendix A. Otherwise one can assume

the data are approximately Normal for purposes of further statistical analysis. As before, it is

recommended that the test fIrst be performed on the logarithms of the original data to' test for

Lognormality. If the logged data indicate non-Normality by the Shapiro-Wilk. test, a re-test can be

perfonned on the original data to test for Normality of the original concentrations.

EXAMPLE 3

Use the data of Example 1 to compute the Shapiro-Wille test of Nonnality.

10
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SOLUTION

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Order the data from smallest to largest and list, as in the following table. Also list the
data in reverse order alongside the fIrst column.

Compute the differences x(n-i+ltx(i) in column 3 of the table by subtracting column 1
from column 2.

X(i) X(n-i+I) X{n-i+ I)-x(i) an-i+l bi

1 1.0 942.0 941.0 .4734 445.47
2 3.1 637.0 633.9 .3211 203.55
3 8.7 578.0 569.3 .2565 146.03
4 10.0 331.0 321.0 .2085 66.93
5 14.0 262.0 248.0 .1686 41.81
6 19.0 151.0 132.0 .1334 17.61
7 21.4 85.6 64.2 .1013 6.50
8 27.0 81.5 54.5 .0711 3.87
9 39.0 64.4 25.4 .0422 1.07

10 56.0 58.8 2.8 .0140 0.04
11 58.8 56.0 -2.8 b=932.88
12 64.4 39.0 -25.4
13 81.5 27.0 -54.5
14 85.6 21.4 -64.2
15 151.0 19.0 -132.0
16 262.0 14.0 -248.0
17 331.0 10.0 -321.0
18 578.0 8.7 -569.3
19 637.0 3.1 -633.9
20 942.0 1.0 -941.0

Compute k as the greatest integer less than or equal to n/2. Since n=20, k=lO in this
example.

Look up the coefficients an-i+l from Table A-I and list in column 4. Multiply the
differences in column 3 by the coefficients in column 4 and add the fIrst k products to
get quantity b. In this case, b=932.88.

Compute the standard deviation of the sample, SD=259.72. Then

W =[ 932.88 ]2 =0.679.
. 259.72~

Step 6. Compare the computed value of W=O.679 to the 5% critical value for sample size 20 in
Table A-2, namely W.OS.20=O.905. Since W < 0.905, the sample shows significant
evidence of non-Nonnality by the Shapiro-Wilk test. The data should be transfonned
using natural logs and rechecked using the Shapiro-Wilk test before proceeding with
funher statistical analysis (Actually, the logged data should have been tested first. The

11
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original concentration data are used in this example to illustrate how the assumption of
Normality can be rejected.)

1.1.5 The Shapiro-Francia Test of Normality (n>50)

The Shapiro-Wilk test of Normality can be used for sample sizes up to 50. When the sample

is larger than 50, a slight modification of the procedure called the Shapiro-Francia test (Shapiro and

Francia, 1972) can be used instead.

Like the Shapiro-Wilk test, the Shapiro-Francia test statistic (W') will tend to be large when a

Probability Plot of the data indicates a nearly straight line. Only when the plotted data show

significant bends or curves will the test statistic be small.

To calculate the test statistic W', one can use the following formula:

where x(i) represents the ith ordered value of the sample' and where mi denotes the approximate

expected value of the ith ordered Normal quantile. The values for mi can be approximately

computed as

m = <t>-l(_i)
I n + I

where <1>-1 denotes the inverse of the standard Normal distribution with zero mean and unit

variance. These values can be computed by hand using a Normal probability table or via simple

commands in many statistical computer packages.

Normality of the data should be rejected if the Shapiro-Francia statistic is too low when

compared to the critical values provided in Table A-3 of Appendix A. Otherwise one can assume

the data are approximately Normal for purposes of further statistical analysis. As before, the

logged data should be tested first to see if a Lognormal model is appropriate. If these data indicate

non-Normality by the Shapiro-Francia test, a re-test can be performed on the original data.

12
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1.1.6 The Probability Plot Correlation Coefficient

One other alternative test for Normality that is roughly equivalent to the Shapiro-Wille and

Shapiro-Francia tests is the Probability Plot Correlation Coefficient test described by Filliben

(1975). This test fits in perfectly with the use of Probability Plots, because the essence of the test

is to compute the common correlation coefficient for points on a Probability Plot. Since the

correlation coefficient is a measure of the linearity of the points on a scatterplot, the Probability Plot

Correlation Coefficient, like the Shapiro-Wille test, will be high when the plotted points fall along a

straight line and low when there are significant bends and curves in the Probability Plot.

Comparison of the Shapiro-Wille and Probability Plot Correlation Coefficient tests has indicated

very similar statistical power for detecting non-Normality (Ryan and Joiner, 1976).

The construction of the test statistic is somewhat different from the Shapiro-Wilk W, but not

difficult to implement. Also, tabled critical values for the correlation coefficient have been derived

for sample sizes up to n=100 (and are reproduced in Table A-4 of Appendix A). The Probability

Plot Correlation Coefficient may be computed as

I n_ X(i)M, - nXM
r= 1-1

CnxSD.Jn=}

where X(i) represents the ith smallest ordered concentration value, Mi is the median of the ith order

statistic from a standard Normal distribution, and X and M represent the average values of X(i)

and M(i). The ith Normal order statistic median may be approximated as Mi=<1>-l(mi), where as

before, <1>-1 is the inverse of the standard Normal cumulative distribution and mi can be computed

as follows (given sample size n):

!
1-(.5)Yn fori=1

m j = (i-.3175)/(n+.365)

(.5)Yn fori = n

for 1< i < n

Quantity Cn represents the square root of the sum of squares of the Mi'S minus n times the average

value M, that is

13
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When working ~!th a complete sample (Le., containing no nondetects or censored values), the

average value M=0, and so the formula for the Probability Plot Correlation Coefficient simplifies

to

EXAMPLE 4

Use the data of Example 1 to compute the Probability Plot Correlation Coefficient test.

SOLUTION

Step 1. Order the data from smallest to largest and list, as in the following table.

Step 2. Compute the quantities mj from Filiiben's formula above for each i in column 2 and the
order statistic medians, Mj, in column 3 by applying the inverse Normal transformation
to column 2.

Step 3. Since this sample contains no nondetects, the simplified formula for r may be used.
Compute the products X(i)*Mj in column 4 and sum to get the numerator of the
correlation coefficient (equal to 3,836.81 in this case). Also compute Mj2 in column 5
and sum to find quantity cn2=17.12.

1 X(i) mj Mi X(i)*Mi Mj 2

1 1.0 .03406 -1.8242 -1.824 3.328
2 3.1 .08262 -1.3877 -4.302 1.926
3 8.7 .13172 -1.1183 -9.729 1.251
4 10.0 .18082 -0.9122 -9.122 0.832
5 14.0 .22993 -0.7391 -10.347 0.546
6 19.0 .27903 -0.5857 -11.129 0.343
7 21.4 .32814 -0.4451 -9.524 0.198
8 27.0 .37724 -0.3127 -8.444 0.098
9 39.0 .42634 -0.1857 -7.242 0.034

10 56.0 .47545 -0.0616 -3.448 0.004
11 58.8 .52455 0.0616 3.621 0.004
12 64.4 .57366 0.1857 11.959 0.034
13 81.5 .62276 0.3127 25.488 0.098
14 85.6 .67186 0.4451 38.097 0.198
15 151.0 .72097 0.5857 88.445 0.343
16 262.0 .77007 0.7391 193.638 0.546
17 331.0 .81918 0.9122 301.953 0.832
18 578.0 .86828 1.1183 646.376 1.251
19 637.0 .91738 1.3877 883.941 1.926
20 942.0 .96594 1.8242 1718.408 3.328

14
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Step 4. Compute the Probability Plot Correlation Coefficient using the simplified fonnula for r,
where..sD=259.72 and Cn=4.1375, to get

r= 3836.81 =0.819
(4.1375)(259.72)-J19

Step 5. Compare the computed value of r=O.819 to the 5% critical value for sample size 20 in
Table A-4, namely R.05,20=0.950. Since r < 0.950, the sample shows significant
evidence of non-Normality by the Probability Plot Correlation Coefficient test. The data
should be transfonned using natural logs and the correlation coefficient recalculated
before proceeding with funher statistical analysis.

EXAMPLE 5

The data in Examples I, 2, 3, and 4 showed significant evidence of non-Nonnality. Instead

of first logging the concentrations before testi.ng for Normality, the original data were used. This

was done to illustrate why the Lognonnal distribution is usually a better default model than the

Normal. In this example, use the same data to determine whether the measurements bener follow a

Lognormal distribution.

Computing the natural logarithms of the data gives the table below.

Logged Nickel Concentrations log (ppb)

Month Well I Well 2 Well 3 Well 4

I 4.07 2.94 3.66 1.13
2 0.00 4.40 5.02 6.85
3 5.57 5.80 3.30 4.45
4 4.03 2.64 3.06 2.30
5 2.16 4.17 6.36 6.46

SOLUTION

Method 1. Probability Plots

Step 1. List the naturallogarithrns of the measured nickel concentrations in order from lowest to
highest.

15
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Log Nickel
Order Concentration Probability Nonna!

(i) log(ppb) 100*(ij(n+ 1)) Quantiles

1 0.00 5 -1.645
2 1.13 10 -1.28
3 2.16 14 -1.08
4 2.30 19 -0.88
5 2.64 24 -0.706
6 2.94 29 -0.55
7 3.06 33 -0.44
8 3.30 38 -0.305
9 3.66 43 -0.176

10 4.03 48 -0.05
11 4.07 52 0.05
12 4.17 57 0.176
13 4.40 62 0.305
14 4.45 67 0.44
15 5.02 71 0.55
16 5.57 76 0.706
17 5.80 81 0.88
18 6.36 86 1.08
19 6.46 90 1.28
20 6.85 95 1.645

Step 2. Compute the probability as shown in the third column by calculating 100*(i/n+l), where
n is the total number of samples (n=20). The corresponding Nonnal quantiles are given
in column 4.

Step 3. Plot the Nonnal quantiles against the natural logarithms of the observed concentrations
to get the following graph. The plot indicates a nearly straight line fit (verified by
calculation of the Correlation Coefficient given in Method 4). There is no substantial
evidence that the data do not follow a Lognonnal distribution. The Nonnal-theory
procedure(s) should be performed on the log-transformed data.

16
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PROBABILITY PLOT
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Method 2. Coefficient of Skewness

Step 1. Calculate the mean, SD, and average cubed residuals of the natural logarithms of the
data.

x = 3.918Iog(ppb)

SD =1. 802 log(ppb)

Step 2. Calculate the Skewness Coefficient, Yl.

- -1.325 _ -0244Y1 - 3 -.

(.95)2 (1.802)3

Step 3. Compute the absolute value of the skewness, IYll=I-Q.244I=O.244.

Step 4. Since the absolute value of the Skewness Coefficient is less than 1, the data do not show
evidence of significant skewness. A Normal approximation to the log-transformed data
may therefore be appropriate, but this model should be funher checked

17
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Method 3. Shapiro-Wilk Test

Step 1. Order the logged data from smallest to largest and list, as in following table. Also list
the data in reverse order and compute the differences x(n-i+1)-x(i).

LN(X(i) LN(X(n-i+ 1) an-i+l bi
1 0.00 6.85 .4734 3.24
2 1.13 6.46 .3211 1.71
3 2.16 6.36 .2565 1.08
4 2.30 5.80 .2085 0.73
5 2.64 5.57 .1686 0.49
6 2.94 5.02 .1334 0.28
7 3.06 4.45 .1013 0.14
8 3.30 4.40 .0711 0.08
9 3.66 4.17 .0422 0.02

10 4.03 4.07 .0140 0.00
11 4.07 4.03 b=7.77
12 4.17 ·3.66
13 4.40 3.30
14 4.45 3.06
15 5.02 2.94
16 5.57 2.64
17 5.80 2.30
18 6.36 2.16
19 6.46 1.13
20 6.85 0.00

Step 2.

Step 3.

Step 4.

Compute k=lO, since n/2=1O. Look up the coefficients an-i+l from Table A-I and
multiply by the first k differences between columns 2 and 1 to get the quantities bi. Add
these 10 products to get b=7.77.

Compute the standard deviation of the logged data, SD=1.8014. Then the Shapiro-Wilk
statistic is given by

W = [ 7.77 ]2 = 0.979.
1.8014..J[9

Compare the computed value ofW to the 5% critical value for sample size 20 in Table A­
2, namely W.05.20=0.905. Since W=0.979>0.905. the sample shows no significant
evidence of non-Nonnality by the Shapiro-Wilk test. Proceed with funher statistical
analysis using the log-transfonned data.

Method 4. Probability Plot Correlation Coefficient

Step 1. Order the logged data from smallest to largest and list below.

18
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Log Nickel
Order €oncentration

mi Mi X(i)*Mi Mi2(i) log(ppb)

1 0.00 .03406 -1.8242 0.000 3.328
2 1.13 .08262 -1.3877 -1.568 1.926
3 2.16 .13172 -1.1183 -2.416 1.251
4 2.30 .18082 -0.9122 -2.098 0.832
5 2.64 .22993 -0.7391 -1.951 0.546
6 2.94 .27903 -0.5857 -1.722 0.343
7 3.06 .32814 -0.4451 -1.362 0.198
8 3.30 .37724 -0.3127 -1.032 0.098
9 3.66 .42634 -0.1857 -0.680 0.034

10 4.03 .47545 -0.0616 -0.248 0.004
11 4.07 .52455 0.0616 0.251 0.004
12 4.17 .57366 0.1857 0.774 0.034
13 4.40 .62276 0.3127 1.376 0.098
14 4.45 .67186 0.4451 1.981 0.198
15 5.02 .72097 0.5857 2.940 0.343
16 5.57 .77007 0.7391 4.117 0.546
17 5.80 .81918 0.9122 5.291 0.832
18 6.36 .86828 1.1183 7.112 1.251
19 6.46 .91738 1.3877 8.965 1.926
20 6.85 .96594 1.8242 12.496 3.328

Step 2. Compute the quantities mi and the order statistic medians Mi, according to the procedure
in Example 4 (note that these values depend only on the sample size and are identical to
the quantities in Example 4).

Step 3. Compute the products X(i)*Mi in column 4 and sum to get the numerator of the
correlation coefficient (equal to 32.226 in this case). Also compute Mi2 in column 5 and
sum to find quantity Cn2=17.12.

Step 4. Compute the Probability Plot Correlation Coefficient using the simplified formula for r,
where SD=1.8025 and Cn=4.1375, to get

r = 32.226 =0.991
(4.1375)(1.8025).y'l9

Step 5. Compare the computed value of r=O.991 to the 5% critical value for sample size 20 in
Table A-4, namely R.05,20=O.950. Since r > 0.950, the logged data show no significant
evidence of non-Normality by the Probability Plot Correlation Coefficient test.
Therefore, Lognormality of the original data could be assumed in subsequent statistical
procedures.
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1. 2 TESTING FOR HOMOGENEITY OF VARIANCE

One of the most important assumptions for the parametric analysis of variance (ANOYA) is

that the different groups (e.g., different wells) have approximately the same variance. If this is not

the case, the power of the F-test (its ability to detect differences among the group means) is

reduced. Mild differences in variance are not too bad. The effect becomes noticeable when the

largest and smallest group variances differ by a ratio of about 4 and becomes quite severe when the

ratio is 10 or more (Milliken and Johnson, 1984).

The procedure suggested in the EPA guidance document, Bartlett's test, is one way to test

whether the sample data give evidence that the well groups have different variances. However,

Bartlett's test is sensitive to non-Normality in the data and may give misleading results unless one

knows in advance that the data are approximately Normal (Milliken and Johnson, 1984). As an

alternative to Bartlett's test, two procedures for testing homogeneity of the variances are described

below that are less sensitive to non-Normality.

1. 2.1 Box Plots

Box Plots were fIrst developed for exploratory data analysis as a quick way to visualize the

"spread" or dispersion within a data set. In the context of variance testing, one can consrruct a Box

Plot for each well group and compare the boxes to see if the assumption of equal variances is

reasonable. Such a comparison is not a formal test procedure, but is easier to perform and is often

sufficient for checking the group variance assumption.

The idea behind a Box Plot is to order the data from lowest to highest and to trim off 25

percent of the observations on either end, leaving just the middle 50 percent of the sample values.

The spread between the lowest and highest values of this middle 50 percent (known as the

interquartile range or IQR) is represented by the length of the box. The very middle observation

(i.e., the median) can also be shown as a line cutting the box in two.

To construct a Box Plot, calculate the median and upper and lower quantiles of the data set

(respectively, the 50th, 25th, and 75th percentiles). To do this, calculate k=p(n+l)/I00 where

n=number of samples and p=percentile of interest. If k is an integer, let lite kth ordered or ranked

value be an estimate of the pth percentile of the data. If k is not an integer, let the pth percentile be

equal to the average of the two values closest in rank position to k. For example, if the data set

consists of the 10 values {I, 4, 6.2, 10, IS, 17.1, 18,22,25, 30.5}, the position of the median
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would be found ~~ 50*(10+1)/100=5.5. The median would then be computed as the average of

the 5th and 6th ordered values, or (15+17.1)/2=16.05.

Likewise, the position of the lower quanile would be 25*(10+1)/100=2.75. Calculate the

average of the 2nd and 3rd ordered observations to estimate this percentile, i.e., (4+6.2)/2=5.1.

Since the upper quanile is found to be 23.5, the length of Box Plot would be the difference

between the upper and lower quaniles, or (23.5-5.1)=18.4. The box itself should be drawn on a

graph with the y-axis representing concentration and the x-axis denoting the wells being plotted.

Three horizontal lines are drawn for each well, one line each at the lower and upper quaniles and

another at the median concentration. Vertical connecting lines are drawn to complete the box.

Most statistics packages can directly calculate the statistics needed to draw a Box Plot, and

many will construct the Box Plots as well. In some computer packages, the Box Plot will also

have two "whiskers" extending from the edges of the box. These lines indicate the positions of

extreme values in the data set, but generally should not be used to approximate the overall

dispersion.

If the box length for each group is less than 3 times the length of the shortest box, the sample

variances are probably close enough to assume equal group variances. If, however, the box length

for any group is at least triple the length of the box for another group, the variances may be

significantly different (Kirk Cameron, SAIC, personal communication). In that case, the data

should be further checked using Levene's test described in the following section. If Levene's test

is significant, the data may need to be transfonned or a non-parametric rank procedure considered

before proceeding with further analysis.

EXAMPLE 6

Construct Box Plots for each well group to test for equality of variances.

Arsenic Concentration (ppm)

Month WeIll Well 2 We113 We114 Well 5 Well 6

1 22.9 2.0 2.0 7.84 24.9 0.34
2 3.09 1.25 109.4 9.3 1.3 4.78
3 35.7 7.8 4.5 25.9 0.75 2.85
4 .' 4.18 52· 2.5 2.0 27 1.2
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SOLUTION

Step 1.

Step 2.

Step 3.

Step 4.

Compute the 25th. 50th. and 75th percentiles for the data in each well group. To
calculate the pth percentile by hand, order the data from lowest to highest. Calculate
p*(n+1)/100 to fInd the ordered position of the pth percentile. If necessary, interpolate
between sample values to estimate the desired percentile.

Using weIll as an example. n+1=5 (since there are 4 data values). To calculate the 25th
percentile, compute its ordered position (i.e.• rank) as 25*5/100:1.25. Average the 1st
and 2nd ranked values at well 1 (Le., 3.09 and 4.18) to find an estimated lower quanile
of 3.64. This estimate gives the lower end of the Box Plot. The upper end or 75th
percentile can be computed similarly as the average of the 3rd and 4th ranked values. or
(22.9+35.7)/2:29.3. The median is the average of the 2nd and 3rd ranked values,
giving an estimate of 13.14.

Construct Box Plots for each well group. lined up side by side on the same axes.

BOX PLOTS OF WELL DATA
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Since the box length for well 3 is more than three times the box lengths for wells 4 and
6, there is evidence that the group variances may be significantly different. These data
should be funher checked using Levene's test described in the next section.
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1.2.2 Levene's Test

Levene's test is a more formal procedure than Box Plots for testing homogeneity of variance

that, unlike Bartlett's test, is not sensitive to non-Nonnality in the data. Levene's test has been

shown to have power nearly as great as Bartlett's test for Nonnally distributed data and power

superior to Bartlett's for non-Normal data (Milliken and Johnson, 1984).

To conduct Levene's test, fIrst compute the new variables

where xij represents the jth value from the ith well and Xi is the ith well mean. The values Zij

represent the absolute values of the usual residuals. Then run a standard one-way analysis of

variance (ANDYA) on the variables Zij' If. the F-test is significant, reject the hypothesis of equal

group variances. Otherwise, proceed with analysis of the Xij'S as initially planned.

EXAMPLE 7

Use the data from Example 6 to conduct Levene's test of equal variances.

SOLUTION

Step 1. Calculate the group mean for each well (x,)

Well 1 mean =16.47

Well 2 mean = 15.76

Well 3 mean =29.60

Well 4 mean = 11.26

WellS mean =13.49

Well 6 mean = 2.29
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Step 2. Compute the absolute residuals Zij in each well and the well means of the residuals (z i).

Absolute Residuals

Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6

1 6.43 13.76 27.6 3.42 11.41 1.95
2 13.38 14.51 79.8 1.96 12.19 2.49
3 19.23 7.96 25.1 14.64 12.74 0.56
4 12.29 36.24 27.1 9.26 13.51 1.09

Well
Mean (zi) = 12.83 18.12 39.9 7.32 12.46 - 1.52

Overnll
Mean (2) =15.36

Step 3. Compute the sums of squares for the absolute residuals.

SSTOTAL = (N-I) SDz2 =6300.89

SSWEllS = ~ n Z2 - Nz2 = 3522.90
£..1 1 1

SSERROR = SSTOTAL-SSWEU.S = 2777.99

Step 4. Construct an analysis of variance table to calculate the F-statistic. The degrees of
freedom (elf) are computed as (#groups-1)=(6-1)=5 df and (#samples-#groups)=(24­
6)=18 df.

