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INTRODUCTION

SOCMI PROGRAM

Concern over widespread violation of the national ambient air quality standard
for ozone (formerly photochemical oxidants) and over the presence of a number
of toxic and potentially toxic chemicals in the atmosphere led the Environ-
mental Protection Agency to initiate standards development programs for the
control of volatile organic compound (VOC) emissions. The program goals were
to reduce emissions through three mechanisms: (1) publication of Control Tech-
niques Guidelines to be used by state and local air pollution control agencies
in developing and revising regulations for existing sources; (2) promulgation
of New Source Performance Standards according to Section 111(b) of the Clean
Air Act; and (3) promulgation, as appropriate, of National Emission Standards
for Hazardous Air Pollutants under Section 112 of the Clean Air Act. Most of
the effort was to center on the development of New Source Performance Stan-
dards.

One program in particular focused on the synthetic organic chemical manufactur-
ing industry (SOCMI), that is, the industry consisting of those facilities
primarily producing basic and intermediate organics from petroleum feedstock
meterials. The potentially broad program scope was reduced by concentrating on
the production of the nearly 400 higher volume, higher volatility chemicals
estimated to account for a great majority of overall industry emissions. EPA
anticipated developing generic regulations, applicable across chemical and
process lines, since it would be practically impossible to develop separate

requlations for 400 chemicals within a reasonable time frame.

To handle the considerable task of gathering, assembling, and analyzing data to
support standards for this diverse and complex industry, EPA solicited the
technical assistance of IT Enviroscience, Inc., of Knoxville, Tennessee (EPA
Contract No. 68-02-2577). IT Enviroscience was asked to investigate emissions
and emission controls for a wide range of important organic chemicals. Their
efforts focused on the four major chemical plant emission areas: process
vents, storage tanks, fugitive sources, and secondary sources (i.e., liquid,

solid, and aqueous waste treatment facilities that can emit VOC).
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REPORTS

To develop reasonable support for regulations, IT Enviroscience gathered data
on about 150 major chemicals and studied in-depth the manufacture of about

40 chemical products and product families. These chemicals were chosen consid-
ering their total VOC emissions from production, the potential toxicity of
emissions, and to encompass the significant unit processes and operations used
by the industry. From the in-depth studies and related investigations, IT
Enviroscience prepared 53 individual reports that were assembled into 10 vol-

umes. These ten volumes are listed below:

Volume 1 Study Summary

Volume 2 Process Sources

Volume 3 Storage, Fugitive, and Secondary Sources

Volume 4 : Combustion Control Devices

Volume 5 Adsorption, Condensation, and Absorption Devices
Volume 6-10: Selected Processes

Volumes 4 and 5 are dedicated to the evaluation of control devices used as add-

on controls to reduce VOC emissions. These add-on controls are discussed general-
ly in Volumes 2 and 3 as emission control options for the control of VOC emis-
sions from generic sources. The use of these add-on controls in specific applica-

tions is demonstrated in the process studies covered in Volumes 6 through 10.

This volume covers the application of combustion devices as add-on VOC emission
control devices. Separate reports are presented covering control device evalua-
tions for thermal oxidation, special thermal oxidation requirements for VOC
containing halogens and sulfur, catalytic oxidation, flares, and the use of
emissions as fuels. These reports discuss the practical use of each control
device, describe the systems, and discuss key design considerations. Data,
tables, and curves are presented to enable preliminary cost and energy impacts
to be determined for a wide range of potential applications. These control
device evaluation reports were used to develop the cost effectiveness and
energy impact determinations presented in the process reports of Volumes 6
through 10. The focus of these reports is on control of new sources rather
than on existing sources in keeping with the main program objective of develop-

ing new source performance standards for the industry. The reports do not
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outline regulations and are not intended for that purpose, but they do provide

a data base for regulation development by the EPA.
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ABBREVIATIONS AND CONVERSION FACTORS

EPA policy is to express all measurements used in agency documents in metric

units. Listed below are the International System of Units (SI) abbreviations

and conversion factors for this report.

To Convert From

To

Multiply By

Pascal (Pa) Atmosphere (760 mm Hg) 9.870 X 10 ©
Joule (J) British thermal unit (Btu) 9.480 X 10 ¢
Degree Celsius (°C) Degree Fahrenheit (°F) (°Cc X 9/5) + 32
Meter (m) Feet (ft) 3.28
Cubic meter (m3) Cubic feet (ft3) 3.531 X 101!
Cubic meter (m3) Barrel (o0il) (bbl) 6.290
Cubic meter (m3) Gallon (U.S. liquid) (gal) 2.643 X 102
Cubic meter/second Gallon (U.S. liquid)/min 1.585 X 104
(m3/s) (gpm)
Watt (W) Horsepower (electric) (hp) 1.340 X 10 3
Meter (m) Inch (in.) 3.937 X 10!
pPascal (Pa) Pound-force/inch? (psi) 1.450 X 10 ¢
Kilogram (kg) Pound-mass (1lb) 2.205
Joule (J) Watt-hour (Wh) 2.778 X 10 ¢
Standard Conditions
68°F = 20°C
1 atmosphere = 101,325 Pascals
PREFIXES
Multiplication
Prefix Symbol Factor Example

T tera 1012 1 Tg =1 X 1012 grams

G giga 10° 1 Gg = 1 X 10° grams

M mega 108 1 Mg = 1 X 10° grams

k kilo 103 1 km = 1 X 10° meters

m milli 1073 1mv=1%10 3 volt

u micro 10 6 1 ug=1X 10 8 gram
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I. INTRODUCTION

Thermal oxidation is a control technology whereby organic vapors are oxidized
at high temperatures in the presence of air. Thermal oxidation units have been
constructed to control a wide variety of waste gases, the design of the unit
depending on the composition and flow rate of the waste gas. The concentration
of the volatile organic compounds (VOC) can be converted to the heat generated
by the waste gas (heat content) if the specific components and their heats of
combustion are known or can be calculated. The heat content range, together

with the waste-gas flow rate, determines the design and auxiliary fuel usage.

Three categories of heat contents are used in this report: low (<50 Btu/scf),
moderate (50 to 100 Btu/scf), and high (>100 Btu/scf). For waste gases with

low heat contents, auxiliary fuel such as natural gas or fuel oil must be added
to maintain the combustion temperatures. Heat contents of approximately 13

and 20 Btu/scf in air correspond to 25 and 40% of the lower explosive limit

(LEL). Waste gases with heat contents of 20 to 50 Btu/scf (40 to 100% of the

LEL) must be diluted with inert gases or be enriched with auxiliary fuel because
they exceed the flammable safety limits imposed by insurance companies. Moderate-
heat-content waste gases have sufficient heat content for burning but need auxili-

ary fuel for flame stability.

when the heat content is higher than ~100 Btu/scf, the waste gas possesses enough
heat value to support a flame by itself and can be considered for use as a fuel
gas or boiler feed gas. When flame temperatures resulting from incineration of
this type of waste exceed 2200°F, a considerable amount of excess air must be used
to cool the unit to 2200°F. Oxidation equipment such as water-wall boilers and
high-temperature specialty oxidizers has been successfully designed and operated
for temperatures in excess of 2200°F, but is beyond the scope of this study.

In many cases the waste gas creating excessive temperatures has been a candidate

for flaring.

Conventional thermal oxidizers range in size from a unit capable of controlling
several hundred scfm of waste gas to single or multiple units controlling waste

gas in excess of 100,000 scfm. Few single thermal oxidizers exist that are



sized for more than 200,000 scfm of flue gas. For a combustion chamber tempera-
ture of 1400°F and a waste gas with a heat content of less than 50 Btu/scf and
no oxygen, a thermal oxidizer sized for 195,000 scfm of flue gas would handle a
waste-gas feed rate of 100,000 scfm. To provide a 1/2-sec residence time for the
actual flow rate of 737,000 cfm would require a combustion chamber volume of

6140 ft3. With the length-to-diameter ratio assumed to be 2, this volume would
require a refractory-lined cylinder that has an internal diameter of at least

16 ft and that is 32 ft long. Because of shipping size restrictions, larger
single units would require field fabrication, which would make the cost much
higher. A limit of 100,000 scfm of waste gas was used for this study. Vendors

have shop fabricated units up to that size as single units and as multiple

*

units.l—*

Waste gases containing sulfur or halogens require flue gas scrubbing after ther-
mal oxidation to remove the noxious gases that were formed during oxidation.

The scrubbing equipment requires additional capital investment. This analysis
is included in the Control Device Evaluation, Thermal Oxidation Supplement

(VOC containing halogens or sulfur).

Halogens in the waste gas require high-temperature oxidation to convert the
combustion product to a form that can most easily be recovered by scrubbing.
For instance chloride-containing waste gases are pburned at high temperature to
convert the chloride to HC1l instead of to Clg, since HC1l is the more easily
scrubbed. The analysis of thermal oxidation of halogenated and sulfonated VOC

is also included in the above mentioned report.

*See Sect. VII for all references cited in this report.
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II. THERMAL OXIDIZER DESIGN CONSIDERATIONS

A variety of considerations affect the design and selection of the various com-
ponents comprising a thermal oxidizer system for the control of waste gases:
the combustion chamber residence time and temperature, which, in turn, affect
the destruction efficiency of the VOC; the auxiliary heat required for flame

stability; and the method to be used for heat recovery.

RESIDENCE TIME AND TEMPERATURE

Probably the most important considerations in the design of thermal oxidizers

are the combustion chamber temperature and residence time. These design variables
usually have an impact on both the destruction efficiency and the capital and

operating costs of thermal oxidizers.

The combustion temperatures of waste gases vary with the waste-gas heat content.
Waste gases with low heat contents will normally have combustion temperatures

of 1200 to 1600°F. The thermal oxidizer designer has the option of controlling
the combustion temperature by specifying additional auxiliary fuel. Waste gases
with moderate heat contents use less auxiliary fuel to support combustion, and

the combustion chamber will normally operate in the range of 1600 to 2200°F.

Waste gases with high heat contents determine their own combustion temperatures.
. The combustion temperatures of these gases can exceed 2200°F, and they are usually
satisfactory for use as fuel gases. Figure II-1 shows the feed configurations

of thermal oxidizers burning waste gases with low, medium, and high heat contents.

The residence time in the combustion chamber is a design variable specified by

the system designer. The combustion chamber is a chemical reactor, and the
residence time 1s the time available for the reaction (oxidation) to occur.
Residence times as low as 0.3 sec to several seconds have been utilized in thermal
oxidizer designs. Different vendors have defined residence times in different
ways. Some include all the available volume of the combustion chamber. Others,
however, consider only the volume in which the flue gas is at the combustion
temperature, an approach that results in the combustion chamber being larger

than it would be if the entire internal volume were used in the calculation of

residence time. The fraction of the total volume that is at the combustion
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temperature depends on the configuration and design of the flame burner. A

burner generating a short flame implies that the waste gas reaches it's combustion
temperature very rapidly and that nearly the entire internal volume is available
for oxidation. A burner developing a long flame has considerably less volume

at the combustion temperature than the total internal volume.

Although a design engineer should be quite concerned with the actual burner
design and residence time at the combustion temperature, in this control-device
evaluation study it is assumed that the entire combustion chamber volume is at
the combustion temperature. This is justified since later in this report it is
shown that differences as high as 50% in residence time do not significantly

affect the annual cost, including capital charges, of thermal oxidation control.

VOC DESTRUCTION EFFICIENCY

Achievable Destruction Efficiency

The temperatures and residence times of combustion for thermal oxidizers have
historically been determined by thermal oxidizer designers using rules of thumb.
It is often assumed that thermal oxidizers achieve "complete organic destruction."
When specific feed streams required specific destruction data, the chemical
manufacturers, their consultants, or the equipment manufacturers would operate
pilot units to test burn the real waste in order to determine actual destruction
efficiency. This, however, was a costly procedure and was avoided unless there
were unusual circumstances. Therefore, except for special cases, VOC destruc-

tion efficiency has rarely been measured.

Some vendors have claimed that combustion temperatures several hundred degrees
higher than the compound's autoignition temperature should be employed. To
date the correlation to destruction efficiencies by this rule of thumb has not

been established.?®

Several other factors are important in determining the destruction efficiency.
Residence time at temperature, axial and longitudinal temperature profile, gas
density changes in the combustion chamber, and specific component reaction rate
(as a function of temperature) all must be known to determine the destruction

efficiency, the most important parameter. This requirement implies that for
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the thermal oxidizer the combustion chemistry of each component and the physical
design of the unit must be known in order to determine the VOC destruction effi-

ciency. Multicomponent oxidation equilibria further complicate the problem.

Recently, some studies have been performed to evaluate this problem. Barnes et
gl.e have begun a study of the specific kinetics of organic oxidations, but it

is theoretical in nature. Followup experimental studies were planned but were
cancelled. Lee et 31.7 have presented a simplified experimental approach to
investigate the oxidation kinetics and have given case studies of the destruction
relationships of four compounds. In another publication these data are expanded
to develop a predictive relationship of VOC destruction. A review of these and
other technical resources in this complex area has led to the conclusion that
further experimental data are required to ensure that the time, temperature,

VOC efficiency relationship is established, which will aid future thermal oxidizer
designers. This review has been summarized as a research recommendation for

thermal oxidizers and has been submitted to the EPA.°

Table II-1 presents the results from tests on five different operating thermal
oxidizers and one boiler adapted to burn a waste gas. Some of these tests were
run by EPA and some were run by the individual companies who have submitted
their data to EpA.10’11

Despite the complexity of the VOC efficiency issue and the need for further

work, some estimate of the time, temperature, VOC efficiency relationship is
required to design and evaluate thermal oxidizers for this study. Given this

need, IT Enviroscience has developed the thermal oxidizer design criteria shown

in Table II-2. These criteria are based on engineering experience with a number

of VOC applications and the data in Table II-1. 1In addition, these criteria are
based on designing the thermal oxidizer for the specific waste gas under considera-
tion and may involve test burns and pilot unit work with the actual waste stream.
Based on these assumptions, it was concluded that a properly operated and individ-
ually designed thermal oxidizer would achieve, as a minimum, the stated destruc-

tion efficiencies for waste gases with VOC concentration greater than 400 ppmv.

Some of the field unit test data in Table II-1 do not meet the criteria in

Table II-2. Analysis of the data lead to the conclusion that insufficient



Table II-1.

II-5

Results from Actual Thermal Oxidizer Tests

o)
vocC
Residence Inlet Outlet Destruction
Time/Inlet Temperature Number of vOC voC Efficiency
Company Flow (SCFM) (F°) Test Runs (ppmv)a (ppmv) (%)
Union 2 to 3 sec/ 1160 6° 11,900 243 96.1
Carbide 20,600 1475 3C 11,900 10 99.9
Rohm & 1 sec/tank 1425 3¢ TFV 2580 1330 82.6
Haas farm vent, oxv 11,600
(TFV)-12,500
oxidizer 1510 4€ TFV 2600 150 98.3
vent, (OXV)- oxv 12,800
40,000 1545 1€ TFV 2410 25 99,7
oxv 12,200
Denka 0.6 sec/33,000 1400 3¢ 950 13 98.5
Mons anto (Unit size)- Confidential Unit 1—6d Confidential 25 >99
18' dia. X . d . .
36" (outlet Unit 2-8 Confidential 47 >89
flow) 75,000
Kopperse 0.6 sec/30,000 1800 Inlet-4¢ 850 (Set 1) 7 99.0
Outlet-6&°€ (set 2)11 97.2
Petro~~texf 0.6 sec/14,400 1400 N/A (set 1) 10,300 1000 70.3
(Sset 2) 10,650 215 94.1
{set 3) 10,300 10 99.6

aVOC does not include methane or ethane.

bvoc destruction efficiency is weight percent.

Csampling conducted with integrated bags.

dSampling conducted with grab sample bombs or syringes.

€The data in Set 1 and 2 for Koppers were taken during different time periods.

fInlet and ocutlet VOC for Petro-tex reported as ppmv methane.
the use of an existing boiler to control a process fume.

baffles.

This case involves

The data in set one were taken
prior to adjustment of the boiler; the data in sets two and three, after adiustment.
The specific alterations made by Petro-tex involve changes in mixing induced by retrofit
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mixing or other design deficiency was the most likely cause. In addition, indivi-
dualized designing with test burns and pilot units adds to costs. In some cases,
the costs of this design procedure may be judged too high and the lower efficiencies

of units designed for more general application may be acceptable.

As shown by Table II-2, a longer residence time is required to complete combustion
when the thermal oxidizer feed contains more than 200 ppm carbon monoxide.
This is related to the difficulty encountered in the combustion of carbon monoxide

and the tendency for it to disrupt the VOC conversion.

The relationships in Table II-2 show the effect of increased combustion tempera~
tures at similar residence times. They do not show the effect of longer residence
times at lower temperatures. As can be seen in Table II-1, excellent destruction
efficiencies can be obtained at lower temperatures and longer residence times.
Halogenated compounds may be destroyed by using combustion temperatures on the
order of those shown in Table II-2 at a residence time of 1 sec or at much
elevated temperatures (approaching 3000°F) and shorter residence times. Chemical
equilibria between the halogenated compounds, the free halogen, the halogen

3 sjince costs

acid, and the oxygen are functions of the combustion temperatures.
are strongly influenced by operating at temperatures in excess of 2200°F, haloge-
nated hydrocarbons need to be handled separately and are discussed in a separate

control device evaluation.

The criterion in Table II-2 is based on the assumption that the combustion air
fed to the combustion chamber is sufficient to produce 3 mole % Og in the flue

gas.

The criteria just described are not the only ones for achieving VOC destruction
at high levels. For instance, it may be possible to burn waste gases longer
(longer residence times) at lower temperatures to achieve the same destruction
efficiency. Also, for some easily oxidized compounds, oxidation at, say, 1400°F

and 0.5-sec retention time could develop destruction efficiencies above 99%.

Even with the attendant variations this approach is justified for two reasons.
First, this criterion is comparable to that used in design and operation of

many existing thermal oxidizers and generally represents a conservative design.
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Table I1-2. Combustion Temperature, Residence Time, and
VOC Destruction Relationships

vocC
Combustion Residence Destruction
Temperature Time Efficiency?
(°F) (sec) (%)
Waste Gas with <2000 ppm Carbon Monoxide
1400 0.5 >90
1500 0.5 >98
1600 0.5 >99
Waste Gas with >2000 ppm Carbon Monoxide
1400 0.75 >90
1500 0.75 >98
1600 0.75 >99

4With waste gas feeds >400 ppm VOC.

bThe design of thermal oxidizers to achieve these efficiencies may require
test burns and pilot-plant work. 1In some cases, the costs for this design
work may be judged too high and the lower efficiencies of thermal oxidizers
designed for less stringent criteria may be acceptable.



Second, the variations of this criterion (that is, different destruction effi-

ciencies at the stated temperatures and residence times) have a small effect on

cost effectiveness (cost/lb of VOC destroyed). The major component of the annual

cost and energy impact will be related to the combustion temperature and the

auxiliary fuel used to achieve that temperature. If a unit is designed to operate

at, say, 1600°F and can be shown to achieve a greater VOC destruction than that

required by a standard, whether 99% or otherwise, the combustion temperature

and the auxiliary fuel usage can be reduced. This conservative design philosophy

is similar to the design of most new facilities in the synthetic organic chemicals

industry, and the cost impact of any regulations arising from this control device
evaluation will almost certainly be conservative. The actual annual cost, cost
effectiveness, or energy effectiveness experienced by companies using thermal

oxidation for VOC control should be lower than those shown in this report.

Calculation of Destruction Efficiency
A secondatry problem in the determination of VOC destruction efficiency concerns
the method of calculation. VOC destruction efficiency is often calculated by

the so-called volumetric efficiency equation:

ppm_ in the flue gas

7

Volumetric efficiency = 1 - ppm, Tn the waste—gas feed

which is close to the mass-based destruction efficiency only if the average
molecular weight of the VOC in the waste gas is equal to the average molecular
weight in the flue gas and if the waste-gas-feed flow is the same as the flue

gas flow.

Since these assumptions exist in only a few cases, volumetric efficiencies can
be misleading. Mass-based efficiencies are much more desirable. There are,
however, some problems in describing thermal oxidation efficiencies in terms of
mass flow rates. A thermal oxidizer for VOC destruction receives contaminated
VOC gases (sometimes with liquids and solids) and supplementary fuels (natural
gas, fuel oils, or high-heat-content waste organic) and burns them with enough
air for specified levels of excess or unused oxygen to be achieved in the flue
gas. The unburned VOC from both the fuels and the waste gas contribute to the
voC in the flue gas.
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In order to establish an efficiency equation to account for the VOC from both
sources of flue gas (i.e., the waste gas and the fuel), it would be tempting to

define the efficiency as follows:

Total VOC destruction efficiency =

1 - 1b of VOC in the flue gas

1b of VOC in the waste gas + 1lb of VOC in the fuel

This approach is attractive in that it permits any VOC contribution of the unburned
fuel to be assessed directly. It is unacceptable, however, because it does not
allow for the evaluation of the degree of destruction of the waste gas. In

other words, with VOC destruction efficiencies based on the above equation, it
would not be recognized that the thermal oxidizer might burn fuel extremely

well but not destroy the waste gas.

When the waste-gas heat content is low, the fuel requirements are high (say,

10 1b of fuel to 1 1b of waste gas VOC). In the above equation the VOC in the
flue gas could come from either unburned fuel or waste gas. If the total effi-
ciency required was 90% and the fuel could be burned at 99% (which is easily
obtained), then the waste gas could pass through the oxidizer unchanged and the
oxidizer would be in compliance with the 90% efficiency requirement. Obviously
this approach thwarts the underlying reasons for VOC regulation. A second defini-
tion of VOC destruction efficiency therefore must be utilized that bases the

efficiency calculation on the waste gas alone:

VoC (1b ov VOC in the flue gas)

flue
VOCW {1b of VOC in the waste gas)

nt(total VOC destruction efficiency) = 1 -

The VOC in the flue gas is comprised of the unburned VOC from the waste gas and
the unburned VOC from the fuel, each of which may be expressed in terms of the
VOC fed to the thermal oxidizer and destruction efficiency, where the efficiencies

of destruction of fuel and VOC in the waste gas are Nfuel and Ny’ respectively:

VOCflue = VOCw (1 - r]w) * vchuel (1 - r]fuel)
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Therefore the VOC destruction efficiency in terms of the waste gas is

VOCw(l - r]w) * Vocfuel(1 j r]fuel)

voC
W

The relationship between Ny’ Nfuel’ and N is shown in Fig. II1-2 for the case

where a waste gas has 21 1lb of VOC per hour and 560 1b of fuel per hour is required.
This relates to a heat content of about 2 Btu/scf. Also shown on Fig. II-2 is

the burner efficiency (nfuel) based on the EPA emission factor for burning natural

gas or fuel oil in power plants, industrial boilers, and commercial systems.12

The conclusions from Fig. II-1 are that if, say, 99% total efficiency is required
and if the EPA fuel oil boiler efficiency is used for the burner efficiency

(99.983%), then about 99.4% VOC destruction of the waste gas must be achieved.

Similarly, if for any reason the burner efficiency drops from 99.983% to 99.960%,
then the 99% total efficiency could not be achieved by using the above definition
of efficiency. This is particularly significant in view of the qualifications

in the EPA emission factor table!? indicating that surges, upsets, turndown, or
poor design or maintainance could increase the emission factors significantly.
From these statements it could be concluded that the 99.960% fuel efficiency
level would be difficult to maintain on a continuous basis. Overall efficiency
levels approaching 99% based on the waste gas demand the best fuel burner designs

and the smoothest possible operation.

A final consideration is that, by present definition, methane (natural gas) 1is
not considered to be a VOC. The VOC destruction efficiency based on the waste
gas is independent of burner efficiency if the fuel is natural gas. It has
become apparent that for a variety of reasons natural gas may not be the depend-

able choice for supplementary fuel.

FLAME STABILITY

An auxiliary-fuel minimum of 5 Btu/scf of waste gas for medium-heat-content

waste gases is assumed in this study. For medium- to high-heat-content waste
gases, auxiliary fuel amounting to 10% of the waste-gas heat content is added

for flame stability. A waste gas with a heat content of 100 Btu/scf thus requires

10 Btu/scf of auxiliary fuel. Obviously, for very high heat content waste gases
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(>400 Btu/scf) the auxiliary fuel requirements for flame stability diminish.
The actual selection of auxiliary fuel for specific thermal oxidizer designs is
highly judgmental and requires consideration of several factors specific to the
application. The inclusion of the 10% auxiliary fuel in this evaluation is
intended to offer some credibility to the design although the actual auxiliary
fuel added may vary and may be reduced if operating experience demonstrates

good efficiency and flame stability with less auxiliary fuel.

LIQUID ORGANIC WASTES

Liquid organic wastes from a process may be a source of auxiliary fuel for thermal
oxidation. However, combustion of liquid waste streams in thermal oxidation
equipment can complicate the design. Inorganic compounds present in the liquids
can create very difficult particulate problems, which will require additional
equipment to solve. Since the total capital cost to deal with these factors

can be significantly higher than for conventional fume thermal oxidation, this
study does not address the complexities of feeding liquid organic wastes. "Clean"
liquids are assumed to be similar to fuel 0oil and using them for auxiliary fuel

will not have a significant impact on capital or annual costs.

HEAT RECOVERY

This report includes evaluations of thermal oxidizers without heat recovery,
with means for recuperative heat recovery such as preheating the waste gas and
combustion air to reduce auxiliary fuel usage, and with waste heat boilers for
steam generation. When heat recovery is desired, temperature considerations
could determine whether recuperative heating or waste heat boilers apply. Com-
bustion temperatures exceeding 1600°F rule out the use of recuperative heat
exchangers because of problems with materials of construction and with secondary
factors, such as precombustion occurring in the exchangers. Waste heat boilers,

however, are alternatives in this range.

Recuperative heating is possible with temperatures between 1500 and 1600°F only
if the part of the exchanger closest to the flame is manufactured from special
materials (nickel alloys, etc). Temperatures less than 1500°F are compatible
with standard recuperative heater designs. Waste heat boilers may be considered
throughout all ranges. For waste gases with moderate or high heat contents,
recuperative heating is not an option since it is of value only when used to
reduce the auxiliary-fuel requirement. Waste heat boilers may not be installed

at those production locations where additional process steam cannot be used.
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III. BASIS FOR THERMAL OXIDIZER DESIGN

After the design considerations described in the preceding section were evaluated,
those sensitive design variables that would have an effect on cost and energy

were identified and are described below.

EFFECT OF SENSITIVE DESIGN VARIABLES ON COST AND ENERGY

A distinction must be made between those design variables which, if changed by

a small amount, would cause significant changes in capital annual or energy

costs. These are called sensitive variables, and the cost curves given later

in the report generally include them as parameters. Other variables may be

quite important for an individual system design but have minor effects on economic

or energy impact conclusions.

The approach used in this study was to determine the sensitivity of certain
variables by means of computerized heat and material balance calculations.
Through this process, estimates of the relationships between the variables and
equipment design and operating costs may be derived. Primary variables that

are a function of the waste gas are the waste gas temperature, pressure, flow
rate, VOC composition and VOC average molecular weight, VOC carbon, oxygen, and
hydrogen (and other component) ratios, VOC heats of combustion, and the nitrogen
(and other inert gases), oxygen, and water contents, and the presence of special

contaminants (particulates, halogens, high levels of sulfur).

The waste gas temperature is assumed to be 100°F for the base case, but an increase
or decrease within reasonable boundaries will have little effect upon the capital
or operating costs and it is therefore not a significant variable. Sensible

heat carried by the waste gas is small compared to that required to raise its
temperature to the combustion conditions. About 3.5 Btu/scf is required to
increase the temperature of nitrogen from 80°F to 260°F. This compares with

fuel heat requirements on the order of 60 to 80 Btu/scf to ralse the waste gas

to combustion temperatures. Waste gas temperature differences within this range
could not change the total heat requirements by more than about 6%. Waste gas
pressure is assumed to be 1.5 psig. Pressure changes within reasonable limits

of 1.5 psig also will have no significant effect on capital or operating costs.
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Flow rate is a very significant variable for both capital and operating costs.
The waste gas flows shown in the figures throughout this report are translated

to scfm of waste gas to the thermal oxidizer.

