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DISCLAIMER

This document {s intended to assist Regional and State personnel in
evaluating ground-water monitoring data from RCRA facilities. Conformance
with this guidance is expected to result in statistical methods and sampliing
procedures that meet the regulatory standard of protecting human health and
the enviromment. However, EPA will not in a1l cases 1imit its approval of
statistical methods and sampling procedures to those that comport with the
guidance set forth herein. This guidance is not a regulation (i.es, 1t does
not establish a standard of coriduct which has the force of law) and should not
be used as such. Regional and State personnel should exercise their discre-
tion 1n using this guidance document as well as other relevant information in
choosing a statistical method and sampling procedure that meet the regulatory
requirements for evaluating ground-water monitoring data from RCRA facilities.

This document has been reviewed by the Office of Solid Waste, U.S. Envi-
rommental Protection Agency, Washington, D.C., and approved for publication.
Approval does not signify that the contents necessarily reflect the views and
policies of the U.S. Envirommental Protection Agency, nor does mention of
trade names, commercial products, or publications constitute endorsement or
recommendation for use.
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PREFACE

This guidance document has been developed primarily .for evaluating
ground-water monitoring data at RCRA (Resource Conservation and Recovery Act)
facilities. The statistical methodologies described in this document can be
applied to both hazardous (Subtitle C of RCRA) and municipal (Subtitle D of
RCRA) waste land disposal facilities.

The recently amended regulations concerning the statistical amalysis of
und-water monitoring data at RCRA facilities (53 FR 39720: October 11,
g;ga), provide a wide varfety of statistical methods that may be used to
evaluate ground-water quality. To the experienced and inexperienced water
quality professional, the choice of which test to use under 2 particular set
of conditions may not be apparent. The reader {s referred to Section 4 of
this guidance, "Choosing a Statistical Method," for assistance in choosing an
appropriate statistical test. For relatively new facilities that have only
Jimited amounts of ground-water monitoring data, it 1s recommended that a form
of hypothesis test (e.g., parametric analysis of variance) be employed to
evaluate the data. Once sufficient data are avaflable (after 12 to 24 months
or eight background samples), another method of analysis such as the control
chart methodology described in Section 7 of the guidance is recommended. Each
method of analysis and the conditions under which they will be used can be
written in the facility permit. This will eliminate the need for a permit
modification each time more {nformation about the hydrogeochemistry is
collected, and more appropriate methods of data analysis become apparent.

This guidance was written primarily for the statistical analysis of
ground-water monitoring data at RCRA facilities. The guidance has wider
applications however, if one examines the spatial relationships {nvolved
between the monitoring wells and the potenttal contaminant source. For
example, Section 5§ of the guidance describes background well (upgradient) vs.
compliance well (downgradient) comparisons. This scenario can be applfed to
other non-RCRA situations involving the same spatial relationships and the
same null hypothesis. The explicit mull hypothesis (H.) for testing contrasts
between means, or where appropriate between medians, 12 that the means between
groups (here monitoring wells) are equal (1.e., no release has been detected),
or that the group means are below a prescribed action level (e.g., the ground-
water protection standard). Statistical methods that can be used to evaluate
these conditions are described in Section 5.2 (Analysis of Variance), 5.3
(Tolerance Intervals), and 5.4 (Prediction Intervals).

A different situation exists when compliance wells (downgradient) are
compared to a fixed standard (e.g., the ground-water protection standard). In
that case, Section 6 of the guidance should be consulted. The value to which
the constituent concentrations at compliance wells are compared can be any
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standard established by a Regional Administrator, State or county health
official, or another appropriate official.

A note of caution applies to Section 6. The examples used in Section 6
are used to determine whether ground water has been contaminated as a result
of a release from a facility. When the lower confidence limit is exceeded,
further action or assessment may be warranted. If one wishes to determine
whether a cleanup standard has been attained for a Superfund site or a RCRA
facility 1in corrective action, another EPA guidance document entitled,
"Statistical Methods for the Attaimment of Superfund Cleanup Standards
(Volume 2: Ground Water--Draft), should be consulted. This draft Superfund
guidance is a multivolume set that addresses questions regarding the success
of air, ground-water, and soil remediation efforts. Information about the
availability of this draft guidance, currently being developed, can be
obtained by calling the RCRA/Superfund Hotline, telephone (800) 424-9346 or
(202) 382-3000.

Those interested in evaluating individual uncontaminated wells or in an
intrawell comparison are referred to Section 7 of the guidance which describes
the use of Shewhart-CUSUM control charts and trend analysis. Municipal water
supply engineers, for example, who wish to monitor water quality parameters in
supply wells, may find this section useful.

Other sections of this guidance have wide applications in the field of
applied statistics, regardless of the intended use or purpose. Section 4.2
and 4.3 provide information on checking distributional assumptions and
equality of variance, while Sections 8.1 and 8.2 cover limit of detection
problems and outliers. Helpful advice and references for many experiments
involving the use of statistics can be found in these sections.

Finally, it should be noted that this guidance is not intended to be the
final chapter on the statistical analysis of ground-water monitoring data, nor
should 1t be used as such. 40 CFR Part 264 Subpart F offers an alternative
[§264.97(h)(5)] to the methods suggested and described {in this guidance
document. I[n fact, the guidance recommends a procedure (confidence intervals)
for comparing monitoring data to a fixed standard that is not mentioned in the
Subpart F regulations. This {s neither contradictory nor inconsistent, but
rather epitomizes the complexities of the subject matter and exemplifies the
need for flexibility due to the site-specific monitoring requirements of the
RCRA program.
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EXECUTIVE SUMMARY

The hazardous waste regulations under the Resource
Conservation and Recovery Act (RCRA) require owners and operators
of hazardous waste facilities to utilize design features and
control measures that prevent the release of hazardous waste into
ground water. Further, regulated units (i.e., all surface
impoundments, waste piles, land treatment'units, and landfills
that receive hazardous waste after July 26, 1982) are also
subject to the ground-water monitoring and corrective action
standards of 40 CFR Part 264, Subpart F. These regulations
require that a statistical method and sampling procedure approved
by EPA be used to determine whether there are releases from
regulated units into ground water.

This document provides guidance to RCRA Facility permit
applicants and writers concerning the statistical analysis of
ground-water monitoring data at RCRA facilities. Section 1 is an
introduction to the guidance; it describes the purpose and intent
of the document, and emphasizes the need for site-specific
considerations in implementing the Subpart F regulations of 40
CFR Part 264. : :

Section 2 provides the reader with an overview of the
recently promulgated regqulations concerning the statistical
analysis of ground-water monitoring data (53 FR 39720: October
11, 1988). The requirements of the regulation are reviewed, and
the need to consider site specific factors in evaluating data at
a hazardous waste facility is emphasized.

Section 3 discusses the important hydrogeologic parameters to
consider when choosing a sampling interval. The Darcy equation
is used to determine the horizontal component of the average
linear velocity of ground water. This parameter provides a good
estimate of time of travel for most soluble constituents in
ground water, and may be used to determine a sampling interval.
Example calculations are provided at the end of the section to
further assist the reader.

Section 4 provides guidance on choosing an appropriate
statistical method. A flowchart to guide the reader through this
section, as well as procedures to test the distributional
assumptions of data are presented. Pinally, this section
outiines procedures to test specifically for equality of
variance.
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Section 5 covers statistical methods that may be used to
evaluate ground-water monitoring data when background wells have
been sited hydraulically upgradient from the regulated unit, and
a second set of wells are sited hydraulically downgradient from
the regulated unit at the point of compliance. The data from
these compliance wells are compared to data from the background
wells to determine whether a release from a facility has
occurred. Parametric and nonparametric analysis of variance,
tolerance intervals, and prediction intervals are suggested
methods for this type of comparison. Flowcharts, procedures and
example calculations are given for each testing method.

Section 6 includes statistical procedures that are
appropriate when comparing ground-water constituent
concentrations to fixed concentration limits (e.g., alternate
concentration limits or maximum concentration limits). The
methods applicable to this type of comparison are confidence
intervals and tolerance intervals. As in section 5, flowcharts,
procedures, and examples explain the calculations necessary for
each testing method.

Section 7 presents the case where the level of each
constituent within a single, uncontaminated well is being
compared to its historic background concentrations. This is
known as an intra-well comparison. In essence, the data for each
constituent in each well are plotted on a time scale and
inspected for obvious features such as trends or sudden changes
in concentration levels. The method suggcstod in this section is
a combined Shewhart-CUSUM control chart. .

Section 8 contains a variety of special topics that are
relatively short and self contained. These topics include
methods to deal with data that is below the limit of analytical
detection and methods to test for outliers or extreme values in
the data.

Finally, the guidance presents appendices that cover general
statistical considerations, a glossary of statistical terms,
statistical tables, and a listing of references. These
appendices provide necessary and ancillary information to aid the
user in evaluating ground-water monitoring data.
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SECTION 1
INTRODUCTION

The U.S. Environmental Protection Agency (EPA) promulgated regulations
for detecting contamination of ground water at hazardous waste land disposal
facilities under the Resource Conservation and Recovery Act (RCRA) of 1976.
The statistical procedures specified for use to evaluate the presence of con-
tamination have been criticized and require improvement. Therefore, EPA has
revised those statistical procedures in 40 CFR Part 264, "Statistical Methods
for Evaluating Ground-Water Monitoring Data From Hazardous Waste Facilities.”

In 40 CFR Part 264, EPA has recently amended the Subpart F regulations
with statistical methods and sampling procedures that are appropriate for
evaluating ground-water monitoring data under a variety of situations (53 fR
39720: October 11, 1988). The purpose of this document is to provide guidance
in determining which situation applies and consequently which statistical
procedure may be used. In addition to providing guidance on selection of an
appropriate statistical procedure, this document provides {nstructions on
carrying out the procedure and inferpreting the results.

The regulations provide three levels of wmonitoring for a regulated
unit: detection monitoring; compl{iance lnn1tbr1ng: and corrective action.
The regulations define conditions for a regulated unit to be changed from one
Tevel of monitoring to a more stringent level of monitoring (e.g., from detec-
tion monitoring to compifance monitoring). These conditions are that there is
:§§§1st1ca11y significant evidence of contamination [40 CFR §264.91(a)(l) and

The regulations allow the benefit of the doubt to reside with the current
stage of monitoring. That is, a unit will remain in its current monitoring
stage unless there is convincing evidence to change it. This means that a
unit will not be changed from detection monitoring to compliance monitoring
(or from compliance monitoring to corrective action) unless there {is statisti-
cally significant evidence of contamination (or contamination above the com-
pliance limit).

The main purpose of this document is to guide owners, operators, Regtonal
Administrators, State Directors, and other interested parties in the selec-
tion, use, and interpretation of appropriate statistical methods for monitor-
ing the ground water at each specific regulated unit. Topics to be covered
include sampling needed, sample sizes, selection of appropriate statistical
design, matching analysis of data to design, and interpretation of results.
Specific recommended methods are detailed and a general discussion of evalu-
ation of alternate methods is provided. Statistical concepts are discussed in
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Appendix A. References for suggested procedures are provided 3s well as
references to alternate procedures and general statistics texts. rSituations
calling for external consultation are mentioned as well as sources for obtain-
ing expert assistance when needed.

EPA would 1ike to emphasize the need for site-specific considerations in
implementing the Subpart F regulations of 40 CFR Part 264 (especially as
amended, 53 FR 39720: October 11, 1988). It has been an ongoing strategy to
promuigate regulations that are specific enough to implement, yet flexible
enough to accommodate a wide variety of site-specific enviromnmental factors.
This 1s usually achieved by specifying criteria that are appropriate for the
majority of wmonitoring situations, while at the same time allowing alterna-
tives that are also protective of human health and the environment. This
philosophy 1s maintained in the recently promuigated amendments entitled,
sStatistical Methods for Evaluating Ground-Water Monitoring Data From Haz-
ardous Waste Facilities" (53 FR 39720: October 11, 1988). The sections that
allow for the use of an alternate sampling procedure and statistical method
[§264.97(g)(2) and §264.97(h)(S), respectively] are as viable as those that
are explicitly referenced [§264.97(g)(1l) and §264.97(h)(1-4)], provided they
meet the performance standards of §264.97(1). Due consideration to this
should be given when preparing and reviewing Part B permits and permit
applications.



SECTION 2
REGULATORY OVERVIEW

In 1982, EPA promulgated ground-water monitoring and response standards
for permitted factilities 1n Subpart F of 40 CFR Part 264, for detecting
releases of hazardous wastes into ground water from storage, treatment, and
disposal units, at permitted facilities (47 FR 32274: July 26, 1982).

The Subpart F regulations required ground-water data to be examined by
Cochran's Approximation to the Behrens-Fisher Student's t-test (CABF) to
determine whether there was & significant exceedance of background levels, or
other allowable levels, of specified chemical parameters and hazardous waste
constituents. One concern was that this procedure could result in a high rate
of “false positives” (Type I error), thus requiring an owner or operator
unnecessarily to advance into & more comprehensive and expensive phase of
monitoring. More importantly, another concern was that the procedure could
result in a high rate of "faise negatives®" (Type II error), 1.e., instances
where actual contamination would go undetected.

As a result of these concerns, EPA amended the CABF procedure with five
different statistical methods that are more appropriate for ground-water moni-
toring (53 FR 39720: October 11, 1988). These amendments also outline sam-
pling procedures and performance standards that are designed to help minimize
the event that a statistical method will indicate contamination when it is not
present (Type I error), and fail to detect contamination when it is present
(Type II error).

2.1 BACKGROUND

Subtitie C of the Resource Conservation Recovery Act of 1976 (RCRA) cre-
ates a comprehensive program for the safe management of hazardous waste. Sec-
tion 3004 of RCRA requires owners and operators of facilities that treat,
store, or dispose of hazardous waste to comply with standards established by
EPA that ars °“necessary to protect human health and the envirorment.® Sec-
tion 3005 provides for implementation of these standards under permits {ssued
to owners and operators by EPA or authorized States. Section 3005 also pro-
vides that owners and operators of existing facilities that apply for a permit
and comply with applicable notice requirements may operate until a permit
determination 1s made. These facilities are commonly known as “interim
status® facilities. Owners and operators of {interim status facilities also
must comply with standards set under Section 3004.
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EPA promulgated ground-water monitoring and response standards for per-
mitted facilities in 1982 (47 FR 32274, July 26, 1982), codified in 40 CFR
Part 264, Subpart F. These standards establish programs for protecting ground
water from releases of hazardous wastes from treatment, storage, and disposal
units. Facility owners and operators were required to sample ground water at
specified intervals and to use a statistical procedure to determine whether or
not hazardous wastes or constituents from the facility are contaminating
ground water. As explained in more detail below, the Subpart F regulations
regarding statistical methods used in evaluating ground-water monitoring data
that EPA promulgated in 1982 have generated criticism.

The Part 264 regulations prior to the October 11, 1988 amendments pro-
vided that the Cochran's Approximation to the Behrens-Fisher Student's t-test
(CABF) or an alternate statistical procedure approved by EPA be used to deter-
mine whether there {is a statistically significant exceedance of background
levels, or other allowable levels, of specified chemical parameters and haz-
ardous waste constituents. Although the regulations have always provided
latitude for the use of an alternate statistical procedure, concerns were
raised that the CABF statistical procedure in the regulations was not appro-
priate. It was pointed out that: (1) the replicate sampling method is not
appropriate for the CABF procedure, (2) the CABF procedure does not adequately
consider the number of comparisons that must be made, and (3) the CABF does
not control for seasonal variation. Specifically, the concerns were that the
CABF procedure could result in "false positives® (Type I error), thus requir-
ing an owner or operator unnecessarily to collect additional ground-water
samples, to further characterize ground-water quality, and to apply for a
permit modification, which is then subject to EPA review. In addition, there
was concern that CABF may result in “false negatives® (Type Il error), i.e.,
instances where actual contamination goes undetected. This could occur
because the background data, which are often used as the basis of the
statistical comparisons, are highly variable due to temporal, spatial,
analytical, and sampling effects.

As a result of these concerns, on October 11, 1988 EPA amended both the
statistical methods and the sampliing procedures of the regulations, by requir-
ing (if necessary) that owners or operators more accurately characterize the
hydrogeology and potential contaminants at the facility, and by including in
the regulations performance standards that all the statistical methods and
sampling procedures must meet. Statistical methods and sampling procedures
wmeeting these performance standards would have a low probability of indicating
contamination when it is not present, and of failing to detect contamination
that actually s present. The facility owner or operator would have to demon-
strate that a procedure {s appropriate for the site-specific conditions at the
facility, and to ensure that 1t meets the performance standards outlined
below. This demonstration holds for any of the statistical methods and sam-
pling procedures outliined in this regulation as well as any al®ernate methods
or procedures proposed by facility owners and operators.

EPA recognizes that the selection of appropriate monitoring parameters is
also an essential part of a relfable statistical evaluation. The Agency
addressed tt;is i{ssue in a previous Federal Register notice (52 FR 25942,
July 9, 1987).
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2.2 OQVERVIEW OF METHODOLOGY :
EPA has elected to retain the idea of general performance requirements
that the regulated community must meet. This approach allows for flexibility
in designing statistical methods and sampling procedures to site-specific
considerations. -

EPA has tried to bring a measure of certainty to these methods, while
accommodating the unique nature of many of the regulated units in question.
Consistent with this general strategy, the Agency {is establishing several
options for the sampling procedures and statistical methods to be used in
detection monitoring and, where appropriate, in compliance monitoring.

The owner or operator shall submit, for each of the chemical parameters
and hazardous constituents listed in the facility permit, one or more of the
statistical methods and sampling procedures described in the regulations
promulgated on October 11, 1988. In deciding which statistical test is
appropriate, he or she will consider the theoretical properties of the test,
the data available, the site hydrogeology, and the fate and transport charac-
teristics of potential contaminants at the facility. The Regional Administra-
tor will review, and 1f a&ppropriate, approve the proposed statistical methods
and sampling procedures when issuing the facility permit.

The Agency recognizes that there may be situations where any one statis-
tical test may not be appropriate. This is true of new facilities with 1ittle
or no ground-water monitoring data. If insufficient data prohibit the owner
or operator from specifying a statistical method of analysis, then contingency
plans containing several methods of data analysis and the conditions under
which the method can be used will be specified by the Regional Administrator
in the permit. In many cases, the parametric ANOVA can be performed aftér six
months of data have been collected. This will eliminate the need for a permit
modification in the event that data collected during future sampling and
analysis events indicate the need to change to a more appropriate statistical
method of analysis.

2.3 GENERAL PERFORMANCE STANDARDS

EPA's basic concern in establishing these performance standards for sta-
tistical methods 1s to achieve a proper balance between the risk that the pro-
cedures will falsely indicate that a regulated unit s causing background
vajues or concentration limits to be exceeded (false positives) and the risk
that the procedures will fail to indicate that background values or concen-
tration limits are being exceeded (false negatives). EPA's approach is
designed to address that concern directly. Thus any statistical method or
sampling procedure, whether specified here or as an alternative to those
specified, should meet the following performance standards contained in
40 CFR §264.97(1):

1. The statistical test is to be conducted separately for each haz-
ardous constituent in each well [under §264.97(g)]. If the dis-
tribution of the chemical parameters or constituents is shown by the
owner or operator to be inappropriate for & normal theory test, then
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3.

the data should be transformed or a distribution-free theory test
should be used. If the distributfons for the constituents differ,
more than one statistical method may be needed.

If an individual well comparison procedure 1s used to compare an
{ndividual compliance well constituent concentration with background
constituent concentrations or a ground-water protection standard,
the test shall be done at a Type I error level of no less than 0.01
for each testing period. If a multiple comparisons procedure is
used, the Type I experimentwise error rate shall be no less than
0.05 for each testing period; however, the Type I error of no less
than 0.01 for individual well comparisons must be maintained. This
performance standard does not apply to control charts, tolerance
intervals, or prediction intervals unless they are modeled after
?ypo%hes1s testing procedures that {nvolve setting significance
evels. -

If a control chart approach is used to evaluate ground-water moni-
toring data, the specific type of control chart and its associated
parameters shall be proposed by the owner or operator and approved
by the Regional Administrator if he or she finds it to be protective
of human health and the enviromment.

If a tolerance interval or a prediction interval is used to evaluate
ground-water monitoring data, then the levels of confidence shall be
proposed; in addition, for tolerance intervals. the proportion of
the population that the interval must contain (with the proposed
confidence) shall be proposed by the owner or operator and approved
by the Regional Administrator if he or she finds these parameters to

_ be protective of human health and the envirorment. These parameters

will be determined after considering the rumber of samples in the
background data base, the distribution of the data, and the range of
the concentration values for each constituent of concern.

The statistical method will include procedures for handling data
below the limit of detection with one or more procedures that are
protective of human healtn and the enviromment. Any practical quan-
titation limit (PQL) approved by the Regional Administrator under
§264.97(h) that 1s used in the statistical method shall be the low-
est concentration level that can be reliably achieved within speci-
fied limits of precision and accuracy during routine laboratory
operating conditions available to the facility.

If necessary, the statistical method shall include procedures to
control or correct for seasonal and spatial variability as well as
temporal correlation in the data.

In referring to “statistical methods," EPA means to emphasize that the
concept of “"statistical significance" must be reflected in several aspects of
the monitoring program. This involves not only the choice of a level of sig-
nificance, but also the choice of a statistical test, the sampiing require-
ments, the number of samples, and the frequency of sampling. Since all of
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these parameters interact to determine the ability of the procedure to detect
contamination, the statistical methods, 1ike a comprehensive ground-water
monitoring program, must be evaiuated in their entirety, mot by {individual
components. Thus a systems approach to ground-water monitoring {s endorsed.

The second performance standard requires further comment. Ffor individual
well comparisons in which an individual compliance well is compared to back-
ground, the Type I error level shall be no less than 1% (0.01) for each test-
ing period. In other words, the probability of the test resulting in a false
positive is no less than 1 in 100. EPA believes that this significance level
is sufficient in 1imiting the false positive rate while at the same time con-
trolling the false negative (missed detection) rate.

Owners -and operators of facilities that have an extensive network of
ground-water monitoring wells may find it more practical to use a multipie
well comparisons procedure. Multiple comparisons procedures control the
experimentwise error rate for comparisons invoiving multiple upgradient and
downgradient wells. If this method {s used, the Type I experimentwise error
rate for each constituent shall be no less than 5% (0.05) for each testing
period. )

In ysing a mulitiple well comparisons procedure, if the owner or operator
chooses to use a t-statistic rather than an F-statistic, the individual well
Type [ error level must be maintained at no less than 1% (0.01). This
provision should be considered if a2 facility owner or operator wishes to use a
procedure that distributes the risk of a false positive evenly throughout ail
monitoring wells (e.g., Bonferroni t-test).

Setting these levels of significance at 1% and 5%, respectively, raises
an important question in how the false positive rate will be controlled at
facilities with a large number of ground-water monitoring wells and monitoring
constituents. The Agency set these levels of significance on the basis of a
single testing period and not on the entire operating life of the facility.
Further, large facilities can reduce the false positive rate by implementing a
unit-specific monitoring approach. Nonetheless, it is evident that facilities
with an extensive number of ground-water monitoring wells which are monitored
for many constituents may still generate & large number of comparisons during
each testing period.

In these particular situations, a determination of whether a release from
a facility has occurred may require the Regional Adminfstrator to evaluate the
site hydrogeology, geochemistry, climatic factors, and other enviromnmental
parameters to determine {f a statistically significant result {s i{ndicative of
an actual release from the facility. In making this determination, the
Regional Administrator may note the relative magnitude of the concentration of
the constituent(s). If the exceedance is based on an observed compliance well
value that is the same relative magnftude as the PQL (practical quantitation
limit) or the background concentration level, then a false positive may have
occurred, and further sampling and testing may be appropriate. I[f, however,
the background concentration level or an action level 1{s substantially
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exceeded, then the exceedance is no're 1ikely to be indicative of a release
from the facility. )

2.4 BASIC STATISTICAL METHODS AND SAMPLING PROCEDURES

The October 11, 1988 rule specifies five types of statistical methods to
detect contamination in ground water. EPA believes that at least one of these
types of procedures will be appropriate for virtually all facilities. To
address situations where these wmethods may not be appropriate, EPA has
included a provision for the owner or operator to select an alternate method
which is subject to approval by the Regional Administrator.

2.4.1 The Five Statistical Methods Outlined in the October 11, 1988 Final
Rule ) ,

1. A parametric analysis of variance (ANOVA) followed by multiple com-
parison procedures to identify specific sources of difference. The
procedures will include estimation and testing of the contrasts
between the mean of each compliance well and the background mean for
each constituent.

2. An analysis of variance (ANOVA) based on ranks followed by multiple
comparison procedures to 1identify specific sources of difference.
The procedure will include estimation and testing of the contrasts
between the median of each compliance well and the median background
levels for each constituent.

3. A procedure in which a tolerance interval or a prediction interval
for each constituent {s established from the background data, and
the level of each constituent in each compliance well {s compared to
its upper tolerance or prediction limit.

4. A control chart approach which will give control limits for each
constituent. If any compliance well has a value or & sequence of
values that 1ie outside the control limits for that constituent, it
may constitute statistically significant evidence of contamination.

5. Another statistical method submitted by the owner or operator and
approved by the Regional Administrator.

A summary of these statistical methods and their applicability is pre-
sented in Table 2-1. The table 1ists types of comparisons and the recommended
procedure and refers the reader to the appropriate sections where a discussion
and example can be found. . :

EPA s specifying multiple statistical methods and sampling procedures
and has allowed for aiternatives because no one method or procedure is appro-
priate for all circumstances. EPA believes that the suggested methods and
procedures are appropriate for the site-specific design and analysis of data
from ground-water monitoring systems and that they can account for more of the
site-specific factors that Cochran's Approximation to the Behrens-Fisher
Student's t-test (CABF) and the accompanying sampling procedures in the past
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TABLE 2-1. SUMMARY

LA

OF STATISTICAL METHODS

SUMMARY OF STATISTICAL METHODS

: SECTION OF
COMPOUND | TYPE OF COMPARISON | RECOMMENDED METHOD | GUIDANCE
| DOCUMENT
ANOVA 5.2
ANY BACKGROUND VS
TOLERANCE LIMITS 53
COMFOUND | COMPLIANCEWELL | pREDICTION INTERVALS 5.4
BACKGROUND
‘ INTRA-WELL CONTROL CHARTS 7
ACLMCL CONFIDENCE INTERVALS 6.2.1
SPECIFIC FIXED STANDARD TOLERANCE LIMITS 6.2.2
MANY NONDETECTS | SEE BELOW DETECTION
SYNTHETIC IN DATA SET LIMIT TABLE®-1 8.1
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regulations. The statistical methods specified here address the multiple
comparison problems and provide for documenting and accounting for "sources of
natural variation. EPA believes that the specified statistical methods and
procedures consider and control for natural temporal and spatial variation.

2.4.2 Site-Specific Considerations for Sampliing L

The decision on the number of wells needed in a monitoring system will be
made on a site-specific basis by the Regional Administrator and will consider
the statistical method being used, the site hydrogeology, the fate and trans-
port characteristics of potential contaminants, and the sampling procedure.
The number of wells must be sufficient to ensure a high probability of detect-
ing contamination when it is present. To determine which sampling procedure
should be used, the owner or operator shall consider existing data and site
characteristics, including the possibility of trends and seasonality. These
sampling procedures are: .

1. Obtain a sequence of at least four samples taken at an interval that
ensures, to the greatest extent technically feasible, that an inde-
pendent sample is obtained, by reference to the uppermost aquifer's
effective porosity, hydraulic conductivity, and hydraulic gradient,
and the fate and transport characteristics of potential contami-

nants. The sampling interval that is proposed must be approved by
the Regfonal Administrator.

2. An alternate sampling procedure proposed by the owner or operator
and approved by the Regional Administrator {f he or she finds it to
be protective of human health and the enviromment.

EPA believes that the above sampling procedures will allow the use of
statistical methods that will accurately detect contamination. These sampling
procedures may be used to replace the sampling method present in the former
Subpart F regulations. Rather than taking a single ground-water sample and
dividing it into four replicate samples, a sequence of at least four samples
taken at intervals far enough apart in time (daily, weekly, or monthly,
depending on rates of ground-water fiow and contaminant fate and transport
characteristics) will help ensure the sampling of a discrete portion (i{.e., an
independent sample) of ground water. In hydrogeologic enviromments where the
ground-water velocity prohibits one from obtaining four independent sampies on
a semiannual basis, an alternate sampling procedure approved by the Regional
Administrator may be utilized (40 CFR §264.97(g)(1l) and (2)1].

The Regional Administrator shall approve an appropriate sampling proce-
dure and interval submitted by the owner or operator after considering the
effective porosity, hydraulic conductivity, and hydraulic gradient in the
uppermost aquifer under the waste management area, and the fate and transport
characteristics of potential contaminants. Most of this {nformation is
already required to be submitted in the facility's Part B permit application
under §270.14(c) and may be used by the owner or operator to make this deter-
mination. Further, the number and kinds of samples collected to establish
background concentration levels should be appropriate to the form of statisti-
cal test employed, following generally accepted statistical principles
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[40 CFR §264.97(g)]. For example, the use of control charts pyesumes a well-
defined background of at least eight samplies per well. By contrast, ANOVA
alternatives might require only four samples per well.

It seems 1ikely that most facilities will be sampling monthly over four
consecutive months, twice & year. In order to maintain a.complete annual
record of ground-water data, the facility owner or operator may find it
desirable to obtain a sample each month of the year. This will help identify
seasonal trends in the data and permit evaluation of the effects of auto-
correlation and seasonal variation if present in the samples. ‘

The concentrations of & constituent determined in these samples are
intended to be used in one-point-in-time comparisons between background and
compliance weils. This approach will help reduce the components of seasonal
variation by providing for simultaneous comparisons between background and
compiiance well information.

The flexibility for establishing sampling {intervals were chosen to allow
for the unique nature of the hydrogeologic systems beneath hazardous waste
sites. This sampling scheme will give proper consideration to the temporal
variation of and autocorrelation among the ground-water constituents. The
specified procedure requires sampiing data from background wells, at the
compliance point, and according to a specific test protocol. The owner or
operator should use a background value determined from data collected under
this scenario if a test approved by the Regional Administrator requires it or
if a concentration 1imit in compliance monitoring is to be based upcn
background data.

EPA recognizes that there may be situations where the owner or operator
can devise alternate statistical methods and sampling procedures that are more
appropriate to the facility and that will provide reliable results. There-
fore, today's regulations allow the Regional Administrator to approve such
procedures if he or she finds that the procedures balance the risk of false
positives and false negatives in a manner comparable to that provided by the
above specified tests and that they meet specified performance standards
{40 CFR §264.97(g)]. In examining the comparability of the procedure to
provide a reasonable balance between the risk of false positives and false
negatives, the owner or operator will specify in the alternate plan such
parameters as sampling frequency and sample size.

2.4.3 The "Reasonable Confidence" Reguirement

The methods indicate that the procedure must provide reasonable confi-
dence that the migration of hazardous constituents from a regulated unit into
and through the aquifer will be detected. (The reference to hazardous con-
stituents does not mean that this option applies only to compliance monitor-
ing; the procedure also applies to monitoring parumeters and constituents in
the detection monitoring program since they are surrogates indicating the
presence of hazardous constituents.) The protocols for the specific tests,
however, will be used as general benchmark to define “reasonable confidence”
in the proposed procedure. If the owner or operator shows that his or her
suggested test {is comparable in its results to one of the specified tests,
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then 1t 1s likely to be acceptable under the "reasonable confidgnce" test.
There may be situations, however, where it will be difficult to directly
compare the performance of an alternate test to the protocols for the
specified tests. In such cases the alternate test will have to be evaluated
on {ts own merits.
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SECTION 3
CHOOSING A SAMPLING INTERVAL

This section discusses the important hydrogeologic parameters to consider
when choosing a sampling interval. The Darcy equation 1s used to determine
the horizontal component of the average linear velocity of ground water. This
value provides a good estimate of time of travel for most soluble constituents
in ground water, and can be used to determine a sampliing interval. Example
calculations are provided at the end of the sectfon to further assist the
reader.

Section 264.97(g) of 40 CFR Part 264 Subpart F provides the owner or
operator of a RCRA facility with a flexible sampling schedule that will allow
him or her to choose a sampling procedure that will reflect site-specific con-
cerns. This section specifies that the owner or operator shall, on a semi-
annual basis, obtain a sequence of at least four samples from each well, based
on an interval that is determined after evaluating the uppermost aquifer's
effective porosity, hydraulic conductivity, and hydraulic gradient, and the
fate and transport characteristics of potential contaminants. The intent of
this provision 1s to set a sampling frequency that allows sufficient time to
pass between sampling events to ensure, to the greatest extent technically
feasible, that an {independent ground-water sample {s taken from each well..
For further information on ground-water sampling, refer to the EPA “"Practical
Guide for Ground-Water Sampling," Barcelona et al., 198S.

The sampling frequency of the four semiannual sampling events required in
Part 264 Subpart F can be based on estimates using the average linear velocity
of ground water. ' Two forms of the Darcy equation stated below relate ground-
water velocity (V) to effective porosity (Ne), hydraulic gradient (i), and
hydraulic conductivity (K):

V(K *1)/Ne and V, =(X,*1)/Ne

where V, and V, are the horizontal and vertical components of the average
linear velocity of ground water, respectively; K, and K, are the horizontal

and vertical components of hydraulic conductivity; {1 is the head gradient; and

Ne is the effective porosity. Ibp applying these equations to ground-water
" monitoring, the horizontal component of the average iinear velocity (V,) can
be used to determine an appropriate sampling interval. Usually, field
investigations will yield bulk values for hydraulic conductivity. In most
cases, the buik hydraulic conductivity determined by a pump test, tracer test,
or &8 slug test will be sufficient for these calculations. The vertical
component of the average linear velocity of ground water (V,), however, should
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be considered in estimating flow velocities in areas with significant com-
ponents of vertical velocity such as recharge and discharge zones.

To apply the Darcy equation to ground-water monitoring, one needs to
determine the parameters K, i, and Ne. The hydraulic conductivity, K, is the
volume of water at the existing kinematic viscosity that will move in unit
time under a unit hydraulic gradient through a unit area measured at right
angles to the direction of flow. The reference to "existing kinematic vis-
cosity” relates to the fact that hydraulic conductivity is not only determined
by the media (aquifer), but also by fluid properties (ground water or poten-
tial contaminants). Thus, it is possible to have several hydraulic conduc-
tivity values for many different chemical substances that are present in the
same aquifer. In either case 1t 1s advisable to use the greatest value for
velocity that is calculated using the Darcy equation to determine sampling
intervals. This will provide for the eariiest detection of a leak from a
hazardous waste facility and expeditious remedial action procedures. A range
of hydraulic conductivities (the transmitted fluid is water) for various aqui-
fer materials is given in Figure 3-1. The conductivities are given in three
units: the top 1ine is in meters per day; the middle line, in feet per day,
is commonly used; the last line is expressed in gallons per day-foot-squared.

The hydraulic gradient, i1, is the change in hydraulic head per unit of
distance in a given direction. It can be determined by dividing the differ-
ence in head between two points on a potentiometric surface map by the
orthogonal distance between those two points (see example calculation). Water
Tevel measurements are normally used to determine the natural hydraulic gradi-
ent at & facility. However, the effects of mounding in the event of a leak
from a waste disposal facility may produce a steeper local hydraulic-gradient
in the vicinity of the monitoring well. These local changes in hydraulic
gradient should be accounted for in the velocity calculations.

The effective porosity, Ne, is the ratio, usually expressed as a per-
centage, of the total volume of voids available for fluid transmission to the
total volume of the porous medium dewatered. [t can be estimated during a
pump test by dividing the volume of water removed from an aquifer by the total
volume of aquifer dewatered (see example calculation). Table 3-1 presents
approximate effective porosity values for & variety of aquifer materials. In
cases where the effective porosity 1s unknown, specific yield may be substi-
tuted into the equation. Specific yields of selected rock units are given in
Table 3-2. In the absence of measured values, drainable porosity is often
used to approximate effective porosity. Figure 3-2 {1lustrates representative
values of drainable porosity and total porosity as a functfon of aquifer
particle size.

Once the values for K, 1, and Ne are determined, the horizontal component
of the average linear velocity of ground water can be calculated. Using the
Darcy equation, we can determine the time required for ground water to pass
through the complete monitoring well diameter by dividing the monitoring well
diameter by the horizontal component of the average 1inear velocity of ground
water. This value will represent the minimum time interval required between
sampling events that will yield an independent ground-water sample. :
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Source: Heath, R. C. 1983. Basic Ground-Water Hydrology. U.S. Geological
Survey Water Supply Paper, 2220, 84 pp.

Figure 3-1. Hydraulic conductivity (in three units) of selected rocks.
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TABLE 3-1. DEFAULT VALUES FOR EFFECTIVE POROSITY (Ne) FOR USE
IN TIME OF TRAVEL (TOT) ANALYSES

) Effective poroslty
Soil textural classes of saturation

Unified sofl classification system

GS, GP, GM, GC, SW, SP, SM, SC 0.20
(20%)

ML, MH 0.15
(15%)

CL, OL, CH, OH, PT 0.0l
(1%)

USDA soil textural classes

Clays, silty clays, sandy clays 0.01

(1%)°

Silts, silt loams, sflty clay loams 0.10

. (10%)

A1l others 0.20

(20%)

Rock units (all)

Porous media (nonfractured rocks 0.15

such as sandstone and some carbonates) (15%)
Fractured rocks (most carbonates, 0.0001
shales, granites, etc.) (0.01%)

Source: Barari, A., and L. S. Hedges. 1985. Movement of Water
in Glacial T111. Proceedings of the 17th International Congress of the
International Association of Hydrogeologists, pp. 129-134.

8 These values are estimates and there may be differences between
simflar units. For ex wple, recent studies indicate that
weathered and urweathered glacial t{11 may have markedly dif-
ferent effective porosities (Barari and Hedges, 1985; Bradbury
et al., 1985).

Assumes de minimus secondary porosity. If fractures or soil
:tru;?ure are present, effective porosity should be 0.001
O.l *
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TABLE 3-2. SPECIFIC YIELD VALUES FOR

SELECTED ROCK TYPES ’
Rock type Specific yield (%)
Clay 2
Sand 22
Gravel 19
Limestone 18
Sandstone (semiconsolidated) ' 6
Granite 0.09
Basalt (young) 8

Source: Heath, R. C. 1983. Basic Ground-Water
Hydrology. U.S. Geological Survey, Water Supply
Paper 2220, 84 pp.
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(Three-dimensional mixing of ground water in the vicinity of the monitoring
well will occur when the well {s purged before sampling, whicht is one reason
why this method only provides an estimation of travel time).

In determining these sampling intervals, one should note that many chemi-
cal compounds will not travel at the same velocity as ground water. Chemical
characteristics such as adsorptive potential, specific gravity, and molecular
size will influence the way chemicals trave1 in the subsurface. Large mole-
cules, for example, will tend to travel slower than the average linear veloc-
ity of ground water because of matrix interactions. Compounds that exhibit a
strong adsorptive potential will undergo a similar fate that will dramatically
change time of travel predictions using the Darcy equation. In some cases
chemical interaction with the matrix material will aiter the matrix structure
and 1ts associated hydraulic conductivity that may result in an increase in
contaminant mobility. This effect has been observed with certain organic
solvents in clay units (see Brown and Andersen, 1981). Contaminant fate and
transport models may be useful in determining the influence of these effects
on movement fn the subsurface. A variety of these models are available on the
commercial market for private use.

EXAMPLE CALCULATION NO. 1: OETERMINING THE EFFECTIVE POROSITY (Ne)

The effective porosity, Ne, expressed in X, can be determined during a
pump test using the following method:

Ne = 100% x volume of water removed/volume of .qu.f dewatered

. Based on a pumping rate of the pump of 50 gal/min and a pump'ing
duration of 30 min, compute the volume of water removed as:

i
50 gal/min x 30 min = 1,500 gal
. To calculate the volume of aquifer dewatered, use the formula:
V= (1/3)srzh

where r is the radius (ft) of area affected by pumping and h (ft) is the drop
in the water level. If, for examplie, h = 3 ft and r = 18 ft, then:

Vs (1/3)*3.14*182*3 = 1,018 ft?
Next, converting ft3 of water to gallons of water,
Vs (1,018 ft3)(7.48 gal/ft3) = 7,615 gal

. Substituting the two volumes in the equation for the effective
porosity, obtain

Ne = 100% x 1,500/7,615 = 19.7%

. 37



Z

EXAMPLE CALCULATION NO. 2: DETERMINING THE HYDRAULIC GRADIENT (1)
The hydraulic gradient, 1, can be determined from a pot'e'ntiometric
surface map (Figure 3-3 below) as 1 = ah/s, where ah is the difference

measured in the gradient at Pz, and Pz,, and & 1s the orthogonal distance
between the two piezometers.

Using the values given in Figure 3-3, obtain
1 = ah/2 = (29.2 ft - 29.1 ft)/100 ft = 0.001 ft/ft

29.2"
Pz, / 29.1'

| Ah=0.1'

100 |pg, 29.0°

Figure 3-3. Potentiometric surface map for computation’
of hydraulic gradient.

This method provides only a very general estimate of the natural
hydraulic gradient that exists in the vicinity of the two piezometers.
Chemical gradients are known to exist and may override the effects of the
hydraulic gradient. A detailed study of the effects of multiple chemical
contaminants may be necessary to determine the actual average linear velocity
(hor{*lzonta'l component) of ground water in the vicinity of the monitoring
wells.

EXAMPLE CALCULATION NO. 3: DETERMINING THE HORIZONTAL COMPONENT OF THE
AVERAGE LINEAR VELOCITY OF GROUND WATER (Vy)

A land disposal facility has ground-water monitoring wells that are
screened in an uncorfined silty sand aquifer. Slug tests, pump tests, and
tracer tests conducted during & hydrogeologic site investigation have revealed
that the aquifer has a horizontal hydrauiic conductivity (K,) of 15 ft/day and
an effective porosity (Ne) of 15X, Using a potentiometric map (as in
examgle‘ 51)'. the regional hydraulic gradient (1) has been determined to be
0.003 ft/ft.
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To estimate the minimum time interval between sampling events that will
allow one to obtain an independent sample of ground water pro as follows.

Calculate the horizontal component -of the average Tinear velocity of
ground water (V,) using the Darcy equation, V, = (K *{)/Ne.
With K, = 15 ft/day,
Ne = 15%, and
i = 0.003 ft/ft, calculate

"V, = (15)(0.003)/(15%) = 0.3 ft/day, or equivalently
Vi = (0.3 ft/day)(12 in/ft) = 3.6 in/day

Discussion: The horizontal component of the average linear velocity of .
ground water, V,, has been calculated and is equal to 3.6 in/day. Monitoring
well diameters at this particular facility are 4 in. We can determine the
minimum time interval between sampling events that will allow one to obtain an
independent sample of ground water by dividing the monitoring well diameter by
the horizontal component of the average linear velocity of ground water:

Minimum time interval = (4 in)/(3.6 in/day) = 1.1 days
Based on the above calculations, the owner or operator could sample every

other day. However, because the velocity can vary with recharge rates sea-
sonally, & weekly sampling interval would be advised.

Suggested Sampling Interval

Date Qbtain Sample No.
June 1 1
June 8 2
June 15 3
June 22 4

Table 3-3 gives some results for common situations.
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TABLE 3-3.

DETERMINING A SAMPLING INTERVAL

DETERMINING A SAMPLING INTERVAL

UNIT Ky (fday) Ne (%) Vi ivmo) | SAMPLING INTERVAL
GRAVEL 104 19 9.6x10* DAILY
SAND 102 22 8.3x102 DALY
SILTY SAND 10 14 1.3x102 WEEKLY
TILL 10 2 9.1 x 102 MONTHLY *
SS (SEMICON) 1 6 30 WEEKLY
BASALT 10" 8 2.28 MONTHLY *

The horizontal component of the average linear velocities is based on
a hydraulic gradient, i, of 0.005 ft/ft.

* Use a Monthly sampling intervai or an alternate sampling procedure.
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SECTION 4
CHOOSING A STATISTICAL METHOO

This section discusses the choice of an appropriate statistical method.
Section 4.1 includes a flowchart to guide this selection. Section 4.2 contains
procedures to test the distributional assumptions of statistical methods and
Section 4.3 has procedures to test specifically for equality of variances.

The choice of an appropriate statistical test depends on the type of mon-
itoring and the nature of the data. The proportion of values in the data set
that are below detection {is one i{mportant consideration. If most of the
values are below detection, a test of proportions is suggested.

One set of statistical procedures 1is suggested when the monitoring con-
csists of comparisons of water sample data from the background (hydraulically
upgradient) well with the sample data from compliance (hydraulically down-
gradient) wells. The recommended approach is analysis of variance (ANOVA).
Also, for a facility with limited amounts of data, it is advisable to ini-
tially use the ANOVA method of data evaluation, and later, when sufficient
amounts of data are collected, to change to a tolerance interval or & control
chart approach for each compliance well. However, alternate approaches are
allowed. These include adjustments for seasonality, use of tolerance inter-
va1s,sand use of prediction intervals. These methods are discussed in Sec-
tion §S.

When the monitoring objective is to compare the concentration of & haz-
ardous constituent to & fixed level such as a maximum concentration limit
(MCL), a different type of approach is needed. This type of comparison com-
monly serves as a basis of compliiance monitoring. Control charts may be used,
as may tolerance or confidence intervals. Methods for comparison with a fixed
level are presented in Section 6. ’

When a Tong history of data from each well s available, intra-well com-
parisons are appropriate. That is, the data from a single uncontaminated well
are compared over time to detect shifts in concentration, or gradual trends in
concentration that may indicate contamination. Methods for this situation are
presented in Section 7.

4.1 FLOWCHARTS-~QVERVIEW AND USE .
The selection and use of & statistical procedure for ground-water moni-
toring is a detailed process. Because & single flowchart would become too

complicated for easy use, a series of flowcharts has been developed. These
flowcharts are found at the beginning of each section and are intended to
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guide the user in the selection and use of procedures in that section. The
more detailed flowcharts can be thought of as attaching to the general flow-
charts at the indicated points.

Three general types of statistical procedures are presented in the flow-
chart overview (Figure 4-1): (1) background well to complfance well data
comparisons; (2) comparison of compliance well data with a constant limit such
as an alternate concentration 1imit (ACL) or a maximum concentration limit
(MCL); and (3) intra-well comparisons. The first question to be asked in
determining the appropriate statistical procedure is the type of monitoring
program specified in facility permit. The type of monitoring program may
determine if the appropriate comparison is among wells, comparison of down-
gradient well data to a constant, intra-well comparisons, or a special case.

[f the facility is in detection monitoring, the appropriate comparison is
between wells that are hydraulically upgradient from the facility and those
that are-hydraulically downgradient. The statistical procedures for this type
of monitoring are presented in Section S. In detection monitoring, it is
1ikely that many of the monitored constituents may result in few quantified
results (f.e., much of the data are below the 1imit of analytical detection).
If this is the case, then the test of proportions (Section 8.1.3) may be rec-
ommended. [f the constituent occurs in measurable concentrations in back-
ground, then analysis of variance (Section 5.2) is recommended. This method
of analysis is preferred when the data lack sufficient quantity to allow for
the use of tolerance intervals or control charts.

If the facility 1s in compliance monitoring, the permit will specify the
type of compliance limit. If the compliance limit is determined from the
background, the statistical method is chosen from those that compare back-
ground well to compliance well data. Statistical methods for this case are
presented in Section 5. The preferred method is the appropriate analysis of
variance method in Section 5.2, or if sufficient data permit, tolerance inter-
vals or control charts. The flow chart in Section § aids in determining which
method is applicable.

If & facility in compliance monitoring has a constant smaximum concentra-
tion 1imit (MCL) or alternate concentration limit (ACL) specified, then the
appropriate comparison is with a constant. Methods for comparison with MCLs
or ACLs are presented in Section 6, which contains a flow chart to aid in
determining which method to use.

Finally, when more than one year of data have been collected from each
well, the facility owner or operator may find 1t useful to perform intra-well
comparison: over time to supplement the other methods. This 1s not a regula-
tory requirement, but 1t could provide the facility owner or operator with
information about the site hydrogeology. This method of analysis may be used
when sufficient data from an individual uncontaminated well exist and the data
allow for the identification of trends. A recommended control chart procedure
(Starks, 1988) suggests that a minimum background sample of eight observations
is needed. Thus an intra-well control chart approach could begin after the
first complete year of data collection. These methods are presented .in
Section 7.
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Fiqure 4-1. Flowchart overview.
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4.2 CHECKING DISTRIBUTIONAL ASSUMPTIONS
r
4
The purpose of this section is to provide users with methods to check the
distributional assumptions of the statistical procedures recommended for
ground-water monitoring. It is emphasized that one need not do an extensive
study of the distribution of the data unless a nonparametric sethod of analy-
sis is used to evaluate the data. If the owner or operator wishes to trans-
form the data in lieu of using a nonparametric method, it must first be shown
that the untransformed data are f{inappropriate for a normal theory test.
Similarly, 1f the owner or operator wishes to use nonparametric methods, he or
she must demonstrate that the data do violate normality assumptions.

EPA has adopted this approach because most of the statistical procedures
that meet the criteria set forth in the regulations are robust with respect to
departures from many of the normal distributional assumptions. That {s, only
extreme violations of assumptions will result in an {incorrect outcome of a
statistical test. Moreover, it is only in situations where it is unclear
whether contamination is present that departures from assumptions will alter
the outcome of a statistical test. EPA therefore belfeves that it is protec-
tive of the environment to adopt the approach of not requiring testing of
assumptions of a normal distribution on a wide scaie.

It should be noted that the normal distributional assumptions for
statistical procedures apply to the errors of the observations. Application
of the distributional tests to the observations themselves may lead to the
conclusion that the distribution does not fit the observations. In some cases
this lack of fit may be due to differences in means for the different wells or
some other cause. The tests for distributional assumptions are best applied
to the residuals from a statistical anmalysis. A residual {s the difference
between the original observation and the value predicted by a model. For
example, in analysis of variance, the predicted values are the group means and
the residual 1s the difference between each observation and {ts group mean.

