United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711 EPA-450/4-84-017 June 1984

Αı

Evaluation of Complex Terrain Air Quality Simulation Models

もず、 *42

5" "(,?" 4 - 2 30 A MARKET TO A TO A CO. 2

建设设施 建设设计

ata se

Evaluation of Complex Terrain Air Quality Simulation Models

by

David Wackter and Richard Londergan

TRC Environmental Consultants, Inc. 800 Connecticut Boulevard East Hartford, CT 06108

Contract No. 68-02-3514

U.S Environmental Protection Agency Begion V, Library 230 South Dearborn Street Chicago, Hinois : 60604

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Radiation
Office of Air Quality Planning and Standards
Research Triangle Park, NC 27711

DISCLAIMER

This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and approved for publication as received from TRC, Environmental Consultants, Inc. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Copies of this report are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

U,S. Environmental Protection Agence

TABLE OF CONTENTS

SECTION	<u>P.</u>	AGI
1.	INTRODUCTION	1
2.	COMPLEX TERRAIN MODELS	3
	Documentation	3
	Technical Features	4
	Model Input Data Requirements	4
	Source Data	4
	Receptor Date	11
	Meteorological Data	11
3.	DATA BASES FOR COMPLEX TERRAIN EVALUATION	13
	Cinder Cone Butte Data Base	13
	Source Data	16
	Meteorological Data	16
	Tracer Data	21
	Data Selected for Model Input	21
	Tracer Release Information	21
	Ambient Tracer Concentrations	23
	Meteorology	23
	Westvaco-Luke Data Base	27
	Source Data	27
	Meteorology	27
	Data Selected for Model Input	33
	Source Information	33
	Air Quality Data	34
	Meteorology	34
4.	STATISTICS APPROACH	43
••	Data Sets for Comparison of Observed and Predicted	
	Concentrations	43
	Peak Concentrations	45
	Comparisons of All Concentrations	46
	Statistical Analysis of Model Performance	46
	Statistical Measures for the Full Westvaco Data	
	Set	50
	IMPACT Model: Analysis of Select Hours for	
	Westvaco	50
	Statistical Measures for the Cinder Cone Butte	_
	Data Set	53

And the second s

TABLE OF CONTENTS (Continued)

SECTION		PAGE
5.	MODEL PERFORMANCE RESULTS	57
	Westvaco Full Year Results	57
	Statistics for 25 Highest Values	57
	Statistics for Highest Concentration at Each	
	Station	63
	Statistics for Highest Concentrations by Event .	66
	Statistics for All Concentrations Paired in	
	Time and Space	66
	Westvaco - Impact Select Hour Results	74
	Statistics for 25 Highest Values	74
	Statistics for Highest Concentrations at Each	
	Station	76
	Statistics for Highest Concentrations by Event .	76
	Statistics for All Concentrations Paired in Time	
	and Space	80
	Cinder Cone Butte Results	83
	Statistics for 25 Highest Values	83
	Statistics for Highest Concentrations by Event .	84
	Statistics for All Comparisons Paired in Time and	
	Space	89
6.	SUMMARY AND CONCLUSIONS	93
	Summary of Results	93
	REFERENCES	95
APPENDICES		
A	TEST RUN PACKAGE: DESCRIPTION OF MODELS "AS-RUN" FOR COMPLEX TERRAIN MODEL EVALUATION	
В	STATISTICAL TABLES OF MODEL PERFORMANCE FOR WESTVACO	
C	STATISTICAL TABLE OF MODEL PERFORMANCE FOR CINCER CONE BUTTE	

LIST OF FIGURES

FIGURE		PAGE
3-1	Cinder Cone Butte Field Experiment Layout	15
3–2	Cinder Cone Butte Vertical Cross Section Northwest (315°) to Southeast (135°)	17
3-3	Cinder Cone Tracer Gas Sampler Locations	22
3-4	Map of the Study Area Surrounding the Westvaco Luke Mill .	28
3–5	Westvaco Vertical Cross Sections for radials of 135°, 170°, and 310°. The Westvaco Stack Height Along with Monitor Heights and Distances from the Stack are Superimposed	29
	LIST OF TABLES	
TABLE		PAGE
2-1	Distinguishing Features of the Complex Terrain Models as Run for the Current Evaluation	5
2–2	Composite of all Meteorological Parameters Expected by the Complex Terrain Models to Exercise Various Models Functions	11
3-1	Periods When Tracer Tests Were Conducted During the Cinder Cone Butte Experiment	14
3–2	Units and Averaging Times Corresponding to Measured Variables Reported in the Cinder Cone Butte Data Base	18
3-3	Cinder Cone Butte Tower Instrumentation and Measures	19
3-4	Summary of Cinder Cone Butte Meteorological Inputs to the Complex Terrain Models	24
3–5	Units and Averaging Times Corresponding to Measured Variables Reported in the Westvaco Data Base	30
3–6	Instrumentation and Parameters Measured on the Westvaco Meteorological Towers	31
3-7	Primary Hourly Meteorological Inputs Included in the Westvaco Modelers' Data Base as Compiled by H.E. Cramer Associates	35
3-8	Data Substitutions Used by H.E. Cramer Associates in Developing Westvaco Hourly Meteorology Inputs	36
3-9	Summary of Westvaço Meteorological Inputs to the Complex Terrain Models	40