Heat content of the waste gas is a significant variable. VOC molar concentra-
tion; average molecular weight; carbon, hydrogen, and oxygen ratios; and heats
of combustion (Btu/lb of VOC) are all expressed in the variable of the heat
content of the waste gas (Btu/scf). By assessing the heat of combustion of the
VOC being destroyed and the mole % VOC concentration in the waste gas, the heat
content can be determined (Btu/scf) as shown by the family of compound lines on
Fig. III-1. Multicomponent VOC systems may be described when the mole fractions
of each component are known. The contribution of carbon monoxide to the total
heat content may also be analyzed in this way. Table III-1 gives VOC molar

heats of combustion.13

If the actual flue gas composition is needed, a component material balance must

be performed, for which carbon, hydrogen, and oxygen ratios are required. 1In
order to estimate '"typical" values for those ratios, 219 organic compounds con-
taining C, H, 0, N, and Cl were surveyed.!* Table III-2 summarizes this informa-
tion based on groupings of different classes. The VOC component averages of

68.3% carbon, 11.4% hydrogen, and 20.3% oxygen were used to establish heat value
plus heat and material balance for this evaluation. Compounds containing chlorine
or sulfur are not included in the impact assessment of this study but covered

in the Control Device Evaluation, Thermal Oxidation Supplement (VOC containing

halogens or sulfur).

The level of oxygen in the waste gas is important because compounds containing

high amounts of oxygen lessen the level of combustion air required and reduce

the total thermal oxidizer flue gas, which affect both capital and operating

costs. No additional combustion air is required when the oxygen in the flue

gas exceeds 3 mole %. This leads to a smaller unit and lower capital and operating
costs. Although some designers will use various levels of oxygen to determine
combustion requirements, the value of 3 mole % is based on accepted practice

and will be constant for all the design calculations in this evaluation. In

order to generate a conservative design and impact analysis, the waste gas in

this report is assumed to have no oxygen. Maximum combustion air is therefore
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Table III-1. VOC Meclar Heats of Combustion?®

Gross or High-Heat of Combustion

Molecular
Compound Weight (Btu/1b) (Btu/lb-mole)
Methane 16 23,900 382,400
Ethane 30 22,400 672,000
Hexane 86 20,800 1,788,800
Benzene 78 18,000 1,404,000
Toluene 92 18,300 1,683,600
Ethylene 28 21,700 607,600
Propylene 42 21,000 882,000
Acetylene 26 21,500 559,000
Methanol 32 9,770 312,600
Ethanol 46 12,800 588,800
Acetic acid 60 6,270 376,200
Phenol 94 14,000 1,316,000
Methyl chloride 50.5 5,850 295,400
Methylene chloride 85 2,260 192,100
Chloroform 119.5 1,340 160,100
carbon tetrachloride 154 436 67,140
Ethyl chloride 64.5 8,840 570,200
Hexachloroethane 237 835 197,900
Dichlorobenzene 111.5 8,230 917,600
Hexachlorobenzene 285 3,220 917,700
carbon disulfide 76 5,840 443,800
carbonyl sulfide 60 3,920 235,200
Thiophene 84 14,400 1,209,600
Methyl amine 31 14,700 455,700
Aniline 93 15,700 1,460,100
Urea 60 4,530 271,800
Uric acid 168 4,930 828,200
Ammonia 17 8,300 141,100
Nitromethane 61 5,000 305,000
Nitrobenzene 123 10,800 1,328,400
Trinitrobenzene 213 5,610 1,194,900

*See ref 12.
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Summary of Organic Compound Components Surveyed

Amount (wt

o
%)

Class C H O N Cc1l
Carbon, hydrogen Low value* 79.9 7.7
compounds only Mean 5.8 14.2
High value¥* 92.3 20.1
Carbon, hydrogen com-— Low value 27.0 2.1 0
pounds and carbon, Mean 68.3  11.4  20.3
hydrogen, oxygen
compounds High value 92.3 20.4 7
Carbon, hydrogen, and Low value 7.8 0 31.5
chlorine compounds Mean 34.3 4.7 60.
only
High value 64.0 9.8 92.
Carbon, hydrogen, oxygen, Low value 26.1 3.7 0 13.C
and nitrogen compounds - yoaq 60.1  11.3 3.6 25.0
and carbon, hydrogen,and
nitrogen compounds High value 78.5 15.4 52.0 6C.8
All compounds Low value 7.8 0 0 0 0
Mean 62.5 10.4 17.3 3.9 5.
High value 92.3 20.1 20.1 60.8 g92.

*Low and high values correspond to the compound wit
carbon) .
therefore the values shown will n

percentage of each e
different elements;

(e.g.,

Differ

h the lowest and highest
ent compounds apply to
ot be additive.
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assumed. When ample oxygen in a low or medium heat content waste gas is avail-
able, the size of the combustion chamber to control the waste gas may be as low

as one-half the volume as shown in this report.

At 1600°F and 14.7 psia the heat capacity of water vapor is about 11.8 Btu/
(1b-mole) (°F). The heat capacity of air under the same conditions is 7.7 Btu/
(1b-mole)(°F) .15 since saturated conditions are assumed for the waste gas in
calculations in this report, the water content in the flue gas is at a maximum
unless entrained liquid water droplets enter with the feed. Auxiliary-fuel
requirements can increase significantly in this case since the heat capacity of
the flue gas increase and the heat of vaporization for water, 18,000 Btu/1lb-mole
of water, must be supplied. However, this can normally be avoided with proper

design.

The presence of special contaminants can have significant effects on capital

and operating costs. A different design criterion is required with halogenated
feeds. Other contaminants, such as sulfur, could require the addition of absor-
bers to the control device. Investigation of these special cases are assessed

in the Control Device Evaluation, Thermal Oxidation Supplement.

A second group of significant variables relates to the design criterion of thermal
oxidation. Combustion chamber temperature and residence time must be specified
as functions of the feed components and VOC destruction efficiency. Combustion
chamber temperature has a significant effect on fuel costs for feeds with low
heat contents. Feeds with moderate heat contents determine their own combustion
temperature, whereas feeds of high heat content will markedly increase the size
of the equipment if the combustion chamber must be controlled at levels much
below their normal combustion temperatures. The addition of excess air or water
to reduce the combustion temperature results in a larger flue gas flow and larger
equipment to maintain the same residence time. Residence time has a major effect
on capital costs but a relatively small effect on operating costs. Even though

a larger unit has a larger heat loss by radiation, it is normally on the order

of a few percent and does not materially increase the operating cost.

The significant variables investigated in this report are waste gas flow, heat

content (encompassing a variety of composition-related variables), combustion
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temperature, residence times, and destruction efficiencies. Evaluation of these
parameters using generally worst-case or conservative assumptions will lead to
economic and energy impact conclusions that will equal or exceed actual operating
costs and energy impacts for the applicable cases. This approach, then, leads

to conservative economic and energy costs on which to base future regulations.

PROCEDURE USED FOR DESIGNING THERMAL OXIDIZER SYSTEM
The design procedure that was used for the thermal oxidizer unit of this study

was developed based on the above variables.

Combustion Chamber

The volume and composition of the waste gas were first determined. The heat
content of the gas was determined by the identification of the VOC components
(including CH4 and CO) and the use of Table III-1 (plus other molar heats of
combustion data) and Fig. III-1. The minimum combustion temperature and resi-
dence times were taken from Table II-2, depending on the presence of carbon
monoxide. Supplementary fuel is required for low-heat-content waste gas to
maintain the desired combustion chamber temperature and flame stability. The
supplementary fuel requirement as a function of waste-gas heat content is shown
by Fig. III-2. The waste gas is assumed to have no oxygen and therefore the
combustion air required is at a maximum. With these data the total combustion
flue gas (in scfm) from all sources, including the waste gas, auxiliary fuel,
combustion air, and combustion products, was calculated for the waste-gas heat
content range (Btu/scf) displayed in Fig. III-2. To correlate with the following
design, size, and cost projections for the full range of waste gas rates, the
flue gas flow of Fig. i&iz4 is expressed as a ratio of flue gas to waste gas as
a function of waste-gas heat content. In waste gases with high levels of oxygen
the ratio of flue gas to waste gas approaches 1. The more conservative case of

a waste gas with no oxygen as shown in Fig. III-3 is used in this evaluation.

Conversion of scfm to actual cubic feet per minute (acfm) is necessary for sizing
of the combustion chamber. Figure III-4 shows this relationship (based on the
ideal gas law). Standard conditions assumed throughout this report are 32°F

and 760 mm Hg and their equivalents. The ratio of acfm to scfm is read from

Fig. III-4 and is multiplied by the combustion chamber flue gas in scfm. Until
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this point in the report, the term heat content has referred to the energy gen-
erated by combustion of compounds in the waste gas. Heat content when used in
relation to the flue gas in this report refers to the energy contained by the
hot gases because of their temperature. The basis used for the heat recovery
calculations is the heat content of the flue gas as a function of temperature,
as shown in Fig. III-5. The dotted lines in Fig. III-5 correspond to a reason-

able variation in specific heats or heat capacities of the flue gas.

Residence times (sec) from Table II-2 are used to calculate the combustion chamber
internal volume. The combustion chamber flue gas flow (in acfm) is converted
to actual cubic feet per second and then multiplied by the residence time (in

sec) to determine the combustion chamber internal volume in cubic feet.

Fans

Fans for the waste gas and combustion air are both specified. The flow rates

of the waste gas and combustion air and the pressure drops of the thermal oxidizers
are used to calculate fan sizes. Pressures drops of 6 in. of water were assumed
for the thermal oxidizer with 0 to 30% heat recovery; 8 in. was assumed for
thermal oxidizers with 50% heat recovery; and 10 in. was assumed for thermal
oxidizers with 70% heat recovery or waste heat boilers. The waste-gas fan
capacity is based on the waste-gas flow rate. Table III-3 gives the combustion
air flow/waste gas ratio as a function of waste-gas heat content. The relation-
ship is based on desired combustion temperatures, as previously discussed, and

is used to size the combustion air fan. The combustion air volume and fan size
may be determined by the use of this ratio multiplied by the volume of waste

gas. Waste gases containing significant levels of oxygen reduce the combustion
air required and reduce the size of the combustion air fan. Waste gases generated

at higher pressure often need no fan.

Recuperative Heat Recovery

A recuperative heat recovery system transfers heat from the flue gas into the
waste gas and combustion air, thus lowering the requirements for auxiliary fuel.
However, since less fuel is required for a given volume of waste gas, less com-
bustion air is also needed to burn the fuel and the resulting flue gas volume

is less than that of a thermal oxidizer without recuperative heat recovery.

Since the flue gas volume is lower, the amount of recoverable heat is also lower.
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Table III-3. Ratio of Combustion Air to Waste
Gas Flow Rate vs Waste Gas Heat Content

Combustion Air to

Waste Gas Combustion Waste Gas Flow Ratio¥*
Heat Content Temperature (scf of combustion air
(Btu/gcf) (°F) scf of waste gas

2 1400 0.87

2 1600 1.1
100 1875 1.4
200 2200 3.1
400 2200 7.3

*Thermal oxidizer conditions:
No oxygen in waste gas .

)

VOC molar heat of combustion = 730,250 Btu/lb-mole.

VOC molecular weight = 50.

voC C, H, O fraction = 68.3 wt % C, 1ll.4 wt
$ H, 20.3 wt % O.

Average waste gas molecular weight = 29.

Water content of combustion air = 1.0 wt %.

3 mole % O, in flue gas after oxidation.

2



IIT-14

The combustion chamber, combustion air fan, recuperative heat exchanger area,

and stack all vary directly with flue gas volume. Recuperative heat recovery

has the effect of shrinking the entire system, depending on the level of heat
recovery. Table III-4 gives the factors that describe this variation of system
size with various levels of recuperative heat recovery. The factors were developed
with the computerized heat and material balance for 1400°F and 1600°F combustion
temperatures and a waste gas with no oxygen. When the waste gas contains signifi-
cant levels of oxygen, the size-reduction effect as related to recuperative

heating diminishes. Although some size reduction is still seen, the factors in

Table III-4 approach 1.

The fuel used per volume of waste gas is reduced when recuperative heat recovery
is used compared to that when no heat recovery or waste heat boilers are used.
Table III-5 gives the fuel reduction factor for various heat contents, combustion
temperatures, and levels of recuperative heat recovery. These factors, multiplied
times the fuel usage values from Fig. III-2, give the actual fuel usage when
recuperative heat recovery is used. A minimum of 5 Btu/scf of fuel was used

for this evaluation.

The heat content of the flue gas from the combustion chamber is essentially a
function of temperature. Thermal oxidation flue gases from waste-gas incineration
will have similar compositions of Ny, Oz, Hp0, and COp and therefore similar

specific heats. The level of heat recovery is defined as

heat content of flue gas after heat recovery
heat content of flue gas before heat recovery

1 -

With it assumed that the temperature rise in the waste gases plus the combustion
air in a recuperative exchanger is equal to the temperature drop of the flue
gases in the exchangers, a design relationship may be developed relating the
heat exchanger surface area to the level of heat recovery. This assumption is
normally a realistic one since the mass flows and heat capacities of the waste
gas plus air and those of the flue gas are normally similar. Any amount of

heat recovery is possible up to the point where the temperature of the preheated
combustion feed gas approaches the flue gas temperature. This point represents
the maximum possible heat recovery for a combustion chamber at a given tempera-

ture. The heat content of the flue gas is shown in Fig. III-5. Figures III-6
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Table III-4. Thermal Oxidizer Size Reduction Factor for
Recuperative Heat Recovery Systems

Level of Recuperative Size Reduction Factor
Heat Recovery
(%) 1400°F 1600°F
30 0.850 0.830
50 0.770 0.744

70 0.701 0.667
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Table III-5. Fuel Reduction Factors for
Recuperative Heat Recovery Systems

Fuel Reduction for Various

Level of Recuperative Waste Gas Heat Contents
Heat Recovery
(%) 1 Btu/scf 10 Btu/scf 13Btu/scf 20 Btu/scf

Combustion Temperature = 1400°F

30 0.635 0.525 0.490 0.400
50 0.420 0.260 0.210 0.061
70 0.240 0.044

Combustion Temperature = 1600°F

30 0.590 0.530 0.501 0.380
50 0.393 0.297 0.260 0.134
70 0.212 0.083 0.034
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and 7 show the ratio of the heat exchanger surface to the flue-gas flow rate as
functions of the percent heat recovery and the overall heat transfer coefficient

(U) for a recuperative exchanger for 1400°F and 1600°F flue gases.

overall heat transfer coefficients of these heat exchangers depend on the type of
design. Cross-flow exchangers tend to have overall heat transfer coefficients
around 2 to 5,2’3 whereas U-tube exchangers are reported to have coefficients of
6 to 8.% Design calculations leading to cost estimates in this report assume

an overall heat transfer coefficient of about 4.

Once a value for the area-to-flow ratio is determined, the heat exchanger area

is calculated by multiplying the flue gas flow (in scfm) by the ratio.

Waste Heat Steam-Generation Boiler Heat Recovery

The maximum heat recovery by a waste heat steam-generation boiler depends on

the temperature of the exhaust gas after it exits the boiler. Although flue

gas temperatures can be reduced to the condensation temperatures of the compon-
ents in the flue gas, in this study it is assumed that the flue gas exhaust
temperature is 500°F. Since more heat could be recovered, this is a more con-
servative but more universal assumption. With the flue gas exhaust temperature
specified, the maximum heat recovery is established. This relationship is shown
in Fig. III-8. The dotted lines in this figure relate to a reasonable range of
heat capacities or specific heats of the flue gas. Figure III-9 relates the
ratio of boiler-tube surface area to the flue-gas flow rate and the flue gas
temperature, steam temperature, and overall heat transfer coefficient. The
surface area of the waste heat boiler is determined by multiplying the flue-gas
flow rate by the ratio from Fig. III-9. The flue-gas flow rate from a thermal
oxidizer employing a waste heat boiler is the same as that from a thermal oxidizer
using no heat recovery. Unlike the recuperative heat recovery case, no reduction

in system size or fuel use is seen when a waste heat boiler is used.

Stack

The cross-sectional area of the stack is determined by assuming a superficial
linear velocity (3000 fpm) and dividing into the actual flow rate of the flue
gas or exhaust gas (with or without heat recovery). Figure III-4 can be used

to convert the scfm to acfm when the temperature is known. Table I1I11-6 lists
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the temperatures of the gases after they are exhausted from the recuperative
heat exchangers or from the waste heat boiler. A waste heat boiler operating

at maximum heat recovery will have an exhaust gas temperature of 500°F.

Table III-6. Flue Gas Exhaust Temperature After Heat Recovery

Combustion
Chamber
Temperature Temperature (°F) After Heat Recoveries of
(OF) 30% 50% 700/0
1400 1040 760 510
1600 1160 860 570

The height of the stack is based either on its proximity to tall structures or
on the maximum exhaust gas component concentrations at certain linear distances
from the stack. The latter requires air dispersion calculations and component
criteria. For convenience in this study a constant stack height of 80 ft is
assumed. Little effect on total capital costs, annual costs, or cost effective-

ness is expected if the stack height is changed within reasonable limits.

Other Equipment

The amount of piping or ducting required for installation of a thermal oxidizer
is dependent on site considerations and the proximity of the thermal oxidizer

to the waste gas source. This system design includes 150 ft of round-steel

inlet ductwork with four ells, one expansion joint, and one damper with control.
Considerably more ducting may be required for special cases; however, since the
ducting included comprises only 2 to 8% of the total capital costs, a great

deal of extra ducting would be required to significantly change the total capital

cost.

Some special waste gases may contain components that form noxious gases during
combustion, for example, sulfur-containing and halogen-containing waste gases.
Flue gas scrubbers are required to reduce the level of these noxious gases in
the exhaust gas. The Control Device Evaluation, Thermal Oxidation Supplement

addresses the incremental capital increase when this option is required.
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COMBUSTION ALTERNATIVES

An alternative technology that is used for incineration of waste gases with low
heat contents is catalytic oxidation, in which a catalyst is used to increase
the oxidation rate of the gases at lower temperatures. This is discussed in

the Control Device Evaluation, Catalytic Oxidation.

Waste gases with high heat contents are often candidates for use as fuel gas to
a boiler or are controlled by flaring. A control device evaluation report for

this technology is also in preparation.
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IV. CONSIDERATIONS FOR INSTALLING THERMAL OXIDATION CONTROL EQUIPMENT

Thermal oxidizers can be large process units, depending on the volume of waste
gas to be controlled, and could require a plot of land as large as 300 ft by
300 ft for installation.

Since thermal oxidizers utilize combustion with a flame for achieving VOC destruc-
tion, the unit must be located at a safe distance from process equipment using
flammable chemicals or special designs must be employed to minimize the risk of

explosion.

Thermal oxidizers require natural gas or fuel oil, electrical power, and instru-
ment air and, if scrubbing is needed, water at the site. If steam is generated
from waste heat, then it is useful to minimize the distance from the waste heat

boiler to the steam consuming site. No special utilities are needed.

Retrofitting thermal oxidizers into existing plants requires careful considera-
tion of site location since all the above considerations apply and sufficient
space in an existing plant may not be available. The unit may have to be located
at longer distances from the waste gas source than would be required for a new

plant.



V. COST AND ENERGY IMPACTS OF THERMAL OXIDIZERS

COST BASIS

The estimated capital costs for total systems combinations and for various com-
ponents are presented in this section. These estimated costs represent the

total investment, including all indirect costs such as engineering and contractors'
fees and overheads, required for purchase and installation of all equipment and
material to provide a facility as described. These are "battery limit" costs

and do not include the provisions for bringing utilities, services, or roads to
the site, the backup facilities, the land, the research and development required,
or the process piping and instrumentation interconnections that may be required

within the process generating the waste gas feed to the thermal oxidizer.

The estimated costs are based on a new plant installation; no retrofit cost
considerations are included. Those costs are usually higher than the cost for

a new site installation for the same system and include, for example, demolition,
crowded construction working conditions, scheduling construction activities

with production activities, and longer interconnecting piping. Since these
thermal oxidizer systems require a relatively large land area and the safety
aspects of an open flame are an important factor, the longer interconnecting
piping will probably be the most significant of these retrofit cost factors.
These factors are so site specific that no attempt has been made to provide
costs. For specific retrofit cases, rough costs can be obtained by using the

new site data and adding as required for a defined specific retrofit situation.

The method used to develop these estimated capital costs was based on preliminary
vendor quotes for the purchase of major equipment items or from such sources as
Richardson Engineering Co. data, and factoring up to installed costs based on

the factors presented in Table V-1. The expected accuracy of the total installed

cost with this degree of engineering detail using this factor method is 1+30%.

This method of obtaining estimated total installed capital costs is suitable
for a cost study or for screening estimates. Table V-1 lists the factor ranges
used for various cost components and is based on historical data of IT Enviro-

science Process Engineering.
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Table V-1. Factors Used for Estimating Total Installed Costs

A = Major Equipment purchase Cost Plus 0.1 to 0.35 Allowance

Installation Costs

Foundations 0.06A + $100 X number of pumps
Structures 0.15A (no structures) to 0.30A (multideck structures)
Equipment Erection 0.15A to 0.30A (depending on complexity)
Piping 0.40A (package units) to 1.10A (rat's nest)
Insulation 0.06A or 0.15 X piping (normal) to 0.30 X piping
(bulk hot or cold)
Paint 0.05a
Fire Protection 0.01A to 0.06A (depending on requirements)
Instruments 0.10A to 0.30A or 0.01A to 0.25A + $50,000 to
$300,000 for process control computer
Electrical 0.15A or 0.05A + $500 per motor
B = Base Cost A + Sum of Installation Costs
Sales Tax 0.025A + 0.025B
Freight 0.1l6A
Contractor's Fees 0.30 (B-A)
C = Total Contract B + Taxes, Freight, and Fees
Engineering” 0.01C to 0.20C
Contingenciesb 0.15C

D = Process Unit Installed Cost C + Engineering + Contingencies

E = Total Subestimates sum of semidetailed subestimates (buildings, site
development, cooling towers, etc.). Each subesti-

mate should include taxes, freight, fees, engi-
neering and contingency, and should be escalated
to date of expenditure for that cost component.
Engineering costs, contingencies, and escalation
factors for these subestimates will vary according
to the type of job.

F = Total Project Cost D + E

aIncludes cost from capital project teams, process engineering, engineering,
purchasing, and other support groups.

bContingency should not be applied to any cost component that has been committed by
either purchase order or contract.



The estimate is based on the purchase cost of major equipment A, including a 10
to 35% allowance for other equipment and an assessment of the quality of vendor
quotes. A 10% allowance is used for project definition that includes process

flow sheets and specific budget quotes and a 35% allowance flow sheet for block

flow sheet definition and generalized equipment quotes or prices.
CAPITAL COSTS

Thermal Oxidizer Complete Systems

Figures V-1 through V-6 show the total estimated capital costs that were obtained
for various system combinations and operating conditions, such as various waste-
gas heat contents, residence times, operating temperatures, etc. Combinations
and conditions are as defined on each figure. The method for estimating the
total system costs consisted of combining appropriate costs for components estab-
lished as described below and of adding minimum site development, estimating
allowance, and nominal vendor startup costs. The total added costs for site
development, estimating allowance, and vendor startup were then prorated back

to each individual component. The individual component cost curves can therefore
be combined to build up the total cost for any complete system desired. Since
the component cost curves include a portion of the costs norally assigned for
final complete system installations, they are quite specific for use in estimating
thermal oxidizer systems and therefore should not be used indiscriminately as a
general cost estimating reference for the individual components. Curves showing
purchase costs of combustion chambers, recuperative heat exchangers, and waste

heat boilers are presented in Appendix A.

Combustion Chamber

Preliminary purchase quotes for thermal oxidizer combustion chambers were obtained
from vendors. Six vendors were contacted by telephone and letter and three of
them were visited to clarify details and costs: Combustion Engineering Air
Preheater, Peabody Engineering, and Hirt Combustion Engineers. The installed
costs shown in Fig. V-7 through V-11 were obtained by factoring the preliminary

quotes as described above.

The information furnished by vendors included thermal oxidizer purchase cost vs

capacity for several of their standard units. The units were quoted as being
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prepiped and prewired with burners, refractory, etc., all loaded on trucks at
the f.o.b. point. Where available and applicable, these vendors also furnished
costs for the fan, for heat exchanger/crossover, for the boiler for three steam
pressure levels, and for stacks constructed of both refractory and Corten steel.
The costs are based on natural-gas auxiliary fuel and include the necessary

controls for use of the fuel.

For ease of evaluating system component combinations, all components are presented

as a factor of the total waste gas flow in standard cubic feet per minute (scfm).

Recuperative Heat Exchangers

Preliminary purchase quotes were obtained from the thermal oxidizer vendors and
estimated installed costs were obtained by applying installation factors as
previously described. The cost curves of Fig. V-12 for recuperative heat exchangers
were developed by the same procedure as that described for combustion chamber

cost development.

Boiler

Preliminary purchase quotes for steam-generating waste heat boilers were obtained
from thermal oxidizer vendors for operation at various steam pressure levels

and various proportions of heat recovery. The estimated installed costs were

then obtained by applying installation factors to these purchase costs as previously
described. The cost curves, shown in Figs. V-13 and 14 for the boilers, were

developed as described previously.

Fans, Ductwork, and Stacks
The installed capital costs for the fans, ducts, and stacks are plotted in
Figs. Vv-15, 16, and 17 for systems with no heat recovery, with recuperative

heat recovery, and with waste-heat boilers respectively.

Ducts—Each system is assumed to require 150 ft of round-steel inlet ductwork
with four ells, one expansion joint, and one damper with an actuator. The cost
data source is a report by GARD, Inc.,!® which was prepared for the EPA and

includes total installed costs.
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Fig. V-12. Installed Capital Cost for Recuperative-Type Heat Exchangers with the
Waste-Gas Heat Content = 10 Btu/scf
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Fig. v-13. Installed Capital Cost for Waste Heat Boilers (250 psi)
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Fig. V-14. Installed Capital Cost for Waste Heat Boilers (400 psi)
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Fig. V-16.
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Fig. V-17. 1Installed Capital for Inlet Ducts, Waste Gas, and Combustion Air Fans and Stack with
Waste Heat Boilers
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Fans—Each system is assumed to require both a process-waste-gas and combustion
air fan. Various pressure-head requirements were assumed to match system require-
ments, such as increased pressure drop caused by incorporation of the heat recovery
device. The cost data source is a tabulation of equipment purchase costs by
Richardson Engineering Co.16 The installed costs shown were obtained by apply-

ing installation factors as described above.

Stacks—Purchase and erection cost data were obtained from one thermal oxidizer

vendor and used as the basis for estimating the installed costs.

ANNUAL COSTS

Annual costs for various operating conditions are presented in Appendix B. These
costs were the basis for all the cost-effectiveness graphs included in the report.
The basis used in calculating these annual costs is defined in Table V-2. It

is necessary to fix the annual cost parameters so that costs developed in

this report are consistent with costs developed by IT Enviroscience for

other control devices. The cost methodology is well documented and annual

costs can be adjusted for future increases.

Table V-2. Annual Cost Parameters

Operating factor 8760 hr/yra
Operating labor $15/man~hour
Fixed costs

Maintenance labor plus materials, 6%

Capital recovery, 18%b 29% installed capital
Taxes, insurances, administrative charges, 5%
Utilities
Electric power $0.03/kWh
Natural gas $2.00/million Btu
Heat recovery credit (equals natural gas) $2.00/million Btu

aprocess downtime is normally expected to range from 5 to 15%. If the hourly
rate remains constant, the annual production and annual VOC emissions will be
correspondingly reduced. Control devices will usually operate on the same
cycle as the process. From the standpoint of cost-effectiveness calculations,

the error introduced by assuming continuous operation is negligible.

bBased on 10-year life and 12% interest.
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Fig. V-18. Net Annual Costs vs Waste Gas Flow Rate for Thermal Oxidizers Using
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Heat Contents from 1 to 50 Btu/sct
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Fig. V-22. Net Annual Costs vs Waste Gas Flow Rate for Thermal Oxidizers Using
Recuperative Heat Recovery, 1400°F Combustion Temperature, 0.5 sec Residence Time,
and Heat Contents from 1 to 20 Btu/scf
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Fig. V-23. Net Annual Costs vs Waste Gas Flow Rate for Thermal Oxidizer Using
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Fig. V-24. Net Annual Cost vs Waste Gas Flow Rate for Thermal Oxidizer Using
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Fig. V-28. Net Annual Cost vs Waste Gas Flow Rate for Thermal Oxidizer Using
Waste Heat Boiler, 1600°F Combustion Temperature, 0.5 sec Residence Time, and
Heat Contents from 1 to 50 Btu/scf
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Figures V-18 through V-31 present the annual cost of thermal oxidation for various

cases.