ANOYA Table

Source Sum-of-Squares df Mean-Square F-Ratio P

Between Wells 3522.90 5 704.58 4.56 0.007
Error 2777.99 18 154.33

Total 6300.89 23

Step 5. Since the F-statistic of 4.56 exceeds the tabulated value of F.os=2.77 with 5 and 18 dI,
the assumption of equal variances should be rejected. Since the original concentration
data are used in this example, the data should be logged and retested.
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2. RECOMMENDATIONS FOR HANDLING
NONDETECTS

The basic recommendations within the Interim Final Guidance for handling nondetect

analyses include the following (see p. 8-2): 1) if less than 15 percent of all samples are nondetect,

replace each nondetect by half its detection or quantitation limit and proceed with a parametric

analysis, such as ANDYA, Tolerance Limits, or Prediction Limits; 2) if the percent of nondetects is

between 15 and 50, either use Cohen's adjustment to the sample mean and variance in order to

proceed with a parametric analysis, or employ a non-parametric procedure by using the ranks of

the observations and by treating all nondetects as tied values; 3) if the percent of nondetects is

greater than 50 percent, use the Test of Proportions.

As to the first recommendation, experience at EPA and research at the United States

Geological Survey (USGS, Dennis Helsel, personal communication, 1991) has indicated that if

less thari 15 percent of the samples are nondetect, the results of parametric statistical tests will not

be substantially affected if nondetects are replaced by half their detection limits. When more than

15 percent of the samples are nondetect, however, the handling of nondetects is more crucial to the

outcome of statistical procedures. Indeed, simple substitution methods tend to perfonn poorly in

statistical tests when the nondetect percentage is substantial (Gilliom and Helsel, 1986).

Even with a small proportion of nondetects, however, care should be taken when choosing

between the method detection limit (MOL) and the practical quantitation limit (PQL) in

characterizing "nondetect" concentrations. Many nondetects are characterized by analytical

laboratories with one of three data qualifier flags: "V," "J," or "E." Samples with a "V" data

qualifier represent "undetected" measurements, meaning that the signal characteristic of that analyte

could not be observed or distinguished from "background noise" during lab analysis. Inorganic

samples with an "E" flag and organic samples with a "]" flag mayor may not be reponed with an

estimated concentration. If no concentration is estimated. these samples represent "detected but not

quantified" measurements. In this case, the actual concentration is assumed to be positive, but

somewhere between zero and the PQL. Since all of these non-detects mayor may not have actual

positive concentrations between zero and the PQL, the suggested substitution for parametric

statistical procedures is to replace each nondetect by one-half the PQL (note, however, that "E" and

"]" samples reponed with estimated concentrations should be treated, for statistical purposes, as

valid measurements. Substitution of one-half the PQL is not recommended for these samples).
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In no case should nondetect concentrations be assumed to be bounded above by the MDL.

The MDL is estimated on the basis of ideal laboratory conditions with ideal analyte samples and

does not account for matrix or other interferences encountered when analyzing specific, actual field

samples. For this reason, the PQL should be taken as the most reasonable upper bound for

nondetect concentrations.

It should also be noted that the distinction between "undetected" and "detected but not

quantified" measurements has more specific implications for rank-based non-parametric

procedures. Rather than assigning the same tied rank to all nondetects (see below and in Section

3), "detected but not quantified" measurements should be given larger ranks than those assigned to

"undetected" samples. In fact the two types of nondetects should be treated as two distinct groups

of tied observations for use in the Wilcoxon and Kruskal-Wallis non-parametric procedures.

2.1 NONDETECTS IN ANOVA PROCEDURES

For a moderate to large percentage of nondetects (i.e., over 15%), the handling of nondetects

should vary depending on the statistical procedure to be run. If background data from one or more

upgradient wells are to be compared simultaneously with samples from one or more downgradient

wells via a t-test or ANDVA type procedure, the simplest and most reliable recommendation is to

switch to a non-parametric analysis. The distributional assumptions for parametric procedures can

be rather difficult to check when a substantial fraction of nondetects exists. Furthermore, the non­

parametric alternatives described in Section 3 tend to be efficient at detecting contamination when

the underlying data are Normally distributed, and are often more powerful than the parametric

methods when the underlying data do n?t follow a Normal distribution.

Nondetects are handled easily in a nonparametric analysis. All data values are first ordered

and replaced by their ranks. Nondetects are treated as tied values and replaced by their midranks

(see Section 3). Then a Wilcoxon Rank-Sum or Kruskal-Wallis test is run on the ranked data

depending on whether one or more than one downgradient well is being tested.

The Test of Proportions is not recommended in this Addendum, even if the percentage of

nondetects is over 50 percent. Instead, for all two-group comparisons that involve more than 15

percent nondetects, the non-parametric Wilcoxon Rank-Sum procedure is recommended.

Although acceptable as a statistical procedure, the Test of Proponions does not account for

potentially different magnitudes among the concentrations of detected values. Rather, each sample

is treated as a 0 or 1 depending on whether the measured concentration is below or above the
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detection limit. The Test of Proponions ignores information about concentration magnitudes, and

hence is usually less powerful than a non-parametric rank-based test like the Wilcoxon Rank-Sum,

even after adjusting for a large fraction of tied observations (e.g., nondetects). This is because the

ranks of a dataset preserve additional information about the relative magnitudes of the concentration

values, information which is lost when all observations are scored as O's and 1'so

Another drawback to the Test of Proponions, as presented in the Interim Final Guidance, is

that the procedure relies on a Normal probability approximation to the Binomial distribution of O's

and 1'so This approximation is recommended only when the quantities n x (%NDs) and n x (1­

%NDs) are no smaller than 5. If the percentage of nondetects is quite high and/or the sample size

is fairly small, these conditions may be violated, leading potentially to inaccurate results.

Comparison of the Test of Proponions to the Wilcoxon Rank-Sum test shows that for small

to moderate proponions of nondetects (say 0 to 60 percent), the Wilcoxon Rank-Sum procedure

adjusted for ties is more powerful in identifying real concentration differences than the Test of

Proponions. When the percentage of nondetects is quite high (at least 70 to 75 percent), the Test

of Proponions appears to be slightly more powerful in some cases, than the Wilcoxon, but the

results of the two tests almost always lead to the same conclusion, so it makes sense to simply

recommend the Wilcoxon Rank-Sum test in all cases where nondetects constitute more than 15

percent of the samples.

2.2 NONDETECTS IN STATISTICAL INTERVALS

If the chosen method is a statistical interval (Confidence, Tolerance or Prediction limit) used

to compare background data against each downgradient well separately, more options are available

for handling moderate proponions of nondetects. The basis of any parametric statistical interval

limit is the formula x ± I('S, where x and s represent tDe sample mean and standard deviation of

the (background) data and I( depends on the interval rype and characteristics of the monitoring

network. To use a parametric interval in the presence of a substantial number of nondetects, it is

necessary to estimate the sample mean and standard deviation. But since nondetect concentrations

are unknown, simple formulas for the mean and standard deviation cannot be computed directly.

Two basic approaches to estimating or "adjusting" the mean and standard deviation in this situation

have been described by Cohen (1959) and Aitchison (1955).

The underlying assumption~ of these procedures are somewhat different. Cohen's

adjustment (which is described in detail on pp. 8-7 to 8-11 of the Interim Final Guidance) assumes
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that all the data (~tects and nondetects) come from the same Nonnal or Lognonnal population, but

that nondetect values have been "censored" at their detection limits. This implies that the

contaminant of concern is present in nondetect samples, but the analytical equipment is not

sensitive to concentrations lower than the detection limit. Aitchison's adjustment, on the other

hand, is constructed on the assumption that nondetect samples are free of contamination, so that all

nondetects may be regarded as zero concentrations. In some situations, panicularly when the

analyte of concern has been detected infrequently in background measurements, this assumption

may be practical, even if it cannot be verified directly.

-
Before choosing between Cohen's and Aitchison's approaches, it should be cautioned that

Cohen's adjustment may n~t·give valid results if the proportion ofnondetects exceeds 50%. In a

case study by McNichols and Davis (1988), the false positive rate associated with the use of t-tests

based on Cohen's method rose substantially when the fraction of nondetects was greater than 50%.

This occurred because the adjusted estimates of the mean and standard deviation are more highly

correlated as the percentage of nondetects increases, leading to less reliable statistical tests

(including statistical interval tests).

On the other hand, with less than 50% nondetects, Cohen's method perfonned adequately in

the McNichols and Davis case study, provided the data were not overly skewed and that more

extensive tables than those included within the Interim Final Guidance were available to calculate

Cohen's adjustment parameter. As a remedy to the latter caveat, a more extensive table of Cohen's

adjustment parameter is provided in Appendix A (Table A-5). It is also recommended that the data

(detected measurements and nondetect detection limits) first be log-rransfonned prior to computing

either Cohen's or Aitchison's adjustment, especially since both procedures assume that the

underlying data are Normally distributed

2.2.1 Censored and Detects-Only Probability Plots

To decide which approach is more appropriate for a particular set of ground water data, two

separate Probability Plots can be constructed. The first is called a Censored Probability Plot and is

a test of Cohen's underlying assumption. In this method, the combined set of detects and

nondetects is ordered (with nondetects being given arbitrary but distinct ranks). Cumulative

probabilities or Normal quantiles (see Section 1.1) are then computed for the data set as in a

regular Probability Plot However, only the detected values and their associated Nonnal quantiles

are actually plotted. If the shape of the Censored Probability Plot is reasonably linear, then

Cohen's assumption that nondetects have been "censored" at their detection limit is probably
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acceptable and Cohen's adjustment can be made to estimate the sample mean and standard

deviation. If the Censored Probability Plot has significant bends and curves, particularly in one or

both tails, one might consider Aitchison's procedure instead.

To test the assumptions of Aitchison's method, a Detects-Only Probability Plot may be

constructed. In this case, nondetects are completely ignored and a standard Probability Plot is

constructed using only the detected measurements. Thus, cumulative probabilities or Normal

quantiles are computed only for the ordered detected values. Comparison of a Detects-Only

Probability Plot with a Censored Probability Plot will indicate that the same nU!TIber of points and

concentration values are plotted on each graph. However, different Normal quantiles are

associated with each detected concentration. If the Detects-Only Probability Plot is reasonably

linear, then the assumptions underlying Aitchison's adjustment (i.e., that "nondetects" represent

zero concentrations, and that detects and nondetects follow separate probability disoibutions) are

probably reasonable.

If it is not clear which of the Censored or Detects-Only Probability Plots is more linear,

Probability Plot Correlation Coefficients can be computed for both approaches (note that the

correlations should only involve the points actually plotted, that is, detected concentrations). The

plot with the higher correlation coefficient will represent the most linear trend. Be careful,

however, to use other, non-statistical judgments to help decide which of Cohen:s and Aitchison's

underlying assumptions appears to be most reasonable based on the specific characteristics of the

data set. It is also likely that these Probability Plots may have to be constructed on the logarithms

of the data instead of the original values, if in fact the most appropriate underlying disoibution is

the Lognormal instead of the Normal.

EXAMPLE 8

Create Censored and Detects-Only Probability Plots with the following zinc data to determine

whether Cohen's adjustment or Aitchison's adjustment is most appropriate for estimating the true

mean and standard deviation.
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Zinc Concentrations (ppb) at Background Wells

Sample WeIll Well 2 Well 3 Well 4 WellS
1 <7 <7 <7 11.69 <7
2 11041 <7 12.85 10.90 <7
3 <7 13.70 14.20 <7 <7
4 <7 11.56 9.36 12.22 11.15
5 <7 <7 <7 11.05 13.31
6 10.00 <7 12.00 <7 12.35
7 15.00 10.50 <7 13.24 <7
8 <7 12.59 <7 <7 8.74

SOLUTION

Step 1. Pool together the data from the five background wells and list in order in the table
below.

Step 2. To construct the Censored Probability Plot, compute the probabilities i/(n+1) using the
combined set of detects and nondetects, as in column 3. Find the Normal quantiles
associated with these probabilities by applying the inverse standard Nonnal
transformation, <1>-1.

Step 3. To construct the Detects-Only Probability Plot, ·compute the probabilities in column 5
using only the detected zinc values. Again apply the inverse standard Normal
transformation to find the associated Nonnal quantiles in column 6. Note that
nondetects are ignored completely in this method.
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Order (i) Zinc Conc. Censored Normal Detects-Only Normal
(ppb) Probs. Quantiles Probs. Quantiles

1 <7 .024 -1.971
2 <7 .049 -1.657
3 <7 .073 -1.453
4 <7 .098 -1.296
5 <7 .122 -1.165
6 <7 .146 -1.052
7 <7 .171 -0.951
8 <7 .195 -0.859
9 <7 .220 -0.774

10 <7 .244 -0.694
11 <7 .268 -0.618
12 <7 .293 -0.546
13 <7 .317 -0.476
14 <7 .341 -0.408
15 <7 .366 . -0.343
16 <7 .390 -0.279
17 <7 .415 -0.216
18 <7 .439 -0.153
19 <7 .463 -0.092
20 <7 .488 -0.031
21 8.74 .512 0.031 .048 -1.668
22 9.36 .537 0.092 .095 -1.309
23 10.00 .561 0.153 .143 -1.068
24 10.50 .585 0.216 .190 -0.876
25 10.90 .610 0.279 .238 -0.712
26 11.05 .634 0.343 .286 -0.566
27 11.15 .659 0.408 .333 -0.431
28 11.41 .683 0.476 .381 -0.303
29 11.56 .707 0.546 .429 -0.180
30 11.69 .732 0.618 .476 -0.060
31 12.00 .756 0.694 .524 0.060
32 12.22 .780 0.774 .571 0.180
33 12.35 .805 0.859 .619 0.303
34 12.59 .829 0.951 .667 0.431
35 12.85 .854 1.052 .714 0.566
36 13.24 .878 1.165 .762 0.712
37 13.31 .902 1.296 .810 0.876
38 13.70 .927 1.453 .857 1.068
39 14.20 .951 1.657 .905 1.309
40 15.00 .976 1.971 .952 1.668

Step 4. Plot the detected zinc concentrations versus each set of probabilities or Normal quantiles,
as per the procedure for constructing Probability Plots (see figures below). The
nondetect values should not be plotted. As can be seen from the graphs, the Censored
Probability Plot indicates a definite curvature in the tails, especially the lower tail. The
Detects-Only Probability Plot, however, is reasonably linear. This visual impression is
bolstered by calculation of a Probability Plot Correlation Coefficient for each set of
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Step 5.

detected values: the Censored Probability Plot has a correlation of r=.969, while the
Detect5-0nly Probability Plot has a correlation of r=.998.

Because the Detects-Only Probability Plot is substantially more linear than the Censored
Probability Plot, it may be appropriate to consider detects and nondetects as arising from
statistically distinct distributions, with nondetects representing "zero" concentrations.
Therefore, Aitchison's adjustment may lead to better estimates of the true mean and
standard deviation than Cohen's adjusnnent for censored data.

CENSORED PROBABILITY PLOT
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DETECTS-ONLY PROBABILITY PLOT
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2.2.2 Aitchison's Adjustment

To actually compute Aitchison's adjustment (Aitchison, 1955), it is assumed that the detected

samples follow an underlying Normal distribution. If the detects are Lognormal, compute

Aitchison's adjustment on the logarithms of the data instead. Let d=# nondetects and let n=total #

of samples (detects and nondetects compined). Then if x* and s* denote respectively the sample

mean and standard deviation of the detected values, the adjusted overall mean can be estimated as

.. - (1 d)"_.1.1.- -- x
n

and the adjusted overall standard deviation may be estimated as the square root of the quantity

The general formula for a parametric statistical interval adjusted for nondetects by Aitchison's

method is given by {L ± 1(. a, with 1C depending on the type of interval being constructed.
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. EXAMPLE 9

In Example 8, it was determined that Aitchison's adjustment might lead to more appropriate

estimates of the true mean and standard deviation than Cohen's adjustment. Use the data in

Example 8 to compute Aitchison's adjustment

SOLUTION

Step 1. The zinc data consists of 20 nondetects and 20 detected values; therefore d=20 and n=40
in the above formulas.

Step 2. Compute the average x' = 11.891 and the standard deviation s' = 1.595 of the set of
detected values.

Step 3. Use the formulas for Aitchison's adjustment to compute estimates of the true mean and
standard deviation:

(
20)iJ.= 1- 40 xl1.891=5.95

cr =(403~21 )0. 595)2 + (~~ )(~~ )01.891)2 =37.495 ~ iJ =6.12

If Cohen's adjustment is mistakenly computed on these data instead, with a detection

limit of 7 ppb,the estimates become iJ. = 7.63 and iJ = 4.83. Thlls, the choice of
adjustment can have a significant impact on the upper limits computed for statistical
intervals.

2.2.3 More Than 50% Nondetects

If more than 50% but less than 90% of the samples are nondetect or the assumptions of

Cohen's and Aitchison's methods cannot be justified, parametric statistical intervals should be

abandoned in favor of non-parametric alternatives (see Section 3 below). Nonparametric

statistical intervals are easy to construct and apply to ground water data measurements, and no

special steps need be taken to handle nondetects.

When 90% or more of the data values are nondetect (as often occurs when measuring volatile

organic compounds [VOCs] in ground water, for instance), the detected samples can often be

modeled as "rare events" by using the Poisson distribution. The Poisson model describes the

behavior of a series of independent events over a large number of trials, where the probability of

occurrence is low but stays constant from trial to trial. The Poisson model is similar to the

Binomial model in that both models represent "counting processes." In the Binomial case,

nondetects are counted as 'misses' or zeroes and detects are counted (regardless of contamination
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level) as 'hits' or_gnes; in the case of the Poisson, each panicle or molecule of contamination is

counted separately but cumulatively, so that the counts for detected samples with high

concentrations are larger than counts for samples with smaller concentrations. As Gibbons (1987,

p. 574) has noted.. it can be postulated

... that the number of molecules of a particular compound out of a much larger
number of molecules of water is the result of a Poisson process. For example,
we might consider 12 ppb of benzene to represent a count of 12 units of benzene
for every billion units examined. In this context, Poisson's approach is justified
in that the number of units (i.e., molecules) is large, and the probability of the
occurrence (i.e.~ a molecule being classified as benzene) is small.

For a detect with concentration of 50 ppb, the Poisson count would be 50. Counts for

nondetects can be taken as zero or perhaps equal to half the detection limit (e.g., if the detection

limit were 10 ppb, the Poisson count for that.sample would be 5). Unlike the Binomial (Test of

Proportions) model, the Poisson model has the ability to utilize the magnitudes of detected

concentrations in statistical tests.

The Poisson distribution is governed by the average rate of occurrence, A, which can be

estimated by summing the Poisson counts of all samples in the background pool of data and

dividing by the number of samples in the pool. Once the average rate of occurrence has been

estimated, the formula for the Poisson distribution is given by

e-A
).:

Pr{X=x}=­
x!

where x represents the Poisson count and Arepresents the average rate of occurrence. To use the

Poisson distribution to predict concentration values at downgradient wells, formulas for

constructing Poisson Prediction and Tolerance limits are given below.

2.2.4 Poisson Prediction Limits

To estimate a Prediction limit at a panicular well using the Poisson model, the approach

described by Gibbons (l987b) and based on the work of Cox and Hinkley (1974) can be used. In

this case, an upper limit is estimated for an interval that will contain~ of k future measurements of

an analyte with confidence levell-a, given n previous background measurements.

To do this, let Tn represent the sum of the Poisson counts of n background samples. The

goal is to predict Tk"', representing the total Poisson count of the next k sample measurements. As
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Cox and Hink1e~~how, if Tn has a Poisson distribution with mean /J. and if no contamination has

occurred, it is reasonable to assume that Tk* will also have a Poisson distribution but with mean

c/J., where c depends on the number of furore measurements being predicted.

In particular, Cox and Hinckley demonstrate that the quantity

[
TO _ c(Tn +T:)]2

It (1 + c)
c(Tn +T;)

(1+c/

has an approximate standard Normal distribution. From this'relation, an upper prediction limit for

Tk* is calculated by Gibbons to be approximat~ly

where t=tn-1,a is the upper (I-a) percentile of the Student's t distribution with (n-1) degrees of

freedom. The quantity c in the above fonnulas may be computed as kin, where, as noted, k is the

number of future samples being predicted.

EXAMPLE 10

Use the following benzene data from six background wells to estimate an upper 99% Poisson

Prediction limit for the next four measurements from a single downgradienr well.

Benzene Concentrations (ppb)

Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
1 <2 <2 <2 <2 <2 <2
2 <2 <2 <2 15.0 <2 <2
3 <2 <2 <2 <2 <2 <2
4 <2 12.0 <2 <2 <2 <2
5 <2 <2 <2 <2 <2 10.0
6 <2 <2 <2 <2 <2 <2
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SOLUTION

Step 1. Pooling the background data yields n=36 samples, of which, 33 (92%) are nondetect.
Because the rate of detection is so infrequent (i.e., <10%), a Poisson-based Prediction
limit may be appropriate. Since four future measurements are to be predicted, k=4, and
hence, c=k!n=1/9.

Set each nondetect to half the detection limit or 1 ppb. Then compute the Poisson count
of the sum of all the background samples, in this case, Tn=33(1)+(12.0+15.0+1O.0) =
70.0. To calculate an upper 99% Prediction limit, the upper 99th percentile of the t­
distribution with (n-l)=35 degrees of freedom must be taken from a reference table,
namely t35,.01 =2.4377.

Step 3. Using Gibbons' fonnula above, calculate the upper Prediction limit as:

'[" =.!.(70) + (2.4377)2 + 2.4377 70(1 + 9) + (2.4377)2 =15.3ppb
k 9 2(9) 9 4

Step 4. To test the upper Prediction limi.t, the Poisson count of the ll!.Dl of the next four
downgradient wells should be calculated. If this sum is greater than 15.3 ppb, there is
significant evidence of contamination at the downgradient well. If not, the well may be
regarded as clean until the next testing period.

The procedure for generating Poisson prediction limits is somewhat flexible. The value k

above, for instance, need not represent multiple samples from a single well. It could also denote a

collection of single samples from k distinct wells. all of which are assumed to follow the same

Poisson distribution in the absence of contamination. The Poisson distribution also has the

desirable property that the sum of several Poisson variables also has a Poisson distribution, even if

the individual components are not identically distributed. Because of this, Gibbons (l987b) has

suggested that if several analytes (e.g., different VOCs) can all be modeled via the Poisson

distribution, the combined sum of the Poisson counts of all the analytes will also have a Poisson

distribution, meaning that a single prediction limit could be estimated for the combined group of

analytes, thus reducing the necessary number of statistical tests.

