EPA 905-73-001

Water Quality Model Of The Lower Fox River, Wisconsin

ABSTRACT

A mathematical model describing the interrelationship between the dissolved oxygen concentration of a river and its various sources and sinks has been adapted for use in a study of the Lower Fox River in Wisconsin. The analysis assumes steady-state conditions and describes the longitudinal distribution of dissolved oxygen in the river from Neenah-Menasha to Green Bay, a distance of approximately 40 miles (64.4 km).

The model was verified for various conditions of waste loading, river temperature, and river flow. The model was then used to evaluate the effect on watch quality of implementing interim hest practicable control technology officient limitations for industrial dischargers and 90 percent BOD repoval from municipal waste cources, as an estimate of levels of treatment required by the 1972 Amendments to the Federal Water Pollution Control Act and by orders issued by the Misconsin DNR, respectively. The study indicated that implementation of the above offluent limits will result in a significant improvement in water quality in the Lever Fox River. A daily average dissolved oxygen concentration of 4 to 5 mg/l will be maintained under most flow conditions. During an extreme low flow and high temperature situation, the dissolved oxygen concentration could drop to 2 to 3 mg/l.

ĥ

`

: (

TABLE OF CONTENTS

.

PAGE

LIST OF TABLES	i
LIST OF FIGURES	ii
NCMENCLATURE	iii
INTRODUCTION	1
MODEL DEVELOPMENT	4
Theory	4
Initial Conditions	7
Atmospheric Reaeration	8
Biochemical Oxygen Demand	8
Carbonaceous BOD	8
Nitrogenous BOD	10
Photosynthesis and Respiration	12
Benthic Oxygen Demand	15
Reaeration Over Dams	18
Physical Parameters	19
Sieche Effect	20
Survey Data	23
Proposed Effluent Limitations	24
RESULTS	27
Model Verification	27
Model Sensitivity	32
Water Quality Prediction	32
Frequency of Occurrence Below Given Dissolved Oxygen Levels	43

	PAGE
SUFMARY	44
ACKNOWLEDGEMENTS	45
REFERENCES	46
APPENDIX	48
Program Listing	
Documentation	
Input - Output	

•

.

-

LIST OF TABLES

TABLE		<u>PAGE</u>
Ί	Ratio of Ultimate to Carbonaceous BOD	10
2	Spatial Variation of Algal Oxygen Production and Respiration	15
3	Reperation Over Dama	19
4	Physical Parameters	21-22
ว์	Summary of Maste Discharges	26
5	Model Verification Sensitivity	33
7	Summary of Medel Input Date	37
8	Mode! Prediction Sensitivity	40
9	Frequency of Occurrence Balow Given Dissolved Oxygen Levels at Mile Point 7.3	43

¢

LIST OF FIGURES

FIGURE		PAGE
1	Map of the Lower Fox River	2
2	Mass Balance of Total Nitrogen	13
3	Model Verification, August 10, 1971	28
4	Model Verification, June 20-21, 1972	29
5	Model Verification, July 5-6, 1972	30
6	Model Verification, July (4 1072	31
7	Model Prediction, 1978	35
8	Comparison of 1978 Prediction Conditions to June, 1972 Survey Data	38
9	Sensitivity to Benthic Games Command	41
10	Sensitivity to Algal Oxygen - induction	42

-

NOMENCLATURE

.

α	=	coefficient of dam reservation	
A	=	river cross-sectional area	(ft ²)
C	=	concentration of dissol/cd oxygen	(mg/l)
⊏a	=	dissolved oxygen above a dam	(mg/1)
Ե	=	dissolved oxygen below a dam	(mg/1)
ch]-a	=	concentration of chlorophyll-a	(mg/1)
۲ ₅	=	saturation value of dissolved exygen	(mg/1)
D	=	deficit of dissolved oxygen	(mg/l)
Da	=	deficit of dissolved exygen above a dam	(mg/l)
Db	=	deficit of dissolved oxygen below a dam	(mg/1)
D _o	=	initial dissolved cxygen deficit	(mg/1)
F	=	percent of the river hotto covered by sludge deposits	(decimal)
Н	=	average river depth	(ft)
н _d	=	height through which water falls over a dam	(ft)
ĸa	E	reaeration coefficient	(1/day)
Кd	=	deoxygenation coefficient	(1/day)
ĸ'n	=	first order NBOD decay coefficient	(1/day)
Kr	=	first order CBOD decay coefficient	(1/day)
٢	2	carbonaceous BOD (CAOD) distribution	(mg/1)
Lo	=	initial carbonaceous 802	(mg/1)
N	=	nitrogenous BOD (NEOD) distribution	(mg/1)
Ρ	=	gross photosynthetic dissolved oxygen production	(mg 0 ₂ /1-day)
, P	=	period of algal photosynthesis, i.e., period of daylight	(days)
Pav	=	average daily photosynthetic exygen production	(mg/1-day)
Q	=	river flow rate	(⊏fs)
R	=	algal dissolved oxygen requiration	(mg 0 ₂ /1-day)
2	-	benthic axygen apiala (an inter (an it)	(gm 0 _Z /m ² -day)
51	=	benthic oxygan untrie conffiction (unlumetric)	(mg 0 ₂ /1-day)
Т	=	river temperature	(°C)
t	=	tive of travel	(days)
u	=	average cliver voi alty	(ft/sec)
Wd	=	dissolved explore to find the second tributary	(lhs/day)
x	=	distance do a to a	(miles)
×ď	=	spatial control :	(miles)

.

.

-- ·

•

,

ı

INTRODUCTION

Gross water pollution has existed in the Lower Fox River and Green Bay, Wisconsin for a number of years. Concentrated in this basin are eight urban areas and nineteen pulp and paper manufacturers that make intensive use of the river for disposal and assimilation of wastes. The lower river, approximately 40 miles (69.4 km) in length, flows in a northeasterly direction through a series of 18 locks and dams used for navigation and hydroelectric purposes. The drainage area of the basin is 419 square miles (1085 sq. km). (See figure 1)

Because of the continuing gross water pollution in the river, the U.S. Environmental Protection Agency (EPA) and the Wisconsin Department of Natural Resources (DNR) initiated a series of enforcement actions against the various industrial and municipal waste dischargers in the Lower Fox River basin. The Wisconsin DNR has issued orders requiring municipal waste sources to remove 90% of the biochemical ox gue demand contained in their waste influents. The 1972 Amendments to the Federal Water Pollution Control Act provide that municipalities shall provide, as a minimum, secondary treatment, and industries shall achieve "best practicable control technology" (BPT) by no later than 1977. Under the Act, EPA is required to define final effluent guidelines representing BPT by October 1973. The effluent limits for industrial dischargers used in this report and summarized in Table 5 were derived from interim guidelines in use by Fig in early 1973 which were BOD removal for mynicipalities and the incustrial limitations in Table 5 are referred throughout this report as the "control offluent limitations." The 1972 Amendments also require that in difficien to meeting the municipal and

)

N I industrial guidelines, the water quality standards must be met. For the Fox River upstream of the upper dam at Appleton, the water quality standards provide for all water uses including fish and aquatic life and recreational use. These uses require among other parameters that the dissolved oxygen shall not be lowered to less than 5.0 mg/l at any time. The Fox River from the upper dam at Appleton downstream to the Village of Wrightstown shall meet all standards except that the dissolveo oxygen shall not be lowered to less than 3.0 mg/l during any consecutive 8 hours of a 24-hour period nor to less than 5.0 mg/l for the remainder of the day. The Fox River below the Village of Wrightstown downstream to the mouth shall meet all standards except that the dissolved oxygen shall not be lowered to less than 2.0 mg/l at any time.

In 1969, the engineering firm of Quirk, Lawler, and Matusky (QLM) developed a model of the river for the Wisconsin DNR. The data base used for verification of this model was not as complete as that presently available. Extensive river surveys performed during the summers of 1971 and 1972 have accumulated enough new data to allow a better estimate of certain parameters and thus permit the development of an updated model for the Lower Fox River.

The purpose of the work presented here was to evaluate the effect on the water quality of the Lower Fox River of implementing the proposed effluent limitations for industrial and municipal sources and to evaluate if these control levels would achieve existing water quality standards.

The scope of the study was limited to developing a steady-state, onedimensional model based on available data and using an existing computer program. A discussion of the theoretical background is presented first, followed by a description of the development and verification of the model. An evaluation of the effect of the proposed $\pi \mathcal{O} = 0$ limitations on water quality in the Lower Fox River is then presented

- 3 -

MODEL DEVELOPMENT

Theory

The dissolved oxygen concentration of a natural water system indicates the general "health" of a stream, and its ability, or inability, to maintain a diverse population of fish and aquatic life. The conservation of mass forms the basis for the fundamental relationships which describe the temporal and spatial distribution of dissolved oxygen in the natural water system. Both the net flux into and the effect of various sources and sinks within a unit volume of water determine the change in dissolved oxygen concentration with time. For a fresh water river such as the Lower Fox, the advective component of the flux is much more significant than the dispersive component. Hence, the dispersive term was neglected in the development of the model.

An understanding of the overall effect of the complex interactions among the system parameters can be gained by modeling the interrelationship between the various sources and sinks and the dissolved oxygen concentration in the river. The specific equation is developed by a mass balance employing the continuity equation and takes the following form: (Thomann, 1972)

$$\frac{\partial c}{\partial t} = -\frac{1}{A} \frac{\partial (Qc)}{\partial x} - K_{d}L - K_{n}N + K_{a} (C_{s}-C)$$
(1)
$$- S^{1}(x,t) + P(x,t) - R(x,t) + K_{a}(C_{a} - C_{b})$$

in which

A = river cross-sectional area (ft²)
C = concentration of dissolved oxygen (Do) (mg/l)
C_a = dissolved oxygen above a dam (mg/l)

Cb = dissolved oxygen below a dam (mg/l) Cs = saturation value of dissolved oxygen (mg/l) Ka = reaeration coefficient (l/day) Kd = deoxygenation coefficient (l/day) Kn = first order NBOD decay coefficient (l/day) L = carbonaceous BOD (CBOD) distribution (mg/l) N = nitrogenous BOD (NBOD) distribution (mg/l) P = gross photosynthetic dissolved oxygen production (mg/l-day) Q = river flow rate (cfs) R = algal dissolved oxygen respiration (mg/l-day) S¹ = benthic oxygen uptake coefficient (volumetric) (mg/l-day) t = time (days) x = distance downstream (miles)

In equation (1), the concentration of dissolved oxygen is assumed to be uniform in the lateral and vertical planes. The sources and sinks may be functions of their own concentrations or the concentration of another substance.

It is usually more convenient to introduce the dissolved oxygen deficit into the equations since all values will then be referenced to a zero dissolved oxygen deficit, the saturation value of dissolved oxygen. If D, the dissolved oxygen deficit ($D=C_S-C$) is substituted into equation (1) and if steady state conditions are assumed (i.e., no change in point source waste loadings with time), the solution is as follows, given the appropriate boundary conditions ($D=D_O$ at x=0) (Thomann, 1972):

$$D(x) = \left(\frac{Wd}{Q} + D_{o}\right) \exp\left(-K_{a} x/u\right)$$
(2a)

+
$$\frac{K_{d} L_{D}}{K_{a} - K_{r}} [exp(- K_{r} x/u) - exp(- K_{a} x/u)]$$
 (2b)

$$+ \frac{R}{K_a} [1 - exp(- K_a x/u)]$$
 (2e)

$$+\frac{5}{K_a}$$
 [1 - exp(- K_a x/u)] (2f)

$$- (D_a - D_b) \exp[- K_a (x - x_d)/u]$$
 (2g)

where

$$D_a$$
 = deficit of dissolved oxygen above a dam (mg/l)
 D_b = deficit of dissolved oxygen below a dam (mg/l)
 K_r = first order CBOD decay co-fficient (1/day)
 S^1 = benthic oxygen uptake contribution (without mic) (mg/l-day)
 W_d = dissolved oxygen input from woste since on tributary (lbs./day)
 X_d = spatial location of a dam (siles)

The various parts of the solution are interpreted as:

- (2a) point source of DO, \mathbb{N}_4 , and $(min) \in \mathbb{N}_4$) we of DO deficit, D_D
- (2b) deficit due to point conduct of $i \in \mathbb{N}$
- (2c) deficit due to point source of the e
- (2d) deficit due to distribute alection osynthesis
- (2e) distributed algorizes action solution
- (2f) distributed benthic oxygen duamon affact
- (2g) deficit change due to a clatting from spillways over dams

A detailed discussion of each of the model components shown in Equation (2) is presented in the following sections. In these sections a discussion of the assumptions used in describing the component model is presented along with a summary of the values of the parameters selected for use in the verifications and predictions. The model is structured so that each of the input parameters may be varied spatially in the river. <u>Initial Conditions</u>

Values for initial conditions of dissolved oxygen, carbonaceous BOD, and total nitrogen in the Neenah-Menasha Channel were obtained either from recently available river survey data, or from the results of an extensive statistical analysis of dissolved oxygen and carbonaceous BOD data presented in the report prepared by Quirk, Lawler, and Matusky, Engineers.