COST EFFECTIVENESS AND ENERGY EFFECTIVENESS

The cost effectiveness and energy effectiveness are calculated by dividing the
annual cost for a particular option (Appendix B) or the fuel usage (in Btu/yr) by
the total annual amount of VOC destroyed, with the destruction efficiencies assumed
as given in Table II-2. Changes in these values with changes in destruction effi-
ciencies owing to specific applications different from the conservative design used

in this report are small.

The cost effectiveness is presented in Table V-3 and the energy effectiveness is pre-
sented in Table V-4. Cost-effectiveness graphs are shown as a function of destruc-
tion efficiency in Figs. V-32 through V-34. Data on cases not shown in the above-

mentioned tables and figures can be easily developed by use of Appendix B.

OTHER IMPACTS

Other than costs and energy consumption, other impacts of thermal oxidation
must be related to the flue gas and the components it emits to the environment.
A typical analysis of the flue gas with the emission ratio (1b of component/

1000 scf of waste gas) is given in Table V-5.
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Table V-3. Cost Effectiveness of Thermal Oxidation

Cost Effectiveness ($ per 1b of VOC Destroyed)

908 VOC Destruction® 998 vVoC Destructionb
Waste Case 1I-50 Case IIX-250 Case II-50 Case 11I~250
Waste Gas Gas voc voc 50% Recu- Waste Heat 508 Recu- wWaste Heat
Heat Flow Destroygd Destroygd Case 1 perative Boiler Case 1 perative Boiler
Content Rate {1b/hr} (1b/hx) No Heat Heat 250 psi No Heat Heat 250 psi
(Btu/scf) (scfm) at 90 at 99% Recovery Recovery Steam Recovery Recovery Steam
1 700 2.59 2.84 $6.39 $6.35 $6.61 $6.43 $6.07 $6.31
5,000 18.5 20.2 2.83 2.00 2.01 3.19 2.01 2.08
50,000 184.9 2013.3 2.29 1.26 1.25 2.67 1.32 1.35
100,000 369.7 406.7 2.25 1.20 1.19 2.63 1.28 1.28
10 700 25.9 28.4 0.546 0.534 0.566 0.615 0.575 0.603
5,000 184.9 203.3 0.253 0.159 0.170 0.291 0.169 0.180
50,000 1,849 2,033 0.199 0.0849 0.0950 0.239 0.100 0.107
100,000 3,697 4,066 0.195 0.0794 0.0888 0.235% 0.096 0.100
13 700 33.6 37.0 0.459 0.452 0.476 0.463 0.435 0.454
5,000 240.3 264.3 0.187 0.114 0.123 0.217 0.122 0.132
50,000 2,403 2,643 0.145 0.0568 0.0651 0.177 0.0693 0.0754
100,000 4,806 5,287 0.142 0.0527 0.0603 0.174 0.0662 0.0702
20 700 51.8 57.0 0.284 0.284 0.295 0.288 0.266 0.282
5,000 369.7 406.7 0.109 0.0648 0.0679 0.130 0.0635 0.0747
50,000 3,697 4,067 0.0821 0.0277 0.0303 0.104 0.0341 0.0381
100,000 7,394 8,134 0.0801 0.0250 0.0272 0.102 0.0321 0.0347
30 700 129.4 142.4 0.0944 d 0.0988 0.108 d 0.105
5,000 924.3 1,017 0.0232 0.0067 0.0334 0.0113
50,000 9,243 10,170 0.0123 (0.0084) 0.0232 {0.0033)
100,000 18,486 20,340 0.0115 {0.0096) 0.0223 (Q.0046)
100 500 e 203.4 0.0572 £ 0.0601
5,000 2,034 0.0123 (0.0057)
50,000 20,340 0.0069 (0.0143)
100,000 40,670 0.0065
200 500 e 406.7 0.0326 f 0.0211
5,000 4,067 0.0082 (0.0011)
50,000 40,670 0.0054 {0.0162)

4 ssumes 1400°F combustion temperature and 0.5-sec residence time.except where otherwise noted.

bAssumes 1600°F combustion temperature and 0.5-sec residence time except where otherwise noted.

€voc molecular weight, 50; molar heat of combustion, 730,250 Btu/lb-mole of VOC.

=1

508 recuperative heat recovery 1s not applicable to heat contents of 50 Btu/scf.
e>1600°F combustion temperature assumes only 99% efficiency case.

fRecuperatlve heat recovery is not applicable to temperatures >1600°F.



Table V-4.

Fuel Energy Effectiveness of Thermal Oxidation

ruel Energy Usage

Net Energy Usageb

Energy Effectiveness (Btu/lb of VOC Destroyed)

90% VOC Destructxonc 99% VOC Destructlond

Waste Gas @c—t—“/scﬂ e ‘Bzu/scﬂ < Case 1II-400 Case III-400
Heat Content 90% VvoC 99% VOC 90% VOC 99% VOC Case I Waste Heat Boiler Case I Waste Heat Boiler
(Btu/scf)a Destruction Destruction Destruction Destruction No Heat Recovery 400-psi Steam No Heat Recovexry 400 psi-Steam
1 63.5 82.3 26.3 30.6 927,400 384,100 1,202,000 446,900
10 54.2 73.0 17.0 21.3 79,200 24,800 106,600 31,100
13 51.0 69.9 13.8 18.2 57,300 15,500 78,500 20,400
20 43.6 62.5 6.37 10.8 31,800 4,700 45,600 7,900
50 12.0 31.1 (25.2) (20.6) 3,500 (7,400) 9,100 (6,000)
100 13.2° £ (68.4) £ £ 1,900 (10,000)
200 20.3° £ (163.4) £ £ 1,500 (11, 900)

a
scf of waste gas.
b .
Based on waste heat boiler generating 400-psi steam.

€1400°F and 0.5-sec residence time.

o

1600°F and 0.5-sec residence time.

€,1600°F and 0.5-sec residence time.

f99% yoC destruction only at >1600°F and 0.S5-sec residence time.
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Fig. V-32. Cost Effectiveness vs VOC Destruction Efficiency for Waste Gases with
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Fig. V-34. Cost Effectiveness vs VOC Destruction Efficiency for Thermal Oxidizer with
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Table V-5. Typical Thermal Oxidizer Flue Gas Composition

Emission Ratio

Component Composition (1b/1000 scf of Waste Gas)

0,2 4.0 vol % 2.2

H,0° 10.0 vol % 12.2

No2 82.9 vol % 65.1

0,2 3.0 vol % 2.1

VoC and CH4b 500 - 50 ppm 0.0022 -~ 0.0002

Carbon monoxide® 10 ~ 6 ppm 0.001 - 0.0005
Particulates® (as carbon) 30 - 3 ppm 0.001 - 0.0001

Sulfur oxides® (as S02) <1 ppm 0.00005 - 0.00001
Nitrogen oxides (as NOQ)c 160 - 30 ppm 0.02 - 0.004

8calculated from thermal oxidizer heat and material balance for a low-
to moderate-heat-content waste gas.

bCalculated for 90 and 99% total VOC destruction efficiency.

Ccalculated from natural combustion emission factors for industrial
boilers reported in AP-42, Supplement 7 (ref. 12). Variations relate
to variations in factors reported and/or variations in fuel usage for
low- to moderate-heat-content waste gases.

Carbon monoxide, particulates, sulfur oxides, and nitrogen oxide emissions are
small if these agents form in similar quantities to that reported for industrial

12 This assumption may be adequate since the fuel burner region

gas boilers.
approximates the fuel burners in boilers. This, however, has not been demon-
strated with experimental data. As cautioned in AP-42, these values are sensi-
tive to burner upsets and may increase by several orders of magnitude in a poorly
designed or operated unit. Increases in these compounds may be caused by waste
gases containing high levels of halogens, sulfur, or nitrogen containing VOC

compounds .

This study does not quantitatively assess the relationship between the VOC destruc-
tion efficiency and the impacts of the components emitted after thermal oxidation.
However, qualitative trends do exist. For instance, a higher VOC destruction
efficiency means a high combustion temperature (or a longer residence time). A
higher combustion temperature may increase nitrogen oxides to an unacceptable
level. However, increased temperatures with adequate oxygen should decrease

any particulate formation if it is carbonaceous in nature.
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VI. SUMMARY AND CONCLUSIONS

Thermal oxidation is a widely used control technique for VOC emissions. The

limits and design principles of this technique are evaluated in this report.

Design criterion and design procedures are presented that allow for a prelimi-
nary thermal oxidizer design. Thermal oxidizers without heat recovery and with
five levels of recuperative and waste-heat steam boiler heat recovery are con-
sidered. Capital and operating costs are developed, and the annual cost of
thermal oxidation is calculated as functions of the characteristics of the waste
gas. Cost effectiveness and enerqy effectiveness of 90 and 99% VOC destruction

efficiencies are developed.

The conclusions derived from the cost evaluation are as follows:

1. Since the thermal oxidizer design used here is quite conservative, the
cost-related parameters actually experienced in industry are expected to
impose a lesser economic hardship than is presented.

2. The waste gas heat content is a highly sensitive variable in determining
annual costs, cost effectiveness, and energy effectiveness. In general,
as the heat content increases, the annual costs, cost effectiveness, and
the energy effectiveness decrease. This leads to the general statement
that waste gases with higher heat contents (same flow) cost less to control
than those with lower heat contents.

3. The waste gas flow rate is a highly sensitive variable in determining annual
costs and cost effectiveness. Energy effectiveness is independent of the
flow rate. As the waste gas flow increases (at a constant heat content),
the annual costs increase but the annual cost per scfm of waste gas, the
cost/feed flow ratio, decreases. This ratio decreases drastically between
low flows (700 scfm) and moderate flows (5000 scfm), but remains relatively
constant between moderate (5000 scfm) to large flows (50 to 100,000 scfm).
The increase of waste gas flow favorably decreases the cost effectiveness
of control much like the annual cost/feed flow ratio noted above. Energy
effectiveness is constant with flow.

4. Annual net costs of control decrease as the level of heat recovery increases

for the same waste gas.
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The annual cost of systems using no heat recovery is normally higher than

that for systems using maximum heat recovery. This may not apply to waste
gases with low flow rates (700 scfm).

The differences in annual costs (all heat contents and flows) between recupera-
tive heat recovery at 70% and waste heat boilers generating steam at 250

and 400 psi are small. The waste heat boiler case (250 psi) may be considered
to have the lowest possible annual cost for a given heat constant and flow
rate.

Residence time increases of from 0.5 to 0.75 sec have little effect on the
annual costs or cost effectiveness, and no effect on the energy effective-
ness. Lower combustion temperatures, however, reduce the quantity of energy
recoverable from the system.

Increasing the VOC destruction efficiency from 90 to 99% by raising the
combustion temperature increases the cost effectiveness and energy effective-
ness for all cases except the cost effectiveness of low flow waste gas

with maximum heat recovery used. Social costs are not considered.

Increasing the VOC destruction efficiency through increased residence time

may be more cost effective and energy effective than increasing the effi-

ciencies by increasing the combustion temperatures.
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APPENDIX A

PURCHASE COSTS FOR THERMAL OXIDATION COMBUSTION
CHAMBERS, RECUPERATIVE HEAT EXCHANGERS,
AND WASTE HEAT BOILERS
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I. INTRODUCTION

This report is a supplement to the control device evaluation report for thermal
oxidation* authored by J. W. Blackburn, July 1980, and describes the control
technology and costs for two additional cases. In the first case conventional
thermal oxidation is used (combustion temperature of 1200 to 1600°F) but, due
to the presence of sulfur-containing vOC in the waste gas, flue-gas scrubbing
is required for removal of SO,. The second case is for control of halogen-con-
taining VOC in the waste, which requires high-temperature thermal oxidation
(combustion temperatures of 1800 to 3000°F) and flue-gas scrubbing. The flue-gas
scrubber design is assumed to be similar in each application and to be an
additional cost. The cost of the conventional thermal oxidizers for the first
case is assumed to be the same as that given in the control-device evaluation
report for thermal oxidation whereas a new set of cost data was developed for
the thermal oxidizers in the second case, which also included the cost for a

waste-heat steam-generation boiler.

Conventional thermal oxidation units for VOC control of non~sulfur-containing
and non-halogen-containing compounds normally have combustion chambers with
temperatures of 1400 or 1600°F for low-heat-content gases and temperatures in
the 2200°F range for high-heat-content (100 Btu/scf) gases. The heat content
is a measure of how much heat is generated by the gas during combustion and is
determined hy the VOC concentration and its heat of combustion. The heat
content and the waste~gas flow determine the combustion chamber design and
auxiliary fuel usage. The flue-gas exhaust is usually vented to the atmosphere
through a stack without further treatment, although heat recovery units such as
recuperative heaters or waste-heat steam-generation boilers are installed when
there is an economic incentive. The technical analysis of conventional thermal

oxidizers is included in the thermal oxidation report.l*

Waste gases containing sulfur or halogen compounds require flue-gas scrubbing
after thermal oxidation to remove the noxious gases that are formed during
combustion. The flue-gas exhaust from the combustion chamber is first sent

into a water quench chamber to be cooled to its adiabatic saturation

*See References, Sect. VII.



temperature and is then routed through the scrubber to remove the noxious
gases. After the flue gas goes through the scrubber, it is vented to the
atmosphere through a stack. Waste-heat recovery units can be installed before
the water gquench chamber when heat recovery is desired. Figure I-1 is a flow

diagram of a typical thermal oxidation control device with a scrubber.

Thermal oxidation control of sulfur-containing VOC can be achieved with the
thermal oxidation design procedure discussed in the thermal oxidation report

for non-sulfur-containing and non-halogen-containing VOC control, except that a
quench chamber and scrubber must be provided to remove the noxious gases produced
during combustion. In this report the design and cost of the quench chamber

and scrubber unit are given, together with operating costs associated with the
control of sulfur-containing VOC. The thermal oxidation system costs were

obtained from the control device evaluation report for thermal oxidation.

Thermal oxidation control of halogen-containing VOC requires high-temperature
oxidation to convert the combustion product to a form that can most easily be
removed by scrubbing. For instance, chloride-containing waste gases are

burned at high temperature to convert the chlorine to HCl instead of to Cl,,
since HCl is more easily scrubbed. In this report the design and cost of

thermal oxidation systems for combustion temperatures of 1800 to 3000°F are
presented, along with the design and cost of the quench chamber and scrubber
required in this temperature range. The waste-heat steam-generation boiler costs
for high-temperature thermal oxidation are also included. The cost of a thermal
oxidizer and waste-heat steam-generation boiler for a combustion temperature of
1800 and 2200°F is obtained from in the control device evaluation report for thermal

oxidation.

The heat content range of the waste gas used in this report is 1 to 100 Btu/scf.
For waste gases with heat contents of less than 100 Btu/scf, supplementary fuel
must be added to maintain a combustion temperature above 2200°F. Gases with
heat contents above 100 Btu/scf were not considered since most sulfur-containing
and halogen-containing compounds will not have a higher heat content unless a
very high concentration is achieved. Heat contents of 13 and 20 Btu/scf in air
normally correspond for most compounds to 25 and 40% of the lower explosive
limits (LEL). Waste gases with heat contents of 20 to 50 Btu/scf (approxi-
mately 40 to 100% of the LEL) must be diluted with air or be enriched with
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auxiliary fuel because they exceed the flammable safety limits imposed by

insurance companies.

Conventional thermal oxidizers range in size from a unit capable of controlling
several hundred scfm of waste gas to single or multiple units controlling waste
gases in excess of 100,000 scfm. For high-temperature (>2600°F) thermal

oxidation units an upper size limit of ~50,000 scfm was considered to be reasonable
for this report since no 100,000-scfm units are known to exist. The upper size
limit for the scrubber design used in this report is also 50,000 scfm. Multiple

scrubbers would be required for greater flows.



A.

I1-1

II. THERMAL OXIDIZER AND SCRUBBER DESIGN CONSIDERATIONS

The first report on thermal oxidation discussed the effects that the combustion
chamber residence time and temperature have on the design for thermal oxidizers
in the range of 1200 to 2200°F. 1In this temperature range the residence time

and temperature affect the destruction efficiency of the VOC. The temperature
also affects the auxiliary heat required for flame stability, the method used for
heat recovery, and the capital and operating costs of the system. For control

of sulfur-containing VOC the same considerations and design criteria for thermal
oxidizers hold true except that a scrubber is used after the combustion chamber

to control 50, emissions.

The design considerations and assumptions used in this report are that halogen-
containing VOC are controlled by high-temperature thermal oxidation, that a
scrubbing system is used for high-temperature and conventional systems with
noxious flue gases, and that consideration must be given to heat recovery for

conventional and high-temperature systems.

HIGH-TEMPERATURE THERMAL OXIDATION

For the control of halogenated VOC a higher temperature is required to convert
the noxious combustion products to a more easily removed form. The halogen-
containing VOC most commonly encountered is the chlorinated VOC, which is the
basis of the discussion and econcmics in this report. Bromine-containing VOC
are more difficult to contrcl due to the more severe conditions required to
convert Br, to HBr. Fluorine-containing VOC are more difficult to control due

tc the high corrosiveness of HF; however, high-temperatures are not required.

A combustion chamber temperature of above 1800°F for a well-designed oxidizer with
a proper residence time will have essentially 99.9% VOC destruction efficiency.?’3
The residence time in the combustion chamber is a design variable specified by

the system designer. The combustion chamber is a chemical reactor, and the
residence time is the time available for the reaction (oxidation) to occur.
Residence times as low as C.3 sec to several seconds have been utilized in

thermal oxidizer designs. The fraction of the total chamber volume that is at

the combustion temperature depends on the chamber configuration and the design

of the flame burner.
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Although a design engineer should be quite concerned with the actual burner
design and residence time at the combustion temperature, in this control-device
evaluation study it is assumed that the entire combustion chamber volume is at
the combustion temperature. This assumption is justified since later it is
shown that differences as high as 50% in residence time do not significantly

affect the annual cost of thermal oxidation control; however, the capital cost
is affected.

The need of going to a higher combustion temperature for chlorinated compounds
is best shown by the relationship of the reaction of Cl, and water.% Figure II-1

shows the effect of combustion temperature on the equilibrium constant for the

following reaction:
Cly, + Hp,0 ——> 2HCL + %0,

The equilibrium constant (Kp) indicates the relative concentration of Cl, and

HC1l in the exhaust gas from the combustion chamber by the equation

@) (0p)

Ko = (C1,) (H,0)

The higher the value of Kp, the more HCl will be formed, which is easier to
remove from the exhaust gas than Cl,. At low temperatures (<2000°F) the equilib-
rium constant decreases rapidly, indicating that the Cl, concentration in the
exhaust will increase appreciably. To achieve an acceptable low Cl, concentration
in the flue gas, temperatures of above 1800°F are necessary. Another way to
increase the conversion of Cl, to HCl is to inject steam into the combustion
chamber to force the equilibrium toward HCl. The actual flue-gas concentration
of Cl, will not directly follow the value indicated by Fig. II-1 since the
kinetics of the reaction may prevent equilibrium from being achieved in the
residence time available.® The reverse reaction may occur as the combustion
products are cooled. The reverse reaction can be minimized by very rapid
cooling but this may prevent effective heat recovery.® Selection of the
appropriate combustion temperature requires optimization of the operating costs
with the capital cost involved for the conversion. &n optimum design will

differ for different chlorinated feeds. 1In this report it is assumed that the
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VOC in the waste gas is 100% halogenated. When the halogen-containing VOC is
actually a small percentage of the VOC in the waste gas, the optimum combustion

temperature will differ.

For thermal incinerators above 2200°F special designs and materials are required
to ensure proper operation and prevent corrosion. The upper temperature range
required for thermal oxidation of halogenated organics approaches the maximum
achievable flame temperature of the fuel. The high demand for auxiliary fuel
required to maintain high combustion-chamber temperatures is further aggravated
by the large amounts of the combustion air that must also be heated to these
temperatures. For some fuels 3000°F is considered to be the maximum achievable
thermal oxidation combustion temperature. Even though no thermal oxidizers
operating at 3000°F combustion temperature are known to exist, the vendors
state that thermal oxidizers can be built to operate at a combustion tempera-
ture of 3000°F. Figure II-2 shows the effect that temperature has on auxiliary
fuel usage. Above 2600°F each additional increase in temperature requires

substantially larger amounts of auxiliary fuel.

FLUE-GAS SCRUBBING FOR HCl AND SO, REMOVAL

The most common method used for removal of both HCl and SO, is scrubbing. Many
different equipment configurations and various scrubbing agents are employed.
The key to efficient scrubbing is to establish good contact between the gas and
the liguid to effect complete interphase diffusion. The other factors affecting

scrubbing efficiency are the temperature, pH, and alkalinity of the scrubbing

agent.

The flue-gas scrubbing operation involves three basic steps: quenching of the
flue gas, contacting the flue gas with the scrubbing agent, and separating the
scrubbed material from the scrubbing agent. Quenching of the flue gas will
reduce the temperature of the flue gas and saturate it with water. Some of the
SO, or HCl will be removed from the flue gas during the quenching operation.
The configuration and operation of the flue-gas scrubbing-agent contacting
equipment will determine the efficiency of the SO, and HCl removal from the
flue gas. The method used to separate the S50 or HC1l from the scrubbing agent
will determine the final disposal of the sulfur and chlorine compounds. The
methods used range from purging the scrubbing agent and discharging it to the

sewer to recovery of the scrubbing agent for reuse.
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The efficiency achieved for S0, removal by scrubbing is in the 90% range. It
is very difficult to achieve higher removal efficiencies for this compound.
However, HCl is relatively easy to remove from flue gases by scrubbing and an

HCl removal efficiency approaching 99.9% may be achieved.

HEAT RECOVERY

Heat recovery offers a potential economic advantage by reducing fuel usage with

a recuperative heat recovery system or by generating steam with a waste-heat

boiler. Combustion temperatures exceeding 1600°F rule out the use of recupera-

tive heat exchangers because of problems with materials of construction and

with associated problems such as possible precombustion occurring in the exchangers.

A waste-heat boiler can be used effectively with temperatures to >3000°F.

Wwith sulfur-containing VOC in the low heat-content range (<50 Btu/scf) recuperative
heat recovery can be used since the combustion temperature does not exceed

1600°F. Waste-heat boilers can be used throughout the operating temperature

range for sulfur-containing VOC thermal oxidation. Since halogen-containing

VOC destruction always requires high combustion temperatures, only waste-heat
boilers can be used for heat recovery. It is possible to use some combination

of waste-heat boiler and recuperative-heat recovery, but this option is considered

to be beyond the scope of this report.

Special precautions may be needed for the recuperative heaters and waste-heat
boilers to prevent excessive corrosion from the corrosive products produced
during the combustion of sulfur-containing and halogen-containing VOC. Design
considerations should include means of preventing condensation of corrosive
gases. For this report the flue-gas temperature after heat recovery will not

be cooler than 500°F.

Due to the high heat duties required for waste boilers above 2200°F there will
be an upper size limit in terms of waste-gas flow. A waste-gas flow of 50,000
scfm for 2600°F combustion, which would require four large waste boilers, and a
waste-gas flow of 20,000 scfm for 3000°F, which would require five large waste
boilers, are considered to be the upper size limits in this report. A
200,000,000-Btu/hr heat duty for a waste-heat boiler is considered the upper

size limit. Multiple units can be used for higher heat duties.
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III. BASIS FOR THERMAL OXIDIZER AND SCRUBBER DESIGN

A base case design based on certain assumptions was developed for this study to
generate capital and operating costs, and represents a typical thermal oxidizer
installation for the purpose of air pollution control. The effect that varying
the design assumptions has on capital and operating costs is discussed. Cost
estimates were generated as functions of sensitive design variables, and en-

compass the accepted range of operation of thermal oxidizers.

IDENTIFICATION OF SENSITIVE VARIABLES FOR COST AND ENERGY

A distinction must be made for those design variables which, if changed by a
small amount, would cause significant changes in capital cost, annual operating
cost, or energy usage. These are called sensitive variables, and the cost
curves given in Sect. V include them as parameters. Other variables may be
quite important for an individual system design but have relatively minor

effects on economic or energy-impact conclusions.

The approach used in this study was to determine the sensitivity of certain
variables by means of computerized heat and material balance calculations.
Through this process, estimates of the relationships between the variables and
equipment design and operating costs may be derived. The primary variables
that are a function of the waste gas are the waste-gas temperature, pressure,
flow rate, VOC composition (molecular weight, carbon, oxydgen, hydrogen, sulfur,
and chloride ratios of the VOC, and VOC heats of combustion) and other waste-
gas compositions (nitrogen, other inert gases, oxygen, water content, and the

presence of special contaminants).

The waste-gas temperature is assumed to be 100°F for the base case, but an
increase or decrease within reasonable boundaries will have little effect on

the capital or operating costs and it is therefore not considered to be a
significant variable. Sensible heat carried by the waste gas is small compared
to the heat required to raise the gas to its combustion temperature. About

3.5 Btu/scf is required to increase the temperature of nitrogen from 80°F to
260°F. This compares with fuel heat requirements on the order of 60 to

80 Btu/scf to raise the waste gas to combustion temperatures. Waste-gas temper-

ature differences within this range could not change the total heat requirements
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by more than about 6%. Waste-gas pressure is assumed to be 1.5 psig. Pressure
changes within reasonable limits of 1.5 psig also will have no significant

effect on capital or operating costs. Flow rate is a very significant variable
for both capital and operating costs. The waste-gas flows shown in the figures

throughout this report are translated to scfm of waste gas to the thermal

oxidizer.

The heat content of the waste gas is another significant variable. VOC molar
concentration, average molecular weight, carbon, hydrogen, and oxygen ratios,
and heats of combustion (Btu/lb of VOC) are all expressed in the variable of
the heat content of the waste gas (Btu/scf) as shown by the family of compound
lines on Fig. III-1. Multicomponent VOC systems may be described when the mole
fractions of each component are known. The contribution of carbon monoxide to
the total heat content may also be analyzed in this way. Table III-1 gives VOC

molar heats of combustion.®

If the actual flue-gas composition is needed, a component material balance must
be performed, for which carbon, hydrogen, oxygen, sulfur, and chloride ratios

are required. In order to estimate ntypical" values for those ratios a group

of organiclfompounds were surveyed.! The chlorinated VOC component averages of
34.3% cargbn, 4.7% hydrogen, and 61% chlorine were used to establish heat

values plus beat and material balance for this evaluation. The sulfur-containing
YOC component averages’2§ed were the same as the chlorinated-VvVOC component
averages except that’61%Qwas assumed to be sulfur instead of chlorine. The
component values of chlorine or sulfur used in this report may be high compared
to actual component averages of waste gases, since the VOC in the actual waste

gas may not be all chlorinated or sulfur-containing VOC.

The amount of oxygen in the waste gas or that provided by the VOC is important
because it establishes the auxiliary combustion air required and has an impact

on both the capital and operating costs of the thermal oxidizer. In this report

it is assumed that the waste gas and VOC do not contain oxygen (the worst case)

and that therefore maximum auxiliary combustion air is required. The excess oXygen
in the flue gas is assumed to be 3 mole %, which is based on usually accepted

practice.
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Table III-l. VOC Heats of Combustion¥

Heat of Combustion

Molecular
Compound Weight (Btu/1lb) (Btu/lb-mole)
Methyl chloride 50.5 5,850 295,400
Methylene chloride 85 2,260 192,100
Chloroform 119.5 1,340 160,100
Carbon tetrachloride 154 436 67,140
Ethyl chloride 64.5 8,840 570,200
Hexachloroethane 237 835 197,900
Dichlorobenzene 111.5 3,230 917,600
Hexachlorobenzene 285 3,220 917,700
Carben disulfide 76 5,840 443,800
Carbonyl sulfide &0 3,920 235,200
Methyl mercaptan 48 11,170 536,200
Ethyl thiocyanate 96 11,520 1,105,900
Ethyl mercaptan 62 13,130 814,400

*See ref 6.
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Since the waste gas is assumed to be saturated with water for calculations in
this report, the water content in the flue gas is at a maximum. It is also
assumed that no entrained liquid water droplets enter with the feed. Entrained
water droplets would significantly increase the auxiliary fuel requirements
since the heat capacity of the flue gas increases and the heat of vaporization
for water, 18,000 Btu/lb-mole, must be supplied. Entrainment can normally be

avoided with proper design.