A major drawback to Gibbons' proposal of establishing a combined prediction limit for

several analytes is that if the limit is exceeded, it will not be clear which analyte is responsible for

"triggering" the test. In part this problem explains why the ground-water monitoring regulations

mandate that each analyte be tested separately. Still, if a large number of analytes must be regularly

tested and the detection rate is quite low, the overall facility-wide false positive rate may be

unacceptably high. To remedy this situation, it is probably wisest to do enough initial testing of

background and facility leachate and waste samples to detennine those specific parameters present

at levels substantially greater than background. By limiting monitoring and statistical tests to a few
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parameters meeting the above conditions, it should be possible to contain the overall facility-wide

false positive rate while satisfying the regulatory requirements and assuring reliable identificatior

of ground-water contamination if it occurs.

Though quantitative infonnation on a suite of VOCs may be automatically generated as a

consequence of the analytical method configuration (e.g., SW-846 method 8260 can provide

quantitative results for approximately 60 different compounds), it is usually unnecessary to

designate all of these compounds as leak detection indicators. Such practice generally aggravates

the problem of many comparisons and results in elevated false positive rates for the facility as a

whole. This makes accurate statistical testing especially difficult. EPA therefore recommends that

the results of leachate testing or the waste analysis plan serve as the primary basis for designating

reliable leak detection indicator parameters.

2.2.5 Poisson Tolerance Limits

To apply an upper Tolerance limit using the Poisson model to a group of downgradient

wells, the approach described by Gibbons (l987b) and based on the work of Zacks (1970) can be

taken. In this case, if no contamination has occurred, the estimated interval upper limit will contain

a large fraction of all measurements from the downgradient wells, often specified at 95% or more.

The calculations involved in deriving Poisson Tolerance limits can seem non-intuitive,

primarily because the argument leading to a mathematically rigorous Tolerance limit is complicated.

The basic idea, however, uses the fact that if each individual measurement follows a common

Poisson distribution with rate parameter, A, the sum of n such measurements will also follow a

Poisson distribution, this time with rate nA.

Because the Poisson distribution has the propeny that its true mean is equal to the rate

parameter A, the concentration sum of n background samples can be manipulated to estimate this

rate. But since we know that the distribution of the concentration sum is also Poisson, the possible

values of Acan actually be narrowed to within a small range with fixed confidence probability (y).

For each "possible" value of Ain this confidence range, one can compute the percentile of the

Poisson distribution with rate A. that would lie above, say, 95% of all future downgradient

measurements. By setting as the "probable" rate, that A which is greater than all but a small
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percentage a of ~e most extreme possible A'S, given the values of n background samples, one can

compute an upper tolerance limit with, say, 95% coverage and (1-a)% confidence.

To actually make these computations, Zacks (1970) shows that the most probable rate A can

be calculated approximately as

where as before Tn represents the Poisson count of the sum of n background -samples (setting

nondetects to half the method detection limit), and

represents the ypercentile of the Chi-square distribution with (2Tn+2) degrees of freedom.

To fInd the upper Tolerance limit with ~% coverage (e.g., 95%) once a probable rate A has

been estimated, one must compute the Poisson percentile that is larger than ~% of all possible

measurements from that distribution, that is, the ~% quantile of the Poisson distribution with mean

rate ATn, denoted by p-l(~,ATn). Using a well-known mathematical relationship between the

Poisson and Chi-square distributions, finding the ~% quantile of the Poisson amounts to

determining the least positive integer k such that

where, as above, the quantity [2k+2] represents the: degrees of freedom of the Chi-square.
distribution. By calculating two times the estimated probable rate ATn on the right-hand-side of the

above inequality, and then fInding the smallest degrees of freedom so that the (l-~)% percentile of

the Chi-square distribution is bigger than 2ATn. the upper tolerance limit k can be determined fairly

easily.

Once the upper tolerance limit, k, has been estimated, it will represent an upper Poisson

Tolerance limit having approximately ~% coverage with "flo confIdence in all comparisons with
. .

downgradient well measurements. .
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EXAMPLE 11

Use the benzene data of Example 10 to estimate an upper Poisson Tolerance limit with 95%

coverage and 95% confidence probability.

SOLUTION

Step 1.

Step 2.

Step 3.

The benzene data consist of 33 nondetects with detection limit equal to 2 ppb and 3
detected values for a total of n=36. By setting each nondetect to half the detection limit
as before, one fmds a total Poisson count of the sum equal to Tn=70.0. It is also known
that the desired confidence probability is )'=.95 and the desired coverage is ~=.95.

Based on the observed Poisson count of the sum of background samples, estimate the
probable occurrence rate ATn using Zacks' formula above as

Compute twice the probable occurrence rate as 2ATn=4.74. Now using a Chi-square
table, find the smallest degrees of freedom (df), k, such that

x.~[2k +2] ~ 4.74

Since the 5th percentile of the Chi-square distribution with 12 df equals 5.23 (but only
4.57 with 11 df), it is seen that (2k+2)=12, leading to k=5. Therefore, the upper
Poisson Tolerance limit is estimated as k=5 ppb.

Step 4. Because the estimated upper Tolerance limit with 95% coverage equals 5 ppb, any
detected value among downgradient samples greater than 5 ppb may indicate possible
evidence of contamination.
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3. NON-PARAMETRIC COMPARISON OF
COMPLIANCE WELL DATA

TO BACKGROUND

When concentration data from several compliance wells are to be compared with

concentration data from background wells, one basic approach is analysis of variance (ANOYA).

The ANOVA technique is used to test whether there is statistically significant evidence that the

mean concentration of a constituent is higher in one or more of the compliance wells than the

baseline provided by background wells. Parametric ANOYA methods make two key assumptions:

1) that the data residuals are Normally distributed and 2) that the group v¢ances are all

approximately equal. The steps for calculating a parametric ANOVA are given in the Interim Final

Guidance (pp. 5-6 to 5-14).

If either of the two assumptions crucio:l to a parametric ANOVA is grossly violated, it is

recommended that a non-parametric test be conducted using the ranks of the observations rather

than the original observations themselves. The Interim Final Guidance describes the Kruskal­

Wallis test when three or more well groups (including background data, see pp. 5-14 to 5-20) are

being compared. However, the Kruskal-Wallis test is not amenable to two-group comparisons,

say of one compliance well to background data. In this case, the Wilcoxon Rank-Sum procedure

(also known as the Mann-Whitney U Test) is recommended and explained below.' Since most

situations will involve the comparison of at least two downgradient wells with',background data,

the Kruskal-Wallis test is presented first with an additional example.

3.1 KRUSKAL-WALLIS TEST

When the assumptions used in a parametric analysis of variance cannot be verified, e.g.,

when the original or transformed residuals are not approximately Normal in distribution or have

significantly different group variances, an analysis can be performed using the ranks of the

observations. Usually, a non-parametric procedure will be needed when a substantial fraction of

the measurements are below detection (more than 15 percent), since then the above assumptions

are difficult to verify.

The assumption of independence of the residuals is still required. Under the null hypothesis

that there is no difference among the groups, the observations are assumed to come from identical

distributions. However, the form of the distribution need not be specified.
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A non-par~~etric ANOVA can be used in any situation that the parametric analysis of

variance can be used. However, because the ranks of the data are being used, the minimum

sample sizes for the groups must be a little larger. A useful rule of thumb is to require a minimum

of three well groups with at least four observations per group before using the Kruskal-Wallis

procedure.

Non-parametric procedures typically need a few more observations than parametric

procedures for two reasons. On the one hand, non-parametric tests make fewer assumptions

concerning the distribution of tlte data and so more data is often needed to make the same judgment

that would be rendered by a paramenic test. Also, procedures based on ranks have a discrete

distribution (unlike the continuous distributions of parametric tests). Consequently, a larger

sample size is usually needed to produce test statistics that will be significant at a specified alpha

level such as 5 percent.

The relative efficiency of two procedures is defined as the ratio of the sample sizes needed by

each to achieve a cenain level of power against a specified alternative hypothesis. As sample sizes

get larger, the efficiency of the Kruskal-Wallis test relative to the parametric analysis of variance

test approaches a limit that depends on the underlying distribution of the data, but is always at least

86 percent. This means roughly that in the worst case, if 86 measurements are available for a

parameoic ANOVA, only 100 sample values are needed to have an equivalently powerful Kruskal­

Wallis test. In many cases, the increase in sample size necessary to match the power of a

parametric ANOVA is much smaller or not needed at all. The efficiency of the Kruskal-Wallis test

is 95 percent if the data are really Normal, and can be much larger than 100 percent in other cases

(e.g., it is 150 percent if the residuals follow a distribution called the double exponential).

These results concerning efficiency imply that the Kruskal-Wallis test is reasonably powerful

for detecting concentration differences despite the fact that the original data have been replaced by

their ranks, and can be used even when the data are Normally distributed. When the data are not

Normal or cannot be transformed to Normality, the Kruskal-Wallis procedure tends to be more

powerful for detecting differences than the usual parametric approach.

3.1.1 Adjusting for Tied Observations

Frequently, the Kruskal-Wallis procedure will be used when the data contain a significant

fraction of nondetects (e.g., more than 15 percent of the samples). In these cases, the parametric

assumptions necessary for the usual one-way ANOVA are difficult or impossible to verify, making
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the non~paramet:!:i_c alternative attractive. However, the presence of nondetects prevents a unique

ranking of the concentration values, since nondetects are, up to the limit of measurement, all tied at

the same value.

To get around this problem, two steps are necessary. First, in the presence of ties (e.g.,

nondetects). all tied observations should receive the same rank. This rank (sometimes called the

midrank (Lehmann, 1975» is computed as the average of the ranks that would be given to a group

of ties if the tied values actually differed by a tiny amount and could be ranked uniquely. For

example, if the first four ordered observations are all nondetects, the midrank given to each of

these samples would be equal to (1 +2+3+4)/4=2.5. If the next highest measurement is a unique

detect, its rank would be 5 and so on until all observations are appropriately ranked.

The second step is to compute the Kruskal-Wallis statistic as described in the Interim Final

Guidance. using the midranks computed for the tied values. Then an adjustment to the Kruskal­

Wallis statistic must be made to account for the presence of ties. This adjustment is described on

page 5-17 of the Interim Final Guidance and requires computation of the formula:

H /= H

1-(1:8 t; - t, )
.=1 N3-N

where g equals the number 0: groups of distinct tied observations and tj is the number of

observations in the ith tied .group.

EXAMPLE 12

Use the non-parametric analysis of variance on the following data to determine whether there

is evidence of contamination at the monitoring site.

Toluene Concentration (ppb)
Background Wells Compliance Wells

Month WeIll Well 2 Well 3 Well 4 Well 5

1 <5 <5 <5 <5 <5
2 7.5 <5 12.5 13.7 20.1
3 <5 <5 8.0 15.3 35.0
4 <5 <5 <5 20.2 28.2
5 6.4 <5 11.2 25.1 19.0
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SOLUTION

Step 1.

Step 2.

Compute the overall percentage of nondetects. In this case, nondetects account for 48
percent of the data. The usual pararneoic analysis of variance would be inappropriate.
Use the Kruskal-Wallis test instead, pooling both background wells into one group and
creating each compliance well as.a separate group.

Compute ranks for all the data including tied observations (e.g., nondetects) as in the
following table. Note that each nondetect is given the same midrank, equal to the
average of the fIrst 12 unique ranks.

Toluene Ranks
Background Wells Compliance Wells

Month Well 1 Well 2 Well 3 Well 4 WellS

1 6.5 6.5 6.5 6.5 6.5
2 14 6.5 17 18 21
3 6.5 6.5 . 15 19 25
4 6.5 6.5 6.5 22 24
5 13 6.5 16 23 20

Rank Sum Rb=79 R3=61 R4=88.5 RS=96.5

Rank Mean R b=7.9 R 3=12.2 R4=17.7 Rs=19.3

Step 3.

Step 4.

Step 5.

Calculate the sums of the ranks in each group (Ri) and the mean ranks in each group

(R i)' These results are given above.

Compute the Kruskal-Wallis statistic H using the formula on p. 5-15 of the Interim Final
Guidance

H=[ 12 ~K R~]-3(N+l)
N(N + 1) kl:l N

• 1

where N=total number of samples, Ni=number of samples in ith group, and K=number
of groups. In this case, N=25, K=4, and H can be computed as

H = 12 [79
2

+ 61
2

+ 88.5
2

+ 96.5
2

] -78 = 10.56.
25 *26 10 5 5 5 ..

Compute the adjustment for ties. There is only one group of distinct tied observations,
containing 12 samples. Thus, the adjusted Kruskal-Wallis statistic is given by:
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H'= 10.56 =11.87.

1_(12
3

-12)
253

- 25

Step 6.

Step 7.

Compare the calculated value of H' to the tabulated Chi-square value with (K-1)= (#
groups-1)=3 df, X23,.05=7.81. Since the observed value of 11.87 is greater than the
Chi-square critical value, there is evidence of significant differences between the well
groups. Post-hoc pairwise comparisons are necessary.

Calculate the critical difference for compliance well comparisons to the background
using the formula on p. 5-16 of the Interim Final Guidance document. Since the number
of samples at each compliance well is four, the same critical difference can be used for
each comparison, namely,

25·26 (1 1)C = ZOS/3 -+ - = 8.58
I. 12 10 5

Step 8. Form the differences between the average ranks of each compliance well and the
background and compare these differences to the critical value of 8.58.

Well 3: R3- Rb = 12.2-7.9 = 4.3

Well 4: R4-R b = 17.7-7.9 = 9.8

Well 5: R5-R b = 19.3-7.9 = 11.4.

Since the average rank differences at wells 4 and 5 exceed the critical difference, there is
significant evidence of contamination at wells 4 and 5, but not at well 3.

3.2 WILCOXON RANK-SUM TEST FOR Two GROUPS

When a single compliance well group is being compared to background data and a non­

parametric test is needed, the Kruskal-Wallis procedure should be replaced by the Wilcoxon Rank­

Sum test (Lehmann, 1975; also known as the two-sample Mann-Whitney U test). For most.
ground-water applications, the Wilcoxon test should be used whenever the proportion of

nondetects in the combined data set exceeds 15 percent. However, to provide valid results, do not

use the Wilcoxon test unless the compliance well and background data groups both contain at least

four samples each.

To run the Wilcoxon Rank-Sum Test, use the following algorithm. Combine the compliance

and background data and rank the ordered values from 1 to N. Assume there are n compliance

samples and m ~ackground samples so that N=m+n. Denote the ranks of the compliance samples
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. by Ci and the ranks of the background samples by Bi. Then add up the ranks of the compliance

samples and subtraet n(n+1)12 to get the Wilcoxon statistic W:

The rationale of the Wilcoxon test is that if the ranks of the compliance data are quite large

relative to the background ranks, then the hypothesis that the compliance and background values

came from the same population should be rejected. Large values of the statistic W give evidence of

contamination at the compliance well site.

To find the critical value of W, a Nonnal approximation to its distribution is used. The

expected value and standard deviation of W.under the null hypothesis of no contamination are

given by the fOIlTlulas

SD(W) = ~_1mn(N + 1)
12

An approximate Z-score for the Wilcoxon Rank-Sum Test then follows as:

1
W-E(W)--

Z= 2
SD(W)

The factor of 1/2 in the numerator selVes as a continuity correction since the discrete distribution of

the statistic W is being approximated by the continuous Nonnal distribution.

Once an approximate Z-score has been computed, it may be compared to the upper 0.01

percentile of the standard Nonnal distribution, Z.Ol =2.326, in order to detennine the statistical

significance of the test. If the obselVed Z-score is greater than 2.326, the null hypothesis may be

rejected at the 1 percent significance level, suggesting that there is significant evidence of

contamination at the compliance well site.

EXAMPLE 13

The table below contains copper concentration data (ppb) found in water samples at a

monitoring facility. Wells 1 and 2 are background wells and well 3 is a single compliance well

suspected of contamination. Calculate the Wilcoxon Rank-Sum Test on these data.
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Copper Concentration (ppb)

Background Compliance

Month Well 1 Well 2 Well 3

SOLUTION

1
2
3
4
5
6

4.2
5.8

11.3
7.0
7.3
8.2

5.2
6.4

11.2
11.5
10.1
9.7

9.4
10.9
14.5
16.1
21.5
17.6

Step 1. Rank the N=18 observations from 1 to 18 (smallest to largest) as in the following table.

Ranb of Copper Concentrations

Background Compliance

Month Well 1 Well 2 Well 3

1
2
3
4
5
6

1
3

13
5
6
7

2
4

12
14
10
9

8
11
15
16
18
17

Step 2. Compute the Wilcoxon statistic by adding up the compliance well ranks and subtracting
n(n+l)/2, so that W=85-21 =64.

Step 3. Compute the expected value and standard deviation ofW.

1
E(W) = -mn = 36

2

1
SD(W) = -mn(N + 1) =.JIT4 = 10.677

12

Step 4. Form the approximate Z-score.

1
W-E(W)--

Z= 2 = 64-36-0.5 =2.576
SD(W) 10.677
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Step 5.

3.2.1

Compare the observed Z-score to the upper 0.01 percentile of the Nonnal distribution.
Since_Z=2.576>2.326=z.Ol' there is significant evidence of contamination at the
compliance well at the 1 percent significance level.

Handling Ties in the Wilcoxon Test

Tied observations in the Wilcoxon test are handled in similar fashion to the Kruskal-Wallis

procedure. First, midranks are computed for all tied values. Then the Wilcoxon statistic is

computed as before but with a slight difference. To form the approximate Z-score, an adjustment

is made to the fonnula for the standard deviation of W in order to account for the groups of tied

values. The necessary fonnula CLehmann, 1975) is:

sn"cw) = mnCN + 1) (1- i~ t~ - t l J
. 12 1=1 N3 - N

where, as in the Kruskal-Wallis method, g equals the number of groups of distinct tied

observations and ti represents the number of tied values in the ith group.
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4. STATISTICAL INTERVALS: CONFIDENCE,
TOLERANCE, AND PREDICTION

Three types of statistical intervals are often constructed from data: Confidence intervals,

Tolerance intervals, and Prediction intervals. Though often confused, the interpretations and uses

of these intervals are quite distinct. The most common interval encountered in a course on statistics

is a Confidence interval for some parameter of the disoibution (e.g., the population mean). The

interval is constructed from sample data and is thus a random quantity. This means that each set of

sample data will generate a different Confidence interval, even though the algorithm for

constructing the interval stays the same every time.

A Confidence interval is designed to contain the specified population parameter (usually the

mean concentration of a well in ground-water monitoring) with a designated level of confidence or

probability, denoted as I-a. The interval will fail to include the true parameter in approximately a

percent of the cases where such intervals are constructed.

The usual Confidence interval for the mean gives information about the average concentration

level at a panicular well or group of wells. It offers little information about the highest or most

extreme sample concentrations one is likely to observe over time. Often, it is those extreme values

one wants to monitor to be protective of human health and the environment. As such, a

Confidence interval generally should be used only in two situations for ground-water data analysis:

(1) when directly specified by the permit or (2) in compliance monitoring, when downgradient

samples are being compared to a Ground-Water Protection Standard (GWPS) representing the

average of onsite background data, as is sometimes the case with an Alternate Contaminant Level

(ACL). In other situations it is usually desirable to employ a Tolerance or Prediction interval.

A Tolerance interval is designed to contain a designated proponion of the population (e.g.,

95 percent of all possible sample measurements). Since the interval is constructed from sample

data, it also is a random interval. And because of sampling fluctuations, a Tolerance interval can

contain the specified proponion of the population only with a certain confidence level. Two

coefficients are associated with any Tolerance interval. One is the proportion of the population that

the interval is supposed to contain, called the coverage. The second is the degree of confidence

with which the interval reaches the specified coverage. This is known as the tolerance coefficient.

A Tolerance interval with coverage of 95 percent and a tolerance cOefficient of 95 percent is

constructed to contain, on average, 95 percent of the disoibution with a probability of 95 percent
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Tolerance intervals are very useful for ground-water data analysis, because in many

situations one wants to ensure that at most a small fraction of the compliance well sample

measurements exceed a specific concentration level (chosen to be protective of human health and

the environment). Since a Tolerance interval is designed to cover all but a small percentage of the

population measurements, observations should very rarely exceed the upper Tolerance limit when

testing small sample sizes. The upper Tolerance limit allows one to gauge whether or not too many

extreme concentration measurements are being sampled from compliance point wells.

Tolerance intervals can be used in detection monitoring when comparing compliance_data to

background values. They also should be used in compliance monitoring when comparing

compliance data to certain Ground-Water Protection Standards. Specifically, the tolerance interval

approach is recommended for comparison with a Maximum Contaminant Level (MCL) or with an

ACL if the ACL is derived from health-based risk data.

Prediction intervals are constructed to contain the next sample value(s) from a population or

distribution with a specified probability. That is, after sampling a background well for some time

and measuring the concentration of an analyte, the data can be used to construct an interval that will

contain the next analyte sample or samples (assuming the distribution has not changed). A

Prediction interval will thus contain a future value or values with specified probability. Prediction

intervals can also be constructed to contain the average of several future observations.

Prediction intervals are probably most useful for two kinds of detection monitoring. The first

kind is when compliance point well data are being compared to background values. In this case the

Prediction interval is constructed from the background data and the compliance well data are

compared to the upper Prediction limits. The second kind is when intrawell comparisons are being

made on an uncontaminated well. In this case, the Prediction interval is constructed on past data

sampled from the well, and used to predict the behavior of future samples from the same well.

In summary, a Confidence interval usually contains an average value, a Tolerance interval

contains a proponion of the population, and a Prediction interval contains one or more future

observations. Each has a probability statement or "confidence coefficient" associated with it. For

further explanation of the differences between these interval types, see Hahn (1970).

One should note that all of these intervals assume that the sample data used to construct the

intervals are Normally distributed. In light of the fact that much ground-water concentration data is

better modeled by a Lognormal distribution, it is recommended that tests for Normality be run on
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the logarithms of the original data before constrUcting the random intervals. If the data follow the

Lognonnal model, then the intervals should be constrUcted using the logarithms of the sample

values. In this case, the limits of these intervals should not be compared to the original compliance

data or GWPS. Rather, the comparison should involve the lo~~ed compliance data or lo~~ed

GwpS. When neither the Nonnal or Lognonnal models can be justified, a non-parametric version

of each interval may be utilized.