If the conclusion from testing the assumptions 1s that the assumptions
are not adequately met, then a transformation of the data may be used or a
nonparametric statistical procedure selected. Many types of concentration
data have been reported in the 1iterature to be adequately described by a log-
normal distribution. That is, the natural logarithm of the original observa-
tions has been found to follow the normal distribution. Consequently, if the
normal distributional assumptions are found to be violated for the original
data, a transformation by taking the natural logarithm of each observation is
suggested. This assumes that the data are all positive. If the lJog trans-
formation does not adequately normalize the data or stabilize the variance,
one should use a nonparametric procedure or seek the consultation of a profes-
sional statistician to determine an appropriate statistical procedure.

The fol.owing sections present four selected approaches to check for
normality. The first option refers to literature citation, the other three
are statistical procedures. The choice is left to the user. The availability
of statistical software and the user's familiarity with it will be a factor in
the choice of a method. The coefficient of variation method, for example,
requires only the computation of the mean and standard deviation of the data.
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Plotting on probability paper can be done by hand but becomes, tedious with
many data sets. However, the commercial Statistical Analysis System (SAS)
software package provides a computerized version of a probability plot in its
PROC UNIVARIATE procedure. SYSTAT, a package for PCs also has a probability
plot procedure. The chi-squared test is not readily available through commer-
cia) software but can be programmed on a PC (for example in LOTUS 1.2-3) or in
any other (statistical) software language with which the user {s fam{l{ar.
The amount of data avaflable will also influence the choice. A1l tests of
distributional assumptions require a fairly large sample size to detect
moderate to small deviations from normality. The chi-squared test requires a
minimum of 20 samples for a reasonable test.

Other statistical procedures are available for checking distributional
assumptions. The more advanced user 1is referred to the Kolmogorov-Smirnov
test (see, for example, Lindgren, 1976) which is used to test the hypothesis
that data come from a specific (that {is, completely specified) distribution.
The normal distribution assumption can thus be tested for. A minimum sample
size. of 50 is recommended for using this test. :

A wodification to the Kolmogorov-Smirnov test has been developed by
Lilliefors who uses the sampie mean and standard deviation from the data as
the parameters of the distribution (Lilliefors, 1967). Again, a sample size
of at least 50 1s recommended.

Another alternative to testing for normality 1is provided by the rather
invoived Shapiro-Wilk's test. The interested user is referred to the relevant
article in Biometria by Shapiro and Wilk (1965).

4.2.1 Literature Citation
PURPOSE

An owner or operator may wish to consult l{terature to determine what
type of distribution the ground-water monitoring data for a specific con-
stituent are likely to follow. This may avoid unnecessary computations and
make it easier to determine whether there {is statistically significant evi-
dence of contamination.

PROCEDURE

One simple way to select a procedure based on a specific statistical dis-
tribution, is by citing a relevant published reference. The owner or operator
may find papers that discuss data resulting from sampliing ground water and
conclude that such data for a particular constituent follow a specified dis-
tribution. Citing such a reference may be sufficient justification for using
2 method based on that distribution, provided that the data do not show evi-
dence that the assumptions are violated.

To Justify the use of a literature citation, the owner or operator needs
to make sure that the reference cited considers the distribution of data for
the specific compound being monitored. In addition, he or she must evaluate
the similarity of their gite to the site that was discussed in the literature,
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especially similar hydrogeologic and potential contaminant chara istics.
However, because many of the compounds may not be studied in the Jiterature,
extrapolations to compounds with similar chemical characteristics and to sites
with similar hydrogeologic conditions are also acceptable. 8asically, the
owner or operator needs to provide some reason or justif‘lcathn for choos1ng a
particular distribution.

4.2.2 Coefficient-of-Variation Test

Many statistical procedures assume that the data are normally distrib-
uted. The concentration of a hazardous constituent in ground water 1s inher-
ently nonnegative, while the normal distributfon allows for negative values.
However, if the mean of the normal distribution 1s sufficiently above zero,
the distribution places very l1ittle probability on negative observations and
is sti11 a valid approximation.

One simple check that can rule out use of the normal distribution is to
calculate the coefficient of varfiation of the data. The use of this method
was required by the former Part 264 Subpart F regulations pursuant to Sec-
tion 264.97(h)(1). Because most owners and operators as well as Regional
personnel are already familiar with this procedure, it will probably be used
frequently. The coefficient of variation, CV, 1s the standard deviation of
the observations, divided by their mean. If the normal distribution is to be
a valid model, there should be very 1ittle probabilfity of negative values.
The number of standard deviations by which the mean exceeds 2ero determines
the probability of negative values. For example, 1f the mean exceeds zero by
one standard deviation, the normal distributfon will have less than 0.159
probability of a negative observation.

Consequently, one can calculate the standard deviation of the observa-
tions, calculate the mean, and form the ratio of the standard deviation di-
vided by the mean. If this ratio exceeds 1.00, there {is evidence that the
data are not normal and the normal distribution should not be used for those
data. (There are other possibilities for nonnormality, but this 1s a simple
check that can rule oyt obviously nonnormal data.)

PURPOSE

This test is a simple check for evidence of gross nonnormality in the
ground-water monitoring data.

PROCEDURE

To apply the coefficient-of-variation check for normality proceed as fol-
Tows. )
Step 1. Calculate the sampie mean, i. of n observations Xy, =1, ...,n.

’ n
.Y ] (151 Xy/m

4-6



Step 2. Calculate the sample standard deviation, S.
n : 1/2
Se |z (4 =TY(n-1)
i=]
Step 3. Divide the sample standard deviation by the sample mean. This
ratio is the CV.
CV = S/X.

Step 4. Determine {f the result of Step 3 exceeds 1.00. If so, this is
evidence that the normal distribution does not fit the data adequately.

EXAMPLE

Table 4-1 1s an exampie data set of chlordane concentrations in 24 water
samples from a fictitious site. The data are presented in order from least to
greatest.

TABLE 4-1. EXAMPLE DATA FOR COEFFICIENT-
OF-VARIATION TEST

Chiordane concentration (ppm)

® & 0 & &6 ¢ ¢ o o o

‘Dissolved phase

Immiscible phase

e & o O
BBLBEBEEBNBREY0BEEBIANEHR

L4

B LWRNIN N =yt it s 2 0 =2 O OO OO0 000000
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Applying the procedure steps to the data of Table 4-1, we have:
Step 1. X = 1.52 |
Step 2. S = 1.5

Step 3. CV = 1.56/1.52 = 1.03

r
4

Step 4. Because the result of Step 3 was 1.03, which exceeds 1.00, we
conclude that there {is evidence that the data do not adequately follow the
normal distribution. As will be discussed in other sections one would then
eizher transform the data, use a nonparametric procedure, or seek professional
guidance.

NOTE. The owner or operator may choose to use parametric tests since
1.03 1s so close to the 1imit but should use a transformation or a nonpara-
wetric test if he or she belfeves that the parametric test results would be
incorrect due to the departure from normality.

4.2.3 Plotting on Probability Paper
PURPOSE

Probability paper is a visual aid and dfagnostic tool in determining
whether a set of data follows a normal distribution. Also, approximate esti-
mates of the mean and standard deviation of the distribution can be read from
th% p’vv- :

PROCEDURE

Let X be the variable; X,, x,,...,x,.....xn the set of n observations.
The values of X can be raw data, residuals, or transformed data.

Step 1. Rearrange the observations in ascending order:
X(1), X(2)y...,X(n).

Step 2. Compute the cumulative frequency for each distinct value X({)
as (1/(n+1)) x 100%. The divisor of (n+l) 1is a plotting convention to avoid
cumulative frequencies of 100X which would be at infinity on the probability
paper. )

If a value of X occurs more than once, then the corresponding value of {
increases appropriately. For example, if X(2) = X(3), then the cumulative
frequency for XSI) fs 100*1/(n+l), but the cumulative frequency for X(2) or
X(3) 1s 100*(1+2)/(n+l}.

Step 3. Plot the distinct pairs [X{1), (i/n+l)) x 100] values on prob-
ability paper (this paper s commercially available) using an appropriate
scale for X on the horizontal axis. The vertical axis for the cumulative
frequencies 1s already scaled from 0.01 to 99.99%.
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If the points fall roughly on a straight 1ine (the 1ine car be drawn with
a ruler), then one can conclude that the underlying distribution {is approxi-
mately normal. Also, an estimate of the mean and standard deviation can be
made from the plot. The horizontal 1ine drawn through 50% cuts the plotted
1ine at the mean of the X values. The horizontal 1ine going through 84% cuts
the 1ine at a value corresponding to the mean plus one standard deviation. By
subtraction, one obtains the standard deviation.

REFERENCE

Dixon, W. J., and F. J. Massey, Jr. Introduction to Statistical Analysis.
McGraw-Hi11, Fourth Edition, 1983.

EXAMPLE

Table 4-2 1ists 22 distinct chlordane concentration values (X) along with
their frequencies. These are the same values as those listed in Table 4-1.
There is a total of n=24 observations.

Step 1. Sort the values of X in ascending order (column 1).

Step 2. Compute (100 x (1/25)], column 4, for each distinct value of X,
based on the values of i (column 2).

Step 3. Plot the pairs [X;, 100x(1/25)] on probability paper (Fig-
ure 4-2).

INTERPRETATION

The points in Figure 4-2 do not fall on a straight 1ine; therefore, the
hypothesis of an underlying normal distribution is rejected. However, the
shape of the curve indicates a lognormal distribution. This is checked in the
next step.

Also, information about the solubility of chlordane in this example is
helpful. Chlordane has a solubility (in water) that ranges between 0.0156 and
1.85 mg/L. Because the last six measurements exceed this solubility range,
contamination is suspected.

Next, take the natural logarithm of the X-values (In(X)) (column 5 in
Table 4-2). Repeat Step 3 above using the pairs [1n(X), 100x(1/25)]. The re-
sulting plot is shown in Figure 4-3. The points fall approximately on a .
straight 1ine (hand-drawn) and the hypothesis of lognormality of X, i.e.,
In(X) 1s normally distributed, can be accepted. The mean can be estimated at
slightly below 0 and the standard deviation at about 1.2 on the log scale.

4.2.4 The Chi-Squared Test

The chi-squared test can be used to test whether a set of data properly
fits a specified distribution within a specified probability. Most introduc-
tory courses in statistics explain the chi-squared test, and its familiarity
among owners and operators as well as Regional personnel may make it a
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TABLE 4-2. EXAMPLE DATA COMPUTATIONS FOR
PROBABILITY PLOTTING

4
Concentration Absolute -
X frequency { 100x(§/(n+1)) In(X)
0.04 1 1 4 -3.22
0.18 2 3 12 «1.71
0.25 1 4 16 -1.39
.29 1 5 20 -1.24
0.38 1 6 24 -0.97
0.50 2 8 32 =0.69
0.60 1 9 36 -0.51
Dissolved phase 0.83 1 10 40 -0.07
0.97 1 11 44 -0.03
1.10 1 12 48 0.10
1.16 1 13 §2 0.15
1.29 1 14 56 0.25
1.37 1 15 60 0.31
1.38 1 16 64 0.32
1.45 1 17 68 0.37
. 1.46 1 18 72 0.38
2.58 1 19 76 0.95
2.69 1 20 80 0.99
Immiscible phase 2.80 1 21 84 1.03
3.33 1 22 88 1.20
4.50 1 23 92 1.50
6.60 1 24 96 1.89
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Figure 4-2. Probability plot of raw chlordane concentrations.
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frequently used method of analysis. In this application the asstmed distribu-

tion is the normal distribution, but other distributions could also be used.

The test consists of defining cells or ranges of values and determining the

expected number of observations that would fall in each cell according to the

hypothesized distribution. The actual number of data points in each cell is

:gmpared with that predicted by the distribution to judge the adequacy of the
t.

PURPOSE

The chi-squared test is used to test the adequacy of the assumption of
normality of the data.

PROCEDURE

Step 1. Determine the appropriate number of cells, K. This number
usually ranges from 5 to 10. Divide the number of observations, N, by 4.
D1viding the total number of observations by 4 will guarantee a minimum of
four observations necessary for each of the K = N/4 cells. Use the largest
whole number of this result, using 10 if the result exceeds 10.

Step 2. Standardize the data by subtracting the sample mean and divid-
ing by the sample standard deviation:

‘1 - (X1 - Y)/S

Step 3. Determine the number of observations that fall in each of the
cells defined according to Table 4-3. The expected number of observations for
each cell is N/K, where N 1s the total number of observations and K 1s the
number of cells. Let N; denote the observed number in cell 1 (for { taking
values from 1 to K) and let €, denote the expected number of observations in
cell 1. Note that in this case the cells are chosen to make the Ey's equal.

TABLE 4-3. CELL BOUNDARIES FOR THE CHI-SQUARED TEST

Number of cells (K)

-5 ] 7 — 8 9 10

Cell boundaries -0.84 -0.97 -1.07 -1.15 -1.22 -1.28
for equal ex- -0.25 -0.43 -0.57 -0.67 -1.08 -0.84
pected cell 0.25 0.00 -0.18 -0.32 <0.43 -0.52
sizes with the 0.84 0.43 0.18 0.00 -0.14 -0.25
bution 1.07 0.67 0.43 0.25
1.15 1.08 0.52
1.22 0.84
1.28
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Step 4. Calculate the chi-squared statistic by the formula below:
4

K (N, - E,)?
YraTE

Step 5. Compare the ctlculated result to the table of the chi-squared
distribution with K-3 degrees of freedom (Table 1, Appendix B). Reject the
hypothesis of normality if the calculated value exceeds the tabulated value.

REFERENCE

Remington, R. D., and M. A. Schork. Statistics with Applications to the
Blological and Health Sciences. Prentice-Hall, 1970. 235-236.

EXAMPLE

The data in Table 4-4 are N = 2] residuals from an analysis of variance
on dioxin concentrations. The analysis of variance assumes that the errors
(estimated by the residuals) are normally distributed. The chi-sguared test
{s used to check this assumption.

Step 1. Divide the number of observations, 21, by 4 to get 5.25. Keep
only the integer part, 5, so the test will use K = § cells,

Step 2. The sample mean and standard deviation are calculated and found
to be: X = 0.00, S = 0.24. The data are standardized by subtracting the mean
(0 in this case) and dividing by S. The results are also shown in Table 4-4.

Step 3. Determine the number of (standardized) dbservations that falj,
into the five cells determined from Table 4-3. These divisions are: (1) less
than or equal to -0.84, (2) greater than -0.84 and less than or equal to
-0.25, (3) greater than -0.25 and less than or equal to +0.25, (4) greater
than 0.25 and less than or equal to 0.84, and (5) greater than 0.84. We find
4 observations in cell 1, 6 in cell 2, 2 in cell 3, 4 in cell 4, and § in
cell §. .

Step 4. Calculate the chi-squared statistic. The expected number in
each cell is N/K or 21/5 = 4.2. :

x? ..(L;...‘z‘-_z)i«»...hi'c;-l)i-z.lo

Step 5. The critical value at the 5% level for a chi-squared test with
2 (K-3 = §-3 = 2) degrees of freedom is 5.99 (Table 1, Appendix B). Because
the calculated value of 2.10 is less than 5.99 there is no evidence that these
data are not normal.
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EXAMPLE DATA FOR CHI-SQUARED

TABLE 4-4.
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INTERPRETATION ,
4
The cell boundaries are determined from the normal distribution so that
equal numbers of observations should fall in each cell. 1If there are large
differences between the number of observations in each cell and that predicted
by the normal distribution, this is evidence that the data' are not normal.
The chi-squared statistic 1s a nonnegative statistic that increases as the
disge:ence between the predicted and observed number of observations in each
ce ncreases.

If the calculated value of the chi-squared statistic exceeds the tabu-
lated value, there is statistically significant evidence that the data do not
follow the normal distribution. In that case, one would need to do a trans-
formation, use a nonparametric procedure, or seek consuitation before inter-
preting the results of the test of the ground-water data. If the calculated
value of the chi-squared statistic does not exceed the tabulated critical
value, there is no significant lack of fit to the normal distribution and one
can proceed assuming that the assumption of normality is adequately met.

REMARK

The chi-squared statistic can be used to test whether the residuals from
an analysis of variance or other procedure are normal. [n this case the
degrees of freedom are found by (number of cells minus one minus the number of
parameters that have been estimated). This may require more than the sug-
gested 10 ceiis. The chi-squared test does require a fairly large sample size
in that there should be generally at least four observations per cell.

4.3 CHECKING EQUALITY OF VARIANCE: BARTLETT'S TEST

The analysis of variance procedures presented in Sectfon 5 are often more
sensitive to unequal variances than to moderate departures from normality.
The procedures described 1in this section allow for testing to determine
whether group variances are equal or differ significantly. Often in practice
unequal variances and nonnormality occur together. Sometimes a transformation
to stabilize or equaliize the variances also produces a distribution that is
more nearly normal. This sometimes occurs if the initial distribution was
positively skewed with variance increasing with the number of observations.
Only Bartlett's test for checking equality, or homogeneity, of variances fis
presented here. It encompasses checking equality of more than two variances
with unequal sample sizes. Other tests are available for special cases. The
F-test is a special situation when there are only two groups to be compared.
The user is referred to classical textbooks for this test (e.g., Smedecor and
Cochran, 1980). In the case of equal sample sizes but more than two variances
to be compared, the user might want to use Hartley's or maximum F-ratfo test
(see Nelson, 1987). This test provides a quick procedure to test for variance
homogeneity. ’
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PURPOSE .

Bartlett's test is a test of homogeneity of variances. 1In other words,
it 1s a means of testing whether a number of population variances of normal
distributions are equal. Homogeneity of variances 1s an assumption made in
analysis of variance when comparing concentrations of constituents between
background and compifance wells, or among compliance wells. It should be
noted that Bartlett's test is {ftself sensitive to nonnormality in the data.
With long-tailed distributions the test too often rejects equality (homo-
geneity) of the variances.

PROCEDURE

Assume that data from k wells are available and that there are ny data
points for well {.

Step 1. Compute the k sample variances S,,....S . The sample variance,

s? »- 1s the square of the sample standard deviation and is given by the general
equation

%t (x,-%)*/(n-1)
fa1

where X is the average of the XyseoeoX, values. Each variance has associated
with 1t fy = ny-1 degrees of freedom. Take the natural logarithm of each
variance, 1n(S}),...,1n(S}).

Step 2. Compute the test statistic

X2 = t 1n(S) : £, n(s)
P* ey T

' k k
where f = 3 f1 4 n)- k
is] {s]

thus f is the total sample size minus the number of wells (groups); and
k
S = 7- z f1$: » Is the pooled variance across wells.
D
Step 3. Using the chi-squared table (Table 1, Appendix B), find the

critical value for X2 with (k-1) degrees of freedom at a predetermined signif-
icance level, for example, 5X.
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INTERPRETATION

If the calculated value X2 {s larger than the tabulated value, then con-
clude that the variances are not equal at that significance level. 7

REFERENCE

Johnson N. L., and F. C. Leone.  Statistics and Experimental Dnign in
fg%n«rhgand the Physical Sciences. Vol. I, John Wiley and Sons, New York,
EXAMPLE

Manganese concentrations are given for k=6 wells in Table 4-5 below.

TABLE 4-5. EXAMPLE DATA FOR BARTLETT'S TEST

Sampling
date Well 1 Well 2 Well 3 Well 4 Well § Well 6

January 1 50 46 272 34 48 68
February 1 73 77 171 3,940 54 991
March 1 244 32 54
April 1 202 83 .

ny = 4 2 4 ? 2 3
f1 = ﬂ1-1 = 3 1 3 1 1 2
Sy = 95 22 112 2,762 3 §37
Sy = 9,076 481 12,454 7,628,418 8 288,349
fi*Sy2 = 27,229 481 37,362 7,628,418 8 676,698
In(S42) = -9 6 9 16 2 13
fi*In(S42) = 27 6 28 16 2 25

Step 1. 3 Compute ;he six sample variances and take their natural
logarithm, In(S})),.... In(Sg), 85 9, 6,..., 13, respectively.

6
Step2. - Comute I f In(s{) = 105,

4-18



This is the sum of the last line in Table 4-5.

’
6
. Compute f = 1zl f1 s34+]1+,..+28=11
. Compute S;
s? et : f. 52wl (27,299 +...+ 576,608) = v (8,270,195) = 751,836
P H1fl 11 n( i i ? ) n(l » ) ’

. Take the natural logarithm of S

. Compute X2 = 11(14) - 105 = 44

Step 3. The critical X2 value with 6-1 = 5§ degrees of freedom at the 5%

significance level is 11.1 (Table 1 in Apgend1x 9). Since 44 1is larger than

11.1, we conclude that the six variances §°,...,S°, are not homogeneous at the
5% significance level. 1 ¢

INTERPRETATION

2, 2,
p’ 1n(Sp) 14

The sample variances of the data from the six wells were compared by
means of Bartlett's test. The test was significant at the 5% level, suggest-
"ing that the variances are significantly unegual (hetercgeneocus). A log-
transform of the data can be done and the same test performed on the trans-
formed data. Generally, if the data followed skewed distribution, this ap-
proach resolves the problem of unequal var{ances and the user can proceed with
an ANOVA for example.

On the other hand, unequal variances among well data could be a direct
indication of well contamination, since the individual data could come from
different distributions (1.e., different means and variances). Then the user
may wish to test which variance differs from which one. The reader is
referred here to the literature for a gap test of variance (Tukey, 1949;
David, 1956; or Nelson, 1987).

NOTE

. In the case of k=2 variances, the test of equality of variances is
the F-test (Snedecor and Cochran, 1980).

e  Bartlett's test simplifies in the case of §§Ea1 sample sizes, ny=n,
f=l,...,k. The test used then is Cochran's test. chran's test focuses on
the largest variance and compares it to the sum of all the variances. Hartley
introduced a quick test of homogeneity of variances that uses the ratio of the
largest over the smallest variances. Technical aids for the procedures under
the assumption of equal sample sizes are given by L. S. Nelson in the Jowmnal
of Quality Technology, Vol. 19, 1987, pp. 107 and 165.
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SECTION §
BACKGROUND WELL TO COMPLIANCE WELL COMPARISONS

. There are many situations in ground-water monitoring that call for the
comparison of data from different wells. The assumption is that a set of
uncontaminated wells can be defined. Generally these are background wells and
have been sited to be hydraulically upgradient from the regutated unit. A
second set of wells are sited hydraulically downgradient from the regulated
unit and are otherwise known as compifance wells. The data from these com-
pliance wells are compared to the data from the background wells to determine
whether there {s any evidence of contamination in the compliance wells that
would presumably result from a release from the regulated unit.

If the owner or operator of & hazardous waste facility does not have
reason to suspect that the test assumptions of equal variance or normality
. will be violated, then he or she may simply choose the parametric analysis of
variance as & default method of statistical anmalysis. In the event that this
method indicates a statistically significant difference between the groups
being tested, then the test assumptions should be evaluated.

This sftuation, where the relevant comparison is between data from back-
ground wells and data from complfance wells, is the topic of this section.
Comparisons between background well data and compliance well data may be
called for in all phases of monitoring. This type of comparison is the gen-
eral case for detection monitoring. It is also the usual approach for com-
pliance monitoring if the compliance limits are determined by the background
well constituent concentration levels. Compounds that are present in back-
ground wells (e.g., naturally occurring metals) are most appropriately
evaluated using this comparison method.

Section 5.1 provides a flowchart and overview for the selection of
methods for comparison of background well and compliance well data. Sec-
tion 5.2 contains analysis of variance methods. These provide methods for
directly comparing background well data to compliiance well data. Section 5.3
describes a tolerance interval approach, where the background well data are
used to define the tolerance limits for comparison with the compliance well
data. Section 5.4 contains an approach based on prediction intervals, again
using the background well data to determine the prediction interval for com- -
parison with the compliance well data. Methods for comparing data to a fixed
compliance 1imit (an MCL or ACL) will be described in Section 6.
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5.1 SUMMARY FLOWCHART FOR BACKGROUND WELL TO COMPLIANCE WELL COMPARISONS

r

Figure 5-1 fs a flowchart to aid in selecting the appropriate gtatistical
procedure for background well to compliance well comparisons. The first step
is to determine whether most of the observations are quantified (that is,
above the detection 1imits) or not. Generally, 1f more than 50% of the obser-
vations are below the detection limit (as might be the case with detection or
compliance monitoring for volatile organics) then the appropriate comparison
i{s a test of proportions. The test of proportions compares the proportion of
detected values in the background wells to those in the compliance wells. See
Section 8.1 for a discussion of dealing with data below the detection limit.

If the proportion of detected values is S0X or more, then an analysis of
variance procedure is the first choice. Tolerance l1imits or prediction inter-
vals are acceptable alternate choices that the user may select. The analysis
of variance procedures give a more thorough picture of the situation at the
facility. However, the tolerance limit or prediction interval approach is
acceptable and requires less computation in many situations.

Figure 5-2 1s a flowchart to guide the user {f a tolerance limits
approach is selected. The first step in using Figure 5-2 is to determine
whether the facility is in detection monitoring. If so, much of the data may
be below the detection 1imit. See Section 8.1 for a discussion of this case,
which may call for consulting a statistician. If most of the data are quanti-
fied, then follow the flow chart to determine if normal tolerance limits can
be used. If the data are not normal (as determined by one of the procedures
in Section 4.2), then the logarithm transformation may be done and the trans-
formed data checked for normality. [f the log data are normal, the lognormal
tolerance limit should be used. If neither the original data nor the log-
transformed data are normal, seek consultation with "a professional
statistician.

If a prediction interval {is selected as the method of choice, see Sec-
tion 5.4 for guidance in performing the procedure.

If analysis of variance is to be used, then continue with Figure 5-1 to
select the specific method that is appropriate. A one-way analysis of vari-
ance is recommended. If the data show evidence of seasonality (observed, for
example, in a plot of the data over time), a trend analysis or perhaps a two-
way analysis of variance may be the appropriate choice. These instances may
require consultation with a professional statistician.

If the one-way analysis of variance 1s appropriate, the computations are
performed, then the residuals are checked to see if they meet the assumptions
of normality and equal varifance. If so, the anmalysis concludes. If not, a
logarithm transformation may be tried and the residuals from the anal 'sis of
variance on the log data are checked for assumptions. If these still do not
adequately satisfy the assumptions, then a one-way nonparametric analysis of
variance may be done, or professional consultation may be sought.
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BACKGROUND WELL TO COMPLIANCE WELL COMPARISONS

Nonparametic
One-Way ANOVA

Figure 5-1. Background well to compliance we)l comparisons.
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Tolerance Limits: Alternate Ap roach' to
Background Well To Compliance Well Comparisons

Tolerance Limits

Normal '
Tolerance
Limits
Take Log
of Data
Lognormal

Tolerance
Limits

Consult with
Professional
Statistician

Figure 5-2. Tolerance limits: alternate approach to background
well to compliance well comparisons.

5-4



§.2 ANALYSIS OF VARIANCE .

If contamination of the ground water occurs from the waste disposal
facility and {1f the wmonitoring wells are hydraulically upgradient and
hydraulically downgradient from the site, then contamination 1s unlikely to
change the levels of a constituent in all wells by the same amount. Thus,
contamination from & disposal site can be seen as differences in average con-
cemi:ration among wells, and such differences can be detected by analysis of
variance.

Analysis of variance (ANOVA) is the name given to a wide variety of sta-
tistica) procedures. All of these procedures compare the means of different
groups of observations to determine whether there are any significant differ-
ences among the groups, and {f so0, contrast procedures may be used to
determine where the differences 1ie. Such procedures are also known in the
statistical literature as general linear model procedures.

Because of its flexibility and power, analysis of variance {s the pre-
ferred method of statistical analysis when the ground-water monitoring is
based on a comparison of background and compliance well data. Two types of
analysis of variance are presented: parametric and nonparametric one-way
analyses of variance. Both methods are appropriate when the only factor of
concern {s the different monitoring wells at a given sampling period.

The hypothesis tests with parametric analysis of variance usually assume
that the errors (residuals) are normally distributed with constant variance.
These assumptions can be checked by saving the residuals (the difference
between the observations and the values predicted by the analysis of variance
model) and using the tests of assumptions presented in Section 4. Since the
data will generally be concentrations and since concentration data are often
found to follow the lognormal distributfon, the log transformation ts sug-
gested 1if substantial violations of the assumptions are found in the analysis
of the original concentration data. If the residuals from the transformed
data do not meet the parametric ANOVA requirements, then nonparametric
approaches to analysis of varfance are available using the ranks of the obser-
;ati?ns.s zAzone-wu analysis of varfance using the ranks is presented in
ection 5.2.4.

When several sampling periods have been used and 1t is fmportant to con-
sider the sampling periods as a second factor, then two-way analysis of vari-
ance, parametric or nonparametric, i§s appropriate. This would be one way to
test for and adjust the data for seasonality. Also, trend analysis (e.g.,
time series) may be used to {dentify seasonality in the data set. If neces-
sary, data that exhibit seasonal trends can be adjusted. Usually, however,
seasonal variation will affect 2all wells at a facility by nearly the same
amount, and in most circumstances, corrections will not be necessary. Fur-
ther, the effects of seasonality will be substantially reduced by simultane-
ously comparing aggregate compliance well data to background well data.
Situations that require an analysts procedure other than a one-way ANOVA
should be referred to a professional statistician.
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5§.2.1 One-Way Parametric Analysis of Variance .

4
In the context of ground-water monitoring, two situations exist for which
& one-way analysis of variance is most applicable:

* Data for a water quality parameter are available from several wells
but for only one time period (e.g., monitoring has just begun).

* Data for a water quality parameter are available from several wells
for :fveraI time periods. However, the data do not exhibit sea-
sonality. '

In order to apply a parametric one-way analysis of variance, a minimum
number of observations is needed to give meaningful results. At least p 2 2
groups are to be compared (i.e., two or more wells). It is recommended that
each group (here, wells) have at least three observations and that the tota)
sample size, N, be large enough so that N-p 2 5. A variety of combinations of
groups and number of observations in groups will fulfill this minimum. One
sampling interval with four {independent samples per well and at least three
wells would fulfill the minimum sample size requirements. The wells should be
spaced so as to maximize the probability of intercepting a plume of contamina-
tion. The samples should be taken far enough apart in time to guard against
autocorrelation.

PURPOSE

One-way analysis of variance {is a statistical procedure to determine
whether differences in mean concentrations among wells, or groups of wells,
are statistically significant. For example, is there significant contamina-
tion of one or more compliance wells as compared to background wells?

PROCEDURE

Suppose the regulated unit has p wells and that n; data points (concen-
trations of a constituent) are available for the ith well. These data can be
from either a single sampling period or from more than one. In the latter
case, the user could check for seasonality before proceeding by plotting the
data over time. Usually the computation will be done on a computer using a
commercially available program. However, the procedure {s presented so that
computations can be done using a desk calculator, {f necessary.

P
Step 1. Arrange the N = 1x1n1 data points in a data table as follows
. -
(N 1s the total sample size at this specific regulated unit):
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Hell Total Mell Mean

(from § rom
Observations Step 1) tep 2)
ue11 No. 1 x ..........x x i
2 '11 ln1 1. ¢ _ 1.
3 .
u Xu1 Xy. Xy.
p xPloooooocoooxpnp xp. xp.
X X

Step 2. Compute well totals and well means as follows:

n
"1'1

A Xiq 0 total of all n, observations at well {
-

Y1 "Fl x1 » daverage of all ny observations at well i
L] 1 *

p ny )
X = g 1 11 » - grand total of all n, observations
T i=] 3-1

X = %-X' . grand mean of all observations

These totals and means are shown in the last two columns of the table above.

Step 3. ' Compute the sum of squares of differences between well means
and the grand mean:

P
Ssue”s- fﬂ (Y -Y )3'121—1Xi nx

(The forsula on the far right is usually most convenient for calculation.)
This sum of squares has (p-1) degrees of freedom associated with 1t and is a
measure of the variab111ty between wells.
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Step 4. Compute the corrected total sum of squares

ss;, -z g (Xyy-% )2 e R (xz )
otal * fol Jul fel §=1 ?j .o

(The formula on the far right s usually most convenient for calculation.)
This sum of squares has (N degrees of freedom associated with it and is a
measyre of the variabiIity 1n the wthe data set.

Step 5. Compute the sum of sqbares of differences of observations
within wells from the well means. This is the sum of squares due to error and
{s obtained by subtraction:

. 8§ - SS

Error = STotal Wells

It has associated with 1t (N-p) degrees of freedom and is a measure of the
variability within wells.

Step 6. Set up the ANQVA table as shown below in Table S5-1. The sums
of squares and their degree of freedom were obtained from Steps 3 through 5.
The mean square quantities are simply obtained by dividing each sum of squares
by 1ts corresponding degrees of freedom.

TABLE 5-1. ONE-WAY PARAMETRIC ANOVA TABLE

Source of Degrees of
variation Sums of squares freedom Mean squares F
’ "SHeIIS
Between wells SSu!'ns p-l "Swe1]s F= " L
- Error
SSwels/(p-1)
Error (wig?in SSgrror N-p MSgppor
S -
e ) ssError/(N-p)
Total SStotal N-1

Step 7. To test the hypothesis of equal means for &11 p wells, compute
F » MSye11s/MSgrror (1ast column in Table §-1). Compare this statistic to the

tabulated F statistic with (p-1) and (N-p) degrees of freedom (Table 2, Appen-
dix B) at the 5% significance level, If the calculated F value exceeds the
tabulated value, reject the hypothesis of equal well means. Otherwise,



conclude that there 1s no significant difference between the coﬂcentrations at
the p wells and thus no evidence of well contamination.

In the case of a significant F (calculated F greater than tabulated F in
Step 7), the user will conduct the next few steps to determine which compli-
ance well(s) is (are) contaminated. This will be done by comparing each com-
pliance well with the background well(s). Concentration differences between a
pair of background wells and compliance wells or between a complfance well and
8 set of background wells are called contrasts in the ANOVA and multiple com-
parisons framework.

Step 8. Determine if the significant F is due to differences between
background and compliance wells (couputation of Bonferroni t-statistics)

Assume that of the p wells, u are background wells and m are compliance
wells (thus u + m = p). Then m differences--m compliance wells each compared
with the average of the background wells--need to be computed and tested for
statistical significance. If there are more than five downgradient wells, the
individual comparisons are done at the comparisonwise significance level of
1%, which may make the experimentwise significance level greater than 5%.

e  Obtain the total sample size of all u background wells.

" .
Pup © 1f1"1
. Compute the average concentration from the u background wells.
T, o=l ¥
U Myp gy 1

. Compute the m differences between the average concentrations from

each compliance well and the average background wells.

Y}. - th , Ii31,..., m

. Compute the standard error of each difference as
SEy = [MSgppgy (1/ny, + 1/n)1Y

where MSg.... 1S determined from the ANOVA table (Table 5-1) and ny
is the nu r of observations at well 1.

o  Obtain the t-statistic t = t(N-p).(l-.Il) from Bonferroni's t-table
(Table 3, Appendix B) with ¢ = 0.05 and (N-p) degrees of freedom.
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. Compute the m quantities Dy = SE4 x t for each coupHmc; well §,

‘Il: : : g.use the entry for t(u-p).(l-o.m)- That 1s, use’ the entry

INTERPRETATION

If the difference ).(1. - iup exceeds the value 01. conclude that the ith

compiiance well has significantly higher concentrations than the average back-
ground wells. Otherwise conclude that the well 1s not contaminated. This
exercise needs to be performed for each of the m compliance wells individu-
ally. The test is designed so that the overall experimentwise error is 5% if
there are nc more than five compliance wells.

CAUTIONARY NOTE

Should the regulated unit consist of more than five compliance wells,
then the Bonferroni t-test should be modified by doing the individual compari-
sons at the 1% level so that the Part 264 Subpart F regulatory requirement
pursuant to §264.97(1)(2) will be met. Alternately, a different analysis of
contrasts, such as Scheffe's, may be used. The more advanced user is referred
to the second reference below for & discussion of multiple comparisons.

REFERENCES

-

Johnson, Norman L., and F. C. Leonme. 1977. Statistics and Experimental
Design in Engineering and the Physical Sciences. Vol. II, Second Edition,
John Wiley and Sons, New York.

Miller, Ruppert G., Jr. 1981. Simultaneous Statistical Inference. Second
Edition, Springer-Verlag, New York.

EXAMPLE

Four lead concentration values at each of six wells are given in
Table 5-2 below. The wells consist of us=2 background and m=4 compliance
wells. (The values in Table 5-2 are actually the natural logarithms of the
original lead concentrations.)

Step 1. Arrange the 4 x 6 = 24 observations in a data table as follows:
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TABLE 5-2. 'EXAMPLE DATA FOR ONE-WAY PARAMETRIC ANALYSIS OF VARIANCE

Natural log of Pb concentrations(!g(L),
Wel e

total ._ mean Well

Well No. Date: Jan 1 Feb 1 Mar 1 Aprl (X.) (Xy))  std. dev.
1 Background wells 4.06 3.99 3.40 3.83 15.28 3.82 0.295

2 3.83 4.34 3.47 4.22 15.86 3.96 0.398

3 Compliance wells 5.61 5.14 3.47 3.97 18.18 4.55 0.996 (max)
4 3.53 4,54 4.26 4.42 16.75 4.19 0.456

5 3.91 4.29 65.50 5.31 19.01 4.75 0.771

6 §.42 5.21 §.29 5.08 21.01 5.25 0.142 (min)

X.. = 106.08 X.. = 4.42

Step 2. The calculations are shown on the right-hand side of the data
table above. Sample standard deviations have been computed also.
Step 3. Compute the between-well sum of sguares.
SSyeqis = § (15.282 + ... + 21.012) - L x 106.082 = §.76

with [6 (wells) - 1] = 8 degree§ of freedom.
Step 4. Compute the corrected total sum of squares.

1
SSTotaI = 4,062 + 3,992 + ... + 5.082 - 37 * 106.082 = 11.94

with [24 (observations) - 1] = 23 degrees of freedom.

Step 5. Obtain the within-well or error sum of squares by subtractfon.
SsEmr = 11.94 - 5076 = 6018

. with (24 (observatfons) - 6 (wells)] = 18 degrees of freedom.
Step 6. Set up the one-way ANOVA as in Table 5-3 below:
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TABLE 5-3.

EXAMPLE COMPUTATIONS IN ONE-WAY PARAMETRIC ANOVA ;ABLE

Source of Sums of Degrees of

variation squares freedom Mean squares F
Between wells 5.76 ) §.76/5 = 1.15 1.15/0.34 = 3.38
Error 6.18 18 6.18/18 = 0.34

(within wells) _ —

Total 11.94 23

Step 7. The calculated F statistic 1s 3.38. The tabulated F value with
§ and 18 degrees of freedom at the a = 0.05 level 1s 2,77 (Table 2, Appen-
dix B). Since the calculated value exceeds the tabulated value, the hypothe-
sis of equal well means must be rejected, and post hoc comparisons are

necessary.

Step 8. Computation of Bonferroni t-statistics.

. Note that there are four compliance weils, so m = 4 comparisons will

be made .
. Pup = 8 total number of samples in background wells
« X, = 3.89 avera&e concentration of background wells
up

e  Compute the differsnces between the four compliance wells and the
average of the two background wells:

X3 - Typ = 4.55 - 3.89 = 0.66
Rve = Xyp = 4.19 - 3.89 = 0.3
Xs. - Ryp = 4.75 - 3.89 = 0.86
Xeo = Xyp = 5.25 - 3.89 = 1.36
*  Compute the standard error of each difference. Since the number of

observations {s the same for 211 compliance wells, the standard
errors for the four differences will be ecial.

SE,

= [0.34 (1/8 + 1/8)]" = 0.357 for 1 = 3,..., 6
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. From Table 3, Appendix B, obtain the critical t w1th,(24 -6) =18
degrees of freedom, m = 4, and for a = 0.05. The approximate value
1: 3.43 obtained by linear interpolation between 15 and 20 degrees
of freedom.

. Compute the quantities D;. Again, due to equal sample sizes, they
will all be equal.

D1 = 551 xte=0.357 x 2.43 = 0.868 for { = 3,..., 6

INTERPRETATION

The F test was significant at the 5% level. The Bonferroni multiple
comparisons procedure was then used to determine for which wells there was
stat1st1ca11y s1gn1f1cant evidence of contamination. Of the four differences

x, - xup. only x.. - Xup = 1.36 exceeds the critical value of 0.868. From

this 1t 1s concluded that there {s significant evidence of contamination at
Well 6. Well 5 1s right on the boundary of significance. It s likely that
Well 6 has intercepted a plume of contamination with Well 5 being on the edge
of the plume.

A1l the compliance well concentrations were somewhat above the mean con-
centration of the background levels. The. well means should be used to indi-
cate the Tocation of the plume. The findings should be reported to the
Regional Administrator. .

5.2.2 One-Way Nonparametric Analysis of Variance

This procedure 1s appropriate for interwell comparisons when the data or
the residuals from a parametric ANOVA have been found to be significantly dif-
ferent from normal and when a log transformation fails to adequately normalize
the data. In one-way nonparametric ANOVA, the assumption under the null
hypothesis 1s that the data from each well come from the same continuous dis-
tribution and hence have the same median concentrations of a specific hazard-
ous constituent. The alternatives of interest are that the data from some
wells show increased levels of the hazardous constituent in question.

‘ The procedure 1s called the Kruskal-Wallis test. For meaningful results,
there should be at least three groups with & minimm sample size of three in
each group. For large data sets use of a computer program {is recommended. In
the case of large data sets a good approximation to the procedure is to re-
place each observation by 1ts rank (its numerical place when the data are
ordered from least to greatest) and perform the (parametric) one-way analysis
of varfance (Section 5.2.1) on the ranks. Such an approach can be done with
some commercially statistical packages such as SAS.
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PURPQSE

%Y

The purpose of the procedure is to test the hypothesis that all wells (or
groups of wells) around regulated units have the same median concentration of
& hazardous constituent. If the wells are found to differ, post-hoc compari-
sons are again necessary to determine if contamination 1s present.

Note that the wells define the groups. A1l wells will have at least four
observations. Denote the number of groups by K and the number of observations
in each group by ny, with N being the total number of all observations. Let
Xy4 denote the jth observation in the ith group, where J runs from 1 to the
nuAber of observations in the group, Nys and 1 runs from 1 to the number of
groups, K.

PROCEDURE

Step 1. Rank all N observations of the groups from least to greatest.
Let R1J denote the rank of the Jjth observation in the ith group. As a
convention, denote the background well(s) as group 1.

Step 2. Add the ranks of the observations in each group. Call the sum
of the ranks for the ith group Ry. Also calculate the average rank for each
group, R1 = R1/ﬂ1.

Step 3. Compute the Kruskal-Wallis statistic:

M= mu T o '-3(N+1)
: i=] “?

Step 4. Compare the calculated value H to the tabulated chi-squared
value with (K-1) degrees of freedom, where K is the number of groups (Table 1,
Appendix B). Reject the null hypothesis 1f the computed value exceeds the
tabulated critical value.

Step 5. If the computed value exceeds the value from the chi-squared

table, compute the critical difference for well comparisons to the background,
assumed to be group 1:

172
N(N+1 1 .1
© = 2a/(x-1)) [ ] ["-1 . “?] '

for { taking values 2,..., K,
where Z(./(K-l)) is the upper (a/(K-1))-percentile from the standard normal
distribution found in Table 4, Appendix B. Note: If there are more than five

compliance wells at the regulated unit (K > 6), use Z,,,, the upper one-
percentile from the standard normal distribution.
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Step 6. Form the differences of the average ranks for eagh group to the
background and compare these with the critical values found {n step § to de-

termine which wells give evidence of contamination. That {s, tompare 51-5, to
(o for)i taking the values 2 through K. (Recall that group 1 {s the back-
ground. .

A

‘While the above steps are the general procedure, some details need to be
specified further to handle special cases. First, it may happen that two or
more observations are numerically equal or tied. When this occurs, determine
the ranks that the tied observations would have received if they had been
slightly different from each other, but still in the same places with respect
to the rest of the observations. Add these ranks and divide by the number of
observations tied at that value to get an average rank. This average rank is
used for each of the tied observatfons. This same procedure is repeated for
any other groups of tied observations. Second, {f there are any values below
detection, consider all values below detection as tied at zero. (It is
{rrelevant what number {is assigned to nondetected values as long as all such
values are assigned the same number, and it is smaller than any detected or
quantified value.)

The effect of tied observations is to increase the value of the sta-
tistic, H. Unless there are many observations tied at the same value, the
effect of ties on the computed test statistic 1s negligible (in practice, the
effect of ties can probably be neglected unless some group contains 10 percent
of the observations all tied, which {s most 1i{kely to occur for concentrations
below detection 1imit). In the present context, the term "negligible® can be
more specifically defined as follows. Compute the Kruskal-Wallis statistic
without the adjustment for ties. If the test statistic is significant at the
§% level then conclude the test since the statistic with correction for ties
will be significant as well. If the test statistic falls between the 10% and
th? 5% critical values, then proceed with the adjustment for ties as shown
below.

ADJUSTMENT FOR TIES

If there ‘are 50% or more observations that fell below the detection
1imit, then this method for adjustment for ties 1s {inappropriate. The user is
referred to Section 8 "Miscellaneous Topics.® Otherwise, if there are tied
values present in the data, use the following correction for the H statistic

g

i=s1 °
where g = the number of groups of distinct tied observations and T = (t:-ti),
where t; is the number of observations in the tied group 1. Note that unique

gbser::giggs zrn be considered groups of size 1, with the corresponding
1. -1l) = U,
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EXAMPLE

The data in Table 5-4 represent benzene concentrations in water samples
taken at one background and five compliance welis.

Step 1. The 20 observations have been ranked from least to greatest.
The 1imit of detection was 1.0 ppm. Note that two values in Well 4 were below
detection and were assigned value zero. These two are tied for the smallest
value and have consequently been assigned the average of the two ranks 1 and
2, or 1.5. The ranks of the observations are indicated in parentheses after
the observation in Table 5-4. Note that there are 3 observations tied at 1.3
that would have had ranks 4, 5, and 6 if they had been slightly different.
These three have been assigned the average rank of 5 resulting from averaging
?.)5, and 6. Other ties occurred at 1.5 (ranks 7 and 8) and 1.9 (ranks 11 and
2 -

Step 2. The values of the sums of ranks and average ranks are indicated
at the bottom of Table 5-4. -

Step 3. Compute the Kruskal-Wallis statistic
He 2'6'(%%:1'7 (342/4 + ... + 35.52/3) - 3(20+1) = 14.68

ADJUSTMENT FOR TIES
There are four groups of ties in the data of Table 5-4:

T, = (23-2) = 6 for the 2 observations of 1,900.
Ty = (23-2) = 6 for the 2 observations of 1,500.
Ty = (33-3) = 24  for the 3 observations of 1,300.
Ty = (23-2) = 6 for the 2 observations of 0.

4
Thus tl T1 s 6+6+24+6 = 42
{=

14.68

(327 505- - %ﬁggg = 14,76, a negligible change from 14.68.

Step 4. To test the null hypothesis of no contamination, obtain the
critical chi-squared value with (6-1) = 5 degrees of freedom at the 5% signif-
icance level from Table 1, Appendix B. The value i1s 11.07. Compare the cal-
culated value, H', with the tabulated value. Since 14.76 {s greater than
11.07, reject the hypothesis of no contamination at the 5% level. If the site
was in detection monitoring it should move into compliance monitoring. If the
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TABLE 5-4. EXAMPLE DATA FOR ONE-WAY NONPARAMETRIC ANOVA--BENZENE CONMCENTRATIONS (ppm)

Background ‘ Compliance wells
Date Nell 1 Hell 2 Well 3 Well 4 Rell 5 Well 6
Jan 1 1.7 (10) 11.0 (20) 1.3 (5) 0 (1.5) 4.9 (17) 1.6 (9)
Feb 1 1.9 (11.5) 8.0 (18) 1.2 (3) 1.3 (5) 3.7 (16) 2.5 (15)
- Mar 1 1.5 (7.5) 9.5 (19) 1.5 (7.5) 0 (1.5) 2.3 (14) 1.9 (11.5)
Apr 1 1.3 (5) 2.2 (13)
n|" 03-3 n,-3 n~.‘ n;-3 ﬂ.'3
Sum of ranks: R, = 34 Ry = 57 Ry = 15.5 R, = 21 Rg = 47 Re = 35.5
Average rank: R, = 8.5 Ry = 19 Ry = 5.17 Ry = 5.25 Rg = 15.67 Re = 11.83
K = 6, the nimber of wells
6 .
N= £ny =20, the total number of observations. -
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site was in compliance monitoring it should move into corrective agtion. If
the site was in corrective action it should stay there.

In the case where the hydraulically upgradient wells serve as the back-
ground against which the compliance wells are to be compared, comparisons of
each compliance well with the background wells should be performed in addition
to the analysis of variance procedure. In this example, data from each of the
compliance wells would be compared with the background well data. This com-

parison is accomplished as follows. The average ranks for each group, 51' are

used to compute differences. If a group of compliance wells for a regulated
unit have larger concentrations than those found in the background wells, the
average rank for the complfance wells at that unit will be larger than the
average rank for the background wells.

Step 5. Calculate the critical values to compare each compliance well
to the background well.

In this examplie, K=6, so there are 5 comparisons of the compliance wells
with the background wells. Using an experimentwise significance level of o =
0.05, we find the upper 0.05/5 = 0.01 percentile of the standard normal
distribution to be 2.33 (Table 4, Appendix B). The total sample size, N, is
20. The approximate critical value, C,, is computed for compliiance Well 2,
‘which has the largest average rank, as:

172 1/2
Cy= 2.32 [@-gll] [% + %] = 10.5

The critical values for the other wells are: 10.5 for Wells 3, 5, and 6; and
9.8 for Hell 4. . .