The combustion temperature has a significant effect on fuel costs. As is shown
in Fig. II-2, the fuel usages increase substantially with temperature increases
above 2200°F. Residence time has a major effect on capital costs but a rela-

tively small effect on operating costs.

The significant variables investigated in this report are waste-gas flow, heat
content (encompassing a variety of composition-related variables), combustion
temperature, and residence times. Evaluation of these parameters using generally
worst-case or conservative assumptions will lead to economic and energy impact
conclusions that will equal or exceed actual operating costs and energy impacts

for the applicable cases.

PROCEDURE USED FOR DESIGNING A THERMAL OXIDIZER SYSTEM WITH A SCRUBBER

The design procedure that was used for conventional thermal oxidizer units for
sulfur-containing VOC is the same as that given in the control-device evaluation
report for thermal oxidation, except for the scrubbers. The discussion of
quench chambers and scrubbers in this section applies to conventional thermal
oxidizers that may require the addition of flue~gas scrubbing. The design

procedure for high-temperature thermal oxidation is presented in this section.

Combustion Chamber

The size of the combustion chamber depends on the flow of waste gas into the
chamber, the fuel usage, the residence time, and the combustion temperature.

The fuel usage is dependent on the heat content of the waste gas and the com-
bustion temperature. Figure III-2 shows the supplementary fuel usage of natural
gas required to sustain the combustion temperatures of 1800, 2200, 2600, and 3000°F

for various waste-gas heat contents. The combustion chamber, the heat recovery
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unit, and the scrubber must be sized to handle the flow from all sources,

including that from the waste gas, the auxiliary fuel, the combustion air, and

the combustion products. System designs calculated for this report cover the
waste-gas heat content range of 1—100 Btu/scf. Figure III-3 shows the correlation
between flue-gas flow and waste-gas flow by expressing them as a ratio and dis-
playing the ratio as a function of waste-gas heat content and combustion tem-
perature. In Fig. III-3 the 1400 and 1600°F lines curve upward above 80 Btu/scf
due to the need to add excess air to keep the combustion temperature of 1400

and 1600°F. The temperature would normally be allowed to increase rather than

excess air being added.

Conversion of scfm (standard cubic feet per minute) to acfm (actual cubic

feet per minute) is necessary for sizing of the combustion chamber. Figure III-4
shows this relationship (based on the ideal gas law). Standard temperature and
pressure conditions assumed throughout this report are 32°F and 760 mm Hg and
their equivalents. The ratio of acfm to scfm is read from Fig. III-4 and is
multiplied by the combustion chamber flue gas in scfm. Until this point in the
report the term heat content has referred to the potential energy from combustion
of compounds in the waste gas. Heat content when used in relation to the flue
gas in this report refers to the energy contained by the hot gases because of
their temperature. The basis used for the heat recovery calculations is the

heat content of the flue gas as a function of temperature, as shown in Fig. III-5.
The dotted lines in Fig. I1I-5 correspond to a reasonable variation in specific

heats or heat capacities of the flue gas.

Residence times of 1/2 and 3/4 sec are used to calculate the combustion chamber
internal volume. The combustion chamber flue gas fiow (in acfm) is converted
to acfs (actual cubic feet per second) and then multiplied by the residence
time (in sec) to determine the combustion chamber internal volume in cubic

feet.

Fans

Fans for both the waste gas and the combustion air are provided for in the
systems evaluated. The flow rates of the waste gas and combustion air and the
pressure drops of the thermal oxidizers are used to calculate fan sizes.

System pressure drops of 6 and 10 in. H,0 were assumed respectively for thermal
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oxidizers with no heat recovery and those with waste-heat boilers. A pressure

drop of 12 in. H,0 is assumed when a scrubber is included. The waste-gas

fan capacity is based on the waste-gas flow rate. Table III-2 gives the combustion
air flow/waste-gas ratio as a function of combustion temperature. The relationship
is based on desired combustion temperatures, as previously discussed, and is

used to size the combustion air fan. The combustion air volume and fan size

may be determined by the use of this ratio multiplied by the volume of waste

gas. Waste gases containing significant levels of oxygen would reduce the
combustion air required and the size of the combustion air fans used in this

study. When waste gases are generated at higher pressure, often no fan is

needed.

Waste Heat Steam-Generation Boiler Heat Recovery

The heat recovery by a waste-heat boiler depends on the entrance flue-gas
temperature and the exhaust temperature. The entrance temperature is set by

the thermal oxidizer conditions. For this study the exhaust temperature is assumed
to be 500°F, in order to be well above the flue-gas dew point to prevent potential
corrosion from acid gases. Figure III-6 is a plot of the maximum heat and is
based on the percent of heat available from the flue gas with standard conditions
as the reference point. The dotted lines in the figure relate to a reasonable
range of heat capacities or specific heats of the flue gas. Figure III-7

relates the ratio of boiler-tube surface area to the flue-gas flow rate, the
flue-gas temperature, the steam temperature, and the overall heat transfer
coefficient. The surface area of the waste-heat boiler is determined by multi-
plying the flue-gas flow rate by the ratio from Fig. III-7. The flue-gas flow
rate from a thermal oxidizer employing a waste-heat boiler is the same as that

from a thermal oxidizer using no heat recovery.

Quench Chamber

The quench chamber in this study is located in the lower part of the scrubber
column and has the same diameter as the scrubber. The volume is based on a

l-sec flue-gas retention time. The quench reduces the flue-gas temperature to
the adiabatic saturation temperature of the scrubber agent. For this design
slightly alkaline water will be used as the scrubbing agent. To reduce the flue-

gas temperature to the adiabatic saturation temperature of water, considerable
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Table III-2. Ratio of Combustion Air to Waste-
Gas Flow Rate vs Combustion Temperature

Combustion Air to

Waste-Gas Combustion Waste—-Gas Flow Ratio*
Heat Content Temperature (scf of combustion air)
(Btu/scf) (°F) scf of waste gas

2 1400 0.87
2 1600 1.1
50 1800 1.2
100 2200 1.4
100 2600 3.1
100 3000 9.8

*Thermal oxidizer conditions:
No oxygen in waste gas.
VOC molar heat of combustion = 746,000 Btu/lb-mole.

VOC molecular weight = 100
VOC C, H,Cl fraction = 34.3 wt % C, 4.7 wt % H, 61 wt % Cl.

Average waste gas molecular weight = 29.
Water content of combustion air = 1.0 wt %,

3 mole % O2 in flue gas after oxidation.
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water will be vaporized in the quench and will increase the total gas flow
through the scrubber. This increased flow rate through the scrubber due to the

vaporization of water, which is a function of temperature, is shown in Fig. III-8.

The quench ratio has to be multiplied by the flue-gas rate to obtain the flow
rate through the scrubber. Makeup water usage for the quench is dependent on
the flue-gas flow rate and temperature. The makeup water rate is shown in
Fig. III-9. The quench will remove some of the noxious gases in the flue gas.
In this study it has been assumed that 50% of HCl is removed in the quench and

that 10% of SO, is removed in the quench.

Scrubber

The scrubber design in this study is based on a packed column, with slightly
alkaline water used as the scrubbing agent. Different designs for the contacting
device and its aqueous scrubbing agent could be used, but they would not sig-
nificantly offset the capital cost presented. Operating cost could be signi-
ficantly different based on the alkaline agent used to neutralize the scrubbed
acid gases. Acid gas removal efficiencies would also be affected by the choice

of designs.

The column is designed with 36 ft of packing, which is assumed to remove 99.8%
of HC1l or 88.9% of SO, in the scrubber. These two removal percentages combined
with the 50% of HCl or 10% of SO, removed in the quench give a total removal
efficiency of 99.9% HC1l or 90% SO,. The liquid-to-gas ratio (L/G) is assumed
to be 10. A superficial vapor velocity of 3 fps was used for determining the
cclumn diameter. These assumptions are adequate for initial process designs

leading to a preliminary cost estimate.?

The water used as the scrubbing agent will have to be neutralized to control
the pH of the system; in this study caustic {(NaOH) is used. The amount of
caustic used is dependent on the concentration of sulfur or chlorine in the
waste gas. The caustic addition rate is 2.50 1b of NaOH/lb of sulfur in the
waste gas and 1.14 1b of NaOH/lb of chlorine in the waste gas. The salt formed
will have to be purged from the system and discharged. The makeup water rate,
based on 1% dissolved solids in the water recycle, is 46.5 gal/lb of sulfur in

the waste gas and 19.2 gal/lb of chlorine in the waste gas
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IV. CONSIDERATIONS FOR INSTALLING THERMAL OXIDATION CONTROL EQUIPMENT

Thermal oxidizers can be large process units, depending on the volume of waste
gas to be controlled, and could require a plot of land as large as 300 ft by

300 ft for installation. Since thermal oxidizers utilize combustion with a
flame for achieving VOC destruction, the unit must be located at a safe distance
from process equipment in which flammable chemicals are used, or special designs

must be employed to minimize the risk of explosion or fire.

Thermal oxidizers require natural gas or fuel oil, electrical power, and instrument
air and, if scrubbing is needed, water and caustic at the site. If steam is
generated from waste heat, then it is useful to minimize the distance from the

waste-heat boiler to the steam-consuming site.

Since a salt is formed during the scrubbing of the flue gas, proper waste dis-
posal of this material is required. The options of disposal range from direct

wastewater discharge to recovery of the material.

Retrofitting thermal oxidizers into existing plants requires careful considera-
tion of site location since all the above factors apply and sufficient space in
an existing plant may not be available. The unit may have to be located further
away from the waste-gas source than would be required for a new plant. Because
of these associated costs the cost of retrofitting a thermal oxidizer in an
existing plant may be appreciably greater than the cost for a new installation.
Also, since it may be costly for some companies to have excess steam on-site, it

may not be practical for all companies to utilize the heat recovery option.



V. COST AND ENERGY IMPACTS OF THERMAL OXIDIZERS WITH SCRUBBERS

COST BASIS

The capital costs for total systems combinations and for various components
were estimated. They represent the total investment, including all indirect
costs such as engineering and contractors' fees and overheads, required for
purchase and installation of all equipment and material to provide a facility
as described. These are battery-limit costs and do not include the provisions
for bringing utilities, services, or roads to the site, the backup facilities,
the land, the research and development required, or the process piping and
instrumentation interconnections that may be required within the process

generating the waste-gas feed to the thermal oxidizer.

The estimated costs are based on installation of a new plant; no retrofit cost
considerations are included. Those costs are usually higher than the cost for

a new-site installation for the same system and include, for example, demolition,
crowded construction working conditions, scheduling construction activities

with production activities, and longer interconnecting piping. Since the

thermal oxidizer systems require a relatively large land area and the safety
aspects of an open flame are an important factor, the longer interconnecting
piping will probably be the most significant of these retrofit cost factors.
These factors are so site-specific that no attempt has been made to provide
costs. For specific retrofit cases rough costs can be obtained by using the

new-site data and adding as required for a defined specific retrofit situation.

The method used to develop these estimated capital costs was based on
preliminary vendor quotes for the purchase of major equipment items or from
such sources as Richardson Engineering Co. data, and factoring up to installed
costs based on the data in Table V-1. The expected accuracy of the total
installed cost with this degree of engineering detail using this factor method
is 1+30%. This method of obtaining estimated total installed capital costs is
suitable for a cost study or for screening estimates. The factor ranges given
in Table V-1 for various cost components are based on historical data

obtained by Hydroscience Process Engineering.
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Table V-1. Factors Used for Estimating Total Installed Costs

A = Major Equipment Purchase Cost Plus 0.1 to 0.35 Allowance

Installation Costs
Foundations
Structures
Equipment Erection
Piping

Insulation

Paint
Fire Protection

Instruments

Electrical

0.06A + $100 X number of pumps

0.152A (no structures) to 0.30A (multideck structures)
0.15A to 0.30A (depending on complexity)

0.402a (package units) to 1.10A (rat's nest)

0.06A or 0.15 X piping (normal) to 0.30 X piping
(bulk hot or cold)

0.05A
0.01A to 0.06A (depending on requirements)

0.10A to 0.30A or 0.01A to 0.25A + $50,000 to
$300,000 for process control computer

0.15A or 0.05A + $500 per motor

B = Base Cost
Sales Tax
Freight

Contractor's Fees

A + Sum of Installation Costs
0.025A + 0.025B

0.16A

0.30 (B-A)

Total Contract

@]
i

e .oa
Engineering

. . b
Contingencles

B + Taxes, Freight, and Fees
0.01C to 0.20C
0.15C

D = Process Unit Installed Cost

C + Engineering + Contingencies

E = Total Subestimates

sum of semidetailed subestimates {puildings, site
development, ccoling towers, etc.). Each subesti-
mate should include taxes, freight, fees, engi-
neering and contingency, and should be escalated
to date of expenditure for that cost component.
Engineering costs, contingencies, and escalation
factors for these subestimates will vary according
to the type of job.

F = Total Project Cost

D + E

alncludes cost from capital project teams, process engineering, engineering,
purchasing, and other support groups.

bContingency should not be applied to any cost component that has been committed by
either purchase order or contract.



The estimate is based on the purchase cost of major equipment (A), including a 10
to 35% allowance for other equipment and an assessment of the quality of vendor
quotes. A 10% allowance is used for project definition that includes process
flow sheets and specific budget quotes and a 35% allowance for block flow sheet

definition and generalized equipment quotes or prices.
CAPITAL COSTS

Thermal Oxidizer Complete System

The capital cost for thermal oxidizer systems controlling sulfur-containing vocC
is determined from the capital costs estimated in the control-device evaluation
report for thermal oxidation! (Figs. V-1 to 4). The installed capital cost of
the scrubber shown in Fig. V-1 can be added to the installed capital cost

given in the cited report! to obtain the total installed capital cost of the

system.

The capital cost for thermal oxidizer systems controlling halogen-containing

VOC is determined by combining the capital cost of the thermal oxidizer

(Figs. V-2, 3), of the waste-heat boiler (Figs. V-4, 5), and of the scrubber

(Fig. V-1). At the combustion temperature of 1800 and 2200°F the capital costs
are obtained from the control-device evaluation report for thermal oxidation.!

The total installed system costs are shown in Figs. V-6 through v-11. Figures V-9
through V-~11 are based on a waste-gas heat content of 1 Btu/scf. An increase in
waste-gas heat content will decrease the flue-gas flow rate, as shown in

Fig. III-3, and decrease the scrubber size.

High-Temperature Thermal Oxidizers

Preliminary purchase quotes for high-temperature thermal oxidizers were obtained
from two vendors.®'9 The installed costs shown in Fig. V-3 include the cost of
fans, ductwork, and stacks. The upper size limit for the high-temperature
thermal oxidizers is assumed to be 20,000 cfm for a 2600°F combustion tempera-
ture and to be 5000 cfm for a 3000°F combustion temperature. The reason for
this limit is due to the waste stream not containing oxygen so large amounts of

combustion air is required.
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Waste-Heat Boiler

Preliminary purchase quotes for steam-generating waste-heat boilers were obtained
from vendors for operation at various steam pressure levels and various proportions
of heat recovery. The installed costs were then estimated by applying installation
factors to these purchase costs as previously described. The installed cost of

the 2600°F unit was assumed to be 10% greater than that of the 2200°F unit of

the same heat duty, and the cost of the 3000°F was assumed to be 20% greater than
that of the 2200°F unit. Multiple units were used when the capacity was in excess

of 200,000 1lb/hr of steam, or 240,000,000 Btu/hr. The cost curves shown in Figs. V-4

and V-5 for the boilers were developed as described previously.

Scrubbers

The estimated installed costs were obtained by applying installation factors to
the purchase cost of the column as previously described. The scrubber cost

curve shown in Fig. V-1 includes the cost of the quench chamber and the recycle
water pump and the additional capital cost involved with a larger fan to overcome

the pressure drop across the scrubber.

For ease in evaluating system component combinations, all components except the
scrubber are presented as a factor of the total waste-gas flow in scfm. The
scrubber flow rate is determined by multiplying the waste~gas flow by the
flue-gas ratio (Fig. III-3) and the quench flow ratio (Fig. 111-8).

ANNUAL COSTS

Annual costs for various operating conditions are presented in Appendix A for
sulfur-containing VOC and in Appendix B for halogen-containing VOC. The heat
recovery case refers to a 250~psi waste-heat boiler. These costs are the basis
for all the cost-effectiveness graphs included in the report. The basis used in

calculating these annual costs is defined in Table V-2.

Figures V-12 through V-15 show the annual cost of thermal oxidation for various
sulfur-containing VOC cases. Figures V-16 through V-23 show the annual cost of
thermal oxidation for various halogen-containing VOC cases. The annual cost
increases for higher waste-gas heat contents are due to the use of larger
amounts of caustic. Figure V-24 shows the annual cost of thermal oxidation for

various combustion temperatures.
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Table V-2. Annual Cost Parameters

Operating factor 8760 hr/yra
Operating labor $15/man-hyr
Fixed costs
Maintenance labor plus materials, at 6%
Capital recovery, at 18%b 29% installed capital
Taxes, insurances, administrative charges, at 5%
Utilities
Electric power $0.03/kWh

Natural gas

Heat recovery credit (equals natural gas) $2.00/million Btu
Caustic {50% NaOH) 5¢/1b
Makeup water 25¢/1000 gal

%process downtime is normally expected to range from 5 to 15%. If the hourly
rate remains constant, the annual production and annual VOC emissions will
be correspondingly reduced. Control devices will usually operate on the
same cycle as the process. From the standpoint of cost-effectiveness cal-
culations, the error introduced by assuming continuous operation is
negligible.

bBased on 10-year life and 12% interest.
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COST EFFECTIVENESS AND ENERGY EFFECTIVENESS

The cost effectiveness and energy effectiveness are calculated by dividing the
annual cost for a particular option or the fuel usage (in Btu/yr) by the total
annual amount of VOC destroyed. The cost effectiveness is presented in Table V-3
for sulfur-containing VOC and in Table V-4 for halogen-containing VOC. The
energy effectiveness is given in Table V-5 for sulfur-containing VOC and in

Table V-6 for halogen-containing VOC. Data on cases not shown in the cited

tables and figures can be easily developed by use of Appendices A and B.
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Table V-3. Cost Effectiveness of Thermal Oxidation
and Scrubbing for Control of Sulfur-Containing VOC

Cost Effectiveness (per lb of VOC Destroyed)

Waste-Gas Waste— Voo voC 90% VOC Destruction’® 99% vOC Destzuctionb
Heat Gas Flow Destroyed Destroyed Waste Heat Waste Heat
Content Rate (1b/hr) € (1b/hr) € No Heat Boiler 250- No Heat Boiler 250-
(Btu/scf) (scfm) at 90% at 99% Recovery psi Steam Recovery psi Steam
1 700 5.06 5.57 $5.35 $5.26 $5.27 $4.90

5,000 36.2 39.8 2.24 1.73 2.39 1.73

20,000 144.7 159.2 1.73 1.20 1.99 1.24

50,000 361.8 398.0 1.58 1.00 1.76 1.03

100,000 723.4 796.0 1.50 0.92 1.68 0.95

10 700 50.6 55.7 0.67 0.66 0.65 0.61
5,000 362 398 0.36 0.31 0.37 0.30

20,000 1,447 1,592 0.31 0.26 0.33 0.25

50,000 3,618 3,980 0.30 0.24 0.30 0.23

100,000 7,234 7,960 0.29 0.23 0.30 0.22

13 700 65.8 72.4 0.56 0.55 0.54 0.51
S,000 471 517 0.32 0.28 0.31 0.26

70,000 1,881 2,070 0.28 0.24 0.28 0.23

50,000 4,703 5,174 0.26 0.22 0.27 0.21

100,000 9,404 10,348 0.26 0.21 0.26 .20

20 700 101.2 111.4 0.42 0.41 0.40 0.38
5,000 724 796 0.26 0.23 0.25 0.22

20,000 2,894 3,184 0.23 0.21 0.23 0.20

50,000 7,236 7,960 0.23 0.20 0.22 0.19

100,000 14,472 15,920 0.22 0.19 0.22 0.18

50 700 253 278.5 0.26 0.26 0.24 0.24
5,000 1,810 1,990 0.20 0.19 0.19 0.17

20,000 7,238 7,960 0.19 0.1¢ 0.18 0.16

50,000 18,060 19,900 0.18 0.17 Q.17 Q.16

100,000 36,170 39,800 0.18 0.17 0.17 0.16

®pased on 1400°F combustion temperature and 0.5-sec residence time.
bBased on 1600°F combustion temperature and 0.5-sec residence time.

“voc molecular weight = 100; molar heat of combustion = 746,000 Btu/lb-mole of VOC.



Table V-4.

v-32

Cost Effectiveness of Thermal Oxidation

and Scrubbing for Control of Halogen-Containing VOC

Cost Effectiveness (per 1lb of VOC Destroyed)

Combustion Temperature

Combustion Temperature

Combust

10on Temperaturs2

Wwaste-Gas Waste- voC 1800°F 2200°F 2600°F
Heat Gas Flow Destroyed Waste Heat Waste Heat Waste Heat
Content Rate (lb/hr)a No Heat Boiler 250- Nc¢ Heat Boiler 250- No Heat Boiler 250-
{Btu/scf) (scfm) at 99.9 Recovery psi Steam Recovery psi Steam Recovery psi1 Steanm
1 700 5.62 $6.03 $5.53 $7.41 $6.30 $12.50 9.46
5,000 40.2 2.73 1.81 3.95 2.54 7.35 4.11
20,000 160.8 2.22 1.22 3.43 1.97 6.33 3.13
50,000 402 2.06 1.07 3.24 1.66
10 700 56.2 0.65 0.60 0.78 0.67 1.29 0.99
5,000 402 0.32 0.23 0.44 0.30 0.78 0.45
20,000 1,608 0.27 0.17 0.39 0.24 0.68 0.36
50,000 4,020 0.26 0.16 0.37 0.21
13 700 73.1 0.51 0.48 0.61 0.53 1.00 0.77
5,000 523 0.26 0.19 0.35 0.24 0.61 0.36
20,000 2,090 0.22 0.15 0.31 0.20 0.53 0.28
50,000 5,230 0.21 0.13 0.29 0.17
20 700 112.4 0.35 0.33 0.42 0.36 0.67 0.52
5,000 804 0.19 0.14 0.24 0.17 0.41 0.25
20,000 3,216 0.16 0.11 0.22 0.14 0.36 0.20
50,000 8,040 0.16 0.11 0.21 0.13
50 700 281 0.17 0.17 0.20 0.17 0.30 0.23
5,000 2,010 0.11 0.10 0.13 0.10 0.19 0.19
20,000 8,040 0.10 0.08 0.12 0.09 0.17 0.17
50,000 20,100 0.10 0.08 0.11 0.08
100 700 562 0.12 0.11 0.12 0.11 0.17 0.14
500 4,020 0.08 0.07 0.09 0.07 0.12 0.09
20,000 16,080 0.08 0.07 0.08 0.07 0.11 0.08
50,000 40,200 0.08 0.07 0.08 0.06

aVOC molecular weight

100; molar heat of combustion = 746,000 Btu/lb-mole of VOC.



Table V-5. Fuel Energy Effectiveness of Thermal Oxidation
for Control of Sulfur-Containing VOC

Energy Effectiveness

Fuel Energy Usage Net Energy Usagea (Btu/lb ofbVOC Destroyed)

(Btu/scf) {(Btu/scf) 90% VOC Destruction 99% VOC Destruction?

Waste-Gas 5 b c Waste Heat Waste Heat
Heat Content 90% VOC 993 voc®© 90% VOC 99% VOC No Heat Boiler 250- No Heat Boiler 250-
(Btu/scf) Destruction Destruction Destruction Destruction Recovery psi Steam Recovery psi Steam

1 63.5 82.3 26.3 30.6 527,100 218,300 620,600 230,700

10 54.2 73.0 17.0 21.3 45,000 14,100 55,000 16,100

13 51.0 ©69.9 13.8 18.2 32,600 8,800 40,500 10,600

20 43.6 62.5 6.37 10.8 18,100 2,600 23,600 4,100

50 12.0 31.1 (25.2) (20.6) 2,000 (4,200) 4,700 (3,100)

a

b

Based on a wacte heat boiler generating 250-psi steam.
Based on 1400°F combustion temperature and 0.5-sec residence time.
cBased on 1600°F combustion temperature and 0.5-sec residence time.

dVOC molecular weight = 100; molar heat of combustion = 746,400 Btu/lb-mole of VOC.
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Table V-6. TFuel Energy Effectiveness of Thermal Oxidation
for Control of Halogen-Containing VOC

Energy Effectiveness {(Btu/1b of VOC Destroyed)a

Combustion Temperature Combustion Temperature Combustion Temperature
1800°F 2200°F 2600°F
Waste-Gas Waste Heat Waste Heat Waste Heat
Heat Content No Heat Boiler 250- Heat Boiler 250- No Heat Boiler 250-
(Btu/scf) Recovery psi Steam Recovery psi Steam Recovery psi Steam
1 777,200 247,900 1,225,600 306,400 2,466,200 739,900
10 71,000 18,100 115,800 23,900 246,600 62,800
13 52,800 12,200 85,700 14,900 175,900 43,100
20 31,800 5,300 53,100 7,100 112,100 25,800
50 8,200 (2,400) 14,000 (4,300) 36,800 2,200
100 400 (4,900) 1,700 (7,500) 12,600 (4,700)

y0c molecular weight = 100; molar heat of combustion = 746,400 Btu/lb-mole of VOC.
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VI. SUMMARY AND CONCLUSIONS

Thermal oxidation is a widely used control technique for control of sulfur-
containing and halogen-containing VOC. This evaluation describes the limits

and design principles of this technique. Design criterion and design procedures
are presented that allow for the preliminary design of high-temperature thermal
oxidizers and flue-gas scrubbing for both conventional and high-temperature
thermal oxidizers. Thermal oxidizers without heat recovery and with waste-heat
steam-boiler heat recovery are considered. Capital and operating costs are
developed and the annual cost of thermal oxidation is calculated as a function

of the characteristics of the waste gas.

The conclusions derived from the cost evaluation are as follows:

1. Since the thermal oxidizer design used here is quite conservative, the
control costs actually experienced in industry are expected to be less than the

costs presented in this report.

2. The waste-gas heat content (VOC content) is a highly sensitive variable in
determining annual costs, cost effectiveness, and energy effectiveness. As the
heat content of the waste gas increases, the annual cost and the cost per scf
increase, whereas the energy effectiveness and the cost effectiveness sharply
improve. The increase in annual cost and cost per cfm is due to the increased
amounts of caustic and water required to control the SO, or HCl in the flue
gas. This is largely the result of the assumption that the VOC in the waste
gas is 100% sulfonated or halogenated. When the sulfur-containing or halogen-
containing VOC is actually & small percentage of the VOC in the waste gas, the

caustic and water requirements will be less than those presented in this report.

3. The waste-gas flow rate is a highly sensitive variable in determining

annual costs and cost effectiveness; energy effectiveness is independent of the
flow rate. As the waste gas flow increases (at a constant hezat content), the
annual costs increase but the annual cost per scfm of waste gas and the cost per 1b

of VOC decrease. This ratio decreases drastically between low flows (700 scfm)
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and moderate flows (5000 scfm), but remains relatively constant between moderate
(5000 scfm) to large flows (50,000 to 100,000 scfm). Energy effectiveness per

scf is constant with flow.

4. Net annual costs for controlling the VOC decrease when heat recovery is

included, provided that there is a use for the steam generated.

5. For high-temperature thermal oxidation (1800 to 3000°F) the annual cost,
cost effectiveness, and energy effectiveness increase exponentially with an

increase in combustion temperature.