LIST OF TABLES

TABLE		PAGE
4-1	Summary of Data Sets for Model Evaluation	44
4-2	Statistical Estimators and Basis for Confidence Limits on Performance Measures	47
4-3	Performance Measures and Statistics Calculated for the Westvaco Unpaired (25 Highest) Data Sets	51
4-4	Performance Measures and Statistics Calculated for Westvaco Data Sets Paired in Time or Location	52
4–5	Performance Measures and Statistics Calculated for the Cinder Cone Butte Unpaired (25 Highest) Data Sets	54
4-6	Performance Measures and Statistics Calculated for the Cinder Cone Butte Data Sets Paired in Time or Location	55
5–1	Comparison of 25 Highest Observed and Predicted SO ₂ Concentration Values (UG/M**3) (Unpaired in Time or Location) for the 1-Hour Averaging Period Westvaco (1980/1981)	58
5-2	Comparison of 25 Highest Observed and Predicted SO ₂ Concentration Values (UG/M**3) (Unpaired in Time or Location) For Various Data Sets Model: Complex I for the 1-Hour Averaging Period Westvaco (1980/1981)	
60		·
5-3	Comparison of 25 Highest Observed and Predicted SO ₂ Concentration Values (UG/M**3) (Unpaired in Time or Location) For the 3-Hour Averaging Period Westvaco (1980/1981)	61
5-4	Comparison of 25 Highest Observed and Predicted SO ₂ Concentration Values (UG/M**3) (Unpaired in Time or Location) For the 24-Hour Averaging Period Westvaco (1980/1981)	62
5-5	Comparison of Highest Observed and Predicted SO ₂ Concentration Values (UG/M**3) Paired by Station for the 1-Hour Averaging Period Westvaco (1980/1981)	64
5–6	Comparison of Second Highest Observed and Predicted SO ₂ Concentration Values (UG/M**3) Paired by Station for the 1-Hour Averaging Period Westvaco (1980/1981)	65
5–7	Comparison of Highest Observed and Predicted SO ₂ Concentration Values (UG/M**3) Event-by-Event (Paired in Time) For the 1-Hour Averaging Period Westvaco	
	(1980/1981)	67

LIST OF TABLES (Continued)

TABLE		PAGE
5–8	Comparison of All Observerd and Predicted SO ₂ Concentration Values (UG/M**3) Paired in Time and Location for the 1-Hour Averaging Period Summary Table (Part 1) Westvaco (1980/1981)	68
5–9	Comparison of all Observed and Predicted SO ₂ Concentration Values (UG/M**3) Paired in Time and Location (For Various Data Sets) Model: COMPLEX I for the 1-Hour Averaging Period Westvaco (1980/1981)	71
5-10	Highest (H) and Highest, Second-High (HSH) 1-Hour Concentrations for Westvaco with Associated Meteorology.	72
5–11	Highest (H) and Highest, Second-High (HSH) 3-Hour and 24-Hour Concentrations for Westvaco Model Runs	73
5-12	Comparison of 25 Highest Observed and Predicted SO ₂ Concentration Values (UG/M**3) (Unpaired in Time or Location) for the 1-Hour Averaging Period Westvaco (1980/1981) Hours Selected for Impact Model Runs	75
5–13	Comparison of Highest Observed and Predicted SO ₂ Concentration Values (UG/M**3) (Unpaired in Time or Location) for the 1-Hour Averaging Period Westvaco (1980/1981) Hours Selected for Impact Model Runs	77
5-14	Comparison of Second Highest Observed and Predicted SO ₂ Concentration Values (UG/M**3) Paired by Station for the 1-Hour Averaging Period Westvaco (1980/1981) Hours Selected for Impact Model Runs	78
5–15	Comparison of Highest Observed and Predicted SO ₂ Concentration Values (UG/M**3) Event-by-Event (Paired in Time) For the 1-Hour Averaging Period Westvaco (1980/1981) Hours Selected for Impact Model Runs	79
5–16	Comparison of All Observed and Predicted SO ₂ Concentration Values (UG/M**3) Paired in Time and Location for the 1-Hour Averaging Period Summary Table (Part 1) Westvaco (1980/1981) Hours Selected for Impact Model Runs	81
5–17	Comparison of 25 Highest Observed and Predicted Relative Concentration Values (10**(-6) S/M**3) (Unpaired in Time or Location) For the 1-Hour Averaging Period Cinder Cone Butte (1980)	85