Generally, the initial concentration of dissolved oxygen was at or above saturation at Neenah-Menasha due to photosynthetic activity of the aquatic plants (QLM, 1969). For the model vocitications, observed values of dissolved oxygen (all above saturation) were used. For the model predictions, the saturation value was used.

Where available, initial carbonaccous BOD values, measured by the Wisconsin DNR, were used. In the nume betweet of the analyses, an initial value of 6 mg/l was chosen based on the resource presented in the QLM study (QLM, 1969).

Relatively few measurements of total oxidizable nitrogen were available for use in the analysis. A review of the existing data suggested that the value of 1.0 mg/l was a reasonable of

- 7 -

Atmospheric_Reaeration

The atmospheric reaeration coefficient, K_a, was calculated using O'Connor's formulation (Dobbins and O'Connor, 1958),

$$K_{a} (1/day) = \frac{12.9\mu^{1/2}}{\mu^{3/2}}$$
 (3)

. .

in which,

 μ = average stream velocity (ft/sec) H = average depth (ft)

The O'Connor equation forms a reasonable basis for estimating the reaeration coefficient for a wide range of depth and velocity conditions (average depth ranging from about 1 foot to 30 feet [0.3 m to 9.1 m] and average velocities in the range from 0.5 to 1.6 ft/sec [0.15 m/sec to 0.49 m/sec]) encountered in the Lower Fox River.

The effect of temperature on the reaeration coefficient has been experimentally determined to be represented by

$$(K_{a})_{T} = (K_{a})_{2L} (1, 0 \ge 4)^{(1+2!)}$$
(4)

for T in degrees centigrade.

Biochemical Oxygen Demand

As shown in Equation (2), there is a distinction made between the oxygen demand of the carbonaceous $m = \min\{(2,1)\}$ in a waste effluent, and the nitrogenous oxygen demanding core suct (12,3) of the effluent. Carbonaceous BOD

The removal rate of carbon documents organic matter, expressed as $K_{\rm r},$ is

a result of oxidation and physical settling of the organic materials. For oxidation alone, as might result from a soluble organic waste, the reaction rate is expressed as K_d -- the rate of oxidation of the organic substance. The two reaction rates, K_r and K_d , associated with the decay of CBOD are shown in Equation (2b).

Previous studies have shown that the primary mechanism for CBOD removal is the oxidation of organic matter (QLM, 1969). Although settling of the suspended matter does occur, the rate of removal via this mechanism is small compared to oxidation. For the analysis, the removal rate, K_r , was assumed to be essentially equal to the oxidation rate, K_d .

Values for the CBOD coefficient, K_d , were taken directly from the QL&M report. In that study, K_d was reported to be a function of river flow between about 1,000 cfs (1,699 cu m/min) and 4,000 cfs (6,797 cu m/min) for the area from Appleton dam (mp 32.1) to De Pere dam (mp 7.3). For flows greater than 4000 cfs (6,797 cu m/min) the rate coefficient was considered constant. Beyond De Pere dam, K_d was independent of river flow and was assumed constant at 0.12/day.

For the present study, observed flows of about 2,000 cfs (3,398 cu m/min) to 2,500 cfs (4,248 cu m/min) resulted in corresponding deoxygenation coefficients of about 0.2 to 0.3/day.

Long term (20-day) CBOD measurements were available at several places in the river. From these measurements, the ratio of ultimate to 5-day BOD was calculated. This ratio varied from 1.29 to 2.36, as shown in the following table.

- 9 -

Table 1

Ratio of Ultimate to 5-Day

Carbonaceous BOD

R CBOD	Ratio CBODu/CBOD ₅					
QLM Report (1969)	Wisconsin DNR (1972)					
1.88 2.19 1.89 1.66 1.89 2.36 1.29	(Menasha Channel) 1.81 (Rapide Croche Dam) 1.95 (DePere Dam) 2.35					
	R CBOD QLM Report (1969) 1.88 2.19 1.89 1.66 1.89 2.36 1.29					

Source: Quirk, Lawler, and Matusky, Engineers, 1969

Nitrogenous BOD

The assumption of a first-order kinetics model to describe the process of nitrification is a simplification of a rather complex set of consecutive reactions. In reality, organic and ammonia nitrogen are oxidized through a series of reactions, shown below, to nitrite and nitrate nitrogen. This oxidation process draws on the oxygen recources of the river and is included as a component in the model.

The ammonia formed from organic nitrogen, together with direct discharges of ammonia from waste sources, $x_1 \leftrightarrow x_2^{(1)}$ and to nitrite by <u>Nitrosomonas</u> bacteria, as follows:

 $(NH_4)^+ + OH^- + 1.50_2 \xrightarrow{bacteria} F_1 + C_2^- + 2H_2O$

The reaction requires 3.43 pounds of exygen for each pound of ammonia aitrogen exidized to nitrite.

The nitrite formed is then exidized to mitrate by <u>Nitrobacter</u> as follows:

$$NO_2^- + 0.50_2 \xrightarrow{\text{bacteria}} NO_3^-$$

This reaction requires 1.14 pounds of oxygen for one pound of nitrite nitrate oxidized to nitrate.

The total exygen consumption in the nitrification process is 4.57 pounds of exygen for each bound of ammonia nitrogen. Thus, the nitrogenous BOD (NBOD) is equal to 4.57 times the concentration of total exidizable forms of mitrogen (ammonia + organic nitrogen).

In the present analysis, active nitrogenous oxidation is assumed to commence in the first segment in the Neenah-Menasha channel. This assumption is considered valid on the basis of high concentrations of algae and related nutriants entering the Lower Fox River from Lake Winnebago.

The rate coefficient, K_n, is dependent on river temperature and the conceptration of dissolved oxygen. Under conditions of low dissolved oxygen, nitrification is inhibited and, at values below 1.5 mg/l dissolved oxygen, nitrification ceases. The maximum rate of nitrification at high levels of dissolved oxygen was 0.143/day (QLM, 1969).

The effect of temperature on the reaction rate of nitrification is given by

$$(K_n)_T = (K_n)_{20}(1.04)^{(T-20)}$$
 (5)

for temperatures greater than 10°C. At river temperatures of less than 10°C, nitrification is suppressed.

Estimates of point source loadings of total oxidizable nitrogen (NH₃-N + organic-N) were applied to industrial and municipal dischargers. A comparison of observed total nitrogen values for July 14, 1972,with a computed mass balance of total nitrogen, is shown in Figure 2.

Photosynthesis and Respiration

Lake Winnebago contributes large concentrations of algae to the Lower Fox River in the summer months. The algae and rooted aquatic plants, through the processes of photosynthesis and respiration, serve both as a source and a sink of dissolved oxygen in the river. In the steady state model presented herein, the complex interactions involved in photosynthesis and respiration are simplified by relating the chlorophyll - <u>a</u> concentration in the river to an oxygen source term, P, and a sink term, R.

Chlorophyll - <u>a</u> measurements at various locations in the river were available from recent surveys by Sager and Wiersma. Estimates of the gross oxygen production and respiration due to algae concentrations were made by using the empirical relationship between chlorophyll - <u>a</u> concentration and maximum oxygen production established by Ryther and Yentsch and reported by Di Toro (1969). This relationship is:

$$P = 0.25 chl - a$$
 (6)

where

P = gross photosynthetic dissolved oxygen production
 (mg O₂/1-day)

chl - a = chlorophyll - a concentration (µg/l)

The relationship between the algal respiration rate, R, and chlorophyll - <u>a</u> concentration is:

Mass Balance of Total Nitrogen

$$R = 0.025 \text{ ch} - a$$
 (7)

The average daily rate of photosynthetic dissolved oxygen production, P_{av} , is given by:

$$P_{av} = P \ 2p/\pi \tag{8}$$

where

p = fractional period of sunlight in a day

The unfortunate implication is that a constant ratio of P/R = 10 exists for all algal populations. This is not true, since the ratio is known to vary considerably. However, comparison of results from this empirical relation and data presented in the QLM report from light and dark bottle measurements agree reasonably well and so lend confidence in the empirical relation used in the analysis.

Table 2 shows the spatial variation of maximum gross algal oxygen production and respiration used in preparing two verifications of survey data and a prediction of 1978 conditions.

TABLE 2

SPATIAL VARIATION OF ALGAL OXYGEN PRODUCTION

AND RESPIRATION (mgO₂/1-day)

.

July 28, 1971			June	20-21, 197	3	1978 Prediction			
Segment	Р	R	Segment	P	R	Segment	P	R	
1-11	35.0	3.50	1-14	21.3	2.13	1-14	14.0	1.4	
12-28	28.78	2.88	15-22	21.3	2.13	15-22	11.0	1.1	1
29-33	21.25	2,13	23-27	12.5	1.25	23-27	8.0	0.8	רט ו
34-40	16,25	1.63	28-45	12.5	1.25	28-45	6.0	0,6	
41-45	11.25	1.13							

Source: Sager and Wiersma, 1972

(1978 Prediction conditions are estimates)

Benthic Oxygen Demand

The continuous discharge of settleable waste material from municipal and industrial sources for many years has resulted in the formation of sludge banks throughout the river. The bottom conditions in the river vary from rather thick deposits of sludge to relatively shallow deposits of decaying organic material from natural sources such as dead algae. The surface layer of sludge, in direct contact with the water, undergoes aerobic decomposition, during which dissolved oxygen resources are depleted from the overlying water. Assuming that the river is vertically well mixed, this benthic or sludge oxygen demand (SOD) is the distributed sink of dissolved oxygen shown as S in Equations (1) and (2).

Values for S were orginally taken from the literature. Thomas (1970) reported SOD values of up to 2.3 mgs O_2/m^2 -day in unpolluted sections of the Willamette River in Oregon. For sections of the river covered with fresh paper mill sludge deposits, values as high as 19.5 mgs O_2/m^2 -day were reported, with the average uptake rate in the range from 3.6 to 9.8 mgs O_2/m^2 -day. McKeown (1968) reported a range of 1.5 to 5.0 mgs O_2/m^2 -day for sludge deposits from pulp and paper mill wastes at various locations. Review of other literature (Thomann, 1972) indicates a range of 4 to 10 mgs O_2/m^2 -day SOD for cellulosic fiber sludge.

Both Thomas and McKeown describe a rapid decrease in sludge oxygen demand as the sludge ages. According to Thomas, within 90 days after decomposition, the SOD had dropped to half of the maximum value at the time of deposition. McKeown reported a decrease to about one-third of the maximum SOD within 80 days of deposition.