6. The effects of residence time, VOC destruction efficiency for conventional
thermal oxidation, and different heat recovery systems on annual costs, cost
effectiveness, and energy effectiveness can be found in the control-device

evaluation report for thermal oxidation?.
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APPENDIX A
ANNUAL COST DATA FOR SULFUR-CONTAINING VOC CONTROL



Annual Cost Data Calculations
(bpplies to Appendices A and B)

The annual costs of thermal oxidation systems are presented in Tables A-5 to
A-14 and B-3 to B-20. Each table shows the costs at a specific offgas heat content
and combustion temperature at various flow rates, residence time, and with and

without heat recovery. The heat recovery case includes a 250-psi waste heat
boiler.

The following sample calculation is for a stream with an offgas heat content of
10 Btu/scf, a combustion temperature of 2600°F, a residence time of 0.5 sec, a
flow rate of 5000 scfm, and with heat recovery.

Capital cost = thermal oxidizer ($1,250,000) + waste heat boiler ($734,000) +

scrubber ($912,000) = $2,896,000

Thermal oxidizer = $1,250,000 ~- from Fig. V-3 at 5000 scfm, 0.5 sec

resistance, and 2600°F

Waste heat boiler = $734,000 -~ from Fig. V-5 at 5000 scfm, 250 psi, and

2600°F

Scrubber = $912,000 -~ from Fig. V-1 at 5000 scfm X 5.1 (from Fig. III-3) X

1.07 (from Fig. III-8)
Fixed cost = $2,896,000 X 0.29%) = $840,000/yr

Operating cost = fuel ($1,660,000) + electricity ($23,100) + makeup water gquench

($1,300) + makeup water scrubber ($10,200) + caustic ($243,200) + labor ($36,000) =
$1,974,000/yr

Fuel = (315.8 Btu/scf (from figure III-2)) X (5000 scfm) X ($2.00/million Btu¥*) X
(60 min/hr) X (8,760 hr/yr) = $1,660,000/yr
h . .
Electricity = (22 in H,0) X (.000157 ﬁga ) X (1/.60 efficiency) X (.746 kwh) X
in..
2
(5000 scfm) X ($0.03/kWh#*) X (8760 hr/yr) = $5,640/yr plus electricity for
combustion air blower = 3.1 (from table III-3) X $5,640/yr = $17,500/yr +

$5,640/yr = $23,100/yr

*
See table V-2,



Makeup water quench = (2 gal/1000 scf (from Fig. III-9)) X (5000 scfm) X
{$0.25/1000 gal*) X (60 min/hr) X (8,760 hr/yr) = $1,300/yr

Makeup water scrubber = [19.2 gal/lb of chlorine (from text III-B-5)] X
(0.0487 1b/hr of chlorine/scfm) X (5000 scfm) X ($0.25/1000 gal*) X

(8,760 hxr/yr) = $10,200/yr

Caustic = [1.14 1b/1b of chlorine (from text III-B-5)] X (0.0487 lb/hr of
chlorine/scfm) X (5000 scfm) X ($0.10/1b of 100% caustic*) X (8,760 hr/yr) =

$243,200/yr

Labor = $36,000/yr (from ref 1); the labor cost for a system without heat

recovery is $18,000/yr.

Credit = (13,900 Btu/hr/scfm) X (5000 scfm) X ($2.0/million Btu?*) X (8,760 hr/yr) =

$1,218,000/yr

Annual cost = fixed cost ($840,000) + operating cost ($1,974,000) - credit ($1,218,00

$1,596,000

Annual cost ($1,596,000/yr)

Flow rate (5000 scfm) = 319.22 $/scim

Net cost =
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OFFRAS HInl CoilTeir 13.00  RTH/SCF
COMRUSTTION TEMFERATURE 1400 F

CASE UFFONAS CAFTTAL QFERATINL COUST-0R-CRETH(Y NET NET CDST
FLOU CnsT FIXED UPFRATTNG RECHUFR( AMHUGY TZED Ok SAVTIGRS

CEesy Co&T CRENTY oLt Ok CRETST FFR SCF#M
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OFFuas HEAT COfTEMT 0.5 RTUH/STFE
COMPUSTION TEMFERATUHRE 1o F
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APPENDIX B
ANNUAL COST DATA FOR HALOGEN-CONTAINING VOC CONTROL
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OFFGAS HEAT CONTENT 1.00 ERTU/SCF
COMBUSTION TEMFERATURE 2600 F

CASE OFFGAS CAFITAL OFERATING COST-OR-CREDIT NET NET COST
FLOW COSsT FIXED OFERATING RECOVERY ANNUALIZED OR SAVINGS
cosT €cosT CREDLIT COST OR CREDIT FER SCFM

SCFH (000) 000) (000) 000) (000) $/SCFM

RESTLRENCE TIME
0.508EC -
NO HFAT RECOVERY

700, 1190, 345, 270, 0. 619, 879.20
35000. 2649, 768. 1821, 0. 2589. 517.89
20000. 5807. 1484, 7230, Q. 8914, 445,71
RESIDENCE TIME
0.50SEC
HEAT RECODVERY
700, 1208, 350. 2864. 170, 466, 665,51
5000, 2903. 842, 1822, 1218, 1447, 289.31
20000, 7238, 2099, 7181, 4871, 4409, 220.47
RESIDENCE TIME -
0.758EC
NO HEAT RECOVERY
700, 1240. 360, 270. 0. 630, 899.92
5000, 2879, 835, 1821. 0. 2656, 531,19
20000, 6467, 1875. 7230, 0. 9106, 55.28
RESINENCE TIME
0.78SEC
HEAT RECOVERY
700, 1258, 365, 286, 170, 480, 686,23
5000, 3133, ?09. 1822, 1218, 1513, 302,65

20000, 7898. 2290, 7181, 4871, 4601, 230.04
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OFFGAS HEAT CONTENT 10.00 BTU/SCF
COMEUSTION TEMFERATURE 2600 F

CASE OFFGAS CAFPITAL OPERATING COST-OR-CREDIT NET NET COST
FLOW cosv FIXED OFPFRATING RECOVERY ANNUALIZED OR SAVINGS
COsT casT CREDIT C0OST OR CREDIT FER SCFM
SCFH 000 (000) (000 (000 (000) $/S0FM

RESINFHCE TINME
0.508EC
NO HEAT RECOVERY

700, 1187, 344, 292, 0. 636 208,39
5000, 2638, 765, 1973, Q. 2738. 547,59
20000, 5777 1675, 7836, 0. 9512, 475.60
RESIDENCE TIME
0.,505EC
HEAT RECOVERY
700. 1206, 330, 307 170, 486 694.97
5000. 2896 240. 1974. 1218, 1596, 319.22
20000, 7216, 2093, 7787 4871, 5009 250,47
RESINRENCE TINME
0.75SEC
NO HEAT RECOVERY
700 1237, 359, 292, 0. 650, 929.11
5000. 2848, 832, 1973, 0. 2804. 560.89
20000, 6437, 1867, 7836, 0. 9703, 485.12
RESIDENCE TIME
0,7598EC
HEAT RECOVERY
700, 1256, 364, 307, 170, 501. 715,69
5000, 3126, 907. 1974. 1218, 14663, 332,56

20000, 7876 2284, 7787, 4871, 5201, 260,04
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OFFGAS HEAT CONTENT 13.00 BTU/SCF
COMEUSTION TEMPERATURE 2400 F

CASE OFFGAS CAFITAL OFERATING COST-OR-CREDIT NET NET €CO0OST
FLow cosT FIXED OFERATING RECOVERY ANNUALTIZED OR SAVINGS
COST COST CREDIT COST OR CREDIT FER SCFM
SCFM (000) (000) (000) 000) (000) $/SCFM

RESIDENCE TIME
0.508EC
NO HEAT RECOVERY

700, 1186. 344, 299. 0. 643, ?18.12
5000. 2635, 764. 2023, 0. 2787, 557.46
20000. 5768, 1673, 8038, 0. ?711. 485.56
RESIDENCE TIME
0.508EC
HEAT RECQOVERY
700. 1205, 349. 3i4. 170. 493, 704.79
5000, 2894. 839. 2024, 1218. 1446, 329.20
20000. 7209, 2091, 7989. 4871, 5209, 260,47
RESIDENCE TINE
0.75SEC
NO HEAT RECOVERY
700. 1236. 358, 299. 0. 657, 738.84
5000. 2863, 831. 2023, [ 2854, 570.80
20000. 6428, 1864, 8038, 0. 29203, 495.13
RESIDENCE TIME
0.758EC
HEAT RECOVERY
700, 1255, 364, 314, 170, 508, 725,51
S000. 3124, 906. 2024, 1218, 1713, 342,54

20000, 7869 . 2282, 7989, 4é71. 5401, 270.04
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OFFGAS HEAT CONTENT 20.00 ERTU/SCF
COMBRUSTION TEMFERATURE 2600 F

CASE OFFGAS CAFPITAL OFERATING COST-OR-CREDTT NET NET COST
FLOW cosy FIXED OPERATING RECOVERY ANNUNLIZED OR SAVINGS

€osT CosT CRERIT COST OR CRERIT FER SCFM

SCFM (000) (000) (000) (000> (000) $/SCFM

RESIDENCE TIME
0,508EC
NO HEAT RECOVERY

700, 1184, 343, 315, 0. 659. 940,83
5000, 2627, 762, 2141, 0. 2903, 980.56
20000. 57435, 1666, 83510, 0. 10176, 508.80
RESIDENCE TIME
0.50SEC
HEAT RECOVERY
700. 1203, 349, 331, 170, 509. 727.70
5000, 2889, 838, 2142, 1218, 1762, 352.44
20000, 7193, 2084, 8461, 4871. 9674, 283.80
RESIDENCE TIME
0.75SEC
NO HEAT RECOVERY
700. 1234, 358, 313, 0. 673, 961,54
5000, 2857, 829. 2141, 0. 2970. 593.90
20000, 6405, 1857. 8510. 0. 10367, 918.37
RESIDENCF TIME
0.758EC
HEAT RECOVERY
700, 1253, 363. 331, 170, 924, 748,42
5000, 3119, 904, 2142, 1218, 1829, 365.80

20000. 7853, 2277, 8461, 4871, 5867, 293.37

8T-4



F YR T

OFFGAS HEAT CONTENT 50.00 RTU/SCF
COMBUSTION TEMFERATURE 2600 F

CASE

RESIDENCE TIME
0.508EC
NO HEAT RECOVERY

RESIDENCE TINE
0.508EC
HEAT KRECOVERY

RESIDENCE TIME
0.75%SEC
NO HEAT RECOVERY

RESIDENCE TIME
0.758EC
HEAT RECOVERY

OFFGAS
FLOW

SCFHM

700.
5000.
20000.

700.
5000,
20000,

700,
5000.
20000,

700,
5000,
20000,

CAFITAL
CasT

(000)

1175,
2592,

5647,

1197,
2866,

7122,

Oy
~Nra G
- . -

(e I g
w o

1247,
3096,
7782,

FIXED
cosTY
(000)

341,
752,

14638,

347,
831.
2065,

359,
819.
1829,

362,
898,

2257,

OFERATING COST-OR-CREDIT
OFERATING
cosT
(000)

386,
2646.
10530,

402,
2647,
10481,

386,
2646,
10530,

402,
2647,
10481,

RECOVERY
CREDIT
(000)

00
0.
0

170,
1218,
4871,

00
.

170,
1218,
4871,

NET
ANNUALIZED
COST OR CREDIY

(000)

727.
3398.
12168,

578,
2261,
7676,

741.
3465,
12340,

593,
2328,
7867,

NET COST
OR SAVINGS
FER SCFM
$/SCFM

1038.12
679.59
408,41

825.89
52.17

383.80

1058.84
692.93
617.98

846,61
446551
393,37
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OFFGAS HEAT CONTENT100,00

COMRUSTION TEMFERATURE 2600 F

CASE

RESIDENCE TIME
0.508EC
NO HEAT RECOVERY

RESIDENCE TIME
0.5%0SEC
HEAT RECOUERY

RESIDENCE TIME
0.758EC
NO HEAT RECOVERY

RESINENCE TIME
0.758EC
HEAT RECOVERY

DFFGAS
FLOW

SCFH

700.
S000.
20000,

700,
5000,
20000,

700.
5000.
20000,

700,
5000.
20000,

CAFITAL
CosT

Q00

1160,
25338,

5485,

1185,
2828,
7004,

1210,
2765,
6145,

1236,
3058,
7464,

ETH/SCF

FIXED
cosT
(000)

336,
735,
1591,

344,
820,
2031,

351,
802.
1782,

358,
887.
2223,

Ll

OFERATING COST-OR-CREDIT
OFERATING
casT
(000)

504.
3488.
13898,

519,
3489.
13849,

504.
3488,
13898,

519,
3489.
13849,

RECOVERY
CREDIT
(000)

0.
0'

170,
1218,
4871,

170.
1218,
4871.

=2

NET
ANNUALIZED
COST OR CREDIT

(000)

840.
A223Z.,
15489,

693,
3092,
11009,

855,
4290,
15680,

707.
3158,
11201,

NET COST
OR SAVINGS
FER SCFHM
$/SCFM

1200.29
844.63
774,43

989 .55
618.36
550.47

1221,00
857.97
784,00

1010.2
631.70
560.04
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OFFGAS HEAT CONTENT 1.00 ETU/SCF
COMRUSTION TEMFFRATURE 3000 F

CASE OFFGAS CAFITAL OFERATING COST-OR-CREDIT NET NET €OSTY
FLOY casT FIXED OFERATING RECOVERY ANMUALIZED OR SAVINGS

cosT CosT CREDIT COST OR CREDTT FFR SCFH

SCFM (000) 000) (000) 000) (000) $/SCFH

RESINENCE TIME
0.,50SEC
NO HEAT RECOVERY

700, 1870, 542, 782. 0. 1324. 1891.13
5000. 4878. 1415, 5472, 0. 4887. 1377.41
RESINENCE TIME
0.508EC
HEAT RECOVERY
700. 2090. 606, 798. $30. 874. 1249.04
5000, 3548, 14609, 5480, 3784, 3304. 660.87
RESIDENCE TIME
0.,7%SEC
NO HEAT RECOVERY
700, 1970, 571, 782. 0. 1353, 1932.595
5000. 5638, 1635, 5472, 0. 7107, 1421.49
RESINENCE TIME
0.755EC
HEAT RECOVERY
700, 2190, 635, 798, 530. 203, 1290.47
5000, 6308, 1829, 5480. 3784. 3525, 704.9%
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OFFGAS HEAT CONTEMT 10,00 ETU/SCF
COMRUSTION TEMFFRATURE 3000 F

CASE

RESIDENCE TINE
0.508EC
NO HFAT RECOVERY

RESIDENCE TIME
0.50SEC
HEAT RECOVERY

RESIHDENCE TIME
0.75SSEC
NO HEAT RECOVERY

RESIDENCFE TIME
0.75S8EC
HEAT RECOVERY

OFFGAS
FLOW

SCFH

700,
5000.

700,
5000.

700 *
5000,

700.
5000,

CAFITAL
cosT

(000)

1865,
4859,

2086,
5537,

1265,
5619,

2186,
6297,

FIXED
COST
(000)

941,
1409.

605,
1606,

570,
1629,

634,
1826.

OFERATING COST-OR-CREDIT
OFERATING
CosT
000)

801.
5610,

817,
5617,

801,
5610,

817,
3617,

RECOVERY
CREDIT
(000)

530,
3784,

530.
3784,

NET
ANNUALIZEDR
COST OR CRELDIT

(000)

1342,
7019.

893.
3438,

1371.
7239,

NET CO0OST
OR SAVINGS
FER SCFM
$/SCFM

1916.83
1403.78

1275.19
687 .69

1958.26
1447.86

1314.62
731.77
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OFFGAS HEAT CONTENT 13.00 RTU/SCF
COMRUSTION TEFMPERATURE 3000 F

CASE

RESTIHENCE TIME
0.508EC
NO HEAT RECOVERY

RESIDENCE TIME
0.S08EC
HEAT RECOVERY

RESIDENCE TIME
0.755EC
NO HEAT RECOVERY

RESTLENCE TIME
0.758EC
HEAT RECOVERY

OFFGAS
FLOW

SCFM

700,
5000.

700,
5000.

700,
5000,

700.
5000,

CAFITAL
cosy

(000)

1944,
5613,

2185,

6293,

FIXER
cosy
000)

541,
1407,

603,
1605,

570,
1628,

634,

18265,

OFERATING COST-OR-CRFDIT

OFERATING
CosT
(000)

807,
5656,

824,
5663,

807.
5656,

824,
5663,

RECOVERY
CREDTIT
000

0.

530.
3784.

0.
0.

530.
3784,

NET

ANNUALTZED
COST OR CREDIT

(N00)

1348,
7063,

899.
3483,

1377,
7283,

928,
3704,

NET COST
OF SAVINGS
FER SCFM

$/SCFM

1925, 40
1412,57

1283.91
696,63

19646.82
1456.45

s

1325.33
740.71
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OFFGAS HEAT CONTENT 20.00 ETU/SCF
COMBUSTION TEMFERATURE 3000 F

CASE OFFGAS CAFITAL OFERATING COST-OR-CREDTT NET NET COST
FLOW CasT FIXED OFERATING RECOVERY ANNUALIZED OR SAVINGS

CosT cosT CREDIT COST OR CREDIT FER SCFM

SCFM Q00 (000) (000) (000) (G00) $/SCFH

RESIDENCE TIHME
0.50SEC
NO HEAT RECOVERY

700, 1861, 540. 822, 0. 1362, 1945.39
5000. 4838, 1403, G762, 0. 7145, 1433,08
RESIDENCF TIME
0.508EC
HEAT RECOVERY
700. 2083, 604, 839, 530, 913, 1304.24
5000, 5524, 1602, 5770, 3784, 3587, 717 .49
RESILENCE TIME
0.788EC
NO HEAT RECOVERY
700, 19461, 569, g22, 0. 1391, 1986.81
5000. 5598, 1623, 5762, 0. 7386, 1477.16
RESIDENCFE TIME
0.75SEC
HEAT RECOVERY
700, 2183, 433, 839, 530, 242, 1345,67

5000. 6284, 1822, 5770, 3784. 3808, 761,57
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OFFGAS HEAT CONTENT 50,00

COMPUSTION TEMPFRATURE 3000 F

CASE

REGIDENCE TIME
0.508EC
NO HEAT RECOVERY

RESIDENCE TIME
0.508EC
HEAT RECOVERY

RESINENCE TThv
0.75SEC
NO HEAT RECOVERY

RESIDENCE TIME
0.755EC
HEAT RECOVERY

OFFGAS
FLOW

SCFHM

700.
5000,

700.
5000,

700.
5000,

700.
5000.

CAFITAL
COsT

(000

1846,
4775,

2072,
5487.

1946,

59935,

RTU/SCF

FIXED
CosT
(000)

535,

1385,

601,
1591,

364,
14605,

630,
1811,

OFERATING COST-OR-CRFDIT
OFERATING
cosT
(00N0)

886,
6220,

13 0
rQ
@

N

884,
6220,

903,

6228,

RECOVERY
CREDIT
000)

0.
0.

530.
3784.

530,
3784.

NET

ANNUALTIZED
COST OR CREDIT

000)

1422,
7605,

974,
4034.

ra
o~
< .

SN o
@ >

1003,
4255,

NET COST
OR SAVINGS
FER SCFM

$/SCFHM

2031.06
1520.99

1391, 41
8046.88

2072.49
1565.07

1430.84
850.96
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OFFGAS HEAT CONTENT100.00 EBTU/SCF
COMEUSTION TEMFERATURE 2000 F

CASE NFFGAS CAFTTAL OFERATTING COST-OR-CREDIT NET NET COST
FLOW COST FIXeD NFERNATING RECOVERY ANNUALIZED OR SAVINGS
cosT cosT CREDTT CO0ST OR CREDIT FER SCFM

SCFM (oo (000) (000? 000) (000) $/SMFH

RESIDENCE TIME
0.50SEC
NO HEAT RECOVERY

700 1823. 529. 993, 0. 1522, 217385
5000, 4670, 1354, 6983, 0. 8337 . 1667.50
RESTNENCF TIME
0.505EC
HEAT RECOVERY
700. 2055, 596. 1010, 530, 1076, 1536.69
5000, 5424, 1573, 6991, 3784, 4779, 955.86
RESIDENCE TIME
0.,758EC
N HEAT RECOVERY
700, 1923, 558, 293, 0. 15561, 2215.78
5000, 5430, 1575, 6983, 0. AG58. 1711.58
RESINENCE TIME
0.,758EC
HEAT RECOVERY
700. 2155, 625, 1010, 330. 1105, 1578. 11

5000, 5184, 1793, 6991, 3784, 5000. 999.94

9¢-4
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I-1

1. INTRODUCTION

Catalytic oxidation is a control technology, currently used by many industries,
that involves the oxidation of volatile organic compounds (VOC) in the presence
of a catalyst. The principles and the equipment, except for the catalyst, are
similar to those used for thermal oxidation, the subject of a previous control-
device evaluation report.l'* A waste-gas stream and oxygen, usually from air,
are contacted with the catalyst at a temperature that allows the oxidation
reactions to proceed rapidly. The primary difference between the equipment
used for catalytic oxidation and that used for thermal oxidation is the added
provision for the catalyst, which is usually composed of a noble-metal coating
on activated alumina. Nonprecious-metal catalysts may be used when selectivity
is not critical. Because of the catalyst the oxidation reaction takes place at
a lower temperature, and therefore less fuel is required to heat the waste gas
than for thermal oxidation (see Table I-1 for catalytic ignition temperatures
of some common VOC as given by Oxy-Catalyst, Inc., in their brochure?). The
actual temperatures required will vary with different catalysts and different

supports.3

The energy in the hot flue gas leaving the catalyst may be recovered by use of
a recuperative heat exchanger to preheat the waste gas and combustion air or by
use of a waste-heat boiler to produce steam, in the same that way energy is
recovered from the hot flue gases of a thermal oxidizer. When the concen-
tration of VOC is high enough, a catalytic oxidizer with a recuperative heat

exchanger can be designed that requires no additional fuel after operating

temperatures are reached.?—?

Catalytic oxidation accomplishes the same results as thermal oxidation, i.e.,
the oxidation of the VOC in the waste gas to water and carbon dioxide. The
catalyst increases the rate of oxidation, and thus the reaction proceeds to
equilibrium at a lower temperature (energy level). The reactions of the indi-
vidual molecules take place at active sites on the surface of the catalyst.

The VOC and oxygen are first transferred to the surface of the catalyst by
diffusion in the waste gas and are then chemisorbed in the pores of the catalyst

to the active sites, where the reaction (oxidation) takes place. The reaction

*See Sect. VI for the references cited in this report.



Table I-1. Catalytic Ignition Temperature for 90% Conversion*

Component Temperature (°F)
Hydrogen 220
Acetylene 395
Carbon monoxide 425
Propyne 460
Propadiene 480
Propylene 500
Ethylene 550
n-Neptane 575
Benzene 575
Toluene 575
Xylene 575
Ethanol 600
Methyl ethyl ketone 700
Methyl isobutyl ketone 700
Propane 770
Ethyl acetate 775
Dimethyl formamide 800
Ethane 810
Cyclopropane 850
Methane 920

*
See ref 2.




products are then desorbed from the catalyst sites and transferred by diffusion
into the waste-gas stream leaving the catalyst. The heat of combustion released
by the catalytic oxidation reaction is the same as that released by thermal

oxidation.<—1%

An advantage of catalytic oxidation over thermal oxidation is that less NOx is
formed as the results of the lower temperature used and of operating close to
the required stoichiometric amount of oxygen. Because of the theoretical
relationships between VOC and NOX, attaining the ozone standard may be served
better by a lower destruction of VOC with less NOX formation.®

Catalytic oxidation has some limitations that do not apply to thermal oxidation.
Normally the waste gas should not contain materials that poison the catalyst,
such as phosphorus, bismuth, lead, arsenic, antimony, mercury, iron oxide, tin,
silicon, zinc, sulfur, or halogens. Care must be taken that liquid or solid
particles do not deposit on the catalyst and form a coating. In some applica-
tions it may be possible to adequately remove the poison or particulate materials,
or catalytic oxidation systems may be available that will effectively handle
some of the poisons, such as sulfur compounds, or some halogenated compounds.
The VOC content of the waste gas should be relatively constant and low enough
(or the waste gas diluted with air) so that the catalyst is not overheated and
its activity destroyed. Because of safety considerations it is general practice
to keep the concentration of VOC at less than 25 to 30% of the lower explosive
limit. This concentration is in the range of 12 to 14 Btu/scf in air or 20 to
22 Btu/scf in nitrogen. Design for a specific application requires good basic
data and experience; a pilot study is often necessary. This report is intended
for use in preliminary screening studies to indicate whether additional investi-

gation of catalytic oxidation is advisable.?2—7

Catalytic oxidizers are being used successfully as emission control devices on

the off-gases (waste gases) from the production of ethylene oxide, cumene,
caprolactam, phthalic anhydride, bisphenol A, formaldehyde, acrylonitrile, and
ethylene dichloride, and have been considered for use on maleic anhydride waste gas,

all in the synthetic organic chemical manufacturing industry (SOCMI) .2—4%"7—12
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II. CATALYTIC OXIDATION SYSTEMS AND FACTORS INCLUENCING
PERFORMANCE AND DESIGN

In this section the main elements of a catalytic oxidizer system are discussed
(or reference is made to the thermal oxidizer report,! in which the elements
discussed are the same). The factors influencing catalytic oxidizer design and
performance are analyzed, with the analysis directed toward development of a
design for a typical or base-case system. This base-case catalytic oxidizer

and variations of it form the basis for the cost estimation given in Sect. IV.

SYSTEM DESCRIPTION

The catalyst bed in a catalytic oxidizer usually follows a burner and mixing
chamber (see Fig. II-1). The waste gas enters the mixing chamber and is heated
by mixing with the combustion products from the burner. The mixing chamber and
burner should be carefully designed so the mixed gas is uniformly heated and
distributed before it enters the catalyst bed. The catalyst bed is usually a
deposit of platinum or another noble metal on the surface of a ceramic base
that is shaped so that contact with the mixed gas is enhanced. Alternatively,
the deposit may be on a metal mesh-pad structure. The catalyst bed depth is
normally 12 in. but may be 8 to 24 in., and the volume may vary from 0.5 to 2
ft3 per 1000 scfm of flow through the bed.2—>

When heat recovery is practiced, the recuperative heat exchanger or waste-heat
boiler is connected to the catalyst chamber. The hot flue gases leaving the
catalyst are cooled by (1) the entering waste gas and/or combustion air being
heated in the recuperative heat exchanger or (2) by the steam being produced in

the waste-heat boiler.

If the waste gas is not under pressure in the process, a fan is usually required.
If the waste gas does not contain at least 16 mole % oxygen, combustion air is
required for the burner and another fan is required. When the VOC is mixed with

air, the combustion air fan is not required.

The complete catalytic oxidizer system also has contol instruments for tempera-
ture, flow, and fuel and for combustion safety. A stack is needed to exhaust

the flue gases at sufficient height to be safely dispersed.*
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The important variables in sizing a catalytic oxidizer system are the following:

1 the waste-gas flow rate
2 the waste-gas oxygen content
3. the VOC destruction efficiency
4 the waste-gas heat content, which is a function of the VOC concentration

and composition
5. the operating temperatures

.

Except for item 5 the values for the parameters are the same as those used in
the thermal oxidation report.! 1In addition to the case for which the waste-gas
oxygen content is assumed to be zero, a study was made of the case in which the

waste-gas oxygen content is the same as that for air.

The operating temperature conditions are more complex, with the following

values assumed for this study:

1. the temperature of the waste gas from the process is 100°F,

2. the minimum temperature of the mixed gases entering the catalyst bed is
600°F to ensure an adequate initial reaction rate,

3. the minimum temperature of the flue gas leaving the catalyst bed is 900°F
to ensure an adequate overall reaction rate to give the desired VOC destruc-
tion efficiency,

4. the maximum temperature of the flue gas leaving the catalyst bed is 1200°F
(ref 5) to prevent catalyst deactivation by overheating,

5. the minimum temperature of the flue gases leaving the heat recovery sec-
tion is 500°F to prevent condensation and corrosion of the heat-transfer

surfaces.