4.1 TOLERANCE INTERVALS

In detection monitoring, the compliance point samples are assumed to come from the same

distribution as the background values until significant evidence of contamination can be shown.

To test this hypothesis, a 95 percent coverage Tolerance interval can be constructed on the

background data. The background data should first be tested to check the distributional

assumptions. Once the interval is constrUcted, each compliance sample is compared to the upper

Tolerance limit. If any compliance point sample exceeds the limit, the well from which it was

drawn is judged to have significant evidence of contamination (note that when testing a large

number of samples, the nature of a Tolerance interval practically ensures that a few measurements

will be above the upper Tolerance limit, even when no contamination bas occurred. In these cases,

the offending wells should probably be resampled in order to verify wnether or not there is definite

evidence of contamination.)

If the Tolerance limit has been constructed using the logged background data, the compliance

point samples should first be logged before comparing with the upper Tolerance limit. The steps

for computing the actual Tolerance interval in detection monitoring are detailed in the Interim Final

Guidance on pp. 5-20 to 5-24. One point about the table of factors 1C used to adjust the width of

the Tolerance interval is that these factors are designed to provide at least 95% coverage of the

population. Applied over many data sets, the average.coverage of these intervals will often be

close to 98% or more (see Guttman, 1970). To constI1lct a one-sided upper Tolerance interval

with average coverage of 0-13)%, the 1C multiplier can be computed directly with the aid of a

Student's t-distribution table. In this case, the fonnula becomes

where the t-value',represents the (l-~)th upper percentile of the t-distribution with (n-l) degrees of

freedom.
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In compli~~e monitoring, the Tolerance interval is calculated on the compliance point data,

so that the upper one-sided Tolerance limit may be compared to the appropriate Ground-Water

Protection Standard (i.e., MCL or ACL). If the upper Tolerance limit exceeds the fixed standarc.

and especially if the Tolerance limit has been constructed to have an avera~e coverage of 95% as

described above, there is significant evidence that as much as 5 percent or more of all the

compliance well measurements will exceed the limit and consequently that the compliance point

wells are in violation of the facility permit. The algorithm for computing Tolerance limits in

compliance monitoring is given on pp. 6-11 to 6-15 of the Interim Final Guidance.

EXAMPLE 14

The table below contains data that represent chrysene concentration levels (ppb) found in

water samples obtained from the five compliance wells at a monitoring facility. Compute the upper

Tolerance limit at each well for an avera&e or 95% coverage with 95% confidence and determine

whether there is evidence of contamination. The alternate concentration limit (ACL) is 80 ppb.

Chrysene Concentration (ppb)

Month Well 1 Well 2 Well 3 Well 4 WellS

1 19.7 10.2 68.0 26'.8 47.0
2 39.2 7.2 48.9 17.7 30.5
3 7.8 16.1 30.1 31.9 15.0
4 12.8 5.7 38.1 22.2 23.4

Mean 19.88 9.80 46.28 24.65 28.98
SD 13.78 4.60 16.40 6.10 13.58

SOLUTION

Step 1. Before constructing the tolerance intervals, check the distributional assumptions. The
algorithm for a parametric Tolerance interval assumes that the data used to compute the
interval are Normally distributed. Because these data are more likely to be Lognormal in
distribution than Normal, check the assumptions on the logarithms of the original data
given in the table below. Since each well has only four observations, Probability Plots
are not likely to be informative. The Shapiro-Wilk or Probability Plot Correlation
Coefficient tests can be run, but in this example only the Skewness Coefficient is
examined to ensure that gross departures from Lognormality are not missed.
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Logged Chrysene Concentration [log(ppb)]

Month Well 1 Well 2 Well 3 Well 4 WellS

1 2.98 2.32 4.22 3.29 3.85
2 3.67 1.97 3.89 2.87 3.42
3 2.05 2.78 3.40 3.46 2.71
4 2.55 1.74 3.64 3.10 3.15

Mean 2.81 2.20 3.79 3.18 3.28
SD 0.68 0.45 0.35 0.25 0.48

Step 2. The Skewness Coefficients for each well are given in the following table. Since none of
the coefficients is greater than 1 in absolute value, approximate Lognormality (that is,
Normality of the logged data) is as.sumed for the purpose of constructing the tolerance
intervals.

Well Skewness ISkewnessl

1 .210 .210

2 .334 .334

3 .192 .192

4 -.145 .145

5 -.020 .020

Step 3. Compute the tolerance interval for each compliance well using the logged concentration
data. The means and SDs are given in the second table above.

Step 4. The tolerance factor for a one-sided Normal tolerance interval with an avera~e of 95%
coverage with 95% probability and n=4 observations is given by

I( =t3..os~1 + ~ =2.631

The upper tolerance limit is calculated below for each of the five wells.

Well 1

Well 2

Well 3

Well 4

Well 5

2.81+2.631(0.68)= 4.61 log(ppb)

2.20+2.631 (0.45)= 3.38 log(ppb)

3.79+2.631 (0.35)= 4.71 log(ppb)

3.18+2.631 (0.25)= 3.85 log(ppb)

3.28+2.631 (0.48)= 4.541og(ppb)
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Step 5.

4.1.1

Compare the upper tolerance limit for each well to the logarithm of the ACL, that is
10g(8(}f=4.38. Since the upper tolerance limits for wells 1, 3, and 5 exceed the logged
ACL of 4.38 log(ppb), there is evidence of chrysene contamination in wells 1, 3, and 5.

Non-parametric Tolerance Intervals

When the assumptions of Normality and Lognormality cannot be justified, especially when a

significant portion of the samples are nondetect, the use of non-parametric tolerance intervals

sh.ould be considered. The upper Tolerance limit in a non-parametric setting is usually chosen as

an order statistic of the sample data (see Guttman, 1970), commonly the maximum value or maybe

the second largest value observed. As a consequence, non-parametric intervals should be

constructed only from wells that are not contaminated. Because the maximum sample value is

often taken as the upper Tolerance limit, non-parametric Tolerance intervals are very easy to

construct and use. The sample data must be ordered, but no ranks need be assigned to the

concentration values other than to determine the largest measurements. This also means that

nondetects do not have to be uniquely ordered or handled in any special manner.

One advantage to using the maximum concentration instead of assigning ranks to the data is

that non-parametric intervals (including Tolerance intervals) are sensitive to the actual magnitudes

of the concentration data. Another plus is that unless .all the sample data are nondetect, the

maximum value will be a detected concentration, leading to a well-defined upper Tolerance limit.

Once an order statistic of the sample data (e.g., the maximum value) is chosen to represent

the upper tolerance limit, Guttman (1970) has shown that the coverage of the interval, constructed

repeatedly over many data sets, has a Beta probability density with cumulative distribution

I ( 1) rt r(n + 1) n-m(1 )m'\d
t n - m + ,m =JI u - U U

o ['(n - m + l)r(m)

where n=# samples in the data set and m=[(n+1)-(rank of upper tolerance limit value)]. If the

maximum sample value is selected as the tolerance limit, its rank is equal to n and so m= 1. If the

second largest value is chosen as the limit, its rank would be equal to (n-l) and so m=2.

Since the Beta distribution is closely related to the more familiar Binomial distribution,

Guttman has shown that in order to construct a non-parametric tolerance interval with at least ~%

coverage and (I-a) confidence probability, the number of (background) samples must be chosen

such that
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t(nJ(l- f3r /3"-1 ~ 1- a
I=m t

Table A-6 in Appendix A provides the minimum coverage levels with 95% confidence for

various choices of n, using either the maximum sample value or the second largest measurement as

the tolerance limit. As an example, with 16 background measurements, the minimum coverage is

r3=83% if the maximum background value is designated as the upper Tolerance limit and p=74% if

the Tolerance limit is taken to be the second largest background value. In general, Table A-6

illustrates that if the underlying distribution of concentration values is unknown. more background

samples are needed compared to the parametric sening in order to construct a tolerance interval with

sufficiently high coverage. Parametric tolerance intervals do not require as many background

samples precisely because the fonn of the underlying distribution is assumed to be known.

Because the coverage of the above non-parametric Tolerance intervals follows a Beta

distribution, it can also be shown that the average (not the minimum as discussed above) level of

coverage is equal to l-[m/(n+1)] (see Gunman, 1970). In particular, when the maximum sample

value is chosen as the upper tolerance limit, m=l, and the expected coverage is equal to n/(n+1).

This implies that at least 19 background samples are necessary to achieve 95% coverage on

average.

EXAMPLE 15

Use the following c~pper background data to establish a non-parametric upper Tolerance

limit and detennine if either compliance well shows evidence of copper contamination.

Copper Concenrration (ppb)

Background Wells Compliance Wells

Month Well 1 Well 2 Well 3 Well 4 Well 5

1 <5 9.2 <5
2 <5 <5 5.4
3 7.5 <5 6.7
4 <5 6.1 <5
5 <5 8.0 <5 6.2 <5
6 <5 5.9 <5 <5 <5
7 6.4 <5 <5 7.8 5.6
8 6.0 <5 <5 10.4 <5
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SOLUTION

Step 1.

Step 2.

Examine the background data in Wells 1, 2, and 3 to determine that the maximum
observed value is 9.2 ppb. Set the 95% confidence upper Tolerance limit equal to this
value. Because 24 background samples are available, Table A-6 indicates that the
minimum coverage is equal to 88% (the expected average coverage, however, is equal to
24/25=96%). To increase the coverage level, more background samples would have to
be collected.

Compare each sample in compliance Wells 4 and 5 to the upper Tolerance limit. Since
none of the measurements at Well 5 is above 9.2 ppb, while one sample from We114 is
above the limit, conclude that there is significant evidence of copper contamination at
Well 4 but not Well 5.

4.2 PREDICTION INTERVALS

When comparing background data to compliance point samples, a Prediction interval can be

constructed on the background values. If the distributions of background and compliance point

data are really the same, all the compliance point samples should be contained below the upper

Prediction interval limit. Evidence of contamination is indicated if one or more of the compliance

samples lies above the upper Prediction limit.

With intrawell comparisons, a Prediction interval can be computed on past data to contain a

specified number of future observations from the same well, provided the well has not been

previously contaminated. If anyone or more of the future samples falls above the upper Prediction

limit, there is evidence of recent contamination at the well. The steps to calculate parametric

Prediction intervals are given on pp. 5-24 to 5-28 of the Interim Final Guidance.

EXAMPLE 16

The data in the table below are benzene concentrations measured at a groundwater monitoring

facility. Calculate the Prediction interval and determine whether there is evidence of contamination.

Background Well Data

Benzene Concentration
Sampling Date (ppb)

Compliance Well Data

Benzene Concentration
Sampling Date (ppb)

Month 1

Month 2

12.6
30.8
52.0
28.1
33.3
44.0
3.0
12.8

56

Month 4 48.0
30.3
42.5
15.0

n=4
Mean=33.95
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Month 3

SOLUTION

58.1
12.6
17.6
25.3

n=12
Mean=27.52

SD=17.1O

Month 5 47.6
3.8
2.6

51.9

n=4
Mean=26.48

SD=26.94

o

Step 1.

Step 2.

First test the background data for approximate Normality. Only the background data are
included since these values are used to construct the Prediction interval.

A Probability Plot of the 12 background values is given below. The plot indicates an
overall pattern that is reasonably linear with some modest depanures from Nonnality.
To further test the assumption of Normality, run the Shapiro-Wilk test on the
background data.

PROBABILITY PLOT

.
BENZENE (Ppb)

Step 3. List the data in ascending and descending order as in the following table. Also calculate
the differences X(n-i+lrX(i) and multiply by the coefficients an-i+l taken from Table A-I
to get the components of vector bi used to calculate the Shapiro-Wille statistic (W).
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X(i) X(n-i+l) an-i+l bi

1 3.0 58.1 0.548 30.167
2 12.6 52.0 0.333 13.101
3 12.6 44.0 0.235 7.370
4 12.8 33.3 0.159 3.251
5 17.6 30.8 0.092 1.217
6 25.3 28.1 0.030 ~
7 28.1 25.3 b=55.19l
8 30.8 17.6
9 33.3 12.8

10 44.0 12.6
11 52.0 12.6
12 58.1 3.0

Step 4. Sum the components bi in column 5 to get quantity b. Compute the standard deviation
of the background benzene values. Then the Shapiro-Wilk statistic is given as

[ ]2 [ ]2W= b = 55.191 =0947
SD.Jn=1 17.101.JU ..

Step 5. The critical value at the 5% level for the Shapiro-Wilk test on 12 observations is 0.859.
Since the calculated value of W=0.947 is well above the critical value, there is no
evidence to reject the assumption of Normality.

Step 6. Compute the Prediction interval using the original background data. The mean and
standard deviation of the 12 background samples are given by 27.52 ppb and 17.10
ppb, respectively.

Step 7. Since there are two future months of compliance data to be compared to the Prediction
limit, the number of future sampling periods is k=2. At each sampling period, a mean of
four independent samples will be computed, so m=4 in the prediction interval fonnula
(see Interim Final Guidance, p. 5-25). The Bonferroni t-statistic, to 1,2,.95)' with k=2
and 11 df is equivalent to the usual t-statistic at the .975 level with 11 df, i.e.,
t11 ,.975=2.20 1.

Step 8. Compute the upper one-sided Prediction limit (UL) using the formula:

- ~IX+t S -+-
(n-l,k,.95) m n

Then the UL is given by:

H I
UL = 27.52 + (17.10)(2.201) -+ - =49.25ppb.

4 12

Step 9. Compare the UL to the compliance data. The means of the four compliance well
observations for months 4 and 5 are 33.95 ppb and 26.48 ppb, respectively. Since the
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mean concentrations for months 4 and 5 are below the upper Prediction limit, there is no
evidence of recent contamination at the monitoring facility.

4.2.1 Non-parametric Prediction Intervals

When the parametric assumptions of a Nonnal-based Prediction limit cannot be justified,

often due to the presence of a significant fraction of nondetects, a non-parametric Prediction

interval may be considered instead. A non-parametric upper Prediction limit is typically

constructed in the same way as a non-parametric upper Tolerance limit, that is, by estimating the

limit to be the maximum value of the set of background samples.

The difference between non-parametric Tolerance and Prediction limits is one of

interpretation and probability. Given n background measurements and a desired confidence level,

a non-parametric Tolerance interval will have a cenain coverage percentage. With high probability,

the Tolerance interval is designed to miss only a small percentage of the samples from

downgradient wells. A Prediction limit, on the other hand, involves the confidence probability that

the next future sample or samples will definitely fall below the upper Prediction limit. In this

sense, the Prediction limit may be thought of as a 100% coverage Tolerance limit for the next k

future samples.

As Guttman (1970) has indicated, the confidence probability associated with predicting that

the next single observation from a downgradient well will fall below the upper Prediction limit -­

estimated as the maximum background value -- is the~ as the expected covera~e of a similarly

constructed upper Tolerance limit, namely (1-a)=n/(n+ 1). Furthennore, it can be shown from

Gibbons (1991 b) that the probability of having k future samples all fall below the upper non­

parametric Prediction limit is (1-a)=n/(n+k). Table A-7 in Appendix A lists these confidence

levels for various choices of nand k. The false positive rate associated with a single Prediction

limit can be computed as one minus the confidence level.

Balancing the ease with which non-parametric upper Prediction limits are constructed is the

fact that, given fixed numbers of background samples and future sample values to be predicted, the

maximum confidence level associated with the Prediction limit is also fixed. To increase the level

of confidence, the only choices are to 1) decrease the number of future values to be predicted at any

testing period, or 2) increase the number of background samples used in the test. Table A-7 can be

used along these lines to plan an appropriate sampling strategy so that the false positive rate can be

minimized and the confidence probability maximized to a desired level.

59



Draft 1/28193

EXAMPLE 17

Use the following arsenic data from a monitoring facility to compute a non-parametric upper

Prediction limit that will contain the next 2 monthly measurements from a downgradient well and

determine the level of confidence associated with the Prediction limit.

Arsenic Concentrations (ppb)

Background Wells Compliance

Month WeIll Well 2 Well 3 Well 4

1 <5 7 <5
2 <5 6.5 <5
3 8 <5 10.5
4 <5 6 <5
5 9 12 <5 8
6 10 <5 9 14

SOLUTION

Step 1. Determine the maximum value of the background data and use this value to estimate the
upper Prediction limit. In this case, the Prediction limit is set to the maximum value of
the n= 18 samples, or 12 ppb. As is true of non-parametric Tolerance intervals, only
uncontaminated wells should be used in the construction of Prediction limits.

Step 2. Compute the confidence level and false positive rate associated with the Prediction limit.
Since two future samples are being predicted and n= 18, the confidence level is found to
be n/(n+k)=18/20=90%. Consequently, the Type I error or false positive rate is equal to
(1-.90)=10%. If a lower false positive rate is desired, the number of background
samples used in the test must be enlarged.

Step 3. Compare each of the downgradient samples against the upper Prediction limit. Since the
value of 14 ppb for month 2 exceeds the limit, conclude that there is significant evidence
of contamination at the downgradient well at the 10% level of significance.

4.3 CONFIDENCE INTERVALS

Confidence intervals should only be constructed on data collected during compliance

monitoring, in panicular when the Ground-Water Protection Standard (GWPS) is an ACL

computed from the average of background samples. Confidence limits for the average

concentration levels at compliance wells should not be compared to MCLs. Unlike a Tolerance

interval, Confidence limits for an average do not indicate how often individual samples will exceed

the MCL. Conceivably, the lower Confidence limit for the mean concentration at a compliance

well could fall below the MCL, yet 50 percent or more of the individual samples might exceed the
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MCL. Since an MCL is designed to set an upper bound on the acceptable contamination, this

would not be protective of human health or the environment.

When comparing individual compliance wells to an ACL derived from average background

levels, a lower one-sided 99 percent Confidence limit should be constructed. If the lower

Confidence limit exceeds the ACL, there is significant evidence that the true mean concentration at

the compliance well exceeds the GWPS and that the facility permit has been violated. Again, in

most cases, a Lognormal model will approximate the data bener than a Normal distribution model.

It is therefore recommended that the initial data checking and analysis be performed on the

logarithms of the data. If a Confidence interval is constructed using logged concentration data, the

lower Confidence limit should be compared to the logarithm of the ACL rather than the original

GWPS. Steps for computing Confidence intervals are given on pp. 6-3 to 6-11 of the Interim

Final Guidance.
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S. STRATEGIES FOR MULTIPLE COMPARISONS

5.1 BACKGROUND OF PROBLEM

Multiple comparisons occur when~vermore than one statistical test is performed during any

given monitoring or evaluation period. These comparisons can arise as a result of the need to test

multiple downgradient wells against a pool of upgradient background data or to test several

indicator parameters for contamination on a regular basis. Usually the same statistical test is

performed in every comparison, each test having a fixed level of confidence (I-a), and a

corresponding false positiv~ rate, a.

The false positive rate (or Type I error) for an individual comparison is the probability that

the test will falsely indicate contamination, i.e., that the test will "trigger," though no contamination

has occurred. If ground-water data measurements were always constant in the absence of

contamination, false positives would never occur. But ground-water measurements typically vary,

either due to natural variation in the levels of background concentrations or to variation in lab

measurement and analysis.

Applying the same test to each comparison is acceptable if the number of comparisons is

small, but when the number of comparisons is moderate to large the false positive rate associated

with the testing network as a whole (that is, across all comparisons involving a separate statistical

test) can be quite high. This means that if enough tests are run, there will be a significant chance

that at least one test will indicate contamination, even if no actual contamination has occurred. As

an example, if the testing network consists of 20 separate comparisons (some combination of

multiple wells and/or indicator parameters) and a 99% confidence level Prediction interval limit is

used on each comparison, one would expect an overall network-wide false positive rate of over

18%, even though the Type I error for any single comparison is only 1%. This means there is

nearly 1 chance in 5 that one or more comparisons will falsely register potential contamination even

if none has occurred. With 100 comparisons and the same testing procedure, the overall network­

wide false positive rate jumps to more than 63%, adding additional expense to verify the lack of

contamination at falsely triggered wells.

To lower the network-wide false positive rate, there are several important considerations. As

noted in Section 2.2.4, only those constituents that have been shown to be reliable indicators of

potential contamination should be statistically tested on a regular basis. By limiting the number of

tested constituents to the most useful indicators, the overall number of statistical comparisons that

must be made can be reduced, lowering the facility-wide false alann rate. In addition, depending
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on the hydrogeology of the site, some indicator parameters may need to be tested only at one (or a

few adjacent) regulated waste units, as opposed to testing across the entire facility, as long as the

pennit specifies a common point of compliance, thus funher limiting the number of total statistical

comparisons necessary.

One could also try to lower the Type I error applied to each individual comparison.

Unfonunately, for a given statistical test in general, the lower the false positive rate, the lower the

power of the test to detect real contamination at the well. If the statistical power drops too much,

real contamination will not be identified when it occurs, creating a situation not protective of the

environment or human health. Instead, alternative testing strategies can be considered that

specifically account for the number of statistical comparisons being made during any evaluation

pericxi. All alternative testing strategies should be evaluated in light of two basic goals:

1. Is the network-wide false positive rate (across all constituents and wells being
tested) acceptably low? and

2. Does the testing strategy have adequate statistical power to detect real contamination
when it occurs?

To establish a standard recommendation for the network-wide' overall false positive rate, it

should be noted that for some statistical procedures, EPA specifications mandate that the Type I

error for any individual comparison be at least 1%. The rationale for this minimum reQuirement is

motivated by statistical power. For a given test, if the Type I error is set too low, the power of the

test will dip below "acceptable" levels. EPA was not able to specify a minimum level of acceptable

power within the regulations because to do so would require specification of a minimum difference

of environmental concern between the null and alternative hypotheses. Limited current knowledge

about the health and/or environmental effects associated with incremental changes in concentration

levels of Appendix IX constituents greatly complicates this task. Therefore, minimum false

positive rates were adopted for some statistical procedtlres until more specific guidance could be
•

recommended. EPA's main objective, however, as in the past, is to approve tests that have

adequate statistical power to detect real contamination of ground water, and not to enforce

minimum false positive rates.