4

- 16 -

Based on the above information, a maximum SOD of 5.0 mgs O_2/m^2 -day was utilized for most analyses presented herein. A value of 2.5 mgs O_2/m^2 day was used for predicting future conditions in anticipation of decreased loadings of settleable materials to the river and of aging of the existing sludge deposits in the river.

Although the average value for the benthic oxygen demand will be about 2.5 mgs O_2/m^2 -day, it possibly will be higher than this at a few locations. Sludge deposition in the Lower Fox River was recently studied by Springer (1972). Under most flow conditions, significant sludge deposition was found to occur in segments 6 to 11 and 28 to 45. Since fresh sludge deposits may well settle in these locations in the future, the benthic uptake rate could be higher than that assumed in the present analysis.

Subsequent to the development of the present model, the Wisconsin DNR conducted laboratory measurements of the benthic oxygen uptake due to sludge deposits taken from the river. These studies indicated an uptake range of 2.5 to 3.2 mgs O_2/m^2 -day for areas having relatively little sludge. In more grossly polluted areas, SOD values of 6 to 20 mgs O_2/m^2 -day were measured (Wisconsin DNR, 1973). Results of the Wisconsin DNR studies support the SOD values taken from the literature and used for the Fox River analysis. The measured range of 2.5 to 3.2 mgs O_2/m^2 -day for areas relatively free of sludge deposits supports the assumption made in evaluating future conditions that the average SOD will be near these values after installation of adequate treatment.

Effects of river temperature on the benthic oxygen uptake rate can be

approximated in the 10° to 30° range by

$$(5)_{T} = (5)_{20} (1.065)^{(T-20)}$$
 (9)

where T is river temperature in degrees centigrade.

Below 10°C, the rate decreases more rapidly than indicated by Equation (9) and approaches zero in the range of D° to 5°C.

Reaeration Over Dams

The reaeration occurring at dams along the river is similar to the natural phenomenon of atmospheric reaeration and always drives the dissolved oxygen concentration of the water toward the saturation value. In the Lower Fox River, the major sources of continuous artifical reaeration are the waterfalls over dams located at De Pere (mp 7.3), Little Rapids (mp 13.1), Rapide Croche (mp 19.18), and Upper Appleton (mp 32.1). Although there are 19 dams located on the river, these four dams were considered to be the significant sources of reaeration based on observations made by the Wisconsin DNR during recent field studies and as clearly indicated in the data shown in Figures 4 and 5.

For the Mohawk River and Barge Canal in New York State, Mastropietro (Mastropietro, 1972) developed an equation similar to the following for reaeration over dams:

 $D_{a} - D_{b} = \alpha H_{d} D_{a}$ (10) $D_{a} = \text{dissolved oxygen deficit above dam (mg/l)}$ $D_{b} = \text{dissolved oxygen deficit below dam (mg/l)}$ $H_{d} = \text{height through which the waterfalls (ft.)}$ $\alpha = \text{empirical coefficient for dam reaeration}$ Mastropietro used an α value of 0.037 in his work. However, for the Lower Fox River, coefficients determined from field data were substituted in describing reaeration over dams. A summary of the dam heights and coefficients is presented in Table 3.

TABLE 3

REAERATION OVER DAMS

DAM	MILEPOINT	HEIGHT (FT.)	<u>a</u>
De Pere	7.30	9.8	0.037
Little Rapids	13.10	6.1	0.115
Rapide Croche	19. 18	9.4	0.037
Upper Appleton	. 32.10	8.0	0.065

Total dissolved oxygen transferred at the various dams could be as high as 4 to 5 mg/l if the dissolved oxygen concentration at the dam headwater is at, or near, zero.

Physical Parameters

Geometric characteristics of the river, such as average depths, widths • and cross-sectional areas are necessary to determine the assimilative capacity of the river since these parameters combined with the river flow rate determine velocity. Each of the terms in Equation (2) is a function of river velocity.

Average widths and depths were obtained directly from the QLM report. Cross sectional areas in the river were then readily computed from this information. River segments used in the model presented in this report, were those used in the QLM study. Table 4 presents the average depths, widths, and cross-sectional areas used in the analysis.

In the development of the model, the Menasha Channel was arbitrarily considered as a tributary to the main branch of the Lower Fox River entering atriver milepoint 37.24 in Segment 6. River flow from Lake Winnebago was proportioned between Menasha and Neenah Channel by a consideration of the respective dam spillway dimensions and current measurements taken during stream surveys. Flow in Menasha Channel was calculated by QLM to be 0.54 of the total river flow, with the flow in Neenah Channel being the difference, or 0.46 of the total river flow.

Seiche Effect

Green Bay, at the mouth of the Lower Fox River, is sufficiently large to be subject to a phenomenon similar to oceanic tides. This phenomenon, the seiche effect, will cause long period oscillations in the river similar to the waves caused by tides in a coastal estuary. Neither amplitude, current, nor dye tracer measurements of any detail were available to fully evaluate the effect of the seiche in Green Bay on the Lower Fox River.

Aerial photographs obtained during a recent study of (EPA, 1972) thermal discharges in Lake Michigan clearly indicate current reversals at about 1.3 miles from Green Bay near the confluence of the East River and the Lower Fox. Contrary to the conclusion presented in the QLM report, it is evident that longitudinal backmixing does appear to significantly alter the distribution of pollutants in the river below De Pere at certain times. The effect of backmixing can be seen in the results of a recent river survey shown in Figure 6.

- 21 -<u>TABLE 4</u>

-

ı.

Segmént No.	Depth (feet)	Width (feet)	Cross-Sectiona Area (sq.1	1 Mile Ft <u>.)</u>	e Points	Location
1	2	488	976	38.63	- 38.1	Neenah Dam - Bergstrom Paper (Neenah Channel)
2	2.5	1,608	4 020	38.1	- 37.62	Bergstrom Paper - Kimberīy-Clark (Lakeview)
3	3	2,326	6978	37.62	- 37.24	Kimberly-Clark - James Is.
4	Z	305	· £10	38.18	- 37.92	Menasha Channel - John Strange Paper
5	2	356	712	37.92	- 37.24	John Strange Paper - James Is,
6	4	2,915	1166	37.24	- 36.83	James Is Menasha Lock (Main River)
7	4.5	3,252	14634	36.83	- 36,0	Menasha Lock - Menasha (9th Street)
B	5,5	2,739	15065	36.0	- 34.8	Menasha (9th Street) Strobe Is.
9	9	1,093	9837	34.8	- 34.3	Strobe Is Mud Creek
10	9.6	1,045	10032	34.3	- 33.96	Mud Creek - Grignon Rapids Channel
11	6.6	556	3670	33,96	- 3z.1	Grigaon Rapids Channel - Dam, WisMich, Power
12	4	419	1676	32.1	- 31.65	Wis-Mich. Power - Dam, Fox River Paper
13	4.5	444	1998	31,65	- 30.8	Fox River Paper - Dam, Formost Dairies
14	1.6	387	619	30.B	- 30,56	Dam, Formost Dairies Consolidated Paper
15	5.8	629	3648	30,56	- 29.73	Consolidated Paper · Appleton Sewage Plant ·
16	6.7	626	4194	29.73	- 27.24	Appleton Sewage Plant Kimberly-Clark (Kım.)
17	3.3	806	2660	27.24	- 26.8	Kimberly-Clark (Kım.) Little Chute (Jefferson St
19	6.7	\$ <i>8</i> 0	4556	26.B	- 26,4	Little Chute - Guard Lock, Little Chute
19	6.4	1,030	6592	26.4	- 25.6	Guard Lock, Little Chuce - Dam, Combined Locks Payer
20	2.8	533	1492	25.6	- 25.1	Combined Locks Paper - Sanitorium Road
21	5.3	553	3484	25,1 -	23,93	Sanitorium Road - Lafollette Park Kaukauna
22	6.0	150	900	23.93 -	23.2	LaFollette Park,Kaukauna - Thílmany Paper
23	6.0	150	900	23.2 -	22,5	Thilmany Paper Lagoons

PHYSICAL PARAMETERS

.•

.

.

-

	Segment No,	Depth (feet)	Width (feet)	Cross-Sectional Amea_(sg.ft.)	Mile ,	Pai	ints	Location
· · ·	24	4.7	1,386	6514	22.5	-	21.0	Lagoons - mīle point 21.0
	25	7.5	627	4703	21.0	-	19.18	Mile point 21.0 Rapide Croche.Dam
	26	4	605	2420	19,18	9 -	17.4	Rapide Croche Bam - Plum Creek
	27	5.8	502	2912	17.4	-	15.0	Plum Creek - Apple Creek
	28	7.7	575	442 E	15,0	-	13.1	Apple Creek - Dam Little Rapids
	29	5.5	_ 919	5055	13.1	-	12.6	Dam, Little Rapids - Lost Dauphin State Park
	30	5	1,629	8145	12,5	-	12.1	Lost Dauphin State Park - Hickory Grove Sanitorium
۲.	31	5.7	1,780	10146	12.1	-	10.4	Samitorium - Old Plank Rd. DePere
	32	10.3	903	9301	10.4	-	7.3	Old Plank Rd, DePere - Dam, DePere
,	33	3.4	1,438	4889	7.3	-	6.97	Dam, DePere - U. S. Paper Mills
÷.	34	6.6	1,640	10824	6.97	-	6.25	U.S. Paper Mills - DePere Sewage Plant
	35	7.4	1,160	8584	6,25	-	5.7	DePere Sewage Plant - Ashwaubenon Creek
·	36	5.6	2,083	11665	5.7	-	4.8	Ashwaubenon Creek - Dutchman Creek
i	37	5.6	2,715	15204	4.8	-	4.0	Outchman Creek - Reimers Meat Products
	38	9	1,338	12042	4.0	-	3.7	Reimers Meat Products - Fort Howard Pap≘r
	39	13	1,154	15002	3.7	-	2.63	Fort Howard Paper - Porlier Street Green Bay
	40	21	618	12978	2.63	-	1.3	Porlier Street - East River
	41	19	845	16055	1.3	-	1.0	East River - Charmin Paper Co.
	42	20	594	11880	1.0	-	0.7	Charmin Paper Co Green Bay Packaging
•	43	13	765	9945	0.7	-	0.33	Green Bay Packaging - Reiss Coal Co.
	44	16.5	850	14025	0,33	-	0.14	·Reiss Coal Co Green Bay Yacht Club
	45	13	938	12194	0.14	-	0.0	Green Bay Yacht Club Green Bay

^{- 22 -}<u>TABLE 4</u> (Con't) PHYSICAL PARAMETERS

,

**** *

.

i

,

.

Because of the backmixing effect, the distribution of pollutants is altered such that the concentration of dissolved oxygen occasionally tends to increase below De Pere, rather than decrease, as would be expected due to the magnitude of the waste loads discharged into the river.

Since the observed phenomena are similar to tidal effects in a coastal estuary, the effect of current reversals, i.e., a seiche, can be accounted for in the model by the addition of a term describing the mass flux due to longitudinal dispersion in Equation (1).

Data were not available to permit evaluation of the effect of current reversals on water quality predicted by the present model. Since the seiche phenomena is not a continuous occurrence, as are estaurine tides, the integrity of the model reported herein is not affected for situations in which the effects of dispersion are negligible.

Survey Data

Two recent sources of extensive data greatly facilitated construction of the model. Sager and Wiersma's 1971 and 1972 study of water quality in the Lower Fox River and Green Bay provided temperature, dissolved oxygen and chlorophyll - <u>a</u> measurements at ten locations in the river. In addition, the Wisconsin DNR conducted stream surveys on the Lower Fox River throughout the summer of 1972, the results of which were made available to the EPA.

Sager and Wierma's data is a result of a single surface grab sample taken at locations where the river was considered to be well mixed. The data furnished by the Wisconsin DNR represents several measurements of dissolved oxygen across the width of the river at numerous locations on the river. Observation of the data indicates the existence of a rather significant gradient in the lateral and vertical planes of the river, demonstrating that the river is not truly a completely mixing system as is assumed in a one-dimensional model.