Step 6. Compute the differences between the average rank of each com-
pliance well and the average rank of the background well:

Differences Critical values
D, = 19.0 - 8.5 = 10.5 C; = 10.5
Dy = 5.17 - 8.5 = -3,33 Cy = 10.5
D. = 5025 - 8.5 = -3025 C. - 9.8
Ds i 15'57 - 805 = 7017 Cs - 10-5
Dg = 11.83 - 8.5 = 3.13 Ce = 10.5

Compare each difference witl the corresponding critical difference. 0, = 10.5
equals the critical value ot C, = 10.5. We conclude that the concentration of
benzene averaged over compliance Well 2 s significantly greater than that at
the background well., None of the other compliance well concentration of
benzene is significantly higher than the average background value. Based upon
these results, only compliance Well 2 can be singled out as being
contaminated. . -

5-18



For data sets with more than 30 observations, the parametric analysis of
variance performed on the rank values is a good approximation £o the Kruskal-
Wallis test (Quade, 1966). If the user has access to SAS, the PROC RANK pro-
cedure is used to obtain the ranks of the data. The analysis of variance pro-
cedure detailed in Section 5.2.1 s then performed on the ranks. Contrasts
are tested as in the parametric analysis of variance. ) :

INTERPRETATION

The Kruskal-Wallis test statistic is compared to the tabulated critical
valye from the chi-squared distribution. If the test statistic does not
exceed the tabulated value, there i1s no statistically significant evidence of
contamination and the analysis would stop and report this finding. If the
test statistic exceeds the tabulated value, there 1s significant evidence that
the hypothesis of no differences in compliance concentrations from the back-
ground level is not true. Consequently, if the test statistic exceeds the
critical value, one concludes that there is significant evidence of contami-
natfon. One then proceeds to investigate where the differences lie, that is,
which wells are indicating contamination.

The sultiple comparisons procedure described in steps 5 and 6 compares
each compliance well to the background well. This determines which compliance
wells show statistically significant evidence of contamination at an experi-
mentwise error rate of 5 percent. In many cases, inspection of the mean or
wedian concentrations will be sufficient to indicate where the problem 1ies.

§.3 TOLERANCE INTERVALS BASED ON THE NORMAL DISTRIBUTION

An alternate approach to analysis of variance to determine whether there
is statistically significant evidence of contamination is to use tolerance
intervals., A tolerance interval {s constructed from the -data on (uncontam-
inated) background wells. The concentrations from compliance wells are then
compared with the tolerance {interval. With the exception of pH, 1f the com-
pliance concentrations do not fall in the tolerance interval, this provides
statistically significant evidence of contamination. )

Tolerance 1intervals are most appropriate for use at faciiities that do
not exhibit high degrees of spatial variation between background wells and
compliance wells. Facilities that overlie extensive, homogeneous geologic
deposits (for example, thick, homogeneous lacustrine clays) that do not natu-
rally display hydrogeochemical variations may be suftable for this statistical
method of analysis.

A tolerance interval establishes a concentration range that is con-
structed to contain a specified proportion (PX) of the population with a
specified confidence coefficient, VY. The proportion of the population
included, P, 1s referred to as the coverage. The probability with which the
tolerance interval includes the proportion P% of the population 1s referred to
as the tolerance coefficient.

A coverage of 95% is recommended. If this is used, random observations
from the same distribution as the background well data would exceed the upper
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tolerance limit less than 5% of the time. Similarly, a tolerance coefficient
of 95% is recommended. This means that one has a confidence level gf 95% that
the upper 95% tolerance limit will contain at least 95X of the distribution of
observations from background well data. These values were chosen to be con-
sistent with the performance standards described in Section 2. The use of

these values corresponds to the selection of ¢ of 5% in the multiple well
testing situation. .

The procedure can be applied with as few as three observations from the
background distribution. However, doing so would result in a large upper
tolerance 1imit. A sample size of eight or more results is an adegquate toler-
ance interval. The minfmum sampling schedule called for in the regulations
would result in at least four observations from each background well. Only if
a single background well is sampled at & single point in time is the sample
size so small as to make use of the procedure questionable.

Tolerance 1intervals can be constructed assuming that the data or the
transformed data are normally distributed. Tolerance intervals can also be
constructed assuming other distributions. It {is also possible to construct
nonparametric tolerance intervals using only the assumption that the data came
from some continuous population. However, the nonparametric tolerance
intervals require such & large number of observations to provide a reasonable
coverage and tolerance coefficient that they are impractical in this
application. '

The range of the concentration data in the background well samples should
be considered in determining whether the tolerance interval approach should be
used, and if so, what distribution is appropriate. The background well con-
centration data should bde 1inspected for outliers and tests of normality
appliied before selecting the tolerance interval approach. Tests of normality
were presented in Section 4.2. Note that in this case, the test of normality
would be applifed to the background well data that are used to construct the
tolerance 1interval. These data should all be from the same normal
distribution. -

In this application, unless pH is being monitored, a one-sided tolerance
interval or an upper tolerance limit {is desired, since contamination 1s indi-
cated by large concentrations of the hazardous constituents monitored. Thus,
for concentrations, the appropriate tolerance {interval s (0, TL), with the
comparison of importance being the larger limit, TL.

PURPOSE

The purpose of the tolerance interval approach is to define a concentra-
tion range from background well data, within which a large proportion of the
monitoring observations should fall with high probability. Once this is done,
data from compliance wells can be checked for evidence of contamination by
simply determining whether they fall in the tolerance interval. If they do
not, this 1s evidence of contamination.

In this case the data are assumed to be approximately normally distrib-
uted. Sectfon 4.2 provided methods to check for normality. If_ the data are
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not normal, take the natural logarithm of the data and see {f &he transformed
data are approximately normal. If so, this method can de used on the loga-
rithms of the data. - Otherwise, seek the assistance of a professional
statistician. y :

PROCEDURE

Step 1. Calculate the mean, i. and the standard deviation, S, from the
background well data.

-Step 2. Construct the one-sided upper tolerance 1imit as
TL=X+KS,
where K is the one-sided normal tolerance factor found in Table S, Appendix B.

Step 3. Compare each observation from compliance wells to the tolerance
Tiait found in Step 2. If any observation exceeds the tolerance 1imit, that
{s statistically significant evidence that the well {is contaminated. Note
that {if the tolerance 1interval was constructed on the logarithms of the orig-
inal background observations, the logarithms of the compliance well observa-
tions should be compared to the tolerance limit. Alternatively the tolerance
1imit may be transferred to the original data scale by taking the anti-
logarithm.

REFERENCE

Lieberman, Gerald J. 1958. “"Tables for One-sided Statistical Tolerance
Limits." Industrial Quality Control. Vol. XIV, No. .10.

EXANPLE

Table 5-5 contains example data that represent lead concentration levels
in parts per miliion in water samples at a hypothetical facility. The
background well .data are in columns 1 and 2, while the other four columns
represent compliance well data.

Step 1. The mean and standard deviation of the n = 8 obse;vations have
been calculated for the background well. The mean is 51.4 and the standard
deviation 1s 16.3.

Step 2. The tolerance factor for a one-sided normal tolerance interval
is found from Table 5, Appendix B as 3.188. This 1s for 95% coverage with
probability 95% and for n = 8, The upper tolerance 1imit 1s then calculated
as 51.4 + (3.188)(16.3) = 103.4.

Step 3. The tolerance limit of 103.3 1s compared with the compliance
well data. Any value that exceeds the tolerance limit ind{cates statistically
significant evidence of contamination. Two observations from Well 1, two
observations from Well 3, and all four observations from Well 4 exceed the
tolerance 1limit. Thus there {s statistically significant evidence of con-
tanination at Wells 1, 3, and 4. :
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TABLE 5-5. EXAMPLE DATA FOR NORMAL TOLERANCE INTERVAL

r?

Lead concentrations (ppm)

{

Backqround well 955%11ance wells -
Date A B e e e e

Jan 1 58.0 46.1 273.1* 34.1 49.9 225.9*
Feb 1 54.1 76.7 170.7* 93.7 73.0 183.1*
Mar 1 30.0 32.1 32.1 70.8 244.7* 198.3*
Apr 1 46.1 68.0 53.0 83.1 202.4* 160.8*
n= 8 The upper 95% coverage tolerance limit
Mean = 51.4 with tolerance coefficient of 95% is
S0 = 16.3 5§1.4 + (3.188)(16.3) = 103.4

* Indicates contamination

INTERPRETATION

A tolerance limit with 95X coverage gives an upper bound below which 95%
of the observations of the distribution should fall. The tolerance coeffi-
cient used here is 95%, implying that at least 95% of the observations should
fall below the tolerance 1imit with probability 95%, 1f the compliance well
data come from the same distribution as the background data. In other words,
in this example, we are 95X certain that 95X of the background lead concentra-
tions are below 104 ppm. If observations exceed the tolerance limit, this is
evidence that the compliance well data are not from the same distribution, but
rather are from a distribution with higher concentrations. This {is inter-
preted as statistically significant evidence of contamination.

5.4 PREDICTION INTERVALS

A prediction interval 1s a statistical .interval calculated to include one
or more future observations from the same population with a specified confi-
dence. This approach s algebraically equivalent to the average replicate
(AR) test that 1s presented in the Technical Enforcement Guidance Document
(TEGD), September 1986. In ground-water monitoring, a prediction interval
approach may be used to make comparisons between background and compliance
well data. This method of analysis 1s similar to that for calculating a
tolerance limit, and familiarity with prediction intervals or personal prefer-
ence would be thy only reason for selecting them over the method for tolerance
limits. The concentrations of a hazardous constituent in the background wells
are used to establish an interval within which K future observations from the
same populatfon are expected to 1ie with a specified confidence. Then each of
K future observations of compliance well concentrations {s compared to the
prediction interval. The interval {is constructed to contain all of K future
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observations with the stated confidence. If any future obserwation exceeds
the prediction interval, this {s statistically significant evidence of contam-
i{nation. In application, the number of future observations to be collected,
K, must be specified. Thus, the prediction interval is constructed for a
specified time perfod in the future. One year is suggested. The interval can
be constructed either to contain all K individual observations with a speci-
fied probability, or to contain the K' means observed at the K' sampling
periods.

The prediction interval presented here is constructed assuming that the
background data a1l follow the same normal distribution. If that is not the
case (see Section 4.2 for tests of normality), but a log transformation
results in data that are adequately normal on the log scale, then the interval
may still be used. In this case, use the data after transforming by taking
the logarithm. The future observations need to &lso be transformed by taking
logarithms before comparison to the interval. (Alternatively, the end points
of the interval could be converted back to the original scale by taking their
anti-logarithms.)

PURPOSE

The prediction interval is constructed so that K future compliance well
observations can be tested by determining whether they 1ie in the interval or
not. If not, evidence of contamination is found. Note that the number of
future observations, K, for which the interval is to be used, must be speci-
fied in advance. In practice, an owner or operator would need to construct
the prediction interval on a periodic (at least yearly) basis, using the most
recent background data. The interval {s described using the 95X confidence
factor appropriate for individual well comparisons. It is recommended that a
one-sided prediction interval be constructed for the mean of the four observa-
tions from each compliance well at each sampling period.

PROCEDURE

Step 1. Calculate the mean, X, and the standard deviation, S, for the
background well data (used to form the prediction interval).

Step 2. Specify the number of future observations for a compliance well
to be included in the interval, K. Then the interval is given by

(0, X+ sy1/m + 1/n t(n-1, X, 0.95)]

where it is assumed that the mean of the m observations taken at the K sam-
pling periods will be used. Here n is the number of observations in the back-
ground data, and t(n—l. K, 0.95) {s found from Table 3 in Appendix B. The

table is entered with K as the number of future cobservations, and degrees of
freedom, v = n-1. If K > §, use the column for X = §,
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Step 3. Once the interval has been calculated, at each sampljng period,
the mean of the m compliance well observations is obtained. This mean is com-
pared to see if 1t falls in the interval. If it does, this is reported and
monitoring continues. If a mean concentration at a sampling period does not
fall in the prediction interval, this is statistically significant evidence of
contamination. This 1s also reported and the appropriate action taken.

REMARK

For a single future observation, t is given by the t-distribution found
in Table 6 of Appendix B. In general, the interval to contain K future means
of sample size m each {s given by

{0, X+ S\/1/m + 1/n t(n-l, K, 0.95)]

where t is as before from Table 3 of Appendix B and where m is the number of
observations in each mean. Note that for K single observations, m=l, while
for the mean of four samples from a compliance well, m=4.

Note, too, that the prediction intervals are one-sided, giving a value
that should not be exceeded by the future observations. The 5% experimentwise
significance level {s used with the Bonferroni approach. However, to ensure
that the significance level for the individual comparisons does not go below
1%, a/K 1s restricted to be 1X or larger. If more than K comparisons are
used, the comparisonwise significance level of 1X 1s used, implying that the
comparisonwise level may exceed 5X.

EXAMPLE

Table 5-6 contains chlordane concentrations measured at a hypothetical
facility. Twenty-four background observations are available and are used to
develop the prediction interval. The prediction interval is applied to K=2
sampling periods with m=4 observations at a single compifance well each.

Step 1. Find the mean and standard deviation of the 24 background well
measurements. These are 101 and 11, respectively.

Step 2. There are K = 2 future observations of means of 4 observations
to be included in the prediction interval. Entering Table 3 of Appendix B at
K = 2 and 20 degrees of freedom (the nearest entry to the 23 degrees of
freedom), we find t(zo' 2, 0.95) * 2.09. The interval is given by

[0, 101 + (11)2.09(1/4 + 1/28)1/2] = (0, 113.4).

Step 3. The mean of each of the four compliiance well observations at
sampling period one and two 1s found and compared with the interval found in
Step 2. The mean of the first sampling period is 122 and that for the second
sampling period is 113. Comparing the first of these to the prediction inter-
val for two means based on samples of size 4, we find that the mean exceeds
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TABLE 5-6. EXAMPLE DATA FOR PREDICTION INTERVAL--CHLORDANE LEVELS

Background well data--Well 1
Chlordane

Compliance well data--Well 2
“Chlordane

concentration : concentration
Sampling date (ppb) Sampling date (ppb)
January 1, 1985 97 July 1, 1986 123
: 103 120
104 116
85 128
April 1, 1985 120 . ms 4
105 Mean = 122
104 SO = 5
108
July 1, 1985 110 October 1, 1986 116
95 117
102 119
78 101
October 1, 1985 105 ms 4
94 Mean = 113
110 SD = 8
111
January 1, 1986 80
106
115
105
April 1, 1986 100
93
89
u3
ns= 24
Mean = 101
SO = 11
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the upper 1imit of the prediction interval. This is statistically Significant
evidence of contamination and should be reported to the Regional Administra-
tor. Since the second sampling period mean 1s within the prediction interval,
the Regional Administrator may allow the facility to remain in its current
stage of monitoring. :

INTERPRETATION

A prediction interval {s a statistical interval constructed from back-
ground sample data .to contain a specified number of future observations from
the same distribution with specified probability. That {s, the prediction
interval {s constructed so as to have a 95% probability of containing the next
K sampling period means, provided that there is no contamination. If the
future observations are found to be in the prediction interval, this is evi-
dence that there has been no change at the facility and that no contamination
is occurring. If the future observation falls outside of the prediction
interval, this {is statistical evidence that the new observation does not come
from the same distribution, that {is, from the population of uncontaminated
water samples previously sampled. Consequently, {if the observation is a con-
centration above the prediction interval's upper limit, it is statistically
significant evidence of contamination.

The prediction interval could be constructed in several ways. It can be
developed for means of observations at each sampling period, or for each in-
dividual observation at each sampling period.

It should also be noted that the estimate of the standard deviation, S,
that 1s used should be an unbfased estimator. The usual estimator, presented
above, assumes that there is only one source of variation. If there are other
sources of variation, such as time effects, or spatial variation in the data
used for the background, these should be included in the estimate of the vari-
ability. This can be accomplished by use of an appropriate analysis-of-vari-
ance model to include the other factors affecting the variability. Determina-
tion of the components of variance in complicated models is beyond the scope
of this document and requires consultation with a professional statistician.

REFERENCE

Hahn, G. and Wayne Nelson. 1973. ®A Survey of Prediction Intervals and Their
Applications.® Jowmnal of Quality Technology. 5:178-188.
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SECTION 6
COMPARISONS WITH MCLs OR ACLs

This section includes statistical procedures &ppropriate when the moni-
toring aims at determining whether ground-water concentrations of hazardous
constituents are below or above fixed concentration limits. In this situation
the maximum concentration 1imit (MCL) or alternate concentration limit (ACL)
is a specified concentration 1imit rather than being determined by the back-
ground well concentrations. Thus the applicable statistical procedures are
those that compare the compliance well concentrations estimated from sampling
with the prespecified fixed limits. Methods for comparing compliance well
concentrations to a (variable) background concentration were presented in
Section 5. '

The methods applicable to the type of comparisons described in this sec-
tion include confidence intervals and tolerance intervals. A special section
deals with cases where the observations exhibit very small or no variability.

6.1 SUMMARY CHART FOR COMPARISON WITH MCLs OR ACLs

Figure 6-1 is a flow chart to aid the user in selecting and applying a
statistical method when the permit specifies an MCL or ACL.

As with each type of comparison, a determination is made first to see if
there are enough data for intra-well comparisons. If so, these should be done
in parallel with the other comparisons.

Here, whether the compliance 1imit 1s a maximum concentration 1imit (MCL)
or an alternate concentration limit (ACL), the recommended procedure to com-
pare the mean compliiance well concentration against the compliance limit is
the construction of a confidence 1interval. This approach {s presented in
Section 6.2.1. Section 6.2.2 adds & special case of limited variance in the
data. If the permit requires that & compliance 1imit 1s not to be exceeded
more than a specified fraction of the time, then the construction of tolerance
1imits 1s the recommended procedure, discussed in Section 6.2.3.

6.2 STATISTICAL PROCEDURES

This section presents the statistical procedures appropriate for compari-
son of ground-water monitoring data to a constant compliiance limit, a fixed
standard. The interpretation of the fixed compliance limit (MCL or ACL) is
that the mean concentration should not exceed this fixed limit. An alternate
interpretation may be specified. The permit could specify a compliance 1imit
as a concentration not to be exceeded by more than a small, specified
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1 4
proportion of the observations. A tolerance interval approath for such a
situation is also presented.

6.2.1 Confidence Intervals

When a regulated unit 1s in complfance monitoring with a fixed compliance
1imit (either an MCL or an ACL), confidence intervals are the recosmended pro-
cedure pursuant to §264.97(h)(5) in the Subpart F regulations. The unit will
remain in compiiance monitoring unless there ts statistically significant evi-
dence that the mean concentration at one or more of the downgradient wells
exceeds the complifance limit. A confidence interval for the mean concentra-
tion is constructed from the sample data for each compliance well individu-
ally. These confidence intervals are compared with the compliance limit. If
the entire confidence interval exceeds the compliance 1imit, this is statisti-
§a11y significant evidence that the mean concentration exceeds the compliance

imit.

Confidence 1intervals can generally be constructed for any specified dis-
tribution. General methods can be found in texts on statistical inference
some of which are referenced in Appendix C. A confidence limit based on the
normal distribution {s presented first, followed by a modification for the
log-normal distribution. A nonparametric confidence interval {s also
presented.

6.2.1.1 (Confidence Interval Based on the Normal Distribution
PURPOSE

The confidence interval for the mean concentration is constructed from
the compliance well data. Once the interval has been constructed, it can be
compared with the MCL or ACL by inspection to determine whether the mean con-
centration significantly exceeds the MCL or ACL.
PROCEDURE

Step 1. Calculate the mean, X, and standard deviation, S, of the sample
concentration values. Do this separately for each compliance well.

Step 2. For each well calculate the confidence interval as

Xz t(o.99. n-1) S//n

where t(o.99. n-1) is obtained from the t-table (Table 6§, Appendix B).
Generally, there will be at least four observations at each sampling period,
so t will usually have at least 3 degrees of freedom.

Step 3. Compare the intervals calculated in Step 2 to the compliance
1imit (the MCL or ACL, as appropriate). If the compliance 1imit is contained
in the interval or 1s above the upper 1imit, the unit remains in compliance.
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If any well confidence {interval's lower limit exceeds the compYiance limit,
this is statistically significant evidence of contamination.

REMARK

The 99th percentile of the t-distribution 1s used in constructing the
confidence interval. This {s consistent with an alpha (probability of Type I
error) of 0.01, since the decisfon on compliance 1s made by comparing the
lower confidence 1imit to the MCL or ACL. Although the interval as con-
structed with both upper and lTower 1imits is a 98% confidence interval, the
use of it 1is one-sided, which 1s consistent with the 1% alpha level of
individual well comparisons.

EXAMPLE

Table 6-1 1ists hypothetical concentrations of Aldicard in three compli-
ance wells. For 1llustration purposes, the MCL for Aldicarb has been set at
7 ppb. There is no evidence of nonnormality, so the confidence interval based
on the normal distribution is used.

TABLE 6-1. EXAMPLE DATA FOR NORMAL CONFIDENCE INTERVAL--ALDICARB
CONCENTRATIONS IN COMPLIANCE WELLS (ppb)

Sampiing
date Well 1 Well 2 Well 3
Jan. 1 19.9 ‘ 23.7 5.6
Feb. 1 29.6 21.9 3.3
Mar. 1 18.7 26.9 2.3
Apr. 1 24.2 26.1 6.9
Xa= 23.1 24.6 4.5
S = 4.9 2.3 2.1

MCL = 7 ppb

Step 1. Calculate the mean and standard deviation of the concentrations
for each compliance well. These statistics are shown in the table above.

Step 2. Obtain the 99th percentile of the t-distribution with (4-1) = 3
degrees of freedom from Table 6, Appendix B as 4.541. Then calculate the con-
fidence interval for.each well's mean concentration.

Well 1: 23.1 ¢ 4.541(4.9)//8 = (12.0, 34.2)
Nell 2: 24.6 & 4.541(2.3)//4 = (19.4, 29.8)

Well 3: 4.5 £ 4.541(2.1)//8 = (-0.3, 9.3)
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where the usual convention of expressing the upper and lowers 1imits of the
confidence interval in parentheses separated by a comma has been followed.

Step 3. Compare each confidence interval to the MCL of 7 ppb. When this
is done, the confidence interval for Well 1 1ies entirely above the MCL of 7,
indicating that the mean concentration of Aldicarb in Well 1 significantly
exceeds the MCL. Similarly, the confidence interval for Well 2 lies entirely
above the MCL of 7. This {s significant evidence that the mean concentration
in Well 2 exceeds the MCL. However, the confidence interval for Well 3 is
mostly below the MCL. Thus, there is no statistically significant evidence
that the mean concentration in Well 3 exceeds the MCL.

INTERPRETATION

The confidence {interval {s an interval constructed so that it should con-
tain the true or population mean with specified confidence (98% in this
case). If this interval does not contain the compliance limit, then the mean
concentration must differ from the compliance limit. If the lower end of the
interval is above the compliance 1limit, then the mean concentration must be
significantly greater than the compifance limit, indicating noncompliance.

6.2.1.2 Confidence Interval for Log-Normal Data
PURPOSE

The purpose of a confidence interval for the mean concentration of log-
normal data {s to determine whether there 1{1s statistically significant
evidence that the mean concentration exceeds a fixed complifance itmit. The
interval gives a range that {includes the true wmean concentratfon with
confidence 98%. The lower 1imit will be below the true mean with confidence
99%, corresponding to an alpha of 1X%.

PROCEDURE

This procedure {is used to construct a confidence interval for the mean
concentration from the compliance well data when the data are log-normal (that
is, when the logarithms of the data are norsally distributed). -Once the
interval has been constructed, it can be compared with the MCL or ACL by
inspection to determine whether the mean concentration significantly exceeds
the MCL or ACL. Throughout the following procedures and examples, natural
logarithms (In) are used.

Step 1. Take the natural logarithm of each data point (concentration
measurement). Also, take the natural logarithm of the compliance limit.

Step 2. Calculate the sample mean and standard deviation of the log-

transformed data from each compliance well. (This is Step 1 of the previous
section, working now with logarithms.)
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Step 3. Form the confidence intervals for each compliance wel] as

Xz t(o.”’ n-1) s//n

where tig g9 n_1) 15 from the t-distribution in Table 6 of Appendix B. Here
t will typically have 3 degrees of freedom.

Step 4. Compare the confidence {intervals found in Step 3 to the
logarithm of the compliance 1imit found in Step 1. 1If the lower limit of the
confidence interval 1ies entirely above the logarithm of the compliance limit,
there is statistically significant evidence that the unit {s out of compli-
ance. Otherwise, the unit is in compliance.

EXAMPLE

Table 6-2 contains EDB concentration data from three compliance wells at
a hypothetical site. The MCL is assumed to be 20 ppb. For demonstration pur-
poses, the data are assumed not normal; a natural log-transformation
normalized them adequately. The lower part of the table contains the natural
logarithms of the concentrations.

TABLE 6-2. EXAMPLE DATA FOR LOG-NORMAL CONFIDENCE INTERVAL--EDB
CONCENTRATIONS IN COMPLIANCE WELLS (ppb)

Sampling
date WNell 1 WNell 2 Well 3
Concentrations
Jan. 1 24.2 39.7 55.7
Apr. 1 - 10.2 75.7 17.0
Ju1o 1 17.4 60.2 97.8
Oct. 1 39.7 10.9 25.3
Y= 22.9 46.6 49.0
Ss= 12.6 28.0 36.6
MCL = 20 ppb '
Matural log concentrations
Jan. 1 - 3.19 3.68 4.02
Apr. 1 2.32 4.33 2.84
Jul, 1 2.85 4.10 4.58
Oct. 1 3.68 2.39 3.23
X = 3.01 3.62 3.67
S= 0.57 0.86 0.78

In (MCL) = 3.00
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Step 1. The logarithms of the data are used to calculats a confidence
interval. Take the natural log of the concentrations in the top part of
Table 6-2 to find the values given in the lower part of the table. For exam-
ple, 1n{24.2) = 3.19, . . ., In(25.3) = 3.23. Also, take the logarithm of the
MCL to find that In(20) = 3.00. :

Step 2. Calculate the mean and standard deviation of the log concentra-
tions for each compliance well. These are shown in the table.

Step 3. Form the confidence intervals for each compliance well.

Well 1: 3.01 + 4.541(0.57)//8 = (1.72, 4.30)
Well 2: 3.62 + 4.541(0.86)//4 = (1.67, 5.57)
Well 3: 3.67 & 4.541(0.78)//8 = (1.90, 5.44)

where 4.541 1s the value obtained from the t-table (Table 6 in Appendix B) as
in the previous example.

Step 4. Compare the {individual well confidence intervals with the MCL
(expressed on the log scale). The natural log of the MCL of 20 ppm is 3.00.
None of the individual well confidence intervals for the mean has a lower
Timit that exceeds this value, so none of the individual well mean concentra-
tions is significantly different from the MCL.

Note: The lower and upper 1imits of the confidence interval for each
well's mean concentration could be converted back to the original scale by
taking antilogs. For example, on the original scale, the confidence intervals
would be:

Well 1: (exp(l1.72), exp(4.30)) or (5.58, 73.70)

Well 2: (exp(1.67), exp(5.51)) or (5.31, 262.43)

Well 3: (exp(1.90), exp(5.44)) or (6.69, 230.44)
These 1imits could be compared directly with the MCL of 20 ppb. It is gen-
erally easier to take the logarithm of the MCL rather than the ant{logarithm
of all of the intervals for comparison.
INTERPRETATION

If the original data are not normal, but the log-transformation ade-

quately normalizes the data, the confidence interval (on the log scale) is an

interval constructed so that the lower confidence limit should be less than
the true or population mean (on the log scale) with specified confidence (99%
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in this case). If the lower end of the confidence interval exceeds_the appro-
priate compliance limit, then the mean concentration must exceed that compli-
ance limit. These results provide statistically significant evidence of
contamination.

6.2.1.3 Nonparametric Confidence Interval {

If the data do not adequately follow the normal distribution even after
the logarithm transformation, a nonparametric confidence interval can be con-
structed. This interval is for the median concentration (which equals the
mean if the distribution 1s symmetric). The nonparametric confidence interval
1s generally wider and requires more data than the corresponding normal dis-
tribution interval, and so the normal or log-normal distribution interval
should be used whenever it 1s appropriate. It requires a minimum of seven (7)
observations in order to construct an interval with a two-sided confidence
coefficient of 98%, corresponding to a one-sided confidence coefficient of
99%. Consequently, it {is applicable only for the pooled concentration of
compliance wells at a single point in time or for special sampling to produce
a minimum of seven observations at a single well during the sampling period.

PURPOSE

The nonparametric confidence interval is used when the raw data have been
found to violate the normality assumption, a log-transformation fails to
normalize the data, and no other specific distribution is assumed. It pro-
duces a simple confidence 1interval that 1s designed to contain the true or
population median concentration with specified confidence (here 99%). If this
confidence interval contains the compliance limit, it is concluded that the
median concentration does not differ significantly from the compliance
1imit. If the interval's lower 1imit exceeds the compliance limit, this is
statistically significant evidence that the concentration exceeds the compli-
ance limit and the unit 1s out of compliance.

PROCEDURE

Step 1. Hithfﬁ each compliance well, order the n data from least to
greatest, denoting the ordered data by X(1),. . ., X(n), where X({) is the ith
value in the ordered data.

Step 2. Determine the critical values of the order statistics as
follows. If the minimum seven observations {is used, the critical values are 1
and 7. Otherwise, find the smallest integer, M, such that the cumulative
binomial distribution with parameters n (the sample size) and p = 0.5 1s at
least 0.99. Table 6-3 gives the values of M and n+l-M together with the exact
confidence coefficient for sample sizes from 4 to ll1. For larger samples,
take as an approximation the nearest integer value to

"Mesn/2+1+ 20.99 /n/%)

where 75 o9 is the 99th percentile from the normal distribution (Table 4,
Appendix B) and equals 2.33. :
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TABLE 6-3. VALUES OF M AND n+1-M AND CONFIDENCE:
COEFFICIENTS FOR SMALL SAMPLES

Two-sided

n M n+l-M confidence
4 4 1 87.5%
5 5 1 93.8%
6 6 1 96.9%
7 7 1 98.4%
8 8 1 99.2%
9 9 1 99.6%
10 9 2 97.9%
11 10 2 98.8%

Step 3. Once M has been determined in Step 2, find n+1-M and take as the
confidence 1imits the order statistics, X(M) and X(n+l-M). (With the minimum
seven observations, use X(1) and X(7).)

Step 4. Compare the confidence limits found in Step 3 to the compliance
1imit. If the lower limit, X(M) exceeds the compliance limit, there is sta-
tistically significant evidence of contamination. Otherwise, the unit remains
in compliance.

REMARK

The nonparametric confidence interval procedure requires at least seven
observations in order to obtain a (one-sided) significance level of 1% (confi-
dence of 99%). This means that data from two (or more) wells or sampling
perfods would have to be pooled to achieve this level. If only the four
observations from one well taken at a single sampling period were used, the
or;e-sided significance level would be 6.25%. This would also be the false
alarm rate.

Ties do not affect the procedure. If there are ties, order the observa-
tions as before, including all of the tied values as separate observations.
That 1is, each of the observations with a common value is included in the
ordered list (e.g., 1, 2, 2, 2, 3, 4, etc.). For ties, use the average of the
tied ranks as in Section 5.2.2, Step 1 of the example. The ordered statistics
are found by counting positions up from the bottom of the 1ist as before.
Multiple values from separate observations are counted separately.

EXAMPLE

Table 6-4 contains concentrations of Silvex in parts per million from two
hypothetical compliance wells. The data are assumed to consist of four sam-
ples taken each quarter for a year, so that sixteen observations are available
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TABLE 6-4. EXAMPLE DATA FOR NONPARAMETRIC CONFIDENCE

INTERVAL—-SILVEX CONCENTRATIONS (ppm) -
Well 1 wertt 2t -
Sampling Concentration Toncentration "
date (ppm) Rank (ppm) Rank
Jan. 1 3.17 z; 3.52 (6)
2.32 1 12.32 515)
7.37 11) 2.28 a)
4.44 6) 5.30 (7)
Apr. 1 9.50 (13) 8.12 11)
21.36 16) 3.36 5)
5.15 7) 11.02 18)
15.70 (15) 35,05 16)
dul. 1 5.58 . (8) 2.20 (3)
3.39 (3) 0.00 (1.5)
8.44 12) 9.30 212)
10.25 14) 10.30 13)
Oct. 1 3.65 (8) 5.93 (8)
6.15 (9) 6.39 9)
6.94 (10) 0.00 1.5)
3.74 () 6.53 19)

from each well. The data are not normally distributed, neither as raw data
nor when log transformed. Thus, the nonparametric confidence interval fis
used. The MCL {is taken to be 25 ppm.

Step 1. Order the 16 measurements from least to greatest within each
well separately. The mumbers 1in parentheses beside each concentration in
Table 6-4 are the ranks or order of the observation. For example, in Well 1,
the smallest observation s 2.32, which has rank 1. The second smallest is
3.17, which has rank 2, and so forth, with the largest observation of 21.36
having rank 16.

Step 2. The sample size is large enough so that the approximation is
used to find M. g

M= 16/2 + 1+ 2.33 /16/2) = 13.7 = 14

1
g

Step 3. The approximate 95% confidence 1limits are given by the
16 + 1 - 14 = 3rd largest observation and the 14th largest observation. For
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Well 1, the 3rd observation s 3.39 and the 14th largest dbservation is
10.25. Thus the confidence 1imits for Well 1 are (3.39, 10.25). Similarly
for Well 2, the 3rd largest observation and the 14th largest observation are
found to give the confidence interval (2.20, 11.02). WNote that for Well 2
there were two values below detection. These were assigned 8 value of zero
and received the two smallest ranks. Had there been three oOr more values
below the 1imit of detection, the lower limit of the confidence interval would
have been the 1imit of detection because these values would have been the
smallest values and so would have incliuded the third order statistic.

Step 4. Neither of the two confidence intervals' lower l1imit exceeds the
MCL of 25. In fact, the upper limit 1s less than the MCL, implying that the
concentration in each well is significantly below the MCL.

INTERPRETATION

The rank-order statistics used to form the confidence interval in the
nonparametric confidence interval procedure will contain the population median
with confidence coefficient of 98%. The population median equals the mean
whenever the distribution is symeetric. The nonparametric confidence interval
is generally wider and requires more data than the corresponding normal dis-
tribution {nterval, and so the normal or log-normal distribution {nterval
should be used whenever it is appropriate.

If the confidence interval contains the complfance 1imit (either MCL or
ACL), then 1t {s reasonable to conclude that the median compliance well con-
centration does not differ significantly from the compliance Vimit. I[f the
lower end of the confidence interval exceeds the compliance 1limit, this is
statistically significant evidence at the 1X level that the median compliance
wennconcentraﬂon exceeds the compliance 1limit and the unit {s out of
compliance.

6.2.2 Tolerance Intervals for Compliance Limits

In some cases & permit may specify that a compliance limit (MCL or ACL)
is not to be exceeded more than a specified fraction of the time. Since lim-
{ted data will be available from each sonitoring well, these data can be used
to estimate a tolerance interval for concentrations from that well. I[f the
upper end of the tolerance interval (i.e., upper tolerance limit) is less than
the compiiance limit, the data indicate that the unit is in compliance. That
is, concentrations should be less than the compliance 1imit at least a speci-
fled fraction of the time. [f the upper tolerance limit of the interval
exceeds the compliance limit, then the concentration of the hazardous con-
s:*l:uenticould exceed the compliance 1imit more than the specified proportion
of the time.

This procedure compares an upper tolerance limit to the MCL or ACL. With
small sample sizes the upper tolerance 1imit can be fairly large, particularly
if large coverage with high confidence is desired. If the owner or operator
wishes to use a tolerance limit in this application, he/she should suggest
values for the parameters of the procedure subject to the approval of the
Regional Administrator. For example, the owner or operator could suggest a
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95% coverage with 95% confidence. This means that the upper tolerance limit
1: a value which, with 95% confidence, will be exceeded less than'5% of the
me.

PURPOSE

The purpose of the tolerance interval approach is to construct an inter-
val that should contain a specified fraction of the concentration measurements
from compliiance wells with a specified degree of confidence. In this appli-
cation it 1s generally desired to have the tolerance interval contain 95% of
the measurements of concentration with confidence at least 95%.

PROCEDURE

It 1s assumed that the data used to construct the tolerance interval are
approximately normal. The data may consist of the concentration measurements
themselves {f they are adequately normal (see Section 4.2 for tests of normal-
ity), or the data used may be the natural logarithms of the concentration
data. It is important that the compliance 1imit (MCL or ACL) be expressed in
the same units (either concentrations or logarithm of the concentrations) as
the observations.

Step 1. Calculate the mean, X, and the standard deviation, S, of the
compliance well concentration data.

Step 2. Determine the factor, K, from Table 5, Appendix B, for the sam-
ple size, n, and form the one-sided tolerance interval

(o, i* KS]

Tabié S, Appendix B contains the factors for a 95% coverage tolerance interval
with confidence factor 95%.

Step 3. Compare the upper limit of the tolerance ° sarval computed in
Step 2 to the compliance limit. 1If the upper limit of the tolerance interval
e:ceeds that 1limit, ‘this 1s statistically significant evidence of contamina-
tion. :

EXAMPLE

Table 6-5 contains Aldicarb concentrations at a hypothetical facility in
compliance monitoring. The data are concentrations in parts per aillion (ppm)
and represent observations at three compliance wells. Assume than the permit
e:tablishes an ACL of 50 ppm that 1s not to be exceeded more than 5% of the
time.

Step 1. Calculate the mean and standard deviation of the observations
from each well. These are given in the table. :
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TABLE 6-5. EXAMPLE DATA FOR A TOLERANCE ¢

INTERVAL COMPARED TO AN ACL

Sampling Aldicarb concentrations (aﬁ ‘
date BeTT 1 Wel

Jan. 1 19.9 23.7 25.6
Feb. 1 29.6 21.9 23.3
Mar. 1 18.7 26.9 22.3
Apr. 1 24.2 26.1 26.9
Mean = 23,1 24.7 24.5
SD = 4,93 2.28 2.10
ACL = 50 ppm

Step 2. For n = 4, the factor, K, in Table 5, Appendix B, is found to
be 5.145. Form the upper tolerance interval limits as:

Well 1: 23.1 + 5.145(4.93) = 48.5
Well 2: 24.7 + 5.145(2.28) = 36.4
Well 3: 24.5 + 5.145(2.10) = 35.3

Step 3. Compare the tolerance 1imits with the ACL of S50 PPM. Since the
upper tolerance limits are below the ACL, there is no statistically signifi-
can:. evidence of contamination at any well. The site remains in detection
monitoring.

INTERPRETATION

It may be desirable in a permit to specify a compliance 1imit that is not
to be exceeded more than 5% of the time. A tolerance interval constructed
from the compliiance well data provides an estimated interval that will contain
95% of the data with confidence 95%. If the upper limit of this interval fis
below the selected compliance limit, concentrations measured at the compliance
wells should exceed the compliance 1imit less than 5% of the time. If the
upper limit of the tolerance interval exceeds the compliance limit, then more
than 5X of the concentration measurements would be expected to exceed the
complifance limit. ‘

6.2.3 Special Cases with Limited Variance

Occasionally, all four concentrations from a compliance well at a par-
ticular sampling period could be identical. If this 1s the case, the formula
for estimating the standard deviation at that specific sampling period would
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give zero, and the methods for calculating parametric confidence {intervals
would give the same limits for the upper and lower ends of thejintervals,
which {s not appropriate. .

e

In the case of {dentical concentrations, one should assume that there is
some variation in the data, but that the concentrations were rounded and give
the same values after rounding. To account for the variability that was
present before rounding, take the least significant digit in the reported
concentration as having resulited from rounding. Assume that rounding results
in a uniform error on the interval centered at the reported value with the
i{nterval ranging up qor down one half unit from the reported value. This
assumed rounding s used to obtain a nonzero estimate of the variance for use
in cases where all the measured concentrations were found to be identical.

PURPOSE

The purpose of this procedure {is to obtain a nonzero estimate of the
variance when all observations from a well during & given sampling period gave
{dentical results. Once this modified varfance is obtained, its square root
{fs used in place of the usual sample standard deviation, S, to construct con-
fidence intervals or tolerance intervals.

PROCEDURE

Step 1. ODetermine the least significant value of any data point. That
is, determine whether the data were reported to the nearest 10 ppm, nearest 1
ppm, nearest 100 ppm, etc. Oenote this value by 2R.

Step 2. The data are assumed to have been rounded to the nearest 2R, so
each observation is actually the reported value fR. Assuming that the obser-
vations were {identical because of rounding, the variance s estimated to be
R2/3, assuming the uniform distribution for the rounding error. This gives
the estimated standard deviation as

S' = R//T

Step 3. Take this estimated value from Step 2 and use 1t as the estimate
of the standard deviation in the appropriate parametric procedure. That is,
replace S by S'.

EXAMPLE

In calculating a confidence interval for a single compliance well, sup-
pose that four observations were taken during a sampling period and aill
resulted in 550 ppm. There is no variance among the four values 590, 590,
§90, and 590.

Step 1. Assume that each of the values 590 came from rounding the con-

centration to the nearest 10 ppm. That 1s, 590 could actually be any value
between 585.0 and 594.99. Thus, 2R is 10 ppm (rounded off), so R 1s S ppm.
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Step 2. The estimate of the standard deviation is
S' = §//3 = 5/1.732 = 2.89 ppm

Step 3. Use S' = 2.89 and X = 590 to calculate the confidence interval
(see Section 6.2.1) for the mean concentration from this well. This gives

590 ¢ (4.541)(2.89//8) = (583.4, 596.6)

as the 98% confidence interval of the average concentration. Note that 4.541
is the 99th percentile from the t-distribution (Table 6, Appendix B) with 3
degrees of freedom since the sample size was 4.

INTERPRETATION -

When identical results are obtained from several different samples, the
interpretation 1s that the data are not reported to enocugh significant figures
to show the random differences. If there is no extrinsic evidence invalidat-
ing the data, the data are regarded as having resulted from rounding more
precise resuits to the reported observations. The rounding is assumed to

.result in variability that follows the uniform distribution on the range R,

where 2R is the smallest unit of reporting. This assumption is used to calcu-

late a stqpfard deviation for the observations that otherwise appear to have
no variability. .

REMARK .
Assuming that the data are reported correctly to the units indicated,
other distributions for the rounding variability could be assumed. The max-

imum standard deviation that could result from rounding when the observat1on
is tR {s the value R.
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SECTION 7
CONTROL CHARTS FOR INTRA-WELL COMPARISONS

The previous sections cover various situations where the compliance well
data are compared to the background well data or to specified concentration
limits (ACL or MCL) to detect possible contamination. This section discusses
the case where the level of each constituent within a single uncontaminated
well is being monitored over time. In essence, the data for each constituent
Tn each well are plotted on a time scale and inspected for obvious features
such as trends or sudden changes in concentration levels. The method sug-

gested here 1s a combined Shewhart-CUSUM control chart for each well and
constituent. ‘

The control chart method is recommended for uncontaminated wells only,
when data comprising at least eight independent samples over & one-year period
are available. This requirement is specified under current RCRA regulations
and applies to sach constituent in each well.

As discussed in Section 2, & common sampling plan will obtain four inde-
pendent samples from each well on a semi-annual basis. With this plan a con-
trol chart can be implemented when one year's data are available. As a result
of Monte Carlo simylations, Starks (1988) recommended at least four sampling
periods at a unit of eight or more wells, and at least eight sampling periods
at a unit with fewer than four wells.

The use of control charts can be an effective technique for monitoring
the levels of a constituent at a given well over time. It also provides a
visual means of detecting deviations from a “state of control.” It is clear
that plotting of the data is an important part of the analysis process. Plot-
ting 1s an easy task, although time-consuming {f many data sets need to be
plotted. Advantage should be taken of graphics software, since plotting of
time series data will be an ongoing process. New data points will be added to
the aiready existing data base each time new data are available. The follow-
ing few sections will discuss, in general terms, the advantages of plotting
time series data; the corrective steps one could take to adjust when season-
ality in the data {is present; and finally, the detailed procedure for con-
structing a Shewhart-CUSUM control chart, along with a demonstration of that
procedure, is presented.

7.1 ADVANTAGES OF PLOTTING DATA
While analyzing the data by means of any of the appropriate statistical
procedures discussed in earlier sections is recommended, we also recommend

plotting the data. Each data point should be plotted against time using a
time scale (e.g., month, quarter). A plot should be generated for each
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constituent measured in each well. For visual comparison purposes, the scale
should be kept identical from well to well for a given constituent.‘l

Another important application of the plotting procedure {s for detecting
possible trends or drifts in the data from 2 given well. Furthermore, when
visually comparing the plots from several wells within a unit, possible con-
tamination of one rather than all downgradient wells could be detected which

. would then warrant a closer look at that well. 'In general, graphs can provide

highly effective illustrations of the time series, allowing the analyst to
obtain a much greater sense of the data. Seasonal fluctuations or sudden
changes, for example, may become quite evident, thereby supporting the analyst
in his/her decision of which statistical procedure to use. General upward or
dowrward trends, if present, can be detected and the analyst can follow-up
with a test for trend, such as the nonparametric Mann-Kendall test (Mann,
1945; Kendall, 1975). 1If, in addition, seasonality is suspected, the user can
perform the seasonal Kendall test for trend developed by Hirsch et al.
(1982). The reader is also referred to Chapters 16 "Detecting and €stimating
Trends® and 17 "Trends and Seasonality® of Gilbert's "Statistical Methods ‘for
Envirormental Pollution Monitoring,” 1987. In any of the above cases, the
help of a professional statistician {s recommended.

Another important use of data plots is that of {dentifying unusual data
points (e.g., outliers). These points should then be investigated for pos-
sible QC probleas, data entry errors, or whether they are truly outliers.

Many software packages are available for computer graphics, developed for
mainframes, mini-, or microcomputers. For example, SAS features an easy-to-
use plotting procedure, PROC PLOT; where the hardware and software are avail-
able, a series of more sophisticated plotting routines can be accessed through
SAS GRAPH. On wmicrocomputers, almost everybody has his or her favorite
graphics software that they use on a regular basis and no recommendation will
be made as to the most appropriate one. The plots shown in this document were
generated using LOTUS 1-2-3.

Once the data for each constituent and each well are plotted, the plots
should be examined for seasonality and a correction {is recommended should
seasonality be present. A fairly simple-to-use procedure for deseasonalizing
data {s presented in the following paragraphs.

7.2 CORRECTING FOR SEASONALITY

A necessary precaution before constructing a control chart {is to take
into account seasonal variation of the data to minimize the chance of mistak-
ing seasonal effect for evidence of well contamination. This could resuilt
from variations in chemical concentrations with recharge rates during
different seasons throughout the years. If seasonality is present, then
deseasonalizing the data prior to using the combined Shewhart-CUSUM control
chart procedure is recosmended. : .

Many approaches to deseasonalize data exist. If the seasonal pattern is

regular, 1t may be modeled with a sine or cosine function. Moving averages
can be used, or differences (of order 12 for monthly data for example) can be
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used. However, time series models may include rather coqmateu methods for
deseasonalizing the data. Another simpler method exists which #hould be ade-
quate for the situations described in this document. It has the advantage of
being easy to understand and apply, and of providing natural estimates of the
monthly or quarterly effects via the monthly or quarterly means. The method

proposed here can be applied to any seasonal cycle--typically an anmual cycle
for monthly or quarterly data.

NOTE

Corrections for seasonality should be used with great caution as they
represent extrapolation into the future. There should be a good scientific
explanation for the seasonality as well as good empirical evidence for the
seasonality before corrections are made. Larger than average rainfalls for
two or three Augusts in a row does not Justify the belief that there will
never be a drought in August, and this {dea extends directly to groundwater
quality. In addition, the quality (bias, robustness, and variance) of the
estimates of the proper corrections must be considered even in cases where
corrections are calied for. If seasonaifity 1s suspected, the user might want
to seek the help of a professional statistician.

PURPOSE

When seasonalfity is known to exist in a time series of concentrations,
then the data should be deseasonalized prior to constructing control charts in
order to take into account seasonal variation rather than mistaking seasonal

effects for evidence of contamination.

PROCEDURE

The following instructions to adjust a time series for seasonality are
based on monthly data with a yearly cycle. The procedure can be easily modi-
fied to accommodate a yearly cycle of quarterly data.

Assume that N years of monthly data are available. Let X{4 denote the
unadjusted observation for the ith month during the jth year.

Step 1. Compute the average concentration for month {1 over the N-year
period:
X1 - (Xﬂ + e ¢ X"‘)/N

This is the average of all observations taken in different years bdt during
the same month. That 1s, calculate the mean concentrations for all Januarys,
then the mean for all Februarys and so on for each of the 12 months.

Step 2. Calculate the grand mean, X, of all N*12 cbservations,

.12 N 12
Xz : xu/mz- z Yillz
el §=l fa]
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Step 3. Compute the adjusted Concentrations, o

Zyg = Xyg - Xy + X

-

. st
g1 Ik

Computing X;y - 2?1 resoves the average effect of month { from the monthly
data, and adgjng X, the overall mean, places the adjusted 244 values about Ene
same mean, X. It follows that the overall mean adjusted observation, Z,
equals the overall mean unadjusted value, X.

EXAMPLE

Columns 2 through 4 of Table 7-1 show monthly unadjusted concentrations
of a fictitious analyte over a 3-year period.

TABLE 7-1. EXAMPLE COMPUTATION FOR DESEASONALIZING DATA

B

Unad justed o Monthly adjusted
concentrations 3-Month . concentrations
4 average
January 1.99 2.01 2.15 2.05 2.10 2.13 2.27
February 2.10 2.10 2.17 2.12 2.14 2.15 2.21
March 2.12 2.17 2.27 2.19 2.10 2.15 2.25
April 2.12 2.13 2.23 2.16 2.13 2.14 2.24
May 2.11 2.13 2.24 2.16 2.12 2.13 2.25
“June 2.15 2.18 2.26 2.20 2.12 2.15 2.23
July 2.19 2.25 2.31 2.25 2.11 2.16 2.23
August 2.18 2.24 2.32 2.25 2.10 2.16 2.24
September 2.16 © 2.22 2.28 2.22 2.11 2.17 2.22
October 2.08 2.13 2.22 2.14 2.10 2.16 2.24
November 2.05 2.08 2.19 2.11 2.11 2.14 2.25
December 2.08 2.16 2.22 2.16 2.09 2.17 2.23

Overall 3-year average = 2,17

Step 1. Compute the monthly averages across the 3 years. Tese values
are shown in the fifth column of Table 7-l.

Step 2. The grand mean over the 3-year period is calculated to be 2.17.
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Step 3. Within each month and year, subtract the average aonthly con-
centration for that month and add the grand mean. For example, for January
1983, the adjusted concentration becomes

1.99 - 2.05 + 2,17 = 2,11

The adjusted concentrations are shown in the last three columns of Table 7-1.