This emphasis is evident in §264.98(g)(6) for detection monitoring and §264.99(i) for

compliance monitoring. Both of these provisions allow the owner or operator to demonstrate that

the statistically ~ignificant difference between background and compliance point wells or between

compliance point wells and the Ground-Water Protection Standard is an anifact caused by an error

in sampling, analysis, statistical evaluation, or natural variation in ground-water chemistry. To
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make the demor::tration that the statistically significant difference was caused by an error in

sampling, analysis, or statistical evaluation, re-testing procedures that have been approved by the

Regional Administrator can be written into the facility permit, provided their statistical power is

comparable to the EPA Reference Power Curve given below.

For large monitoring networks, it is almost impossible to maintain a low network-wide

overall false positive rate if the Type I errors for individual comparisons must be kept above 1%.

As will be seen, some alternative testing strategies can achieve a low network-wide false positive

rate while maintaining adequate power to detect contamination. EPA therefore recommends hat

instead of the 1% criterion for individual comparisons, the overall network-wide false positive rate

(across all wells and constituents) of any alternative testing strategy should be kept to

approximately 5% for each monitoring or evaluation period, while maintaining statistical power

comparable to the procedure below.

The other goal of any testing strategy should be to maintain adequate statistical power for

detecting contamination. Technically, power refers to the probability that a statistical testing

procedure will register and identify evidence of contamination when it exists. However, power is

typically defined with respect to a single comparison, not a network of c<?mparisons. Since some

testing procedures may identify contamination more readily when several wells in the network are

contaminated as opposed to just one or two, it is suggested that all testing strategies be compared

on the following more stringent, but common, basis. Let the effective power of a testing

procedure be defined as the probability of detecting contamination in the monitoring network when

one and only one well is contaminated with a single constituent. Note that the effective power is a

conservative measure of how a testing regimen will perform over the network, because the test

must uncover one contaminated well among many clean ones (Le., like "finding a needle in a

haystack").

To establish a recommended standard for the statistical power of a testing strategy, it must be

understood that the power is not single number, but rather a function of the level of contamination

actually present. For most tests, the higher the level of contamination, the higher the 'statistical

power, likewise, the lower the contamination level, the lower the power. As such, when

increasingly contaminated ground water passes a particular well, it becomes easier for the statistical

test to distinguish background levels from the contaminated ground water; consequently, the power

is an increasing function of the contamination level.
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Perhaps th~_best way to describe the power function associated with a particular testing

procedure is via a graph, such as the example below of the power of a standard Normal-based

upper Prediction limit with 99% confidence. The power in percent is plotted along the y-axis

against the standardized mean level of contamination along the x-axis. The standardized

contamination levels are in units of standard deviations above the baseline (estimated from

background data), allowing different power curves to be compared across indicator parameters,

wells, and so forth. The standardized units, Ii, may be computed as

Ii = (Mean Contamination Level) - (Mean Background Level)

(SD of Background Data)

In some situations, the probability that contamination will be detected by a particular testing

procedure may be difficult if not impossible to derive analytically and will have to be simulated on

a computer. In these cases, the power is typically estimated by generating Normally-distributed

random values at different mean levels and repeatedly simulating the test procedure. With enough

repetitions a reliable power curve can be ploned (e.g., see figure below).

EPA REFERENCE POWER CURVE
(16 Background Samples)

100

80

;;
~ 60
CII:
l.I.l
~
0
Q.

l.I.l
~ 40

E
l.I.l

I::
l.I.l

20

o
o 2 3 4 5

Ii (STANDARDIZED UNITS ABOVE BACKGROUND)

65



Draft 1128;93

Notice that~~e power at ~=O represents the false positive rate of the test, because at that point

no contamination is actually present and the curve is indicating how often contamination will be

"detected" anyway. As long as the power at ~=O is approximately 5% (except for tests on an

individual constituent at an individual well where the false positive rate should approximate 1%)

and the rest of the power curve is acceptably high, the testing strategy should be adequately

comparable to EPA standards.

- - To determine an acceptable power curve for comparison to alternative testing strategies, the

following EPA Reference Power Curve is suggested. For a given and fixed number of

background measurements, and based on Normally-distributed data from a single downgradient

well generated at various mean levels above background, t~e EPA Reference Power Curve will

represent the power associated with a 99% confidence upper prediction limit on the next single

future sample from the well (see figure above for n= 16).

Since the power of a test depends on several factors, including the background sample size, ..

the type of test, and the number of comparisons. a different EPA Reference Power Curve will be

associated with each distinct number of background samples. Power curves of alternative tests

should only be compared to the EPA Reference Power Curve using a comparable number of

background measurements. If the power of the alternatfve test is at least as high as the EPA

reference, while maintaining an approximate 5% overall false positive rate, the alternative

procedure should be acceptable.

With respect to power curves, keep in mind three imponant considerations: 1) the power of

any testing method can be increased merely by relaxing the false positive rate requirement, letting a

become larger than 5%. This is why an approximate 5% alpha level is suggested as the standard

guidance, to ensure fair power comparisons among competing tests and to limit the overall

network-wide false positive rate. 2) The simulation of alternative testing methods should

incorporate every aspect of the procedure, from initial screens of the data to final decisions

concerning the presence of contamination. This is especially applicable to strategies that involve

some form of retesting at potentially contaminated wells. 3) When the testing strategy incorporates

multiple comparisons, it is crucial that the power be gauged by simulating contamination in one and

only one indicator parameter at a single well (i.e .• by measuring the effective power). As noted

earlier, EPA recommends that power be defined conservatively, forcing any test procedure to find

"the needle in the haystack."
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5.2 POSSIBLE STRATEGIES

5.2.1 Parametric and Non-parametric ANOVA

As described in the Interim Final Guidance, ANOYA procedures (either the parametric

method or the Kruskal-Wallis test) allow multiple downgradient wells (but not multiple

constituents) to be combined into a single statistical test, thus enabling the network-wide false

positive rate for any single constituent to be kept at 5% regardless of the size of the network. The

ANDVA method also maintains decent power for detecting real contamination, though only for

small to moderately-sized networks. In large networks, even the parametric ANDYA has a

difficult time finding the "needle in a haystack." The reason for this is that the ANDYA F-test

combines all downgradiem wells simultaneously, so that "clean" wells are mixed together with the

single contaminated well, potentially masking the test's ability to detect the source of

contamination.

Because of these characteristics, the ANDYA procedure may have poorer power for detecting

a narrow plume of contamination which affects only one or two wells in a much larger network

(say 20 or more comparisons). Another drawback is that a significant ANDVA test result will not

indicate which well or wells is potentially contaminated without funher post-hoc testing.

Funhennore, the power of the ANDYA procedure depends significantly on having at least 3 to 4

samples per well available for testing. Since the samples must be statistically independent,

collection of 3 or more samples at a given well may necessitate a several-month wait if the natural

ground-water velocity at that well is low. In this case, it may be tempting to look for other

strategies (e.g., Tolerance or Prediction intervals) that allow statistical testing of each new ground

water sample as it is collected and analyzed. Finally, since the simple one-way ANDYA procedure

outlined in the Interim Final Guidance is not designed to test multiple constituents simultaneously,

the overall false positive rate will be approximately 5% per constituent, leading to a potentially high

overall network-wide false positive rate (across wells and constituents) if many constituents need

to be tested.

5.2.2 Retesting with Parametric Intervals

One strategy alternative to ANDVA is a modification of approaches suggested by Gibbons

(l991a) and Davis and McNichols (1987). The basic idea is to adopt a two-phase testing strategy.

First, new samples from each well in the network are compared, for each designated constituent

parameter, against an upper Tolerance limit with pre-specified average coverage (Note that the

upper Tolerance limit wiII be different for each constituent). Since some constituents at some wells

67



in a large network would be expected to fail the Tolerance limit even in the absence of

contamination, each well that triggers the Tolerance limit is resampled and only those constituents

that "triggered" the limit are retested via an upper Prediction limit (again differing by constituent).

If one or more resamples fails the upper Prediction limit, the specific constituent at that well failing

the test is deemed to have a concentration level significantly greater than background. The overall

strategy is effective for large networks of comparisons (e.g., 100 or more comparisons), but also

flexible enough to accommodate smaller networks.

To design and implement an appropriate pair of Tolerance and Prediction intervals, one must

know the number of background samples available and the number of comparisons in the network.

Since parametric intervals are used, it is assumed that the background data are either Nonnal or can

be transformed to an approximate Normal distribution. The tricky part is to choose an average

coverage for the Tolerance interval and confidence level for the Prediction interval such that the

twin goals are met of keeping the overall false positive rate to approximately 5% and maintaining

adequate statistical power.

To derive the overall false positive rate for this retesting strategy, assume that when no

contamination is present each constituent and well in the network behaves independently of other

constituents and wells. Then if Ai denotes the event that well i is triggered falsely at some stage of

the testing, the overall false positive rate across m such comparisons can be wrinen as

m

total ex =Pr{A 1 or A2 or ... or AI or ... or Am} = 1- IlPr{A,}
I-I

where A i denotes the complement of event Ai. Since P{ Ai} is the probability of!lQI registering a

false trigger at uncontaminated well i, it may be wrinen as

Pr{A,} = Pr{X i :5 TL}+ Pr{X, >TL}xPr{Y, :5PLI XI >TL}

where Xi represents the original sample at well i, Yj represents the concentrations of one or more

resamples at well i, 1L and PL denote the upper Tolerance and Prediction limits respectively, and

the right-most probability is the conditional event that all resample conGentrations fall below the

Prediction limit when the initial sample fails the Tolerance limit

Letting X=Pr{Xi~} and y=Pr(Yi~PL I Xi>TL}, the overall false positive rate across m

constituent-well combinations can be expressed as
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total a =1- [x + (1- x)· yr
As noted by Guttman (1970), the probability that any random sample will fall below the

upper Tolerance limit (i.e., quantity x above) is equal to the expected or average coverage of the

Tolerance interval. If the Tolerance interval has been constructed to have average coverage of

95%, x=O.95. Then given a predetennined value for x, a fixed number of comparisons m, and a

desired overall false positive rate a., we can solve for the conditional probability y as follows:

~-x
y=

1- x

If the conditional probability y were equal to the probability that the resample(s) for the ith

constituent-well combination falls below the .upper Prediction limit, one could fix a. at, say, 5%,

and construct the Prediction interval to have confidence level y. In that way, one could guarantee

an expected network-wide false positive rate of 5%. Unfortunately, whether or not one or more

resamples falls below the Prediction limit depends partly on whether the initial sample for that

comparison eclipsed the Tolerance limit. This is because the same background data are used to

construct both the Tolerance limit and the Prediction limit, creating a s1:'ltistical dependence between

the tests.

The exact relationship between the conditional probability y and the unconditional probability

Pr {Yi~PL} is not known; however, simulations of the testing strategy suggest that when the

confidence level for the Prediction interval is equated to the above solution for y, the overall

network-wide false positive rate turns out to be higher than 5%. How much higher depends on the

number of background samples and also the number of downgradient comparisons. Even with a

choice of y that guarantees an expected facility-wide false positive rate of 5%, the power

characteristics of the resulting testing strategy are not n~cessarily equivalent to the EPA Reference

Power Curve, again depending on the number of background samples and the number of

monitoring well-constituent combinations in the network.

In practice, to meet the selection criteria of 1) establishing an overall false positive rate of

approximately 5% and 2) maintaining adequate statistical power, the confidence level chosen for

the upper Prediction limit should be somewhat higher than the solution y to the preceding equation.

The table below provides recommended choices of expected coverage and confidence levels for the

Tolerance interval-Prediction interval pair when using specific combinations of numbers of

downgradient comparisons and background samples. In general, one should pick lower coverage

69



lJratt 1(2~f)3

Tolerance limits for smaller networks and higher coverage Tolerance limits for larger networks.

That way (as can-be seen in the table), the resulting Prediction limit confidence levels will be low

enough to allow the construction of Prediction limits with decent statistical power.

PARAMETRIC RETESTING STRATEGIES

# #BG TOLERANCE PREDICTION
COMPARISONS SAMPLES COVERAGE (%) LEVEL (%) RATING

8 95 90 "'*
16 95 90 "'*

5 16 95 85 *
24 95 85 **
24 95 90 *
. 8 95 98 **

20 16 95 97 **
24 95 97 "'*
16 98 97 **
16 99 92 *

50 24 98 95 **
24 99 90 *'"
16 98 98 '"

100 24 99 95 '"
24 98 98 '"

Note: "'* =strongly recommended
'" =recommended

Only strategies that approximately met the selection criteria are listed in the table. It can be

seen that some, but not all, of these strategies are strongly recommended. Those that are merely

"recommended" failed in the simulations to fully meet one or both of the selection criteria. The

performance of all the recommended strategies, however, should be adequate to correctly identify

contamination while maintaining a modest facility-wide false positive rate.

Once a combination of coverage and confidence levels for the Tolerance-Prediction interval

pair is selected, the statistical power of the testing strategy should be estimated in order to compare

with the EPA Reference Power Curve (particularly if the testing scenario is different from those

computed in this Addendum). Simulation results have suggested that the above method for

choosing a two-phase testing regimen can offer statistical power comparable to the EPA Reference

for almost any sized monitoring network (see power curves in Appendix B).
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Several ex~~ples of simulated power curves are presented in Appendix B. The range of

downgradient wells tested is from 5 to 100 (note that the number of wells could actually represent

the number of constituent-well combinations if testing multiple parameters), and each curve is

based on either 8, 16, or 24 background samples. The y-axis of each graph measures. the effective

power of the testing strategy, Le., the probability that contamination is detected when one and only

~ constituent at a single well has a mean concentration higher than background level. For each

case, the EPA Reference Power Curve is compared to two different two-phase testing strategies. In

the first case, wells that trigger the initial Tolerance limit are resampled once. This single resam.ple

is compared to a Prediction limit for the next future sample. In the second case, wells that trigger

the Tolerance limit are resampled twice. Both resamples are compared to an upper Prediction limit

for the next lli:Q future samples at that well.

The simulated power curves suggest 'two points. First, with an appropriate choice of

coverage and prediction levels, the two-pn~se retesting strategies have comparable power to the

EPA Reference Power Curve, while maintaining low overall network-wide false positive rates.

Second, the power of the retesting strategy is slightly improved by the addition of a second

resample at wells that fail the initial Tolerance limit, because the sample size is increased.

Overall, the two-phase testing strategy defined above--i.e., first screening the network of

wells with a single upper Tolerance limit, and then applying an upper Prediction 1,imit to resamples

from wells which fail the Tolerance interval--appears to meet EPA's objectives of maintaining

adequate statistical power for detecting contamination while limiting network-wide false positive

rates to low levels. Furthennore, since each compliance well is compared against the interval limits

separately, a narrow plume of contamination can be identified more efficiently than with an

ANOYA procedure (e.g., no post-hoc testing is necessary to finger the guilty wells, and'the two­

phase interval testing method has more power against the "needle-in-a-haystack" contamination

hypothesis).

5.2.3 Retesting with Non-parametric Intervals

When parametric intervals are not appropriate for the data at hand, either due to a large

fraction of nondetects or a lack of fit to Nonnality or Lognonnality, a network of individual

comparisons can be handled via retesting using non-parametric Prediction limits. The strategy is to

establish a non-parametric prediction limit for each designated indicator parameter based on

background samples that accounts for the number of well-constituent comparisons in the overall

network.
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In order to ~eet the twin goals of maintaining adequate statistical power and a low overall

rate of false positives, a non-parametric strategy must involve some level of retesting at those wells

which initially indicate possible contamination. Retesting can be accomplished by taking a specific

number of additional, independent samples from each well in which a specific constituent triggers

the initial test and then comparing these samples against the non-parametric prediction limit for that

parameter.

. Because more independent data is added to the overall testing procedure, retesting of

additional samples, in general, enables one to make more powerful and more accurate

detenninations of possible contamination. Retesting does, however, involve a trade-off. Because

the power of the test increases with the number of resamples, one must decide how quickly

resamples can be collected to ensure 1) quick identification and confirmation of contamination and

yet. 2) the statistical independence of successive resamples from any particular well. Do not forget

that the perfonnance of a non-parametric retesting strategy depends substantially on the

independence of the data from each well.

Two basic approaches to non-parametric retesting have been suggested by Gibbons (1990

and 1991 b). Both strategies define the upper Prediction limit for each designated parameter to be

the maximum value of that constituent in the set of. background data. Consequently, the

background wells used to construct the limits must be uncontaminated. After the Prediction limits

have been calculated, one sample is collected from each downgradient well in the network. If any

sample constituent value is greater than its upper prediction limit, the initial test is "triggered" and

one or more resamples must be collected at 1b.al downgradient well on the constituent for further

testing.

At this point, the similarity between the two approaches ends. In his 1990 article, Gibbons

computes the probability that at least one of m independent samples taken from each of k

downgradient wells will be below (i.e., pass) the prediction limit. The m samples include both the

initial sample and (m-I) resamples. Because retesting only occurs when the initial well sample fails

the limit, a given well fails the overall test (initial comparison plus retests) only if all (m-l)

resamples are above the prediction limit. If any resample passes the prediction limit, that well is

regarded as showing no significant evidence of contamination.

Initially, this first strategy may not appear to be adequately sensitive to mild contamination at

a given downgradient well. For example, suppose two resamples are to be collected whenever the

initial sample fails the upper prediction limit. If the initial sample is above the background
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maximum and one of the resamples is also above the prediction limit, the well can still be classified

as "clean" if the other resample is below the prediction limit. Statistical power simulations (see

Appendix B), however, suggest that this strategy will perform adequately under a number of

monitoring scenarios. Still, EPA recognizes that a retesting strategy which might classify a well as

"clean" when the initial sample .a.ru! a resample both fail the upper Prediction limit could offer

problematic implications for permit writers and enforcement personnel.

A more stringent approach was suggested by Gibbons in 1991. In that anicle (1991b),

Gibbons computes, as "passing behavior," the probability that all but one of m samples taken from

each of k wells pass the upper prediction limit. Under this definition, if the initial sample fails the

upper Prediction limit, all (m-l) resamples must pass the limit in order for well to be classified as

"clean" during that testing period. Consequently, if any single resample falls above the background

maximum, that well is judged as showing significant evidence of contamination.

Either non-parametric retesting approach offers the advantage of being extremely easy to

implement in field testing of a large downgradient well network. In practice, one has only to

determine the maximum background sample to establish the upper prediction limit against which all

other comparisons are made. Gibbons' 1991 retesting scheme offers the additional advantage of

requiring less overall sampling at a given well to establish significant evidence of contamination.

Why? If the testing procedure calls for, say, two resamples at any well that fails the initial

prediction limit screen, retesting can end whenever either one of the two resamples falls above the

prediction limit. That is, the well will be designated as potentially contaminated if the first resample

fails the prediction limit even if the second resample has not yet been collected.

In both of his papers, Gibbons offers tables that can be used to compute the overall network­

wide false positive rate, given the number of background samples, the number of downgradient

comparisons, and the number of retests for each comparison. It is clear that there is less flexibility

in adjusting a non-parametric as opposed to a parametric prediction limit to achieve a certain Type I

error rate. In fact, if only a cenain number of retests are feasible at any given well (e.g., in order

to maintain independence of successive samples), the only recourse to maintain a low false positive

rate is to collect a larger number of background samples. In this way, the inability to make

parametric assumptions about the data illustrates why non-parametric tests are on the whole less

efficient and less powerful than their parametric counterparts.

Unfonunately, the power of these non-parametric retesting strategies is not explored in detail

by Gibbons. To compare the power of both Gibbons' strategies against the EPA Reference Power
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Curve, Normally_ distributed data were simulated for several combinations of numbers of

background samples and downgradient wells (again, if multiple constituents are being tested, the

number of wells in the simulations may be regarded as the number of constituent-well

combinations). Up to three resamples were allowed in the simulations for comparative purposes.

EPA recognizes, however, that it will be feasible in general to collect only one or two independent

resamples from any given well. Power curves representing the results of these simulations are

given in Appendix B. For each scenario, the EPA Reference Power Curve is compared with the

simulated powers of six different testing strategies. These strategies include collection of no

resamples, one resample, two _resam pies under Gibbons' 1990 approach (designated as A on the

curves) and his 1991 approach (labelled as B), and three resamples (under approaches A and B).

Under the one resample strategy, a potentially contaminated compliance well is designated as

"clean" if the resample passes the retest and "contaminated" otherwise.

The following table lists the best-performing strategies under each scenario. As with the use

of parametric intervals for retesting, the criteria for selecting the best-performing strategies required

1) an approximate 5% facility-wide false positive rate and 2) power equivalent to or better than the

EPA Reference Power Curve. Because Normal data were used in these power simulations, more

realistically skewed data would likely result in greater advantages for the non-parametric retesting

strategies over the EPA Reference test.

Examination of the table and the power curves in Appendix B shows that the number of

background samples has an imponant effect on the recommended testing strategy. For instance,

with 8 background samples in a network of at least 20 wells, the best performing strategies all

involve collection of 3 resamples per "triggered" compliance well (EPA regards such a strategy as

impractical for permitting and enforcement purposes at most ReRA facilities). It tends to be true

that as the number of available background samples grows, fewer resamples are needed from each

potentially contaminated compliance well to maintain adequate power. If, as is expected, the

number of feasible, independent retests is limited, a facility operator may have to collect additional

background measurements in order to establish an adequate retesting strategy.
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NON-PARAMETRIC RETESTING STRATEGIES

# #BG
WELLS SAMPLES STRATEGY REFERENCE RATING

8 1 Resamp1e *
5 8 2 Resamp1es (A) Gibbons, 1990 **

16 1 Resamp1e **
16 2 Resamp1es (B) Gibbons, 1991 **
24 2 Resamp1es (B) Gibbons, 1991 **

8 2 Resamp1es (A) Gibbons, 1990 *
16 1 Resamp1e *

20 16 2 Resamp1es (A) Gibbons, 1990 *
24 1 Resamp1e **
24 2 Resamp1es (B) Gibbons, 1991 *
32 1 Resamp1e *
32 2 Resamp1es (B) Gibbons, 1991 **
16 2 Resamples (A) Gibbons, 1990 **

50 24 1 Resamp1e *
24 2 Resamp1es (A) Gibbons, 1990 *
32 1 Resamp1e **

100 16 2 Resamples (A) Gibbons, 1990 **
24 2 Resamples (A) Gibbons, 1990 *
32 1 Resample *

Note: ** =very good perfonnance * =good perfonnance

6. OTHER TOPICS

6.1 CONTROL CHARTS

Control Charts are an alternative to Prediction limits for perfonning either intrawell

comparisons or comparisons to historically monitored background wells during detection

monitoring. Since the baseline parameters for a Control Chart are estimated from historical data,

this method is only appropriate for initially uncontaminated compliance wells. The main advantage

of a Control Chart over a Prediction limit is that a Co'htrol Chan allows data from a well to be.
viewed graphically over time. Trends and changes in the concentration levels can be seen easily,

because all sample data is consecutively plotted on the chart as it is collected, giving the data

analyst an historical overview of the pattern of contamination. Prediction limits allow only point­

in-time comparisons between the most recent data and past information, making long-term trends

difficult to identify.