For specific applications other temperatures may be appropriate. For example,
temperatures of 400 to 450°F are reported at one installation and 500 to 550°F
at another. The temperature of the flue gas leaving the catalyst bed is a

function of VOC concentration and specific heat and may be less than 900°F for
some waste gases that are more easily oxidized and still give the desired VOC

destruction.®
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Only 1 or 2% excess of oxygen may be required with an effective catalyst,
although a minimum of 3 mole % oxygen in the flue gas is assumed for this
study, as was used for the thermal oxidation study. By keeping air addition to

the minimum required, supplemental fuel usage is minimized.®

Two levels of VOC destruction efficiency are assumed, 90% and 99%. See Table II-1
for the specific parameters used for the five waste-gas composition cases

studied for this report.

Catalyst Bed Size

The amount of catalyst and the depth and cross-sectional area of the catalyst
bed depend to a certain extent on the vendor's experience with waste gases
having similar compositions to the one under consideration. When such ex-
perience is lacking, a pilot unit should be run on the actual stream for a
period of time. For the base case of 90% destruction efficiency a catalyst
volume of 1 ft3 per 1000 scfm of flue-gas flow is used; 1.5 ft3 of catalyst per
1000 scfm of flue-gas flow is assumed to give 99% destruction of VOC as indi-
cated by Du Pont.® They also indicate that the bed depth is normally 12 in.
but can vary from 8 to 24 in.5 The degree of removal of combustible gaseous
compounds depends on the mass-transfer limitations. A unit can be designed for
a high degree of VOC removal by making it long enough (more catalyst), but this
introduces a higher pressure drop through the device. In some cases therefore

this increased pressure drop can be a limiting factor that dictates the degree

of destruction.®

Mixing Chamber Design

The mixing chamber must be of sufficient length and design so that the flame
from the preheat burner will not impinge on the catalyst bed and so that the
waste gas will be well mixed and evenly heated before it enters the catalyst
bed. The mixing chamber designs on which this study is based are those used by
catalytic oxidizer vendors.®’13—17 petails of the designs were not furnished.
A typical design velocity of 25—35 fps for the heated mixed gases is usually

adequate for mixing and is used for at least one type of catalyst bed.3



Table II-1. Parameters for Catalytic Oxidation Calculationsa

e e

Lio Heat ROCOVQI!LEE_E}EH‘F&StL—!Egi‘yﬂller With Recuperative Heat Exchanger

Waste-Gas _Jorouratwe(TH) / e e Fucl Temperature (7F) Ratio Fusl
Heat Contont To From SEAUeTIAs 210 ) Required From Heat To From (~Elgg:9§§~glgl~) Required
(Bru/scf)  cCatalyst Catalyst \ Woste-Ca, Flow/ (Btu/scf) Exchanger Catalyst Catalyst Waste~Gas Flo/ — {Btu/scf)

0 900 900 1.45 23.9 400 900 900 1.34 14.1

2 855 900 1.48 24.2 400 850 800 1.36 14.2

10 600 900 1.45 14.6 400 600 930 1.35 5.6

20 600 1150 1.58 15.9 600 600 1200 1.39 Q0

10(in air) 600 1018 1.0 10.1 600 600 1032 1.0 0

aCatalytlc oxidizer conditions:
VOC molar heat of combustion = 730,250 Btu/lp-mole.
vOC molecular weight = 50.
voC ¢, H, O fraction = 68.3 wt % C, 11,4 wt 3 H, 20.3 wt % O.
Waste gas temperature = 100°F.
hverage waste~-gas molecular weight = 29,
Mo oxygen in waste gas except where indicated "in air."
water content of combustion air = 1.0 wt %.
3 nole % oxygen or greater in fluc gas after oxidation,

bTemperature of flue gas leaving waste-heat boiler = 500°F.
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Fans

Fans for both the waste gas and the combustion air are required unless the
waste gas contains sufficient oxygen (16 mole %) to be used in burning the
auxiliary fuel. The pressure drops used in this report for catalytic oxidizer
systems with conversions of 90% are 5 in. H,0 with no heat recovery and 14 in.
Ho,0 with heat recovery, for either a recuperative heat exchanger or for a
waste-heat boiler. For a system with 99% conversion, pressure drops of 7 in.
H,0 with no heat recovery and 16 in. H,0 with heat recovery are used. The cost

of the fans is included in the catalytic oxidizer costs given in Appendix A.

Recuperative Heat Exchangers

A recuperative heat exchanger transfers heat from the flue gas to the waste gas
and combustion air, lowering the amount of fuel and combustion air required.
See Sect. III-A-2 of the thermal oxidizer report! for a discussion of heat
recovery by recuperative heat exchange. The heat content of the flue gas* from
the catalytic oxidizers studied for this report is shown in Fig. I11-2. The
actual heat content of a flue gas depends on the relative quantities of fuel,
air, voc, and waste gas going to the catalytic oxidizer. The straight line of
Fig. II-2 represents a best fit to several data points and is adequate for
estimating the heat recovery and the surface area required. Figure II-3 shows
the ratio of the heat exchanger surface to the flue-gas flow rate as a function
of the percent of heat recovery and the overall heat-transfer coefficient (U)
for recuperative heat exchangers for flue gases having temperatures of 900 to
1200°F. An overall heat-transfer coefficient of 4 Btu/ (hr) (ft2) (°F) is used in
this study.

Waste-Heat Boiler

For this study a waste-heat boiler producing 100-psig steam was chosen because
the temperature of the flue gas from a catalytic oxidizer is 1200°F or less. A
temperature of 500°F for the flue gas exhausted from the waste-heat boiler is
used for this study. See Sect. ITI-A-4 in the thermal oxidizer report! for a

discussion of heat recovery by use of a waste-heat boiler.

*For this report heat content of the flue gas refers to its sensiblg hegt.
Heat content of the waste gas refers to the energy generated by oxidation of
the VOC contained in the waste gas.
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Stack and Other Equipment
The stack and ducting for this report are based on the same parameters used for

the thermal oxidizer (see Sects. III-A-5 and 6 in the thermal oxidizer reportl).

CATALYTIC OXIDATION EFFICIENCIES

The destruction efficiency (conversion of VOC to carbon dioxide and water) for
catalytic oxidizers depends on the catalyst type and volume, the operating
temperature, and the composition and concentration of VOC in the waste gas.

The chemical structure of a compound affects the destruction efficiency of a
catalytic oxidizer more than it does a thermal oxidizer. A portion of the
waste gas can by-pass the catalyst at times in most bed designs, and this
limits the destruction efficiency that can be achieved.® The catalyst may lose
activity with time for such reasons as sintering, accumulations of poisons, or
an accumulation of products. Although a higher operating temperature may

compensate to some extent for this loss in activity, there is a limit dictated

by the maximum operating temperature of the catalyst. In some cases the catalyst

may have to be cleaned periodically for activity and destruction efficiency to
be maintained. The actual life of the catalyst will vary with application and
is uncertain for a new use. Some catalysts are reported to have been in use
for over 8 years, but in some applications the catalyst must be replaced every
year; the average life appears to be in the range of 3 to 5 years. For this

study replacement of the catalyst every three years is assumed.2—°



ITI-1

III. CONSIDERATIONS FOR INSTALLATION OF CATALYTIC OXIDIZERS

NEW PLANTS
All requirements that are considered when thermal oxidizers are installed also

apply to the installation of catalytic oxidizers (see Sect. IV of the thermal

oxidizer report?!).

EXISTING PLANTS

All considerations for installation of a catalytic oxidizer in a new plant also
apply to retrofitting one in an existing plant. However, if the steam generation
boiler in an existing plant is adequate, a waste-heat boiler may not be economi-
cally feasible. The costs and cost-effectiveness data presented in this report
are not intended to apply to retrofitted catalytic oxidizer systems. 1In
retrofitted systems additional costs may be encountered because of such items as
demolition requirements, crowded construction working conditions, scheduling
construction activities with production activities, and longer interconnecting
ducts. These factors are site-specific, and no attempt has been made to provide
costs. For specific retrofit cases, rough costs may be obtained by using the

new-site data and adding as required for a specific retrofit situation.
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. ENERGY IMPACTS OF CATALYTIC OXIDATION

T&‘OXIDIZER DESIGN SUMMARY
cost- and energy-effectiveness calculﬁfions for the typical or
calytic oxidation system are presented here. The catalytic oxidizer
s the waste-gas heat contents, and the resulting temperatures given in
B- (I-1 for the base-case design establish the fuel requirement, the ratio of
e-gas flow to waste-gas flow, and the percent of heat recovered. Costs are
_stimated for seven waste-gas flows: 700, 2,000, 5,000, 10,000, 20,000, 50,000,
and 100,000 scfm; for destruction efficiencies of 90 and 99%; and for no heat
recovery, heat recovery with a recuperative heat exchanger used to heat the
waste gas and combustion air, and heat recovery with a waste-heat boiler used to

produce steam.

COST BASIS

The estimated capital costs for the catalytic oxidation systems described repre-
sent the total investment required for purchase and installation of all equipment
and material to provide a facility like that described in Sect. II. This includes
all indirect costs, such as engineering and contractors' fees and overheads.

The estimated capital costs are battery-limits costs and do not include provi-
sion for bringing utilities, services, or roads to the site, backup facilities,
land, research and development, or process piping and instrumentation intercon-
nections that may be required within the process generating the waste-gas feed

to the catalytic oxidation system.

The method used to develop the estimated capital costs was based on applying
certain factors to the purchase prices of equipment to arrive at an installed
capital cost. Purchase costs were obtained from vendors and previous EPA reports
as described below. Table IV-1 gives the ranges used for factoring up the
purchased price of equipment to the installed cost and is based on historical
data of IT Enviroscience Process Engineering. The expected accuracy of the total
installed cost thus obtained is in the range of +30%. This method of obtaining

total installed capital costs is suitable for study or screening estimates.

For catalytic oxidation systems a 30% allowance was added to the estimated major

equipment purchase cost to compensate for unspecified items, resulting in the



Table IV-1.
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Factors Used for Estimating Tota

Qlled o

A = Major Equipment Purchase Cost Plus 0.1 to 0.35 Allowance OStg

Installation costs
Foundations
Structures
Equipment Erection
Piping

Insulation

Paint
Fire Protection

Instruments

Electrical

B = Base Cost
Sales Tax
Freight

Contractor's Fees

C = Total Contract
. ., a
Engineering

Contingencies
D = Unit Installed Cost

E = Total Subestimates

F = Total Project Cost

0.06A + $100 X number of pumps

0.15A (no structures) to 0.30A {rmu
0.15A to 0.30A (depending on complex.
0.40A (package units) to 1.10A (rat's .

0.06A or 0.15 X piping (normal) to 0.30 S5
(bulk hot or cold) )

0.05Aa
0.01A to 0.06A (depending on requirements)

0.10A to 0.30A or 0.01A to 0.25A + $50,000 to
$300,000 for process control computer

0.15A or 0.05A + $500 per motor

A + Sum of Installation Costs
0.025A + 0.025B

0.16A

0.30 (B-A)

B + Taxes, Freight, and Fees
0.01C to 0.20C
0.15C

C + Engineering + Contingencies

sum of semidetailed subestimates (buildings, site
development, cooling towers, etc.). Each subesti-
mate should include taxes, freight, fees, engi-
neering and contingency, and should be escalated
to date of expenditure for that cost component.
Engineering costs, contingencies, and escalation
factors for these subestimates will vary according
to the type of job.

D+ E

41ncludes cost from capital project teams, procesSs engineering, engineering,
purchasing, and other support groups.

bContingency should not be applied to any cost component that has been committed by
either purchase order or contract.
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IV. COST AND ENERGY IMPACTS OF CATALYTIC OXIDATION

BASE-CASE CATALYTIC OXIDIZER DESIGN SUMMARY

The results of cost- and energy-effectiveness calculﬁfions for the typical or
base-case catalytic oxidation system are presented here. The catalytic oxidizer
conditions, the waste-gas heat contents, and the resulting temperatures given in
Table II-1 for the base-case design establish the fuel requirement, the ratio of
flue-gas flow to waste-gas flow, and the percent of heat recovered. Costs are
estimated for seven waste-gas flows: 700, 2,000, 5,000, 10,000, 20,000, 50,000,
and 100,000 scfm; for destruction efficiencies of 90 and 99%; and for no heat
recovery, heat recovery with a recuperative heat exchanger used to heat the
waste gas and combustion air, and heat recovery with a waste-heat boiler used to

produce steam.

COST BASIS

The estimated capital costs for the catalytic oxidation systems described repre-
sent the total investment required for purchase and installation of all equipment
and material to provide a facility like that described in Sect. II. This includes
all indirect costs, such as engineering and contractors' fees and overheads.

The estimated capital costs are battery-limits costs and do not include provi-
sion for bringing utilities, services, or roads to the site, backup facilities,
land, research and development, or process piping and instrumentation intercon-
nections that may be required within the process generating the waste-gas feed

to the catalytic oxidation system.

The method used to develop the estimated capital costs was based on applying
certain factors to the purchase prices of equipment to arrive at an installed
capital cost. Purchase costs were obtained from vendors and previous EPA reports
as described below. Table IV-1 gives the ranges used for factoring up the
purchased price of equipment to the installed cost and is based on historical
data of IT Enviroscience Process Engineering. The expected accuracy of the total
installed cost thus obtained is in the range of +30%. This method of obtaining

total installed capital costs is suitable for study or screening estimates.

For catalytic oxidation systems a 30% allowance was added to the estimated major

equipment purchase cost to compensate for unspecified items, resulting in the



Table IV-1.
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Factors Used for Estimating Total Installed Costs

A = Major Equipment Purchase Cost Plus 0.1 to 0.35 Allowance

Installation costs
Foundations
Structures
Equipment Erection
Piping

Insulation

Paint
Fire Protection

Instruments

Electrical

B = Base Cost
Sales Tax
Freight

Contractor's Fees

C = Total Contract
. . a
Engineering

Contingencies
D = Unit Installed Cost

E = Total Subestimates

F = Total Project Cost

0.06A + $100 X number of pumps

0.15A (no structures) to 0.30A (multideck structures)
0.15A to 0.30A (depending on complexity)

0.40a (package units) to 1.10A (rat's nest)

0.06A or 0.15 X piping (normal) to 0.30 X piping
(bulk hot or cold)

0.05A
0.01A to 0.06A (depending on requirements)

0.10A to 0.30A or 0.01A to 0.25A + $50,000 to
$300,000 for process control computer

0.15A or 0.05A + $500 per motor

A + Sum of Installation Costs
0.025A + 0.025B

0.16A

0.30 (B-A)

B + Taxes, Freight, and Fees
0.01C to 0.20C
0.15C

C + Engineering + Contingencies

sum of semidetailed subestimates (buildings, site
development, cooling towers, etc.). Each subesti-
mate should include taxes, freight, fees, engi-
neering and contingency, and should be escalated
to date of expenditure for that cost component .
Engineering costs, contingencies, and escalation
factors for these subestimates will vary according
to the type of job.

D + E

@1ncludes cost from capital project teams, process engineering, enygineering,
purchasing, and other support groups.

bContingency should not be applied to any cost component that has been committed by
either purchase order or contract.
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total estimated equipment purchase cost designated A in Table IV-1. This estab-
lished the basis for the application of all the installed capital cost factors

shown.

The sum of the installation costs for a catalytic oxidizer without a catalyst
bed or a connecting duct and with a minimum stack was estimated to be about 1.1
times A. The base cost (B) is therefore approximately 2.1 times the total
estimated equipment purchase cost (A). Additional percentages were applied to
the base cost (B) as shown in Table IV-1 to arrive at a unit installed cost (D)
for a catalytic oxidizer with a minimum stack but without a catalyst bed and
without a connecting duct to the process. The initial catalyst installed cost
(D) was estimated by multiplying the catalyst purchase cost obtained from

Fig. A-2 by 1.2 to account for the costs of freight, taxes, and labor and fees

for installing the catalyst bed in the oxidizer.

The sum of the installation costs for a waste heat boiler was also estimated to

be about 1.1 times A. For a recuperative heat exchanger, for the connecting

duct from the process to the catalytic oxidizer, and for the 80-ft stack the sum
of the installation costs was estimated to be about 0.5 times A (B is therefore
approximately 1.5 times A) because the foundations, structures, erection, and
piping will be incremental and relatively small when compared to those required
for the catalytic oxidizer. The same additional percentages for sales tax, freight,
contractor's fees, engineering, and contingencies were applied to the base cost (B)
to arrive at the unit installed costs (D) (see Table IV-1). Allowances for the
cost of site development and for the cost of vendor assistance during startup were
added to the total of all the unit installed costs (D) for each case to give the
total installed capital costs shown in Figs. IV-1 through IV-3.

The basic pieces of equipment are catalytic oxidizers, recuperative heat ex-
changers, and waste-heat boilers, plus the catalyst, ducts, and stacks. The
sources of purchase cost data for these items follow, and curves showing pur-
chase costs of the catalytic oxidizers, the catalyst, and the waste-heat boilers
are given in Appendix A. A curve showing the purchase costs of recuperative

heat exchangers is shown in Appendix A of the thermal oxidizer report.?!
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Purchase Costs of Catalytic Oxidizers

Preliminary purchase costs for catalytic oxidizers were obtained from vendors.
Several vendors were contacted by telephone and letter and three supplied cost
data and other information: Du Pont,3 Englehard,!3 and Oxy-Catalyst.!? The
costs were for prepiped and prewired units complete with the burner, blower, re-
fractory, controls, etc., required for handling various waste-gas flows {in
standard cubic feet per minute (scfm)]. Purchase cost data were also extracted
from previous EPA reports and escalated to December 1979. The curves shown in
Appendix A for the purchase costs of the catalytic oxidizers and of the catalyst

were derived from the combined data.

Purchase Costs of Recuperative Heat Exchangers
The purchase costs of recuperative heat exchangers were obtained from Appendix A

of the thermal oxidizer report.!

Purchase Costs of Waste-Heat Boilers
The purchase costs of waste-heat boilers for 100-psig steam were estimated by
adjusting the purchase costs from the thermal oxidizer report! to compensate for

the differences in flue-gas temperatures and steam pressures.

Purchase Costs of Ducts
Each system is assumed to require 150 ft of round-steel inlet ductwork with the
same fittings shown for the thermal oxidizer.! The costs used are also the

same.

Purchase Costs of Stacks

The costs of the stacks are the same as those used for thermal oxidizers.?!

ANNUAL COSTS
Annual costs for various operating conditions are given in Appendix B. These
costs are the basis for all the net annual cost graphs included in the report.

The basis used in calculating these annual costs is defined in Table IV-2.

Figures IV-4 through IV-9 present the net annual costs of catalytic oxidation

for various cases.
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Annual Cost Parameters

Operating factor
Operating labor
Fixed Costs

Maintenance labor plus
materials, 6%
Capital recovery, 18%b

Taxes, insurances,
administration charges, 5%

Utilities
Electric power
Natural gas

Heat recovery credits
(equivalent to natural gas)

8760 hr/yr®
$15/man-hr

29% of installed
capital

$0.03/kwh
$2.00/million Btu
$2.00/million Btu

8control devices will usually operate on the same cycle as the process.
Process downtime is normally expected to range from 5 to 15%. If the hourly
rate remains constant, the annual production and annual VOC emissions will be
correspondingly reduced. From the standpoint of cost-effectiveness calcula-~
tions, the error introduced by assuming continuous operation is negligible.

bBased on 10-year life and 12% interest.
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COST AND ENERGY EFFECTIVENESS

The cost effectiveness and energy effectiveness were calculated by dividing the
annual cost for a particular option (Appendix B) or the fuel usage in Btu/yr by
the total annual amount of VOC destroyed with the conversion efficiencies assumed
in Sect. II. The cost effectiveness is given in Table IV-3 and the energy
effectiveness is given in Table IV-4. Data on cases not shown in the cited

tables can be easily developed by use of Appendix B.



Table IV-3. Cost Effectiveness of Catalytic Oxidation

_Cost Effectiveness {per 1 of VOC Descroycd)a

Waste—Gas Wastu-6as Vo voc 907 VCC DCSfrUCtLOnb 99% VOC Destruction”
Hent 'low pestroyed Dostroyed - St =
Content Rate (1b/hr) (1b/hr) No Heat Recuperative Waste-llcat No lleat Recuperative Waste-ticat
(Btu/scf) (scfm) at 90% at 99% Recovery Heat Exchanger Boiler Recovery Heat Exchanger Boiler
“é"“ 700 5.18 5.69 $2.00 $2.37 $2.63 $1.84 $2.18 $2.41
5,000 37.0 40.7 0.758 0.733 0.735 0.710 0.685 0.688
50,000 370 407 0.517 0.410 0.389 0.489 0.391 0.373
100,000 739 813 0.503 0.390 0.362 0.476 0.372 0.348
10 700 25.9 28.5 0.367 0.445 0.495 0.338 0.409 0.454
5,000 185 203 0.120 0.118 0.116 0.113 0.111 0.110
50,000 1,850 2,030 0.0719 0.0538 0.0472 0.0691 0.0524 0.0467
100,000 3,700 4,070 0.0692 0.,0497 0.0417 0.0665 0.0486 0.0416
20 700 51.8 56.9 0.188 0.219 0.239 0.173 0.201 0.219
5,000 370 407 0.0632 0.0529 0.0481 0.0596 0.0500 0.0459
50,000 3,700 4,070 0.0388 0.0200 0.0127 0.0373 0.0200 0.0135
100,000 7,390 8,130 0.0375 0.0180 0.00925 0.0361 0.0181 0.0104
10 (an air) 700 25.9 28.5 0.336 0.423 0,466 0.309 0.387 0.427
5,000 185 203 0.0977 0.0985 0.0961 0.0916 0.0924 0.0901
50,000 1,850 2,030 0.0518 0.0348 0.0297 0.0497 0.0342 0.0296
100,000 3,700 4,070 0.0488 0.0305 0.0242 0.0469 0.0302 0.0246

8y0Cc molecular weight = 50; molar heat of combustion = 730,250 Btu/lb-mole.
bl ft3 of catalyst per 1000 scfm.
€1.5 £t3 of catalyst per 1000 scfm.
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Table IV-4. Fuel Energy Effectiveness of Catalytic Oxidation

e e Incrgy Dffectiveness (Lu/lb of voC Destr
.. Ferayv Ue e . VO Do = <
Wente-G,, - _-tuel Lreray Usage (Ltaiz) Hat ocr gy Un.g -0 90. VOC Destruction” L 99% VOT e
Hoat Content No Heat Recovery Re atlte with Was te-loot toiler fon Hoeat Recuperative Waste-Heat HNo Heat Recup Crataive woalo~toeat
(Btu/sct)  or Waste-Heat Boiller loat H;*_Hr(if_tg_[’s_gifﬁ)vimv _lecovery o Heat Lychanger Boiler Rerovery Heat £.Thonaor Loiler
2 24.2 11.8 126,000 115,000 96,000 179,000 1u5,000 387,000
10 14.6 5.6 2,2 23,700 9,090 3,570 21,500 8,200 3,250
20 15.9 0 (6.1) L2 ,97%¢ 0 (4,900) 11,700 2 {(3,400)
10(1n aix) 10.1 g (1.0) 15,400 0 (1,620) 14,900 o] (1,4r0)
aVuC molecal e weaght = 50, 1,12t hool of oiwveiio: = 730,2%2 BLu/lb-wole,

3

b1 tt” of catalyst per 1370 scfm.

€1.5 ft3 of catalyst per 100U scfm.
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V. SUMMARY AND CONCLUSIONS

Catalytic oxidation is used in several industries as a control technique for
VOC emissions. The VOC in the off-gases from several processes in the synthetic
organic chemical manufacturing industry are controlled by use of catalytic
oxidation. A design criterion and design procedures are presented that allow
for a preliminary catalytic oxidation design. A catalytic oxidation system
with two destruction efficiencies and three heat recovery options, i.e., no
heat recovery, heat recovery with a recuperative heat exchanger, or heat
recovery with a waste-heat boiler, is considered. Capital and operating costs
are developed, and the annual cost of catalytic oxidation is calculated as a
function of the characteristics of the waste gas. The cost effectiveness and
energy effectiveness of the two VOC destruction efficiencies and of three heat

recovery cases are developed.

The conclusions of the cost evaluation are as follows:

1. The waste-gas flow rate is a highly sensitive variable in the determina-
tion of the annual cost and cost effectiveness (see Table IV-3). Energy
effectiveness is independent of flow rate. As the feed flow rate increases,

the annual costs increase but the annual cost per scfm decreases. The

annual cost per scfm decreases quickly between 700 and 4000 scfm. The

ratio decreases moderately between 4,000 and 40,000 scfm and is almost

constant above 40,000 scfm.

2. The cost effectiveness and the energy effectiveness are strongly dependent
on the waste-gas heat content, i.e., the VOC concentration (see Table IV-3,
Table IV-4, and Appendix B). At 20 Btu/scf or 10 Btu/scf in air no fuel
is required when recuperative heat recovery is used and the system is at
operating temperature so that the energy effectiveness is almost zero. At
the same VOC concentrations the recovery credit is greater than the fuel

energy required if a waste-heat boiler is employed.

3. The annual cost, cost effectiveness, and energy effectiveness are slightly
sensitive to the destruction efficiency or amount of catalyst (see
Tables IV-3 and IV-4 and Figs. IV-4 through IV-9). This sensitivity is

greater at low waste-gas flow rates than at high flow rates.
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APPENDIX A
PURCHASE COSTS FOR CATALYTIC OXIDIZERS,
CATALYST, AND WASTE-HEAT BOILERS
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ANNUAL COST DATA



SAMPLE CALCULATIONS—ANNUAL COST DATA

The following sample calculations are based on an off-gas stream having a
heat content of 10 Btu/scf and consisting primarily of nitrogen (combustion
alr must be supplied to the preheat burner and air must also be mixed with
the off-gas so that after combustion of the fuel to the burner and oxidation
of the VOC in the off-gas the flue gas contains 3 mole % oxygen) .

Basis of calculations:

Off-gas flow rate 8,000 scfm

Off-gas temperature 100°F

Destruction of VOC 99%

Flue gas to off-gas ratio 1.45 scf/scf (Takle II-1)
Heat recovery Waste-heat boiler generating

100-psig steam with 50% heat
recovery and flue gas in at
900°F and out at 500°F

Capital cost = $563,000; from Fig. IV-1.

Fixed cost = ($563,000 X 0.29%) + catalyst replacement cost ($16,000) = $179,000/yr.

Catalyst replacement cost =

catalyst purchase cost ($40,000) X installation factor (1.2)
3-yr replacement

.

Catalyst purchase cost = $40,000; from Fig. A-2
(1.45 X 8000 scfm = 11,600 scfm of flue gas).

Operating cost = fuel ($122,780) + electricity ($9,551) + labor ($36,000)
= $168,331/hr.

Fuel = [14.6 Btu/scf (Table II-1] X (8,000 scfm) X ($2.00/million Btu*) X
(60 min/hr) X (8760 hr/yr) = $122,780/yx.

Electricity =

i hp < scf of air + offﬁgas>
16 in. H.0 .0001575 £ :
(16 in. H,0 X (o 0001575 - o) X (8,000 scfm) X (1.45 SS2 Sk 0t

— 2 X

0.60 efficiency

X (0.746 kWh) X ($0.03/kWh*) X (8760 hr/yr) = $9,551/yr.

Labor = $36,000/yr (from ref 1); the labor cost for a system without
heat recovery is $18,000/yr.

*
See Table 1IV-2.



credit = (8.56 Btu/scf) X (8,000 scfm) X (1.45 scf of flue gas
scf of waste gas

X ($2.00/million Btu) X (8760 hr/yr) = $104,000/yr.

) X (60 min/hr)

Annual cost = fixed cost ($179,000/yr) + operating cost ($168,000/yr) -
credit ($104,000/yr ) = $243,000/yr.

annual cost ($243,000/vyr)

flow rate (8,000 scfm) $30.4/scfm.

Net cost =



CASE

NFF-GAS
FLOW

(SCFM)

NO HEAT RFCUVERY
700,
2000,
3000,
10000,
20000,
50000,
100000,

RECUFERATIVE HEAT EXCHANGER

37% HEAT RECOVERY
700,
2000,
5000,
10000,
20000,
50000,
100000.