The reader can check that the average of all 36 adjusted concentrations
equals 2.17, the average unadjusted concentration. Figure 7-1 shows the plot
of the unadjusted and adjusted data. The raw data clearly exhibit seasonality
as well ]as an upwards trend which is less evident by simply looking at the
data table.

INTERPRETATION

- 'As can be seen 1n Figure 7-1, seasonal effects were present in the
data. After adjusting for monthly effects, the seasonality was removed as can
be seen in the adjusted data plotted in the same figure.

7.3 COMBINED SHEWHART-CUSUM CONTROL CHARTS FOR EACH WELL AND CONSTITUENT

Control charts are widely used as & statistical tool in industry as well
as research and development laboratories. The concept of control charts is
relatively simple, which makes them attractive to use. From the population
distribution of a given variable, such as concentrations of a given constit-
uent, repeated ramdom samples are taken at intervals over time. Statistics,
for example the mean of replicate values at a point in time, are computed and
plotted together with upper and/or lower predetermined 1imits on a chart where
the x-axis represents time. If a result falls outside these boundaries, then
the process 1s declared to be "out of control®; otherwise, the process is
declared to be "in control.” The widespread use of control charts s due to
their ease of construction and the fact that they can provide a quick visual
evaluation of a situation, and remedial action can be taken, if necessary.

In the context of ground water monitoring, control charts can be used to
monitor the inherent statistical variatfon of the data collected within a
single well, and to flag anomalous results. Further {investigation of data
points lying outside the established boundaries will be necessary before any
direct action is taken.

A control chart that can be used on a real time basis must be constructed
from a data set large enough to characterize the behavior of a specific
well. It 1is recommended that data from 2 minimum of eight samples within a
year be collected for each constituent at each well to permit an evaluation of
the consistency of monitoring results with the current concept of the hydro-
geology of the site. Starks (1988) recommends a minimum of four sampling
periods at & unit with efght or more wells and a minimum of eight sampling
periods at a unit with:-less than four wells. Once the control chart for the
specific constituent at a given well {is acceptable, then subsequent data
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) 4
" points can be plotted on it to provide a quick evaluatfon as to whether the
process 1s in control. .

The standard assumptions in the use of control charts are that the data
generated by the process, when it is in control, are independently (see Sec-
tion 2.4.2) and normally distributed with a fixed mean y constant variance
c2. The most important assumption {s that of Independence; control charts are
not robust with respect to departure from independence (e.g., serial correla-
tion, see glossary). In general, the sampling scheme will be such that the
possibility of obtaining serially correlated results 1s minimized, as noted in
Section 2. The assumption of normality {s of somewhat less concern, but
should be {investigated before plotting the charts. A transformation (e.g.,
log-transform, square root transform) can be applied to the raw data so as to
obtain errors normally distributed about the mean. An additional situation
which may decrease the effectiveness of control charts is seasonality in the
data. The problem of seasonality can be handled by removing the seasonality
effect from the data, provided that sufficient data to cover at least two
seasons of the same type are available (e.g., 2 years when monthly or quart-
erly seasonal effect). A procedure to correct a time series for seasonality
was shown above in Section 7.2.

PURPOSE

Combined Shewhart-cumulative sum (CUSUM) control charts are constructed
for each constituent at each well to provide a visual tool of detecting both
trends and abrupt changes in concentration levels.

PROCEDURE

Assume that data from at least eight independent sampies of monitoring
are available to provide relfable estimates of the mean, u, and standard
deviation, o, of the constituent's concentration levels in a given well,

Step 1. To construct a combined Shewhart-CUSUM chart, three parameters
need to be selected prior to plotting:

h - a decision internal value
k - a reference value
SCL - Shewhart control 1limit (denoted by U in Starks (1988))

The parameter k of the CUSUM scheme is directly obtained from the value,
D, of the displacement that should be quickly detected; k = 0/2. It is recom-
mended to select k = 1, which will allow a displacement of two standard devia-
tions to be detected quickly. '

When k is selected to be 1, the parameter h is usually set at values of 4
or 5. The parameter h 1s the value against which the cumulative sum in the
CUSUM scheme will be compared. In the context of groundwater monitoring, a
value of h = § 1s recommended (Starks, 1988; Lucas, 1982).
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The upper Shewhart 11mit 1s set at SCL = 4.5 1n units of stlndard devia-
tion. This combination of k = 1, h = §, and SCL = 4.5 was found most appro-
priate for the application of combined Shewhart-cusm charts for groundwater
monitoring (Starks, 1988).

Step 2. Assume that at time period Te mncentration lusuraents
X3s sees Xpq, @re available. Compute their aerade X4,

‘Step 3. Calculate the standardized mean
21 s (21 - u) /ﬁ;/d

where u and ¢ are the mean and standard deviation obtained from prior monitor-’
ing at the same well (at least four sampling periods in a year).

Step 4. At each time period, Ty, compute the cumulative sum, S,, as:
51 s Max [0, (21 - k) + S,_l}

where max {A, B} 1s the maximum of A and B, starting with S, = O.

Step 5. Plot the values of S; versus on & time chart for this com-
bined Shewhart-CLSIM scheme. - Declare an Sout-of-conbrols S1eustion b com
pling period T, 1f for the first time, S; 2 h or Z, 2 SCL. This will indicate
probable contuination at the well further investigations will be
necessary.

REFERENCES

Lucas, J. M. 1982. “"Combined Shewhart-CUSUM Quality Control Schemes.® Jour
nal of Quality Technology. Vol. 14, pp. 51-59.

Starks, T. H. 1988 (Draft). “Evaluation of Control Chart Methodologies for
RCRA Waste Sites."

Hockman, K. K., and J. M. Lucas. 1987. *Varfability Reduction Through Sub-
vessel CUSUM Control.” Jowmal of Quality Technology. Vol. 19, pp. 113-121.

EXAMPLE

The procedure is demonstrated on a set of carbon tetrachloride measure-
ments taken monthly at a compiiance well over a l-year period. The monthly
means of two measurements each (n; = 2 for all {'s) are p :sented in the third
column of Table 7-2 below. Estimates of u and ¢, the mean and standard
deviation of carbon tetrachloride measurements at that particular well were
obtained from & preceding monftoring period at that well; y = 5.5 ug/L and
o= 0.4 ug/L.
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TABLE 7-2. EXAMPLE DATA FOR COMBINED SHEWHART-CUSUM CHART--
CARBON TETRACHLORIDE CONCENTRATION (wg/L)

Sampling - .
perfod  Mean concentration, Standardized X, CUSUM,
Date Ty Xg 1 Ly - k Sy
Jan 6 1 5.52 0.07 <0.93 0
Feb 3 2 5.60 0.35 -0.65 0
ADY' 7 4 5.15 -1024 -2024 0
May 5 5 5.95 1.59 0.59 0.59
Jun 2 6. 5.54 0.14 -0.86 0.00
Jlﬂ 7 7 50‘9 '0.04 ’1.04 0.00
Aug 4 8 6.08 2.05a 1.05 1.05b
Sep 1 9 6.91 4.99 3.99 5.04b
Oct 6 10 6.78 4.532 3.53 8.56b
Nov 3 11 6.71 4.28 3.28 11.84b
Dec 1 12 6.65 4.07 3.07 14.91

Parameters: Mean = 5.50; std = 0.4; k = 13 h = §; SCL = 4.5,
& Indicates "out-of-control® process via Shewhart control limit (Z; > 4.5).
b cusum *out-of-controi® signal (S; > §).

Step 1. The three parameters necessary to construct a combined
Shewhart-CUSUM chart were selected as h = 5; k=1; SCL = 4.5 in units of
standard deviation.

Step 2. Thé monthly means are presented 1in the third column of
Table 7-2. ‘

Step 3. Standardize the means within each sampiing period. These
computations are shown in the fourth column of Table 7-2. For example,
Z, = (5.52 - 5.50)*/2/0.4 = 0.07.

Step 4. Compute the quantities Sy, 1 = 1, ..., 12. For example,

S, = max {0, -0.93 + 0} = 0
sz.W[o. -0n65¢0}.0

s‘ s Bax 0. 0059 + s~} = Bax 0. 0059 + 0} = 0059
s. ',IIX 0. .0086 + 53} s Bax 0. .0085 + 0.59) s Bax (0. -0027] = 0

etc.
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These quantities are shown in the last column of Table 7-2. '

Step 5. Construct the control chart. The y-axis 1s 1in units of stan-
dard deviations. The x-axis represent time, or_the sampling perfods. For
each sampling period, T;, record the value of Xy and Sy. Oraw horizontal
1ines at values h = § th SCL = 4.5. These two lines represent the upper con-
trol limits for the CUSUM scheme and the Shewhart control limit, respec-
tively. The chart for this example data set {s shown in Figure 7-2.

The combined chart indicates statistically significant evidence of con-
tamination starting at sampling period T4. Both the CUSUM scheme and the
Shewhart control 1imit were exceeded by S, and Z,, respectively. Investi-
gation of the situation should begin to confirm contamination and action

:hou}d be required to bring the varfability of the data back to its previous
evel,

INTERPRETATION

The combined Shewhart-CUSUM control scheme was applfed to an example data
set of carbon tetrachlioride measurements taken on a monthly basis at a well.
The statistic used in the construction of the chart was the mean of two
measurements per sampling period. (It should be noted that this method can be
used on an individual measurement as well, in which case n, = 1). Estimates
of the mean and standard deviation of the measurements were available from
previous data collected at that well over at least four sampling periods.

The parameters of the combined chart were selected to be k = 1 unit, the
reference value or allowable slack for the process; h = 5§ ynits, the decision
interval for the CUSUM scheme; and SCL = 4.5 units, the upper Shewhart control
1imit. A1l parameters are in units of ¢, the standard deviation obtained from
the previous monitoring results. Various combinations of parameter values can
be selected. The particular values recommended here appear to be the best for
the 1nitial use of the procedure from a review of the simulations and recom-
mendations in the references. A discussion on this subject 1s given by Lucas
(1982), Hockman and Lucas (1987), and Starks (1988). The choice of the param-
eters h and k of & CUSUM chart {s based on the desired performance of the
chart. The criterion used to evaluate a control scheme is the average number
of samples or time periods before an out-of-control signal is obtained. This
criterion 1s denoted by ARL or average run length. The ARL should be large
when the mean concentration of & hazardous constituent is near {its target
value and small when the mean has shifted too far from the target. Tables
have been developed by simulation methods to estimate ARLs for given combina-
tions of the parameters (Lucas, Hockman and Lucas, and Starks). The user is
referred to these articles for further reading.

7.4 UPDATE OF A CONTROL CHART

The control chart is based on preselected performance parameters as well
as on estimates of y and ¢, the parameters of the distribution of the measure-
ments in question. As monitoring continues and the process 1s found to be in
control, these parameters need periodic updating so as to incorporate this new
information 1into the control charts. Starks (1988) has suggested that in
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general, adjustments in sample means and standard deviations be made after
sampling periods 4, 8, 12, 20, and 32, following the initial monitoring period
recommended to be at least eight sampling perfods. Also, the performance
parameters h, k, and SCL would need to be updated. The author suigests that
hs=5 k=1, and SCL = 4.5 be kept at those values for the first 12 sampling
periods following the initial monitoring plan, and that k be reduced to 0.75
and SCL to 4.0 for all subsequent sampling periods. These values and sampling
period numbers are not mandatory. In the event of an out-of-control state or
a trend, the control chart should not be updated.

7.5 NONDETECTS IN A CONTROL CHART

Regulations require that four independent water samples be taken at each
well at a given sampling period. The mean of the four concentration measure-
ments of a particular constituent 1s used in the construction of a control
chart. Now situations will arise when the concentration of & constituent is
below detection limit for one or more samples. The following approach is
suggested for treating nondetects when plotting control charts.

If only one of the four measurements 1s a nondetect, then replace it with
one half of the detection 1imit (MOL/2) or with one half of the practical
quantitation 1imit (PQL/2) and proceed as described in Section 7.3.

If efther two or three of the measurements are nondetects, use only the
quantitated values (two or one, respectively) for the control chart and pro-
ceed as discussed sarlier in Section 7.3.

If all four measurements are nondetects, then use one half of the detec-
tion 1imit or practical quantitation limit as the value for the construction
of the control chart. This is an obvious situation of no contamination of the
well.

In the event that a control chart requires updating and & certain propor-
tion of the measurements {is below detection limit, then adjust the mean and
standard deviation necessary for the control chart by using Cohen's method
described in Section 8.1.4. In that case, the proportion of nondetects
applies to the pool of data available at the time of the updating and would
include a1l nondetects up to that time, not just the four measurements taken
at the last sampling period. :

CAUTIONARY NOTE: Control charts are a useful suppiement to other statistical
techniques because they are graphical and s.mple to use. However, it is
inappropriate to construct a control chart on wells that have shown evidence
of contamination or an increasing trend (see §264.97(a)(1)(1)). Further, con-
tamination may not be present in a well in the form of a steadily imcreasing
concentration profile--it may be present intermittently or may increase in a
step function. Therefore, the absence of an increasing trend does not
necessarily prove that a release has not occurred.
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SECTION 8
MISCELLANEOUS TOPICS

This chapter contains a variety of special topics that are relatively
short and self contained. These topics include methods to deal with data
below the limit of detection and methods to check for, and deal with outliers
or extreme values in the data.

8.1 LIMIT OF DETECTION

In a chemical analysis some compounds may be below the detection limit
(OL) of the analytical procedure. These are generally reported as not
detected (rather than as zero or not present) and the appropriate limit of
detection {is usually given. Oata that include not detected results are a
special case referred to as censored data in the statistical literature. For
compounds not detected, the concentration of the compound {1s not known.
Rather, 1t 1s only known that the concentration of the compound is less than
the detection limit.

There are a variety of ways to deal with data that include values below
detection. There is no general procedure that is applicable in all cases.
However there are some general guidelines that usually prove adequate. If
these do not cover a specific sfituation, the user should consult a profes-
:1ona113tatist1c1m for the most appropriate way to deal with the values below
etection.

A susmary of suggested approaches to deal with data below the detection
1imit {s presented as Table 8-1. The method suggested depends on the amount
of data below the detection limit. For small amounts of below detection
values, simply replacing a "NO" (not detected) report with a small number, say
the detection 1imit divided by two, and proceeding with the usual analysis is
satisfactory. For moderate amounts of below detection 1imit data, a more
detailed adjustment {s appropriate, while for large amounts one may need to
onu{ c:ns‘lder whether & compound was detected or not as the variable of
analysis.

The meaning of small, moderate, and large above s subject to judgment.
Table 8-1 contains some suggested values. It should be recognized that these
values are not hard and fast rules, but are based on judgment. If there is a
question about how to handle values below detection, consult a statistician.
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TABLE 8-1.

bt

METHODS FOR BELOW DETECTION LIMIT VALUES

S viasim il Statistical Section of
in the Data Base Analysis Method Guidance Document
Less than 15% Replace NDs with Section 8.1.1
MDL2 or PQL2,
then proceed with
parametric procedures:
* ANOVA Section 5.2.1
» Tolerance Units Section 5.3
 Prediction Intervals Section 5.4
» Control Charts Section 7
Between 15 and 50% Use NDs as ties,
then proceed with
Nonparametric ANOVA Section 5.2.2
or
use Cohen's adjustment, Section 8.1.3
then proceed with:
» Tolerance Limits Seaction 5.3
« Confidence Intervals Se- an 6.2.1
e Control Charts Se a7
More than 50% Test of Proportions Section 8.1.2
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It should be noted that the nonparametric methods presentsd earlier auto-
watically deal with values below detection by regarding them as all tied at a
level below any quantitated resuits. The nonparametric methods may be used if
there is a moderate amount of data below detection. If the proportion of non-
quantified values in the data exceeds 25%, these methods should be used with

caution. They should probably not be used 1f less than half of the data con-
sists of quantified concentrations.

8.1.1 The OL/2 Method

The amount of data that are below detection plays an important role in
selecting the method to deal with the 1imit of detection problem. If a small
proportion of the observations are not detected, these may be replaced with a
small number, usually the method detection limit divided by 2 (MDL/2), and the
usual analysis performed. This 1s the recosmmended method for use with the
analysis of various procedure of Section 5.2.1. Seek professional help 1f in
doubt about dealing with values below detection 1imit. The results of the
analysis are generally not sensitive to the specific choice of the replacement
number, : .

As a guideline, 1f 15X or fewer of the values are not detected, replace
them with the method detection 1imit divided by two and proceed with the
appropriate analysis using these modified values. Practical quantitation
1imits (PQL) for Appendix IX compounds were published by EPA in the Federal
Register (Vol 52, No 131, July 9, 1987, pp 25947-25952). These give practical
quantitation limits by compound and analytical method that may be used in
replacing a small amount of nondetected data with the quantitation 1limit
divided by 2. If approved by the Regional Administrator, site specific PQL's
may be used in this procedure. If more than 15X of the values are reported as
not detected, 1t is preferable to use a nonparametric method or 2 test of pro-
portions.

8.1.2. Test of Proportions

If more than 50% of the data are below detection but at least 10X of the
observations are quantified, a test of proportions may be used to compare the
background well data with the complfance well data. Clearly, if none of the
background well observations were above the detection limit, but all of the
compiiance well observations were above the detection 1imit, one would suspect
contamination. In general the difference may not be as obvious. However, a
higher proportion of quantitated values in compliance wells could provide evi-
dence of contamination. The test of proportions 1{s a method to determine
whether a difference in proportion of detected values in the background well
observations and compliance well cbservations provides statistically signifi-
cant evidence of contamination.

The test of proportions should be used when the proportion of quantified
values is small to moderate (1.e., between 10X and 50%). If very few quanti-
fied values are found, a wethod based on the Poisson distribution may be used
as an alternative approach. A method based on a tolerance limit for the
number of detected compounds and the maximum concentration found for any
detected compound has been proposed by Gibbons (1988). This alternative would

8-3



be appropriate when the number of detected compounds is qu:-2 small relative
to 1the1 number of compounds analyzed for as might occz.r 4n detection
monitoring. -

PURPOSE -

The test of proportions determines whether the proportion of compounds
detected in the compliance well data differs significantly from the proportion
of compounds detected in the background well data. If there is a significant
difference, this is statistically significant evidence of contamination.

PROCEDURE

The procedure uses the normal distribution approximation to the binomial
distribution. This assumes that the sample size is reasonably large. Gener-
ally, 1f the proportion of detected values {is denoted by P, and the sample
size 1s n, then the normal approximation {is adequate, provided that nP and
n(1-P) both are greater than or equal to 5.

Step 1. Determine X, the number of background well samples in which the
compound was detected. Let n be the total number of background well samples -
analyzed. Compute the proportion of detects:

Pu = x/n

Step 2. Determine Y, the number of compliance well samples in which the
compound was detected. Let M be the total number of compliance well samples
analyzed. Compute the proportion of detects:

5d s y/m
Step 3. Compute the standard error of the difference in proportions:
Sp = ([(xsy)/(ma) (1 - (xey)/(ma)1(1/n + 1/m]}1/2
and form the statistic:
" Te (B - Py)/Sp

Step 4. Compare the absolute value of Z to the 97.5th percentile from
the standard normal distribution, 1.96. If the absolute value of I exceeds
1.96, this provides statistically significant evidence at the 5% significance
level that the proportion of compliance well samples where the compound was
detected exceeds the proportion of background well samples where the compound
was detected. This would be interpreted as evidence of contamination. (The

two-sided test is used to provide {information about differences in either
direction.) . .

EXAMPLE

Table 8-2 contains data on cadmium concentrations measured in background
well and compliance wells at a facility. In the table, "BOL" 1s used for
below detection limit. .
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TABLE 8-2. EXAMPLE DATA FOR A TEST OF PROPORTIONS®

Cadmium concentration (ug/L)

at background well

Cadmium concentration (ug/L)
at compliance wells

(24 samples) (64 samples)
0.1 BOL 0.12 BOL 0.024
0.12 80L 0.08 BOL BOL
BOL* B0L BOL - BOL BOL
0.26 BOL 0.2 0.11 BOL
80L BOL 0.06 BOL
0.1 0.1 BOL BOL
80L BOL 0.23 0.1
0.014 0.012 BOL 0.04
BOL 80L 0.11 BOL
BOL BOL 8oL BOL
8oL BOL 0.031 0.1
BOL 8OL 8oL BOL
BOL BOL BOL 0.0l
0.12 0.12 BOL BOL
BOL 0.07 BOL 80L
0.21 BOL 80L 80L
80L 0.19 0.12 BOL
0.12 BOL 0.08 8OL .
80L 0.1 80L
BOL BOL 0.26
0.0l 8oL
BOL 0.02
. BDL BOL

“80L means below detection limit.



Step 1. Estimate the proportion above detection fn the ,background
wells. As shown in Table 8-2, there were 24 samples from backgrdund wells

analyzed for cadwium, so ne 24. Of these, 16 were below detection and x = 8
were above detection, so P, = 8/24 = 0.333. .o 4

N
Step 2. Estimate the proportion above detection in. the compliance
wells. There were 64 samples from compliance wells analyzed for cadmium, with
gg/g:lwodg;:gcﬁon and 24 detected values. This gives m = 64, y = 24, so Py =

Step 3. Calculate the standard error of the difference in proportions.
Sp = ([(8+24)/(24+64)][1-(8+24)/(24+64)](1/24 +1/64)}}/2 = 0,115

Step 4. Form the statistic Z and compare 1t to the normal
distribution.

7 20:375 -0.333 _ .37

which is less in absolute value than the value from the normal distribution,
1.96. Consequently, there is no statistically significant evidence that the
proportion of samples with cadmium levels above the detection limit differs in
the background well and compliance well samples.

INTERPRETATION

Since the proportion of water samples with detected amounts of cadmium in
the compliance wells was not significantly different from that in the
background wells, the data are interpreted to provide no evidence of contam-
ination. Had the proportion of samples with detectable levels of cadmium in
the compliance wells been significantly higher than that in the background
wells this would have been evidence of contamination. Had the proportion been
significantly higher in the background wells, addftional study would have been
required. This could indicate that contamination was migrating from an off-
site source, or it could mean that the hydraulic gradient had been incorrectly
estimated or had changed and that contamination was occurring from the facil-
ity, but the ground-water flow was not in the direction originally estimated.
Mounding of contaminants in the ground water near the background wells could
also be a possible explanation of this observance.

8.1.3 Cohen's Method

If a confidence interval or a tolerance interval based upon the normal
distribution {s being constructed, a technique presented by Cohen (1959)
specifies a method to adjust the sample mean and sample standard deviation to
account for data below the detection - imit. The only requirements for the use
of this technique 1s that the data are normally distributed and that the
detection limit be always the same. This technique is demonstrated below.
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PURPOSE d

Cohen's method provides estimates of the sample mean and standard devia-
tion when some (< 50%) observations are below detection. These estimates can
then be used to construct tolerance, confidence, or prediction intervals.

PROCEDURE

Let n be the total number of observations, m represent the number of data
- points above the detection 1imit (DL), and Xy represent the value of the ith
constituent value above the detection limit.

Step 1. Compute the sample mean ;d from the data above the detection
1imit as follows:
- 1 "
Xa * & 1£1%4

Step 2. Compute the sample variance Sa from the data above the detection
1imit as follows:

m - n 1 m 2
2 R0 g - g GEXy)

sd -1 w-l

Step 3. Compute the two parameters, h and y (lowercase gamma), as
follows: '

(x-0L)2

where n 1s the total number of observations (i.e., above and below the
detection 1imit), and where DL 1s equal to the detection 1imit.

These values are then used to determine the value of the parameter A from
Table 7 1n Appendix B.

Step 4. Estimate the corrected sample mean, which accounts for the data
below detection 1imit, as follows: .

2 - ;d - ;(-X.d - OL)

Step 5. Estimate the corrected sample standard deviation, which accounts
for the data below detection 1imit, as follows:
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s = (53+a(xg - 01)H'/? :

4

Step 6. Use the corrected values of X and S in the procedure for con-
s::ruc?ggl)a tolerance {interval (Section 5.3) or a confidence interval (Sec-
tion 6.2.1).

REFERENCE

Cohen, A. C., Jr. 1959, *"Simplified Estimators for the Normal Distribution
When Samples are Singly Censored or Truncated."® Technometrics. 1:217-237.

EXAMPLE

Table 8-3 contains data on sulfate concentrations. Three observations of
the 24 were below the detection 1limit of 1,450 wg/L and are denoted by
*< 1,450" in the table.

TABLE 8-3. EXAMPLE DBATA FOR COHEN'S TEST

Sulfate concentration (mg/L)

1,850
1’760
< 1,450
1,710
1,575
1,475
1,780
1,790
1,780
< 1,450
1,790
1’800
< 1,450
1,800
1,840
1,820
1,860
1,780
1,760
1,800
1,900
1,770
1,790
1,780
OL = 1,450 mg/L

Note: A symbol "<’ before a number indicates that the value
is not detected. The number following is then the limit of
detection.



Step 1. Calculate the mean from the m = 21 values above detéction
xg = 1,771.9
Step 2. Calculate the sample variance from the 21 quantified values
51 = 8,593.69 |
Step 3. ODetermine
h = (24-21)/24 = 0.125
and
v = 8593.69/(1771.9-1450)2 = 0,083
_ Enter, Table 7 of Appendix B at h = 0.125 and y = 0.083 to determine the
T s uon s o 1o et 1 0, T Sl donie
REMARK

For the interested reader, the details of the double linear interpolation
are provided.

The values from Table 7 between which the user needs to interpolate are:

h=0.10 h=0.15
0.05 0.11431 0.17935
0.10 0.11804 0.18479

There are 0.025 units between 0.01 and 0.125 on the h-scale. There are
0.05 units between 0.10 and 0.15. Therefore, the value of interest (0.125)
1ies (0.025/0.05 * 100) = S0X of the distance along the interval between 0.10
and 0.15. To 1inearly interpolate between the tabulated values on the h axis,
the range between the values must be calculated, the value that 1s 50% of the
distance along the range must be computed and then that value must be added to
the lower point on the tabulated values. The result 1s the {nterpolated
value. The interpolated points on the h-scale for the current exampie are:

0.1793§ - 0.11431 = 0.06504 0.06504 * 0.50 = 0.03252
0.11431 + 0.03252 = 0.14683

0.18479 - 0.11804 = 0.06675 0.06675 * 0.50 = 0.033375
0.11804 + 0.033375 = 0.151415 .

On the y-axis there are 0.033 units between 0.05 and 0.083. There are
0.05 units between 0.05 and 0.10. The value of {interest (0.083) 1lies
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-(0.0330.05 * 100) = 66X of the distance along the interval botnqn 0.05 and
0.10. The interpolated point on the y-axis is:

00141415 - 0014683 = 0.“585 o.w4585 * 0066 = 0.&30261
0.14683 + 0.0030261 = 0.14986 ‘ :

Thus, A = 0.14986.

Step 5. The corrected sample mean and standard deviation are then esti-
mated as follows:

X = 1,771.9 - 0.14986 (1,771.9 - 1,450) = 1,723.66
S = [8,593.69 + 0.14986(1,771.9 - 1,450)2]1/2 « 155.31

Step 6. These modified estimates of the mean, X = 1723. 66, and of the
standard deviation, S = 155.31, would be used in the tolerance or confidence
interval procedure. For example, if the sulfate concentrations represent
background at a facflity, the upper 95X tolerance 1imit becomes

1723.7 + (155.3)(2.309) = 2082.3 mg/L

Observations from compifance wells in excess of 2,082 mg/L would give sta-
tistically significant evidence of contamination.

INTERPRETATION

Cohen's method provides maximum 1ikelifhood estimates of the mean and
variance of a censored normal distribution. That is, of observations that
follow a normal distribution except for those below a limit of detection,
which are reported as “not detected.® The modified estimates reflect the fact
that the not detected observations are below the 1imit of detection, but not
necessarily zero. The large sample properties of the modified estimates allow
for them to be used with the normal theory procedures as a means of adjusting
for not detected values in the data. Use of Cohen's method in more compli-
cated calculations such as those required for analysis of variance procedures,
requires special consideration from a professional statistician.

8.2 OUTLIERS

A ground-water constituent concentration value that is much different
from most other values in a data set for the same ground-water constituent
concentration can be referred to as an ‘outlifer.® Possible reasons for
outlfiers can be:

. A catastrophic umtural occurrence such as a spill;

. Inconsistent sampliing or anmalytical chemistry methodology that may
result in laboratory contamination or other anomalies;

o Errors in the transcription of data values or decimal points; and
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e True but extreme ground-water constituent concentration measure-
ments.

There are several tests to determine 1f there is stltixtica1 evidence
that an observation is an outlier. The reference for the test presented here
{s ASTM paper E178-75. .

PURPOSE

The purpose of a test for outliers is to determine whether there is
statistical evidence that an observation that appears extreme does not fit the
distribution of the rest of the data. If a suspect observation is identified
as an outlier, then steps need to be taken to determine whether it is the
result of an error or a valid extreme observation.

PROCEDURE

Let the sample of observations of a hazardous constituent of ground water
be denoted by X;, ..., X,. For specificity, assume that the data have been
ordered and that the largest observation, denoted by X, is suspected of being
an outlier. Generally, {inspection of the data suggests values that do not
appear to belong to the data set. For example, {f the largest observation is
an order of magnitude larger than the other observations, it would be suspect.

Step 1. Calculate the mean, X and the standard deviation, S, of the data
including all observations.

Step 2. Form the statistic, Tp:
 Ta= (g - X)/S

Note that T, 1s the d1fference between the largest observation and the sample
mean, d1v1ded by the sample standard deviation.

Step 3. Compare the statistic T, to the critical value given the sampie
size, n, in Table 8 in Appendix B. If the T, statistic exceeds the critical

value from the table, this {s evidence that the suspect observation, X,, 1s a
statistical outlier.

Step 4. If the value is identified as an outlier, one of the actions
outlined below should be taken. (The appropriate action depends on what can
be Tearned about the observation.) The records of the sampling and analysis
of the sample that led to it should be investigated to determine whether the
outlier resulted from an error that can be identified.

. If an error (in transcription, dilution, analytical procedure, etc.)
can be identified and the correct value recovered, the observatfon should be
replaced by 1ts corrected value and the appropriate statistical analysis done
with the corrected value.
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) If it can be determined that the observation is In error, but the
correct value cannot be determined, then the observation should be deleted
from the data set and the appropriate statistical analysis performed. The
fact that the observation was deleted and the reason for {its delation should
be reported when reporting the results of the statistical analysis.

. If no error in the value can be documented then it must be assumed
that the observation is a true but extreme value. In this case it must not be
adltered. It may be desirable to obtain another sample to confirm the observa-
tion. However, analysis and reporting should retain the observation and state
t?at no error was found in tracing the sample that led to the extreme observa-
tion.

EXAMPLE

Table 8-4 contains 19 values of total organic carbon (TOC) that were
obtained from a monitoring well. Inspection shows one value which at 11,000
mg/L 1s nearly an order of magnitude larger than most of the other observa-
tions. It is a suspected outlier.

Step 1. Calculate the mean and standard deviation of the data.

X = 2300 and § = 2325.9

TABLE 8-4. EXAMPLE DATA FOR TESTING FOR AN OUTLIER

. Total organic carbon (mg/L)

LR

Oy e ol ol

E3EkE

g

saas
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Step 2. Calculate the statistic T,,.
T1e = (11000-2300)/2325.9 = 3.74

Step 3. Referring to Table 8 of Appendix B for the upper 5% significance
level, with n = 19, the critical value 1s 2.532. Since the value of the
statistic T, = 3.74 {s greater than 2.532, there is statistical evidence
that the largest observation is an outlier.

Step 4. [In this case, tracking the data revealed that the unusual value
of 11,000 resuited from a keying error and that the correct value was 1,100.
This correction was then made in the data.

INTERPRETATION

An observation that is 4 or § times as large as the rest of the data is
generally viewed with suspicion. An observation that {s an order of magnitude
different could arise by a common error of misplacing a decimal. The test for
an outlier provides a statistical basis for determining whether an observation
is statistically different from the rest of the data. I[f it {s, then 1t is a
statistical outlier. However, a statistical outlier may not be dropped or
altered just because it has been {dentified as an outlier. The test provides
& formal identification of an observation as an outlier, but does not identify
the cause of the difference.

Whether or not & statistical test is done, any suspect data point should
be checked. An observation may be corrected or dropped only if it can be
determined that an error has occurred. I[f the error can be jdentified and
corrected (as in transcription or keying) the correction should be made and
the corrected values used. A value that {s demonstrated to be incorrect may
be deleted from the data. However, {f no specific error can be documented,
the observation must be retained in the data. Identification of an observa-
tion as an outlier but with no error documented could be used to suggest
resampling to confirm the value.
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GENERAL STATISTICAL CONSIDERATIONS

FALSE ALARMS OR TYPE I ERRORS

The statistical analysis of data from ground-water monitoring at RCRA
sites has as its goal the determination of whether the data provide evidence
of the presence of, or an increase in the level of contamination. In the case
of detection monitoring, the goal of the statistical analysis is to determine
whether statistically significant evidence of contamination exists. In the
case of compliance monitoring, the goal 1s to determine whether statistically
significant evidence of concentratfon levels exceeding complifance limits
exists. In monitoring sites in corrective action, the goal {s to determine
whether levels of the hazardous constituents are still above compliance limits
or have been reduced to, at, or below the compliance limit.

These questions are addressed by the use of hypothesis tests. In the
case of detection monitoring, it is hypothesized that a site is not contami-
nated; that fs, the hazardous constituents are not present in the ground
water. Samples of the ground water are taken and analyzed for the constitu-
ents in question. A hypothesis test s used to decide whether the data indi-
cate the presence of the hazardous constituent. The test consists of calcu-
lating one or more statistics from the data and comparing the calculated
results to some prespecified critical levels.

In performing a statistical test, there are four possible outcomes. Two
of the possible outcomes result in the correct decision: (a) the test may
correctly indicate that no contamination {is present or (b) the test may cor-
rectly indicate the presence of contamination. The other two possibilities
are errors: (c) the test may indicate that contamination is present when in
fact 1tt is not or (d) the test may fail to detect contamination when it is
present. :

If the stated hypothesis {is that no contamination {s present (usually
called the mnull hypothesis) and the test indicates that contamination f{s
present when in fact 1t is not, this 1s called a Type I error. Statistical
hypothesis tests are generally set up to control the probability of Type I
error to be no more than a specified value, called the significance level, and
usually denoted by a. Thus in detection monitoring, the mull hypothesis would
be that the level of each hazardous constituent is zero (or at least below
detection). The test would reject this hypothesis {f some measure of concen-
tration were too large, indicating contamination. A Type | error would be a
false alarm or a triggering event that {s inappropriate.

In compliance monitoring, the null hypothesis is that the level of each
hazardous constituent 1s less than or equal to the appropriate coqp}iance
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1imit. For the purpose of setting up the statistical procedure, the simple
null hypothesis that the level {s equal to the compliance limfit rwould be
used. As 1in detection monitoring, the test would indicate centamihation if
some measure of concentration s too large. A false alarm or Type I error
would occur 1f the statistical procedure indicated that 1levels axceed the
appropriate complfance limits when, in fact, they do not. Such an error would
be a false alarm in that it would indicate falsely that compliance 1imits were
being exceeded. ’

PROBABILITY OF DETECTION AND TYPE II ERROR

The other type of error that can occur is called a Type II error. It
occurs 1f the test fails to detect contamination that is present. Thus a
Type II error is a missed detection. While the probability of a Type I error
can be specified, since it is the probability that the test will give a falise
alarm, the probability of a Type Il error depends on several factors, includ-
ing the statistical test, the sample size, and the significance level or prob-
ability of Type I error. In addition, 1t depends on the degree of contamina-
tion present. In general, the probability of a Type II error decreases as the
level of contamination increases. Thus a test may be 1ikely to miss low lev-
els of contamination, less 1ikely to miss moderate contamination, and very
uniikely to miss high levels of contamination.

One can discuss the probability of a Type Il error as the probability of
4 missed detection, or one can discuss the compiement (one minus the prob-
ability of Type II error) of this probability. The complement, or probability
of detection, is also called the power of the test. It depends on the magni-
tude of the contamination so that the power or probability of detecting con-
tamination increases with the degree of contamination.

If the probability of a Type I error is specified, then for a given sta-
tistical test, the power depends on the sample size and the alternative of
interest. In order to specify a desired power or probability of detection,
one must specify the alternative that should be detected. Since generally the
power will increase as the alternative differs more and more from the null
hypothesis, one usually tries to specify the alternative that is closest to
the null hypothesis, yet enough different that it is {mportant to detect.

In the detection monitoring situation, the mull hypothesis is that the
concentration of the hazardous constituent is zero (or at least below detec-
tion). In this case the alternative of interest is that there is a concen-
tration of the hazardous constituent that 1s above the detection 1imit and is
large enough so that the monitoring procedure should detect it. Since it is a
very difficult problem to select & concentration of each hazardous constituent
that should be detectable with specified power, a more useful approach {s to
determine the power of a test &t several zlternatives and decide whether the
procedure is acceptable on the basts of this power function rather than on the
power against a single alternmative.

In order to increase the power, a larger sample must be taken. This
would mean sampling at more frequent intervals. There is & 1imit to how much
can be achieved, however. In cases with limited water flow, it may not bde
possible to sample wells as frequently as desired. If samples close together
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in time prove to be correlated, this correlation reduces the {information
available from the different samples. The additional cost of sampling and
analysis will also impose practical limitations on the sample size that can be
used. ) -

Additional wells could also be used to increase the performance of the
test. The additional monitoring wells would primarily be helpful in ensuring
that a piume would not escape detection by missing the monitoring wells. How-
ever, in some situations the additional wells would contribute to a larger
sample size and so improve the power.

In compliance monitoring the emphasis is on determining whether addi-
tional contamination has occurred, raising the concentration above a compli-
ance l1imit. If the compliance limit 1s determined from the background well
levels, the null hypothesis is that the difference between the background and
compliance well concentrations {s zero. The alternative of interest is that
the compliance well concentration exceeds the background concentration. This
situation is essentially the same for power considerations as that of the
detection monitoring situation.

If compliance monitoring is relative to a compliance limit (MCL or ACL),
specified as a constant, then the sftuation is different. Here the null hypo-
thesis is that the concentration is less than or equal to the compliance
1imit, with equality used to establiish the test. The alternative is that the
concentration {s above the compliance limit. In order to specify power, a
minimum amount above the compliance 1imit must be established and power speci-
fj‘ed forithat alternative or the power function evaluated for several possible
alternatives. )

SAMPLE DESIGNS AND ASSUMPTIONS

As discussed in Section 2, the samplie design to be employed at a regu-
lated unit will prisarily depend on the hydrogeoiogic evaluation of the
site. MWells should be sited to provide multiple background wells hydrauli-
cally upgradient from the regulated unit. The background wells allow for
determination of natural spatial variability in ground-water quality. They
also allow for estimation of background levels with greater precision than
would be possible from a single upgradient well. Compliance wells should be
sited hydraulically downgradient to each regulated unit. The location and
spacing of the wells, as well as the depth of sampling, would be determined
from the hydrogeology to ensure that at least one of the wells should inter-
cept 2 plume of contamination of reasonable size.

Thus the assumed sample design is for a sample of wells to include a
number of background wells for the site, together with & number of compliance
wells for each regulated unit at the site. In the event that a site has only
8 single regulated unit, there would be two groups of wells, background and
compliance. If a site has multiple regulated units, there would be a set of
compliance wells for each regulated unit, allowing for detection monitoring or
compliance monitoring separately at each regulated unit. :

Oata from the analysis of the water at each well are initially aﬁsdned to
follow a normal distribution. This is likely to be the case for detection
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monitoring of analytes in that levels should be near zero and errors would
11kely represent {instrument or other sampling and analysis varfabflity. If
contamination {is present, then the distribution of the data may be skewed to
the right, giving a few very large values. The assumption of normality of
errors in the detection monitoring case is quite reasonable, with deviations
from normality 1ikely indicating some degree of contamination. Tests of nor-

mality are recommended to ensure that the data are adequately represented by
the normal distr1but10_n.

In the complfance monitoring case, the data for each analyte will again
initially be assumed to follow the normal distribution. In this case, how-
ever, since there is a nonzero concentratfon of the analyte in the ground
water, normality 1s more of an issue. Tests of normality are recommended. If
evidence of nonnormality 1s found, the data should be transformed or a
distribution-free test be used to determine whether statistically significant
evidence of contamination exists.

The standard situation would result in multiple samples (taken at dif-
ferent times) of water from each well. The wells would form groups of back-
ground wells and compliance wells for each regulated unit. The statistical
procedures recommended would allow for testing each compliance well group
against the background group. = Further, tests among the compliance wells
within a group are recommended to determine whether a single well might be
intercepting an 1solated plume. The specific procedures discussed and recom-
mended in the preceding sections should cover the majority of cases. They did
not cover all of the possibilities. In the event that none of the procedures
described and 1llustrated appears to apply to a particular case at a given
regulated site, consultation with a statistician should be sought to determine
an appropriate statistical procedure.

The following approach is recommended. If a regulated unit is in detec-
tion monitoring, it will remain in detection monitoring until or unless there
is statistically significant evidence of contamination, in which case it would
be placed in compliance monitoring. Likewise, 1f & regulated unit is in com-
pliance monitoring, it will remain in compliance monitoring unless or until
there {s statistically significant evidence of further contamination, in which
case it would move into corrective action. '

In monitoring a 'regulated unit with multiple compliiance wells, two types
of significance levels are considered. One is an experimentwise significance
level and the other is & comparisonwise significance level. When a procedure
such as analysis of variance 1s used that considers several compliance wells
simultaneously, the significance 1s an experimentwise significance. If
individual well comparisons are made, each of those comparisons is done at a
comparisonwise significance level.

The fact that many cmparisons will be made at a regulated unit with
sultiple compiiance wells .an make the probability that at least one of the
comparisons will be incorrectly significant too high. To control the false
positive rate, multiple arisons procedures are allowed that control the
experimentwise significance level to be 5X. That 1s, the probability that one
or more of the comparisons will falsely indicate contamination 1s controlled
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at 5%. However, to provide some assurance of adequate power tp detect real
contamination, the comparisonwise significance level for comparing each
individual well to the background is required to be no less than 1X.

Control of the experimentwise significance level via sultiple comparisons
procedures is allowed for comparisons among several wells. However, use of an
experimentwise significance level for the comparisons among the different haz-
ardous constituents {s not permitted. Each hazardous constituent to be moni-
tored for in the permit must be treated separately.

A-6



GLOSSARY OF STATISTICAL TERMS

(underlined terms are explained subsequently)

Alpha (a)

Alpha-error

Alternative hypothesis

Arithmetic average

Confidence coefficient

Confidence 1{nterval

Cumulative distribution
function

Distribution-free

A greek letter used to denote the significance
level or probability of a Type I error.

Sometimes used for Type [ error.

An alternative hypothesis specifies that the
underlying distribution differs from the null
hypothesis. The alternative hypothes s usually
specifies the value of a parameter, “or example
ghe mean concentration, tkat one is trying to
etect.

The arithmetic average of a set of observations
is their sum divided by the number of
observations.

The confidence coefficient of a confidence
interval for a parameter is the probabi1ity that
the random interval constructed from the sample
data contains the true value of the parameter.
The confidence coefficient is related to the
significance level of an associated hypothesis
test by the fact that the significance level (in
percent) 1s one hundred minus the confidence
coefficient (in percent).

A confidence interval for a parameter {s a
random interval constructed from sample data in
such & way that the probability that the
interval will contain the true value of the
parameter is a specified value.

Distribution function.

This 1s sometimes used as a synonym for
nonparametric. A statistic is distribution-free
17 its distribution does not depend upon which
specific distribution function (in a large
class) the observations follow.
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Distribution function

Experimentwise error rate

Hypothesis

Independence

Med{an

Multiple comparison
procedure

The distribution function for & random variable,
X, 1s & function that specifies the probability
that X 1s Tess than or equal to t, for all real
values of t.

This term refers to multiple arisons. If a
total of n decisions are made about comparisons
(for example of compliance wells to background

wells) and x of the decisions are wrong, then
the experimentwise ervor rat i¢ /n,

This 1s a formal statement o . parameter of
interest and the distribut 1 . @& statistic.
It 4s usually used as & nu:1 hypothesis or an
alternative hypothesis. For example, the null
hypothesis might specify that ground water had a
zero concentration of benzene and that analyti-
cal errors followed a normal distribution with
mean zero and standard deviation 1 ppm.

A set of events are independent 1{f the
probability of the Jjoint occurrence of any
subset of the events factors into the product of
the probabilities of the events. A set of
observations 1{1s {independent {f the Joint
distribution function of the random errors
assocfated with the observations factors into
the product -of the distribution functions.

Arithmetic average.

This is the middle value of a sample when the
observations have been ordered from least to
greatest. If the number of observations {s odd,
it s the middle observation. If the number of
observations is even, it is customary to take
the midpoint between the two middle observa-
tions. For a distribution, the medfan 1is a
value such that the probability is one-half that
2«! 1observation will fall above or below the
an.

This 1s a statistical procedure that makes a
large number of decisions or comparisons on one
set of data. For exampie, at 2 sampling period,
several compliance well concentrations may be
compared to the background well concentration.
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Nonparametric statistical
procedure

Normal population,
normality

Null hypothesis

One-sided test

‘One-sided tolerance limit
One-sided confidence 1imit
Order statistics

Outlier

Parameter

Percentile

A nonparametric statistical procedure is a
statistical procedure that &as -Yesirable
properties that hold under aild assumptions
regarding the data. Typically the procedure is
valid for a large class of distributions rather
than for a specific distribution of the data
such as the normal. )

The errors assoctated with the observations
follow the normal or Gaussian distribution
function.

A mnull hypothesis specifies the underiying
distribution of the data completely. Often the
mull distribution specifies that there 1s no
difference between the mean concentration in
background well water samples and compliance
well water samples.

A one-sided test is appropriate if concentra-
tions higher than those specified by the null
hypothesis are of concern. A one-sided test
only rejects for differences that are large and
in a prespecified direction.

This 1s an upper 1imit on observations from a
specified distribution.

This s an upper limit on a parameter of a
distribution.

The sample values observed after they have been
arranged in increasing order.

An outlier 1s an observation that {s found to
11e an unusually long way from the rest of the
observations 1n a series of replicate
observations.

A parameter is an unknown constant associated
with a population. For example, the mean
concentration of a hazardous constituent in
ground water is a parameter of interest.

A percentile of a distribution is a value below

which a specified proportion or percent of the
observations from that distribution will fall.
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Power

Sample standard deviation

Sample variance

Serial correlation

Significance level

Type I error

Type II error

The power of a test is the probabifiity that the
test will reject under a specified alternative
hypothesis. This {s one minus the probability

of a Type Il error. The power 13 a measure of
the test’s ability to detect a difference of
specified size from the null hypothesis.

This {s the square root of the sample variance.

Thi. a statistic (computed on a sample of
¢ 3e fons rather than on the whole popula-
t n :at measures the variability or spread of
the .. ;arvations about the sample mean. It is
the sum of the squared differences from the
sample mean, divided by the number of observa-
tions less one.

This is the correlation of observations spaced a
constant interval apart in a series. For exam-
ple, the first order serial correlation is the
correlation between adjacent observations. The
first order serial correlation 1s found by cor-
relating the pairs consisting of the first and
second, second and third, third and fourth,
etc., observations.

Sometimes referred to as the alpha level, the
significance level of a test is the probability
of falsely rejecting a true null hypothesis.
The probability-of a Type I error.

A Type [ error occurs when a true null
hypothesis i{s rejected erroneously. In the
monitoring context a Type I error occurs when a
test incorrectly indicates contamination or an
increase in contamination at a regulated unit.