More gene~ally, intrawell comparison methods eliminate the need to worry about spatial

variability between wells in different locations. Whenever background data is compared to

compliance point measurements, there is a risk that any statistically significant difference in
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concentration levels is due to spatial and/or hydrogeological differences between the wells rather

than contamination at the facility. Because intrawell comparisons involve but a single well,

significant changes in the level of contamination cannot be attributed to spatial differences between

wells, regardless of whether the method used is a Prediction limit or Control Chart.

Of course, past observations can be used as baseline data in an intrawell comparison only if

the well is known to be uncontaminated. Otherwise, the comparison between baseline data and

newly collected samples may negate the goal in detection monitoring of identifying evidence of

contamination. Furthermore, without specialized modification, Control Charts do not efficiently

handle truncated data sets (i.e., those with a significant fraction of nondetects), making them

appropriate only for those constituents with a high frequency of occurrence in monitoring wells.

Control Charts tend to be most useful, therefore, for inorganic parameters (e.g., some metals and

geochemical monitoring parameters) that occur naturally in the ground water.

The steps to construct a Control Chan can be found on pp. 7-3 to 7-10 of the Interim Final

Guidance. The way a Control Chart works is as follows. Initial sample data is collected (from the

specific compliance well in an intrawell comparison or from background wells in comparisons of

compliance data with background) in order to establish baseline parameters for the chan,

specifically, estimates of the well mean and well variance. These samples are meant to characterize

the concentration levels of the uncontaminated well, before the onset of detection monitoring.

Since the estimate of well variance is particularly important, it is recommended that at least 8

samples be collected (say, over a year's time) to estimate the baseline parameters. Note that none

of these 8 or more samples is actually ploned on the chart.

As future samples are collected, the baseline parameters are used to standardize the data. At

each sampling period, a standardized mean is computed using the formula below, where m

represents the baseline mean concentration and s represents the baseline standard deviation.

Z, =F.Cx -m)/ s

A cumulative sum (CUSUM) for the ith period is also computed, using the fonnula Si =max{O,

(Zj-k)+Sj_l ), where Zj is the standardized mean for that period and k represents a pre-chosen

Control Chart parameter.

Once the data have been standardized and ploned, a Control Chart is declared out-of-control

if the sample concentrations become too large when compared to the baseline parameters. An out-
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of-control situation is indicated on the Control Chart when either the standardized means or

CUSUMs cross one of two pre-determined threshold values. These thresholds are based on the

rationale that if the well remains uncontaminated, new sample values standardized by the original

baseline parameters should not deviate substantially from the baseline level. If contamination does

occur, the old baseline parameters will no longer accurately represent concentration levels at the

well and. hence, the standardized values should significantly deviate from the baseline levels on the

Control Chart.

In the combined Shewhart-cumulative sum (CUSUM) Control Chan recommended by the

Interim Final Guidance (Section 7), the chart is declared out-of-control in one of two ways. First,

the standardized means (Zi) computed at each sampling period may cross the Shewhart control

limit (SCL). Such a change signifies a rapid increase in well concentration levels among the most

recent sample data. Second, the cumulative sum (CUSUM) of the standardized means may

become too large, crossing the "decision irnernal value" (h). Crossing the h threshold can mean

either a sudden rise in concentration levels or a gradual increase over a longer span of time. A

gradual increase or trend is particularly indicated if the CUSUM crosses its threshold but the

standardized mean Zj does not. The reason for this is that several consecutive small increases in Zi
will not trigger the SCL threshold, but may trigger the CUSUM threshold. As such, the Control

Chart can indicate the onset of either sudden or gradual contamination at the compliance point.

As with other statistical methods, Control Chans are based on cenain assumptions about the

sample data. The first is that the data at an uncontaminated well (i.e., a well process that is "in

control") are Normally distributed. Since estimates of the baseline parameters are made using

initially collected data, these data should be tested for Normality using one of the goodness-of-fit

techniques described earlier. Better yet, the logarithms of the data should be tested first, to see if a

Lognormal model is appropriate for the concentration data. If the Lognormal model is not rejected,

the Control Chan should be constructed solely on the basis of logged data.

The methodology for Control Charts also assumes that the sample data are independently

distributed from a statistical standpoint. In fact, these charts can easily give misleading results if

the consecutive sample data are not independent. For this reason, it is imponant to design a

sampling plan so that distinct volumes of water are analyzed each sampling period and that

duplicate sample analyses are not treated are independent observations when constructing the

Control Chart.
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The final a~~umption is that the baseline parameters at the well reflect current background

concentration levels. Some long-term fluctuation in background levels may be possible even

though contamination has not occurred at a given well. Because of this possibility, if a Control

Chan remains "in control" for a long period of time, the baseline parameters should be updated to

include more recent observations as background data. After all, the original baseline parameters

will often be based only on the first year's data. Much better estimates of the true background

mean and variance can be obtained by including more data at a later time.

To update older background data with more recent samples, a two-sample t-te-st can be run to

compare the older concentration levels with the concentrations of the proposed update samples. If

the t-test does not show a significant difference at the 5 percent significance level, proceed to re­

estimate the baseline parameters by including more recent data. If the t-test does show a significant

difference, the newer data should not be characterized as background unless some specific factor

can be pinpointed explaining why background levels on the site have naturally changed.

EXAMPLE 18

Construct a control chart for the 8 months of data collected below.

1l=27 ppb
a=25 ppb

Month

Nickel Concentration (ppb)

Sample 1 Sample 2

SOLUTION

1
2
3
4
5
6
7
8

15.3
41.1
17.5
15.7
37.2
25.1
19.9
99.3

22.6
27.8
18.1
31.5
32.4
32.5
27.5
64.2

Step 1.

Step 2.

The three parameters necessary to construct a combined Shewhan-CUSUM chart are
h=5, k=1, and SCL=4.5 in units of standard deviation (SD).

List the sampling periods and monthly means, as in the following table.
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Month To Mean (ppb) Zj Zj - k S'1 1

1 1 19.0 -0.45 -1.45 0.00
2 2 34.5 0.42 -0.58 0.00
3 3 17.8 -0.52 -1.52 0.00
4 4 23.6 -0.19 -1.19 0.00
5 5 34.8 0.44 -0.56 0.00
6 6 28.8 0.10 -0.90 0.00
7 7 23.7 -0.19 -1.19 0.00
8 8 81.8 3.10 2.10 2.10

Step 3. Compute the standardized means Zi and the quantities Si. List in the table above. Each
Si is computed for consecutive months using the fonnula on p. 7-8 of the EPA guidance
document.

Sl =max {O, -1.45 + a} =0.00

S2 = max {O, -0.58 + OJ = 0.00

S3 =max {O, -1.52 + OJ =0.00

S4 =max {O, -1.19 + O} =0.00

S5 =max {O, -0.56 + O} = 0.00

S6 =max {O, -0.90 + O} = 0.00

S7 = max {O, -1.19 + OJ = 0.00

S8 = max {O, 2.10 + O} = 2.10

Step 4. Plot the control chart as given below. The combined chan indicates that there is no·
evidence of contamination at the monitoring facility because neither the standardized
mean nor the CUSUM statistic exceeds the Shewhart control limits for the months
examined.
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CONTROL CHART FOR NICKEL DATA
MU = 17ppb SIGMA = lSppb
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Note: In the above Control Chart, the CUSUMs are compared to threshold h, while the

standardized means (2) are compared to the SCL threshold.

6.2 OUTLIER TESTING

Fonnal testing for outliers should pe done only if an observation seems panicularly high (by

orders of magnitude) compared to the rest of the data set. If a sample value is suspect, one should

run the outlier test described on pp. 8-11 to 8-14 of the EPA guidance document. It should be

cautioned, however, that this outlier test assumes that the rest of the data values, except for the

suspect observation, are Normally distributed (Barnett and Lewis, 1978). Since Lognormally

distributed measurements often contain one or more values that appear high relative to the rest, it is

recommended that the outlier test be run on the logarithms of the data instead of the original

observations. That way, one can avoid classifying a high Lognormal measurement as an outlier

just because the test assumptions were violated.

If the test designates an observation as a statistical outlier, the sample should not be treated as

such until a specific reason for the abnormal measurement can be detennined. Valid reasons may,

for example, include contaminated sampling equipment, laboratory contamination of the sample, or
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errors in transcription of the data values. Once a specific reason is documented, the sample should

be excluded from any funher statistical analysis. If a plausible reason cannot be found, the sample

should be treated as a true but extreme value, llill to be excluded from further analysis.

EXAMPLE 19

The table below contains data from five wells measured over a 4-month period. The value

7066 is found in the second month at well 3. Determine whether there is statistical evidence that

this observation is an outlier.

Carbon Tetrachloride Concentration (ppb)

WeIll Well 2 Well 3 Well 4 Well 5

1.69 302 16.2 199 275
3.25 35.1 7066 41.6 6.5
7.3 15.6 350 75.4 59.7

12.1 13.7 70.14 57.9 68.4

SOLUTION

Step 1. Take logarithms of each observation. Then order and list the logged concentrations.
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Concentration Logged
Order (ppb) Concentration

1 1.69 0.525
2 3.25 1.179
3 6.5 1.872
4 7.3 1.988
5 12.1 2.493
6 13.7 2.617
7 15.6 2.747
8 16.2 2.785
9- 35.1 3.558
10 41.6 3.728
11 57.9 4.059
12 59.7 4.089
13 68.4 4.225
14 70.1 4.250
15 75.4 4.323
16 199 5.293
17 275 5.617
18 302 5.710
19 350 5.878
20 7066 8.863

Step 2. Calculate the mean and SD of all the logged measurements. In this case, the mean and
SD are 3.789 and 1.916, respectively.

Step 3. Calculate the outlier test statistic T20 as

T = X(20}-X = 8.863-3.789 =2.648.
20 SD 1. 916

Step 4. Compare the observed statistic T20 with the critical value of 2.557 for a sample size
n=20 and a significance level of 5 percent (taken from Table 8 on p. B-12 of the Interim
Final Guidance). Since the observed value T2o=2.648 exceeds the critical value, there is
significant evidence that the largest observation is a statistical outlier. Before excluding
this value from funher analysis, a valid explanation for this unusually high value should
be found. Otherwise, treat the outlier as an extreme but valid concentration
measurement.
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TABLE A-I.

COEFFICIENTS {AN-I+l} FOR W TEST OF
NORMALITY, FOR N=2(1)50

i/n 2 3 4 5 6 7 8 9 10
1 0.7071 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739
2 .0000 .1677 .2413 .2806 .3031 .3164 .3244 .3291
3 .0000 .0875 .1401 .1743 .1976 .2141
4 .0000 .0561 .0947 .1224
5 .0000 .0399

i/n 11 12 13 14 15 16 17 18 19 20
1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734
2 .3315 .3325 .3325 .3318 .3306 .3290 .3273 .3253 .3232 .3211
3 .2260 .2347 .2412 .2460 .2495 .2521 .2540 .2553 .2561 .2565
4 .1429 .1586 .1707 .1802 .1878 .1939 .1988 .2027 .2059 .2085
5 .0695 .0922 .1099 .1240 .1353 .1447 .1524 .1587 .1641 .1686

6 0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334
7 .0000 .0240 .0433 .0593 .0725 .0837 .0932 .1013
8 .0000 .0196 .0359 .0496 .0612 .0711
9 .0000 .0163 .0303 .0422
10 .0000 .0140

i/n 21 22 23 24 25 26 27 28 29 30
1 0.4643 0.4590 0.4542 0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 0.4254
2 .3185 .3156 .3126 .3098 .3069 .3043 .3018 .2992 .2968 .2944
3 .2578 .2571 .2563 .2554 .2543 .2533 .2522 .2510 .2499 .2487
4 .2119 .2131 .2139 .2145 .2148 .2151 .2152 .2151 .2150 .2148
5 .1736 .1764 .1787 .1807 .1822 .1836 .1848 .1857 .1864 .1870

6 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 0.1630
7 .1092 .1150 .1201 .1245 .1283 .1316 .1346 .1372 .1395 .1415
8 .0804 .0878 .0941 .0997 .1046 .1089 .1128 .1162 .1192 .1219
9 .0530 .0618 ".0696 .0764 .0823 .0876 .0923 .0965 .1002 .1036
10 .0263 .0368 .0459 .0539 .0610 .0672 .0728 .0778 .0822 .0862

11 0.0000 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.0598 0.0650 0.0697
12 .0000 .0107 .0200 .0284 .0358 .0424 .0483 .0537
13 .0000 .0094 .0178 .0253 .0320 .0381
14 .0000 .0084 .0159 .0227
15 .0000 .0076

i/n 31 32 33 34 35 36 37 38 39 40
1 0.4220 0.4188 0.4156 0.4127 0.4096 0.4068 0.4040 0.4015 0.3989 0.3964
2 .2921 .2898 .2876 .2854 .2834 .2813 .2794 .2774 .2755 .2737
3 .2475 .2463 .2451 .2439 .2427 .2415 .2403 .2391 .2380 .2368
4 .2145 .2141 .2137 .2132 .2127 .2121 .2116 .2110 .2104 .2098
5 .1874 .1878 .1880 .1882 .1883 .1883 .1883 .1881 .1880 .1878

6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691
7 .1433 .1449 .1463 .1475 .1487 .1496 .1503 .1513 .1520 .1526
8 .1243 .1265 .1284 .1301 .1317 .1331 .1344 .1356 .1366 .1376
9 .1066 .1093 .1118 .1140 .1160 .1179 .1196 .12l] .1225 .1237
10 .0899 .0931 .0961 .0988 .1013 .1036 .1056 .1075 .1092 .1108
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TABLE A-I. (CONTINUED)

COEFFICIENTS {AN-I+l} FOR W TEST OF
NORMALITY, FOR N=2(l)SO

i/D 31 32 33 34 35 36 37 38 39 40
11 0.0739 0.0777 0.0812 0.0844 0.0873 0.0900 0.0924 0.0947 0.0967 0.0986
12 .0585 .0629 .0669 .0706 .0739 .0770 .0798 .0824 .0848 .0870
13 .0435 .0485 .0530 .0572 .0610 .0645 .0677 .0706 .0733 .0759
14 .0289 .0344 .0395 .0441 .0484 .0523 .0559 .0592 .0622 .0651
15 .0144 .0206 .0262 .0314 .0361 .0404 .0444 .0481 .0515 .0546

16 0.0000 0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 0.0444
17 .0000 .0062 .0119 .0172 .0220 .0264 .0305 .0343
18 .0000 .0057 .0110 .0158 .0203 .0244
19 .0000 .0053 .0101 .0146
20 .0000 .0049

i/ D 41 42 43 44 .45 46 47 48 49 50
1 0.3940 0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751
2 .2719 .2701 .2684 .2667 .2651 .2635 .2620 .2604 .2589 .2574
3 .2357 .2345 .2334 .2323 .2313 .2302 .2291 .2281 .2271 .2260
4 .2091 .2085 .2078 .2072 .2065 .2058 .2052 .2045 .2038 .2032
5 .1876 .1874 .1871 .1868 .1865 .1862 .1859 .1855 .1851 .1847

(I 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691
7 .1531 .1535 .1539 .1542 .1545 .1548 .1550 .1551 .1553 .1554
8 .1384 .1392 .1398 .1405 .1410 .1415 .1420 .1423 .1427 .1430
9 .1249 .1259 .1269 .1278 .1286 .1293 .1300 .1306 .1312 .1317
10 .1123 .1136 .1149 .1160 .1170 .1180 .1189 .1197 .1205 .1212

11 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113
12 .0891 .0909 .0927 .0943 .0959 .0972 .0986 .0998 .1010 .1020
13 .0782 .0804 .0824 .0842 .0860 .0876 .0892 .0906 .0919 .0932
14 .0677 .0701 .0724 .0745 .0775 .0785 .0801 .0817 .0832 .0846
15 .0575 .0602 .0628 .0651 .0673 .0694 .0713 .0731 .0748 .0764

16 0.0476 0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685
17 .0379 .0411 .0442 .0471 .0497 .0522 .0546 .0568 .0588 .0608
18 .0283 .0318 .0352 .0383 .0412 .0439 .0465 .0489 .0511 .0532
19 .0188 .0227 .0263 .0296 .0328 .0357 .0385 .0411 .0436 .0459
20 .0094 .0136 .0175 .0211 .0245 .0277 .0307 .0335 .0361 .0386

21 0.0000 0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314
22 .0000 .0042 .0081 .0118 .0153 .0185 .0215 .0244
23 .0000 .0039 .0076 .0111 .0143 .0174
24 .0000 .0037 .0071 .0104
2S .0000 .0035
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TABLE A-2.

PERCENTAGE POINTS OF THE W TEST FOR N=3(l)50

n 0.01 0.05

3 0.753 0.767
4 .687 .748
5 .686 .762

6 - 0.713 0.788
7 .730 .803
8 .749 .818
9 .764 .829
10 .781 .842

11 0.792 0.850
12 .805 .859
13 .814 .866
14 .825 .874
15 .835 .881

16 0.844 0.887
17 .851 .892
18 .858 .897
19 .863 .901
20 .868 .905

21 0.873 0.908
22 .878 .911
23 .881 .914
24 .884 .916
25 .888 .918

26 0.891 0.920
27 .894 .923
28 .896 .924
29 .898 .926
30 .900 .927

31 0.902 0.929
32 .904 .930
33 .906 .931
34 .908 .933
35 .910 .934
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TABLE A-2. (CONTINUED)

PERCENT AGE POINTS OF THE W TEST FOR N=3(l)50

n 0.01 0.05

36 0.912 0.935
37 .914 .936
38 .916 .938
39 .917 .939
40 .919 .940

41 0.920 0.941
42 .922 .942
43 .923 .943
44 .924 .944
45 .926 .945

46 0.927 0.945
47 .928 .946
48 .929 .947
49 .929 .947
50 .930 .947
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TABLE A-3.

PERCENTAGE POINTS OF THE Wi TEST FOR N~35

n .01 .05

35 0.919 0.943
50 .935 .953
51 0.935 0.954
53 .938 .957
55 .940 .958
57 .944 .961
59 .945 .962

61 0.947 0.963
63 .947 .964
65 .948 .965
67 .950 .966
69 .•951 .966

71 0.953 0.967
73 .956 .968
75 .956 .969
77 .957 .969
79 .957 .970

81 0.958 0.970
83 .960 .971
85 .961 .972
87 .961 .972
89 .961 .972

91 0.962 0.973
93 .963 .973
95 .965 .974
97 .965 .975
99 .967 .976
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TABLE A-4.

PERCENT POINTS OF THE NORMAL PROBABILITY PLOT
C"ORRELETION COEFFICIENT FOR N=3(l)50(5)100

n .01 .025 .05

3 .869 .872 .879
4 .822 .845 .868
5 .822 .855 .879
6 .835 .868 .890
7 .847 .876 .899
8 .859 .886 .905
9 .868 .893 .912
10 .876 .900 .917

11 .883 .906 .922
12 .889 .91.2 - .926
13 .895 .917 .931
14 .901 .921 .934
15 .907 .925 .937
16 .912 .928 .940
17 .912 .931 .942
18 .919 .934 .945
19 .923 .937 .947
20 .925 .939 .950

21 .928 .942 .952
22 .930 .944 .954
23 .933 .947 .955

. 24 .936 .949 .957
25 .937 .950 .958
26 .939 .952 .959
27 .941 .953 .960
28 .943 .955 .962
29 .~45 .956 .962
30 .947 .957 .964

31 .948 .958 .965
32 .949 .959 .966
33 .950 .960 .967
34 .951 .960 .967
35 .952 .961 .968
36 .953 .962 .968
37 .955 .962 .969
38 .956 .964 .970
39 .957 .965 .971
40 .958 .966 .972
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TABLE A-4. (CONTINUED)

PERCENT POINTS OF THE NORMAL PROBABILITY PLOT
CORRELETION COEFFICIENT FOR N=3(l)50(5)100

n .01 .025 .05

41 .958 .967 .973
42 .959 .967 .973
43 .959 .967 .973
44 .960 .968 .974
45 .961 .969 .974
46 .962 .969 .974
47 .963 .970 .975
48 .963 .970 .975
49 .964 .971 .977
50 .965 .972 .978

55 .967 .974 .980
60 .970 .976 .981
65 .972 .977 .982
70 .974 .978 .983
75 .975 .979 .984
80 .976 .980 .985
85 .977 .981 .985
90 .978 .982 .985
95 .979 .983 .986
100 .981 .984 .987
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TABLE A-5.