WASTE HEAT BOTLER,100 FSIG STEAM

50X HEAT RECOVERY
700,
2000,
5000,
10000,
20000,
50000,
100000,

ANNUAL COSTS OF CATALYTIC OXIDATION SYSTEMS

CARPITAL
COST

($1000)

184.
236,
314,
411,
574,
1022,

i812.

236,
311,
429,
382,
841,
1547,
2740,

907 CONVERSIUN 0OF 90C

OFF-GAS HEAT CONTEHTS

0.0 BTU/SBCF

OFERAYTNG COST OR CREUIT ($1000)

FIXEN OFERATING RECOVERY

CosT rgsT CREDIT
S4. 36 [
71. 69, 0.
980 14':" o'
132, 273, 0.
192, 228, 0.
359. 1293, 0.
649, 2568, 0.
69, 38, 0.
?3. 59, 0.
131, 104, 0.
181, 183. 0.
268. 342, 0.
G307, 815, 0.
?10. 1602, 0.
74, 94, 9.
76, aa. 26
139, 167, 65,
191, 298, 130,
290, 359, 261,
561, 1343, 652,
79 2653, 1305,

NET
AMNUALTZED
COST OR UREDIT
($1000)

0.
140.
243,
405.
720.

16352,

3216,

107.
151,
237,
386,
610,
1322,

2512,

119,
158,
237,
358,
588 +
1253,
2327,

NET COS1
OR SAVINGS

($/SCFM)

129,
70.
47 .
41,
360
33,
32,

154,
76,
47,
37,
31,
26,

=
25,

170,
79
47,
36,
29.
25,

23,



CASE

NO HEAT RECOVERY

RECUFERATIVE HEAT EXCHANGER

OFF-GAS
FLOW

(SCFM)

700.
2000,
5000,

10000,
20000
50000,
100000,

177 HEAT RECOUVERY

WASTE HEAT KOILER,100 FSIG STEAN
50% HEAT RECOVERY
7

700,
2000.
5000
0000,

20000
50000,
100000,

2000,
5000,
10000,
20000,
50000,
100000,

anNuAaL C6S

OFF-1

CAFITAL
cosT

($1000)

184,
237,
316,
415,
580,
1037,
1845,

236,
311,
429,
5872,
841,
1547,
2740,

15 UF CATAIYTIC OXIDATION SYSTEMS

90% CONVERSION OF vOC
AS HEAT CONTENT:

2.0 BRTU/SCF

OFEKATING COST OR CRED(T ($1000)

FTXED OFERATING

cosT cosT
T4, 36
72, 70,
98, 147,
134, 274,
193, ERER
365, 1308,
661, 2598,
69 38,
93 39,
131, 107,
181, 186,
268, 345,
507, 822,
910. 1617,
74, 59,
97, 89,
136, 168,
192, 301,
292, 946,
566, 1360,
991, 26805

RELOVERY
CREDIT

0.
0.
00
0.
0'

[V

0.
ol

0.
OQ
0.
0.

9.
27.
&7,

133,
2646,
666,
1332,

NET
ANNUALIZED
COST OR CREDIT
($1000)

g1,
141,
246,
110,
729,
1673,
3259,

[

IE RSN SRS N o
RN AR S A e
N0 NN D
e + e e e = -

119,
159,
238,
339,
991,
12461,
2344,

MET COST
OR SAVINGS

($/3CFH)

129.
71.
AS .
41,
36,
321,
33,

154.
76,
A7,
37.
31,
27,

=
25

170,
79.
AB.
36,
30,
2%,

23,



CASE OFF~GAS
FLOW

(SCFM)

HO HEAT RECOVERY
700,
2000,
5000,
10000.
20000,
50000,
100000,

RECUFERATIVE HEAT EXCHANGER

36%Z HEAT RECOVERY
700,
2000,
5000,
10000,
10000,
50000.
100000,

WASTE HEAT EROILER,100 FSIG STEAM

50% HEAT RECOVERY
700,
2000,
S5000.
10000,
20000,
50000,
100000,

ANNUAL COSTS OF CATALYTIC OXIDATINN SYSTEMS

CAFITAL
CasT

($10090)

184,
236,
314,
All,
374,
1022,

1812,

2335,
309,
424,
576,
830,
320,

2684,

P07 CORNVFRSION OF voC

OFF-GNS HEAT CONTENT! 10.0 BTU/SCF

QFERATING CORT OR CREDIT ($1000)

FIXED OFERATING

cosT COST
4. 29,
71, 49.
?8. 97.
132, 175,
162, 333,
357, 305,
649, 1592,
69, 32,
?2. 41,
130. 61,
179. 96,
245, 165,
300, 371,
894, 715,
74, 47,
96 69
135, 11g.
191, 200,
290, 364,
961, 8337,
979, 1678,

RECOVERY
CREDIT

9.
26,

=
)

130,
261,
832,

1305,

MNET
ANNUALIZED
COST OR CREDIT
($1000)

83.
121,
192,
308,

enec
J:‘.'o

1144,

2241,

101,
133,
i¢t.
275,
429.
871.
1609,

112,
139,
1ee.
260,
393,
765
1351,

NET CO0ST
OR SAVINGS

($/SCFM)

119,
60,
3%,
31,
26,
23,

22.

144,
b6,
38‘
28,
21,
17,
146,

160,
69,
e,
26,
20,
15,

14,



OFF-GAS
FLOW

(SCFH)

NO HEAT RECOVERY
700,
2000.
5000,
10000,
20000,
50000.
100000,

RECUFERATIVE HEAT EXCHANGER

45% HEAT RECOVERY

700,

20000

5000,

10000.

20000,

50000,

100000,

WASTE HEAT BOILER»100 FSIG STEAM

624 HEAT RECOVERY
700,
2000.
5000,
10000,
20000,
50000,
100000,

ANNIIAL CDSTS NF CATAL(TIC OXIDATION SYSTEMS

CAFITAL
cosT

($1000)

187,
241,
323,
126,
600,
1087,
1958,

244,
326,
459,
633,
933,
1763,
3182,

258,
338,
478,
576
1027,
1962,

3295,

907 CONVERSION
OFF-GAS HEAT CONTENT?

of voc
20.0 BTI/SCF

DFERATING CNST OR CREDIT ($1000)

FIXED OFERATING
cosT cosT
59, 30.
73, G2,
101, 104,
138, 189,
202, 360,
383. 873,
702, 1729,
7:-)0 28.
97‘ 29.
139. 32,
196, 37.
295, 47,
572 77,
1041, 127.
76, 48,
101. 72,
146, 125,
210, 214,
326, 393,
637, 228,
1090, 1820,

RECOVERY
CREDIT

00
0.
0.
0.

0.
0‘

[V

0.
OQ
00
0.
0.

16,
46,
116,
231,
462,
1155,

2310,

NET
ANNUALIZED
COST OR CREDIT
($1000)

[ B S g

o~ t)O I Mm

ty~N A
. .

-

1257,

2430,

A
126,
171,
233,
342,
649,

1148,

108,
126.
154,
194,
257,
410,
999,

NET CNSY
OR SAVINGS

($/SCFH)

122,
63.
41,
33,
28.

I3
25,

24,

142,
63,
14,
230
17.
13,

12,

155,
63.
31,
19.
13,

8.



CASE

OFF-GAS
FLOW

NNUAL

OFF-GAS HEAT CONTENTS

90% CONVERSION OF vOC

COSTS OF CATALYTTC OXIDATION SYSTEHS

10.0 RTU/SCF(IN ALR)

(SCFM)

NO HEAT RECOVERY

700,

2000,

3000,

10000,

20009,

50000,

100000,

RECUFERATIVE HEAT EXCHANGER

53% HEAT RECOVERY
700.
2000,
3000,
10000,
20000,
50000,
100000,

WASTE HEAT DOILER,100 FSIG STEAHM

56% HEAT RECOVERY

700.

2000,

5000,

10000,

20000,

50000,

100000,

CAFITAL OFERATING COST OR CREDIT ($1000)
cosT FIXED OFERATING RECQVERY
CosT CDST CREDIT
($1000)
172, 91, 26, 0.
215, 64, 40. 0.
279, 86, 72, G.
357, 113, 127, 0.
482, 138, 236, 0.
802, 276, HT-R 0.
1330. 472, 1108, 0.
233, 68, 28. 0.
308, ?1. 28, 0.
428, 129, 31, 0.
385, 179 34, 0.
852, 265, 41, 0.
1573, 300, 63, 0.
2766, 888, 99, O
238, 70. 44, 8.
299, 88. J?. 23,
401, 121, 23, o8,
542, 166, 1350, 117,
789 . 247, 263, 233,
1438, 461, s04., 583,
2390, 779, 1172. 1167,

NET
ANNUALIZED
COST DR CREDIT
($1000)

760
104,
158,
240,
394 L
839,

1579.

P4,
120,
1460,
213,
307,

$87.

104,
124,
156,
199,
277,
481,
784,

NET COST
OR SAVINGS

($/SCFH)

109,
52,
2.
24,
20.
17.
16,

137,
50,
32,
21,
15,
11,
100

131,
620
31,
20,
14,
10,

8.



ANNUAL COSTS NF CATALYTIC OXIDATION SYSTEMS

99% CONVERSION OF V0OC
OFF-GAS HEAT CONTENT: 0.0 ETU/SCF

CASE OFF-0AS CARITAL QFERATING COST OR CREDIT ($1000) MET MET COST
FLOW cosr FIXED OFERATING RECOVERY ANNUALIZED NR SAYINGS
COST cosT CREDIT COST OR CREDIT
(SCFM) ($1000) ($1000) ($/5CFM)
NO HEAT RECOVERY

700, 185, 95, 36 0. 1. 130.

20600, 240, 74, 59, 0. 143, 2.

5000, 324, 104, 146, 0. 250. 30,

10000, 431, 145, 274, [ 119. 2.

70000, 613, 217. 531, 0. 748, 37.

50000, 1117, 418, 1300, 0. 1719, 34,

100000, 1996, 763, 2583, 0. 3346, 33,

RECUFERATIVE HEAT EXTHANGER
37% HEAT RECOVERY

700, 238. 70, 38, 0. 108. 59,
2000. 315, 95, 39 0. 154, 77,
50060, 439, 137, 106, 0. 243, 49.

10000, 601, 193, 186, 0. 379. 38.
20000, 878. 91, 3435, 0. 626, 12,
50000, 1635, G562, 22, 0. 1384, 28.
100000, 2912, 1017, 1616, Q. 2633, 26,

WASTE HEAT EDILER,100 FSIG STEAH
50% HEAT RECOVERY

700, 253, 75, 54, 9. 120, 172,
2000. 326, 99, 89. 26, 161, 81,
5000, AS4. 142, 168, 65, 244, 49,

10000, 632, 203, 299, 130, 372, 37,
20000, 48, 314, 562, 261, 615, 3.
50000, 1811, 619 1352, 652, 1319, 26

106000, 3134, 1093, 2668, 1305, 2457, 25.
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CASE

OFF-GAS

FLOW

(SCFM)

NGO HEAT RECOVERY
700,
2000,
5000,
10000,
20000,
50000,
J00000.

RECUFERATIVE HEAT EXCHANGER

37% HEAT RECOVERY
700.
2000,
3000,
10000,
20000,
50000.
100000,

WASTE HEAT BOILER,100 FSIG SIEAM

50% HEAT RECOVERY
700,
2000,
5000,
10000,
20000,
50000,
100000,

ANNUAL COSTS OF CATALYTIC OXIDATION SYSTEMS

CAPITAL
COST

(%1000)

184,
241,
327
435,
620,
1133,
2033,

238,
315,
439,
601,
878,
1633,

2912,

253,
328,
456,
635,
P95,
1828,
3171.

9¢7% COMUFRSION
OFF-6AS HEAT CONTENT?

OF vGC
2.0 BTU/SCF

OFERATING COST OR CREDIT (%1000)
FIXED QFERATING RECOVERY
cosT cosT CREDIT
359, 36, 0.
74, 70, 0.
105, 1A8, 0.
146, 278, 0.
219, 537, 0.
4235, 1316, 0.
778, 2613, 0.
70, 38, 0.
95, 39, 0.
137, 107, 0.
193, 187. 0.
291, 3ag, 0.
562, 829, 0.
1017, 1631, 0.
79, 59, ?.
9. 89, 27
143, 169, 67,
205, 302, 133,
317, 569, 266,
6246, 13468, 666,
1108. 2700, 1332,

NET
ANNUALTIZED
COST OR CREDIT
($1000)

9:'
144,
253,
424,
736,

1741,
3391,

109,
154,
244,
380.
639,
1391,
2648,

120,
162,
745,
374.
619,
1328,
2474,

NET COST
QR SAVINGS

($/3CFM)

155,
77,
A%,
38.
32,
28,
268,

11-4g



ANNUAL €NSTS OF CATAL(TJC OXIDATION SYSTEMS

997 LONVERSION OF VOC
OFF~-GAS HEAT CONTENT: 10.0 BTU/SCF

CASE OFF-GAS CAPITAL OFERATING COST OR CRELIT (41000) NET NET COST
FLOW cosT FIXED OFERATING RECOVERY ANNUAL TZED OR SAVINGS
COST CosT CRELIY COST OF CREDIT
(SCFM) ($1000) ($1000) ($/35CFH)

NO HEAY RECOVERY

700, 185, 95 29, 0. e4. 120,

2000, 240. 74, 50, 0. 124, 52,

5000, 324, 104. 97, 0. 202, 40,

10000, 131, 145, 177. 0. 322, 32,

20000, 613, 217, 316, 0. 553, 28,

50000, 1117, 418, 813. O 1231, 25,

100000, 1996, 763, 1607, 0. 2371, 24,

RECUFERATIVE HEAT EXCHANGER
34% HEAT RECOVERY

700, 237, 70, 2, 0. 102, 144,

2000. 313, 25, AL, 0. 1356, 68,

5000, 435, 136, 62, 0. 198, 40,

10000. 594, 191, ?7. [ 288, 29,

20000, 866. 287. 167, 0. 28, 23,

50000, 1608, 554, 378, 0. 933, 19.

100000, 2858, 1001, 72%9. 0. 1730, 17.

WASTE HEAT ROILERs100 FSIG STEAM
n0% HEAT RECOVERY

700, 253, 75, 48, 9. 113, 162,

2000, 326, 99 69, 26, 142, 71.

5000, 454, 142, 119, G 193, 39,

10000, 632, 203, 202, 130. 274, 27.

20000, 948, 314, 367, 261, 420, 21,

50000, 1811, 619, 8464, 632 831, 17,

100000, 3134, 1093, 1693, 1305, 14873 ., 15.
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CASE

OFF-GAS

FLOW
(SCFM)

NO HEAT RECOVERY
700,
2000,
5000,
10000,
20000,
50000,
100000,

RECUFERATIVE HEAT EXCHANGER

45%Z HEAT RECOVFERY
700,
2000,
3000,
10000,
20000,
50000,
100000,

WASTE HEAT BOILER,»100 FSIG STEAM

627 HEAY RECOVERY
700,
2000,
5000,
10000,
20000,
50000,
100000,

ANNUAL COSTS OF CATALYTTC

CAFITAL
cosy

($1000)

188,
244,
334,
443,
643,
118%.

2158,

2450
330,
468,
652,
$70.
18354,
3358,

260,
343,
489,
497,
1070,
20464,
3495,

99% CONVERSION
OFF-GAS HEAT CONTENT:

OXIDATION SYSTEMS

OF vnc
20.0 RTU/SCF

OFERATING €CDST OR

CREDIT ($1000)

FIXED OFERATING RECOVERY

€Os7 casy CREDIT
56, 30. 0.
76, 53, 0.
198, 104, 0,
151, 191, 0.
229, 363, 0.
147, 882, 0,
B26., 1745, 0.
73, 28, 0.
100, 29, 0.
144, 33, 0.
208, 38, 0.
319, 30, 0.
628, 84, 0.
1151, 141, 0.
77, 49, 16,
104, 2 446,
153, 126, 116,
224, 216, 231,
352, 3964, 4462,
701, 9?35, 11585,
1214, 1836, 2310,

MET
ANNIJALTIZED
COST OR CREDIT
($1000)

100,
129,
178,
247,
3469,
712,
1293,

109,
130,
163,
209,
286,
432,

740,

NET COST
OR SAVTINGS

($/SCFH)

123,
b4,
42,
34.
30.
27,
26,

143,
89,
Ry
25,
18,
14,
13O

156,
69,
33.
21.
14,
10.

7
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CASE OFF-GAS
FLOW

(SCFM)

NO HLA&T RECAVERY
700,
2000,
5000,
100060,
20000,
50000,
100000,
RECUFERATIVE HEAT EX{CHANGER
537 HEAT RECOVERY
700.

5000,
1007
0.
S000.
1000230,
WHSTE WAl EOILER,100 FOIG
ey HEAT RECOVERY
700,
2000,
5000,
10000,
20000,
50000,
100000,

CAFITAL

ANNUAL CO3TS OF CATALY1TC OXIDATINN SYSTEMS

cosvy

OFF-GAS HEAT CNNTENT!

($1000)

(R

Ty
g LD e NS

ta

3

ot

WO MLl DGl

1

~Jd O L

v

09,
8468,
1458,

) a0 A el o
Y & o N e b

-

240,
302,
407,
556,
816,
1504,
2519,

997 CONVERSIOM 0OF VGC
10.0 ETU/SCF(IN AIR)

OFPERATING CDST OR CRERTT ($1000)

TIXED
€osT

510
66,
0.
121,
1750
318,

L
532,

69,
93,
134,
138,

g

341,
?468.

71
0.
126,
175,
264,
502,

859 .

OFERATING
cas’y

26,
40.
73.
128,
238,
568,
1118,

28.
29.
31,
35,
43,
68,
109,

44,
39,
93,
151,
265,
609,
1182,

RECOVERY
CREDIT

0.
Q.
0.
0.
00

0.

8.
23.
SR,

117
233,
583,
1167,

NET
ANNUALTIZED
COST OR CREDIT
($1000)

77
105,
163,
249,
413,
886,

1670,

Sty a2ty o

O G 1D b =
ORIV I S I

1078,

MET COST
0R SAVINGS

($/SCFH)

110,
53,
33,
25,
2t
18.
17,

138,
51,
3.

a A

16.
12.

11,

[y
w
ty
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I. INTRODUCTION

This control device evaluation deals with volatile organic compound emissions
(VOC) being destroyed by a high-temperature oxidation flame to the normal
combustion products carbon dioxide and water. Three types of systems are
evaluated: an elevated flare, an enclosed ground flare, and using the emissions
as a fuel. To be controlled by these systems the emission must have sufficient
fuel value, or be enriched with auxiliary fuel, for a stable flame to be
maintained. Normal safety precautions for handling combustible gases must be
exercised. If the emission contains constituents such as sulfur and halogen
compounds, they will be oxidized to noxious gases that will be discharged to

the atmosphere.

The elevated flare, which is a single burner tip elevated above ground level
for safety reasons, burns the vented gases in essentially a diffusion flame.
This type of system, especially in the large sizes, can create problems with

luminosity, combustion noise, and heat radiation.

The ground flare is composed of multiple gas burner heads that are grouped in
an enclosure and are staged to operate based on the flow of the vented gas. The
enclosures reduce the luminosity, noise, and radiation problems and allows the

flare to be located at ground elevation.

For the emissions to be used as a fuel the need for it must be established and
transportation from the point of generation to the point of use must be possible.
These restrictions usually limit this control method to emissions that have a

fairly steady generation characteristic.

The three control systems can be used in combinations for improved handling of
emissions, for instance, for a facility that has some steady emissions, has
potential for some fairly frequent intermediate-size emissions, and requires infre-
quent emergency venting. The fuel-gas system could be designed to handle the steady
emissions; emissions in excess of the fuel needed would go to an enclosed

ground flare sized to handle the intermediate-size emissions; then further

excess emissions would go to an elevated flare sized to handle the emergency



venting. This combined system would maximize energy conservation, burn most of

the emissions in a potentially more efficient and acceptable manner, and yet be

capable of safely handling emergency conditions. Because a combined system is

very site-specific this report treats each control method independently.
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II. SYSTEM DESCRIPTIONS

ELEVATED FLARES

There are three general types of elevated flares: those that are nonsmokeless,
those that are smokeless, and those that are fired or endothermic. The first
type, which is the most simple one, is just a flare tip without any special
provision for enhancing the mixing of air into its flame. TIts use is limited
essentially to gas streams that burn readily without producing smoke, for
example, streams that contain predominately methane, hydrogen, or carbon mon-
oxide. In the second type, which is the one most widely used and is the most
versatile, an exterior momentum source is used to improve the flame-air mixing
and turbulence. The momentum sources that have been used are steam, water
sprays, high-pressure gas, air blowers, and compressed air. The third type
uses a high-energy-content fuel gas to provide heating value to a lean flare
gas that will not support a stable flame by itself, usually a gas with less
than 115 Btu/ft3 heating value.l* This type of flare has very limited use. It
has been used for disposal of such streams as sulfur tail gases and ammonia
waste gases. Although each flare type may have potential application to a
specific situation in the synthetic organic chemicals manufacturing industry,
this study deals only with the steam-assisted smokeless flare, which has been

reported to account for qreater than 95% of the flares installed.2

Figure II-1 is a diagram of a steam-assisted elevated smokeless flare system
showing the usual components that are used. The emission source gas is con-
veyed by a transfer line from the facility release point to the flare location.
The line is equipped for purging so that explosive mixtures do not occur in the
flare system either on startup or during operation. The usual purge gas is
natural gas, although other fuel gases and inert gases such as nitrogen can be

used.

Liquids that may be in the emission source gas or that may condense out in the
collection headers and transfer line are removed by a disentrainment drum
located close to the flare. Liquids in a flare gas can cause smoke to form

because of incomplete burning and if the size of the droplets® is greater than

*See Sect. VII for the references cited in this report.
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150 ym may generate a spray of burning chemicals that could reach ground level
and present a safety hazard. A water seal is usually located between the dis-
entrainment drum and the flare stack to prevent flashbacks into the system.

Other devices, such as flame arresters and actuated check valves, may sometimes

replace a water seal or be used in conjunction with it.

For safety reasons a stack is used to elevate the flare. The flare must be
located so that it does not present a hazard to surrounding personnel and
facilities; therefore the usual choice is to elevate it. The height is deter-
mined by designing for a maximum ground-level heat radiation and possibly also
for plume dispersion in case of emission ignition failure. A stack seal is
normally used just below the flare tip to impede the incursion of air back into
the flare system, which could create an explosion potential. The use of a seal

reduces the operating purge-gas requirements.

The burner tip is designed to give an environmentally acceptable combustion of
the flare gas over the flare system's capacity range. Consideration is given
to flame stability, ignition reliability, effective assist-steam injection,
and, possibly, noise suppression. The burner tips are normally proprietary in
design. Flame stability can be enhanced by flame holder retention devices
incorporated in the flare tip inner circumference. With burner tips with
modern flame holder designs the flame can be stable over a flare-gas exit
discharge velocity range of 1 to 600 fps.! Reliable ignition is obtained by
continuous pilot burners designed for stablility and positioned around the
outer perimeter of the flare tip. The number of pilot burners required depends
on flare size and, possibly, on flare gas composition and wind conditions. The
pilot burners are ignited by an ignition source system, which can be designed
for either manual or automatic actuation. Effective assist-steam injection to
promote turbulence and mixing of air into the flare gas flame for more effi-
cient combustion and smoke suppressions is generally accomplished by using
high-velocity steam jets positioned around the outer perimeter of the flare
tip. For the larger flares steam can also be injected concentrically into the
flare tip. For some proprietary designs steam injection includes the aspira-

tion of air along with the steam.



I1-4

Steam flow can be controlled manually but automatic control, based on flare gas
flow and flame radiation, gives a faster response to the need for steam and a
better adjustment of the gquantity required. The physical limitation on the
quantity of steam that can be delivered and injected into the flare flame
determines the smokeless capacity of the flare, which is usually less than its
stable flame capacity. The use of steam injection into a flare flame can
produce other results in addition to air entrainment and turbulence. For
example, the water in the steam can enter into a water/gas reaction with carbon
or into a steam—re-forming reaction with hydrocarbons; either reaction can
reduce smoke formation. Steam can moderate the flame temperature, which could
inhibit flare-gas consituents from participating in cracking reactions that
form carbon and smoke. A detrimental effect of steam usage is that it can
aggravate the flare noise problem by producing high-frequency jet noise and by
increasing the combustion rate. The jet noise can be reduced by the use of

small multiple steam jets and, if necessary, by accoustical shrouding.

ENCLOSED GROUND FLARES

An enclosed ground flare has multiple burner heads that are staged to operate
based on the quantity of gas being released to the flare. The size, design,
number, and arrangement of the burner heads depend on the flare-gas characteri-
stics. An exterior motivation source, such as steam or air, to enhance com-
bustion and prevent smoke formation is not required except in rare applica-
tions. Stable combustion can be obtained with some gases that have heat con-

tents as low as 50 to 60 Btu/ft® (ref 4). Reliable and efficient operation can
be attained from O to 100% of capacity.*

Figure 11-2 is a diagram of an enclosed ground flare system with the components
that are normally used. The emission source gas is conveyed from its facility
release point to the flare location by a transfer line. Purge gas probably is
needed only for initial purging of the system on startup. Liquids that may be
in the emission source gas or that may condense out in the collection headers
and transfer line are removed by a disentrainment drum located close to the
flare. If a potential for overloading the ground-flare system exists, the
excess gas may need to be diverted to an elevated flare or other safety precau-
tions taken. A water seal can be located between the disentrainment drum and

the ground flare if the potential exists for flashbacks into the system.
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The number of burner heads and their arrangement into groups for staged opera-
tion depend on the discharge characteristics of the emission source gas. To
ensure reliable ignition, pilot burners with ignitors are provided. The burner
heads are enclosed in a shell that is internally insulated and that can be of
several shapes, such as cylindical, hexagonal, or rectangular. The height
must be adequate for creating enough draft to supply sufficient air for smoke-
less combustion of the waste gas and for dispersion of the thermal plume.

Also, dispersion of toxic substances or VOC on flameout can be a problem. The

base of the enclosure is surrounded by an accoustical fence.

FUEL-GAS SOURCE

To use an emission as a fuel gas requires that the emission be of fuel quality
and that it be collected from its source and transported to the point of use.

A typical system is shown in Fig. II-3; an actual system may differ signifi-
cantly, depending on site-specific factors. The decision to use an emission as
a fuel gas is normally based on economics. For a system to be economically
viable usually requires that the emission be fairly consistent in flow and
quality and that there be a use for it in a transportable distance. If there is
a potential for overloading the system or if there may not be a use for the
fuel in the quantity generated or when generated, the excess may be diverted to

a ground or elevated flare.
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IIT. SYSTEM EFFICIENCIES

Little information is presently available on the combustion efficiency of
flares. Although some test data are available (and discussed below), the
results are not applicable to the combustion of typical SOCMI off-gas streams
in typical SOCMI flares.

Flare efficiencies of 98% and 99% are used for the purpose of cost-effective-
ness calculations in this report. It should not be assumed that typical SOCMI
flares will obtain efficiencies in this range. Well-designed and well-operated
small flares burning easily combusted gases do obtain high efficiencies but
further work is necessary to determine efficiencies of typical flares in this
industry. The EPA is presently (1981) conducting studies on the efficiencies

obtained by a variety of flares at typical operating conditions.®

STEAM-ASSISTED ELEVATED FLARES

An elevated flare without steam assistance would burn as one large diffusion
flame. A diffusion flame is one in which air diffuses across the boundary of
the fuel/combustion product stream toward the center of the fuel flow, forming
an envelope of a combustible gas mixture around a core of fuel gas. This
stream, on ignition, establishes a stable flame zone around a gas core above
the burner tip. This inner gas core is heated by diffusion of hot combustion
products from the flame zone. Cracking can occur with the formation of small
hot particles of carbon that give the flame its characteristic luminosity. If
there is an oxygen deficiency and if the carbon particles are cooled to below
their ignition temperature, they can escape the flame zone as smoke. Also, in
large diffusion flames, combustion product vortices can form around burning
portions of the gas and shut off the supply of oxygen. This localized insta-
bility causes elongations and contractions (flame flickering), which can be
accompanied by soot formation. Steam jets directed into the flame or used to
aspirate air into the flowing gas improve the mixing of air with the fuel and
give the flame some premixed flame character, thereby reducing or eliminating

soot formation.