A Type Il error occurs when one fails to reject
a mull hypothesis that {is false. In the moni-
toring context, a Type II error occurs when
monitoring fails to detect contamination or an
increase in & concentration of a hazardous
constituent.
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TABLE 1. PERCENTILES OF THE x2 ntmxsunon NITH ¢
v DEGREES OF FREEDOM, x3 p

X 0750 0900 090 0315 0995 099

132 2.706 3841 3024 &6 7579 1083
a2m 4.605 3.991 3 9218 10.60 1R
4.108 €251 7.813 9.348 1134 1284 167
5.385 .77 9488 1114 1328 1486 18.47

6.626 2236 1107 2. 15.09 16.75 2052
7541 10.64 12.59 1445 1681 18.58 2.46
9.037 120 14.07 16.01 18.48 2028 un
102 13.36 1551 17.93 20.09 21.96 268.12
1139 14.68 1692 19.02 21.67 2.9 2.8

10 1235 1599 1831 0.4 2321 25.19 D95
I 1% 1728 19.62 a1 un 26.76 3126
12 1438 18.55 21.03 pi k) 2.2 2.0 3291
13 1598 19.81 2,36 244 216 382 3453
4 1702 - 2.06 3.6 4.12 .14 in 36.12

15 1828 231 25.00 2149 3.5 320 1%
16 1937 23.54 2630 2385 32.00 a7 3925
17 2046 un 1.9 019 3B4- BN 0.7
18 ° 2160 25.99 287 8 M 3716 4231
19 an 320 30.14 24 36.19 p K 4.0

VAN bW~

2 BB 241 31.41 M1 nn 40.00 4532
2 M9 . ¥ o] e 3548 3393 41.490 4650
2 2604 3081 3.9 w.n €« 9.0 an
3 2114 2o 3517 3808 41.64 «“.i18 ®.73
u Bu 320 a2 N3¢ 2.9 43.56 si.18
3 DM 3438 .65 40.65 431 46.93 2.6
*% 0 33.56 e 419 45.64 4429 54.05
a1 NS 3674 40.11 43.19 46.96 49.64 5548
2 1nea nen “au 4446 a@axn 0.9 5.9
2 1»n ».0 42.56 4.n ”.99 2.4 8.3
0 M0 40.26 «Qan 46958 2009 83.67 0.7
«® 4488 51.%0 35.76 N Q.0 %77 N0
N K €.17 €730 naQ 76.13 ne 86.66
@ 6 74.40 .08 $3.20 838 1.9 .61
n NN 8.9 90.53 %M 1004 1042 1123
0 8 %8 1019 106.6 1123 163 1243
0 %N 1006 131 1181 124.1 1283 ° 1372
100 1091 1183 1243 129.6 1358 1402 1494

SOURCE: Johnson, Norman L. and F. C. Leone. 1977. Statistics and Experimental
Design in Engineering and the Physical Sciences. Vol. I. Second Edition. John
Wiley and Sons, New York.
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TABLE 2. 95th PERCENTILES OF THE F-DISTRIBUTION WITH
vy AND v, DEGREES OF FREEDOM, F,

v .‘2.0.’5

r
k 4

JER ] 3 . s . ’ ) ) " 13 5 »® 9w » o w 10 «
e ]
1 61 19935 2157 2246 202 240 203 I 0I5 M9 MI9 MY MEe M0 2501 2501 2312 25)) 134
3 1851 1900 1916 925 (930 1933 1035 1937 19 1940 l’.ﬁ 1943 1949 1943 (1946 1947 1943 1989 198
) 1.1 933 229 92 .94 [ ¥4 [T .} 8.8t [ §, ] [ § [ 8, ] [ .64 [V L3 8.57 | £ 31 8.3.
4 A 49 9 [ 1) «» [ ¥ ] (¥ J 596 amn 398 .00 E %44 .73 ER ] 3.0 3. 3.6
] [ Y] £ 8, ) 3.41 .19 .08 4.9 48 an an 474 4.6 4aa 458 4.93 49 4.46 4.43 4.40 &3¢
¢ .9 .04 4.7% 4953 4« 428 42 413 410 408 40 2.9 .0 3.84 3.8 wn 3.7 3.70 3.6
17 .99 474 433 412 »n 3.87 9 n 3.6 pY ) n an 3.4 34 338 3.3 .30 3.2
8 .2 4.4 .97 184 3.0 3.5 1.9 344 338 328 p¥ -3 313 313 3.08 3.0 3.01 an 29
9 513 42 3.8 3.6 348 b 1 13 18 .14 am 1.0 94 9% . P 5 ] m .78 2.7
10 4.9 410 n 1.4 3.3 .1 314 bY 4 3.0 % m 8 7 374 M .66 2.6 3358 35
3 LS 4 1.9 3.59 3.6 329 1" pX ] 93 i 188 an 11 e pX 1| 157 13) 10 243 2
12 473 3.9 3.0 3.2¢ . 300 2N 53 19 373 .0 P Y] 2354 31 .47 2.43 .38 234 ¥
1 4.67 3.8t .44 118 3.0 .92 i in an 167 60 193 14 34 238 34 % 218 22
[ 400 314 334 E N} 196 8 % an .6 140 215 16 9 138 2t an a2 218 2
13 454 b X ] 329 3.08 1.9 E 8, mn 164 9 1356 24 10 33 10 .25 120 16 a1 0
" 4“9 pX ) 3.34 a0 25 74 .66 .9 .54 240 .43 .38 228 24 219 13 a1 .08 2.0
1 449 3.9 .28 % .t N s 3.53 P X ] 243 8 wmn 2) 219 213 ie 108 201 [Rd
18 4.41 3.39 L6 .19 3 .46 .9 I 46 X} 3 237 219 s an .9 02 1.9 1.9
” 438 3.9 a3 M pY ) 3¢ 168 20 38 2 i 16 2t an 0 1. |5 ;] (R 3
» 4.3 1.0 e 1y wm 200 131 243 2 a3 28 2 21f2 i 216 1.9 1.93 1.99 (K]
n 4 347 J® M 18 197 9 242 237 132 33 I8 210 205 20 1.9 n .87 s
n )8 e 3.0 an 2.8 s &5 a6 2 26 211 .19 297 20 1.9 1.9¢ "e 1.84 1.7
I 3.a 3.0 % .64 2.9 i Bz 32 27 20 213 10 2.0t 1.9 1N (¥ 1.8 1.7
" 429 340 3 n 6 s a2 e 23 E X B 31 0 .9 1.9¢ .9 [ X ] LYY 1.7
3] au 19 19 % 10 e 2 1M 233 1M 216 LM 2IM LM 192 18T 1 L7717
» 423 L % % bX, 3 161 2y 21n 7 212 213 wm (X ] .98 1.9 (K -] .0 1.78 1.6
n 4N 339 9% in 29 14 107 an 129 220 21 EX ) K 44 .93 .58 1.84 Ly .n 16
3 420 334 393 n 36 248 % 1 24 a9 212 2m 1.9 ” 1.8 1.3 Ln (8 {] 1.6
» [ N1 333 29 n 233 ¥ Y 3 23 2 118 10 20 - I L9 L83 .5 .73 1.% 1.6
» 417 332 n e 253 2 b8, ] n n .16 tz EX ) .93 .9 .54 L9 174 1.68 1.6
« 408 3.3 04 64 34 34 22 e 212 18 n .04 . .74 .9 t.od 138 s
(3 4.9 } X1} bR, ] .33 Y 2 ar e 104 1.9 1.92 1.54 1.73 L% .68 .9 1.9 1.47 1.3
120 n 2.0 a0 43 29 17 10 Y 1.9 [ X, ] .5 [ 8] 1.6 L 133 1.9 1.4 [B]] 1.2
L] .04 L.00 60 17 31 10 an .94 . .73 1.67 .97 [X - (¥ ] 19 12 .2 (K]
NOTE: v,: DOegrees of freedom for numerator
vy Degrees of freedom for denominator
SOURCE: Johnson, Norman L. and F. C. Leone. 1977. Statistics and Experimental
R .
Design in Engineering and the Physical Sciences. Vol. [. Second Edition. John

Wiley and Sons, New York.



TABLE 3. 95th PERCENTILES OF THE BONFERRONI ¢

where v = degrees of freedom associated with the mean
squares error
®m = number of comparisons )
a = 0.05, the experimentwise error level

m ‘ 2 3 4 5
\\\Qir 0.¢ 0.025 0.0167 0.0125 0.01
v
4 2.13 2.78 3.20 3.51 3.75
5 2.02 2.57 2.90 3.17 3.37
6 1.94 2.45 2.74 2.97 3.14
7 1.90 2.37 2.63 2.83 3.00
8 1.86 2.31 2.55 2.74 2.90
9 1.83 2.26 2.50 2.67 2.82
10 1.01 ‘ 2023 2.45 2061 2.76
15 1.78 2.13 2.32 2.47 2.60
20 1.73 2.09 2.27 2.40 2.53
30 1.70 2.04 2.21 2.34 2.46
- 1.65 1.96 2.13 2.24 2.33

SOURCE: For a/m = 0.05, 0.025, and 0.01, the percentiles
were extracted from the t-table (Table 6, Appendix B) for
values of Fsl-a of 0.95, 0.975, and 0.99, respectively.

For a/m = 0.05/3 and 0.05/4, the percentiles were .
estimated using "A Nomograph of Student's t" by Nelson,
L. S. 1975. Journal of Quality Technology, Vol. 7,

pp. 200-201.



TABLE 4. PERCENTILES OF THE STANDARD NORMAL DISTRIBUTION, Pp
1 4

r 0.000 0.001 0002  0.003 0.004 0.005 0.006

0.50 00000 0.0025 00050 00078 00100 00125 00150 00175 0.0201 0.0226
0.51 0.0231 00276  0.0301 0.0326 0.0351 00376 0.040! 0.0426  0.0451 0.0476
0.52 00302 00527 00352 00577 00602 00627 00652 0.0677 0.0702 0.0728
0.53 00753 00778 00803 00%28 00853 00878 0.0904 00929 0.0954 0.0979
0.54 01004 03030 01035 01030 O0.1105 01130 01156 0.1181 0.1206 0.1231

0.55 0.1257 0.1282 01307 0.1332 °0.1358 0.1383 0.1408 0.1434  0.14%9 0.1484
0.56 0.1510 0.1535 0.1560 0.1586 0.1611 0.1637 0.1662 0.1687 0.1713 0.1738
0.57 0.1764 0.1789 O0.1815 0.1340 0.1866 O.1891 0.1917 0.1942  0.1968 0.1993
0.58 02019 02045 0200 02096 02121 02147 02173 02198 02224 0.2250
0.59 02278 0230\ 02327 02353 02378 02404 02430 0.2456 0.2482 0.2508
0.60 02533 0.2559 02585  0.2611 02637 02663 02689 02N 0.2741 0.2767
0.61 02793 02819 02845 0.2871 02898 02924 02950 02976  0.3002 0.3029
0.62 03055 03081 03107 03134 03160 03186 03213 03239 03266 03292
0.63 03319 0345 03372 03398 03425 03451 03478 03505 0.J53) 0.3558
0.64 03585 0.6l 03638 03665 03692 0I79 03745 0312 0379 0.3826
0.65 03853 03380 03907 0394 03961 03989 04016 04043 0.4070 0.4097
0.66 04125 04152 04179 04207 0.4234 0.4261 Ges83 04316 T4 0.4372
0.67 04399 04427 Q4454 04482 04510 04538 043565 043593 04821 0.4649
0.68 04677 04705 04733 04761 04789 04817 04845 04874  0.4902 0.4930
0.6% 04959 04987 Q5015 035044 035072 03101 05129 05158 051Y7 0.5215
0.70 05244 05273 05302 03330 035359 03388 03417 03446 0.5476 0.5505
0.71 05534 03563 03592 03612 0.563) 0.3681 05710 0540 0.5769 0.5799
o.mn 05828 035858 03888 035918 03948 05978 06008 06038  0.6068 0.6098
o.n 06128 06158 06189 06219 068250 0.6280 0.631) 0.6341 0.6372 0.6403
0.74 06433 06464 06495 06526 0.6557 06588 06620 0.665) 0.6682 0.6713

NOTE: For values of P below 0.5, obtain the value of U(1.p) from Table 4 and
change its sign. For example, 00.45 s -U(I-O.QS) - -UO.SS = -0.1257.

(Continued)
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TABLE 4 {Continued)

I3 0.000  0.001 0002 0003 0004 0005 0006 0007  0.008 0.009
0.75 0.6745 06776 06308 06840 06871 06903 06935 06967 0699  0.7031
2.76 0.7063 07095 07128 07160 07192 07225 0.7257 0.7290 0.7} 0.7356
2.1 0.7388  0.7421 0.7434 07438 0.7521 0.7554 07588 0.7621 - 0.7655  0.7688
0.78 07722 0.71% 07190 07824 0.7358 0.7892 07926 0.796I  0.7995  0.8030
679 08064 0309 08134 08i69 085204 08239 08274 08310 03345  0.8381
080 0.3416 08452 03488 08524 0850 08596 08633 0369 08705 08742
0.81 08779 08816 08353 08390 03927 0895 09002 09040 09078  0.9116
082 09154 09192 09230 09269 09307 09M6 09385 09424  0.9463 0.9502
0.83 09542 09581 09621 09661 09701 0971 ©9782 09822 09863  0.9904
084  09%5 09986 10027 10069 1.0110 10152  $.019 10237  1.02M 1.0322
08 1.0364  1.0407 10450 10494  1.0537  1.0S81 10625 10669 1.0714 1.0758
0.86 1.0803 10848 10893 10939 10985 11031 L1077 11123 L1170 11217
0.87 11264 L3N L1359 11407 11453 11503 L1852 11601  1.1650 ' 1.1700
0.88 1.1750 11800  1.1850 11901 11952 12004 12035 12107  1.2160 12212
0.89 12265 12319 12372 12426 12481 12536 12591 12646 12702 1.21%9
0.90 12816  1.2873 12930 12988 13047 13106 13165 13225 13285 1.3346
091 13408 13469 13532 13598 13658 1372 13787 13852 13917 1.39%4
0.92 1.4051 14118 14187 14255 14328 14395 14466 14538 146l 1.4684
0.93 14758 14833 14909 14985 15063 15141 15220 15301 15382 1.5464
0.94 15548  1.5632 15718 15805  1.5893  1.9982 1.607T2  1.6164  1.6258 1.6352
0.98 16449 16346 1.6646 16747 16349 16954 1060 1LTE LT 1.7392
0.96 17507 17624  LTI44 17866 17991 13119  1.5250  1.8384  1.83522 1.8663
0.97 1.8308  1.8957 19110 19268 19431 19600 19774 19934 20141 2.0335
0.98 20537 20749 20969 21201 21444 21701 21973 2126 22570 2.2904
0.9 23263 23656 24089 24573 25121 25758 26521 278 2372 3.0902
SOURCE: Johnson, Norman L. and F. C. Leone. 1977. Statistics and Experimental
Design in Engineering and the Physical Sciences. Vol. I, Second Edition. John

Wiley and Sons, New York.
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TABLE 6. PERCENTILES OF STUDENT's t-DISTRIBUTION

(F = 1-a; n = degrees of freedom)
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TABLE 8 (Continued)

L%

Nomber o Copw §.1% Crow 0.55 Lrpw 1% Uorer 1L.9% Usper % mm
Osor atoum. Sagnilicense Sgmbicsase Sgndicane Sgubance
L] Lmd Lovel Level Lovel Lovel Lave
wt 4 3.7%7 348 3.500 P& ) 3
[ 2] 42 308 Ja 3.’ 3214 U
) aws 3% Jole 3.9 3 87
[ ] 4 3.7 J0Ne 3» 3.0 Joy
108 4102 F R ] 3 3.400 324 30N
w0 4108 b R0 3400 .48} p Sog) pY 2y
107 4100 m 3.83) 40 320 J.ow
e an I Jods )00 3.2 3.043
109 4t 3 3000 142 32 1046
1He 4l b & 1 382 3408 IV 3.00
[11] a1 310 1ok Jens 1342 Jos
1ne a1 t R0 b I 342 3.349 3.03¢
(3} ] a1y 3.9 3882 1424 348 3.058
" 412 1™ 3043 )47 3.281 3081
13 ey ;e J.ea? b X} ] 328 3084
HY 4138 1], 3% 343} )29 1007
(134 a4l 1908 3483 1433 329 )om
11} & s 3.6 3438 e Jon
(113 440 P ) pY L] a4 3.38¢ 310°8
130 41 nt 302 )4 3.2¢7 am
131 4135 ps 1. 1808 3447 m .08}
12 41% | B+ o J.o0? 3.4% 3.2 3.64)
123 am pE N} h 1Y, ) JA%2 1 1080
13 atel 7 372 3488 29 1.0%
(1] LN ) 3 3473 JAST b 5 }] L0
12 e, 3433 3477 Y480 330 1098
2 44 Ine 3.000 Ja 3.3 Jo9°
123 4173 3008 p Y ) ). b5, 3.108
12 4178 a0 Jeke J4e? 3L ).103
R a1ty 3.04) Jaee 340 1% 3104
(11} 4% 3.9 3.0 3N 12 N o
M 4183 1.8 309} 1478 by ) Lo
138 4108 pEL ) J.nt j X | 3.002 TN
i3 1 a3 3087 J.ad 3004 )14
i 4,190 FETY 1'% 3.2 2.308 3.ue
(3] &1 384 3702 4% 13 Ine
137 4.19% b3 ] 3.9%4 347 3 b NP
h 419 1.56) 3.7 3. N Ji12a
i1 4200 bz 1 3.M0 3.1 Lns 32
1% 4200 be? an2 3” 3.3 PR
18 403 3 LTe 1Y 33 3
1“2 427 p¥ 14} 176 J o p Wi L
43 400 387 ne ).%01 3I% 3138
14 4313 s LT .50} 2320 Jth
188 4314 38 37 .. 333 38
14e 430 )t 3.728 o 3 3.8
18 4210 Josl  rt) 1.0 3.1 }is
SOURCE: ASTM Designation E178-75, 1975. “Standard

Recommended Practice for Dealing With Outlying

Observations.”
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The following 1ist provides the reader with those refersaces directly
mentioned in the text. It also includes, for those readers desiring further
information, references to literature dealing with selected subject matters in
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DISCLAIMER

This document is intended to assist Regional and State personnel in evaluating ground-water
monitoring data from RCRA facilities. Conformance with this guidance is expected to result in
statistical me
health and
methods and sampling procedures to those that comport with the guidance set forth herein. This

and sampling procedures that meet the regulatory standard of protecting human
ironment. However, EPA will not in all cases limit its approval of statistical

guidance is not a regulation (i.e., it does not establish a standard of conduct which has the force of
law) and should not be used as such. Regional and State personnel should exercise their discretion
in using this guidance document as well as other relevant information in choosing a statistical
method and sampling procedure that meet the regulatory requirements for evaluating ground-water
monitoring data from RCRA facilities.

This document has been reviewed by the Office of Solid Waste, U.S. Environmental
Protection Agency, Washington, D.C., and approved for publication. Approval does not signify
that the contents necessarily reflect the views and policies of the U.S. Environmental Protection
Agency, nor does mention of trade names, commercial products, or publications constitute
endorsement or recommendation for use.
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STATISTICAL ANALYSIS OF
~~GROUND-WATER MONITORING DATA
AT RCRA FACILITIES

ADDENDUM TO INTERIM FINAL GUIDANCE

" JULY 1992

This Addendum offers a series of recommendations and updated advice concerning the
Interim Final Guidance document for statistical analysis of ground-water monitoring data. Some
procedures in the original guidance are replaced by alternative methods that reflect more current
thinking within the statistics profession. In other cases, further clarification is offered for currently
recommended techniques to answer questions and address public comments that EPA has received
both formally and informally since the Interim Final Guidance was published.

1. CHECKING ASSUMPTIONS FOR STATISTICAL
PROCEDURES

Because any staastical or mathematical model of actual data is an approximaton of reality, all
statistical tests and procedures require certain assumptions for the methods to be used correctly and
for the results to have a proper interpretation. Two key assumptions addressed in the Interim
Guidance concern the distributional properties of the data and the need for equal variances among
subgroups of the measurements. In the Addendum, new techniques are outlined for testing both
assumptions that offer distinct advantages over the methods in the Interim Final Guidance.

1.1 NORMALITY OF DATA

Most statistical tests assume that the data come from a Normal distribution. Its density
function is the familiar bell-shaped curve. The Normal distribution is the assumed underlying
model for such procedures as parametric analysis of variance (ANOVA), t-tests, tolerance
intervals, and prediction intervals for future observations. Failure of the data to follow a Normal
distribution at least approximately is not always a disaster, but can lead to false conclusions if the
data really follow a more skewed distribution like the Lognormal. This is because the extreme tail
behavior of a data distribution is often the most critical factor in deciding whether to apply a
statistical test based on the assumption of Normality.



Draft 1/28/93

The Interim Final Guidance suggests that one begin by assuming that the original data are
Normal prior to testing the distributional assumptions. If the statistical test rejects the model of
Normality, the data can be tested for Lognormality instead by taking the natural logarithm of each
observation and repeating the test. If the original data are Lognormal, taking the natural logarithm
of the observations will result in data that are Normal. As a consequence, tests for Normality can
also be used to test for Lognormality by applying the tests to the logarithms of the data.

Unfortunately, all of the available tests for Normality do at best a fair job of rejecting non-
Normal data when the sample size is small (say less than 20 to 30 observations). That is, the tests
do not exhibit high degrees of statistical power. As such, small samples of untransformed
Lognormal data can be accepted by a test of Normality even though the skewness of the data may
lead to poor statistical conclusions later. EPA's experience with environmental concentration data,
and ground-water data in particular, suggests that a Lognormal distribution is generally more
appropriate as a default statistical model than the Normal distribution, a conclusion shared by
researchers at the United States Geological Survey (USGS, Dennis Helsel, personal
communication, 1991). There also appears to be a plausible physical explanation as to why
pollutant concentrations so often seem to follow a Lognormal pattern (Ott, 1990). In Ott's model,
pollutant sources are randomly diluted in a multiplicative fashion through repeated dilution and
mixing with volumes of uncontaminated air or water, depending on the surrounding medium.
Such random and repeated dilution of pollutant concentrations can lead mathematically to a
Lognormal distribution.

Because the Lognormal distribution appears to be a better default statistical model than the
Normal distribution for most ground-water data, it is recommended that all data first be logged
prior to checking distributional assumptions. McBean and Rovers (1992) have noted that
"[s]upport for the lognormal distribution in many applications also arises from the shape of the
distribution, namely constrained on the low side and unconstrained on the high side.... The
logarithmic transform acts to suppress the outliers so that the mean is a much better representation
of the central tendency of the sample data.”

Transformation to the logarithmic scale is not done to make "large numbers look smaller.”
Performing a logarithmic or other monotonic transformation preserves the basic ordering within a
data set, so that the data are merely rescaled with a different set of units. Just as the physical
difference between 80° Fahrenheit and 30° Fahrenheit does not change if the temperatures are
rescaled or transformed to the numerically lower Celsius scale, so too the basic statistical
relationships between data measurements remain the same whether or not the log transformation is
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applied. What does change is that the logarithms of Lognormally distributed data are more nearly
Normal in character, thus satisfying a key assumption of many statistical procedures. Because of
this fact, the same tests used to check Normality, if run on the logged data, become tests for
Lognormality.

If the assumption of Lognormality is not rejected, further statistical analyses should be
performed on the logged observations, not the original data. If the Lognormal distribution js
rejected by a statistical test, one can either test the Normality of the original data, if it was not
already done, or use a non-parametric technique on the ranks of the observations.

If no data are initially available to test the distributional assumptions, "referencing” may be
employed to justify the use of, say, a Normal or Lognormal assumption in developing a statistical
testing regimen at a particular site. "Referencing" involves the use of historical data or data from
sites in similar hydrogeologic settings to justify the assumptions applied to currently planned
statistical tests. These initial assumptions must be checked when data from the site become
available, using the procedures described in this Addendum. Subsequent changes to the initial
assumptions should be made if formal testing contradicts the initial hypothesis.

1.1.1 Interim Final Guidance Methods for Checking Normality

The Interim Final Guidance outlines three different methods for checking Normality: the
Coefficient-of-Variation (CV) test, Probability Plots, and the Chi-squared test. Of these three,
only Probability Plots are recommended within this Addendum. The Coefficient-of- Variation and
the Chi-squared test each have potential problems that can be remedied by using alternative tests.
These alternatives include the Coefficient of Skewness, the Shapiro-Wilk test, the Shapiro-Francia
test, and the Probability Plot Correlation Coefficient.

The Coefficient-of-Variaton is recommended wit.hin the Interim Guidance because it is easy
to calculate and is amenable to small sample sizes. To ensure that a Normal model which predicts a
significant fraction of negative concentration values is not fitted to positive data, the Interim Final
Guidance recommends that the sample Coefficient of Variation be less than one; otherwise this
"test" of Normality fails. A drawback to using the sample CV is that for Normally distributed data,
one can often get a sample CV greater than one when the true CV is only between 0.5 and 1. In
other words, the sample CV, being a random variable, often estimates the true Coefficient of
Variation with some error. Even if 2 Normal distribution model is appropriate, the Coefficient of
Variation test may reject the model because the sample CV (but not the true CV) is too large.
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The real purpose of the CV is to estimate the skewness of a dataset, not to test Normality.
Truly Normal data can have any non-zero Coefficient of Variation, though the larger the CV, the
greater the proportion of negative values predicted by the model. As such, a Normal distribution
with large CV may be a poor model for positive concentration data. However, if the Coefficient of
Variation test is used on the logarithms of the data to test Lognormality, negative logged
concentrations will often be expected, nullifying the rationale used to support the CV test in the
first place. A better way to estimate the skewness of a dataset is to compute the Coefficient of
Skewness directly, as described below.

The Chi-square test is also recommended within the Interim Guidance. Though an acceptable
goodness-of-fit test, it is not considered the most sensitive or powerful test of Normality in the
current literature (Gan and Koehler, 1990). The major drawback to the Chi-square test can be
explained by considering the behavior of parametric tests based on the Normal distribution. Most
tests like the t-test or Analysis of Variance (ANOVA), which assume the underlying data to be
Normally distributed, give fairly robust results when the Normality assumption fails over the
middle ranges of the data distribution. That is, if the extreme tails are approximately Normal in
shape even if the middle part of the density is not, these parametric tests will still tend to produce
valid results. However, if the extreme tails are non-Normal in shape-(e.g., highly skewed),
Normal-based tests can lead to false conclusions, meaning that either a transformation of the data
or a non-parametric technique should be used instead.

The Chi-square test entails a division of the sample data into bins or cells representing
distinct, non-overlapping ranges of the data values (see figure below). In each bin, an expected
value is computed based on the number of data points that would be found if the Normal
distribution provided an appropriate model. The squared difference between the expected number
and observed number is then computed and summed over all the bins to calculate the Chi-square
test statistic.

CHI SQUARE GOODNESS OF FIT

7 \
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If the Chi-square test indicates that the data are not Normally distributed, it may not be clear
what ranges of the data most violate the Normality assumption. Departures from Normality in the
middle bins are given nearly the same weight as departures from the extreme tail bins, and all the
departures are summed together to form the test statistic. As such, the Chi-square test is not as
powerful for detecting departures from Normality in the extreme tails of the data, the areas most
crucial to the validity of parametric tests like the t-test or ANOVA (Miller, 1986). Furthermore,
even if there are departures in the tails, but the middle portion of the data distribution is
approximately Normal, the Chi-square test may not register as statistically significant in certain
cases where better tests of Normality would. Because of this, four alternative, more sensitive tests
of Normality are suggested below which can be used in conjunction with Probability Plots.

1.1.2 Probability Plots

As suggested within the Interim Final Guidance, a simple, yet useful graphical test for
Normality is to plot the data on probabilit')" paper. The y-axis is scaled to represent probabilities
according to the Normal distribution and the data are arranged in increasing order. An observed
value is plotted on the x-axis and the proportion of observations less than or equal to each observed
value is plotted as the y-coordinate. The scale is constructed so that, if the data are Normal, the
points when plotted will approximate a straight line. Visually apparent curves or bends indicate
that the data do not follow a Normal distribution (see Interim Final Guidance, pp- 4-8t04-11).

Probability Plots are particularly useful for spotting irregularities within the data when
compared to a specific distributional model like the Normal. It is easy to determine whether
departures from Normality are occurring more or less in the middle ranges of the data or in the
extreme tails. Probability Plots can also indicate the presence of possible outlier values that do not
follow the basic pattern of the data and can show the presence of significant positive or negative

skewness.

If a (Normal) Probability Plot is done on the combined data from several wells and Normality
is accepted, it implies that all of the data came from the same Normal distribution. Consequently,
each subgroup of the data set (e.g., observations from distinct wells), has the same mean and
standard deviation. If a Probability Plot is done on the data residuals (each value minus its
subgroup mean) and is not a straight line, the interpretation is more complicated. In this case,
either the residuals are not Normal, or there is a subgroup of the data with a Normal distribution
but a different mean or standard deviation than the other subgroups. The Probability Plot will
indicate a deviation from the underlying Normality assumption either way.
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The same Probability Plot technique may be used to investigate whether a set of data or
residuals follows the Lognormal distribution. The procedure is the same, except that one first
replaces each observation by its natural logarithm. After the data have been transformed to their
natural logarithms, the Probability Plot is constructed as before. The only difference is that the
natural logarithms of the observations are used on the x-axis. If the data are Lognormal, the
Probability Plot (on Normal probability paper) of the logarithms of the observations will

approximate a straight line.

Many statistical software packages for personal computers will construct Probability Plots
automatically with a simple command or two. If such software is available, there is no need to
construct Probability Plots by hand or to obtain special graph paper. The plot itself may be
generated somewhat differently than the method described above. In some packages, the observed
value is plotted as before on the x-axis. The y-axis, however, now represents the quantile of the
Normal distribution (often referred to as the "Normal score of the observation") corresponding to
the cumulative probability of the observed value. The y-coordinate is often computed by the

following formula:

.=<p-1(_i__).’
i n+1

where @' denotes the inverse of the cumulative Normal distribution, n represents the sample size,
and i represents the rank position of the ith ordered concentration. Since the computer does these
calculations automatically, the formula does not have to be computed by hand.

EXAMPLE 1

Determine whether the following data set follows the Normal distribution by using a
Probability Plot.
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Nickel Concentration (ppb)

Month Well 1 Well 2 Well 3 Well 4
1 58.8 19 39 3.1
2 1.0 81.5 151 942
3 262 331 27 85.6
4 56 14 21.4 10
5 8.7 64.4 578 637
SOLUTION
Step 1.  List the measured nickel concentrations in order from lowest to highest.
Nickel
Concentration Order Probability Normal
(ppb) (1) 100*(i/(n+1)) Quantile
1 1 5 -1.645
3.1 2 10 -1.28
8.7 3 14 -1.08
10 4 19 -0.88
14 5 24 -0.706
19 6 29 -0.55
214 7 33 -0.44
27 8 38 -0.305
39 9 43 -0.176
56 10 48 -0.05
58.8 11 52 0.05
64.4 12 57 0.176
81.5 13 62 0.305
85.6 14 67 0.44
151 15 71 0.55
262 16 76 0.706
331 17 81 0.88
578 18 86 1.08
637 19 90 1.28
942 20 95 1.645
Step 2. The cumulative probability is given in the third column and is computed as 100*(i/(n+1))
where n is the total number of samples (n=20). The last column gives the Normal
quantiles corresponding to these probabilities.
Step 3. If using special graph paper, plot the probability versus the concentration for each

sample. Otherwise, plot the Normal quantile versus the concentration for each sample,
as in the plot below. The curvature found in the Probability Plot indicates that there is
evidence of non-Normality in the data.
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PROBABILITY PLOT
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1.1.3 Coefficient of Skewness

The Coefficient of Skewness (y;) indicates to what degree a data set is skewed or
asymmetric with respect to the mean. Data from a Normal distribution will have a Skewness
Coefficient of zero, while asymmetric data will have a positive or negative skewness depending on
whether the right- or left-hand tail of the distribution is longer and skinnier than the opposite tail.

Since ground-water monitoring concentration data are inherently nonnegative, one often
expects the data to exhibit a certain degree of skewness. A small degree of skewness is not likely
to affect the results of statistical tests based on an assumption of Normality. However, if the
Skewness Coefficient is larger than 1 (in absolute value) and the sample size is small (e.g., n<25),
statistical research has shown that standard Normal theory-based tests are much less powerful than
when the absolute skewness is less than 1 (Gayen, 1949).

Calculating the Skewness Coefficient is useful and not much more difficult than computing
the Coefficient of Variation. It provides a quick indication of whether the skewness is minimal
enough to assume that the data are roughly symmetric and hopefully Nornal in distribution. If the
original data exhibit a high Skewness Coefficient, the Normal distribution will provide a poor
approximation to the data set. In that case, ¥; can be computed on the logarithms of the data to test
for symmetry of the logged data.
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The Skewness Coefficient may be computed using the following formula:

%Zl(x
)

where the numerator represents the average cubed residual and SD denotes the standard deviation

- 3{)3

Y =

Vilw -

(SDY’

of the measurements. Most statistics computer packages (e.g., Minitab, GEO-EAS) will compute
the Skewness Coefficient automatically via a simple command.

EXAMPLE 2

Using the data in Example 1, compute the Skewness Coefficient to test for approximate

symmetry in the data.

SOLUTION

Step 1. Compute the mean, standard deviation (SD), and average cubed residual for the nickel
concentrations:

X =169.52 ppb
SD = 259.72 ppb

13 (x,- %) =2.98923%10" ppb’
n 3

Step 2.  Calculate the Coefficient of Skewness using the previous formula to get y;=1.84. Since
the skewness is much larger than 1, the data appear to be significantly positively
skewed. Do not assume that the data follow a Normal distribution.

Step 3.  Since the original data evidence a high degree of skewness, one can attempt to compute
the Skewness Coefficient on the logged data instead. In that case, the skewness works
out to be Iy;l= 0.24 < 1, indicating that the logged data values are slightly skewed, but
not enough to reject an assumption of Normality in the logged data. In other words, the
original data may be Lognormally distributed.

1.1.4 The Shapiro-Wilk Test of Normality (n<50)

The Shapiro-Wilk test is recommended as a superior alternative to the Chi-square test for
testing Normality of the data. It is based on the premise that if a set of data are Normally
distributed, the ordered values should be highly correlated with corresponding quantiles taken from
a Normal distribution (Shapiro and Wilk, 1965). In particular, the Shapiro-Wilk test gives
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substantial weight to evidence of non-Normality in the tails of a distribution, where the robustness
of statistical tests based on the Normality assumption is most severely affected. The Chi-square
test treats departures from Normality in the tails nearly the same as departures in the middle of a
distribution, and so is less sensitive to the types of non-Normality that are most crucial. One
cannot tell from a significant Chi-square goodness-of-fit test what sort of non-Normality is
indicated.

The Shapiro-Wilk test statistic (W) will tend to be large when a Probability Plot of the data
indicates a nearly straight line. Only when the plotted data show significant bends or curves will
the test statistic be small. The Shapiro-Wilk test is considered to be one of the very best tests of
Normality available (Miller, 1986; Madansky, 1988).

To calculate the test statistic W, one can use the following formula:

[3=]

where the numerator is computed as

k k
b = Zl.xan-ul (x(n~x+l) - x(i)) = Z):l bx

In this last formula, x(j) represents the jth smallest ordered value in the sample and
coefficients aj depend on the sample size n. The coefficients can be found for any sample size
from 3 up to 50 in Table A-1 of Appendix A. The value of k can be found as the greatest integer
less than or equal to n/2.

Normality of the data should be rejected if the Shapiro-Wilk statistic is too low when
compared to the critical values provided in Table A-2 of Appendix A. Otherwise one can assume
the data are approximately Normal for purposes of further statistical analysis. As before, it is
recommended that the test first be performed on the logarithms of the original data to test for
Lognormality. If the logged data indicate non-Normality by the Shapiro-Wilk test, a re-test can be
performed on the original data to test for Normality of the original concentrations.

EXAMPLE 3

Use the data of Example 1 to compute the Shapiro-Wilk test of Normality.

10
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SOLUTION

Step 1.

Order the data from smallest to largest and list, as in the following table. Also list the
data in reverse order alongside the first column.

Step 2.  Compute the differences x(n.j+1)-X(j) in column 3 of the table by subtracting column 1

from column 2.
i X(i) X(n-i+1) X(n-i+1)-X(i) an-i+1 b
1 1.0 942.0 941.0 4734 445.47
2 3.1 637.0 633.9 3211 203.55
3 8.7 578.0 569.3 2565 146.03
4 10.0 331.0 321.0 .2085 66.93
5 14.0 262.0 248.0 .1686 41.81
6 19.0 151.0 132.0 .1334 17.61
7 214 85.6 64.2 .1013 6.50
8 27.0 81.5 54.5 0711 3.87
9 39.0 64.4 ‘ 254 .0422 1.07

10 56.0 58.8 2.8 .0140 0.04

11 58.8 56.0 .. -2.8 b=932.88

12 64.4 39.0 -25.4

13 81.5 27.0 -54.5

14 85.6 214 -64.2

15 151.0 19.0 -132.0

16 262.0 14.0 -248.0

17 331.0 10.0 -321.0

18 578.0 8.7 -569.3

19 637.0 3.1 -633.9

20 942.0 1.0 -941.0

Step 3. Compute k as the greatest integer less than or equal to n/2. Since n=20, k=10 in this
example.

Step 4. Look up the coefficients a;_j,; from Table A-1 and list in column 4. Multiply the
differences in column 3 by the coefficients in column 4 and add the first k products to
get quantity b. In this case, b=932.88.

Step 5. Compute the standard deviation of the sample, SD=259.72. Then

932.88 T
=| —————| =0.679.
‘ [259.72@ ]
Step 6. Compare the computed value of W=0.679 to the 5% critical value for sample size 20 in

Table A-2, namely W 0520=0.905. Since W < 0.905, the sample shows significant
evidence of non-Normality by the Shapiro-Wilk test. The data should be transformed
using natural logs and rechecked using the Shapiro-Wilk test before proceeding with
further statistical analysis (Actually, the logged data should have been tested first. The

11
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original concentration data are used in this example to illustrate how the assumption of
Normality can be rejected.)

1.1.5 The Shapiro-Francia Test of Normality (n>50)

The Shapiro-Wilk test of Normality can be used for sample sizes up to 50. When the sample
is larger than 50, a slight modification of the procedure called the Shapiro-Francia test (Shapiro and
Francia, 1972) can be used instead.

Like the Shapiro-Wilk test, the Shapiro-Francia test statistic (W ") will tend to be large when a
Probability Plot of the data indicates a nearly straight line. Only when the plotted data show
significant bends or curves will the test statistic be small.

To calculate the test statistic W', one can use the following formula:

2
. [Zi"’i"(i)}
W'=
(n —l)SDZZim?‘

where x;) represents the ith ordered value of the sample and where mj denotes the approximate
expected value of the ith ordered Normal quantile. The values for m; can be approximately

computed as

ool
' n+l

where @-1 denotes the inverse of the standard Normal distribution with zero mean and unit
variance. These values can be computed by hand using a Normal probability table or via simple
commands in many statistical computer packages.

Normality of the data should be rejected if the Shapiro-Francia statistic is too low when
compared to the critical values provided in Table A-3 of Appendix A. Otherwise one can assume
the data are approximately Normal for purposes of further statistical analysis. As before, the
logged data should be tested first to see if a Lognormal model is appropriate. If these data indicate
non-Normality by the Shapiro-Francia test, a re-test can be performed on the original data.

12
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1.1.6 The Probability Plot Correlation Coefficient

One other alternative test for Normality that is roughly equivalent to the Shapiro-Wilk and
Shapiro-Francia tests is the Probability Plot Correlation Coefficient test described by Filliben
(1975). This test fits in perfectly with the use of Probability Plots, because the essence of the test
is to compute the common correlation coefficient for points on a Probability Plot. Since the
correlation coefficient is a measure of the linearity of the points on a scatterplot, the Probability Plot
Correlation Coefficient, like the Shapiro-Wilk test, will be high when the plotted points fall along a
straight line and low when there are significant bends and curves in the Probability Plot.
Comparison of the Shapiro-Wilk and Probability Plot Correlation Coefficient tests has indicated
very similar statistical power for detecting non-Normality (Ryan and Joiner, 1976).

The construction of the test statistic 1s somewhat different from the Shapiro-Wilk W, but not
difficult to implement. Also, tabled critical values for the correlation coefficient have been derived
for sample sizes up to n=100 (and are reproduced in Table A-4 of Appendix A). The Probability
Plot Correlation Coefficient may be computed as

" XM, -nXM

C, xSDvn-1

where X(j) represents the ith smallest ordered concentration value, M; is the median of the ith order
statistic from a standard Normal distribution, and X and M represent the average values of Xi)
and M¢). The ith Normal order statistic median may be approximated as Mj=®~1(m;), where as

r=

before, ®~1 is the inverse of the standard Normal cumulative distribution and m; can be computed
as follows (given sample size n):

1-(.5Y% fori=1
m, =4(i-.3175)/(n+.365) forl<i<n
(.5)}{‘ fori=n

Quantity Cy, represents the square root of the sum of squares of the M;'s minus n times the average
value M, that is

C, =JZ)M,2 -nM?

13
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When working v_xjth a complete sample (i.e., containing no nondetects or censored values), the
average value M=0, and so the formula for the Probability Plot Correlation Coefficient simplifies

;l((i)Ml

J X, M? xSDVn-1

Use the data of Example 1 to compute the Probability Plot Correlation Coefficient test.

Order the data from smallest to largest and list, as in the following table.

Compute the quantities m; from Filliben's formula above for each i in column 2 and the
order statistic medians, Mj, in column 3 by applying the inverse Normal transformation

10
Ir=

EXAMPLE 4
SOLUTION
Step 1.
Step 2.

to column 2.
Step 3.

Since this sample contains no nondetects, the simplified formula for r may be used.
Compute the products X()*M; in column 4 and sum to get the numerator of the

correlation coefficient (equal to 3,836.81 in this case). Also compute M;2 in column 5
and sum to find quantity Cp2=17.12.

i X(i) m; M;j Xi)*M;i M;2
1 1.0 .03406 -1.8242 -1.824 3.328
2 3.1 .08262 -1.3877 -4.302 1.926
3 8.7 13172 -1.1183 -9.729 1.251
4 10.0 .18082 -0.9122 -9.122 0.832
5 14.0 22993 -0.7391 -10.347 0.546
6 19.0 27903 -0.5857 -11.129 0.343
7 21.4 32814 -0.4451 -9.524 0.198
8 27.0 37724 -0.3127 -8.444 0.098
9 39.0 42634 -0.1857 -7.242 0.034
10 56.0 47545 -0.0616 -3.448 0.004
11 58.8 .52455 0.0616 3.621 0.004
12 64.4 57366 0.1857 11.959 0.034
13 81.5 62276 0.3127 25.488 0.098
14 85.6 67186 0.4451 38.097 0.198
15 151.0 72097 0.5857 88.445 0.343
16 262.0 77007 0.7391 193.638 0.546
17 331.0 .81918 0.9122 301.953 0.832
18 578.0 .86828 1.1183 646.376 1.251
19 637.0 91738 1.3877 883.941 1.926
20 942.0 96594 1.8242  1718.408 3.328

14
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Step 4. Compute the Probability Plot Correlation Coefficient using the simplified formula forr,
where SD=259.72 and C,=4.1375, to get

e 3836.81
(4.1375)(259.72)19

Step 5. Compare the computed value of r=0.819 to the 5% critical value for sample size 20 in
Table A-4, namely R 0520=0.950. Since r < 0.950, the sample shows significant
evidence of non-Normality by the Probability Plot Correlation Coefficient test. The data
should be transformed using natural logs and the correlation coefficient recalculated
before proceeding with further statistical analysis.

=0.819

" EXAMPLE 5

The data in Examples 1, 2, 3, and 4 showed significant evidence of non-Normality. Instead
of first logging the concentrations before testing for Normality, the original data were used. This
was done to illustrate why the Lognormal distribution is usually a better default model than the
Normal. In this example, use the same data to determine whether the measurements better follow a
Lognormal distribution.

Computing the natural logarithms of the data gives the table below.

Logged Nickel Concentrations log (ppb)

Month Well 1 Well 2 Well 3 Well 4

] 4.07 2.94 3.66 1.13

2 0.00 4.40 5.02 6.85

3 5.57 5.80 3.30 4.45

4 4.03 2.64 3.06 2.30

5 2.16 4.17 6.36 6.46
SOLUTION .

Method 1. Probability Plots

Step 1.  List the natural logarithms of the measured nickel concentrations in order from lowest to
highest.

15
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Log Nickel
Order Concentration Probability Normal
(i) log(ppb) 100*(i/(n+1)) Quantles
1 0.00 5 -1.645
2 1.13 10 -1.28
3 2.16 14 -1.08
4 2.30 19 -0.88
5 2.64 24 -0.706
6 294 29 -0.55
7 3.06 33 -0.44
8 3.30 38 -0.305
9 3.66 43 -0.176
10 4.03 48 -0.05
11 4.07 52 0.05
12 4.17 57 0.176
13 4.40 ' 62 0.305
14 4.45 67 0.44
15 5.02 71 0.55
16 5.57 76 0.706
17 5.80 81 0.88
18 6.36 86 1.08
19 6.46 90 1.28
20

6.85 95 1.645

Step 2.

Step 3.

Compute the probability as shown in the third column by calculating 100*(i/n+1), where
n is the total number of samples (n=20). The corresponding Normal quantiles are given
in column 4.

Plot the Normal quantiles against the natural logarithms of the observed concentrations
to get the following graph. The plot indicates a nearly straight line fit (verified by
calculation of the Correlation Coefficient given in Method 4). There is no substantial
evidence that the data do not follow a Lognormal distribution. The Normal-theory
procedure(s) should be performed on the log-transformed data.

16
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PROBABILITY PLOT

NORMAL QUANTILES

-2 L] 1 A
-2 (] . 2 4 6 8

. LN(Nickel) LN(ppb)

Method 2. Coefficient of Skewness

Step 1.

Step 2.

Step 3.
Step 4.

Calculate the mean, SD, and average cubed residuals of the natural logarithms of the
data.

X =3.918 log(ppb)
SD =1.802 log(ppb)

lZl(x, - %)’ =-1.325 log* (ppb)
n

Calculate the Skewness Coefficient, y;

=22 02m
(.95)3(1.802)°
Compute the absolute value of the skewness, Iy11=1-0.2441=0.244.

Since the absolute value of the Skewness Coefficient is less than 1, the data do not show
evidence of significant skewness. A Normal approximation to the log-transformed data
may therefore be appropriate, but this model should be further checked.

17
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Method 3. Shapiro-Wilk Test

Step 1. Order—tfmc logged data from smallest to largest and list, as in following table. Also list
the data in reverse order and compute the differences x(.j41)-X().

i LN(x5)) LN(x(n-i+1)) an-j+1 bj
1 0.00 6.85 4734 3.24
2 1.13 6.46 3211 1.71

3 2.16 6.36 .2565 1.08
4 2.30 5.80 .2085 0.73
5 2.64 5.57 .1686 0.49
6 2.94 5.02 1334 0.28
7 3.06 4.45 1013 0.14
8 3.30 4.40 0711 0.08
9 3.66 4.17 - .0422 0.02

10 4.03 4.07 - .0140 0.00

11 4.07 4.03 b=7.77

12 4.17 " 3.66

13 4.40 3.30

14 4.45 3.06

15 5.02 2.94

16 5.57 2.64

17 5.80 2.30

18 6.36 2.16

19 6.46 1.13

20 6.85 0.00

Step 2. Compute k=10, since n/2=10. Look up the coefficients a,_j,; from Table A-1 and
multiply by the first k differences between columns 2 and 1 to get the quantities b;. Add
these 10 products to get b=7.77.

Step 3. Compute the standard deviation of the logged data, SD=1.8014. Then the Shapiro-Wilk
statistic is given by

777 T
W={— | =0.979.
[1.8014«/1—9 }

Step 4. Compare the computed value of W to the 5% critical value for sample size 20 in Table A-
2, namely W 05 20=0.905. Since W=0.979>0.905, the sample shows no significant
evidence of non-Normality by the Shapiro-Wilk test. Proceed with further statistical
analysis using the log-transformed data.

Method 4. Probability Plot Correlation Coefficient

Step 1. Order the logged data from smallest to largest and list below.

18
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Log Nickel
Order €oncentration , , XM
G  log(ppb) m; Mi Xi)*Mi M;2
1 0.00 .03406 -1.8242 0.000 3.328
2 1.13 .08262 -1.3877 -1.568 1.926
3 2.16 13172 -1.1183 -2.416 1.251
4 2.30 .18082 -0.9122 -2.098 0.832
5 2.64 .22993 -0.7391 -1.951 0.546
6 2.94 .27903 -0.5857 -1.722 0.343
7 3.06 32814 -0.4451 -1.362 0.198
8 3.30 37724 -0.3127 -1.032 0.098
9 3.66 42634 -0.1857 -0.680 ~ 0.034
10 4.03 .47545 -0.0616 -0.248 0.004
11 4.07 .52455 0.0616 0.251 0.004
12 4.17 57366 0.1857 0.774 0.034
13 4.40 62276 0.3127 1.376 0.098
14 4.45 67186 0.4451 1.981 0.198
15 5.02 72097 0.5857 2.940 0.343
16 5.57 .77007 0.7391 4.117 0.546
17 5.80 .81918 09122 5.291 0.832
18 6.36 .86828 1.1183 7.112 1.251
19 6.46 91738 1.3877 8.965 1.926
20 6.85 96594 1.8242 12.496 3.328

Step 2.

Step 3.

Step 4.

Step 5.

Compute the quantities m; and the order statstic medians M;, according to the procedure
in Example 4 (note that these values depend only on the sample size and are identical to
the quantities in Example 4).

Compute the products X(;)*M; in column 4 and sum to get the numerator of the
correlation coefficient (equal to 32.226 in this case). Also compute M;2 in column 5 and
sum to find quaritity Cp2=17.12.

Compute the Probability Plot Correlation Coefficient using the simplified formula forr,
where SD=1.8025 and C;=4.1375, to get

o 32.226
(4.1375)(1.8025)4/19

=0.991

Compare the computed value of r=0.991 to the 5% critical value for sample size 20 in
Table A-4, namely R 520=0.950. Since r > 0.950, the logged data show no significant
evidence of non-Normality by the Probability Plot Correlation Coefficient test.
Therefore, Lognormality of the original data could be assumed in subsequent statistical
procedures.
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1.2 TESTING FOR HOMOGENEITY OF VARIANCE

One of the most important assumptions for the parametric analysis of variance (ANOVA) is
that the different groups (e.g., different wells) have approximately the same variance. If this is not
the case, the power of the F-test (its abflity to detect differences among the group means) is
reduced. Mild differences in variance are not t0o bad. The effect becomes noticeable when the
largest and smallest group variances differ by a ratio of about 4 and becomes quite severe when the
ratio is 10 or more (Milliken and Johnson, 1984).

The procedure suggested in the EPA guidance document, Bartlett's test, is one way to test
whether the sample data give evidence that the well groups have different variances. However,
Bartlett's test is sensitive to non-Normality in the data and may give misleading results unless one
knows in advance that the data are approximately Normal (Milliken and Johnson, 1984). As an
alternative to Bartlett's test, two procedures for testing homogeneity of the variances are described
below that are less sensitive to non-Normality.

1.2.1 Box Plots

Box Plots were first developed for exploratory data analysis as a quick way to visualize the
"spread" or dispersion within a data set. In the context of variance testing, one can construct a Box
Plot for each well group and compare the boxes to see if the assumption of equal variances is
reasonable. Such a comparison is not a formal test procedure, but is easier to perform and is often
sufficient for checking the group variance assumption.

The idea behind a Box Plot is to order the data from lowest to highest and to trim off 25
percent of the observations on either end, leaving just the middle 50 percent of the sample values.
The spread between the lowest and highest values of this middle 50 percent (known as the
interquartile range or IQR) is represented by the length of the box. The very middle observation
(i.e., the median) can also be shown as a line cutting the box in two.

To construct a Box Plot, calculate the median and upper and lower quantles of the data set
(respectively, the 50th, 25th, and 75th percentiles). To do this, calculate k=p(n+1)/100 where
n=number of samples and p=percentile of interest. If k is an integer, let the kth ordered or ranked
value be an estimate of the pth percentile of the data. If k is not an integer, let the pth percentile be
equal to the average of the two values closest in rank position to k. For example, if the data set
consists of the 10 values (1, 4, 6.2, 10, 15, 17.1, 18, 22, 25, 30.5}, the position of the median
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would be found as 50*(10+1)/100=5.5. The median would then be computed as the average of
the 5th and 6th ordered values, or (15+17.1)/2=16.05.