VALUES OF LAMBDA FOR COHEN'S METHOD

Percentage of Non-detects

.01 .05 .10 .15 .20 .25 .30 .35 .40 .45 •., lJ

.01 .0102 .0530 .1111 .1747 .2443 .3205 .4043 .4967 .5989 .7128 .840::

.05 .0105 .0547 .1143 .1793 .2503 .3279 ABO .5066 .6101 .7252 .854C

.10 .0110 .0566 .1180 .1848 .2574 .3366 .4233 .5184 .6234 .7400 .8703

.15 .0113 .0584 .1215 .1898 .2640 .3448 .4330 .5296 .6361 .7542 .886C

.20 .0116 .0600 .1247 .1946 .2703 .3525 .4422 .5403 .6483 .7678 .9012

.25 .0120 .0615 .1277 .1991 .2763 .3599 .4510 .5506 .6600 .7810 .9158

.30 .0122 .0630 .1306 .2034 .2819 .3670 .4595 .5604 .6713 .7-937 .9300

.35 .0125 .0643 .1333 .2075 .2874 .3738 .4676 .5699 .6821 .8060 .9437

.40 .0128 .0657 .1360 .2114 .2926 .3803 .4755 .5791 .6927 .8179 .9570

.45 .0130 .0669 .1385 .2152 .2976 .3866 .4831 .5880 .7029 .8295 .9700

.50 .0133 .0681 .1409 .2188 .3025 .3928 .4904 .5967 .7129 .8408 .9826

.55 .0135 .0693 .1432 .2224 .3073 .3987 .4976 .6051 .7225 .8517 .9950

.60 .0137 .0704 .1455 .2258 .3118 .4045 .5046 .6133 .7320 .8625 1.0070

.65 .0140 .0715 .1477 .2291 .3163 .4101 .5114 .6213 .7412 .8729 1.0188

.70 .0142 .0726 .1499 .2323 .3206 .4156 .5180 .6291 .7502 .8832 1.0303

.75 .0144 .0736 .1520 .2355 .3249 .4209 .5245 .6367 .7590 .8932 1.0416

.80 .0146 .0747 .1540 .2386 .3290 .4261 .5308 .6441 .7676 .9031 1.0527

.85 .0148 .0756 .1560 .2416 .3331 .4312 .5370 .6515 .7761 .9127 1.0636

.90 .0150 .0766 .1579 .2445 .3370 .4362 .5430 .6586 .7844 .9222 1.0743

.95 .0152 .0775 .1598 .2474 .3409 .4411 .5490 .6656 .7925 .9314 1.0847

1.00 .0153 .0785 .1617 .2502 .3447 .4459 .5548 .6725 .8005 .9406 1 '
1.05 .0155 .0794 .1635 .2530 .3484 .4506 .5605 .6793 .8084 .9496 1
1.10 .0157 .0803 .1653 .2557 .3521 .4553 .5662 .6860 .8161 .9584 1.1.lJ2
1.15 .0159 .0811 .1671 .2584 .3557 .4598 .5717 .6925 .8237 .9671 1.1250
1.20 .0160 .0820 .1688 .2610 .3592 .4643 .5771 .6990 .8312 .9756 1.1347
1.25 .0162 .0828 .1705 .2636 .3627 .4687 .5825 .7053 .8385 .9841 1.1443
1.30 .0164 .0836 .1722 .2661 .3661 .4730 .5878 .7115 .8458 .9924 1.1537
1.35 .0165 .0845 .1738 .2686 .3695 .4773 .5930 .7177 .8529 1.0006 1.1629
1.40 .0167 .0853 .1754 .2710 .3728 .4815 .5981 .7238 .8600 1.0087 1.1721
1.45 .0168 .0860 .1770 .2735 .3761 .4856 .6031 .7298 .8670 1.0166 1.1812

1.50 .0170 .0868 .1786 .2758 .3793 .4897 .6081 .7357 .8738 1.0245 1.1901
1.55 .0171 .0876 .1801 .2782 .3825 .4938 .6130 .7415 .8806 1.0323 1.1989
1.60 .0173 .0883 .1817 .2805 .3856 .4977 .6179 .7472 .8873 1.0400 1.2076
1.65 .0174 .0891 .1832 .2828 .3887 .5017 .6227 .7529 .8939 1.0476 1.2162
1.70 .0176 .0898 .1846 .2851 .3918 .5055 .6274 .7585 .9005 1.0551 1.2248
1.75 .0177 .0905 .1861 .2873 .3948 .5094 .6321 .7641 .9069 1.0625 1.2332
1.80 .0179 .0913 .1876 .2895 .3978 .5132 .6367 .7696 .9133 1.0698 1.2415
1.85 .0180 .0920 .1890 .2917 .4007 .5169 .6413 .7750 . .9196 1.0771 1.2497
1.90 .0181 .0927 .1904 .2938 .4036 .5206 .6458 .7804 .9259 1.0842 1.2579
1.95 .0183 .0933 .1918 .2960 .4065 .5243 .6502 .7857 .9321 1.0913 1.2660
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TABLE A-5. (CONTINUED)

VALVES OF LAMBDA FOR COHEN'S METHOD

ercentage a Non-detects

.01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

2.00 .0184 .0940 .1932 .2981 .4093 .5279 .6547 .7909 .9382 1.0984 1.2739
2.05 .0186 .0947 .1945 .3001 .4122 .5315 .6590 .7961 .9442 1.1053 1.2819
2.10 .0187 .0954 .1959 .3022 .4149 .5350 .6634 .8013 .9502 1.1122 1.2897
2.15 .0188 .0960 .1972 .3042 .4177 .5385 .6676 .8063 .9562 1.1190 1.2974
2.20 .0189 .0967 .1986 .3062 .4204 .5420 .6719 .8114 .9620 1.1258 1.3051
2.25 .0191 .0973 .1999 .3082 .4231 .5454 .6761 .8164 .9679 1.1325 1.3127
2.30 .0192 .0980 .2012 .3102 .4258 .5488 .6802 .8213 .9736 1.1391 1.3203
2.35 .0193 .0986 .2025 .3122 .4285 .5522 .6844 .8262 .9794 1.1457 1.3278
2.40 .0194 .0992 .2037 .3141 .4311 .5555 .6884 .8311 .9850 1.1522 1.3352
2.45 .0196 .0998 .2050 .3160 .4337 .5588 .6925 .8359 .9906 1.1587 1.3425

2.50 .0197 .1005 .2062 .3179 .4363 .5621 .6965 .8407 .9962 1.1651 1.3498
2.55 .0198 .1011 .2075 .3198 .4388 .5654 .7005 .8454 1.0017 1.1714 1.3571
2.60 .0199 .1017 .2087 .3217 .4414 .5686 .7044 .8501 1.0072 1.1777 1.3642
2.65 .0201 .1023 .2099 .3236 .4439 .5718 .7083 .8548 1.0126 1.1840 1.3714
2.70 .0202 .1029 .2111 .3254 .4464 .5750 .7122 .8594 1.0180 1.1902 1.3784
2.75 .0203 .1035 .2123 .3272 .4489 .5781 .7161 .8639 1.0234 1.1963 1.3854
2.80 .0204 .1040 .2135 .3290 .4513 .5812 .7199 .8685 1.0287 1.2024 1.3924
2.85 .0205 .1046 .2147 .3308 .4537 .5843 .7237 .8730 1.0339 1.2085 1.3993
2.90 .0206 .1052 .2158 .3326 .4562 .5874 .7274 .8775 1.0392 1.2145 1.4061

2.95 .0207 .1058 .2170 .3344 .4585 .5905 .7311 .8819 1.0443 1.2205 1.4129
3.00 .0209 .1063 .2182 .3361 .4609 .5935 .7348 .8863 1.0495 1.2264 1.4197
3.05 .0210 .1069 .2193 .3378 .4633 .5965 .7385 .8907 1.0546 1.2323 1.4264
3.10 .0211 .1074 .2204 .3396 .4656 .5995 .7422 .8950 1.0597 1.2381 1.4330
3.15 .0212 .1080 .2216 .3413 .4679 .6024 .7458 .8993 1.0647 1.2439 1.4396
3.20 .0213 .1085 .2227 .3430 .4703 .6054 .7494 .9036 1.0697 1.2497 1.4462
3.25 .0214 .1091 .2238 .3447 .4725 .6083 .7529 .9079 1.0747 1.2554 1.4527
3.30 .0215 .1096 .2249 .3464 .4748 .6112 .7565 .9121 1.0796 1.2611 1.4592
3.35 .0216 .1102 .2260 .3480 .4771 .6141 .76 .9163 1.0845 1.2668 1.4657
3.40 .0217 .1107 .2270 .3497 .4793 .6169 .7635 .9205 1.0894 1.2724 1.4720
3.45 .0218 .1112 .2281 .3513 .4816 .6197 .7670 .9246 1.0942 1.2779 1.4784..
3.50 .0219 .1118 .2292 .3529 .4838 .6226 .7704 .9287 1.0990 1.2835 1.4847
3.55 .0220 .1123 .2303 .3546 .4860 .6254 .7739 .9328 1.1038 1.2890 1.4910
3.60 .0221 .1128 .2313 .3562 .4882 .6282 .7773 .9369 1.1086 1.2945 1.4972
3.65 .0222 .1133 .2324 .3578 .4903 .6309 .7807 .9409 1.1133 1.2999 1.5034
3.70 .0223 .1138 .2334 .3594 .4925 .6337 .7840 .9449 1.1180 1.3053 1.5096
3.75 .0224 .1143 .2344 .3609 .4946 .6364 .7874 .9489 1.1226 1.3107 1.5157
3.80 .0225 .1148 .2355 .3625 .4968 .6391 .7907 .9529 1.1273 1.3160 1.5218
3.85 .0226 .1153 .2365 .3641 .4989 .6418 .7940 .9568 1.1319 1.3213 1.5279
3.90 .0227 .1158 .2375 .3656 .5010 .6445 .7973 .9607 1.1364 1.3266 1.5339
3.95 .0228 .. 1163 .2385 .3672 .5031 .6472 .8006 .9646 1.1410 1.3318 1.5399
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TABLE A-5. (CONTINUED)

VALUES OF LAMBDA FOR COHEN'S METHOD

Percentage 0 Non-detects

.01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

4.00 .0229 .1168 .2395 .3687 .5052 .6498 .8038 .9685 1.1455 1.3371 1.5458
4.05 .0230 .1173 .2405 .3702 .5072 .6525 .8070 .9723 1.1500 1.3423 1.5518
4.10 .0231 .1178 .2415 .3717 .5093 .6551 .8102 .9762 1.1545 1.3474 1.5577
4.15 .0232 .1183 .2425 .3732 .5113 .6577 .8134 .9800 1.1590 1.3526 1.5635
4.20 .0233 .1188 .2435 .3747 .5134 .6603 .8166 .9837 1.1634 1.3577 1.5693
4.25 .0234 .1193 .2444 .3762 .5154 .6629 .8198 .9875 1.1678 1.3627 1.5751
4.30 .0235 .1197 .2454 .3777 .5174 .6654 .8229 .9913 1.1722 1.3678 1.5809
4.35 .0236 .1202 .2464 .3792 .5194 .6680 .8260 .9950 1.1765 1.3728 1.5866
4.40 .0237 .1207 .2473 .3806 .5214 .6705 .8291 .9987 1.1809 1.3778 1.5924
4.45 .0238 .1212 .2483 .3821 .5234 .6730 .8322 1.0024 1.1852 1.3828 1.5980

4.50 .0239 .1216 .2492 .3836 .5253 .6755 .8353 1.0060 1.1895 1.3878 1.6037
4.55 .0240 .1221 .2502 .3850 .5273 .6780 .8384 1.0097 1.1937 1.3927 1.6093
4.60 .0241 .1225 .2511 .3864 .5292 .6805 .8414 1.0133 1.1980 1.3976 1.6149
4.65 .0241 .1230 .2521 .3879 .5312 .6830 .8445 1.0169 1.2022 1.4024 1.6205
4.70 .0242 .1235 .2530 .3893 .5331 .6855 .8475 1.0205 1.2064 1.4073 1.6260
4.75 .0243 .1239 .2539 .3907 .5350 .6879 .8505 1.0241 1.2106 1.4121 1.6315
4.80 .0244 .1244 .2548 .3921 .5370 .6903 .8535 1.0277 1.2148 1.4169 1.6370
4.85 .0245 .1248 .2558 .3935 .5389 .6928 .8564 1.0312 1.2189 1.4217 1.6425
4.90 .0246 .1253 .2567 .3949 .5407 .6952 .8594 1.0348 .. 1.2230 1.4265 1.6479
4.95 .0247 .1257 .2576 .3963 .5426 .6976 .8623 1.0383 1.2272 1.4312 1.6r

5.00 .0248 .1262 .2585 .3977 .5445 .7000 .8653 1.0418 1.2312 1.4359 1.
5.05 .0249 .1266 .2594 .3990 .5464 .7024 .8682 1.0452 1.2353 1.4406 1.(:>.......,.1
5.10 .0249 .1270 .2603 .4004 .5482 .7047 .8711 1.0487 1.2394 1.4453 1.6694
5.15 .0250 .1275 .2612 .4018 .5501 .7071 .8740 1.0521 1.2434 1.4500 1.6747
5.20 .0251 .1279 .2621 .4031 .5519 .7094 .8768 1.0556 1.2474 1.4546 1.6800
5.25 .0252 .1284 .2629 .4045 .5537 .7118 .8797 1.0590 1.2514 1.4592 1.6853
5.30 .0253 .1288 .2638 .4058 .5556 .7141 .8825 1.0624 1.2554 1.4638 1.6905
5.35 .0254 .1292 .2647 .4071 .5574 .7164 .8854 1.0658 1.2594 1.4684 1.6958
5.40 .0255 .1296 .2656 .4085 .5592 .7187 .8882 1.0691 1.2633 1.4729 1.7010
5.45 .0255 .1301 .2664 .4098 .5610 .7210 .8910 1.0725 1.2672 1.4775 1.7061

5.50 .0256 .1305 .2673 .4111 .5628 .7233 .8938 1.0758 1.2711 1.4820 1.7113
5.55 .0257 .1309 .2682 .4124 .5646 .7256 .8966 1.0792 1.2750 1.4865 1.7164
5.60 .0258 .1313 .2690 .4137 .5663 .7278 .8994 1.0825 1.2789 1.4910 1.7215
5.65 .0259 .1318 .2699 .4150 .5681 .7301 .9022 1.0858 1.2828 1.4954 1.7266
5.70 .0260 .1322 .2707 .4163 .5699 .7323 .9049 1.0891 1.2866 1.4999 1.7317
5.75 .0260 .1326 .2716 .4176 .5716 .7346 .9077 1.0924 1.2905 1.5043 1.7368
5.80 .0261 .1330 .2724 .4189 .5734 .7368 .9104 1.0956 1.2943 1.5087 1.7418
5.85 .0262 .1334 .2732 .4202 .5751 .7390 .9131 1.0989 1.2981 1.5131 1.7468
5.90 .0263 .1338 .2741 .4215 .5769 .7412 .9158 1.1021 1.3019 1.5175 1.7518
5.95 .0264 .1342 .2749 .4227 .5786 .7434 .9185 1.1053 1.3057 1.5218 1.7568
6.00 .0264 .1346 .2757 .4240 .5803 .7456 .9212 1.1085 1.3094 1.5262 1.76] 7
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TABLE A-6.

MINIMUM COVERAGE (BETA) OF 95% CONFIDENCE
-NON-PARAMETRIC UPPER TOLERANCE LIMITS

N ~(maximum) ~(2nd largest)

1 5.0
2 22.4 2.6
3 36.8 13.6
4 47.3 24.8
5 54.9 34.2
6 60.7 41.8
7 65.2 48.0
8 68.8 53.0
9 71.7 57.0

10 74.1 60.6

11 76.2 63.6
12 77.9 66.2
13 79.4 68.4
14 80.7 70.4
15 81.9 72.0
16 82.9 73.6
17 83.8 75.0
18 84.7 76.2
19 85.4 77.4
20 86.1 78.4

21 86.7 79.4
22 87.3 80.2
23 87.8 81.0
24 88.3 81.8
25 88.7 82.4
26 89.1 83.0
27 89.5 83.6
28 89.9 84.2
29 90.2 84.6
30 90.5 85.2

31 90.8 85.6
32 91.1 86.0
33 91.3 86.4
34 91.6 86.8
35 91.8 87.2
36 92.0 87.4
37 92.2 87.8
38 92.4 88.2
39 92.6 88.4
40 92.8 88.6

A-lJ



TABLE A-6. (CONTINUED)

MINIMUM COVERAGE (BETA) OF 95% CONFIDENCE
-NON-PARAMETRIC UPPER TOLERANCE LIMITS

N ~(maximum) p(2nd largest)

41 93.0 89.0
42 93.1 89.2
43 93.3 89.4
44 93.4 89.6
45 93.6 89.8
46 93.7 90.0
47 93.8 90.2
48 93.9 90.4
49 94.1 90.6
50 94.2 90.8

55 94.7 91.6
60 '95.1 92.4
65 95.5 93.0
70 95.8 93.4
75 96.1 93.8
80 96.3 94.2
85 96.5 94.6
90 96.7 94.8
95 96.9 95.0

100 97.0 95.4
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TABLE A-7.

CONFIDENCE LEVELS FOR NON-PARAMETRIC
-- PREDICTION LIMITS FOR N=l(l)lOO

NUMBER OF FUTURE SAMPLES

N k=l k=2 k=3 k=4 k=5 k=6 k=7 k=8

1 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1
2 66.7 50.0 40.0 33.3 28.6 25.0 22.2 20.0
3 75.0 60.0 50.0 42.9 37.5 33.3 30.0 27.3
4 80.0 66.7 57.1 50.0 44.4 40.0 36.4 33.3
5 83.3 71.4 62.5 55.6 50.0 45.5 41.7 38.5
6 85.7 75.0 66.7 60.0 54.5 50.0 46.2 42.9
7 87.5 77.8 70.0 63.6 58.3 53.8 50.0 46.7
8 88.9 80.0 72.7 66.7 61.5 57.1 53.3 50.0
9 90.0 81.8 75.0 69.2 64.3 60.0 56.3 52.9

10 90.9 83.3 76.9 71.4 66.7 62.5 58.8 55.6

11 91.7 84.6 78.6 73.3 68.8 64.7 61.1 57.9
12 92.3 85.7 80.0 75.0 70.6 66.7 63.2 60.0
13 92.9 86.7 81.3 76.5 72.2 68.4 65.0 61.9
14 93.3 87.5 82.4 77.8 73.7 70.0 66.7 63.6
15 93.8 88.2 83.3 78.9 75.0 71.4 68.2 65.2
16 94.1 88.9 84.2 80.0 76.2 72.7 69.6 66.7
17 94.4 89.5 85.0 81.0 77.3 73.9 70.8 68.0
18 94.7 90.0 85.7 81.8 78.3 75.0 72.0 69.2
19 95.0 90.5 86.4 82.6 79.2 76.0 73.1 70.4
20 95.2 90.9 87.0 83.3 80.0 76.9 74.1 71.4

21 95.5 91.3 87.5 84.0 80.8 77.8 75.0 72.4
22 95.7 91.7 88.0 84.6 81.5 78.6 75.9 73.3
23 95.8 92.0 88.5 85.2 82.1 79.3 76.7 74.2
24 96.0 92.3 88.9 85.7 82.8 80.0 77.4 75.0
25 96.2 92.6 89.3 86.2 83.3 80.6 78.1 75.8
26 96.3 92.9 89.7 86.7 83.9 81.3 78.8 76.5
27 96.4 93.1 90.0 87.1 84.4 81.8 79.4 77.1
28 96.6 93.3 90.3 87.5 84.8 82.4 80.0 77.8
29 96.7 93.5 90.6 87.9 85.3 82.9 80.6 78.4
30 96.8 93.8 90.9 88.2 85.7 83.3 81.1 78.9

31 96.9 93.9 91.2 88.6 86.1 83.8 81.6 79.5
32 97.0 94.1 91.4 88.9 86.5 84.2 82.1 80.0
33 97.1 94.3 91.7 89.2 86.8 84.6 82.5 80.5
34 97.1 ' 94.4 91.9 89.5 87.2 85.0 82.9 81.0
35 97.2 94.6 92.1 89.7 87.5 85.4 83.3 81.4
36 97.3 94.7 92.3 90.0 87.8 85.7 83.7 81.8
37 97.4 94.9 92.5 90.2 88.1 86.0 84.1 82.2
38 97.4 95.0 92.7 90.5 88.4 86.4 84.4 82.6
39 97.5 95.1 92.9 90.7 88.6 86.7 84.8 83.0
40 97.6 95.2 93.0 90.9 88.9 87.0 85.1 83.3
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TABLE A-7. (CONTINUED)

CONFIDENCE LEVELS FOR NON-PARAMETRIC
PREDICTION LIMITS FOR N=l(l)lOO

NUMBER OF FUTURE SAMPLES

N k=l k=2 k=3 k=4 k=5 k=6 k=7 k=8

41 97.6 95.3 93.2 91.1 89.1 87.2 85.4 83.7
42 97.7 95.5 93.3 91.3 89.4 87.5 85.7 84.0
43 97.7 95.6 93.5 91.5 89.6 87.8 86.0 84.3
44 97.8 95.7 93.6 91.7 89.8 88.0 86.3 84.6
45 97.8 95.7 - 93.8 91.8 90.0 88.2 86.5 84.9
46 97.9 95.8 93.9 92.0 90.2 88.5 86.8 85.2
47 97.9 95.9 94.0 92.2 90.4 88.7 87.0 85.5
48 98.0 96.0 94.1 92.3 90.6 88.9 87.3 85.7

- 49 98.0 96.1 94.2 92.5 90.7 89.1 87.5 86.0
50 98.0 96.2 94.3 92.6 90.9 89.3 87.7 86.2

51 98.1 96.2 94.4 92.7 91.1 89.5 87.9 86.4
52 98.1 96.3 94.5 92.9 91.2 89.7 88.1 86.7
53 98.1 96.4 94.6 93.0 91.4 89.8 88.3 86.9
54 98.2 96.4 94.7 93.1 91.5 90.0 88.5 87.1
55 98.2 96.5 94.8 93.2 91.7 90.2 88.7 87.3
56 98.2 96.6 94.9 93.3 91.8 90:3 88.9 87.5
57 98.3 96.6 95.0 93.4 91.9 90.5 89.1 87.7
58 98.3 96.7 95.1 93.5 92.1 90.6 89.2 87.9
59 98.3 96.7 95.2 93.7 92.2 90.8 89.4 88.1
60 98.4 96.8 95.2 93.8 92.3 90.9 89.6 88.2

61 98.4 96.8 95.3 93.8 92.4 91.0 89.7 88.4
62 98.4 96.9 95.4 93.9 92.5 91.2 89.9 88.6
63 98.4 96.9 95.5 94.0 92.6 91.3 90.0 88.7
64 98.5 97.0 95.5 94.1 92.8 91.4 90.1 88.9
65 98.5 97.0 95.6 94.2 92.9 91.5 90.3 89.0
66 98.5 97.1 95.7 94.3 93.0 91.7 90.4 89.2
67 98.5 97.1 95.7 94.4 93.1 91.8 90.5 89.3
68 98.6 97.1 95.8 94.4 93.2 91.9 90.7 89.5
69 98.6 97.2 95.8 94.5 ~3.2 92.0 90.8 89.6
70 98.6 97.2 95.9 94.6 93.3 92.1 90.9 89.7