Sampling a commercial-size flare is very difficult with the methods now avail-

able and results obtained from testing small flares cannot at the present time
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be scaled up for commercial-size flares. Three programs are reported for
testing smaller sized commercial flares.!’¢’7 1In one program flares with
2-in., 3-in., and 6-in. tip sizes were tested;! results are given for selected
tests with natural gas as the fuel and without the use of assist steam. From
those results the methane hydrocarbon feed destruction efficiency was calcu-
lated to be >90% in only two tests and <70% in four tests. In another program®
the flare tip size was 16 in.; the flare gas was a mercaptan in nitrogen and

assist steam was not used. The efficiencies reported ranged from 92 to >99%.

An extensive flare test program has been conducted in Germany.’ The flare tip
was a truncated cone 20 cm (7.9 in.) at the flare-gas entrance, 50 cm

(19.7 in.) long, and 70 cm (27.6 in.) at the exit. The cone was fitted with
six steam nozzles that aspirated air into the flaming gas before it exited the
cone. The operating parameters used were the following: flare gas flow, 0.13
to 2.9 mt/hr; gas composition density, 0.54 to 1.86 kg/m3; steam-to-gas weight
ratio, 0 to 1.73; and cross wind, 0 to & m/s. The gases combusted had a high
proportion of hydrogen and a low proportion of unsaturated hydrocarbons.
Typically the hydrogen concentration was greater than 50%. Of 1298 measure-
ments at the flame end and downstream from the flame end for the complete range
of test conditions, in only 4 measurements were the local burnouts to carbon

dioxide less than 99%.

The efficiencies used for cost-effectiveness calculations in this report are
99% for flares to 12 in. in diameter and 98% for flares over 12 in. in diam-

eter.

ENCLOSED GROUND FLARES

An enclosed ground flare burns with multiple small diffusion flames from burner
heads that can be stage-operated based on flare gas flow and that are enclosed
on the sides. An enclosed ground flare has the control capabilities to maxi-
mize combustion efficiency for most operating conditions. The burner heads can
be sized and designed for the materials in the flare gas; they can be stage-
operated to give a turndown from 100 to 0%* of design; and the enclosure design

allows for a degree of combustion air and temperature control.
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Although the design of an enclosed ground flare would allow the combustion
gases to be monitored to determine combustion efficiency, there are no reported
test programs on commercial-sized units. One reference! cites that a perfor-

mance estimate was made for an open-flare flame.

The efficiency used in this report for cost-effectiveness calculations is 99%.

FUEL-GAS SOURCE

When an emission is used as a fuel gas, the VOC destruction efficiency depends
on the waste gas composition and on the combustion conditions. The efficiency
used in this report for cost-effectiveness calculations is >99.9%. According
to the emission factors given in AP-42% for natural gas and LPG when burned
under proper operating conditions, this efficiency is attained. This combus-
tion efficiency does not apply to dilute VOC streams introduced into a combus-

tion device in any way other than as a fuel gas.
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IV. DESIGN BASIS

The capital and operating costs developed for this study are based on model
designs discussed in this section. The three control systems, steam-assisted
elevated flares, enclosed ground flares, and emissions used as a fuel source,
are evaluated independently. For all systems a model-waste-gas emission was
used that had properties equivalent to those of propylene. The standard con-
struction material is carbon steel except where it is standard practice to use

other materials, such as burner tips.
STEAM-ASSISTED ELEVATED FLARES

Flare-Tip Capacity

The maximum and minimum capacity of a flare tip to burn a flared gas with a
stable flame (not necessarily smokeless) is a function of tip design. At too
high an exit velocity the flame can lift off the tip and flame out, while at
too low a velocity it can burn back into the tip or lick down the sides of the
stack. Modern commercial flares with flame retention rings are reported to
have stable flame capabilities over flare-gas discharge velocities of 1 to 600
fps.! The actual maximum capacity of a flare tip is usually limited by the
flare-gas pressure available to overcome the system pressure drop. For the
purpose of determining flare heights the practical capacity in this study was
assumed to be the model-waste-gas flow at ambient conditions, which results in
a flare-tip pressure drop of 18 in. H,0. For the larger flare-tip sizes these
conditions would result in a discharge velocity of about 200 fps. Flare capa-
city based on the correlations in ref 9 (see Appendix A) is plotted in

Fig. IV-1.

The capacity of a steam-assisted flare to burn smokelessly is limited by the
quantity of steam that is available. There is a physical limit to the quantity
of steam that can be effectively delivered to a flare tip. Figure IV-2 is a
smoothed curve of the quantity that can be delivered based on a practical
design of steam piping on the flare and on 150-1b steam pressure being avail-
able to the flare site.!® BAnother steam limit could be the availability of
steam-generation capacity. In this study it was assumed that steam would be

available to the flare site, on demand when needed.
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The steam requirement per quantity of flare gas depends on the composition of
the gas flared and on the flare-tip design. Typical values range from 0.15 to
0.50 1lb of steam per pound of flare gas.1?! Olefins, such as propylene, re-
quire higher steam ratios than would a paraffin hydrocarbon to burn smokeless-
ly. A flare with a small-diameter tip can use steam more efficiently than a
large-diameter tip to mix air into the flame and promote turbulence. The
ratios of steam to model waste gas used in this study, which are based on
experience,!® are 0.3 1b per pound of flare gas for flare tips to 24 in. in
diameter and 0.45 1b/lb for larger flares. The design also assumes instrument
control of steam flow for optimum usage. Smokeless flare capacity based on

those ratios and on the steam availability shown in Fig. IV-2 is plotted in
Fig. IV-1.

Flare Height

The flare-height design is usually a function of maximum ground-level heat-
radiation intensity. This study is based on the assumptions of a ground-level
radiation of 1500 Btu/(hr)(ft2?), which is the maximum allowed for short-term
personnel exposure, and of a sunny-condition solar radiation of 300 Btu/(hr)
(£t2) .3 The difference, 1200 Btu/(hr)(ft2), is the maximum design radiation
from the flare flame. Figure IV-3 is a plot of the total flare heights used
and is based on the equations given in ref 12 (see Appendix A). It is further
assumed for cost estimating purposes that as a minimum a 40-ft flare height is
required. (The minimum height requirement can be very site specific; one

company reports that they use 150 ft as a minimum standard.)?!3

Flare height may sometimes be determined by the need to safely disperse the
flared gas in case of flame out. The height in these cases would be based on

dispersion modeling for the particular installation conditions.

Purge-Gas Requirements

The minimum continuous purge gas required is determined by the design of the
stack seals, which are usually proprietary devices. An older reference'*
reports that the gas velocity required is 0.10 to 0.15 fps; modern seals are
stated to require less. This study is based on a flow of 0.03 fps, !9 which is
stated to be adequate for normal applications without any type of conservation.

. . . . 1 5
Use of various purge-gas conservation systems can reduce this consumption.
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The purge gas is assumed to be a constant flow of natural gas at 60°F and
1 atm. Figure IV-4 shows a plot of these requirements. Purge gas also may be
needed to purge the system before startup and to prevent a vacuum from sucking

air back into the system after a hot gas discharge is flared. These uses are

assumed to be minor.

Pilot-Gas Requirements

Pilot-gas usage is a function of the number of pilot units required to ensure
positive ignition of the flared gas, of the design of the pilots, and of the
mode of operation. This study is based on the practice of one vendor for a
certain number of pilots versus the flare size, the pilot size, and the use of

a wind speed and direction controller to operate the pilots for gas conserva-

tion.1®

The average pilot-gas consumption under these conditions for all flare
sizes is 60 scfh. Figure IV-4 is a plot of these requirements, as well as of

the gas requirement without gas conservation control.

Gas Transfer Lines

The gas collection header and transfer-line requirements are very site specific
and depend on the process facility where the emission is generated and on where
the flare is located. For the purposes of estimating capital cost and system
pressure drop it was assumed that the gas transfer line would be the same size
as the flare tip and that the total length would be 3 times the calculated
flame length at 18 in. Hy0 flare-tip pressure-drop capacity, but with a 100-ft
minimum. Figure IV-5 is a plot of the gas transfer-line length used and the

calculated flame length (see Appendix A for flame-length calculation equation).

System Pressure Drop

The total system pressure drop is a function of the design of the various

system components and the flare-gas flow. The following pressure-drop relation-
ships are assumed:!0’16

Flare tip, calculated (see Appendix A)

Stack seal, 1.5 times flare-tip AP

Stack

Water seal 0.5 times flare-tip AP
Disentrainment drum

Transfer line, calculated based on diameter, length, and gas flow
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Figure IV-6 is a plot of system pressure drops for operation at smokeless
capacity and at 18 in. H,0 flare-tip pressure-drop capacity. For this study it
was assumed that the process emissions would have sufficient pressure to over-

come the system pressure drop.

ENCLOSED GROUND FLARES

aAn enclosed ground flare consists of burner heads designed for the flare-gas
properties in sufficient number to handle the maximum design flow and staged to
operate based on the flare-gas flow rate. The enclosure is of sufficient cross
section for the maximum heat release and is high enough to shield the illumina-
tion and radiation from the flame and to adequately disperse the heat plume.
Figures IV-7, 8 and 9, based on information from a vendor for an enclosed
circular type of ground flare,l® give the capacity, height, and pilot-gas
requirements used in this study. It was assumed for estimating costs that the
flare would be located in the area where the emission is generated and that the
waste gas emission transfer-line requirement would be minimal. The location of
the flare can be very site specific and the cost in some cases can be signifi-
cant, especially in retrofit situations. It is estimated that 1-psig maximum
gas pressure will be adequate to activate the burner head staging controls and
to assure proper burner operation. It was also assumed that the process emis-

sion would have sufficient pressure to overcome the system pressure drop.

If the potential emission rate to the enclosed ground flare can overload the
flare, it should have overfire protection and probably should be associated
with an elevated flare or some other safety precaution to take care of the

overload.

FUEL-GAS SOURCE

The design of a system to use an emission as a fuel-gas source is site specif-
ic. For the purposes of estimating capital and operating costs the following
assumptions were made for this study: The compressor is located in the area
where the emission is generated and the gas collection line required is mini-
mal, the compression ratio is from 0 to 30 psig, the high-pressure transfer
line is 500 ft, and the system capacity is the model-waste-gas flow that gives
0.5-psi pressure drop per 100 ft of the high-pressure line. Figure IV-10 is a
plot of the transfer-line fuel-gas capacity.
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If the potential emission rate to the fuel-gas source can overload the compres-
sor or if there is not a reliable use for the emission, then an associated
flare system or some other method probably should be provided to handle the

emission during these periods.



V. COST AND ENERGY IMPACTS

The capital and operating costs and the energy impacts in this section are
based on the model designs discussed in Sect. IV and on a model waste gas with
properties similar to those of propylene as the emission. Each control sys-
tem—steam-assisted elevated flares, enclosed ground flares, and use of the
emission as a fuel source—is evaluated independently. To aid in adjusting the
costs presented in this section to other situations that may vary considerably
from the model conditions assumed, the installed capital costs of each system

are presented based on the physical sizes shown in Appendix B.

The estimated capital costs represent the total investment, including all
indirect costs such as engineering and contractors' fees and overheads that
will be required for purchase and installation of all equipment and material to
provide a facility as described. These are battery-limit costs and do not
inlcude the provisions for bringing utilities, services, or roads to the site,
the backup facilities, the land, the research and development required, or the
process piping and instrumentation interconnections that may be required within
the process generating the waste gas. These costs are based on a new-plant
installation; no retrofit cost considerations are included. Those costs are
usually higher than the cost for a new-site installation for the same system
and include, for example, demolition, crowded construction working conditions,
scheduling construction activities with production activities, and longer
interconnecting piping. These factors are so site specific that no attempt has
been made to provide costs. For specific retrofit cases, rough costs can be
obtained by using the new-site data and adding as required for a defined speci-

fic retrofit situation.

The method used to develop these estimated capital costs was based on prelim-
inary vendor quotes for the purchase and installation of major equipment items
or from such sources as Richardson Engineering Co. data and factoring up to
total installed costs based on the factors in Table V-1. The expected accuracy
of the total installed cost with this degree of engineering detail using these
methods is t30%. These methods of obtaining estimated total installed capital
costs are suitable for a cost study or for screening estimates. The bases used

in calculating annual operating costs are given in Table V-2.



Table V-1. Factors Used for Estimating Total Installed Costs

A = Major equipment purchase cost plus 0.1 to 0.35 allowance

Installation costs
Foundations

Structures

Equipment erection

Piping

Insulation

Paint
Fire protection

Instxuments

Electrical

0.06A + $100 X number of pumps

0.15A (no structures) to 0.30A (multideck

structures)

0.15A to 0.30A (depending on complexity)
0.402 (package units) to 1.10A (rat's

nest)

0.06A or 0.15 X piping (normal) to 0.30 X

piping (bulk hot or cold)

0.05A
0.01A to 0.06A (depending on requirements
0.10A to 0.30A or 0.01A to 0.25A +

$50,000 to $300,000 for process control
computer

0.152A or 0.05A + $500 per motor

B = Base cost
Sales tax
Freight

Contractoxr's fees

A + sum of installation costs
0.25A + 0.025B

0.16A

0.30 (B-n)

C = Total contract
. ..a
Engineering

Contingencies

B + taxes, freight, and fees
0.01C to 0.20C
0.15C

D = Process unit installed cost

C + engineering + contingencies

E = Total subestimates

sum of semidetailed subestimates (build-

ings, site development, cooling towers,
etc.); each subestimate should include
taxes, freight, fees, engineering, and
contingency, and should be escalated
to date of expenditure for that cost
component; engineering costs, conting-
encies, and escalation factors for thes
subestimates will vary according to the
type of job involved

F = Total project cost

D + E

81ncludes cost from capital project teams,
an¢ other support groups.

process engineering, engineering, purchasing,

bContingency should not be applied to any cost component that has been comnitted by eith

purchase order or contract.



Table V~2. Annual Cost Parameters

Operating factor 8760 hr/yra
Operating labor Negligible
Fixed costs

Maintenance labor plus
materials, 6%

Capital recovery, 18%b 29% of installed

. capital cost
Taxes, insurances,

administration charges, 5%

Utilities
Electric power $0.03/kwh
Steam $2.50/thousand 1b
Natural gas $2.00/thousand ft3
Heat recovery credits $2.00/million Btu

(equivalent to natural gas)

aControl devices will usually be available for operation on the same cycle as
the process. Process downtime is normally expected to range from 5 to 15%.
From the standpoint of cost-effectiveness calculations the error introduced
by assuming continuous availability is minor. The percent of capacity opera-
tion that the control device is utilized will be discussed as a variable in
this section.

bBased on 10-year life and 12% interest.



STEAM-ASSISTED ELEVATED FLARES

The installed capital costs, annual operating costs, cost-effectiveness, and
energy-effectiveness curves for the model systems based on the model waste gas
as the VOC emissions are shown in Figs. V-1 to V-4 respectively. For installed

capital costs based on flare size see Appendix B.

The annual operating cost will vary with the capacity of operation because

steam assistance is used only during the time that flaring takes place. Nor-
mally an elevated flare will operate for only a very small percentage of the
time; even so, steam costs can be an important factor. 1In this study it was
assumed that 150-psig steam is available to the flare on demand at a nominal

cost of $2.50 per thousand pounds.

The cost effectiveness and energy effectiveness of elevated flares are sensi-
tive to the capacity of operation in the low ranges of operation that are
normal. One-tenth percent of annual capacity operation is equal to about 9 hr
per year of flaring at smokeless capacity, or 18 hr at half capacity. Natural
gas used for purge gas and for the pilots and steam used for injection at the
flare tip are the sources of energy consumption. It was assumed that modern
flare-tip seal designs would be used to minimize the need for purge gas and
that instrumentation would be used to reduce pilot-gas consumption. The devia-
tion in cost and energy effectiveness shown on Fig. V-3 and V-4 at the larger
capacities results from a higher ratio of steam to model waste gas being used
for flares larger than 24-inch tip diameter and from the fact that purge gas
consumption increases as the cross section of the flare while the smokeless
capacity proportionately decreases because of steam availability. This effect
is more pronounced for the lower percent of annual capacity operation and for

the energy effectiveness ratio.

The cost and energy effectiveness presented here is based on the flare being
used for pollution control. This must pe evaluated with caution in many actual
situations since elevated flares are frequently designed and installed as

safety devices.
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ENCLOSED GROUND FLARES

The installed capital costs, annual operating costs, cost-effectiveness, and
energy-effectiveness curves for the model systems based on the model waste gas
as the VOC emission are plotted in Figs. V-5 to V-8 respectively. For

installed capital costs based on flare size see Appendix B.

The cost effectiveness and energy effectiveness of ground flares are sensitive
to the capacity of operation in the low ranges of operation that are probable.
A 0.25% of annual capacity operation is equal to about 22 hr per year of
flaring at capacity, or 44 hr at half capacity. The discontinuities in the
energy-effectiveness curves reflect the need for additional pilot burners as

the flare increases in size.

FUEL-GAS SOURCE

The installed capital cost, annual operating costs, and cost-effectiveness
curves for the model systems based on the model waste gas are shown in
Figs. V-9 to V-11 respectively. For installed capital costs based on the

fuel-gas-line size see Appendix B.

The costs associated with the use of VOC emission as a fuel gas are very site
specific. The costs presented here are valid only for the models described but
are descriptions of what may be expected. There is a cost-effectiveness sav-
ings, except for low-capacity operation, when the VOC emission is credited at a
fuel-gas value equivalent to $0.0392 per pound of model waste gas ($2.00/mil-
lion Btu). Use of VOC as a fuel may be an attractive disposal method but only
if the emission meets the requirements of being satisfactory for use as a fuel,
is reasonably consistent in generation, and there is an adequate use for it at

a reasonable distance.

Using a VOC emission as a fuel can be very energy effective. For the model
system about 40 Btu of electrical energy is consumed per pound of model waste
gas compressed, whereas the net heat of combustion for the model waste gas is

19,600 Btu/lb.
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VI. SUMMARY AND CONCLUSIONS

The emission control methods of burning VOC emissions in an elevated flare, in

a ground flare, or using it as a fuel have been evaluated in this study.

Flares frequently are installed primarily for the purpose of safety. Each

control method has its advantages and its limitations and could, for appro-

priate emission sources, be installed in an integrated system. Such integrated

systems would be very site specific and are beyond the scope of this study.

STEAM-ASSISTED ELEVATED FLARES

1.

Steam-assisted elevated flares can be designed for large capacities and
can take overloads, but the smokeless capacity is usually limited to the
amount of steam available.

Operation can be highly transitory.

The data on VOC destruction efficiency are limited. This study for cost-
effectiveness presentation purposes only is based on an efficiency of 99%
for flare tips under 12-in. diameter and 98% for those over 12-in. diameter.
The EPA is conducting further testing.

An elevated flare must be ready for use at any time that there is poten-
tial for emissions, but it may be actually flaring for a very small per-
cent of the time. Under these circumstances the energy consumption per

quantity of VOC destroyed could be high.

ENCLOSED GROUND FLARES

1.

Enclosed ground flares can be designed for a wide capacity range but may
need overload protection if potential for overloading exists.

Operation can be highly transitory, but 100 to 0% of capacity turndown
exists.

VOC destruction efficiency data are not available; a 99% destruction was
used to calculate cost effectiveness.

When a ground flare is used to burn emissions for only a small percent of
its available time, the energy consumption per quantity of VOC destroyed
can be high. The energy use can be comparable to that of an elevated

flare that is designed and operated to minimize natural-gas consumption.
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C. FUEL-GAS SOURCE
1. Using VOC emission as a fuel can give a cost-effectiveness savings pro-
vided that the emission is of fuel quality, is produced in a reasonably
consistent volume, and there is an adequate use for it.
2. The VOC destruction efficiency used for cost-effectiveness calculations
was >99.9%. According to emission factors given in AP-42 for natural gdas
and LPG when burned under proper operating conditions, this efficiency is

attained.
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ELEVATED-FLARE DESIGN EQUATIONS



FLARE CAPACITIES AND PRESSURE DROPS

Flare capacities and pressure drops used in this report are based on the

*
following relationship:?

7 3 I/ 1t 460 13

Vip

where
D = flare-tip diameter, in.,
F = flare gas flow rate, lb/hr,
T = temperature, °F (assumed to be 60°F),
MW = molecular weight (propylene, 42),
Ap = flare-tip pressure drop, in. H,0.

FLARE HEIGHTS

The flare heights used in this report are based on the following relationship:12

_l/FXLHVXS_ l/@g
H = 12 56 1 3.33 D T Cos Q |,

where

147V
© = tan ! =,
4p
550 Tc

in which Vw = wind velocity, mph (assumed to be 60),

H = flare height, ft,
F = flare gas flow rate, 1b/hr,
LHV = flare gas lower heating value, Btu/lb (propylene, 19,600).
¢ = flame emissivity (propylene, 0.13),
I = flame radiation intensity, Btu/(hr)(ft?) (assumed to be 1200),
D = flare-tip diameter, in.,

Ap = flare-tip pressure drop, in. H,0.

*See Sect. VII for references.



FLAME LENGTHS
The flame lengths used in this report to determine the gas transfer-line

lengths are based on the following relationship:?

%
L. =10 X D X <éE>

f 55
where
Lf = flame length, ft,
D = flare-tip diameter, in.,

Ap = flare-tip pressure drop, in. Hy0 (assumed to be 18).
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Installed Capital Cost of Ground Flares
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COST AND ENERGY SAMPLE CALCULATIONS

This report is based on using a model waste gas with properties similar to
those of propylene as the VOC emissions. The curves presented can be used in
most cases for other VOC emissions with results probably within the accuracy of
the curves developed. For emissions that have a character significantly
different from the model ones it may be advisable to review the design bases
discussed in Sect. IV and then use the installed capital costs given in

Appendix B.

STEAM~ASSISTED ELEVATED FLARES

This example is based on a 23,000-1lb/hr maximum model-waste-gas VOC emission
rate.

Installed Capital Cost Versus Flare Capacity (Fig. v-1)

a. From Fig. IV-1, a 10-in. tip diameter flare is required.

b. From Fig. B-1, the installed capital cost for a 10-in. flare is $105,000.

Gross Annual Operating Cost (Fig. V-2)

a. From Table V-2 the fixed cost, including capital recovery, is 29% of the

installed capital cost:

105,000 X 0.29 = $30,450/yr.

b. From Fig. IV-4 the natural gas used for the pilots is 60 scfh and for

purging it is 60 scfh. From Table V-2 the cost for gas is $2.00 per
thousand ft®:

2.00 _
(60 + 60) X 8760 X 1000 = $2100/yr.
C. From Sect. IV-A-1 of the report 0.3 1lb of steam is required per pound of

VOC; from Table V-2 the cost for steam is $2.50/thousand 1b:



2.50

0.3 X 23,000 X 8760 X 1665 X fraction of annual capacity operation

= 151,000 X fraction of annual capacity operation.

d. Annual cost summary
Cost per Capacity Operation of
100% 1% 0%
Fixed $ 30,450 $30,450 $30,450
Gas 2,100 2,100 2,100
Steam 151,100 1,510
Total $183,650 $34,060 $32,550

Cost Effectiveness (Fig. V-3)

Cost effectiveness is the gross annual operating cost (A-2-d above) divided by

the annual waste-gas VOC destroyed at 99% efficiency.

a. Annual VOC destroyed = 23,000 X 8760 X 0.99 X annual fraction of
capacity operation.

b. Example at 1% of annual capacity operation is

34,060
23,000 X 8760 X 0.99 X 0.01

= $0.017/1b of VOC destroyed.

Energy Effectiveness (Fig. V-4)
Energy effectiveness is the energy consumed in the gas pilots, the purging gas,
and the steam-assist gas divided by the annual waste-gas VOC destroyed at 99%,

or 98% efficiency.

a. From A-2-b, natural gas consumed is 120 scfh, at 1000 Btu/ft3 =
120,000 Btu/hr.

b. From A-3-c, steam consumed is 0.3 1lb/lb of waste-gas VOC, at 1000 Btu/lb
of steam; this results in 300 Btu/lb of waste-gas VOC.



C. Example at 1% of annual capacity operation:
120,000 X 8760 1 _
(23,000 X 8760 x 0o 300) X 095 - 830 Btu/lb of Voc destroyed.

ENCLOSED GROUND FLARES

This example is based on 20,000-1b/hr maximum waste-gas VOC emission rate.

Installed Capital Cost Versus Flare Capacity (Fig. V-5)

a. From Fig. IV-7 a 15-ft-diam enclosure flare is required.

b. From Fig. B-2 a 15-ft enclosed ground flare installed capital cost is
$248,000.

Gross Annual Operating Cost (Fig. V-6)

a. From Table V-2 the fixed cost is 29% of the installed cost:

248,000 X 0.29 = $71,900/yr.

b. From Fig. IV~9 the natural gas used for the pilots is 100 scfh. From
Table V-2 the cost for gas is $2.00/thousand ft3-:

2.00

100 X 8760 X 1000 $1750/yr.
c. Total Cost
Fixed $71,900
Gas 1,750
573,650

Cost Fffectiveness (Fig. V-7)
Cost effectiveness is the gross annual operating cost (B-2-c¢) divided by the

annual waste-gas VOC destroyed at 99% efficiency.



a. Annual VOC destroyed = 20,000 X 8760 X 0.99 X annual fraction of

capacity operation.

b. Example at 1% of annual capacity operation:

73,650
20,000 X 8760 X 0.99 X 0.01

= $0.042/1b of VOC destroyed.

Energy Effectiveness (Fig. V-8)

Energy effectiveness is the energy consumed for the pilots divided by the

annual waste-gas VOC destroyed at 99% efficiency.

a. From B-2-b, natural gas consumed is 100 scfh; at 1000 Btu/ft® amounts to
100,000 Btu/hr.

b. Example at 1% of annual capacity operation:

100,000 X 8760
20,000 X 8760 X 0.99 X 0.01

= 505 Btu/lb of VOC destroyed’

FUEL-GAS SOURCE

This example is based on 850-1lb/hr maximum waste-gas VOC emission rate.

Installed Capital Cost Versus Flare Capacity (Fig. v-9)

a. Figure IV-10 shows that a 2-in. fuel-gas transfer line is required.

b. Figure B-3 indicates that a 2-in. line installed capital cost is $65,000.

aAnnual Operating Costs

a. From Table V-2 the fixed cost is 29% of the installed cost:

65,000 X 0.29 = $18,850/yr.

b. The electrical power consumption for compressing the gas must be calcu-

lated. For the model system of compressing from atmospheric pressure to

30 psig the adiabatic horsepower required was calculated to be 9.65



(Eq. 6-23 on page 6-16 of Perry's Chemical Engineers Handbook, 5th ed.,

McGraw-Hill, was used). Assuming an 85% electric motor efficiency and an
85% compressor efficiency and converting horsepower to kilowatts (1 hp =

0.746 kW), the electric power consumption rate is

1 1 _
9.65 X O~8—§ X 0 8% X 0.746 = 9.96 kW.

From Table V-2 the electrical cost is $0.03/kWh. For a 60% of annual

capaclity operation example the cost is

9.96 X 8760 X 0.03 X 0.60 = $1570/yr.
From Table V-2 the fuel credit is $2.00/million Btu. For waste gas with a
net heating value of 19,600 Btu/lb this is equal to a credit of $0.0392/1b
of waste gas. For the example of 60% of annual capacity operation the
credit is

850 X 8760 X 0.6 X 0.0392 = $175,130/yr.

Annual cost summary

Fixed $18,850
Electrical 1,570
Gross (Fig. V-10) 20,420
Credit (175,130)
Net (154,710) Savings

Cost Effectiveness (Fig. V-11)

Cost effectiveness is the net annual operating cost (C-2-d) divided by the

annual waste-gas VOC destroyed at 99.9% efficiency.

Annual VOC destroyed = 850 X 8760 X 0.999 X annual fraction of capacity

operation.



b. Example at 60% of annual capacity operation:

(154,710)
850 X 8760 X 0.999 X 0.60

= ($0.0346)/1b of VOC destroyed savings’
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