Despite the apparent lack of complete mixing in some portions of the river, the computed profiles of dissolved oxygen do agree sufficiently well with the observed data to validate the assumption of an approximately uniform concentration of dissolved oxygen in the lateral and vertical planes in each segment of the river.

Proposed Effluent Limitations

The 1972 Amendments to the Federal Water Pollution Control Act changed the major emphasis of water pollution control from water quality standards to effluent limitations, regulating the amount of pollutants discharged from specific point sources. The 1972 Amendments required that EPA define the "best practicable control technology currently available" for various categories of industrial operations and determine maximum allowable effluent limitations. The Act requires that all dischargers provide at least this level of treatment and meet existing water quality standards no later than July, 1977.

"Best practicable control technology currently available" effluent limits are in the process of being defined for the pulp and paper industry. These limitations will be expressed in terms of pounds of CBOD₅, suspended solids, and other materials allowed to be discharged per ton of product and are being established for the numerous specific operations in the pulp and paper industry. These limits were not completed at the time of this evaluation; therefore, previously developed "interim" guidelines (Table 5) were used.

- 24 -

These compare very closely to the initial draft of the guidelines being developed for the type of papermills located on the Fox River.

Also, the various municipal waste facilities in the basin are required by Wisconsin DNR orders to achieve a minimum of 90 percent removal of influent BOD. These requirements compare closely with the minimum Federal requirements of secondary treatment for municipalities as defined in the promulgated regulations (40 CFR 133).

The proposed effluent limitation represented by 90% BOD removal at municipalities and the interim guideline limitations shown in Table 5 are the basis for the water quality predictions made in this report.

A location map indicating the study area, municipal and industrial waste sources, and river segmentation, and the dams considered to be significant sources of reaeration is shown in Figure 1. Table 5 lists the various pount sources in the river by identification number, segment and river milepoint. It also gives estimated waste loadings assuming implementation of estimated effluent limitations for industries and for municipalities.

Non-point sources of BOD and other pollutants, primarily from urban and rural runoff, were not evaluated in detail in this report. At certain times of the year, these sources may contribute significant amounts of waste loads to the river, although the extent of this contribution has not been established.

- 25 -

TADLE 5

SUMMARY OF WASTE DISCHARGES

June 20-21, 1972 Effluent Levels

Proposed Effluent Limitations

,

.

Number	Source	Seqment	River mile point	Elaw (and)			Flow (mgd)	CBOD_(1bs/day)	NBOD (1bs/day)
٦.	Kimperly -Clark (Neenah)	2	40.1	1.7	<u>[165/day]</u> 55	<u>NBOD (lbs/day)</u> 55	<u>├</u> ───┬	D NEENAH-MENASHA ST	P
2.	Kımberly-Clark (Badger Globe)	2	39.9	0.7	263	46		•	
з.	Bergstorm Paper	2	39.8	5.0	20057	220n			
4.	Kimberly-Clark (Lakeview)	3	39.2	5,4	54N	455	3.5	550	465
5.	Gilbert Paper	5	39, B	2.5	- <i>-</i> -	722	т	O NEENAH-MENASHA STI	P
б.	John Strange	5	39, B	2. П	760	., D	1.0	1000	D
7.	Neenah-Mepasha STP	6	37,6	15.2	347n	דפנ	24 .D	7000	3287
8.	George Whiting	7	38.7	0.5	200	3207	0,4	100	16
9.	Menasha Sanitary District #4	8	36,0	0.6	2702	320	D,6	935	330
10.	Riverside Paper	14	33.3	2.4	1805	220	0,4	90	238
11.	Foremost Foods	14	30, 8	1.3	299	0	1.3	60 '	. 0
12.	Consolidated Paper	15	30.1	17.9	 524n5***	6880	18.0	4900	6680
13.	Appleton STP	16	30.0	10.0	2150***	2363	14.2	4139 '	3363
14.	Kı⊏berly-Clark (Kimberly)	17	29.0	11.0	17490	1828	11.0	1658	، 2658+ 🕃
15,	Fumberly STP	17	27.0	0.4	90	265	D.6	100	265
16.	Little Chute STP	18	26.9	D.4	167	130	0,8	100 (130
17.	Appleton Papers	20	27.0	В.3	30695	530	B,3	2000 '	530
18.	Kaukeuna STP	24	23.1	1.1	144	854	1.2	232	854
19.	Thilmany Paper	24	23.0	27.1	20642	2568	19.2	4260 ,	2628*
20.	Nicolet Paper	33	7.0	3.3	438	 N	3.2	945	4953*
21.	V.S. Paper	34	6. B		0	n	1	TO DE PERE STP .	
22.	De ^p ere STP	35	6.2	1.7	1180	1628	2.2	1543	1628
23.	Fort Howard Paper	39	3.7	15.2	52850		22.6	850D v	2157*
24.	Charman Paper	42	1.0	13.7 -	47385	36670	6.0	7000	1316**
25.	Green Bay Packaging	43	0.7	2.5	1700	137	1.8	3150	150*
26.	American Can	44	0.3	35.9	88466***	112	5,4	4215	510**
27.	Green Bay Metro STP	45	0.1	13.5	254B1***	5631	39.0	14600 \	5631**
	TOTAL WASTE LOAD				371630	67234		67077	37990

* Represents information from NPDES permits

** Estimated in anticipation of future conditions

***Yalues for wastewater discharges for these facilities were taken from the Refuse Act Permit Program applications and, therefore, represent average daily conditions, not those for June 20-21, 1972.

RESULTS

The following analysis demonstrates a reasonable degree of correlation between observed data and computed results for varying conditions of river flow, river temperature and waste loadings.

Model Verification

Figures 3 through 6 depict the comparison between the observed data and the computed profiles of dissolved oxygen for the river survey data that was analyzed.

Comparisons were made for river flow rates varying from 1,340 cfs (2,277 cu m/min) to 2,250 cfs (3,823 cu m/min) and river temperatures ranging from 21^o to 25^oC.

The comparison shown in Figure 5 for the data collected on July 5 and 6, 1972 is of particular significance since several of the pulp and paper mills were shut down for the Fourth of July holiday. The observed data and the computed profile both show a significant improvement in water quality as a result of decreasing some of the waste loads to the river. The good agreement between the computed profile and this particular set of data lends confidence in the ability of the model to predict future water quality conditions as a result of implementing the proposed effluent limitations on the Lower Fox River.

Also of interest is the observed data shown in Figures 4 and 5. The survey data indicate rather high concentration gradients of dissolved oxygen in the lateral and vertical planes at certain locations on the river, most notably near the Menasha Channel, Appleton Papers, below the Rapide Croche Cam. and near the mouth of the river at Green Bay. Despite the vertical stratification of dissolved oxygen due to benthic deposits and the apparent lack of complete mixing near waste outfalls, the agreement between the observed

- 27 -

Lower Fox River Model Verification

- 28 -

- 31 -

data and the computed profile, which assumed an average, and uniform concentration, is good. The observed data shown in Figures 3 and 6 do not demonstrate significant gradients since only one sample (assumed to be representative of a completely mixed system) was taken at each location.

The observed data for July 14, 1972 shown in Figure 6 possibly demonstrate the backmixing 'interaction between the mouth of the Lower Fox River and Green Bay. Because of this effect. the distribution of pollutants is altered so that the concentration of dissolved oxygen occasionally tends to increase below De Pere. The backmixing effect, similar to estuarine tidal effects, was not considered in the development of this model, since the phenomenon is not a continuous occurrence.

Model Sensitivity

Using August 10, 1971 actual conditions, the sensitivity of the model to the benthic oxygen demand, the carbonaceous BOD decay coefficient and the nitrogenous BOD decay coefficient were evaluated. Table 6 presents the sensitivity of the model to these parameters at three critical locations on the river. The analysis indicates that the water quality is most sensitive to the benthic oxygen demand and the rate of CEOD deoxygenation. The model is relatively insensitive to the variations in the maximum rate coefficient for nitrification, as can be seen in Table 6. If further refinement of this model is to be obtained, additional field work is needed to, in more detail, evaluate the spatial distribution of sludge deposits, the resultant oxygen uptake rate, and the rate of CBOD utilization.

Water Quality Predictions

The preceding analysis demonstrated the ability of the model to reproduce observed data for varying conditions of flow, temperature, and waste

- 32 -

÷

TABLE 6

Model Verification Sensitivity

Survey Date - August 10, 1971

Pərameter	o.p. 35.0	m.p.15.0	m.p. 0.0
	Dissolved o	xygen (mg/l)	
Bonthic Uptake Rate			
S = 2.5 g/m ² -day *S = 5.0 g/m ² -day S = 10.0 g/m ² -day	4.75 3.24 C.23	2.53 0.80 0.0	0.59 p.0- p.0 7.0
CCOG Decay Rate			
Kd = 0.15/day ™G = 0.30/day Kd = 0.60/day	4.78 3.24 0.92	2.79 C.80 O.C	0.0 0.0 0.0
NBOD Decay Rate			
*K _n = 0.14/day K _n = 0.28/day K _n = 0.55/day	3.24 2.78 2.07	0.80 0.62 0.49	0.0 0.0 0.0

m.p. = mile point from mouth

•

* Value used in verification

ι

.

loadings in the river. The verified model was then used to evaluate the improvement in water quality as a result of implementing the proposed effluent limitations.

Figure 7 depicts the average response of water quality to implementation of the required effluent limitations for all waste sources on the river.

Conditions assumed for the prediction represent a fairly extreme summertime condition with a 7-day 10-year low-flow of 1,127 cfs (1,915 cu m/min), a stream temperature of 21°C, and relatively low algal populations in the river. The daily average concentration of dissolved oxygen is about 6 mg/l, falling significantly below this in the region past De Pere (mp 7.3), although still above 4 mg/l.

The profile shown in Figure 7 is not meant to be a precise forecast of future water quality conditions in the Lower Fox River; rather the analysis indicates a significantly improved water quality as a result of implementing the projected effluent limitations for point sources.

The shaded area in Figure 7 approximates the average diurnal variation to be expected from algal photosynthesis and respiration, and other periodic fluctuations in parameters such as terthic uptake rate and natural background conditions of water quality. The variation in dissolved oxygen due to algal activity has, in the past, averaged about 1 mg/1 with a range from 1 to 3 mg/1 above and below the daily average concentration as measured by the Wisconsin Department of Natural Resources automatic monitors. It is assumed that diurnal variations will occur under future conditions, yet it is difficult to forecast the magnitude of such a fluctuation for future conditions.

- 35 -

The predictions are based on the assumption of a linear system. The terms in equations 1 and 2 assume that the biological systems can be modeled by linear functions. However, it is realized there exist some nonlinear biological feedback mechanisms. For example, the improvement in dissolved oxygen in the future may provide more suitable conditions for nitrifying bacteria, and the predicted profile may be slightly less than that shown in Figure 7. The effect of reduced waste discharges on algal growth and the resultant effect on water quality may also alter the projected profile shown in Figure 7, but the extent of this alteration is uncertain.

The prediction shown in Figure 7 represents the best estimates available for the various significant input parameters with consideration given to the effects of decreased waste loading to the river upon each of the parameters. A summary of the values used in the prediction analysis including an approximate occurrence frequency for each parameter and the range of values reported in the literature is shown in Table 7.

Further evidence of the effect of reducing waste loads and the resultant improvement in water quality is shown in Figure 8. In this figure, the survey data and model verification for June 20-21, 1972 (Figure 4) is superimposed on a model prediction that uses the flow and temperature conditions that occurred on the survey date. Thus, the prediction in Figure 8 indicates what the average dissolved oxygen would have been had the proposed effluent limitations been in effect as compared to existing loading levels. Clearly, there will be a marked improvement in average dissolved oxygen levels in the river, and existing water quality standards should be achieved.