Likewise, the position of the lower quartile would be 25%(10+1)/100=2.75. Calculate the
average of the 2nd and 3rd ordered observations to estimate this percentile, ie., (4+6.2)/2=5.1.
Since the upper quartile is found to be 23.5, the length of Box Plot would be the difference
between the upper and lower quartiles, or (23.5-5.1)=18.4. The box itself should be drawn on a
graph with the y-axis representing concentration and the x-axis denoting the wells being plotted.
Three horizontal lines are drawn for each well, one line each at the lower and upper quartiles and
another at the median concentration. Vertical connecting lines are drawn to complete the box.

Most statistics packages can directly calculate the statistics needed to draw a Box Plot, and
many will construct the Box Plots as well. In some computer packages, the Box Plot will also
have two "whiskers" extending from the edges of the box. These lines indicate the positions of
extreme values in the data set, but generally should not be used to approximate the overall

dispersion.

If the box length for each group is less than 3 times the length of the shortest box, the sample
variances are probably close enough to assume equal group vanances. If, however, the box length
for any group is at least triple the length of the box for another group, the variances may be
significantly different (Kirk Cameron, SAIC, personal communication). In that case, the data
should be further checked using Levene’s test described in the following section. If Levene’s test
is significant, the data may need to be transformed or a non-parametric rank procedure considered
before proceeding with further analysis.

EXAMPLE 6

Construct Box Plots for each well group to test for equality of variances.

Arsenic Concentration (ppm)

Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
1 22.9 2.0 2.0 7.84 249 0.34
2 3.09 1.25 109.4 9.3 1.3 4.78
3 35.7 7.8 4.5 25.9 0.75 2.85
4 4.18 52 - 2.5 2.0 27 1.2
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_ SOLUTION

Step 1. Compute the 25th, 50th, and 75th percentiles for the data in each well group. To
calculate the pth percentile by hand, order the data from lowest to highest. Calculate
p*(n+1)/100 to find the ordered position of the pth percentile. If necessary, interpolate
between sample values to estimate the desired percentile.

Step 2.  Using well 1 as an example, n+1=5 (since there are 4 data values). To calculate the 25th
percentile, compute its ordered position (i.e., rank) as 25*5/100=1.25. Average the 1st
and 2nd ranked values at well 1 (i.e., 3.09 and 4.18) to find an estimated lower quartile
of 3.64. This estimate gives the lower end of the Box Plot. The upper end or 75th
percentle can be computed similarly as the average of the 3rd and 4th ranked values, or
(22.9+35.7)/2=29.3. The median is the average of the 2nd and 3rd ranked values,
giving an estimate of 13.14. -

Step 3.  Construct Box Plots for each well group, lined up side by side on the same axes.

BOX PLOTS OF WELL DATA
120 T - T T T T
F 4
100 =
80 . -

60 n

a0 - -

ARSENIC CONCENTRATION (ppm)

20 | :

WELL

Step 4.  Since the box length for well 3 is more than three times the box lengths for wells 4 and
6, there is evidence that the group variances may be significantly different. These data
should be further checked using Levene’s test described in the next section.
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1.2.2 Levene's Test

Levene's test is a more formal procedure than Box Plots for testing homogeneity of variance
that, unlike Bartlett's test, is not sensitive to non-Normality in the data. Levene's test has been
shown to have power nearly as great as Bartlett's test for Normally distributed data and power
superior to Bartlett's for non-Normal data (Milliken and Johnson, 1984).

To conduct Levene's test, first compute the new variables

where x;; represents the jth value from the ith well and X; is the ith well mean. The values zj;

represent the absolute values of the usual residuals. Then run a standard one-way analysis of
variance (ANOVA) on the variables z;;. If.th'e F-test is significant, reject the hypothesis of equal

group variances. Otherwise, proceed with analysis of the X;j's as initially planned.

EXAMPLE 7

Use the data from Example 6 to conduct Levene's test of equal variances.

SOLUTION

Step 1. Calculate the group mean for each well (X,)

Well 1 mean = 16.47 Well4 mean=11.26
Well 2 mean = 15.76 : Well 5 mean = 13.49
Well 3 mean = 29.60 Well 6 mean = 2.29
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Step 2. Compute the absolute residuals zjj in each well and the well means of the residuals (Z;).

Absolute Residuals
Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
1 6.43 13.76 27.6 3.42 11.41 1.95
2 13.38 14.51 79.8 1.96 12.19 2.49
3 19.23 7.96 25.1 14.64 12.74 0.56
4 12.29 36.24 27.1 9.26 13.51 1.09
Well
Mean (Z;) = 12.83 18.12 36.9 7.32 12.46 - 1.52
Overall
Mean (Z) = 15.36

Step 3.  Compute the sums of squares for the absolute residuals.
SSrom. = (N-1) SDZ? = 6300.89
SSweus = 2,0 Z ~ Nz7 =3522.90

SSmog = SSTOTAL—SSWE.LLS = 2777.99

Step 4. Construct an analysis of variance table to calculate the F-statistic. The degrees of
freedom (df) are computed as (#groups—1)=(6-1)=5 df and (#samples—#groups)=(24—

6)=18 df.
ANOVA Table
Source Sum-of-Squares df Mean-Square F-Ratio P
Between Wells 3522.90 5 704.58 4.56 0.007
Error 2777.99 18 154.33
Total 6300.89 23

Step 5.  Since the F-statistic of 4.56 exceeds the tabulated value of F os=2.77 with 5 and 18 df,

the assumption of equal variances should be rejected. Since the original concentration
data are used in this example, the data should be logged and retested.
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2. RECOMMENDATIONS FOR HANDLING
- NONDETECTS

The basic recommendations within the Interim Final Guidance for handling nondetect
analyses include the following (see p. 8-2): 1) if less than 15 percent of all samples are nondetect,
replace each nondetect by half its detection or quantitation limit and proceed with a parametric
analysis, such as ANOVA, Tolerance Limits, or Prediction Limits; 2) if the percent of nondetects is
between 15 and 50, either use Cohen's adjustment to the sample mean and variance in order to
proceed with a parametric analysis, or employ a non-parametric procedure by using the ranks of
the observations and by treating all nondetects as tied values; 3) if the percent of nondetects is
greater than 50 percent, use the Test of Proportions.

As to the first recommendation, experience at EPA and research at the United States
Geological Survey (USGS, Dennis Helsel, pérsonal communication, 1991) has indicated that if
less than 15 percent of the samples are nondetect, the results of parametric statistical tests will not
be substantially affected if nondetects are replaced by half their detection limits. When more than
15 percent of the samples are nondetect, however, the handling of nondetects is more crucial to the
outcome of statistical procedures. Indeed, simple substitution methods tend to perform poorly in
statistical tests when the nondetect percentage is substantial (Gilliom and Helsel, 1986).

Even with a small proportion of nondetects, however, care should be taken when choosing
between the method detection limit (MDL) and the practical quantitation limit (PQL) in
characterizing “nondetect” concentrations. Many nondetects are characterized by analytical
laboratories with one of three data qualifier flags: "U," "J," or "E." Samples with a "U" data
qualifier represent "undetected” measurements, meaning that the signal characteristic of that analyte
could not be observed or distinguished from "background noise" during lab analysis. Inorganic
samples with an "E" flag and organic samples with a "J" flag may or may not be reported with an
estimated concentration. If no concentration is estimated, these samples represent "detected but not
quantified" measurements. In this case, the actual concentration is assumed to be positive, but
somewhere between zero and the PQL. Since all of these non-detects may or may not have actual
positive concentrations between zero and the PQL, the suggested substitution for parametric
statistical procedures is to replace each nondetect by one-half the PQL (note, however, that "E" and
"J" samples reported with estimated concentrations should be treated, for statistical purposes, as
valid measurements. Substitution of one-half the PQL is not recommended for these samples).
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In no case should nondetect concentrations be assumed to be bounded above by the MDL.
The MDL is estimated on the basis of ideal laboratory conditions with ideal analyte samples and
does not account for matrix or other interferences encountered when analyzing specific, actual field
samples. For this reason, the PQL should be taken as the most reasonable upper bound for
nondetect concentrations.

It should also be noted that the distinction between “undetected” and “detected but not
quantified” measurements has more specific implications for rank-based non-parametric
procedures. Rather than assigning the same tied rank to all nondetects (see below and in Section
3), “detected but not quantified” measurements should be given larger ranks than those assigned to
“undetected” samples. In fact the two types of nondetects should be treated as two distingt groups
of tied observations for use in the Wilcoxon and Kruskal-Wallis non-parametric procedures.

2.1 NONDETECTS IN ANOVA PROCEDURES

For a moderate to large percentage of nondetects (i.e., over 15%), the handling of nondetects
should vary depending on the statistical procedure to be run. If background data from one or more
upgradient wells are to be compared simultaneously with samples from one or more downgradient
wells via a t-test or ANOVA type procedure, the simplest and most reliable recommendation is to
switch to a non-parametric analysis. The distributional assumptions for parametric procedures can
be rather difficult to check when a substantial fraction of nondetects exists. Furthermore, the non-
parametric alternatives described in Section 3 tend to be efficient at detecting contamination when
the underlying data are Normally distributed, and are often more powerful than the parametric
methods when the underlying data do not follow a Normal distribution.

Nondetects are handled easily in a nonparametric analysis. All data values are first ordered
and replaced by their ranks. Nondetects are treated as tied values and replaced by their midranks
(see Section 3). Then a Wilcoxon Rank-Sum or Kruskal-Wallis test is run on the ranked data
depending on whether one or more than one downgradient well is being tested.

The Test of Proportions is not recommended in this Addendum, even if the percentage of
nondetects is over 50 percent. Instead, for all two-group comparisons that involve more than 15
percent nondetects, the non-parametric Wilcoxon Rank-Sum proéédure is recommended.
Although acceptable as a statistical procedure, the Test of Proportions does not account for
potentially different magnitudes among the concentrations of detected values. Rather, each sample
is treated as a 0 or 1 depending on whether the measured concentration is below or above the

26



Draft 1/28/Y3

detection limit. The Test of Proportions ignores information about concentration magnitudes, and
hence is usually l_c_ss powerful than a non-parametric rank-based test like the Wilcoxon Rank-Sum,
even after adjusting for a large fraction of tied observations (e.g., nondetects). This is because the
ranks of a dataset preserve additional information about the relative magnitudes of the concentration
values, information which is lost when all observations are scored as O's and 1's.

Another drawback to the Test of Proportions, as presented in the Interim Final Guidance, is
that the procedure relies on a Normal probability approximation to the Binomial distribution of 0's
and 1's. This approximation is recommended only when the quantities n X (%NDs) and n x (1-
%NDs) are no smaller than 5. If the percentage of nondetects is quite high and/or the sample size
is fairly small, these conditions may be violated, leading potentially to inaccurate results.

Comparison of the Test of Proportions to the Wilcoxon Rank-Sum test shows that for small
to moderate proportions of nondetects (say 0 to 60 percent), the Wilcoxon Rank-Sum procedure
adjusted for ties is more powerful in identifying real concentration differences than the Test of
Proportions. When the percentage of nondetects is quite high (at least 70 to 75 percent), the Test
of Proportions appears to be slightly more powerful in some cases than the Wilcoxon, but the
results of the two tests almost always lead to the same conclusion, so it makes sense to simply
recommend the Wilcoxon Rank-Sum test in all cases where nondetects constitute more than 15

percent of the samples.

2.2 NONDETECTS IN STATISTICAL INTERVALS

If the chosen method is a statistical interval (Confidence, Tolerance or Prediction limit) used
to compare background data against each downgradient well separately, more options are available
for handling moderate proportions of nondetects. The basis of any parametric statistical interval
limit is the formula X + x-s, where X and s represent the sample mean and standard deviation of
the (background) data and x depends on the interval type and characteristics of the monitoring
network. To use a parametric interval in the presence of a substantial number of nondetects, it is
necessary to estimate the sample mean and standard deviation. But since nondetect concentrations
are unknown, simple formulas for the mean and standard deviation cannot be computed directly.
Two basic approaches to estimating or "adjusting” the mean and standard deviation in this situation
have been described by Cohen (1959) and Aitchison (1955).

The underlying assumptions of these procedures are somewhat different. Cohen's
adjustment (which is described in detail on pp. 8-7 to 8-11 of the Interim Final Guidance) assumes
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that all the dara (detects and nondetects) come from the same Normal or Lognormal population, but
that nondetect values have been “censored” at their detection limits. This implies that the
contaminant of concern is present in nondetect samples, but the analytical equipment is not
sensitive to concentrations lower than the detection limit. Aitchison's adjustment, on the other
hand, is constructed on the assumption that nondetect samples are free of contamination, so that all
nondetects may be regarded as zero concentrations. In some situations, particularly when the
analyte of concern has been detected infrequently in background measurements, this assumption
may be practical, even if it cannot be verified directly.

Before choosing between Cohen's and Aitchison's approaches, it should be cautioned that
Cohen's adjustment may not give valid results if the proportion of nondetects exceeds 50%. In a
case study by McNichols and Davis (1988), the false positive rate associated with the use of t-tests
based on Cohen's method rose substantially when the fraction of nondetects was greater than 50%.
This occurred because the adjusted estimates of the mean and standard deviation are more highly
correlated as the percentage of nondetects increases, leading to less reliable statistical tests
(including statistical interval tests).

On the other hand, with less than 50% nondetects, Cohen's method performed adequately in
the McNichols and Davis case study, provided the data were not overly skewed and that more
extensive tables than those included within the Interim Final Guidance were available to calculate
Cohen's adjustment parameter. As a remedy to the latter caveat, a more extensive table of Cohen's
adjustment parameter is provided in Appendix A (Table A-5). It is also recommended that the data
(detected measurements and nondetect detection limits) first be log-transformed prior to computing
either Cohen's or Aitchison's adjustment, especially since both procedures assume that the
underlying data are Normally distributed.

2.2.1 Censored and Detects-Only Probability Plots

To decide which approach is more appropriate for a particular set of ground water data, two
separate Probability Plots can be constructed. The first is called a Censored Probability Plot and is
a test of Cohen's underlying assumption. In this method, the combined set of detects and
nondetects is ordered (with nondetects being given arbitrary but distinct ranks). Cumulatve
probabilities or Normal quantiles (see Section 1.1) are then computed for the data set as in a
regular Probability Plot. However, only the detected values and their associated Normal quantiles
are actually plotted. If the shape of the Censored Probability Plot is reasonably linear, then
Cohen's assumptién that nondetects have been "censored” at their detection limit is probably
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acceptable and Cohen's adjustment can be made to estimate the sample mean and standard
deviation. If the Censored Probability Plot has significant bends and curves, particularly in one or
both tails, one might consider Aitchison's procedure instead.

To test the assumptions of Aitchison's method, a Detects-Only Probability Plot may be
constructed. In this case, nondetects are completely ignored and a standard Probability Plot is
constructed using only the detected measurements. Thus, cumulative probabilities or Normal
quantiles are computed only for the ordered detected values. Comparison of a Detects-Only
Probability Plot with a Censored Probability Plot will indicate that the same number of points and ‘
concentration values are plotted on each graph. However, different Normal quantiles are
associated with each detected concentration. If the Detects-Only Probability Plot is reasonably
linear, then the assumptions underlying Aitchison's adjustment (i.e., that "nondetects" represent
zero concentrations, and that detects and nondetects follow separate probability distributions) are

probably reasonable.

If it is not clear which of the Censored or Detects-Only Probability Plots is more linear,
Probability Plot Correlation Coefficients can be computed for both approaches (note that the
correlations should only involve the points actually plotted, that is, detected concentrations). The
plot with the higher correlation coefficient will represent the most linear trend. Be careful,
however, to use other, non-statistical judgments to help decide which of Cohen's and Aitchison's
underlying assumptions appears to be most reasonable based on the specific characteristics of the
data set. Itis also likely that these Probability Plots may have to be constructed on the logarithms
of the data instead of the original values, if in fact the most appropriate underlying distribution is
the Lognormal instead of the Normal.

EXAMPLE §

Create Censored and Detects-Only Probability Plots with the following zinc data to determine
whether Cohen's adjustment or Aitchison's adjustment is most appropriate for estimating the true
mean and standard deviation.
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Zinc Concentrations (ppb) at Background Wells

Sample Well 1 Well 2 Well 3 Well 4 Well 5

1 <7 <7 <7 11.69 <7

2 1141 <7 12.85 10.90 <7

3 <7 13.70 14.20 <7 <7

4 <7 11.56 9.36 12.22 11.15

5 <7 <7 <7 11.05 13.31

6 10.00 <7 12.00 <7 12.35

7 15.00 10.50 <7 13.24 <7

8 <7 - 12.59 <7 <7 8.74
SOLUTION

Step 1.  Pool together the data from the five background wells and list in order in the table
below.

Step 2.  To construct the Censored Probability Plot, compute the probabilities i/(n+1) using the
combined set of detects and nondetects, as in column 3. Find the Normal quantiles
associated with these probabilities by applying the inverse standard Normal

transformation, ®-1.

Step 3. To construct the Detects-Only Probability Plot, compute the probabilities in column 5
using only the detected zinc values. Again apply the inverse standard Normal
transformation to find the associated Normal quantiles in column 6. Note that
nondetects are ignored completely in this method.
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Order (i) Zinc Conc. Censored Normal Detects-Only Normal

(ppb) Probs. Quantiles Probs. Quantiles

1 <7 024 -1.971

2 <7 .049 -1.657

3 <7 .073 -1.453

4 <7 .098 -1.296

5 <7 122 -1.165

6 <7 146 -1.052

7 <7 171 -0.951

8 <7 195 -0.859

9 <7 220 -0.774

10 <7 244 -0.694

11 <7 .268 -0.618

12 <7 293 -0.546

13 <7 317 -0.476

14 <7 341 -0.408

15 <7 .366 -0.343

16 <7 .390 -0.279

17 <7 415 -0.216

18 <7 439 -0.153

19 <7 463 -0.092
20 <7 488 -0.031
21 8.74 512 0.031 .048 -1.668
22 9.36 537 0.092 .095 -1.309
23 10.00 .561 0.153 143 -1.068
24 10.50 .585 0.216 .190 -0.876
25 10.90 .610 0.279 238 -0.712
26 11.05 .634 0.343 .286 -0.566
27 11.15 .659 0.408 333 -0.431
28 11.41 .683 0.476 381 -0.303
29 11.56 - 707 0.546 429 -0.180
30 11.69 - 732 0.618 476 -0.060
31 12.00 756 0.694 524 0.060
32 12.22 .780 0.774 571 0.180
33 12.35 .805 0.859 .619 0.303
34 12.59 .829 0.951 667 0.431
35 12.85 854 1.052 714 0.566
36 13.24 .878 1.165 .762 0.712
37 13.31 .902 1.296 .810 0.876
38 13.70 .927 1.453 .857 1.068
39 14.20 951 1.657 .905 1.309
40 15.00 976 1.971 952 1.668

Step 4.  Plot the detected zinc concentrations versus each set of probabilities or Normal quantiles,
as per the procedure for constructing Probability Plots (see figures below). The
nondetect values should not be plotted. As can be seen from the graphs, the Censored
Probability Plot indicates a definite curvature in the tails, especially the lower tail. The
Detects-Only Probability Plot, however, is reasonably linear. This visual impression is
bolstered by calculation of a Probability Plot Correlation Coefficient for each set of
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Step 5.

detected values: the Censored Probability Plot has a correlation of r=.969, whlle the
Detects-Only Probability Plot has a correlation of r=.998.

Because the Detects-Only Probability Plot is substantially more linear than the Censored
Probability Plot, it may be appropriate to consider detects and nondetects as arising from
statistically distinct distributions, with nondetects representing "zero" concentrations.
Therefore, Aitchison's adjustment may lead to better estimates of the true mean and
standard deviation than Cohen's adjustment for censored data.

CENSORED PROBABILITY PLOT

25 T T T T T T T

15 r n

08 - -

NORMAL QUANTILES

25 ! f ! ! ! 1 1
8 9 10 11 12 13 14 15 16

ZINC CONCENTRATIONS (ppb)

32



Draft 1/28/93

DETECTS-ONLY PROBABILITY PLOT
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2.2.2 Aitchison's Adjustment

To actually compute Aitchison's adjustment (Aitchison, 1955), it is assumed that the detected
samples follow an underlying Normal distribution. If the detects are Lognormal, compute
Aitchison's adjustment on the logarithms of the data instead. Let d=# nondetects and let n=total #
of samples (detects and nondetects combined). Then if X* and s* denote respectively the sample
mean and standard deviation of the detected values, the adjusted overall mean can be estimated as

N d»_.
=|1—-=—IX
=1
and the adjusted overall standard deviation may be estimated as the square root of the quantity

5= n_(d+1)(s')2+9(n_d)(i')2
n\n-1

n-—1

The general formula for a parametric statistical interval adjusted for nondetects by Aitchison's
method is given by AtK- G, withk depending on the type of interval being constructed.
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"EXAMPLE 9

In Example 8, it was determined that Aitchison's adjustment might lead to more appropriate
estimates of the true mean and standard deviation than Cohen's adjustment. Use the data in
Example 8 to compute Aitchison's adjustment.

SOLUTION

Step 1.  The zinc data consists of 20 nondetects and 20 detected values; therefore d=20 and n=40
in the above formulas.

Step 2. Compute the average X =11.891 and the standard deviation s = 1.595 of the set of
detected values.

Step 3. Use the formulas for Aitchison's adjustment to compute estimates of the true mean and
standard deviation:

i =(1—£)x11.891 =5.95
40

G = (40 — 21)(1.595)2 + (@)(39)(1 1.891) =37.495 = 5= 6.12
39 40 A\ 39
If Cohen's adjustment is mistakenly computed on these data instead, with a detection

limit of 7 ppb,the estimates become £ =7.63 and C = 4.83, Thus, the choice of
adjustment can have a significant impact on the upper limits computed for statistical
intervals.

2.2.3 More Than 50% Nondetects

If more than 50% but less than 90% of the samples are nondetect or the assumptions of
Cohen's and Aitchison's methods cannot be justified, parametric statistical intervals should be
abandoned in favor of non-parametric alternatives (see Section 3 below). Nonparametric
statistical intervals are easy to construct and apply to ground water data measurements, and no
special steps need be taken to handle nondetects.

When 90% or more of the data values are nondetect (as often occurs when measuring volatile
organic compounds [VOCs] in ground water, for instance), the detected samples can often be
modeled as "rare events” by using the Poisson distribution. The Poisson model describes the
behavior of a series of independent events over a large number of trials, where the probability of
occurrence is low but stays constant from trial to trial. The Poisson model is similar to the
Binomial model in that both models represent "counting processes.” In the Binomial case,
nondetects are counted as 'misses’ or zeroes and detects are counted (regardless of contamination
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level) as ‘hits’ or ones; in the case of the Poisson, each particle or molecule of contamination is
counted separately but cumulatively, so that the counts for detected samples with high
concentrations are larger than counts for samples with smaller concentrations. As Gibbons (1987,
p. 574) has noted, it can be postulated

...that the number of molecules of a particular compound out of a much larger
number of molecules of water is the result of a Poisson process. For example,
we might consider 12 ppb of benzene to represent a count of 12 units of benzene
for every billion units examined. In this context, Poisson's approach is justified
in that the number of units (i.e., molecules) 1s large, and the probability of the
occurrence (i.e., a molecule being classified as benzene) is small.

For a detect with concentration of 50 ppb, the Poisson count would be 50. Counts for
nondetects can be taken as zero or perhaps equal to half the detection limit (e.g., if the detection
limit were 10 ppb, the Poisson count for that. sample would be 5). Unlike the Binomial (Test of
Proportions) model, the Poisson model has the ability to utilize the magnitudes of detected
concentrations in statistical tests. .

The Poisson distribution is governed by the average rate of occurrence, A, which can be
estimated by summing the Poisson counts of all samples in the background pool of data and
dividing by the number of samples in the pool. Once the average rate of occurrence has been
estimated, the formula for the Poisson distribution is given by

e A

Pr{X=x}= =

where x represents the Poisson count and A represents the average rate of occurrence. To use the
Poisson distribution to predict concentration values at downgradient wells, formulas for
constructing Poisson Prediction and Tolerance limits are given below.

2.2.4 Poisson Prediction Limits

To estimate a Prediction limit at a particular well using the Poisson model, the approach
described by Gibbons (1987b) and based on the work of Cox and Hinkley (1974) can be used. In
this case, an upper limit is estimated for an interval that will contain all of k future measurements of
an analyte with confidence level 1-a, given n previous background measurements.

To do this, let Ty, represent the sum of the Poisson counts of n background samples. The
goal is to predict Ti", representing the total Poisson count of the next k sample measurements. As
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Cox and Hinkley show, if Tp has a Poisson distribution with mean p and if no contamination has
occurred, it is reasonable to assume that Tx* will also have a Poisson distribution but with mean
cH, where ¢ depends on the number of future measurements being predicted.

In particular, Cox and Hinckley demonstrate that the quantity
) ?
£ (1+0)
o(T,+T,)

(1+c)

has an approximate standard Normal distribution. From thisrelation, an upper prediction limit for
Ti" is calculated by Gibbons to be approximately

2 2
T, =CTn+(—:£—+Ct Tn(1+l)+£—
2 c 4

where t=tp.] o is the upper (1-a) percentile of the Student's t distribution with (n-1) degrees of

freedom. The quantity c in the above formulas may be computed as k/n, where, as noted, k is the
number of future samples being predicted. '

EXAMPLE 10

Use the following benzene data from six background wells to estimate an upper 99% Poisson
Prediction limit for the next four measurements from a single downgradient well.

Benzene Concentrations (ppb)

Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6

1 <2 <2 <2 <2 <2 <2
2 <2 <2 <2 15.0 <2 <2
3 <2 <2 <2 <2 <2 <2
4 <2 12.0 <2 <2 <2 <2
5 <2 <2 <2 <2 <2 10.0
6 <2 <2 <2 <2 <2 <2
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SOLUTION

Step 1.  Pooling the background data yields n=36 samples, of which, 33 (92%) are nondetect.
Because the rate of detection is so infrequent (i.e., <10%), a Poisson-based Prediction
limit may be appropriate. Since four future measurements are to be predicted, k=4, and
hence, c=k/n=1/9.

Step 2. Seteach nondetect to half the detection limit or 1 ppb. Then compute the Poisson count
of the sum of all the background samples, in this case, Tp=33(1)+(12.0+15.0+10.0) =
70.0. To calculate an upper 99% Prediction limit, the upper 99th percentile of the t-
distribution with (n-1)=35 degrees of freedom must be taken from a reference table,
namely t35,01=2.4377.

Step 3. Using Gibbons' formula above, calculate the upper Prediction limit as:

(2.4377)* . 2.4377
2(9) 9

2
————(2'4277) =15.3ppb

T, =%(70)+ \/70(1+9)+

Step 4. To test the upper Prediction limit, the Poisson count of the sum of the next four
downgradient wells should be calculated. If this sum is greater than 15.3 ppb, there is
significant evidence of contamination at the downgradient well. If not, the well may be
regarded as clean until the next testing period.

The procedure for generating Poisson prediction limits is somewhat flexible. The value k
above, for instance, need not represent multiple samples from a single well. It could also denote a
collection of single samples from k distinct wells, all of which are assumed to follow the same
Poisson distribution in the absence of contamination. The Poisson distribution also has the
desirable property that the sum of several Poisson variables also has a Poisson distribution, even if
the individual components are not identically distributed. Because of this, Gibbons (1987b) has
suggested that if several analytes (e.g., different VOCs) can all be modeled via the Poisson
dismibution, the combined sum of the Poisson counts of all the analytes will also have a Poisson
distribution, meaning that a single prediction limit could be estimated for the combined group of
analytes, thus reducing the necessary number of statistical tests.

A major drawback to Gibbons' proposal of establishing a combined prediction limit for
several analytes is that if the limit is exceeded, it will not be clear which analyte is responsible for
"triggering" the test. In part this problem explains why the ground-water monitoring regulations
mandate that each analyte be tested separately. Stll, if a large number of analytes must be regularly
tested and the detection rate is quite low, the overall facility-wide false positive rate may be
unacceptably high. To remedy this situation, it is probably wisest to do enough initial testing of
background and facility leachate and waste samples to determine those specific parameters present
at levels substantially greater than background. By limiting monitoring and statistical tests to a few
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parameters meeting the above conditions, it should be possible to contain the overall facility-wide
false positive rate while satisfying the regulatory requirements and assuring reliable identificatior
of ground-water contamination if it occurs.

Though quantitative information on a suite of VOCs may be automatically generated as a
consequence of the analytical method configuration (e.g., SW-846 method 8260 can provide
quantitative results for approximately 60 different compounds), it is usually unnecessary to
designate all of these compounds as leak detection indicators. Such practice generally aggravates
the problem of many comparisons and results in elevated false positive rates for the facility as a
whole. This makes accurate statistical testing especially difficult. EPA therefore recommends that
the results of leachate testing or the waste analysis plan serve as the primary basis for designating
reliable leak detection indicator parameters.

2.2.5 Poisson Tolerance Limits

To apply an upper Tolerance limit using the Poisson model to a group of downgradient
wells, the approach described by Gibbons (1987b) and based on the work of Zacks (1970) can be
taken. In this case, if no contamination has occurred, the estimated interval upper limit will contain
a large fraction of all measurements from the downgradient wells, often specified at 95% or more.

The calculations involved in deriving Poisson Tolerance limits can seem non-intuitive,
primarily because the argument leading to a mathematically rigorous Tolerance limit is complicated.
The basic idea, however, uses the fact that if each individual measurement follows a common
Poisson distribution with rate parameter, A, the sum of n such measurements will also follow a
Poisson distribution, this time with rate nA.

Because the Poisson distribution has the property that its true mean is equal to the rate
parameter A, the concentration sum of n background samples can be manipulated to estimate this
rate. But since we know that the distribution of the concentration sum is also Poisson, the possible
values of A can actually be narrowed to within a small range with fixed confidence probability (7).

For each "possible” value of A in this confidence range, one can compute the percentile of the

Poisson distribution with rate A that would lie above, say, 95% of all future downgradient
measurements. By setting as the "probable” rate, that A which is greater than all but a small
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percentage « of the most extreme possible A's, given the values of n background samples, one can
compute an upper tolerance limit with, say, 95% coverage and (1-0)% confidence.

To actually make these computations, Zacks (1970) shows that the most probable rate A can
be calculated approximately as

1
A,-r = E‘;Z:[ZTH + 2]

where as before Ty, represents the Poisson count of the sum of n background -samples (setting
nondetects to half the method detection limit), and

2
1A2%+2]
represents the y percentile of the Chi-square distribution with (2T+2) degrees of freedom.

To find the upper Tolerance limit with B% coverage (e.g., 95%) once a probable rate A has
been estimated, one must compute the Poisson percentile that is larger than 8% of all possible
measurements from that distribution, that is, the % quantle of the Poisson distribution with mean
rate Atn, denoted by P-1(B,ATn). Using a well-known mathematical relationship between the
Poisson and Chi-square distributions, finding the f% quantile of the Poisson amounts to
determining the least positive integer k such that

2 [2k+2]224

X1-B T

n

where, as above, the quantity [2k+2] represents the degrees of freedom of the Chi-square
distribution. By calculating two times the estimated proiaable rate ATy on the right-hand-side of the
above inequality, and then finding the smallest degrees of freedom so that the (1-B)% percentile of
the Chi-square distribution is bigger than 24Ty, the upper tolerance limit k can be determined fairly

easily.

Once the upper tolerance limit, k, has been estimated, it will represent an upper Poisson
Tolerance limit having approximately % coverage with Y% confidence in all comparisons with
downgradient well measurements.
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. EXAMPLE 11

Use the benzene data of Example 10 to estimate an upper Poisson Tolerance limit with 95%

coverage and 95% confidence probability.

SOLUTION

Step 1.

Step 2.

Step 3.

Step 4.

The benzene data consist of 33 nondetects with detection limit equal to 2 ppb and 3
detected values for a total of n=36. By setting each nondetect to half the detection limit
as before, one finds a total Poisson count of the sum equal to Tp=70.0. It is also known

that the desired confidence probability is ¥=.95 and the desired coverage is f=.95.

Based on the observed Poisson count of the sum of background samples, estimate the
probable occurrence rate Ay using Zacks' formula above as

~ 1 1
Ar = -z—nxi[zTn +2]= 7—2-;5;5[142] =237

Compute twice the probable occurrence rate as 2ATp=4.74. Now using a Chi-square
table, find the smallest degrees of freedom (df), k, such that

232k +2]124.74

Since the 5th percentile of the Chi-square distribution with 12 df equals 5.23 (but only
4.57 with 11 df), it is seen that (2k+2)=12, leading to k=5. Therefore, the upper
Poisson Tolerance limit is estimated as k=5 ppb. .

Because the estimated upper Tolerance limit with 95% coverage equals 5 ppb, any
detected value among downgradient samples greater than 5 ppb may indicate possible
evidence of contamination.
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3. NON-PARAMETRIC COMPARISON OF
- COMPLIANCE WELL DATA
TO BACKGROUND

When concentration data from several compliance wells are to be compared with
concentration data from background wells, one basic approach is analysis of variance (ANOVA).
The ANOVA technique is used to test whether there is statistically significant evidence that the
mean concentration of a constituent is higher in one or more of the compliance wells than the
baseline provided by background wells. Parametric ANOVA methods make two key assumptions:
1) that the data residuals are Normally distributed and 2) that the group variances are all »
approximately equal. The steps for calculating a parametric ANOVA are given in the Interim Final
Guidance (pp. 5-6 to 5-14).

If either of the two assumptions crucial to a parametric ANOVA is grossly violated, it is
recommended that a non-parametric test be conducted using the ranks of the observations rather
than the original observations themselves. The Interim Final Guidance describes the Kruskal-
Wallis test when three or more well groups (including background data, see pp. 5-14 to 5-20) are
being compared. However, the Kruskal-Wallis test is not amenable to two-group comparisons,
say of one compliance well to background data. In this case, the Wilcoxon Rank-Sum procedure
(also known as the Mann-Whitney U Test) is recommended and explained below. Since most
situations will involve the comparison of at least two downgradient wells with' background data,
the Kruskal-Wallis test is presented first with an additional example.

3.1 KRUSKAL-WALLIS TEST

When the assumptions used in a parametric analysis of variance cannot be verified, e.g.,
when the original or transformed residuals are not approximately Normal in distribution or have
significantly different group variances, an analysis can be performed using the ranks of the
observations. Usually, a non-parametric procedure will be needed when a substantial fraction of
the measurements are below detection (more than 15 percent), since then the above assumptions
are difficult to verify.

The assumption of independence of the residuals is still required. Under the null hypothesis

that there is no difference among the groups, the observations are assumed to come from identical
distributions. However, the form of the distribution need not be specified.
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A non-parametric ANOVA can be used in any situation that the parametric analysis of
variance can be used. However, because the ranks of the data are being used, the minimum
sample sizes for the groups must be a little larger. A useful rule of thumb is to require a minimum
of three well groups with at least four observations per group before using the Kruskal-Wallis
procedure.

Non-parametric procedures typically need a few more observations than parametric
procedures for two reasons. On the one hand, non-parametric tests make fewer assumptions
concerning the distribution of the data and so more data is often needed to make the same judgment
that would be rendered by a parametric test. Also, procedures based on ranks have a discrete
distribution (unlike the continuous distributions of parametric tests). Consequently, a larger
sample size is usually needed to produce test statistics that will be significant at a specified alpha
level such as 5 percent.

The relative gfficiency of two procedures is defined as the ratio of the sample sizes needed by
each to achieve a certain level of power against a specified alternative hybothcsis. As sample sizes ‘
get larger, the efficiency of the Kruskal-Wallis test relative to the parametric analysis of variance
test approaches a limit that depends on the underlying distribution of the data, but is always at least
86 percent. This means roughly that in the worst case, if 86 measurements are available for a
parametric ANOVA, only 100 sample values are needed to have an equivalently powerful Kruskal-
Wallis test. In many cases, the increase in sample size necessary to match the power of a
parametric ANOVA is much smaller or not needed at all. The efficiency of the Kruskal-Wallis test
is 95 percent if the data are really Normal, and can be much larger than 100 percent in other cases
(e.g., it is 150 percent if the residuals follow a distribution called the double exponential).

These results concerning efficiency imply that the Kruskal-Wallis test is reasonably powerful
for detecting concentration differences despite the fact that the original data have been replaced by
their ranks, and can be used even when the data are Normally distributed. When the data are not
Normal or cannot be transformed to Normality, the Kruskal-Wallis procedure tends to be more
powerful for detecting differences than the usual parametric approach.

3.1.1 Adjusting for Tied Observations

Frequently, the Kruskal-Wallis procedure will be used when the data contain a significant
fraction of nondetects (e.g., more than 15 percent of the samples). In these cases, the parametric
assumptions necessary for the usual one-way ANOVA are difficult or impossible to verify, making
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the non-parametric alternative attractive. However, the presence of nondetects prevents a unique
ranking of the concentration values, since nondetects are, up to the limit of measurement, all tied at

the same value.

To get around this problem, two steps are necessary. First, in the presence of ties (e.g.,
nondetects), all tied observations should receive the same rank. This rank (sometimes called the
midrank (Lehmann, 1975)) is computed as the average of the ranks that would be given to a group
of ties if the tied values actually differed by a tiny amount and could be ranked uniquely. For
example, if the first four ordered observations are all nondetects, the midrank given to each of
these samples would be equal to (1+2+3+4)/4=2.5. If the next highest measurement is a unique
detect, its rank would be 5 and so on untl all observations are appropriately ranked.

The second step is to compute the Kruskal-Wallis statistic as described in the Interim Final
Guidance, using the midranks computed for the tied values. Then an adjustment to the Kruskal-
Wallis statistic must be made to account for the presence of ties. This adjustment is described on
page 5-17 of the Interim Final Guidance and requires computation of the formula:

H
=t
l_ ZE_ | i
( l-lNB—N)

where g equals the number of groups of distinct tied observations and t; is the number of

H'=

observatons in the ith ted group.

EXAMPLE 12

Use the non-parametric analysis of variance on the following data to determine whether there
is evidence of contamination at the monitoring site.

Toluene Concentration (ppb)

Background Wells Compliance Wells
Month Well 1 Well 2 Well 3 Well 4 Well 5
1 <5 <5 <5 <5 <5
2 7.5 <5 12.5 13.7 20.1
3 <5 <5 8.0 15.3 35.0
4 <5 <5 <5 20.2 28.2
5 6.4 <5 11.2 25.1 19.0
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SOLUTION

Step 1.

Compute the overall percentage of nondetects. In this case, nondetects account for 48
percent of the data. The usual parametric analysis of variance would be inappropriate.
Use the Kruskal-Wallis test instead, pooling both background wells into one group and
reatng each compliance well as a separate group.

Step 2. Compute ranks for all the data including tied observations (e.g., nondetects) as in the
following table. Note that each nondetect is given the same midrank, equal to the
average of the first 12 unique ranks.

Toluene Ranks
Background Wells Compliance Wells
Month Well 1 Well 2 Well 3 Well 4 Well 5

1 6.5 6.5 6.5 6.5 6.5

2 14 6.5 17 18 21

3 6.5 6.5 15 19 25

4 6.5 6.5 6.5 22 24

5 13 6.5 16 23 20
Rank Sum Rp=79 R3=61 R4=88.5 R5=96.5
Rank Mean Ry=7.9 R3=12.2 R,=17.7  Rg=193

Step 3.  Calculate the sums of the ranks in each group (R;) and the mean ranks in each group
(R;). These results are given above.

Step 4. Compute the Kruskal-Wallis statistic H using the formula on p. 5-15 of the Interim Final
Guidance

12 x R?
H=|——— — [=3(N+1
[N(N+ 1)Zi=1 Nl] (N+1)
where N=total number of samples, Nj=number of samples in ith group, and K=number
of groups. In this case, N=25, K=4, and H can be computed as
2 2 2 2
H= 2 |7 +él +——-88'5 +—-——96’5 - 78 =10.56.
25%26110 5 5 5 s
Step 5. Compute the adjustment for ties. There is only one group of distinct tied observations,

containing 12 samples. Thus, the adjusted Kruskal-Wallis statistic is given by:
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10.56
H'z=z————
- 12°-12
1- 3
25" =25
Step 6. Compare the calculated value of H” to the tabulated Chi-square value with (K-1)= (#
groups-1)=3 df, X23’,o5=7.81. Since the observed value of 11.87 is greater than the

Chi-square critical value, there is evidence of significant differences between the well
groups. Post-hoc pairwise comparisons are necessary.

=11.87.

Step 7. Calculate the critical difference for compliance well comparisons to the background
using the formula on p. 5-16 of the Interim Final Guidance document. Since the number
of samples at each compliance well is four, the same critical difference can be used for
each comparison, namely,

25-26(1 1
C: = 2'05,3\[——12 (TE'F-S-) =8.58

Step 8. Form the differences between the average ranks of each compliance well and the
background and compare these differences to the critical value of 8.58.

Well 3: R3-Rp =12.2-7.9 = 4.3
Well 4: R4-Ry =17.7-7.9=9.8

Well 5: Rs-Ry =19.3-7.9 = 11.4.

Since the average rank differences at wells 4 and 5 exceed the cntical difference, there is
significant evidence of contamination at wells 4 and 5, but not at well 3.

3.2 WILCOXON RANK-SUM TEST FOR TWO GROUPS

When a single compliance well group is being compared to background data and a non-
parametric test is needed, the Kruskal-Wallis procedure should be replaced by the Wilcoxon Rank-
Sum test (Lehmann, 1975; also known as the two-sample Mann-Whitney U test). For most
ground-water applications, the Wilcoxon test shou'ld be used whenever the proportion of
nondetects in the combined data set exceeds 15 percent. However, to provide valid results, do hot
use the Wilcoxon test unless the compliance well and background data groups both contain at least
four samples each.

To run the Wilcoxon Rank-Sum Test, use the following algorithm. Combine the compliance

and background data and rank the ordered values from 1 to N. Assume there are n compliance
samples and m background samples so that N=m+n. Denote the ranks of the compliance samples
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by C; and the ranks of the background samples by B;. Then add up the ranks of the compliance

samples and subtract n(n+1)/2 1o get the Wilcoxon statistic W:

wW=2X" C - -;-n(n +1).

The rationale of the Wilcoxon test is that if the ranks of the compliance data are quite large
relative to the background ranks, then the hypothesis that the compliance and background values
came from the same populaton should be rejected. Large values of the statistic W give evidence of
contamination at the compliance well site.

To find the critical value of W, a Normal approximation to its distribution is used. The
expected value and standard deviation of W under the null hypothesis of no contamination are

E(W)=%mn; SD(W)=J%mn(N +1)

An approximate Z-score for the Wilcoxon Rank-Sum Test then follows as: -

given by the formulas

1

~E(W)-=

W - E(W) >
SD(W)

=

The factor of 1/2 in the numerator serves as a continuity correction since the discrete distribution of
the statistic W is being approximated by the continuous Normal distribution.

Once an approximate Z-score has been computed, it may be compared to the upper 0.01
percentile of the standard Normal distribution, z ¢;=2.326, in order to determine the statistical
significance of the test. If the observed Z-score is greater than 2.326, the null hypothesis may be
rejected at the 1 percent significance level, suggesting that there is significant evidence of
contamination at the compliance well site. ,

EXAMPLE 13

The table below contains copper concentration data (ppb) found in water samples at a
monitoring facility. Wells 1 and 2 are background wells and well 3 is a single compliance well
suspected of contaminaton. Calculate the Wilcoxon Rank-Sum Test on these data.
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Copper Concentration (ppb)

Background Compliance
Month Well 1 Well 2 Well 3
1 4.2 5.2 9.4
2 5.8 6.4 10.9
3 11.3 11.2 14.5
4 7.0 11.5 16.1
5 7.3 10.1 215
6 8.2 9.7 17.6

SOLUTION

Step 1. Rank the N=18 observations from 1 to 18 (smallest to largest) as in the following table.

Ranks of Copper Concentrations

Background Compliance
Month Well 1 Well 2 Well 3
1 1 2 8
2 3 4 11
3 13 12 15
4 5 14 16
5 6 10 18
6 7 9 17

Step 2. Compute the Wilcoxon statistic by adding up the compliance well ranks and subtractmg
n(n+1)/2, so that W=85-21=64.

Step 3. Compute the expected value and standard deviation of W.

E(W)= lmn =36
2

SD(W) =, %mn(N +1) = V114 = 10.677

Step 4. Form the approximate Z-score.

1
W-EW)-— 2k
7 = 2=64 36 O'5=2.576
SD(W) 10.677
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Step 5. Compare the observed Z-score to the upper Q.Ol percentile of Lhe Normal distribution.
Since_Z=2.576>2.326=z o1, there is significant evidence of contamination at the
compliance well at the 1 percent significance level.

3.2.1 Handling Ties in the Wilcoxon Test

Tied observations in the Wilcoxon test are handled in similar fashion to the Kruskal-Wallis
procedure. First, midranks are computed for all tied values. Then the Wilcoxon statistic is
computed as before but with a slight difference. To form the approximate Z-score, an adjustment
is made to the formula for the standard deviation of W in order to account for the groups of tied
values. The necessary formula (Lehmann, 1975) is:

L] N+1 .. 3"'
o [T )

where, as in the Kruskal-Wallis method, g equals the number of groups of distinct tied
observations and t; represents the number of tied values in the ith group.
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4. STATISTICAL INTERVALS: CONFIDENCE,
-- TOLERANCE, AND PREDICTION

Three types of statistical intervals are often constructed from data: Confidence intervals,
Tolerance intervals, and Prediction intervals. Though often confused, the interpretations and uses
of these intervals are quite distinct. The most common interval encountered in a course on statistics
is a Confidence interval for some parameter of the distribution (e.g., the population mean). The
interval is constructed from sample data and is thus a random quantity. This means that each set of
sample data will generate a different Confidence interval, even though the algorithm for
constructing the interval stays the same every time.

A Confidence interval is designed to contain the specified population parameter (usually the
mean concentration of a well in ground-water monitoring) with a designated level of confidence or
probability, denoted as 1-a. The interval will fail to include the true parameter in approximately o
percent of the cases where such intervals are constructed.

The usual Confidence interval for the mean gives information about the average concentration
level at a particular well or group of wells. It offers little information about the highest or most
extreme sample concentratdons one is likely to observe over time. Often, it is those extreme values
one wants to monitor to be protective of human health and the environment. As such, a
Confidence interval generally should be used only in two situations for ground-water data analysis:
(1) when directly specified by the permit or (2) in compliance monitoring, when downgradient
samples are being compared to a Ground-Water Protection Standard (GWPS) representing the
average of onsite backgrouhd data, as is sometimes the case with an Alternate Contaminant Level
(ACL) . In other situations it is usually desirable to employ a Tolerance or Prediction interval.

A Tolerance interval is designed to contain a designated proportion of the population (e.g.,
95 percent of all possible sample measurements). Since the interval is constructed from sample
data, it also is a random interval. And because of sampling fluctuations, a Tolerance interval can
contain the specified proportion of the population only with a certain confidence level. Two
coefficients are associated with any Tolerance interval. One is the proportion of the population that
the interval is supposed to contain, called the coverage. The second is the degree of confidence
with which the interval reaches the specified coverage. This is known as the tolerance coefficient.
A Tolerance interval with coverage of 95 percent and a tolerance coefficient of 95 percent is
constructed to contain, on average, 95 percent of the distribution with a probability of 95 percent.
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Tolerance intervals are very useful for ground-water data analysis, because in many
situations one wants to ensure that at most a small fraction of the compliance well sample
measurements exceed a specific concentration level (chosen to be protective of human health and
the environment). Since a Tolerance interval is designed to cover all but a small percentage of the
population measurements, observations should very rarely exceed the upper Tolerance limit when
testing small sample sizes. The upper Tolerance limit allows one to gauge whether or not too many

extreme concentration measurements are being sampled from compliance point wells.

Tolerance intervals can be used in detection monitoring when comparing compliance data to
background values. They also should be used in compliance monitoring when comparing
compliance data to certain Ground-Water Protection Standards. Specifically, the tolerance interval
approach is recommended for comparison with a Maximum Contaminant Level (MCL) or with an
ACL if the ACL is derived from health-based risk data.

Prediction intervals are constructed to contain the next sample value(s) from a population or
distribution with a specified probability. That is, after sampling a background well for some time
and measuring the concentration of an analyte, the data can be used to construct an interval that will
contain the next analyte sample or samples (assuming the distribution has not changed). A
Prediction interval will thus contain a future value or values with specified probability. Prediction
intervals can also be constructed to contain the average of several future observations.

Prediction intervals are probably most useful for two kinds of detection monitoring. The first
kind is when compliance point well data are being compared to background values. In this case the
Prediction interval is constructed from the background data and the compliance well data are
compared to the upper Prediction limits. The second kind is when intrawell comparisons are being
made on an uncontaminated well. In this case, the Prediction interval is constructed on past data
sampled from the well, and used to predict the behavior of future samples from the same well.

In summary, a Confidence interval usually contains an average value, a Tolerance interval
contains a proportion of the population, and a Prediction interval contains one or more future
observations. Each has a probability statement or "confidence coefficient” associated with it. For
further explanation of the differences between these interval types, see Hahn (1970).

One should note that all of these intervals assume that the sample data used to construct the
intervals are Normally distributed. In light of the fact that much ground-water concentration data is

better modeled by a Lognormal distribution, it is recommended that tests for Normality be run on
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the logarithms of the original data before constructing the random intervals. If the data follow the
Lognormal model, then the intervals should be constructed using the logarithms of the sample
values. In this case, the limits of these intervals should not be compared to the original compliance
data or GWPS. Rather, the comparison should involve the Jogged compliance data or Jogged

GWPS. When neither the Normal or Lognormal models can be justified, a non-parametric version
of each interval may be utilized.

4.1 TOLERANCE INTERVALS

In detection monitoring, the compliance point samples are assumed to come from the same
distribution as the background values until significant evidence of contamination can be shown.
To test this hypothesis, a 95 percent coverage Tolerance interval can be constructed on the
background data. The background data should first be tested to check the distributional
assumptions. Once the interval is constructed, each compliance sample is compared to the upper
Tolerance limit. If any compliance point sample exceeds the limit, the well from which it was
drawn is judged to have significant evidence of contamination (note that when testing a large
number of samples, the nature of a Tolerance interval practically ensures that a few measurements
will be above the upper Tolerance limit, even when no contamination has occurred. In these cases,
the offending wells should probably be resampled in order to verify whether or not there is definite
evidence of contamination.)