LIST OF TABLES (Continued)

TABLE		PAGE
5-18	Comparison of 25 Highest Observed and Predicted Relative Concentration Values (10**(-6) S/M**3) (Unpaired in Time or Location) for Various Data Sets Model: COMPLEX I For the 1-Hour Averaging Period Cinder Cone Butte (1980)	86
5–19	Comparison of Highest Observed and Predicted Relative Concentration Values (10**(-6) S/M**3) Event-by-Event (Paired in Time) For the 1-Hour Averaging Period Part 1 Cinder Cone Butte (1980)	87
5–20	Comparison of Highest Observed and Predicted Relative Concentration Values (10**(-6) S/M**3) Event-by-Event (For Various Data Sets) Model: COMPLEX I For the 1-Hour Averaging Period Cinder Cone Butte (1980)	89
5-21	Comparison of All Observed and Predicted Relative Concentration Values (10**(-6) S/M**3) Paired in Time and Location for the 1-Hour Averaging Period Summary Table (Part 1) Cinder Cone Butte (1980)	91

SECTION 1

INTRODUCTION

The Environmental Protection Agency (EPA) is currently involved in a study to evaluate the performance of air quality dispersion models using statistical measures recommended by the American Meteorological Society. It was EPA's intent, as published in a notice in the March 1980 Federal Register, to provide organizations the opportunity to submit dispersion models for possible inclusion in the next revision of EPA's "Guideline on Air Quality Models". EPA has undertaken a systematic evaluation of these models to decide in an objective manner which models should be included in the guideline and what recommendations should be made concerning the use of these dispersion models for regulatory applications. Several categories of models have been identified including models designed for complex terrain TRC, working under contract to EPA, has assembled aerometric data sets needed for model input and comparison, set up and run the complex terrain models and produced statistics relating observed and predicted air quality.

In September 1980 the American Meteorological Society (AMS), as a professional organization with expertise in atmospheric dispersion, organized a workshop (sponsored by EPA) to consider the issue of model performance evaluation. The 1980 workshop held at Woods produced a report entitled "Judging Air Quality Model Massachusetts, Performance."2 This report contains recommended statistical procedures for comparing observed air quality with model predictions. The procedures recommended by the Woods Hole workshop provided the basis for the statistical comparisons presented in this report. TRC has performed similar for EPA to evaluate eight rural models 3,4 studies and six urban models⁵. On the basis of these studies and subsequent comments by the AMS reviewers, a trimmed-down list of statistical comparisons are provided for the complex terrain model evaluation.

In Section 2 the eight complex terrain models are described. The models include COMPLEX I, COMPLEX II, COMPLEX/PFM, 4141, PLUME5, RTDM, SHORTZ and IMPACT. The distinguishing technical features of these models, as run for the current evaluation, are described. Also, the procedures for implementing and testing the models and the unique input data requirements are presented.

The above models have been evaluated with data obtained from two field measurements programs which were carried out in complex terrain environments. The Cinder Cone Butte tracer data base provides air quality measurements with good spatial resolution (94 samplers) for a limited number of study hours (104). The Westvaco data base comes from a rigorous routine-measurements program one year of hourly data at 11 stations, for this study designed for regulatory considerations. These data sets, along with supplemental data, are described in Section 3.

In Section 4 the statistical approach is described. The sets of observed and predicted concentration values have been paired in a variety of ways to provide statistical model performance comparisons that reflect either high concentration values or all concentration values, with and without pairing according to time and space.

The results of this study are presented in Section 5. The tables of statistical comparisons based on the performance measures recommended by the AMS workshop are presented in this section for all eight models run with both data bases.

Three appendices provide additional information. Appendix A is a copy of the TRC document "Test Run Package: Description of the Models 'As Run' for Complex Terrain Model Evaluation" which describes test run procedures, model-by-model code modifications and listings of model input options selected by the model developers for this evaluation. Appendices B and C contain statistical tables for Westvaco and Cinder Cone Butte, respectively. These tables provide statistical results by model for each type of data comparison and for subsets by meteorology and source-receptor geometry.