TABLE 7

SUMMARY DF	PARAMETERS	USED IN	STREAM	ANALYSIS
------------	------------	---------	--------	----------

+1

PARAMETER A SAE (SYMBOL)	VALUE FOR VERIFICATION	USED FOR PREDICTION	PREDICTION VALUE OCCURRENCE FREQUENCY	REPORTED FOR FOX RIVER	VALUES FROM LITERATURE	SENSITIVITY AT MILE POINT 0.0
Flew (Q)	As measured daily by					
cfs		1127	7 day, 10 year low flow			from 1127 to 2254
		2254		,		AD.0 +1.36
Sludge Uptake (S) gms 0 ₂ /m ² -day	5.0	2.5	2.5 is literature value for unpolluted streams	2.5 to 20	1.5 to 19	from 2.5 to 5.0 Δ0.0, = -4.04 mg/1
Algal Productivity (fmm) mg/l-day	As measured by Sager	14 maximum	Median value of available data	2.0 to 45	<i>u</i>	from 7 to 14 ΔD.O. = +2.86 mg/1
CDOD decay (Kd) 1/day	As reported in QLM. Measured values varied with flow.	0,15 0.124 below DePere Dam	Lowest observed because of low flow	0.124 - 0.6	0.1 - 0.6 without settling	from 0.15 to 0.3 ΔD.O. = -0.58 mg/1
Tcaperature (T) °C	As measured on survey date		See Temp Flow Correlation	0 - 31		
		, 21°C 25°C		,		from 21 to 25 $\Delta D. 0. = -1.60 \text{ mg/l}$
NBOD decay (Kn) 1/day	0.14 maximum As reported in QLM	0.14 maximum	Not available	0.14	0.1 to 0.6	from 0.14 to 0.6 ΔD.0. = -0.31 m _d /1
Initial CBCD mg/l	As measured or 6.0	6.0	50 to 60% of values are < 6.0	1 to 9		from 3.0 to 6.0 ΔD.0. = -0.59 mg/1
Iritial NBOD mg/1	Usually 4.6	4.6	About 50%	2.3 to 11.2		from 4.6 to 9.2 ΔD.D. = -0.17 mg/1
Initial D.U. mg/l	As measured on survey date	C _s the saturation value	70 to 90% of the values are greater than C _S	C _s [±] 4 mg/1		for initial D.Γ. = C _g -2, ΔD.D. <0.25 mg/1 at mp ΞC
Industrial-Munici- pal Loadings lbs/day	As reported to WDNR or EPA	EFA production guidelines				For 20% reduction beyond guidelines AD.D. = +0,48

5

.

1

1

^{- 37 -}

- 38 -

A sensitivity analysis was performed on the model prediction to demonstrate the range of response to be expected for various combinations of reasonable ranges of the parameters. The results of the analysis are shown in Table 8 for three critical river milepoints. Inspection of Table 8 would indicate that the Lower Fox River is most sensitive to the following parameters (shown in decreasing order of sensitivity): benthic oxygen uptake rate, algal photosynthesis, river flow, temperature, and deoxygenation rate for CBOD.

Sensitivity of the prediction to the benthic oxygen demand is shown in Figure 9. As stated in the previous discussion on benthic oxygen demand, all evidence indicates that the average value will be nearer to 2.5 than to 5.0 gms O_2/m^2 -day, once the sources of the sludge deposits are controlled. This is due to the rapid lowering of the uptake rate as the sludge ages. Hence, an average oxygen uptake rate for sludge of 2.5 gms O_2/m^2 -day was used in the prediction.

Figure 10 shows the sensitivity of the model prediction to variations in gross algal oxygen production. The middle profile, which is the same as that shown in Figure 7, uses average algal oxygen production values estimated from the chlorophyll-<u>a</u> data provided by Sager and Wiersma. For comparison purposes, profiles equal to double and one half the calculated algal oxygen production values were utilized. These profiles do not represent a normally expected situation, but are included to show the range of sensitivity to algal oxygen production.

TABLE 8

Model Prediction Sensitivity

to Parameter Changes

Parameter	m.p. 35.0	m.p. 15.0	m.p. 0_0
Benthic Uptake Rate		_	
* S = 2.5 g/m ² S = 5.0 g/m ²	-day 7.53 -day 5.35	б.74 4.55	4,09 0,05
Algal Productivity			
P = 1/2 P ¹ mg/1 r P = P ¹ mg/1 P = 2P ¹ mg/1	-day 5.50 -day 7.53 -day 11.60	5.39 6.74 9.44	1.23 4.09 9.81
CBUD Decay Rate (Kr =	- K _d)	-	·
* Kd - 0.15/day id = 0.3/day Kd = 0.6/day	7.53 5.91 3.89	5.74 5.24 8.43	4.09 3.51 2.40
(BC) Decay Rate	<u> </u>		
* k ₁ = 0.14/day K ₁ ; = 0.3/day K ₁ ; = 0.8/day	7.53 6.77 5.89	6.74 5.48 5.46	4.09 *.07 3.73
nitial CSOD			
СГОД = 3.С mg - СВОД' = 6.0 mg СВид' = 9.0 mg	/} 8.49 /1 7.53 /1 6.55	7.24 6.74 6.24	4.68 4.09 3.49
nitial NBOD			
→ NBOD' = 4.6 mg NBOD' = 9.2 mg	/lm 7.53 /l 7.23	6. 74 5.62	4.09 3.92
iver Flow			
* C = 1127 cfs 0 = 2254 cfs	7.53 6.87	6.74 7.62	4.09 ΰ.07
engarature			
* 7 ~ 21°C 1 - 25°C	7.53 6.07	5.74 5.43	4.09 2.49

*East, Conditions:

.

.

-

.

Q - 1127 ofs	$K_{\gamma} = D.14/d_{\gamma}$
T = C12C	CBCD' = 6.0 mg/1
S = 2.5 q/m ^z -day	NBOD' = 4.5 mc/1
<pre>4 - 0.15/day</pre>	P = 14.0g0z/1-mav
	3 mp 33.53

.

Lower Fex River Medal Sensitivity

4

Frequency of Occurrence Below Given Dissolved Oxygen Levels

Although the set of parameters chosen to generate the prediction shown in Figure 7 represent fairly extreme summertime conditions, it is recognized that other combinations of low-flow and high temperatures would result in lower dissolved oxygen profiles. In order to approximately determine how often lower dissolved oxygen profiles would occur as a result of various extreme combinations of low-flow and temperature, 10 years of daily data from 1961 to 1971 were analyzed. The results of this analysis are shown in Table 9 for the normally critical point just above De Pere Dam at mile point 7.3. The table shows the number of days when extreme combinations of flow and temperature, if used as input parameters in the model, would have resulted in a daily average dissolved oxygen concentration of less than a given oxygen level.

TABLE 9

Frequency of Occurrence Below Given Dissolved Oxygen Levels at Mile Point 7.3

Daily Average DO level (mg/l)	Average Number of Occurrences Below Given Level (days/vr)	Anticipated Range of Observed Below Given Level (days/yr)
5	36	2-71
4	8-9	0-32
3	O	0
	`	

- 43 -

SUMMARY

The effect of the various wastewater inputs on water quality in the Lower Fox River can be modeled in a rational quantitative manner. Such a model was used to evaluate future water quality in the river assuming implementation of a proposed effluent program consisting of "best practicable control technology currently available" (interim estimates) for industrial waste sources and 90 percent BOD removal for municipal waste dischargers as required by the 1972 Amendments to the Federal Water Pollution Control Act and by Wisconsin State Orders. The approach presented herein has been shown to offer a reasonable basis for estimating the effects on water quality of implementing the proposed effluent program in the Fox River basin. The results of the study indicate that if the effluent limitations are implemented, there will be a significant improvement in water quality, and a daily average dissolved oxygen concentration of 4 to 5 mg/l will be maintained in all areas under most conditions and will not fall below 4 mg/l more than 2% of the time. During extreme low-flow and high temperature situations, the dissolved oxygen concentration could drop to about 2 to 3 mg/l.

ACKNOWLEDGEMENTS

The cooperation and assistance of numerous persons is acknowledged as having been invaluable in preparing the material presented in this report.

Professors James H. Wiersma and Paul E. Sager of the University of Wisconsin at Green Bay provided much of the data used in the analysis; Mr. Jerry McKersie and Mr. Ralph Berner of the Wisconsin Department of Natural Resources provided data and invaluable cooperation and advice; Messrs. Dale S. Bryson, Glenn D. Pratt, Howard Zar, Walter L. Redmon, Norbert Jaworski, William Richardson, and Robert Hartley, all of the United States Environmental Protection Agency, furnished critical review and comments on drafts of this report that contributed significantly to the final report; Merlin Diepert and EPA staff personnel of the Automatic Data Processing Branch provided technical assistance; members of the Graphics Branch prepared the artwork presented in this report.

REFERENCES

- 1. DiToro, D.M. "Predicting the Dissolved Oxygen Production of Planktonic Algae", notes for Manhattan College Summer Institute in Water Pollution Control, Manhattan College, Bronx, New York, 1969.
- Mastropietro, as cited in "Addendum to Simplified Mathematical Modeling of Water Quality", prepared by Hydroscience, Inc. sub-contract with the Mitre Corporation and the U.S. Environmental Protection Agency, May 1972.
- 3. McKeown, J.J. <u>et al</u>. "Studies on the Behavior of Benthal Deposits of Paper Mill Origin", Technical Bulletin No. 219, National Council of the Paper Industry for Air and Stream Improvement, Inc., New York, New York, September 1968.
- O'Connor, D.J. and Dobbins, W.E. "Mechanism of Reaeration in Natural Streams", Trans. Amer. Soc. Civil Engrs., Vol. 123, 1958, p. 655.
- Patterson, Dale, "Results of a Mathematical Water Quality Model of the Lower Fox River, Wisconsin," Wisconsin Department of Natural Resources, March, 1973.
- 6. Quirk, Lawler and Matusky Engineers "Development of a Computerized Mathematical System Model of the Lower Fox River from Lake Winnebago to Green Bay", a report to the Misconsin Copartment of Natural Resources, Madison, Wisconsin, August 1969
- Rhyther, J.H. "The Measurement of Printery Production", Contribution No. 825 from the Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 1957.
- B. Sager, P.E. and Wiersma, J.H. "Nutrient Discharges to Green Bay, Lake Michigan from the Lower Fox River", presented at the Fifteenth Annual Conference on Great Lakes Research, Madison, Wisconsin, April 1972.
- 9. Springer, A.M. "Investigation of the Environmental Factors Which Affect the Anaerobic Decomposition of Fibrous Sludge Beds on Stream Bottoms", Ph.D. Thesis, Lawrence University and the Institute of Paper Chemistry, Appleton, Wisconsing June 1972.
- Themann, R.V. <u>Systems Analysis and deter Quality Management</u>, Environmental Science Services Division, environmental Research and Applications, Inc., New York, New York, 1972.
- Thomas, H.A. "Sediment Oxygen Demand Invertigations of the Williamette River Portland, Gregon", U.S. Department of the Interior, Federal Watur Pollution Tortrol Administration. National Field Investigations Vector, Circinati, Chio, February 1970.

- 12. U.S. Department of the Army, Corps of Engineers, U.S. Lake Survey Chart No. 720 "Lake Winnebago and Lower Fox River", Edition of 1969, corrected to May 28, 1971.
- 13. U.S. Department of the Interior, Federal Water Pollution Control Administration, Great Lakes Region "A Comprehensive Water Pollution Control Program--Lake Michigan Basin--Green Bay Area", Chicago, Illinois, June 1966.
- 14. U.S. Environmental Protection Agency, Office of Enforcement "Report on Remote Sensing Study of Thermal Discharges to Lake Michigan", National Field Investigation Center, Denver, Colorado and Region V, Chicago, Illinois, September 1972.
- 15. U.S. Environmental Protection Agency, Office of Permit Programs "Interim Effluent Guidance for NPDES Permits", Washington, D.C., May 3, 1973.
- 16. Wisconsin Department of Natural Resources, Water Quality Evaluation Section "The Fox River, Summary Report on Water Quality and Waste Water Discharges During the Summer of 1972", Madison, Wisconsin, November 1972.
- 17. Wisconsin Department of Natural Resources, personal communication, February 1973.