If the Tolerance limit has been constructed using the logged background data, the compliance
point samples should first be logged before comparing with the upper Tolerance limit. The steps
for computing the actual Tolerance interval in detection monitoring are detailed in the Interim Final
Guidance on pp. 5-20 to 5-24. One point about the table of factors x used to adjust the width of
the Tolerance interval is that these factors are designed to provide at least 95% coverage of the

population. Applied over many data sets, the average coverage of these intervals will often be
close to 98% or more (see Guttman, 1970). To constriict a one-sided upper Tolerance interval
with average coverage of (1-B)%, the x multiplier can be computed directly with the aid of a
Student's t-distribution table. In this case, the formula becomes

1
K= tn—l.l—ﬁ 1+"r;

where the t-value represents the (I-B)_th upper percentile of the t-distribution with (n-1) degrees of
freedom.
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In compliance monitoring, the Tolerance interval is calculated on the compliance point data,
so that the uppc;—onc-sided Tolerance limit may be compared to the appropriate Ground-Water
Protection Standard (i.e., MCL or ACL). If the upper Tolerance limit exceeds the fixed standarc
and especially if the Tolerance limit has been constructed to have an gverage coverage of 95% as
described above, there is significant evidence that as much as 5 percent or more of all the
compliance well measurements will exceed the limit and consequently that the compliance point
wells are in violation of the facility permit. The algorithm for computing Tolerance limits in
compliance monitoring is given on pp. 6-11 to 6-15 of the Interim Final Guidance.

EXAMPLE 14

The 1able below contains data that represent chrysene concentration levels (ppb) found in
water samples obtained from the five compliance wells at a monitoring facility. Compute the upper
Tolerance limit at each well for an average of 95% coverage with 95% confidence and determine
whether there is evidence of contamination. The alternate concentration limit (ACL) is 80 ppb.

Chrysene Concentration (ppb)

Month Well 1 Well 2 Well 3 Well 4 Well 5
1 19.7 10.2 68.0 268 47.0
2 39.2 772 48.9 17.7 30.5
3 7.8 161 30.1 31.9 15.0
4 128 57 38.1 222 23.4
Mean 19.88 9.80 46.28 24.65 28.98
SD 1378 4.60 16.40 6.10 13,58
SOLUTION

Step 1. Before constructing the tolerance intervals, check the distributional assumptions. The
algorithm for a parametric Tolerance interval assumes that the data used to compute the
interval are Normally distributed. Because these data are more likely to be Lognormal in
distribution than Normal, check the assumptions on the logarithms of the original data
given in the table below. Since each well has only four observations, Probability Plots
are not likely to be informative. The Shapiro-Wilk or Probability Plot Correlation
Coefficient tests can be run, but in this example only the Skewness Coefficient is
examined to ensure that gross departures from Lognormality are not missed.
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Logged Chrysene Concentration [log(ppb)]

Month Well 1 Well 2 Well 3 Well 4 Well 5

1 2.98 2.32 4.22 3.29 3.85

2 3.67 1.97 3.89 2.87 3.42

3 2.05 2.78 3.40 3.46 2.71

4 2.55 1.74 3.64 3.10 3.15
Mean 2.81 2.20 3.79 3.18 3.28
SD 0.68 0.45 0.35 0.25 0.48

Step 2. The Skewness Coefficients for each well are given in the following table. Since none of
the coefficients is greater than 1 in absolute value, approximate Lognormality (that is,
Normality of the logged data) is assumed for the purpose of constructing the tolerance
intervals.

Well Skewness ISkewness|
1 210 210
2 334 .334
3 192 192
4 -.145 145
5 -.020 .020

Step 3. Compute the tolerance interval for each compliance well using the logged concentration
data. The means and SDs are given in the second table above.

Step 4.  The tolerance factor for a one-sided Normal tolerance interval with an average of 95%
coverage with 95% probability and n=4 observations is given by

K= tm,{H% =2.631

The upper tolerance limit is calculated below for each of the five wells.
Well 1 2.81+2.631(0.68)= 4.61 log(ppb)
Well 2 2.20+2.631(0.45)= 3.38 log(ppb)
Well 3 3.79+2.631(0.35)= 4.71 log(ppb)
Well 4 3.18+2.631(0.25)= 3.85 log(ppb)
Well 5 3.28+2.631(0.48)= 4.54 log(ppb)
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Step 5. Compare the upper tolerance limit for each well to the logarithm of the ACL, that is
log(80)=4.38. Since the upper tolerance limits for wells 1, 3, and 5 exceed the logged
ACL of 4.38 log(ppb), there is evidence of chrysene contamination in wells 1, 3, and 5.

4.1.1 Non-parametric Tolerance Intervals

When the assumptions of Normality and Lognormality cannot be justified, especially when a
significant portion of the samples are nondetect, the use of non-parametric tolerance intervals
should be considered. The upper Tolerance limit in a non-parametric setting is usually chosen as
an order statstic of the sample data (see Guttman, 1970), commonly the maximum value or maybe
the second largest value observed. As a consequence, non-parametric intervals should be
constructed only from wells that are not contaminated. Because the maximum sample value is
often taken as the upper Tolerance limit, non-parametric Tolerance intervals are very easy to
construct and use. The sample data must be ordered, but no ranks need be assigned to the
concentration values other than to determine the largest measurements. This also means that
nondetects do not have to be uniquely ordered or handled in any special manner.

One advantage to using the maximum concentration instead of assigning ranks to the data is
that non-parametric intervals (including Tolerance intervals) are sensitive to the actual magnitudes
of the concentration data. Another plus is that unless.all the sample data are nondetect, the
maximum value will be a detected concentration, leading to a well-defined upper Tolerance limit.

Once an order statistic of the sample data (e.g., the maximum value) is chosen to represent
the upper tolerance limit, Guttman (1970) has shown that the coverage of the interval, constructed
repeatedly over many data sets, has a Beta probability density with cumulative distribution

I'(n+1)

_ 1, ~ ! ..n-m 1_ m-ld
[[((n-m+1m) 0I‘(n-—m+l)l‘(m)d (1-u) u

where n=# samples in the data set and m=[(n+1)—(rank of upper tolerance limit value)]. If the
maximum sample value is selected as the tolerance limit, its rank is equal to n and so m=1. If the
second largest value is chosen as the limit, its rank would be equal to (n~1) and so m=2.

Since the Beta distribution is closely related to the more familiar Binomial distribution,
Guttman has shown that in order to construct a non-parametric tolerance interval with at least %
coverage and (1-0) confidence probability, the number of (background) samples must be chosen
such that
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. i(?](l— BB 21-a

i=m

Table A-G in Appendix A provides the minimum coverage levels with 95% confidence for
various choices of n, using either the maximum sample value or the second largest measurement as
the tolerance limit. As an example, with 16 background measurements, the minimum coverage is
B=83% if the maximum background value is designated as the upper Tolerance limit and B=74% if
the Tolerance limit is taken to be the second largest background value. In general, Table A-6

illustrates that if the underlyving distribution of concentration values is unknown, more background

samples are needed compared to the parametric setting in order to construct a tolerance interval with
sufficiently high coverage. Parametric tolerance intervals do not require as many background

samples precisely because the form of the underlying distribution is assumed to be known.

Because the coverage of the above non-parametric Tolerance intervals follows a Beta
distmibution, it can also be shown that the average (not the minimum as discussed above) level of
coverage is equal to 1-{m/(n+1)] (see Guttman, 1970). In particular, when the maximum sample
value is chosen as the upper tolerance limit, m=1, and the expected coverage is equal to n/(n+1).
This implies that at least 19 background samples are necessary to achieve 95% coverage on
average.

EXAMPLE 15

Use the following copper background data to establish a non-parametric upper Tolerance
limit and determine if either compliance well shows evidence of copper contamination.

Copper Concentradon (ppb)

Background Wells Compliance Wells
Month Well 1 Well 2 Well 3 Well 4 Well 5
1 <5 9.2 <5
2 <5 <5 5.4
3 7.5 <5 6.7
4 <5 6.1 <5
5 <5 8.0 <5 6.2 <5
6 <5 5.9 <5 <5 <5
7 6.4 <5 <5 7.8 5.6
8 6.0 <5 <5 10.4 <5
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SOLUTION

Step 1. Examine the background data in Wells 1, 2, and 3 to determine that the maximum
observed value is 9.2 ppb. Set the 95% confidence upper Tolerance limit equal to this
value. Because 24 background samples are available, Table A-6 indicates that the
minimum coverage is equal to 88% (the expected average coverage, however, is equal to
24/25=96%). To increase the toverage level, more background samples would have to
be collected.

Step 2. Compare each sample in compliance Wells 4 and 5 to the upper Tolerance limit. Since
none of the measurements at Well 5 is above 9.2 ppb, while one sample from Well 4 is
above the limit, conclude that there is significant evidence of copper contamination at
Well 4 but not Well 5.

4.2 PREDICTION INTERVALS

When comparing background data to compliance point samples, a Prediction interval can be
constructed on the background values. If the distributions of background and compliance point
data are really the same, all the compliance point samples should be contained below the upper
Prediction interval limit. Evidence of contamination is indicated if one or more of the compliance

samples lies above the upper Prediction limit.

With intrawell comparisons, a Prediction interval can be computed on past data to contain a
specified number of future observations from the same well, provided the well has not been
previously contaminated. If any one or more of the future samples falls above the upper Prediction
limit, there is evidence of recent contamination at the well. The steps to calculate parametric
Prediction intervals are given on pp. 5-24 to 5-28 of the Interim Final Guidance.

EXAMPLE 16

The data in the table below are benzene concentrations measured at a groundwater monitoring
facility. Calculate the Prediction interval and determine whether there is evidence of contamination.

Background Well Data Compliance Well Data
Benzene Concentration Benzene Concenmration
Sampling Date (ppb) Sampling Date (ppb)
Month 1 12.6 Month 4 48.0
30.8 30.3
52.0 : 42.5
28.1 ) 15.0
Month 2 33.3
44.0 =4
3.0 Mean=33.95
12.8 SD=14.64
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Month 3 58.1 Month 5 47.6
— 12.6 3.8
17.6 2.6
25.3 519
n=12 n=4
Mean=27.52 Mean=26.48
SD=17.10 SD=26.94
SOLUTION

Step 1.  First test the background data for approximate Normality. Only the background data are
included since these values are used to construct the Prediction interval.

Step 2. A Probability Plot of the 12 background values is given below. The plot indicates an
overall pattern that is reasonably linear with some modest departures from Normality.
To further test the assumption of Nommality, run the Shapiro-Wilk test on the

background data.
PROBABILITY PLOT
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Step 3.  List the data in ascending and descending order as in the following table. Also calculate
the differences x(y.j41)-X(j) and multiply by the coefficients ay_;, ) taken from Table A-1
to get the components ot) vector b; used to calculate the Shapiro-Wilk statistic (W).
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Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

1 X(i) X(n-i+1) an.j+] bj

1 3.0 58.1 0.548 30.167
2 12.6 52.0 0.333 13.101
3 12.6 44.0 0.235 7.370
4 12.8 333 0.159 3,251
5 17.6 30.8 0.092 1.217
6 25.3 28.1 0.030 0.085
7 28.1 25.3 b=55.191
8 30.8 17.6

9 33.3 12.8

10 44.0 12.6

11 52.0 12.6

12

58.1 3.0

Sum the components b; in column 5 to get quantity b. Compute the standard deviation
of the background benzene values. Then the Shapiro-Wilk stadstic is given as

b T [ 55191 7
W= = =0.947.
[SD«/n—l] [17.101\/11}

The critical value at the 5% level for the Shapiro-Wilk test on 12 observatons is 0.859.
Since the calculated value of W=0.947 is well above the crmcal value, there is no
evidence to reject the assumption of Normality.

Compute the Prediction interval using the original background data. The mean and
standard deviation of the 12 background samples are given by 27.52 ppb and 17.10
ppb, respectively.

Since there are two future months of compliance data to be compared to the Prediction
limit, the number of future sampling periods is k=2. At each sampling period, a mean of
four independent samples will be computed, so m=4 in the prediction interval formula
(see Interim Final Guidance, p. 5-25). The Bonferroni t-statistic, t(}, 5 gs), With k=2

and 11 df is equivalent to the usual t-statistic at the .975 level with 11 df, i.e.,
t1,975=2.201.

Compute the upper one-sided Prediction limit (UL) using the formula:

X+t s/ Lil
(n-1k,.95°Vm " n

Then the UL is given by:
UL =27.52+ (17.10)(2.201),{%+ Tli = 49.25 ppb.

Compare the UL to the compliance data. The means of the four compliance well
observations for months 4 and 5 are 33.95 ppb and 26.48 ppb, respectively. Since the
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mean concentrations for months 4 and 5 are below the upper Prediction limit, there is no
evidence of recent contamination at the monitoring facility.

4.2.1 Non-parametric Prediction Intervals

When the parametric assumptions of a Normal-based Prediction limit cannot be justified,
often due to the presence of a significant fraction of nondetects, a non-parametric Prediction
interval may be considered instead. A non-parametric upper Prediction limit is typically
constructed in the same way as a non-parametric upper Tolerance limit, that is, by estimating the
limit to be the maximum value of the set of background samples.

The difference between non-parametric Tolerance and Prediction limits is one of
interpretation and probability. Given n background measurements and a desired confidence level,
a non-parametric Tolerance interval will have a certain coverage percentage. With high probability,
the Tolerance interval is designed to miss only a small percentage of the samples from
downgradient wells. A Prediction limit, on the other hand, involves the confidence probability that
the next future sample or samples will definitely fall below the upper Prediction limit. In this
sense, the Prediction limit may be thought of as a 100% coverage Tolerance limit for the next k

future samples.

As Guttman (1970) has indicated, the confidence probability associated with predicting that
the next single observation from a downgradient well will fall below the upper Prediction limit --
estimated as the maximum background value -- is the same as the expected coverage of a similarly
constructed upper Tolerance limit, namely (1-a)=n/(n+1). Furthermore, it can be shown from
Gibbons (1991b) that the probability of having k future samples all fall below the upper non-
parametric Prediction limit is (1-a)=n/(n+k). Table A-7 in Appendix A lists these confidence
levels for various choices of n and k. The false positive rate associated with a single Prediction
limit can be computed as one minus the confidence level.

Balancing the ease with which non-parametric upper Prediction limits are constructed is the
fact that, given fixed numbers of background samples and future sample values to be predicted, the
maximum confidence level associated with the Prediction limit is also fixed. To increase the level
of confidence, the only choices are to 1) decrease the number of future values to be predicted at any
testing period, or 2) increase the number of background samples used in the test. Table A-7 can be
used along these lines to plan an appropriate sampling strategy so that the false positive rate can be
minimized and the confidence probability maximized to a desired level.
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EXAMPLE 17

Use the following arsenic data from a monitoring facility to compute a non-parametric upper

Prediction limit that will contain the next 2 monthly measurements from a downgradient well and

determine the level of confidence associated with the Prediction limit.

Arsenic Concentrations (ppb)

Background Wells Compliance
Month Well 1 Well 2 Well 3 Well 4
1 <5 7 <5
2 <5 6.5 <5
3 8 <5 105
4 <5 6 <5
5 9 12 <5 8
6 10 T <5 9 14

SOLUTION

Step 1.

Step 2.

Step 3.

Determine the maximum value of the background data and use this value to estimate the
upper Prediction limit. In this case, the Prediction limit is set to the maximum value of
the n=18 samples, or 12 ppb. As is true of non-parametric Tolerance intervals, only
uncontaminated wells should be used in the construction of Prediction limits.

Compute the confidence level and false positive rate associated with the Prediction limit.
Since two future samples are being predicted and n=18, the confidence level is found to
be n/(n+k)=18/20=90%. Consequently, the Type I error or false positive rate is equal to
(1-.90)=10%. If a lower false positive rate is desired, the number of background
samples used in the test must be enlarged.

Compare each of the downgradient samples against the upper Prediction limit. Since the
value of 14 ppb for month 2 exceeds the limit, conclude that there is significant evidence
of contamination at the downgradient well at the 10% level of significance.

4.3 CONFIDENCE INTERVALS

Confidence intervals should only be constructed on data collected during compliance
monitoring, in particular when the Ground-Water Protection Standard (GWPS) is an ACL

computed from the average of background samples. Confidence limits for the average

concentration levels at compliance wells should not be compared to MCLs. Unlike a Tolerance

interval, Confidence limits for an average do not indicate how often individual samples will exceed

the MCL. Conceivably, the lower Confidence limit for the mean concentration at a compliance
well could fall below the MCL, yet 50 percent or more of the individual samples might exceed the
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MCL. Since an MCL is designed to set an upper bound on the acceptable contamination, this
would not be protective of human health or the environment.

When comparing individual compliance wells to an ACL derived from average background
levels, a lower one-sided 99 percent Confidence limit should be constructed. If the lower
Confidence limit exceeds the ACL, there is significant evidence that the true mean concentration at
the compliance well exceeds the GWPS and that the facility permit has been violated. Again, in
most cases, a Lognormal model will approximate the data better than a Normal distribution model.
It is therefore recommended that the initial data checking and analysis be performed on the
logarithms of the data. If a Confidence interval is constructed using logged concentration data, the
lower Confidence limit should be compared to the logarithm of the ACL rather than the original
GWPS. Steps for computing Confidence intervals are given on pp. 6-3 to 6-11 of the Interim
Final Guidance.
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5. STRATEGIES FOR MULTIPLE COMPARISONS

5.1 BACKGROUND OF PROBLEM

Multiple comparisons occur whenever more than one statistical test is performed during any
given monitoring or evaluation period. These comparisons can arise as a result of the need to test
multiple downgradient wells against a pool of upgradient background data or to test several
indicator parameters for contamination on a regular basis. Usually the same statistical test is
performed in every comparison, each test having a fixed level of confidence (1-a), and a
corresponding false positive rate, o.

The false positive rate (or Type I error) for an individual comparison is the probability that
the test will falsely indicate contamination, i.e., that the test will "wrigger,” though no contamination
has occurred. If ground-water data measurements were always constant in the absence of
contamination, false positives would never occur. But ground-water measurements typically vary,
either due to natural variation in the levels of background concentrations or to variation in lab
measurement and analysis.

Applying the same test to each comparison is acceptable if the number of comparisons is
small, but when the number of comparisons is moderate to large the false positive rate associated
with the testing network as a whole (that is, across all comparisons involving a separate statistical
test) can be quite high. This means that if enough tests are run, there will be a significant chance
that at least one test will indicate contamination, even if no actual contamination has occurred. As
an example, if the testing network consists of 20 separate comparisons (some combination of
multiple wells and/or indicator parameters) and a 99% confidence level Prediction interval limit is
used on each comparison, one would expect an overall network-wide false positive rate of over
18%, even though the Type I error for any single comparison is only 1%. This means there is
nearly 1 chance in 5 that one or more comparisons will falsely register potential contamination even
if none has occurred. With 100 comparisons and the same testing procedure, the overall network-
wide false positive rate jumps to more than 63%, adding additional expense to verify the lack of
contamination at falsely triggered wells.

To lower the network-wide false positive rate, there are several important considerations. As
noted in Section 2.2.4, only those constituents that have been shown to be reliable indicators of
potential contamination should be statistically tested on a regular basis. By limiting the number of
tested constituents to the most useful indicators, the overall number of statistical comparisons that
must be made can be reduced, lowering the facility-wide false alarm rate. In addition, depending

62



Draft 1/28/93

on the hydrogeology of the site, some indicator parameters may need to be tested only at one (or a
few adjacent) regulated waste units, as opposed to testing across the entire facility, as long as the
permit specifies a common point of compliance, thus further limiting the number of total statstical

comparisons necessary.

One could also ry to lower the Type I error applied to each individual comparison.
Unfortunately, for a given statistical test in general, the lower the false positive rate, the lower the
power of the test to detect real contamination at the well. If the statistical power drops too much,
real contamination will not be identified when it occurs, creating a situation not protective of the
environment or human health. Instead, alternative testing strategies can be considered that
specifically account for the number of statistical comparisons being made during any evaluation
period. All alternative testing strategies should be evaluated in light of two basic goals:

1. Is the network-wide false positive rate (across all constituents and wells being
tested) acceptably low? and

2. Does the testing strategy have adequate statistical power to detect real contamination
when it occurs?

To establish a standard recommendation for the network-wide overall false positive rate, it

should be noted that for some statistical procedures, EPA specifications mandate that the Type I
error for any individual comparison be at least 1%. The rationale for this minimum requirement is
motivated by statistical power. For a given test, if the Type I error is set too low, the power of the
test will dip below *acceptable” levels. EPA was not able to specify a minimum level of acceptable
power within the regulations because to do so would require specification of a minimum difference
of environmental concern between the null and alternative hypotheses. Limited current knowledge
about the health and/or environmental effects associated with incremental changes in concentration
levels of Appendix IX constituents greatly complicates this task. Therefore, minimum false
positive rates were adopted for some statistical procedures until more specific guidance could be
recommended. EPA's main objective, however, as in the past, is to approve tests that have
adequate statistical power to detect real contamination of ground water, and not to enforce
minimum false positive rates.

This emphasis is evident in §264.98(g)(6) for detection monitoring and §264.99(i) for
compliance monitoring. Both of these provisions allow the owner or operator to demonstrate that
the statistically significant difference between background and compliance point wells or between
compliance point wells and the Ground-Water Protection Standard is an artifact caused by an error
in sampling, analysis, statistical evaluation, or natural variation in ground-water chemistry. To

63



Draft 1/28/93

" make the demonstration that the statistically significant difference was caused by an error in
sampling, analys_is, or statistical evaluation, re-testing procedures that have been approved by the
Regional Administrator can be written into the facility permit, provided their statistical power is
comparable to the EPA Reference Power Curve given below.

For large monitoring networks, it is almost impossible to maintain a low network-wide
overall false positve rate if the Type I errors for individual comparisons must be kept above 1%.
As will be seen, some alternative testing strategies can achieve a low network-wide false positive
rate while maintaining adequate power to detect contamination. EPA therefore recommends hat
instead of the 1% criterion for individual comparisons, the overall network-wide false positive rate
(across all wells and constituents) of any alternative testing strategy should be kept to
approximately 5% for each monitoring or evaluation period, while maintaining statistical power
comparable to the procedure below.

The other goal of any testing strategy should be to maintain adequate statistical power for
detecting contamination. Technically, power refers to the probability that a statistical testing
procedure will register and identify evidence of contamination when it exists. However, power is
typically defined with respect to a single comparison, not a network of comparisons. Since some
testing procedures may identify contamination more readily when several wells in the network are
contaminated as opposed to just one or two, it is suggested that all testing strategies be compared
on the following more stringent, but common, basis. Let the gffective power of a testing
procedure be defined as the probability of detecting contamination in the monitoring network when
one and only one well is contaminated with a single constituent. Note that the effective poweris a
conservative measure of how a testing regimen will perform over the network, because the test
must uncover one contaminated well among many clean ones (i.e., like "finding a needle in a
haystack").

To establish a recommended standard for the statistical power of a testing strategy, it must be
understood that the power is not single number, but rather a function of the level of contamination
actually present. For most tests, the higher the level of contamination, the higher the statistical
power; likewise, the lower the contamination level, the lower the power. As such, when
increasingly contaminated ground water passes a particular well, it becomes easier for the statistical
test to distinguish background levels from the contaminated ground water; consequently, the power
is an increasing function of the contamination level.
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Perhaps the best way to describe the power function associated with a particular testing
procedure is via a graph, such as the example below of the power of a standard Normal-based
upper Prediction limit with 99% confidence. The power in percent is plotted along the y-axis
against the standardized mean level of contamination along the x-axis. The standardized
contamination levels are in units of standard deviations above the baseline (estimated from
background data), allowing different power curves to be compared across indicator parameters,
wells, and so forth. The standardized units, A, may be computed as

_ (Mean Contamination Level) - (Mean Background Level)

A
~ (SD of Background Data)

In some situations, the probability that contamination will be detected by a particular testing
procedure may be difficult if not impossible to derive analytically and will have to be simulated on
a computer. In these cases, the power is typically estimated by generating Normally-distributed
random values at different mean levels and repeatedly simulating the test procedure. With enough
repetitions a reliable power curve can be plotted (e.g., see figure below).

EPA REFERENCE POWER CURVE
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Notice that the power at A=( represents the false positive rate of the test, because at that point
no contamination 1s actually present and the curve 1s indicating how often contamination will be
"detected" anyway. As long as the power at A=0 is approximately 5% (except for tests on an
individual constituent at an individual well where the false positive rate should approximate 1%)
and the rest of the power curve is acceptably high, the testing strategy should be adequately
comparable to EPA standards.

-~ To determine an acceptable power curve for comparison to alternative testing strategies, the
following EPA Reference Power Curve is suggested. For a given and fixed number of
background measurements, and based on Normally-distributed data from a single downgradient
well generated at various mean levels above background, the EPA Reference Power Curve will
represent the power associated with a 99% confidence upber prediction limit on the next single
future sample from the well (see figure above for n=16).

Since the power of a test depends on several factors, including the background sample size,
the type of test, and the number of comparisons, a different EPA Reference Power Curve will be
associated with each distinct number of background samples. Power curves of alternative tests
should only be compared to the EPA Reference Power Curve using a comparable number of
background measurements. If the power of the alternative test is at least as high as the EPA
reference, while maintaining an approximate 5% overall false positive rate, the alternative
procedure should be acceptable.

With respect to power curves, keep in mind three important considerations: 1) the power of
any testing method can be increased merely by relaxing the false positive rate requirement, letting o
become larger than 5%. This is why an approximate 5% alpha level is suggested as the standard
guidance, to ensure fair power comparisons among competing tests and to limit the overall
network-wide false positive rate. 2) The simulation of alternative testing methods should
incorporate every aspect of the procedure, from initial screens of the data to final decisions
concemning the presence of contamination. This is especially applicable to strategies that involve
some form of retesting at potentially contaminated wells. 3) When the testing strategy incorporates
multiple comparisons, it is crucial that the power be gauged by simulating contamination in one and
only one indicator parameter at a single well (i.e., by measuring the gffective power). As noted
earlier, EPA recommends that power be defined conservatively, forcing any test procedure to find
"the needle 1n the haystack.”
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5.2 POSSIBLE STRATEGIES

5.2.1 Parametric and Non-parametric ANOVA

As described in the Interim Final Guidance, ANOVA procedures (either the parametric
method or the Kruskal-Wallis test) allow multiple downgradient wells (but not multiple
constituents) to be combined into a single statistical test, thus enabling the network-wide false
positive rate for any single constituent to be kept at 5% regardless of the size of the network. The
ANOVA method also maintains decent power for detecting real contamination, though only for
small to moderately-sized networks. In large networks, even the paramewric ANOVA has a
difficult ime finding the "needle in a haystack." The reason for this is that the ANOVA F-test
combines all downgradient wells simultaneously, so that "clean” wells are mixed together with the
single contaminated well, potentially masking the test's ability to detect the source of
contamination.

Because of these characteristics, the ANOVA procedure may have poorer power for detecting
a narrow plume of contamination which affects only one or two wells in a much larger network
(say 20 or more comparisons). Another drawback is that a significant ANOVA test result will not
indicate which well or wells is potentially contaminated without further post-hoc testing.
Furthermore, the power of the ANOVA procedure depends significantly on having at least 3 to 4
samples per well available for testing. Since the samples must be statistically independent,
collection of 3 or more samples at a given well may necessitate a several-month wait if the natural
ground-water velocity at that well is low. In this case, it may be tempting to look for other
strategies (e.g., Tolerance or Prediction intervals) that allow statistical testing of each new ground
water sample as it is collected and analyzed. Finally, since the simple one-way ANOVA procedure
outlined in the Interim Final Guidance is not designed to test multiple constituents simultaneously,
the overall false positive rate will be approximately 5% per constituent, leading to a potentially high
overall network-wide false positive rate (across wells and constituents) if many constituents need
to be tested.

§.2.2 Retesting with Parametric Intervals

One strategy alternative to ANOVA is a modification of approaches suggested by Gibbons
(1991a) and Davis and McNichols (1987). The basic idea is to adopt a two-phase testing strategy.
First, new samples from each well in the network are compared, for each designated constituent
parameter, against an upper Tolerance limit with pre-specified average coverage (Note that the
upper Tolerance limit will be different for each constituent). Since some constituents at some wells
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in a large network would be expected to fail the Tolerance limit even in the absence of
contamination, each well that triggers the Tolerance limit is resampled and only those constituents
that "triggered” the limit are retested via an upper Prediction limit (again differing by constituent).
If one or more resamples fails the upper Prediction limit, the specific constituent at that well failing
the test is deemried to have a concentration level significantly greater than background. The overall
strategy is effective for large networks of comparisons (e.g., 100 or more comparisons), but also
flexible enough to accommodate smaller networks.

To design and implement an appropriate pair of Tolerance and Prediction intervals, one must
know the number of background samples available and the number of comparisons in the network.
Since parametric intervals are used, it is assumed that the background data are either Normal or can
be transformed to an approximate Normal distribution. The tricky part is to choose an average
coverage for the Tolerance interval and confidence level for the Prediction interval such that the
twin goals are met of keeping the overall false positive rate to approximately 5% and maintaining
adequate statistical power.

To derive the overall false positive rate for this retesting strategy, assume that when no
contamination is present each constituent and well in the network behaves independently of other
constituents and wells. Then if A; denotes the event that well 1 is triggered falsely at some stage of
the testing, the overall false positive rate across m such comparisons can be written as

total @ =Pr{A orA,or...orA or...orA_}= l—fIPr{K,}

1m]

where A j denotes the complement of event Aj, Since P{ A} is the probability of not registering a

false trigger at uncontaminated well i, it may be written as

Pr{A }=Pr{X, < TL}+Pr{X, > TL} x Pr{Y, < PL1 X, > TL}

where X represents the original sample at well i, Y; represents the concentrations of one or more
resamples at well i, TL and PL denote the upper Tolerance and Prediction limits respectively, and
the right-most probability is the conditional event that all resample concentrations fall below the
Prediction limit when the initial sample fails the Tolerance limit. '

Letting x=Pr{X;<TL} and y=Pr(Y;<PL | X;j>TL]}, the overall false positive rate across m
constituent-well combinations can be expressed as
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total @ =1-[x +(1-x)-y]"

As noted by Guttman (1970), the probability that any random sample will fall below the
upper Tolerance limit (i.e., quantity x above) is equal to the expected or average coverage of the
Tolerance interval. If the Tolerance interval has been constructed to have average coverage of
95%, x=0.95. Then given a predetermined value for x, a fixed number of comparisons m, and a
desired overall false positive rate &, we can solve for the conditional probability y as follows:

l-a—-x

1-x

If the conditional probability y were equal to the probability that the resample(s) for the ith
constituent-well combination falls below the upper Prediction limit, one could fix « at, say, 5%,
and construct the Prediction interval to have confidence level y. In that way, one could guarantee
an expected network-wide false positive rate of 5%. Unfortunately, whether or not one or more
resamples falls below the Prediction limit depends partly on whether the initial sample for that
comparison eclipsed the Tolerance limit. This is because the same background data are used to
construct both the Tolerance limit and the Prediction limit, creating a statstical dependence between
the tests.

The exact relationship between the conditional probability y and the unconditional probability
Pr{Y;<PL]} is not known; however, simulations of the testing strategy suggest that when the
confidence level for the Prediction interval is equated to the above solution for y, the overall
network-wide false positive rate turns out to be higher than 5%. How much higher depends on the
number of background samples and also the number of downgradient comparisons. Even with a
choice of y that guarantees an expected facility-wide false positive rate of 5%, the power
characteristics of the resulting testing strategy are not necessarily equivalent to the EPA Reference
Power Curve, again depending on the number of t;ackground samples and the number of
monitoring well-constituent combinations in the network.

In practice, to meet the selection criteria of 1) establishing an overall false positive rate of
approximately 5% and 2) maintaining adequate statistical power, the confidence level chosen for
the upper Prediction limit should be somewhat higher than the solution y to the preceding equation.
The table below provides recommended choices of expected coverage and confidence levels for the
Tolerance interval-Prediction interval pair when using specific combinations of numbers of
downgradient comparisons and background samples. In general, one should pick lower coverage
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Tolerance limits for smaller networks and higher coverage Tolerance limits for larger networks.
That way (as can be seen in the table), the resulting Prediction limit confidence levels will be low
enough to allow the construction of Prediction limits with decent statistical power.

PARAMETRIC RETESTING STRATEGIES

# # BG TOLERANCE PREDICTION
COMPARISONS SAMPLES COVERAGE (%) LEVEL (%) RATING
g 95 90 *x
16 95 90 **
5 - 16 95 85 *
24 95 85 *x
24 95 90 *
8 95 98 **
20 16 95 97 **
24 . 95 97 ok
16 98 97 *¥
16 99 92 *
50 24 98 95 *x
24 99 90 *ok
16 98 98 *
100 24 99 95 *
24 98 98 *
Note: ** = strongly recommended

* = recommended

Only strategies that approximately met the selection criteria are listed in the table. It can be
seen that some, but not all, of these strategies are strongly recommended. Those that are merely
"recommended" failed in the simulations to fully meet one or both of the selection criteria. The
performance of all the recommended strategies, however, should be adequate to correctly identify
contamination while maintaining a modest facility-wide false positive rate.

Once a combination of coverage and confidence levels for the Tolerance-Prediction interval
pair is selected, the statistical power of the testing strategy should be estimated in order to compare
with the EPA Reference Power Curve (particularly if the testing scenario is different from those
computed in this Addendum). Simulation results have suggested that the above method for
choosing a two-phase testing regimen can offer statistical power comparable to the EPA Reference
for almost any sized monitoring network (see power curves in Appendix B).
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Several examples of simulated power curves are presented in Appendix B. The range of
downgradient wells tested is from 5 t0 100 (note that the number of wells could actually represent
the number of constituent-well combinations if testing multiple parameters), and each curve is
based on either 8, 16, or 24 background samples. The y-axis of each graph measures the effective
power of the testing strategy, i.e., the probability that contamination is detected when one and only
one constituent at a single well has a mean concentration higher than background level. For each
case, the EPA Reference Power Curve is compared to two different two-phase testing strategies. In
the first case, wells that trigger the initial Tolerance limit are resampled once. This single resample
is compared to a Prediction limit for the next future sample. In the second case, wells that trigger
the Tolerance limit are resampled twice. Both resamples are compared to an uﬁpcr Prediction limit
for the next two future samples at that well.

The simulated power curves suggest two points. First, with an appropriate choice of
coverage and prediction levels, the two-phase retesting strategies have comparable power to the
EPA Reference Power Curve, while maintaining low overall network-wide false positive rates.
Second, the power of the retesting strategy is slightly improved by the addition of a second
resample at wells that fail the initial Tolerance limit, because the sample size is increased.

Overall, the two-phase testing strategy defined above--i.e., first screening the network of
wells with a single upper Tolerance limit, and then applying an upper Prediction limit to resamples
from wells which fail the Tolerance interval--appears to meet EPA's objectives of maintaining
adequate statistical power for detecting contamination while limiting network-wide false positive
rates to low levels. Furthermore, since each compliance well is compared against the interval limits
separately, a narrow plume of contamination can be identified more efficiently than with an
ANOVA procedure (e.g., no post-hoc testing is necessary to finger the guilty wells, and the two-
phase interval testing method has more power against the "needle-in-a-haystack"” contamination
hypothesis).

5.2.3 Retesting with Non-parametric Intervals

When parametric intervals are not appropriate for the data at hand, either due to a large
fraction of nondetects or a lack of fit to Normality or Lognormality, a network of individual
comparisons can be handled via retesting using non-parametric Prediction limits. The strategy is to
establish a non-parametric prediction limit for each designated indicator parameter based on
background samples that accounts for the number of well-constituent comparisons in the overall
network.
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In order to meet the twin goals of maintaining adequate statistical power and a low overall
rate of false positives, a non-parametric strategy must involve some level of retesting at those wells
which initially indicate possible contamination. Retesting can be accomplished by taking a specific
number of additional, independent samples from each well in which a specific constituent triggers
the initial test and then comparing these samples against the non-parametric prediction limit for that
parameter.

- Because more independent data is added to the overall testing procedure, retesting of
additional samples, in general, enables one to make more powerful and more accurate
determinations of possiblé contamination. Retesting does, however, involve a trade-off. Because
the power of the test increases with the number of resamples, one must decide how quickly
resamples can be collected to ensure 1) quick identfication and confirmation of contamination and
yet, 2) the statistical independence of successive resamples from any particular well. Do not forget
that the performance of a non-parametric retesting strategy depends substantially on the
independence of the data from each well.

Two basic approaches to non-parametric retesting have been suggested by Gibbons (1990
and 1991b). Both strategies define the upper Prediction limit for each designated parameter to be
the maximum value of that constituent in the set of background data. Consequently, the
background wells used to construct the limits must be uncontaminated. After the Prediction limits
have been calculated, one sample is collected from each downgradient well in the network. If any
sample constituent value is greater than its upper prediction limit, the initial test is "triggered” and
one or more resamples must be collected at that downgradient well on the constituent for further
testing.

At this point, the similarity between the two approaches ends. In his 1990 article, Gibbons
computes the probability that at least one of m independent samples taken from each of k
downgradient wells will be below (i.e., pass) the prediction limit. The m samples include both the
initial sample and (m-1) resamples. Because retesting only occurs when the initial well sample fails
the limit, a given well fails the overall test (initial comparison plus retests) only if all (m-1)
resamples are above the prediction limit. If any resample passes the prediction limit, that well is
regarded as showing no significant evidence of contamination.

Initially, this first strategy may not appear to be adequately sensitive to mild contamination at
a given downgradient well. For example, suppose two resamples are to be collected whenever the

initial sample fails the upper prediction limit. If the initial sample is above the background
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maximum and one of the resamples is also above the prediction limit, the well can still be classified
as "clean"” if the other resample is below the prediction limit. Statstical power simulations (see
Appendix B), however, suggest that this strategy will perform adequately under a number of
monitoring scenarios. Stll, EPA recognizes that a retesting strategy which might classify a well as
"clean" when the initial sample and a resample both fail the upper Prediction limit could offer
problematic implications for permit writers and enforcement personnel.

A more stringent approach was suggested by Gibbons in 1991. In that article (1991b),
Gibbons computes, as "passing behavior,” the probability that all but one of m samples taken from
each of k wells pass the upper prediction limit. Under this definition, if the initial sample fails the
upper Prediction limit, all (m-1) resamples must pass the limit in order for well to be classified as
"clean" during that testing period. Consequently, if any single resample falls above the background
maximum, that well is judged as showing significant evidence of contamination.

Either non-parametric retesting approach offers the advantage of being extremely easy to
implement in field testing of a large downgradient well network. In practice, one has only to
determine the maximum background sample to establish the upper prediction limit against which all
other comparisons are made. Gibbons' 1991 retesting scheme offers the additional advantage of
requiring less overall sampling at a given well to establish significant evidence of contamination.
Why? If the testing procedure calls for, say, two resamples at any well that fails the initial
prediction limit screen, retesting can end whenever either one of the two resamples falls above the
prediction limit. That is, the well will be designated as potentially contaminated if the first resample
fails the prediction limit even if the second resample has not yet been collected.

In both of his papers, Gibbons offers tables that can be used to compute the overall network-
wide false positive rate, given the number of background samples, the number of downgradient
comparisons, and the number of retests for each comparison. It is clear that there is less flexibility
in adjusting a non-parametric as opposed to a parametric prediction limit to achieve a certain Type I
error rate. In fact, if only a certain number of retests are feasible at any given well (e.g., in order
to maintain independence of successive samples), the only recourse to maintain a low false positive
rate is to collect a larger number of background samples. In this way, the inability to make
parametric assumptions about the data illustrates why non-parametric tests are on the whole less
efficient and less powerful than their parametric counterparts.

Unfortunately, the power of these non-parametric retesting strategies is not explored in detail
by Gibbons. To compare the power of both Gibbons' strategies against the EPA Reference Power
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Curve, Normally distributed data were simulated for several combinations of numbers of
background samples and downgradient wells (again, if multiple constituents are being tested, the
number of wells in the simulations may be regarded as the number of constituent-well
combinations). Up to three resamples were allowed in the simulations for comparative purposes.
EPA recognizes, however, that it will be feasible in general to collect only one or two independent
resamples from any given well. Power curves representing the results of these simulations are
given in Appendix B. For each scenario, the EPA Reference Power Curve is compared with the
simulated powers of six different testing strategies. These strategies include collection of no
resamples, one resample, two resamples under Gibbons' 1990 approach (designated as A on the
curves) and his 1991 approach (labelled as B), and three resamples (under approaches A and B).
Under the one resample strategy, a potentially contaminated compliance well is designated as
"clean" if the resample passes the retest and "contaminated” otherwise.

The following table lists the best-performing strategies under each scenario. As with the use
of parametric intervals for retesting, the criteria for selecting the best-performing strategies required
1) an approximate 5% facility-wide false positive rate and 2) power equivalent to or better than the
EPA Reference Power Curve. Because Normal data were used in these power Simulan'ons, more
realistically skewed data would likely result in greater advantages for the non-parametric retesting
strategies over the EPA Reference test.

Examination of the table and the power curves in Appendix B shows that the number of
background samples has an important effect on the recommended testing strategy. For instance,
with 8 background samples in a network of at least 20 wells, the best performing strategies all
involve collection of 3 resamples per "triggered" compliance well (EPA regards such a strategy as
impractical for permitting and enforcement purposes at most RCRA facilities). It tends to be true
that as the number of available background samples grows, fewer resamples are needed from each
potentially contaminated compliance well to maintain adequate power. If, as is expected, the
number of feasible, independent retests is limited, a facility operator may have to collect additional
background measurements in order to establish an adequate retesting strategy.
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NON-PARAMETRIC RETESTING STRATEGIES

# # BG
WELLS SAMPLES STRATEGY REFERENCE RATING
8 1 Resample *
5 8 2 Resamples (A) Gibbons, 1990 **
16 1 Resample **
16 2 Resamples (B) Gibbons, 1991 **
24 2 Resamples (B) Gibbons, 1991 *x
8 2 Resamples (A) Gibbons, 1990 *
16 1 Resample *
20 16 2 Resamples (A) Gibbons, 1990 *
24 1 Resample **
24 2 Resamples (B) Gibbons, 1991 *
32 1 Resample *
32 2 Resamples (B) Gibbons, 1991 **
16 2 Resamples (A) Gibbons, 1990 *k
50 24 1 Resample *
24 2 Resamples (A) Gibbons, 1990 *
32 1 Resample *ox
100 16 2 Resamples (A) Gibbons, 1990 *x
24 2 Resamples (A) Gibbons, 1990 *
32 1 Resample *
Note: ** = very good performance * = good performance -

6. OTHER TOPICS

6.1 CONTROL CHARTS

Control Charts are an alternative to Prediction limits for performing either intrawell
comparisons or comparisons to historically monitored background wells during detection
monitoring. Since the baseline parameters for a Control Chart are estimated from historical data,
this method is only appropriate for initially uncontaminated compliance wells. The main advantage
of a Control Chart over a Prediction limit is that a Cohtrol Chart allows data from a well to be
viewed graphically over time. Trends and changes in the concentration levels can be seen easily,
because all sample data is consecutively plotted on the chart as it is collected, giving the data
analyst an historical overview of the pattern of contamination. Prediction limits allow only point-
in-time comparisons between the most recent data and past information, making long-term trends
difficult to identify.

More generally, intrawell comparison methods eliminate the need to worry about spatial
variability between wells in different locations. Whenever background data is compared to

compliance point measurements, there is a risk that any statistically significant difference in
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concentration levels is due to spatial and/or hydrogeological differences between the wells rather
than contamination at the facility. Because intrawell comparisons involve but a single well,
significant changes in the level of contamination cannot be attributed to spatial differences between
wells, regardless of whether the method used is a Prediction limit or Control Chart.

Of course, past observations can be used as baseline data in an intrawell comparison only if
the well is known to be uncontaminated. Otherwise, the comparison between baseline data and
newly collected samples may negate the goal in detection monitoring of identifying evidence of
contamination. Furthermore, without specialized modification, Control Charts do not efficiently
handle truncated data sets (i.c., those with a significant fraction of nondetects), making them
appropriate only for those constituents with a high frequency of occurrence in monitoring wells.
Control Charts tend to be most useful, therefore, for inorganic parameters (e.g., some metals and
geochemical monitoring parameters) that occur naturally in the ground water.

The steps to construct a Control Chart can be found on pp. 7-3 to 7-10 of the Interim Final
Guidance. The way a Control Chart works is as follows. Initial sample data is collected (from the
specific compliance well in an intrawell comparison or from background wells in comparisons of
compliance data with background) in order to establish baseline parameters for the char,
specifically, estimates of the well mean and well variance. These samples are meant to characterize
the concentration levels of the uncontaminated well, before the onset of detection monitoring.
Since the estimate of well variance is particularly important, it is recommended that at least 8
samples be collected (say, over a year's time) to estimate the baseline parameters. Note that none
of these 8 or more samples is actually plotted on the chart.

As future samples are collected, the baseline parameters are used to standardize the data. At
each sampling period, a standardized mean is computed using the formula below, where m
represents the baseline mean concentration and s represents the baseline standard deviation.

Z,=4n (X-m)/s
A cumulative sum (CUSUM) for the ith period is also computed, using the formula S; = max{0,
(Zi-k)+S;.1}, where Z; is the standardized mean for that period and k represents a pre-chosen

Control Chart parameter.

Once the data have been standardized and plotted, a Control Chart is declared out-of-control
if the sample concentrations become too large when compared to the baseline parameters. An out-
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of-control situation is indicated on the Control Chart when either the standardized means or
CUSUMs cross one of two pre-determined threshold values. These thresholds are based on the
rationale that if the well remains uncontaminated, new sample values standardized by the original
baseline parameters should not deviate substantially from the baseline level. If contamination does
occur, the old baseline parameters will no longer accurately represent concentration levels at the
well and, hence, the standardized values should significantly deviate from the baseline levels on the
Control Chart.

In the combined Shewhart-cumulative sum (CUSUM) Control Chart recommended by the
Interim Final Guidance (Section 7), the chart is declared out-of-control in one of two ways. First,
the standardized means (Z;) computed at each sampling period may cross the Shewhart control
limit (SCL). Such a change signifies a rapid increase in well concentration levels among the most
recent sample data. Second, the cumulative sum (CUSUM) of the standardized means may
become too large, crossing the "decision internal value" (h). Crossing the h threshold can mean
either a sudden rise in concentration levels or a gradual increase over a longer span of time. A
gradual increase or trend is particularly indicated if the CUSUM crosses its threshold but the
standardized mean Z; does not. The reason for this is that several consecutive small increases in Z;
will not trigger the SCL threshold, but may trigger the CUSUM threshold. As such, the Control
Char can indicate the onset of either sudden or gradual contamination at the compliance point.

As with other statistical methods, Control Charts are based on certain assumptions about the
sample data. The first is that the data at an uncontaminated well (i.e., a well process that is "in
control”) are Normally distributed. Since estimates of the baseline parameters are made using
initially collected data, these data should be tested for Normality using one of the goodness-of-fit
techniques described earlier. Better yet, the logarithms of the data should be tested first, 1o see if a
Lognormal model is appropriate for the concentration data. If the Lognormal model is not rejected,
the Control Chart should be constructed solely on the basis of logged data.

The methodology for Control Charts also assumes that the sample data are independently
distributed from a statistical standpoint. In fact, these charts can easily give misleading results if
the consecutive sample data are not independent. For this reason, it is important to design a
sampling plan so that distinct volumes of water are analyzed each sampling period and that
duplicate sample analyses are not treated are independent observations when constructing the
Control Chart.
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The final assumption is that the baseline parameters at the well reflect current background
concentration levels. Some long-term fluctuation in background levels may be possible even
though contamination has not occurred at a given well. Because of this possibility, if a Control
Chart remains "in control” for a long period of time, the baseline parameters should be updated to
include more recent observations as background data. After all, the original baseline parameters
will often be based only on the first year's data. Much better estimates of the true background
mean and variance can be obtained by including more data at a later dme.

To update older background data with more recent samples, a two-sample t-test can be run to
compare the older concentration levels with the concentrations of the proposed update samples. If
the t-test does not show a significant difference at the 5 percent significance level, proceed to re-
estimate the baseline parameters by including more recent data. If the t-test does show a significant
difference, the newer data should not be characterized as background unless some specific factor
can be pinpointed explaining why background levels on the site have naturally changed.

EXAMPLE 18

Construct a control chart for the 8 months of data collected below.

u=27 ppb
=25 ppb

Nickel Concentration (ppb)

Month Sample 1 Sample 2

1 15.3 22.6

2 41.1 27.8

3 17.5 18.1

4 15.7 31.5

5 37.2 32.4

6 25.1 32,5

7 19.9 27.5

8 99.3 64.2

SOLUTION

Step 1. The three parameters necessary to construct a combined Shewhart-CUSUM chart are
h=5, k=1, and SCL=4.5 in units of standard deviation (SD).

Step 2. List the sampling periods and monthly means, as in the following table.
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Month T; Mean (ppb) Z; Z-k S;
1 1 19.0 -0.45 -1.45 0.00
2 2 34.5 0.42 -0.58 0.00
3 3 17.8 -0.52 -1.52 0.00
4 4 23.6 -0.19 -1.19 0.00
5 5 34.8 0.44 -0.56 0.00
6 6 28.8 0.10 -0.90 0.00
7 7 23.7 -0.19 -1.19 0.00
8 8 81.8 3.10 2.10 2.10

Step 3. Compute the standardized means Z; and the quantites S;. List in the table above. Each
S; is computed for consecutive months using the formula on p. 7-8 of the EPA guidance
document.

S1 =max {0, -1.45 + 0} = 0.00

S» = max {0, -0.58 + 0} = 0.00

S3 = max {0, -1.52 + 0} = 0.00

S4 =max {0, -1.19 + 0} = 0.00

S5 =max (0, -0.56 + 0} =0.00

S¢ = max {0, -0.90 + 0} = 0.00

S7 =max {0, -1.19 + 0} = 0.00

Sg =max {0, 2.10+0} = 2.10
Step 4.  Plot the control chart as given below. The combined chart indicates that there is no-
evidence of contamination at the monitoring facility because neither the standardized

mean nor the CUSUM statistic exceeds the Shewhart control limits for the months
examined.
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CONTROL CHART FOR NICKEL DATA

_— MU= 27ppb SIGMA = 25ppb

----------------------- ¥-------------------—-—----J SCL

STANDARDIZED CONCENTRATION

2 1 I 1 1 i 1 . 1 1 CUSUM

SAMPLING PERIOD

Note: In the above Control Chart, the CUSUMs are compared to threshold h, while the
standardized means (Z) are compared to the SCL threshold.