71 98.6 97.3 95.9 94.7 93.4 92.2 91.0 89.9
72 98.6 97.3 96.0 94.7 93.5 92.3 91.1 90.0
73 98.6 97.3 96.1 94.8 93.6 92.4 91.3 90.1
74 98.7 97.4 96.1 94.9 93.7 92.5 91.4 90.2
75 98.7 97.4 96.2 94.9 93.8 92.6 91.5 90.4
76 98.7 97.4 96.2 95.0 93.8 92.7 91.6 90.5
77 98.7 97.5 96.3 95.1 93.9 92.8 91.7 90.6
78 98.7. 97.5 96.3 95.1 94.0 92.9 91.8 90.7
79 98.8· 97.5 96:3 95.2 94.0 92.9 91.9 90.8
80 98.8 97.6 96.4 95.2 94.1 93.0 92.0 90.9
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TABLE A-7. (CONTINUED)

CONFIDENCE LEVELS FOR NON-PARAMETRIC
PREDICTION LIMITS FOR N=l(l)lOO

NUMBER OF FUTURE SAMPLES

N k=l k=2 k=3 k=4 k=5 k=6 k=7 k=8

81 98.8 97.6 96.4 95.3 94.2 93.1 92.0 91.0
82 98.8 97.6 96.5 95.3 94.3 93.2 92.1 91.1
83 98.8 97.6 96.5 95.4 94.3 93.3 92.2 91.2
84 98.8 97.7 96.6 95.5 94.4 93.3 92.3 91.3
85 98.8 97.7 96.6 95.5 94.4 93.4 92.4 - 91.4
86 98.9 97.7 96.6 95.6 94.5 93.5 92.5 91.5
87 98.9 97.8 96.7 95.6 94.6 93.5 92.6 91.6
88 98.9 97.8" 96.7 95.7 94.6 93.6 92.6 91.7
89 98.9 97.8 96.7 95.7 94.7 93.7 92.7 91.8
90 98.9 97.8 96.8 95.7 94.7 93.8 92.8 91.8

91 98.9 97.8 96.8 95.8 94.8 93.8 92.9 91.9
92 98.9 97.9 96.8 95.8 94.8 93.9 92.9 92.0
93 98.9 97.9 96.9 95.9 94.9 93.9 93.0 92.1
94 98.9 97.9 96.9 95.9 94.9 94.0 93.1 92.2
95 99.0 97.9 96.9 96.0 95.0 94.1 93.1 92.2
96 99.0 98.0 97.0 96.0 95.0 94.1 93.2 92.3
97 99.0 98.0 97.0 96.0 95.1 94.2 93.3 92.4
98 99.0 98.0 97.0 96.1 95.1 94.2 93.3 92.5
99 99.0 98.0 97.1 96.1 95.2 94.3 93.4 92.5

100 99.0 98.0 97.1 96.2 95.2 94.3 93.5 92.6
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I. CONSTRUCTION OF POWER CURVES

To construct power curves for each of the parametric and non-parametric retesting strategies.

random standard Nonnal deviates were generated on an IBM mainframe computer using SAS. The

background level mean concentration was set to zero, while the alternative mean concentration level

was incremented in steps of .1=0.5 standardized units above the background level. At each increment,

5000 iterations of the retesting strategy were simulated; the proponion of iterations indicating

contamination at anyone of the wells in the downgradient monitoring network was designated as the

effective power of the retesting strategy (for that .1 and configuration of background samples and

monitoring wells).

Power values for the EPA Reference Power Curves were not simulated. but represent analytical

calculations based on the non-central t-distribution with non-centrality parameter.1. SAS programs for

simulating the effective power of any of the parametric or non-parametric retesting strategies are

presented below.

11**************************************************** ****************;

11*
1/*
11*
11*
11*
1/*
1/*
1/*
11*
1/*
11*
11*

DESCRIPTION: *** PARAMETRIC SIMULATIONS ***

This program produces power curves for 35 different curve
simulations (refer to the %LET statements below). Delta ranges
from 0 to 5 by 0.5. The variable list is as follows for the
input parameters:

BG Background
WL Well
TL Tolerance Limit
PL Prediction Limit

//********************************************************************;

II EXEC SAS
II OUTSAS DD DSN=XXXXXXX.GWT03000.SJA3092.CURVES,
II DISP=OLD
II SYSIN DD *

OPTIONS LS=132 PS=57;
%LET ISTART=l;
%LET CURVENUM=35;
%LET RSEED=2020;
%LET REPEAT=5000;
%LET ITPRINT=lOOO;

%LET BGl =24; %LET WLl =5; %LET TLl =0.95; %LET PLl =0.80;
%LET BG2 =24; %LET WL2 =5; %LET TL2 =0.95; %LET PL2 =0.85;
%LET BG3 =8; %LET WL3 -5; %LET TL3 =0.95; %LET PL3 -0.80;
%LET BG4 =8; %LET WL4 =5; %LET TL4 =0.95; %LET PL4 =0.85;
%LET BGs =24; %LET WL5 =20; %LET TLs =0.95; %LET PL5 =0.95;
%LET BG6 -24; %LET WL6 =20; %LET TL6 =0'.95; %LET PL6 =0.97;
%LET BG7 =8; %LET WL7 =20; %LET TL7 =0.95; %LET PL7 =0.95;
%LET BG8 =8; %LET WLB =20; %LET TLB =0.95; %LET PL8 =0.97;
%LET BG9 =24; %LET WL9 =50; %LET TL9 =0.95; %LET PL9 =0.98;
%LET BG10=24; %LET WL10=50; %LET TL10=0.95; %LET PL10=0.99;
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%LET BGll=24 ; %LET WLll=50; %LET TL11=0.99; %LET PLll=O. 90;
%LET BG12=24; %LET WL12=50; %LET TL12=0.99; %LET PL12=0.93;
%LET BG13=24; %LET WL13=50; %LET TL13=0.99; %LET PL13=0.94;
%LET BG14=24 ; %LET WL14=50; %LET TL14=O. 98; %LET PL14=0.95;
%LET BG15=24; %LET WL15=50; %LET TL15=0.98; %LET PL15==O.97;
%LET BG16=24; %LET WL16=100; %LET TL16=0.98; %LET PL16=O.97;
%LET BG17=24; %LET WL17=100; %LET TL17=0.98; %LET PL17==0.99;
%LET BG18=24; %LET WL18=100; %LET TL18=0.99; %LET PL18=O.95;
%LET BG19=24; %LET WL19=100; %LET TL19=0.99; %LET PL19=0.97;
%LET BG20=24;- %LET WL20=100; %LET TL20=0.99; %LET PL20=0.98;
%LET BG21=8; %LET WL21=20; %LET TL21=0.95; %LET PL21=0.98;
%LET BG22=8; %LET WL22=5; %LET TL22=0.95; %LET PL22=0.90;
%LET BG23-16; %LET WL23=5; %LET TL23=0.95; %LET PL23=0.85;
%LET BG24=16; %LET WL24=5; %LET TL24=0.95; %LET PL24=0.90;
%LET BG25=24; %LET WL25=5; %LET TL25=0.95; %LET PL25=0.90;
%LET BG26=16; %LET WL26=20; %LET TL26=0.95; %LET PL26=0.95;
%LET BG27=16; %LET WL27=20; %LET TL27=0.95; %LET PL27=0.97;
%LET BG28=16; %LET WL28=50; %LET TL28=0.98: %LET PL28=O.95;
%LET BG29=16; %LET WL29=50; %LET TL29=0.98: %LET PL29=0.97;
%LET BG30=16; %LET WL30=50; %LET TL30"0.99.: %LET PL30=0.90;
%LET 8G31=16; %LET WL31=50; %LET TL31=0.-99; %LET PL31=0.92;
%LET 8G32=24; %LET WL32=10O; %LET TL32=0.98; %LET PL32=0.98;
%LET 8G33=16; %LET WL33=100; %!JET TL33=0.98; %LET PL33=0.98;
%LET BG34=16; %LET WL34=100; %LET TL34=0.99; %LET PL34=0.95;
%LET BG35=16; %LET WL35=100; %LET TL35=0.99; %LET PL35=0.96;

%MACRO PARSIM;
DATA ITERATE;
*** Set changing simulation variable to common variable names;

BG=&&BG&I;
WL=&&WL&I;
TL=&&TL&1;
PL=&&PL&I;

DO DELTA=O TO 5 BY 0.5;
*** Initialize TPO , TP1 & TP2 to 0 before entering simulation;

TPO=O;
TPl=O;
TP2=0;

DO J=l TO &REPEAT;
*** Initialize CNTO, CNTl & CNT2 to 0;

CNTO=O;
CNT1=0;
CNT2=0;

XB=RANNOR(&RSEED)!SQRT(BG);
SB=SQRT(2*RANGAM(&RSEED , (BG-1) /2)! (BG-1»;

PL2=XB+SB*SQRT (1+1/BG) *TINV( (1- (I-PL) /2) I (BG-l»;
PL1=XB+SB*SQRT (1+1/BG) *TINV ( (1- (l-PL) ) I (BG-1) ) ;
PLO=XB+SB*SQRT (1+1/BG) *TINV ( (1- (l-TL) ) I (BG-1) ) ;
TLIM=XB+SB*SQRT(l+l!BG)*TINV«l-(l-TL», (BG-I»;

DO K=l TO WL;
IF K<WL THEN DO;
X1-RANNOR(&RSEED);
X2=RANNOR(&RSEED) ;
X3=RANNOR(&RSEED) ;
END;
ELSE DO;
X1=RANNOR(&RSEED)+DELTA;
X2=RANNOR(&RSEED)+DELTA;
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BG Background
WL Well

DESCRIPTION: *** NON-PARAMETRIC SIMULATION ***

This program produces power curves for 15 different curve
simulations (refer to the %LET statements below). Delta ranges
from 0 to 5 by 0.5. The variable list is as follows for the
input parameters:

X3=RANNOR(&RSEED)+DELTA;
END;
IF X1>TLIM THEN DO;
CNTO=CNTQj-~ ;
IF X2>PL1 THEN CNT1=CNT1+1;
IF X2>PL2 OR X3>PL2 THEN CNT2=CNT2+1;
END;

END;

IF CNTO>O THEN TPO=TPO+100/&REPEAT;
IF CNT1>0 THEN TP1=TP1+100/&REPEAT;
IF CNT2>O THEN TP2=TP2+100/&REPEAT;

*** Print iteration information every 100 iterations;
1=&1;
IF MOD (J, &ITPRINT) =0 THEN

PUT I »> CURVE I I' ITERATION I J I, I BG= I, I WL= I, I TL= I

PL= I I DELTA= I I TPO= I I TP 1= I I TP2= I «< ';
END;
OUTPUT;
END;
RUN;

DATA OUTSAS.PCURVE&I; SET ITERATE (KEEP=BG WL TL PL TPO TP1 TP2 DELTA);
RUN;

PROC PRINT DATA=OUTSAS.PCURVE&I;
FORMAT TPO TP1 TP2 8.4;
TITLE1"TEST PRINT OF PARAMETRIC SIMULATION PCURVE&I";
TITLE2"NUMBER OF ITERATIONS = &REPEAT";

RUN;

%MEND PARS 1M;
%MACRO CURVE;

%DO I=&ISTART %TO &CURVENUM;
%PARSIM

%END;
%MEND CURVE;

%CURVE

11**************************************************** ****************;
1/*
11*
11*
11*
//*
1/*
1/*
1/*
//*
11*
11**************************************************** ****************;
II EXEC SAS
II OUTSAS DD DSN=XXXXXXX.GWT03000.SJA3092.CURVES,DISP=OLD
II SYSIN DD *

OPTIONS L5=132 PS=57;
%LET ISTART=l;
%LET CURVENUM=15;
%LET RSEED=3030;
%LET REPEAT=5000;
%LET ITPRINT=1000;
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%LET BG1 =8:
%LET BG2 =16:
%LET BG3 =24:
%LET BG4 =8:
%LET BG5 =16:
%LET BG6 =24;
%LET BG7 =8;
%LET BG8 =16;
%LET BG9 =24;
%LET BG10=8;
%LET BGl1=16;
%LET BG12""24:
%LET BG13=32;
%LET BG14=32;
%LET BG15=32;

%LET WL1 =5;
%LET WL2 =5;
%LET WL3 =5;
%LET WL4 =20;
%LET WLS =20;
%LET WL6 =20:
%LET WL 7 =50:
%LET WL8 =50:
%LET WL9 =50:
%LET WL10=100;
%LET WLll=lOO;
%LET WL12=100;
%LET WL13=100:
%LET WL14=20:
%LET WL15=50:

%MACRO NPARSIM;
DATA ITERATE;

*** Set changing simulation variable to common variable names;
BG=&&BG&I:
WL=&&WL&I;

DO DELTA=O TO 5 BY 0.5;
*** Initialize PLx variables to 0 before entering simulation:
PLO=O;
PL1=0;
PL2A=0;
PL2B=0:
PL3A=O:
PL3B=O:

DO J=1 TO &REPEAT:
*** Initialize CNTx variables to 0;
CNTO=O;
CNT1=O;
CNT2=0;
CNT3=O:
CNT4=O:
CNT5=O;

DO K=l TO BG;
TEST=RANNOR(&RSEED);
IF K=l THEN MAX=TEST;

ELSE IF TEST>MAX THEN MAX=TEST;
END:

DO L=l TO WL;
IF L<WL THEN DO;
Xl=RANNOR(&RSEED):
X2=RANNOR(&RSEED) :
X3=RANNOR(&RSEED) :
X4=RANNOR(&RSEED) :
END;
ELSE DO;
Xl=RANNOR(&RSEED)+DELTA:
X2=RANNOR(&RSEED)+DELTA:
X3=RANNOR(&RSEED)+DELTA;
X4=RANNOR(&RSEED)+DELTA;

END;
IF Xl>MAX THEN DO;

CNTO=CNTO+l:
IF X2>MAX THEN CNTI-CNT1+l;
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IF X2>MAX & X3>MAX THEN CNT2=CNT2+1;
IF X2>MAX OR X3>MAX THEN CNT3=CNT3+1;
IF X2>MAX & x3>MAX & X4>MAX THEN CNT4=CNT4+1;
IF X2>MAX__OR X3>MAx OR X4>MAX THEN CNT5=CNT5+1;

END;

IF CNTO>O THEN PLO=PLO+100/&REPEAT;
IF CNT1>O THEN PL1=PL1+100/&REPEAT;
IF CNT2>O THEN PL2A=PLZA+100/&REPEAT;
IF CNT3>O THEN PL2B=PL2B+100/&REPEAT;
IF CNT4>O THEN PL3A=PL3A+100/&REPEAT;
IF CNT5>O THEN PL3B=PL3B+100/&REPEAT;

*** Print iteration information every X iterations;
I=&I;
IF MOD (J,&ITPRINT)=O THEN

. PUT '»> CURVE I I I, ITERATION I J I I BG= " I

I PLO= I I PL1= I I PL2A=' I PL2B= ,
END;
OUTPUT;
END;
RUN;

WL= I, I DELTA= _
I PL3A= I, I PL3B= '«<' ;

DATA OUTSAS.NCURVE&I; SET ITERATE(KEEP=BG WL PLO PLl PLZA PL2B PL3A PL3B DELTA);
RUN;

PROC PRINT DATA=OUTSAS.NCURVE&I;
FORMAT PLO PLl PL2A PLZB PL3A PL3B 8.4;
TITLE1"TEST PRINT OF NON-PARAMETRIC SIMULATION NCURVE&I";
TITLEZ"NUMBER OF ITERATIONS = &REPEAT";

RUN;

%MEND NP ARS 1M;
%MACRO CURVE;

%DO I=&ISTART %TO &CURVENUM;
%NPARSIM

%END;
%MEND CURVE;

%CURVE
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II. PARAMETRIC RETESTING STRATEGIES

POWER CURVE FOR 95% TOLERANCE
AND 90% PREDICTION LIMIT

(8 Background Samples; 5 wells)
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POWER CURVE FOR 95% TOLERANCE
AND 85 % PREDICTION LIMIT

(16 Background Samples; 5 wells)
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* Zero resamples

0 One resample

A Two resamples
5

Ii (lJl',lTS ABOVE BACKGROUND)

POWER CURVE FOR 95% TOLERANCE
AND 85 % PREDICTION LIMIT
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POWER CURVE FOR 95% TOLERANCE

AND 90% PREDICTION LIMIT

(24 Background Samples; Swells)
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~ (U!'lTS ABOVE BACKGROUND)
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POWER CURVE FOR 95% TOLERANCE
AND 97% PREDICTION LIMIT

(16 Background Samples; 20 wells)

• EPA Reference

* Zero resamples

0 One resample

t::. Two resamples
4 5

I!. (UNITS ABOVE BACKGROUJIID)

POWER CURVE FOR 95% TOLERANCE
AND 97% PREDICTION LIMIT

(24 Background Samples; 20 wells)

•. EPA Reference

* Zero resamples

o One resample

t::. Two resamples

I!. (UNITS ABOVE BACKGROUJIID)

B-lO



POWER CURVE FOR 98% TOLERANCE
AND 97 % PREDICTION LIMIT

(16 Background Samples; SO wells)
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POWER CURVE FOR 98% TOLERANCE
AND 95% PREDICTION LIMIT

(24 Background Samples; SO wells)
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0 One resample

6. Two resamples
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AND 90 % PREDICTION LIMIT
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POWER CURVE FOR 98% TOLERANCE
AND 97% PREDICTION LIMIT

(24 Background Samples; 50 wells)
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POWER CURVE FOR 98% TOLERANCE
AND 98 % PREDICTION LIMIT

(16 Background Samples; 100 wells)
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POWER CURVE FOR 98% TOLERANCE

AND 98 % PREDICTION LIMIT

(24 Background Samples; 100 wells)
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III. NON·PARAMETRIC RETESTING STRATEGIES

POWER CURVE FOR NON.PARAMETRIC
PREDICTION LIMITS

(8 Background Samples; 5 wells)

• EPA Reference

o Zero resamples

t:::.. One resample

6. (lJ1'lTS ABOVE BACKGROUND)
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6. (UNITS ABOVE BACKGROUND)

B-16



(8 Background Samples; 5 wells)

• EPA Reference

~ Three resamples (A)

o Three resamples (B)

Do (UNITS ABOVE BACKGROUND)

POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIM1TS

(16 Background Samples; 5 wells)
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o Zero resamples

~ One resample

Do (UNITS ABOVE BACKGROUND)

B-17



(16 Background Samples; 5 wells)
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A Two resamples (Al
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/J. (UNITS ABOVE BACKGROUND)
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POWER CURVE FOR NON·PARAMETRIC

PREDICTION LThlITS

(24 Background Samples; 5 wells)

• EPA Reference

o Zero resamples

6 One resample

t>. (t!l'lTS ABOVE B....CKGROUSD)

(24 Background Samples; 5 wells)
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6 Two resamples (A)

o Two resamples (B)

t>. (UNITS ABOVE B....CKGROUND)
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(24 Background Samples; 5 wells)
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(8 Background Samples; 20 wells)
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POWER CURVE FOR NON·PARAMETRIC
PREDICTION LIMITS

(16 Background Samples; 20 wells)

• EPA Reference

o Zero resamples

~ One resample

to (UNITS ABOVE BACKGROUND)

(16 Background Samples; 20 wells)

• EPA Reference

~ Two resamples (A)

o Two resamples (B)

to (UNITS ABOVE BACKGROUND)
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(16 Background Samples; 20 wells)

• EPA Reference

A Three resamples (A)

o Three resamp'es (B)

o 2 3 4

Ii (l:NITS ABOVE BACKGROUND)

POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

(24 Background Samples; 20 wells)
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A One resample

o 2 3 4 5

!> (UNITS ABOVE BACKGROUND)
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CZ4 Background Samples; 20 wells)

4 (UNITS ABOVE BACKGROUND)

(24 Background Samples; 20 wells)

4 (UNITS ABOVE BACKGROUND)
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l::. Three resamples (A)

o Three resamples (B)



POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

(32 Background Samples; 20 wells)
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o Zero resamples

6. One resample

b. (UNITS ABOVE BACKGROUND)

(32 Background Samples; 20 wells)

• 3

b. (UNITS ABOVE BACKGROUND)
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(32 Background Samples; 20 wells)
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(8 Background Samples; SO wells)
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~ Two resamples (A)

o Two resamples (B)
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l!. (UNITS ABOVE BACKGROUl"D)
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• EPA Reference
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o Three resamples (B)
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B-27



POWER CURVE FOR NON·PARAMETRIC
PREDICTION LIMITS

(16 Background Samples; SO wells)

• EPA Reference

o Zero resamples

.6. One resample

• 2 J 4 5

4 (UNITS ABOVE BACKGROUND)

(16 Background Samples; SO wells)

b. (Ul'.'ITS ABOVE BACKGROUND)
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(16 Background Samples; SO wells)
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.1 (U!\'ITS ABOVE BACKGROUND)

POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS
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(24 Background Samples; 50 wells)

d (UNITS ABOVE BACKGROUND)
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POWER CURVE FOR NON·PARAMETRIC
PREDICTION LIMITS

(32 Background Samples; 50 wells)
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(32 Bac:kground Samples; SO wells)
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A Three resamples (A)

o Three resamples (B)

o 2 3 4 5

A (L'NITS ABOVE BACKGROUND)

POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

(8 Bac:kground Samples; 100 wells)
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(8 Background Samples; 100 wells)

• EPA Reference

~ Two resamples (A)
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POWER CURVE FOR NON-PARAMETRIC

PREDICTION LIMITS

(16 Background Samples; 100 wells)

• EPA Reference

o Zero resamples

A One resample

6 (UNITS ABOVE BACKGROUND)
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A Two resamples (A)

o Two resamples (B)

• 2 3 5

6 (UJI.'ITS ABOVE BACKGROUND)
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(16 Background Samples; 100 wells)
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l::. Three resamples (A)

o Three resamples (B)
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6 (UNITS ABOVE BACKGROUND)
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POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

(32 Background Samples; 100 wells)
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(32 Background Samples; 100 wells)
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