APPENDIX

.

PROGRAM LISTING

.

-

.

.

C C	eraderraderereeseereederrade HAL -dereesereer	●加合力·2 小学/2 小学会会会会会会会会会	
C	. DISSOLVED DXYGEN STREAM MODEL		
. c	PROGRAMMMED AT HYDROSCIENCE, INC. (WESTWOOD, NJ(1967) Modified by Andrew Stoddard, EPA, Hegion 5 (1972) Accesses accesses accesses accesses accesses accesses accesses	6417368848888888888888888888888888888888888	
C	DISCUSSION OF MODEL	•	
Ľ	THIS PHOGRAM DESCHIPES THE INTERPELATIONSHIP RETWEEN		
C	OXYGEN IN A STREAM AND ITS VARIOUS SOURCES AND SINKS	SUCH AS	
C	ATMOSPHERIC REAERATION AND THE OXIDATION OF BOD. THE	MODEL	
. с	EVALUATES THE DAILY AVERAGE. ONE-DIMENSIONAL SPATIAL	PROFILE OF THE	
C C	IN THIS MODEL THE DISPENSIVE COMPONENT OF THE WARE FOR	UY-STATE CONDITIONS.	
Ċ	INSIGNIFICANT. THE MODEL IS, THEREFORE, ADVECTIVE AND	PREDICTS INF	
Ċ	LONGITUDINAL DISTRIBUTION OF DISSULVED DAYGEN AND BOD	DUE TO THE FFFECTS	
C	OF THE VARIOUS POINT SOURCES OF WASTEWATER DISCHARGES	TRIBUTARIES, AND	
C	BACKGROUND WATER QUALITY CONDITIONS IN THE SEGMENT UN	DER CONSIDERATION,	
с г	THE LUNLENTRATION PROFILES ARE COMPUTED ALONG THE LON	BITUDINAL AXIS	
с С	SEGMENT. THE CONCENTRATION AT THE UDSTDEAM END OF N	AND WIDTH IN EACH Reguent to detroyance	
C	BY A MASS BALANCE EQUATION. IN THIS EVALUATION THE MO	ACCHENT IS DETERMINED Det uses a numbed de	
C	BIOLOGICAL, PHYSICAL, AND CHEMICAL CHARACTERISTICS WH	ICH ARE UNIQUE TO	
C	THE STREAH UNDER INVESTIGATION.		
C			
с С		22221222222222222222222222222222222222	
č	SOURCES AND SINKS CONSIDERED IN EVALUATING PROFILE OF		
ʻ_ C		BIG-GETED GATGER	
C	CARBONACEOUS BOD		
L C	NITRUGENOUS HOD Henthic arycen denand	·	
	ALGAL RESPIRATION AND REDTREMETERS		
Ē	ATMOSPHERIC REAFING AND FROTESTATION		
C	HEAERATION OVER DAMS -		
C	INPUT FROM WASTE SOURCES AND/OR TRIBITARIES	,	
		P	
L C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*********	
- C	INPUT PARAMETERS		
C		1	
. <u> </u>	VARIABLE NAME	UNITS	
·	STAFAME NAME AND I DEATION OF STREAM		
c -	RUNDES= DESCRIPTION OF PARTICULAR SET OF DATA		
С	SEGIDE LOCATION OF SEGMENT BY LANDMARKS AND NUMBER		
. с	CO= INITIAL CONCENTRATION OF DISSOLVED DXYGEN	MG/L ···	
<u>c</u>	FLOLD= INITIAL CARBONACEOUS BOD (CBDD)	MG/L	
· C	FLUNDFINITIAL NITROGENOUS 600 (NB00) XIDIA INITIAL AN EDOLMI OF STOCK AND T	MG/L	
с г	ATOTAL INTITUE MILERUINT OF STREAM MODEL	MILES -	
č	XCODE= 0 FOR DECREASING MILEROWN		
-	a in the same second		

FORTRAN IV G	LEYEL II	MATN	DATE - 7314]	19/31/59	8465 per	-
		····	0415 - 19141	17/31/30	FAUL UU	
	C NTOTE TOTAL	NUMBER OF SEGMENTS	IN SYSTEM			
		I WASTE LOAD AND/DH T	RIBUTARY	LES/DAY		
		FRUM WASTE SOURCE AN	DZOR TRIBUTARY	LUS/DAY	-	
		IUM WASTE LOAD AND/OH	TRIBUTARY	LBS/DAY	-	
	C QUE RIVER P	LOW UPSTREAM OF SEGM	IENT BOUNDARY	ĆFS	1	
	C WAE FLOW OF	WASTE SOURCE AND/DF	L TAIBUTARY -	MGD	· •	
	C RRE ALGAL R	ESPIRATION RATE		MG/L-DAY	4	
	C PMM= ALGAL	PHOTOSYNTHETIC OXYGE	IN SOURCE	MG/L-DAY		
	C DELTA= INTE	RVAL OF COMPUTATION	IN SEGMENT	MILE5		
	C FLENG= LENG	TH DF SEGMENT		MILES		
	C CONSTE +1 F	OR CONSTANT CHOSS SE	CTIDNAL AHEA			
	C 1	IN SEGMENT				
)R LINEARLY INCREASIN	IG AREA IN .			•
	C	SEGMENT	•			
	C AREA= CROSS	S SECTIONAL AREA FOR	CONST=+1	SQ FT		
	C SLOPE= SLOP	PE OF LINEAR AREA FUN	ICTION FOR		1	
	C CONST	「 = O		SQ FT/MILE		
	C FINT= INTER	CEPT OF LINEAH AREA	FUNCTION AT			
	C UPSTA	EAM BOUNDARY	• .	SQ FT		
	C FL= 9ATIO (OF ULTIMATE CHOD TO S	DAY CEOD			
	C FN= RATIO O	IF ULTIMATE NBUD TO S	DAY NHOD			
•	C TEMP= STREA	M TEMPERATURE		DEG CENTIGRADE		
	C CS= SATURAT	ION VALUE OF DISSOLV	ED OXYGEN	MG/L		
	C HDAME HEIGH	IT OF A DAM IN SEGMEN	IT .	FT	_	
	C ALPHA=COEFF	ICIENT FOR REACHATIC	IN OVER DAMS			•
.'	C					
	C COEFFICIENT	'S FOR BRITISH DAM RE	AERATION EQUATION			
	C A= 1.25CL	EAR TO SLIGHTLY POLL	UTED WATER	• •		
	C = 1.00PC	LLUTED WATER				
	C = 0.30-∽SE	WAGE EFFLUENT				• •
	C 9= 1.00WE	IN WITH FREE FALL				
	C ≃ 1,30ST	'EP WEIRS OR CASCADES	i		•	
	C					
	C F= FRACTION	OF SLUDGE COVER ON	BOTTOM	DECIMAL		
	C FLOKR= CBOD) REMOVAL CDEFF AT 20		1ZDAY	•	
	C FLOKR= CHOD	DECAY COEFF AT 20 C		1/DAY		
	C FLOKN= NBOO	DECAY RATE AT 20 C	د	1/DAY	• •	
	C S= OXYGEN L	PTAKE RATE FROM BENI	HIC DEPOSITS	GM/SQ METER-DAY		
	C DEPTH = AVE	RAGE DEPTH IN SEGMEN	NT , P	FT		
	C				• • •	
	C 000000000	**********************	**********************			
_	C		· · · , ·	• • • • • •		
0001	DIMENSION D	(30),FLOL(30),FLON(3	0),C(30),XX(30),FOFX(30) ,		
	1STREAM(20),	5EGID(20),RUNDE5(20)	· · · · · · · · · · · · · · · · · · ·	•		
0002	NCHUN=3		-	•		•
	C NCHUN=1 AS	S INITIAL COUNTER FOR	SEGMENT SYSTEM OF STRE	AM MODEL.	•	
	C ANALYSIS FO	R LOWER FOX RIVER US	ED NCHUN=3 DUE TO SEGME	NT SYSTEM	-	
	C IN DLM REPO	DRT. IN EPA ANALYSIS	MENASHA CHANNEL WAS CON	SIDEHED AS A		
	C TRIBUTARY 1	D LOWER FOX RIVER .	THIS DELETED SEGMENTS 4	-5 USED IN		
	C OLM MODEL (1969),				
	C			• ·		
0003	READ (5+)250) (STPEAM(K),K=1,20)				
- 0004		(UNC.5(1:1-1-20)			•	
0005	1633 + 0444T (2344	•]				
.				•		•

							'			-
	÷ -			· ·					-	
				· ·	•					
I.	FORTCAN TY		- •		•					
	FURINAN IN	5 LEVEL	21	MAIN	_ DATE = 73141	19/31/11		CASE DODE		
	0004	1741								
		1201	FURMATINFIC	0.21	•					
	0007		WRITE15,130	001 (STREAM(K),K=1,20)						
	0008	1700	FORMATIN	,//,20A4,//]		N -				
	0009		WFITE(6:125	55) (RUNDES (K) • K=1•20)		•				
	0010	1255	FORMAT(/,2L	UA4 • / }			.*			
	0011	910	READ (5+1203	3)CO,FLOLO,FLONO,XTOT:	XCODEINTOT	-				
	0012	1203	FORMAT (SF1)	0.5,110)						
	E100		WHITE(6,12)	12)						
-	0014	1212	FORMAT(/, ••	********************	*****					
]		************************	884991./) ·				
	0015		WRITE(6,13)	01)CO,FLOLO,FLOND,XTO	T:XCODF:NTOT					
	0016	1301	FORMAT(15X)		5!.//.8X.ICOI.5X.IELO	01.5%.			-	
			I'FLOND' 6X	. XTOT!.5X.1XCODE!.6X						
	0017	1	CONTINUE							
•	0018	-	X=0_					•		
		_								
	1	č	DATA INCUT							
- 、	0019	-	DATA INFUL DEAD(5.136)	TUR CALM SEGMENT						
	0020		NEAD(3)1231 W91TE(4.147	071 (SCCID(K) K-1 20)						
-	החסו	1407	- MPLICID1[41 - EDJMAT17 -	0/1 (SECID(K) (K=1 20)						
~	4 U C L	Teni	FU4MAI(2)							
	A n 7 7		C'1/12UA41/1	4UA+1_NPUT+771			1			
_	0022		HEAD (5-1201	1) WC+WL+WN,QD+QA+CS+	TEMP		•			
·	0023		READ (5,120)	 DELTA,FLENG,CONST, 	AREA,SLOPE,FINT,HDAM,DEF	PTH		•		
	0024		READ (5+120)	1) FL:FN:FLOKR:FLOKO;F	FLOKN,S,F				•	
	0025		PEAD(5,1202	2) PMM,RR,A,B,ALPHA						
0	0026		WR1TE(6;120	071						
	0027	1.07	FORMAT(7.8)	X, TWCT, BX, TWLT, SX, TWN	18X11001.8X11041.8X1103	5':6X.ITEMPI				
			1)							
	0028		WR11E(6,120	01) VC,WL,WN,QO,QA,CS	TEMP					
	0029		WR1TE(5:120	(6)			•			
• –	0030	1208	FORMATI/,5)	X, DELTA', 5X, FLENG, S	5X. CONST! 6X. LAREAL.5X.	. ISL OPEL.6%.				
			1'FINT':6X,	HDAM! 5X (DEPTHI)					•	
-	0031		WRITE (6,120	01) DELTALELENGARONST	AREA.SI OPE.EINT.WOAN.DO				-	
	0032		WHITE 15:120					٠,	,.	-
0	0033	1209	FORMAT (/ . 8)	 K. (F) (. 8%. (FN). 5%. (F) (KRI.SK.IFLOKDI.SY.IF.	(NI. 0¥. 15).				
U			198.4511			(N-13/1-3/1				
	0034		WRITE (6.120	11) EL EN EL DKH EL DKD.	ELOKN.S.E					
· · ·	0035		WRITE (6.12)				•			
	0036	1210	ENHMAT(/.7)			4	1	•		
	0 n 3 7		WAITE16.170	1	· IZVI . B. IZVI . VELAMA . I	· !	•			
2		г		21 PHAIRAJAJOJALPHA			-	``		
·		ř	COMPLIENTIN							
	0038	•	ELOKA-12 DA	N OF AIMUSPHENIC REACT	TALIUN RALE (FLUKA)					
	0039	•		~	nce (4) aa (-1'2) 1		•			
·	CD40	1211		IIJELUNA N. IELOVAL A Ele -						
	0040	1611	- FURMATI/15/	KI'FLUKA'\$/(F10-21						
	0041	1	WAIIE (D) 120							
<u>ن</u>	0042	1206	FURMATI714	UX1'OUTPUT',/)						
	004.1 •	•	AHILE [6+15]	05)		•				
	0044	1202	F DHMAT (4F10	0.2,F10.3)						
<u>ں</u>	0045	1205	FD 20/AT (2,11	LXFIMPIALXFID FICITIA:	3X;'TERM1'/3X/'TCRM2'/3	XilTERM3Ii				
			IBA / FIERM / F	JX: TERMSI; 3X; TERMSI	A ALA CODDIAXA INBODIA6	K++00++//)				
		c				 1		•		
_		C C	· _ ·	CATHLE DETAKE LINTE FO	HC/L-DAY			-		

· ·

.