6.2 OUTLIER TESTING

Formal testing for outliers should be done only if an observation seems particularly high (by
orders of magnitude) compared to the rest of the data set. If a sample value is suspect, one should
run the outlier test described on pp. 8-11 to 8-14 of the EPA guidance document. It should be
cautioned, however, that this outlier test assumes that the rest of the data values, except for the
suspect observation, are Normally distributed (Barnett and Lewis, 1978). Since Lognormally
distributed measurements often contain one or more values that appear high relative to the rest, it is
recommended that the outlier test be run on the logarithms of the data instead of the original
observations. That way, one can avoid classifying a high Lognormal measurement as an outlier
just because the test assumptions were violated.

If the test designates an observation as a statistical outlier, the sample should not be treated as

such until a specific reason for the abnormal measurement can be determined. Valid reasons may,
for example, include contaminated sampling equipment, laboratory contamination of the sample, or
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erTors in transcnpuon of the data values. Once a specific reason is documented, the sample should
be excluded from any further statistical analysis. If a plausible reason cannot be found, the sample
should be treated as a true but extreme value, pot to be excluded from further analysis.

EXAMPLE 19

The table below contains data from five wells measured over a 4-month period. The value
7066 is found in the second month at well 3. Determine whether there is statistical evidence that
this observation is an outlier.

Carbon Tetrachloride Concentration (ppb)

Well 1 Well 2 Well 3 Well 4 Well 5
1.69 302 o 16.2 199 275
3.25 35.1 7066 41.6 6.5

7.3 15.6 350 75.4 59.7
12.1 13.7 70.14 57.9 68.4

SOLUTION

Step 1.  Take logarithms of each observation. Then order and list the logged concentrations.
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Step 2.

Step 3.

Step 4.

Concentration Logged

Order (ppb) Concentration
1 1.69 0.525
2 3.25 1.179
3 6.5 1.872
4 7.3 1.988
5 12.1 2.493
6 13.7 2.617
7 15.6 2.747
8 16.2 2.785
9 35.1 3.558
10 41.6 3.728
11 57.9 4.059
12 59.7 4.089
13 68.4 4.225
14 - 70.1 4.250
15 75.4 4.323
16 199 5.293
17 275 5.617
18 302 5.710
19 350 5.878
20 7066 8.863

Calculate the mean and SD of all the logged measurements. In this case, the mean and
SD are 3.789 and 1.916, respectively.

Calculate the outlier test statistic Tpg as

Xy~ X _8.863-3.789

= = 2.648.
SD 1.916

Ty =

Compare the observed statistic T¢ with the critical value of 2.557 for a sample size
n=20 and a significance level of 5 percent (taken from Table 8 on p. B-12 of the Interim
Final Guidance). Since the observed value T20=2.648 exceeds the critical value, there is
significant evidence that the largest observation is a statistical outlier. Before excluding
this value from further analysis, a valid explanation for this unusually high value should
be found. Otherwise, treat the outlier as an extreme but valid concentration
measurement.
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TABLE A-1.

COEFFICIENTS {AN.1.+1} FOR W TEST OF
NORMALITY, FOR N=2(1)50
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TABLE A-1.

(CONTINUED)

NORMALITY, FOR N=2(1)50
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TABLE A-2.

PERCENTAGE POINTS OF THE W TEST FOR N=3(1)50

n 0.01 0.05
3 0.753 0.767
4 .687 748
5 .686 762
6 - 0.713 0.788
7 730 .803
8 .749 818
9 764 .829
10 781 .842
11 0.792 0.850
12 .805 .859
13 814 .866
14 825 874
15 835 .881
16 0.844 0.887
17 851 .892
18 .858 .897
19 .863 .901
20 .868 .905
21 0.873 0.908
22 878 911
23 .881 914
24 - .884 916
25 .888 918
26 0.891 0.920
27 .894 . .923
28 .896 : .924
29 .898 926
30 .900 927
31 0.902 0.929
32 .904 930
33 .906 .931
34 .908 .933
35 910 934
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TABLE A-2. (CONTINUED)

PERCENTAGE POINTS OF THE W TEST FOR N=3(1)50

n 0.01 0.05
36 0.912 0.935
37 014 .936
38 916 938
39 .917 939
40 919 .940
41 0.920 0.941
42 922 942
43 923 .943
44 924 .944
45 926 .945
46 0.927 0.945
47 928 .946
48 .929 .947
49 929 947
50 930 .947
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TABLE A-3.

PERCENTAGE POINTS OF THE W’ TEST FOR Nx35

n .01 .05
35 0.919 0.943
50 .935 953
51 0.935 0.954
53 938 957
55 .940 .958
57 . .944 .961
59 945 .962
61 0.947 0.963
63 .947 .964
65 .948 .965
67 .950 .966
69 -,951 .966
71 0.953 0.967
73 .956 .968
75 .956 .969
77 .957 .969
79 .957 .970
81 0.958 0.970
83 .960 971
85 961 972
87 .961 972
89 961 972
91 0.962 0.973
93 .963 973
95 .965 974
97 .965 975
99 967 .976
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TABLE A-4.

PERCENT POINTS OF THE NORMAL PROBABILITY PLOT
CORRELETION COEFFICIENT FOR N=3(1)50(5)100

n .01 025 .05
3 869 872 879
4 822 845 868
5 822 855 879
6 835 868 890
7 847 876 899
8 859 886 905
9 868 893 912
10 876 900 917
11 883 906 922
12 889 912 926
13 895 917 931
14 901 921 934
15 907 925 937
16 912 928 940
17 912 931 942
18 919 934 945
19 923 937 947
20 925 939 950
21 928 942 952
22 930 944 954
23 933 947 955
.24 936 949 957
25 937 950 958
26 939 952 959
27 941 953 960
28 943 955 962
29 945 956 962
30 947 957 964
31 948 958 965
32 949 959 966
33 950 960 967
34 951 960 967
35 952 961 968
36 953 962 968
37 955 962 1969
38 956 964 970
39 957 965 971
40 958 966 972
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TABLE A-4. (CONTINUED)

PERCENT POINTS OF THE NORMAL PROBABILITY PLOT
CORRELETION COEFFICIENT FOR N=3(1)50(5)100

n 01 025 .05
41 958 967 973
42 959 967 973
43 959 967 973
44 960 968 974
45 - 961 969 974
46 962 969 974
47 963 970 975
48 963 970 975
49 964 971 977
50 965 972 978
55 967 974 980
60 970 976 981
65 972 977 982
70 974 978 983
75 975 979 984
80 976 980 985
85 977 981 985
90 978 982 985
95 979 983 986

100 981 .984 987
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TABLE A-S.

__VALUES OF LAMBDA FOR COHEN'S METHOD

Percentage of Non-detects

.20

Y .01 .05 .10 .15 .25 .30 .35 .40 .45 .oV
.01 |[.0102 .0530 .1111 .1747 .2443 .3205 .4043 .4967 .5989 7128 .8403
.05 |].0105 .0547 .1143 .1793 .2503 .3279 .4130 .5066 .6101 1252 .854(
10 |.0110 .0566 .1180 .1848 .2574 .3366 .4233 5184 6234 .7400 .8703
15 | .0113 .0584 .1215 .1898 .2640 .3448 .4330 .5296 .6361 7542 .886C
.20 | .0116 .0600 .1247 .1946 .2703 .3525 4422 .5403 .6483 7678 .9012
.25 1.0120 0615 .1277 .1991 .2763 .3599 4510 .5506 .6600 7810 9158
30 [.0122 .0630 .1306 .2034 .2819 3670 .4595 .5604 6713 1937 9300
35 1.0125 .0643 .1333 .2075 .2874 .3738 4676 .5699 .6821 .8060 9437
.40 |.0128 .0657 .1360 .2114 .2926 .3803 .4755 .5791 .6927 .8179 9570
.45 1.0130 .0669 .1385 .2152 2976 .3866 .4831 .5880 7029 .8295 .9700
.50 1.0133 .0681 .1409 .2188 .3025 .3928 .4904 .5967 7129 .8408 .9826
55 1.0135 .0693 .1432 .2224 .3073 .3987 .4976 .6051 7225 8517 .9950
.60 |.0137 .0704 .1455 .2258 .3118 .4045 5046 .6133 7320 8625  1.0070
.65 |.0140 .0715 .1477 .2291 .3163 .4101 .5114 .6213 7412 .8729  1.0188
.70 1.0142 .0726 .1499 .2323 .3206 .4156 .5180 .6291 7502 .8832  1.0303
.75 |.0144 .0736 .1520 .2355 .3249 .4209 .5245 .6367 7590 8932  1.0416
.80 |.0146 .0747 .1540 .2386 .3290 .4261 .5308 .6441 7676 9031 1.0527
.85 ].0148 .0756 .1560 .2416 .3331 .4312 .5370 .6515 7761 9127  1.0636
90 [.0150 0766 .1579 .2445 3370 .4362 .5430 .6586 7844 9222 1.0743
.95 |.0152 .0775 .1598 .2474 .3409 .4411 .5490 .6656 7925 9314 1.0847
1.00 }.0153 .0785 .1617 .2502 .3447 4459 .5548 .6725 .8005 9406 1°
1.05 }.0155 .0794 .1635 .2530 .3484 .4506 .5605 .6793 .8084 89496 1
1.10 ].0157 .0803 .1653 .2557 .3521 .4553 .5662 .6860 .8161 9584  1.1.102
1.15 }.0159 .0811 .1671 .2584 .3557 .4598 .5717 .6925 .8237 9671 1.1250
1.20 |.0160 .0820 .1688 .2610 .3592 .4643 .5771 .6990 8312 9756  1.1347
1.25 |.0162 .0828 .1705 .2636 .3627 .4687 .5825 .7053 .8385 9841 1.1443
1.30 }.0164 .0836 .1722 .2661 .3661 .4730 .5878 .7115 .8458 9924 1.1537
1.35 |.0165 .0845 .1738 .2686 .3695 .4773 .5930 .7177 8529  1.0006 1.1629
1.40 |[.0167 .0853 .1754 .2710 .3728 .4815 .5981 .7238 .8600  1.0087 1.1721
1.45 |.0168 .0860 .1770 .2735 .3761 .4856 .6031 .7298 .8670 1.0166 1.1812
1.50 |.0170 .0868 .1786 .2758 .3793 .4897 .6081 .7357 8738  1.0245  1.1901
1.55 |.0171 .0876 .1801 .2782 .3825 .4938 .6130 .7415 .8806  1.0323  1.1989
1.60 |.0173 .0883 .1817 .2805 .3856 .4977 .6179 7472 8873  1.0400 1.2076
1.65 |.0174 .0891 .1832 .2828 .3887 .5017 .6227 .7529 .8939  1.0476 1.2162
1.70 |.0176 .0898 .1846 .2851 .3918 .5055 .6274 .7585 9005  1.0551 1.2248
1.75 }.0177 .0905 .1861 .2873 .3948 .5094 .6321 .7641 9069  1.0625  1.2332
1.80 [.0179 .0913 .1876 .2895 .3978 .5132 .6367 .7696 - 9133 1.0698 1.2415
1.85 |.0180 .0920 .1890 .2917 .4007 .5169 .6413 .7750. .9196 1.0771 1.2497
1.90 |.0181 .0927 .1904 .2938 .4036 .5206 .6458 .7804 9259  1.0842  1.2579
1.95 1.0183 .0933 .1918 .2960 .4065 .5243 .6502 .7857 9321 1.0913  1.2660
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TABLE A-S.

(CONTINUED)

__VALUES OF LAMBDA FOR COHEN'S METHOD

Percentage of Non-detects

3672

Y .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50
2.00 |.0184 .0940 .1932 .2981 .4093 .5279 .6547 .7909 9382  1.0984  1.2739
2.05 |.0186 .0947 .1945 .3001 .4122 .5315 .6590 .7961 9442 1.1053  1.2819
2.10 ].0187 .0954 .1959 .3022 .4149 .5350 .6634 .8013 9502 1.1122  1.2897
2.15 }.0188 .0960 .1972 .3042 4177 .5385 .6676 .8063 9562 1.1190  1.2974
2.20 |.0189 .0967 .1986 .3062 .4204 .5420 .6719 .8114 9620  1.1258  1.3051
2.25 ].0191 .0973 .1999 .3082 .4231 .5454 .6761 .8164 9679  1.1325  1.3127
2.30 |.0192 .0980 .2012 .3102 .4258 .5488 .6802 .8213 9736  1.1391  1.3203
2.35 |.0193 .0986 .2025 .3122 4285 .5522 .6844 .8262 9794  1.1457  1.3278
2.40 }.0194 .0992 .2037 .3141 4311 .5555 .6884 8311 9850  1.1522  1.3352
2.45 1.0196 .0998 .2050 .3160 .4337 .5588 .6925 .8359 9906  1.1587  1.3425
2.50 |.0197 .1005 .2062 .3179 .4363 .5621 .6965 .8407 9962 1.1651  1.3498
2.55 |.0198 .1011 .2075 .3198 .4388 .5654 .7005 .8454 1.0017 1.1714 1.3571
2.60 |.0199 .1017 .2087 .3217 .4414 .5686 .7044 8501 1.0072 1.1777 1.3642
2.65 |.0201 .1023 .2099 .3236 .4439 .5718 .7083 .8548 1.0126 1.1840 1.3714
2.70 }1.0202 .1029 .2111 .3254 4464 5750 .7122 8594 1.0180 1.1902 1.3784
2.75 |.0203 .1035 .2123 .3272 .4489 .5781 .7161 .8639  1.0234 1.1963  1.3854
2.80 |[.0204 .1040 .2135 .3290 .4513 .5812 .7199 8685 1.0287 1.2024 1.3924
2.85 1.0205 .1046 .2147 .3308 .4537 .5843 7237 8730 1.0339 1.2085 1.3993
290 |.0206 .1052 .2158 .3326 .4562 .5874 7274 8775 1.0392 1.2145 1.4061
2.95 [.0207 .1058 .2170 .3344 4585 .5905 .7311 .8819 1.0443 1.2205 1.4129
3.00 ].0209 .1063 .2182 .3361 .4609 .5935 .7348 .8863 1.0495 1.2264 1.4197
3.05 |.0210 .1069 .2193 .3378 .4633 .5965 .7385 .8907 1.0546 1.2323 1.4264
3.10 1.0211 .1074 .2204 .3396 .4656 .5995 .7422 .8950 1.0597 1.2381  1.4330
3.15 1.0212 .1080 .2216 .3413 .4679 .6024 .7458 .8993  1.0647 1.2439 1.4396
3.20 |.0213 .1085 .2227 .3430 .4703 .6054 .7494 9036 1.0697 1.2497 1.4462
3.25 |.0214 .1091 .2238 .3447 .4725 .6083 .7529 9079 1.0747 1.2554 1.4527
3.30 }.0215 .1096 .2249 .3464 4748 .6112 .7565 9121 1.0796 1.2611 1.4592
3.35 |.0216 .1102 .2260 .3480 .4771 .6141 76 9163  1.0845 1.2668  1.4657
3.40 1.0217 .1107 .2270 .3497 .4793 .6169 .7635 9205 1.0894 1.2724 1.4720
345 |.0218 .1112 .2281 .3513 4816 .6197 .7670 9246 1.0942 1.2779 1.4784
3.50 |.0219 .1118 .2292 .3529 4838 .6226 .7704 9287 1.0990 1.2835  1.4847
3.55 |.0220 .1123 .2303 .3546 .4860 .6254 .7739 9328 1.1038 1.2890  1.4910
3.60 |.0221 .1128 .2313 .3562 .4882 .6282 .7773 9369 1.1086 1.2945  1.4972
3.65 1.0222 .1133 .2324 .3578 4903 .6309 .7807 .9409 1.1133  1.2999  1.5034
370 1.0223 .1138 .2334 .3594 4925 .6337 .7840 .9449 1.1180 1.3053 1.5096
375 |.0224 .1143 .2344 3609 .4946 .6364 .7874 9489  1.1226 1.3107 1.5157
3.80 .0225 .1148 .2355 .3625 .4968 .6391 .7907 .9529 1.1273 13160 1.5218
3.85 1.0226 .1153 .2365 .3641 4989 .6418 .7940 9568 1.1319 1.3213 1.5279
3.90 1.0227 .1158 .2375 .3656 .5010 .6445 .7973 .9607 1.1364 13266 1.5339
3.95 }.0228 .1163 .2385 5031 .6472 .8006 9646 1.1410 1.3318 1.5399
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TABLE A-S.

(CONTINUED)

__VALUES OF LAMBDA FOR COHEN'S METHOD

Percentage of Non-detects

o .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50
400 |.0229 .1168 .2395 .3687 .5052 .6498 .8038 9685 1.1455 1.3371 1.5458
4.05 |.0230 .1173 .2405 .3702 .5072 .6525 .8070 .9723 1.1500 1.3423 1.551%
410 {.0231 .1178 .2415 .3717 5093 .6551 .8102 .9762 1.1545 1.3474 1.5577
4,15 ].0232 .1183 .2425 .3732 5113 .6577 .8134 9800 1.1590 1.3526 1.5635
420 |.0233 .1188 .2435 .3747 5134 .6603 .8166 9837 1.1634 1.3577 1.5693
425 |.0234 .1193 .2444 3762 5154 .6629 .8198 9875 1.1678 1.3627 1.5751
430 |.0235 .1197 .2454 3777 5174 .6654 .8229 9913 1.1722 1.3678 1.5809
435 |.0236 .1202 .2464 .3792 5194 .6680 .8260 .9950 1.1765 1.3728  1.5866
440 |.0237 .1207 .2473 .3806 .5214 .6705 .8291 9987 1.1809 1.3778  1.5924
4.45 |.0238 .1212 .2483 .3821 .5234 .6730 .8322 1.0024 1.1852 1.3828  1.5980
4.50 ].0239 .1216 .2492 .3836 .5253 .6755 .8353 1.0060 1.1895 1.3878  1.6037
4,55 .0240 .1221 .2502 .3850 .5273 .6780 .8384 1.0097 1.1937 1.3927 1.6093
4.60 |.0241 .1225 .2511 .3864 .5292 .6805 .8414 1.0133 1.1980 1.3976 1.6149
4.65 |.0241 .1230 .2521 .3879 .5312 .6830 .8445 1.0169 1.2022 1.4024 1.6205
470 |.0242 .1235 .2530 .3893 .5331 .6855 .8475 1.0205 1.2064 1.4073 1.6260
475 }.0243 .1239 .2539 .3907 .5350 .6879 .8505 1.0241 1.2106 1.4121 1.6315
4.80 |.0244 .1244 .2548 .3921 .5370 .6903 .8535 1.0277 1.2148 1.4169 1.6370
4.85 |.0245 .1248 .2558 .3935 .5389 .6928 .8564 1.0312 1.2189 1.4217 1.6425
490 |.0246 .1253 .2567 .3949 5407 .6952 .8594 1.0348 --1.2230 14265 1.6479
4.95 |.0247 .1257 .2576 .3963 .5426 .6976 .8623 1.0383  1.2272 14312 1.6
5.00 |.0248 .1262 .2585 .3977 .5445 .7000 .8653 1.0418 1.2312 1.4359 1.
5.05 |1.0249 .1266 .2594 .3990 .5464 .7024 .8682 1.0452 1.2353 1.4406 1.6u~!
5.10 }.0249 .1270 .2603 .4004 .5482 .7047 .8711 1.0487 1.2394 1.4453 1.6694
5.15 1.0250 .1275 .2612 .4018 .5501 .7071 .8740 1.0521 1.2434 14500 1.6747
520 |[.0251 .1279 .2621 .4031 .5519 .7094 .8768 1.0556 1.2474 1.4546 1.6800
5.25 1.0252 .1284 .2629 .4045 .5537 .7118 .8797 1.0590 1.2514 14592 1.6853
530 |.0253 .1288 .2638 .4058 .5556 .7141 .8825 1.0624 1.2554 14638 1.6905
5.35 [.0254 .1292 .2647 .4071 .5574 .7164 .8854 1.0658 1.2594 1.4684 1.6958
540 |.0255 .1296 .2656 .4085 .5592 .7187 .8882 1.0691 1.2633 14729 1.7010
545 |1.0255 .1301 .2664 .4098 .5610 .7210 .8910 1.0725 1.2672 14775 1.7061
5.50 |.0256 .1305 .2673 .4111 .5628 .7233 .8938 1.0758 1.2711 14820 17113
5.55 |.0257 .1309 .2682 .4124 .5646 .7256 .8966 1.0792 1.2750 14865 1.7164
5.60 |.0258 .1313 .2690 .4137 .5663 .7278 .8994 1.0825 1.2789 1.4910 1.7215
5.65 |.0259 .1318 .2699 .4150 .5681 .7301 .9022 1.0858  1.2828  1.4954 1.7266
570 1.0260 .1322 .2707 .4163 .5699 .7323 9049 1.0891 1.2866 1.4999 1.7317
575 |.0260 .1326 .2716 .4176 .5716 .7346 9077 1.0924 1.2905 1.5043 1.7368
5.80 |.0261 .1330 .2724 .4189 .5734 .7368 .9104 1.0956 1.2943 1.5087 1.7418
5.85 |.0262 .1334 2732 4202 .5751 .7390 .9131 1.0989 1.2981 1.5131 1.7468
590 |{.0263 .1338 .2741 .4215 .5765 .7412 5158 1.1021 1.3019 1.5175 1.7518
595 |.0264 .1342 .2749 .4227 .5786 .7434 9185 1.1053 1.3057 1.5218 1.7568
6.00 |.0264 .1346 .2757 .4240 .5803 .7456 9212 1.1085 1.3094 1.5262 1.7617

A-10



TABLE A-6.

MINIMUM COVERAGE (BETA) OF 95% CONFIDENCE
"NON-PARAMETRIC UPPER TOLERANCE LIMITS

N B(maximum) B(2nd largest)
1 5.0 ----
2 22.4 2.6
3 36.8 13.6
4 47.3 24.8
5 54.9 34.2
6 60.7 41.8
7 65.2 48.0
8 68.8 53.0
9 71.7 57.0
10 74.1 60.6
11 76.2 63.6
12 77.9 66.2
13 . 79.4 68.4
14 - 80.7 70.4
15 81.9 72.0
16 82.9 73.6
17 83.8 75.0
18 84.7 76.2
19 85.4 77.4
20 86.1 78.4
21 86.7 79.4
22 87.3 80.2
23 87.8 81.0
24 88.3 81.8
25 88.7 82.4
26 8911 83.0
27 89.5 83.6
28 89.9 84.2
29 90.2 84.6
30 90.5 85.2
31 90.8 85.6
32 91.1 86.0
33 91.3 86.4
34 91.6 86.8
35 91.8 87.2
36 92.0 87.4
37 92.2 87.8
38 92.4 88.2
39 92.6 88.4
40 92.8 88.6
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TABLE A-6. (CONTINUED)

MINIMUM COVERAGE (BETA) OF 95% CONFIDENCE
"NON-PARAMETRIC UPPER TOLERANCE LIMITS

N B(maximum) B(2nd largest)
41 93.0 89.0
42 93.1 89.2
43 93.3 89.4
44 93.4 89.6
45 93.6 89.8
46 93.7 90.0
47 93.8 90.2
48 93.9 90.4
49 94.1 90.6
50 94.2 90.8
55 94.7 01.6
60 95.1 92.4
65 95.5 93.0
70 05.8 934
75 96.1 93.8
80 96.3 94.2
85 96.5 94.6
950 96.7 94.8
95 96.9 95.0
100 97.0 95.4
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TABLE A.7.

_CONFIDENCE LEVELS FOR NON-PARAMETRIC
PREDICTION LIMITS FOR N=1(1)100

NUMBER OF FUTURE SAMPLES

97.3 94.7 923 90.0 87.8 85.7 83.7
97.4 94.9 92.5 90.2 88.1 86.0 84.1
97.4 95.0 92.7 90.5 g8.4 86.4 84.4
97.5 95.1 629 90.7 88.6 86.7 84.8
97.6 95.2 93.0 90.9 88.9 87.0 85.1

N k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
1 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1
2 66.7 50.0 40.0 33.3 28.6 25.0 22.2 20.0
3 75.0 60.0 50.0 42.9 37.5 333 30.0 27.3
4 80.0 66.7 57.1 50.0 44.4 40.0 36.4 33.3
5 83.3 71.4 62.5 55.6 50.0 45.5 41.7 38.5
6 85.7 75.0 66.7 60.0 54.5 50.0 46.2 42.9
7 87.5 77.8 70.0 63.6 58.3 53.8 50.0 46.7
8 88.9 80.0 72.7 66.7 61.5 57.1 53.3 50.0
9 90.0 81.8 75.0 69.2 64.3 60.0 56.3 52.9

10 90.9 83.3 76.9 71.4 66.7 62.5 58.8 55.6

91.7 84.6 78.6 73.3 68.8 64.7 61.1 57.9
92.3 85.7 80.0 75.0 70.6 66.7 63.2 60.0
92.9 86.7 81.3 76.5 72.2 68.4 65.0 61.9
93.3 87.5 82.4 77.8 73.7 70.0 66.7 63.6
93.8 88.2 83.3 78.9 75.0 71.4 68.2 65.2
94.1 88.9 84.2 80.0 76.2 72.7 69.6 66.7
94.4 89.5 85.0 81.0 77.3 73.9 70.8 68.0
94.7 90.0 85.7 81.8 78.3 75.0 72.0 69.2
95.0 90.5 86.4 82.6 79.2 76.0 73.1 70.4
95.2 90.9 87.0 83.3 80.0 76.9 74.1 71.4
95.5 91.3 87.5 84.0 80.8 77.8 75.0 72.4
95.7 91.7 88.0 84.6 81.5 78.6 75.9 73.3
95.8 92.0 88.5 85.2 82.1 79.3 76.7 74.2
96.0 02.3 88.9 85.7 82.8 80.0 77.4 75.0
96.2 92.6 89.3 86.2 83.3 80.6 78.1 75.8
96.3 92.9 89.7 86.7 83.9 81.3 78.8 76.5
96.4 93.1 90.0 87.1 84.4 81.8 79.4 77.1
96.6 93.3 90.3 87.5 84.8 82.4 80.0 77.8
96.7 93.5 90.6 87.9 85.3 82.9 80.6 78.4
96.8 93.8 90.9 88.2 85.7 83.3 81.1 78.9
96.9 93.9 91.2 88.6 86.1 83.8 81.6 79.5
97.0 94.1 91.4 88.9 86.5 84.2 82.1 80.0
97.1 94.3 91.7 89.2 86.8 84.6 82.5 80.5
97.1: 94 .4 919 89.5 87.2 85.0 82.9 81.0
97.2 94.6 92.1 89.7 87.5 85.4 83.3 81.4

81.8

82.2

82.6

83.0

83.3
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TABLE A-7.

(CONTINUED)

__CONFIDENCE LEVELS FOR NON-PARAMETRIC

PREDICTION LIMITS FOR N=1(1)100

NUMBER OF FUTURE SAMPLES

N k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
41 97.6 95.3 93.2 91.1 89.1 87.2 85.4 83.7
42 97.7 95.5 93.3 91.3 89.4 87.5 85.7 84.0
43 97.7 95.6 93.5 91.5 89.6 87.8 86.0 84.3
44 97.8 95.7 93.6 91.7 89.8 88.0 86.3 84.6
45 97.8 95.7. 93.8 91.8 90.0 88.2 86.5 84.9
46 97.9 95.8 93.9 92.0 90.2 88.5 86.8 85.2
47 97.9 95.9 94.0 92.2 90.4 88.7 87.0 85.5
48 98.0 96.0 94.1 92.3 90.6 88.9 87.3 85.7
- 49 98.0 96.1 94.2 92.5 90.7 89.1 87.5 86.0
50 98.0 96.2 94.3 92.6 90.9 89.3 87.7 86.2
51 08.1 96.2 94.4 92.7 91.1 89.5 87.9 86.4
52 98.1 96.3 94.5 92.9 91.2 89.7 88.1 86.7
53 98.1 96.4 94.6 93.0 91.4 89.8 88.3 86.9
54 98.2 96.4 94.7 93.1 91.5 90.0 88.5 87.1
55 98.2 96.5 94.8 93.2 91.7 90.2 88.7 87.3
56 08.2 96.6 94.9 93.3 91.8 90:3 88.9 87.5
57 98.3 96.6 95.0 93.4 91.9 90.5 89.1 87.7
58 98.3 96.7 95.1 93.5 92.1 90.6 89.2 87.9
59 98.3 96.7 95.2 93.7 92.2 90.8 89.4 88.1
60 98.4 96.8 95.2 93.8 92.3 90.9 89.6 88.2
61 08.4 96.8 95.3 93.8 92.4 91.0 89.7 88.4
62 98.4 96.9 95.4 93.9 92.5 91.2 89.9 88.6
63 08.4 96.9 95.5 94.0 92.6 91.3 90.0 88.7
64 98.5 97.0 95.5 94.1 92.8 91.4 90.1 88.9
65 08.5 97.0 95.6 94.2 92.9 91.5 90.3 89.0
66 98.5 97.1 95.7 94.3 93.0 91.7 90.4 89.2
67 08.5 97.1 95.7 94.4 93.1 91.8 90.5 89.3
68 98.6 97.1 95.8 94.4 93.2 91.9 90.7 89.5
69 98.6 97.2 95.8 94.5 93.2 92.0 90.8 89.6
70 98.6 97.2 95.9 04. 6 93.3 92.1 90.9 80.7
71 98.6 97.3 95.9 94.7 93.4 92.2 91.0 89.9
72 98.6 97.3 96.0 94.7 93.5 92.3 91.1 90.0
73 98.6 97.3 96.1 94.8 93.6 92.4 91.3 90.1
74 98.7 97.4 96.1 94.9 93.7 92.5 91.4 90.2
75 98.7 97.4 96.2 94.9 93.8 92.6 91.5 90.4
76 08.7 97.4 96.2 95.0 93.8 92.7 91.6 90.5
77 98.7 97.5 96.3 95.1 93.9 92.8 91.7 90.6
78 68.7. 97.5 96.3 95.1 94.0 92.9 91.8 90.7
79 98.8 - 97.5 96.3 95.2 94.0 92.9 91.9 90.8
80 08.8 97.6 96.4 95.2 94.1 93.0 92.0 90.9
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TABLE A-7. (CONTINUED)

CONFIDENCE LEVELS FOR NON-PARAMETRIC
- PREDICTION LIMITS FOR N=1(1)100

NUMBER OF FUTURE SAMPLES

k=2 k=3 k=4 k=5 k=6 k=7 k=8
97.6 96.4 95.3 94.2 93.1 92.0 91.0
97.6 96.5 95.3 943 93.2 92.1 91.1
97.6 96.5 95.4 943 93.3 92.2 91.2
97.7 96.6 95.5 94.4 93.3 92.3 91.3
97.7 96.6 95.5 94 .4 93.4 92.4 -91.4
97.7 96.6 95.6 94.5 93.5 92.5 91.5
97.8 °~  96.7 95.6 94.6 93.5 92.6 91.6
97.8 96.7 95.7 94.6 93.6 92.6 91.7
97.8 96.7 95.7 94.7 93.7 92.7 91.8
97.8 96.8 95.7 94.7 93.8 62.8 91.8
97.8 96.8 95.8 94.8 93.8 92.9 919
97.9 96.8 5.8 94.8 93.9 92.9 92.0
97.9 96.9 95.9 94.9 93.9 93.0 92.1
97.9 96.9 95.9 94.9 94.0 93.1 92.2
97.9 96.9 96.0 95.0 94.1 93.1 92.2
98.0 97.0 96.0 95.0 94.1 93.2 92.3
98.0 97.0 96.0 95.1 942 - 933 924
98.0 97.0 96.1 95.1 942 °~ 933 92.5
98.0 97.1 96.1 95.2 94.3 93.4 92.5
98.0 97.1 96.2 95.2 94.3 935 92.6
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I. CONSTRUCTION OF POWER CURVES

To construct power curves for each of the parametric and non-parametric retesting strategies,
random standard Normal deviates were generated on an IBM mainframe computer using SAS. The
background level mean concentration was set to zero, while the alternative mean concentration level
was incremented in steps of A=0.5 standardized units above the background level. Ateach increment,
5000 iterations of the retesting strategy were simulated; the proportion of iterations indicating
contamination at any one of the wells in the downgradient monitoring network was designated as the
effective power of the retesting strategy (for that A and configuration of background samples and
monitoring wells). -

Power values for the EPA Reference Power Curves were not simulated, but represent analytical
calculations based on the non-central t-distribution with non-centrality parameter A. SAS programs for
simulating the effective power of any of the parametric or non-parametric retesting strategies are
presented below. -

//**t*********t**********t***********t*****t****i******tk*i*******r***;

//* DESCRIPTION: **x*x PARAMETRIC SIMULATIONS *x*=x

/7

//* This program produces power curves for 35 different curve
/7> simulaticns (refer to the %LET statements below). Delta ranges
//* from 0 to 5 by 0.5. The variable list is as follows for the
//* input parameters:

/1*

//* BG = Background

//* WL = Well

//* TL = Tolerance Limit

//* PL = Prediction Limit

/1*

//t************tt*****t*****t***t*t*ttttt******t*************t********;

// EXEC SAS

// QUTSAS DD DSN=XXXXXXX.GWT03000.SJA3092.CURVES,
// DISP=0LD
// SYSIN DD *

OPTIONS LS=132 PS=57;
$LET ISTART=1l;

$LET CURVENUM=35;
$LET RSEED=2020;

$LET REPEAT=5000;
$LET ITPRINT=1000;

$LET BGl =24; $LET WLl =5; $LET TL1 =0.95; $LET PL1 =0.80;
$LET BG2 =24; $LET WL2 =5; SLET TL2 =0.95; $LET PL2 =0.85;
$LET BG3 =8; $LET WL3 =5; $LET TL3 =0.95; $LET PL3 =0.80;
$LET BG4 =8; $LET WL4 =5; $LET TL4 =0.95; $LET PL4 =0.85;
$LET BGS =24; $LET WL5 =20; $LET TLS =0.95; $LET PL5 =0.95;
$LET BG6 =24; $LET WL6 =20; $LET TL6 =0.95; $LET PL6 =0.97;
$LET BG7 =8; $LET WL7 =20; $LET TL7 =0.95; $LET PL7 =0.95;
$LET BG8 =8; $LET WL8 =20; $LET TL8 =0.95; $LET PL8 =0.87;
$LET BGY =24; $LET WL9 =50; $LET TL9 =0.95; $LET PL9 =0.98;
$LET BGl10=24; $LET WL10=50; $LET TL10=0.95; $LET PL10=0.99;
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$LET BGl1=24; $LET WL11=50; $LET TL11=0.99; $LET PL11=0.90;

$LET BG12=24; $LET WL12=50; $LET TL12=0.99; $LET PL12=0.93;
$LET BG13=24; $LET WL13=50; $LET TL13=0.99; $SLET PL13=0.94;
SLET BGl4=24; _. %LET WL14=50; $LET TL14=0.98; $LET PL14=0.95;
$LET BG15=24; $LET WL15=50; $LET TL15=0.98; $LET PL15=0.97;
$LET BGl6=24; $LET WL16=100; $LET TL16=0.98; $LET PL16=0.97;
$LET BGl17=24; $LET WL17=100; $LET TL17=0.98; SLET PL17=0.99;
$LET BG18=24; $LET WL18=100; $LET TL18=0.99; $LET PL18=0.95;
SLET BG19=24; $LET WL19=100; $LET TL19=0.99; $LET PL19=0.97;
SLET BG20=24; $LET WL20=100; SLET TL20=0.99; $LET PL20=0.98;
SLET BG21=8; $LET WL21=20; $SLET TL21=0.95; $LET PL21=0.98;
SLET BG22=8; 3LET WL22=5; $LET TL22=0.95; $LET PL22=0.90;
SLET BG23=16; $LET WL23=5; $LET TL23=0.95; $LET PL23=0.85;
$LET BG24=16; $LET WL24=5; $LET TL24=0.95; $LET PL24=0.90;
SLET BG25=24; $LET WL25=S; $LET TL25=0.95; $LET PL25=0.90;
$LET BG26=16; $LET WL26=20; %LET TL26=0.95; $LET PL26=0.95;
$LET BG27=16; $LET WL27=20; SLET TL27=0.95; $LET PL27=0.97;
$LET BG28=16; $LET WL28=50; $LET TL28=0.98; $LET PL28=0.95;
$LET BG29=16; $LET WL29=50; $LET TL29=0.98; $LET PL29=0.97;
$LET BG30=16; $LET WL30=50: $LET TL30=0.99; $LET PL30=0.90;
$LET BG31=16; $LET WL31=50; $LET TL31=0.99; $LET PL31=0.92;
$LET BG32=24; $LET WL32=100; $LET TL32=0.98; $LET PL32=0.98;
$LET BG33=16; $LET WL33=100; $LET TL33=0.98; $LET PL33=0.98;
RLET BG34=16; $LET WL34=100; $LET TL34=0.99; $LET PL34=0.95;
$LET BG35=16; $LET WL35=100; $LET TL35=0.99; $LET PL35=0.96;

$MACRO PARSIM;
DATA ITERATE:;
*** Set changing simulation variable to common variable names;
BG=&&BGS&I;
WL=&&WL&I;
TL=&&TL&I;
PL=&&PL&I;

DO DELTA=0 TO S BY 0.5;

*** Initialize TPO, TPl & TP2 to 0 before entering simulation;
TPO=0;
TP1=0;
TP2=0;

DO J=1 TO &REPEAT;

**x%* Initialize CNTO, CNT1 & CNT2 to O
CNTO=0:
CNT1=0;
CNT2=0;

XB=RANNOR (&§RSEED) /SQRT (BG) ;
SB=SQRT (2*RANGAM (&RSEED, (BG-1)/2)/ (BG-1))

PL2=XB+SB*SQRT (1+1/BG) *TINV{{1-(1-PL) /2), (BG-1));
PL1=XB+SB*SQRT (1+1/BG) *TINV{(1-(1-PL)), (BG-1)):
PLO=XB+SB*SQRT (1+1/BG) *TINV((1-(1-TL)), (BG-1)):
TLIM=XB+SB*SQRT (1+1/BG) *TINV((1-(1-TL)), (BG-1));

DO K=1 TO WL;
IF K<WL THEN DO;
X1=RANNOR (&RSEED) ;
X2=RANNOR (&RSEED) ;
X3=RANNOR (&RSEED) ;
END;
ELSE DOC;
X1=RANNOR (&RSEED) +DELTA;
X2=RANNOR (&RSEED) +DELTA;



X3=RANNOR (&§RSEED) +DELTA;
END;
IF X1>TLIM THEN DO;
CNTO=CNTO+1;
IF X2>PL1 THEN CNT1=CNT1l+1l;
IF X2>PL2 OR X3>PL2 THEN CNT2=CNT2+1;
END;
END;

IF CNTO0>0 THEN TPO=TP0+100/&REPEAT;
IF CNT1>0 THEN TP1=TP1+100/&REPEAT;
IF CNT2>0 THEN TP2=TP2+100/&REPEAT:

*** Print iteration information every 100 iterations;

I=£1;
IF MOD(J,&ITPRINT)=0 THEN
PUT '>>> CURVE ' I ', ITERATION ' J ', ' BG= ', ' WoL= ', ' TL= "', '
PL= ', ' DELTA= ', ' TpO0= ', ' TP1l= ', ' TP2= '<<<';
END;
QUTPUT;
END;
RUN;

DATA OUTSAS.PCURVE&I; SET ITERATE (KEEP=BG WL TL PL TPO TPl TPZ2 DELTA);
RUN;

PROC PRINT DATA=QUTSAS.PCURVE&LI:;

FORMAT TPO TPl TP2 8.4;

TITLE1"TEST PRINT OF PARAMETRIC SIMULATION PCURVE&I";
TITLE2"NUMBER OF ITERATIONS = &REPEAT";
RUN;

$MEND PARSIM;
$MACRO CURVE;
$DO I=&ISTART %TO &CURVENUM;
$PARSIM
$END;
$MEND CURVE;
$CURVE

//**'k’k**********t****‘k********t******k**‘k*****'t*****t*********t*****t*'-

/% DESCRIPTION: *** NON-PARAMETRIC SIMULATION *x*

//*

/1* This program produces power curves for 15 different curve

/7/* simulations (refer to the $LET statements below). Delta ranges
//* from 0 to 5 by 0.5. The variable list is as follows for the
//* input parameters:

/7*

//* BG = Background

//* WL = Well

/1*
//******************‘k****’k*****'k**t*************t****t*i’l'k*****’k*****t;
// EXEC SAS

/7 OUTSAS DD DSN=XXXXXXX.GWT03000.SJA3092.CURVES,DISP=0LD

// SYSIN DD *

OPTIONS LS=132 PS=57;
$LET ISTART=1;

$LET CURVENUM=15;
$LET RSEED=3030;

$LET REPEAT=5000;
$LET ITPRINT=1000;



$LET BGl =8; $LET WL1 =5;

%LET BG2 =16; $LET WL2 =5;

$LET BG3 =24; $LET WL3 =5;

$LET BG4 =8; S$LET WL4 =20:
$LET BG5S =16; $LET WL5 =20;
$LET BG6 =24; $LET WL6 =20;
$LET BG7 =8; $LET WL7 =50;
$LET BGS8 =16; $LET WL8 =50;
$LET BGY9 =24:- $LET WL9 =50;
$LET BG10=8; $LET WL10=100;
$LET BG1l1l=16; $LET WL11=100;
$LET BG12=24; $LET WL12=100;
$LET BG13=32; $LET WL13=100;
SLET BG14=32; $LET WL14=20;

$LET BG15=32; $LET WL15=50;

$MACRO NPARSIM;
DATA ITERATE;

*** Set changing simulation variable to common variable names;
BG=&&BG&I;

WL=&4&WLE&I;

DO DELTA=0 TO 5 BY 0.5;

*x* Initjialize PLx variables to 0 before entering simulation:
PLO=0;

PL1=0;

PL2A=0;

PL2B=0;

PL3A=0;

PL3B=0;

DO J=1 TO &REPEAT;
**x% Initialize CNTx variables to 0;
CNTO=0;
CNT1=0;
CNTZ2=0;
CNT3=0;
CNT4=0;
CNT5=0;

DO K=1 TO BG:

TEST=RANNCR (&RSEED) ;

IF X=1 THEN MAX=TEST;

ELSE IF TEST>MAX THEN MAX=TEST:
END;

DO L=1 TO WL;
IF L<WL THEN DO;
X1=RANNOR (&RSEED) ;
X2=RANNOR (&RSEED) ;
X3=RANNOR (&RSEED) ;
X4=RANNOR (&RSEED) ;
END;
ELSE DO;
X1=RANNOR (&RSEED) +DELTA;
X2=RANNOR (&RSEED) +DELTA;
X3=RANNOR (&RSEED) +DELTA;
X4=RANNOR (&§RSEED) +DELTA;
END;
IF X1>MAX THEN DO;
CNTO0=CNTO+1;
IF X2>MAX THEN CNT1=CNT1+1:;
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IF X2>MAX & X3>MAX THEN CNT2=CNT2+1l;

IF X2>MAX OR X3>MAX THEN CNT3=CNT3+1;

IF X2>MAX & X3>MAX & X4>MAX THEN CNT4=CNT4+1;
IF X2>MAX OR X3>MAX OR X4>MAX THEN CNTS5=CNT5+1;

END;

IF CNTO0>0 THEN PLO=PL0+100/&REPEAT;
IF CNT1>0 THEN PL1=PL1+100/&REPEAT;
IF CNT2>0 THEN PL2A=PL2A+100/&REPEAT;
IF CNT3>0 THEN PL2B=PL2B+100/&REPEAT;
IF CNT4>0 THEN PL3A=PL3A+100/&REPEAT:
IF CNTS>0 THEN PL3B=PL3B+100/&REPEAT:;

**x* Print iteration information every X iterations;
I=&1;
IF MOD (J,&ITPRINT)=0 THEN
“PUT '>>> CURVE ' I ', ITERATION ' J ', ' BG= ', ' WL= ', ' DELTA= _
', ' PLO= ', ' PLl1= ', ' PL2A= ', ' PL2B= ', ' PL3A= ', ' PL3B= '<<<!';
END; ' B
OUTPUT;
END;
RUN;

DATA OUTSAS .NCURVE&I; SET ITERATE (KEEP=BG WL PLO PL1 PL2A PL2B PL3A PL3B DELTAZ);
RUN;

PROC PRINT DATA=0UTSAS .NCURVE&I:;
FORMAT PLO PL1 PLZ2A PL2B PL3A PL3B 8.4;
TITLE1"TEST PRINT OF NON-PARAMETRIC SIMULATION NCURVE&I";
TITLE2"NUMBER OF ITERATIONS = &REPEAT":; .
RUN;

$MEND NPARSIM;
$MACRO CURVE;
$DO I=&ISTART %TO &CURVENUM;
$NPARSIM
$END
$MEND CURVE;
$CURVE
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I1. PARAMETRIC RETESTING STRATEGIES
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EFFECTIVE POWER (%)
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III. NON-PARAMETRIC RETESTING STRATEGIES
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(8 Background Samples; 50 wells)

4 (UNITS ABOVE BACKGROUND)
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8 EPA Reference
O Zero resamples

A One resample



FFFECTIVE POWER (%)

EFFECTIVE POWER (%)

(8 Background Samples; 50 wells)

4 (UNTTS ABOVE BACKGROUND)

(8 Background Samples; 50 wells)

T Y

4 (UNTTS ABOVE BACKGROUND)
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B EPA Reference
A Two resamples (A)

O Two resamples (B)

W EPA Reference
A Three resamples (A)

QO Three resampies (B)



EFFECTIVE POWER (%)

EFFECTIVE POWER (%)

POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

(16 Background Samples; 50 wells)

T v T Y

B EPA Reference
O Zero resamples

& One resample

A (UNITS ABOVE BACKGROUND)

(16 Background Samples; 50 welis)

W EPA Reference

A Tworesamples (A)

O Two resamples (B)

A (UNITS ABOVE BACKGROUND)



EFFECT'VE POWER (%)

EFFECTIVE POWER (%)

(16 Background Samples; 50 wells)

4 (UNITS ABOVE BACKGROUND)

M EPA Reference
A Three resamples (A)

Q Threeresamples (B)

POWER CURVE FOR NON-PARAMETRIC

PREDICTION LIMITS

(24 Background Samples; 50 wells)

A (UNITS ABOVE BACKGROUND)
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B EPA Reference
O Zero resamples

4  Oneresample



EFFECTIVE POWER (%)

EFFECTIVE POWER (%)

(24 Background Samples; 50 weils)

A (UNTTS ABOVE BACKGROUND)

(24 Background Samples; 50 wells)

A (UNITS ABOVE BACKGROUND)
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B EPA Reference
A Two resamples (A)

QO Two resampies (B)

B  EPA Reference
& Three resamples (A)

O Three resamples (B)



POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

- (32 Background Samples; 50 wells)
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E B EPA Reference
1 O Zero resamples
1 & Oneresample

(] 1 2 3 4 H
A (UNITS ABOVE BACKGROUND)
(32 Background Samples; 50 wells)
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E 1 W EPA Reference
4 A Tworesamples (A)
1 O Tworesamples(B)

A (UNTTS ABOVE BACKGROUND)
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EFFECTIVE POWER (%)

EFFECTIVE POWER (%)

(32 Background Samples; 50 wells)

o i

A (UNITS ABOVE BACKGROUND)

B EPA Reference
A Three resamples (A)

O Three resamples (B)

POWER CURVE FOR NON-PARAMETRIC

PREDICTION LIMITS

(8 Background Samples; 100 wells)

A (UNITS ABOVE BACKGROUND)
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W  EPA Reference
O Zero resamples

A Oneresample



EFFECTIVE POWER (%)

EFFECTIVE POWER (%)

(8 Background Samples; 100 wells)

A (UNTTS ABOVE BACKGROUND)

(8 Background Samples; 100 wells)

A (UNITS ABOVE BACKGROUND)
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B EPA Reference
A Tworesamples (A)

O Two resampies (B)

8 EPA Reference
A Three resamples (A)

O Three resamples (B)



POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

- (16 Background Samples; 100 wells)
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E B EPA Reference
O Zero resamples
A One resample

A (UNITS ABOVE BACKGROUND)
(16 Background Samples; 100 wells)
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E B EPA Reference
A Two resamples (A)
QO Two resamples (B)

4 (UNTTS ABOVE BACKGROUND)



FFFECTIVE POWER (%)

EFFECTIVE POWER (%)

(16 Background Samples; 100 wells)

T

A (UNTTS ABOVE BACKGROUND)

B EPA Reference
A Three resamples (A)

O Three resamples (B)

POWER CURVE FOR NON-PARAMETRIC

PREDICTION LIMITS

(24 Background Samples; 100 weils)

T T T T T

A (UNITS ABOVE BACKGROUND)
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B EPA Reference
O Zero resamples

& One resample



EFFECTIVE POWER (%)

EFFECTIVE POWER (%)

(24 Background Samples; 100 wells)

100 r

1
A (UNITS ABOVE BACKGROUND)

(24 Background Samples; 100 wells)

1 M Ll v 1

A (UNITS ABOVE BACKGROUND)
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-B  EPA Reference
A Tworesamples (A)

O Two resamples (B)

B EPA Reference
A Three resamples (A)

O Three resampies (B)



EFFECTIVE POWER (%)

EFFECTIVE POWER (%)

POWER CURVE FOR NON-PARAMETRIC
PREDICTION LIMITS

(32 Background Sampiles; 100 wells)

B EPA Reference

O Zero resamples

A One resample

A (UNITS ABOVE BACKGROUND)

{32 Background Samples; 100 wells)

100 y T M T y T " T

B EPA Reference
A Two resamples (A)

O Two resamples (B)

A (UNITS ABOVE BACKGROUND)
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EFFECTIVE POWER (%)

(32 Background Samples; 100 weils)

L - L) v T T

4 (UNITS ABOVE BACKGROUND)
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B EPA Reference
& Thrzeresamplss (A)

(O Three resamples (B)