	1	

				、 .				-	.
· •									
	FORTHING IN S	L	2.	公长 上月	0A1E = 7	3141	19/31/53		FALE 0004
	0446	r	5=15/10007HP.30	4∂))⇔F					
		c	ADJUSTMENT OF R	ATE REACTIONS 7	OR STREAM TEMPER	ATURE		_	
	0047		FLOKA=FLOKA*1.0	2400 (TEMP-20.)					
	004B		FLOWD=FLOK0*1.0	444 (TEMP-20.)				-	
	0049		FLOKR=FLOKR*1.0	4″@(TEMP-20.)					
	1051 1051		FLOKN#1.0	9°*(TEM2~20.)					
	2021	r	5=5"1.065** [EM	P-20.1					
		C	MASS BALANCE CO		STREAM END OF FE	CHENT			
		Č		I DIAILUN AI UP	STREAM END OF .SE	GMC NI	1		
~		C	CONVERTS WASTE :	SOURCE FLOW IN	MGD TO CES				
	0052		QA=UA\$1.54723						
_	0053		WC=WC/5_4			•			
·	UU54 DDEE -		WL=WL/5_4						
	0055		₩N=WN/5.4 D] - DU.ADA						
	0057	. •	Cl = (UDPCO+WC)/D	1					
	0058		Di=CS-Cl	•	. •				
	0059		FLOL1=(QD*FLOLO	+WL1/Q1	1				
2	0060	_	FLON1=(QO*FLONO	+WNI/Q1					
		C							
-	0061	L	TEST FUR CRUSS . Te/constig_2.7	SECTIONAL AREA	FUNCTION				
•		c	000000000000000000000000000000000000000	999999363699999J	************	446988888888888888888888888888888888888		0 b 0 b	
•		Ĉ							
2	•	C	CONSTANT CHOSS	SECTIONAL AREA					
	0052	3	I=1						
_	U053 0064		FLOJA== (FLOKA*A	REA/G1/16.4)					
ر ر	0065		FLOUN= (FLOKN#A	REA/WI/IO.4) DEA/DI/I6 /I					
		С		NEM/ 01/ 1014)				•	
-		C	TEST FOR DAM RE	AERATION EQ TO	USE				
•	0066		IF (HDAM-20.)100	,lo0,lo1					•
_	0067	100	IF (TEMP-25, 1102	102.101	• •				
0	0008	- 1º2	THILEMP-15(J1D) COMPUTE DESTRICT	+103+103 VETNG MOMANN 9	COUNTION	,			• •
	0069	1 03	DEF6=ALPHA+D1+H	DAM	LE EBUATION				· .
\mathbf{C}	0070		GD TO 6			•			
2		C	COMPUTE DEFICIT	USING BRITISH	EQUATION			÷	
	0071	101	Z6= (1.+(0.11*A	₽8)9(1.+0.0469T	'EMP *HDAM) ** (-1 -	0)	1	1	1
- ز	0072		DEF6= D1*(1,-Z6	1		· · · ·	•• • •	•••	· • • • • ·
		с г	COMPUTATION OF	COMPONENT SOURC	SE AND STAKE DE	DO DEELEIT			•
n		С.	Code of WITCH OL	CONFORENT SUURE	C3 ANU 3INK3 UP	DU VEFICII			
5		τ.	DEFICIT OVE TO	POINT SOURCE OF	CBOD				
	0073	5	TERM1 = IFL*FLOKD	"FLOL1/IFLOKA-F	LOKA)) + (EXP (FLOJ	R#X) -EXP (FLO.	JA4X11 _		
<u></u>		C					-		
	0074	C	UEFICIT DUE TO	POINT SOUPCE OF	NECO				
		r	ICHME I INTELINAN		LUKNIJE(EXPIFLOJ		JA9811 _		
~		č	DEPOCI DUE TO	DINARIUNTED DEN	CHIC DELAN			_	
	0175	-	7					•	

-

-	- ⁻ . 1	10 L ^{an} 10	. 14	MAIN	0518 = 73)	41 I.V.	31/52	PACE POCS
		ç	DEFICIT DUE	TO POINT SOURCE DE D	TASOLATD DYYGEN			
	14 A	r	TERM4 = DI #EX	P(FLOJA®X)				
		ü	DUFICIT DUE	TO ALBAL RESSTRATION	LAND QUOTOSYNTHS	-2°e		
	5.2	-	TFAM5=(IRR-	IPMM*24 1.5/3.1/1/1//F	LOXALD(L. HEXE(FC	.0JA~X))		ï
		ć	ם. פעה <i>ווירו</i> פער		DAN			
	0078	•	TERME=-DEF6	*(EXF(FLUJA>X))	HAC I			4
		Ç					~	
	. 10	۲ ۲	TOTAL DEFIC	IT OF DISSOLVED OXYGE	N .			
	5 7 1 3 1 1 1 1 1		- 9(1)= TERMI	+TERM2+TERM3+TERM4+TE	HM5+TERM6			
			C(1)=CS+D(I	1				
	1 / 1 4		1F{C(J)}30,	40,40				
	UL 12) C([)=0-		• .			
		Ľ				•		
		G 4.7	COMPUTATION	OF CHOD AND NBOD D.3	TRIDUCION	•		
	1 2 1 2 (1 1 2 A	÷() FLUL(1)=FLU	LIPEXP(FLOJR-X)				
	N G D H	r	FLUNIIJ=FLU	NI *EXP (FLDJN*X)				
		C C				_		
	0005		TELYPODELE	CHEASING DR DECREASIN	IG RIVER MILEPOIN	IT		
	5085 5086	50 6	IF [ALUUE]30		· ·			
	0000	196	· ^^(I)=/(U)+	^				
	2000	540	10 10 101 101 101	~				
	1086	201	· ^^(1)=^(u)=	*				
	2003	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CUNITADE					
			7557 500 EN					,
	ft0	-	IE A-ELENGI	U VE BLUMENT A.S.Edu				
	1.1.1		IF NELENGI	4121200				
				BINGITI-DIA TUDA CO	NUL POORS TONA	1910 - 14 - 1 - 14 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18		
	-			0/08/11/9012/5/23(PS-10 N/71-0/11)	REALLRMANCE (MA)	HARMER LEHMOR		
_	01.910 ¹	1605	. EUDAVIIEAT 1 EOCAVIED					
A 1-	2004		i=12]		-			
	0a.25		50 TO 6					•
	4695	500	X-FLENG				-	
	0202		50 TO 6					
	0598	-	. WRITE (6.14n	BINKITI DATA TENKA - TE	DED VEEND TERM	THOMAS TO 044		•
		-	161 DU (11).60 D	9/00(1)/0(1/9/ERA(0)L	RCCHIERMANIERMAN	IERMS IERMS		
		C				1		• •
		c	REINTIAL 17	ATTON OF BOUNDARY COM	DITIONS AT HOSTS	Eru cho os ese		
	6000		CO=C(1)		ALIZONS AN OFST	CAN LIND OF SEC	IMENI	•
	0100		FLOLD=FLOL1	T)			,	
	0]0]		FLOND=FLON1	11		,	1	
	0102		XTOT=XX(I)			1	۱. ۱	•
		· · C						
		. C	TEST FOR FI	NAL SEGMENT IN RIVER	SYSTEM		1	
·• ••	0103 -		NCHUN=NCHUN	+1				
	0104		IF INCHUN-NT	UT)141420				_
		C	0000046000	******		0000000000000000000000	0000000000000	
		C		•				-
		С	LINEARLY IN	CREASING AREA WITH CO	NSTANT SLOPE	ι.		
	0105 -	• 2	I=1					
	010G		KD=F (NT/SLU	۶ę.			•	
	0107		F. Minner	LA SE PERON S ()				
				-				

•

•

--

FU	RTRAN IV G	LEVEL	21	MAIN	DATE = 73141	19/31/5B	 PA	GE 0006	-	
0	108		ELOUN (ELOKN							
a i	109			*31,07579171014] 651,075701717 41	,					
	110			~ 3CUPE/01/10.41	,					
	110	7	rurx(1)=(X*X*	2.4%************************************			-		•	•
U (111		XJA=FLDJA•FDF	X(I)						
0)	112		XJN=FLOJN+FDF	X(1)						
0]	113		XJR=FLDJR*FOF	X(I) -						
		Ç					. •			
		C	TEST FOR DAM	REAERATION EQ TO US	E	- -				
ם ן	114		IF (HUAM-15.13	00,300,301						
0 (115	300	IF([EMP-25.)3	106.506.50	•					
0)	116	302	TELTEMP-20.13	01.303.303						
		r	COMPUTE DEETC	TT USING MOMANK D						
0 1	117	- 303		TI DOIND MUNAWA K I	EQUATION					
0 1 0 1	1)0	202	DEFU-ALFHATUI	TUAM					-	
	110	~			•	•				
	110	L	COMPUTE DEFIC	LI USING BRITISH EQ						
U]	T T A	301	26=11.+(0.11*	A°8°HDAM)	●TEMP!)●《(-1.0)			•		
U .	120		DEF6= D1*(1	Z6)						
- 0;	121	305	CONTINUE							
		Ċ				•				
		C	CONPUTATION O	F COMPONENT SOURCES	AND SINKS OF DO DEFICI	Г				
		C								•
		C	DEFICIT DUE T	O PDINT SOURCE OF C	B 0 D					
0)	122		TERM1=(FL*FLO	KD*FLDL1/(FLDKA-FLD/	KR))+(EXP(XJR)-EXP(XJA))					
		Ç					,			
		C	DEFICIT DUE T	D POINT SOURCE OF N	800		•	_		
0)	123		TERM2=(ENALLD	KNOFLONIZ (FLOKA-FLO)	KNIISIFYPIY INI-EYPIY.IAII			,		
		Ē							•	
		r	DEFICIT DUE T	O DISTRIBUTED BENTH	10 05HAND		•			
п	124	-	TEDUJ-JEZELAK	ALASIA EVDIY ALA	IC DEMAND	· • •				
•	164	~	IERM3=(S/FLUK	AI~(II-EXP[XJA)]						
		с -								
		L	DEFICIT DUE I	U PUINT SOURCE OF D	ISSOLVED OXYGEN					
0 /	152		TERM4=DI®EXP((ALX						
	•	C								
		C	DEFICIT DUE T	D ALGAL RESPIRATION	AND PHOTOSYNTHESIS					
0)	126		TERM5=LIRR+LP	MMº2.º.5/3.1416))/FI	LOKA) 4 (1 EXP (FLOJA4X))	-	•			
		C			4.	•				
		С	DEFICIT DUE T	O REAEHATION OVER A	DAM .			•••	•	
ر ۵	127		TERMS=-DFF69(FXPIXJAII						
		C			, 0		•		•	
		- C	TOTAL DEFICIT		N		,	,		
n 1	128	-	DITLE TEDALAT	EENSATEENSATEENKAATE			· •			
	129		PITIERCIPI	ERMETIERMATIERM4+1 <u>E</u> 1	RM3 FIERMB	~	,	•		
U) 	120		LIII=LS-UIII	<i>.</i> .	,	<u>, 1</u>	1			
	1 3 1	-	1r (C(1))50,60	1 G U			• ,	•		
0.1	1-1	_ 50	C(I)=0.		•	•		•		
		C								-
		C ·	COMPUTATION D	F CBOD AND NBOD DIS'	TRIBUTION		4			
a 1	135	6 0	FLOL(I)=FLOL1	●EXP(XJR)	•					
a j	133		FLON(I)=FLON1	◆EXP(XJN)		• •.				
		C								
		C	TEST FOR INCR	EASING DR DECREASIN	G RIVER MILEPOINT					
0 1	134 •		1F (XCODE) 660.	660.650		۰.				
01	135	650	XX(I)=/*C* /	/						
 D 1	136		10 TR 1							
	137		23.27 23.27							
	a 1	400	ハルキト・モントライ							

				/		•	
			-	f		tana jan tinan ananan tan tik dala mangan tan	·. · ·
۰.							
FORTRAN	IV & LEVE	L 21	MAIN	DATE = 73141	19/31/58	PAGE 0007	
0123	65	1 CONTINUE					
	С					_	
	С	TEST FOR END	OF SEGMENT			1	
0139		IF [X-FLENG] 1	0.5,502				
0140	1	0 X=X+DELTA				_	
0141		WRITE(6+1408	1XX(I)+0(I)+TERM1+	TERM2, TERM3, TERH4, TERM5,	TERM6:	ĩ	
		IFLUL(I) ,FLO	N(I) + C(I)	-		· •	
0142		I=I+1				~	
0143		CO TO 9					
0144	50	2 X=FLENG					
0145		GO TO 9			ł		
0146	2	O CONTINUE		•			
0147	-	STOP 9999					
0148		END					

٠.

١.

-

• •

3 . ,

• •

.

DOCUMENTATION

,

.

-

TABLE 2

COLUMN

71-80	61-70	51-60	41-50	31-40	21-30	11-20	1 -10	Card
				Eield)	(entire)		STREAM	1
				field)	(entire)		RUNDES	2
		NTOT	XCODE	XTOT	FLONO .	FLOLO	CO	3
, 	*****			field)	(entire :		SEGID	4.
	TEMP	C S	QA	Qa	WN	WL	WC	5
DEPTH	HDAM	FINT	SLO PE	AREA	CONST	FLENG	DELTA	6
	F	S	FLOKN	FLOKD	FLOKR	FN	FL	7
			ALPHA	В	А	RR	FNM	8

Notes:

- (a) Repeat cards four through eight for total number (NTOT) of segments
- (b) STREAM, RUNDES, and SEGID are alpha-numeric variables with 20A4 format, data entered col. 1-80

L

- (c) NTOT is an integer variable with 12 format in col, 59-60
- (d) ALPHA is a floating point variable with Fl0.3 format
- (e) All other variables are floating point with Fl0.2 format

.

				RUNDES				
-		VETIFICAT	·	·	2 -7 27-21	•1970 - 413	DHR	
	C†	רו קבס	ב יקות	XTET	35138	ſ	1701	
	10.9	5.0 }	11.6	33.93 -	ů.Q		45	
				SECID				
		SEGMENT 1	NEEKOH-I	iali - Berg.	STROM PAPE	R CO		
	, D	11	121	0D	τń	CS	TEMP	
	0.J	0.0	0.0 :	1023.3	0.0	9.2	20.0 ;	
	ICLIA	FLEHG	CONST	AREA	SLOPE	FINT	HDAM	DEPTH
	0.53ີ	0,53° 1	1.0 1	976.Û	0.0 [°] 1	ο.ο	0.0	5.0
	FL.	FN	FLOKR	FLOKD	FLOKII	\$	F	-
	1.88	1.0	Ů.3	0.3 ⁻	ð.14	5.0	Ū.5	
	;	1	1	1	I			
	FriM	RR	Ĥ	В	ALPHA			
1	11.3 1	2.13 1	ō.	ò.	ò.o"" '			
				SECIN	-			
		SEGMENT 2	BERGSTRO	M PAPER CO	- KIMIEPL	Y CLAPKKL	GKEVIEW)	
	11 r	HL.	144	פת	0A	CS.	TEMP	
	1.7	20125.	23.1.	1020.B	>_ .a	5.2	20.	۰.

and a second and a s

<u>SAMPLE OUTPUT</u>

,

CO 10-10 SEGME 10 3.0 JELTA 0.53 FL 1.5 FL 21.30 FLCX1	TNEYIA FL(LU (-00 ENT 1 	4 CONSTE FLOMD 11.85	XTOT 30.63 IO28.30 AREA 976.00 FLOKD 0.30	XCOPE 0.0 IPUT 0.0 SLOPE 0.0 FLOKN	NTOT 45 0.0 5.20 Fint 0.0 S	1Емр №9,06 НСАМ 0.0	DEP1H 2.93			
CO 10-00 SEGME UC 0.0 JELTA 0.53 FL 1.5 FL 21.30 FLCX1	FL(LU (,00 ENT 1 YL 0.0 FLEN5 0.53 FN 1.00	FLOND 11.85 0.0 CONST 1.00 FLOKR 0.30	XTOT 30.63 IN 028.30 AREA 976.00 FLOKD 0.30	XCODE 0%0 IPUT 0~0 SLOPE 0.0 FLOKN	NTDT 45 CS 9.20 FINT 0.0 S	1ЕМР 20,00 НСАМ 0.0	DEP1H 2.00	4* 		
SEGME UC 0.0 UELTA 0.53 FL 1.5 FL 5 FLCK1	ENT 1 	₩/: 0.0 C(NST 1.00 F(OKR 0.30	00 1028.30 AREA 976.00 FLOKD 0-30	0A 0-0 9.0PE 0.0 FLOKN	CS 9.20 FINT 0.0 S	1ЕМР 20,06 Ксам 0.0	DEP111 2.90		월 (1944) 184 - 3 (1945) 월 월 19 19 19 1 일 4 19 19 19 19	
UC 9.0 UELTA 0.53 FL 1.5 FL FL FLCK1	WL 3.U FLENG 0.53 FN 1.00	97 0.0 CCNST 1.00 FLOKR 0.30	00 1028.30 AREA 976.00 FLOKD 0-30	00 0.0 9.0 9.0 0.0 7.0 7.0 KN	CS 9.20 FINT 0.0 S	1ЕМР 20,06 - НСАМ 0.0 - Г	DEP1) 1 2.00			
UC 0.0 UELTA 0.53 FL 1.55 P.** 21.30 FLOK*	HL 3-U FLENG 0.53 FN 1.00	97 0.0 C(NST 1.00 FLOKR 0.30	00 J028.35 AREA 976.00 FLOKD	ロム ロッロ マリロアモ ロ・C デLOKN	CS 9.20 FINT 0.0 S	1ЕМР №9,06 • НСАМ 0.0	DEPTH 2.00			
UELTA 0.53 FL 1.55 μ 21.30 FLOK1	FLEN5 0.53 FN 1.00	C(NST 1.00 Flokr 0.30	AREA 976.00 FLOKD	SLOPE D.C Flokn	F10(T 0.0 S	" HCAM 0.0	DEP1H 2.00			•
FL 1.15 P/** 21.30 FLOK*	FN 1.00	FLOKR 0,30	FLOKD	FLOKN	S	5				
PAN ZI-30 FLOKY			19 H 19	0,14	5.00	0.50			3	
FLOXI	RR C I S	۵ 0 و ا	8 0.0	ALPHA 0,0			- <u>,</u>			
4,50										
			DI.	JTPUT						
HR 0	DEFICIT	териі	TERHZ TE	ERMO TERMA	TERMS	TERM6	0500 N90D	00		;
00.03 00.10	J_CO 9.57	0,0 0,10	0.05 (0.00.0 9.120.0	000 ~0013	0.0, × 0.0	6.00 11.60 5.95 11.55	10.00 9.77		
									- 44	
	ENT 2.	r7 F3 (3 CD in, 00 Alt og for		NPUT	7 Tao die ang ang ang ang ang ang	1 200 Alp voj op go do cij op je k	al an 12 (2 (0 6) an 36 51 12 41 an 22 42 46 46 46 4	an b. St		10 Di 20 20
мс 61.70 203	WL 375.00	WN 2301.00	QD 1928.30	0A 7 4 0	53 9,20	TEMP 20.00				
ניד ז היים	IE VEIR	CONST 1 a.	AREA	51028	(NT	ትር እም በርዕ	DEP H			

.

.

-

ч ч	12	F ក] ប 0	ST75 ULAKB	я. Эк 11, Эк	2 si	5 R 1215	3,90 3	ۍ د ا				• •	۰.	-
	12-23 12-53	RG 1,25	A U_U	U.0		i -,-								
	FLOKA Oroc										~		,	
					ourwur						• ²			
	₹,} 1	C. C. COLT	TERMI) ERG2	TERT	< TRUM	TC RNS	12864	:000	NG00	-3 0			
	0.33 0,14	6.09 5.19	0 _0 0,21	0,0 1.45	0~() (`~07	5 vs 5 05	(.0 ~0.19	0.0	19,80 19,80	ら、 に 日~ 41	9#1x %#01			
1 mai 200	SEG	MENT 45		5 39g (All and 102 4.07 700 70g 4g	INPU?	2 - 101 - 102 - 103 - 103 - 105 - 105 - 1	Bag E≻ ™rF5 Fai ini jaa L2	4 - 1 11 14 14 14 1 4 14 14 14 14 14 14 14 14 14 14 14 14 14	n albeit a samme for site in	աղաց ք _ո ւ ոչեն անցերչուլ է ՆՏԵՄ	∼en-njar-ay waa wa faa Uga J	80 Juli (1) 100 400 471 BJ 480 497 L	a Marina da marina da marina	9 ~2 /1.57 - 10 (48 × 1-10) 7 2 % - 10
	۲C 2 00.511	11L 23481.00	WN 5631.00	2250 C	20 10 (<i>ц.</i> / 1,56	C2 720	TEMP 20.00						,
	DELTA 0,14	FLENG D.14	CONST 1.00	ARE 12194-0	IA 5	1005 116	F1N) 0+0	Н <u>р</u> ам 0.0	1930 0461	:: C				
	FL 1.25	5 N 1 u d d	FLOXA 0.12	46_3 (, 2	(n) - 12	54.05 COKM	5 5 CC	F 3 - 0 C						
	23M 12.50	RR 1.25	A 0 ـ 0	0.:	, 6 9 (, 1,247					,			
	FLOKA 0.12												,	
					outeut			, ्र १				•		
	Ņŗ	DEFICIT	TERK1	TERK2	TERME	TERN4	TERNS	128M6 ,	Caco	DORN	00	۶۴		
	0.14 -0.00	6.21 6.29	0_0 0.15	0.0 0.04	0,0 0.06	6,21 6,12	0.0 -0.12	0.0	20.78 20.63	8.79 8.75	2.99 2.91			•

.

.

,

.

~.

-

-,

. ..

.

-

-

• •

*