SECTION 2

COMPLEX TERRAIN MODELS

The following eight complex terrain air quality models have been evaluated by TRC using the performance measures recommended by the American Meteorological Society:

- COMPLEX I
- COMPLEX II
- COMPLEX/PFM
- 4141
- PLUME5
- RTDM
- SHORTZ
- IMPACT

Of these eight models, seven are based on the Gaussian plume assumptions, while IMPACT is a numerical grid model. Specific methods for prescribing plume rise, transport and dispersion differ from model to model, but all of the models require similar basic user-supplied input data describing source characteristics, receptor locations, and representative meteorology. IMPACT generally needs more detailed meteorological input data than the Gaussian models.

DOCUMENTATION

Computer code and documentation for each of the complex terrain models are available to the public. COMPLEX I and COMPLEX II were developed by EPA and are described as screening techiques for applications in complex terrain environments 27 . Currently no user guides exist for these models. Documentation exists as part of the FORTRAN code and also in the MPTER user's manual from which these two models were adapted. COMPLEX/PFM' was developed for EPA by Environmental Research & Technology, Inc. (ERT) as an adaptation of COMPLEX I with provisions for either COMPLEX I, COMPLEX II The model 3141/4141 was or potential flow model (PFM) calculations. developed by Enviroplan, originally as a modified version of CRSTER⁹, and more recently as a modified version of MPTER. The 4141 option of the MPTER version was employed in this study. PLUME5¹⁰ was developed by Pacific Gas and Electric, and the Rough Terrain Diffusion Model (RTDM) 11 was developed by ERT. SHORTZ¹² was developed by the H.E. Cramer Company. An updated version of SHORTZ which includes an algorithm to account for vertical wind direction shear 13 was used in this study. Two versions of IMPACT (Integrated Model for Plumes and Atmospheric Chemistry in Terrain) 4,15 were submitted to EPA. The authors of both versions were contacted and they agreed that very little difference between results from the two versions was likely, at least for the purposes of this evaluation. Therefore, the Fabrick and Haas version was selected for this evaluation.

TECHNICAL FEATURES

Distinguishing features of the complex terrain models as run for the current evaluation are listed in Table 2-1. The information listed in Table 2-1 is presented by model and then by generalized modules including transport, dispersion/stability, plume rise/terrain impaction and limits to vertical mixing. These modules represent physical processes that the models are attempting to simulate. It is not the intent here to fully describe each of the complex terrain models, but rather to list briefly the primary technical features that distinguish one model from another. In-depth technical discussions of each model can be obtained from the appropriate model-user guides. The reader is encouraged to refer to the users manuals for technical details and references.

As part of the model evaluation process, test run packages were prepared and supplied to the model developers for their review and concurrence. A description of this procedure can be found in Appendix A which contains a copy of one of the test run package documents¹⁶. This document also summarizes the model code modifications made by TRC and describes the input options selected by the model developers for each model and data base. Modifications to the models were needed to adapt each model to the EPA UNIVAC computer, to adapt particular models to accept the source-receptor inventories and to format the output of calculated concentrations for input to the statistics system.

It is also noted that ERT (RTDM) and H. E. Cramer Co. (SHORTZ) previously had the opportunity to test their models using at least portions of the data sets selected for this evaluation. Both data sets were previously used by ERT, while only the Westvaco data set was used by the H. E. Cramer Co. According to the developers, the models were not modified based on these evaluations. However, these developers could select model options and model inputs to optimize model performance, based on previous experience.

MODEL INPUT DATA REQUIREMENTS

All of the complex terrain models require basic user-supplied input data describing source characteristics, receptor locations and representative meteorology. Other model inputs control options for data input/output and technical considerations.

Source Data

Each of the models requires that the fixed geographic and geometric characteristics of each source be specified by the model user. The location is generally specified in Cartesian or polar coordinates except for the IMPACT model which requires horizontal source locations to be specified as central cell positions within a Cartesian three-dimensional grid. The stack base elevation, physical stack height, and stack gas exit diameter are fixed variables also required by each of the models.

Pollutant emission rate, stack gas exit velocity and stack gas temperature are generally needed by the complex terrain models in the calculation of plume rise and ambient concentration. The temporal variation of these parameters is available as one-hour averages in the Cinder Cone Butte and Westvaco data bases. Plume rise was not a factor in the Cinder Cone Butte tracer study (passive releases) and therefore stack velocity and temperature are not available. Many of the models had to be modified to accept hourly varying source data.

TABLE 2-1 DISTINGUISHING FEATURES OF THE COMPLEX TERRAIN MODELS AS RUN FOR THE CURRENT EVALUATION

COMPLEX I

Transport

- Wind speed as input at release height
- Wind direction as input

Dispersion/Stability

- Turner stability categories (class 7 treated as class 6)
- Gaussian vertical distribution using rural, (P-G) σ_z
- 22.5 horizontal sector averaging
- Buoyancy induced vertical dispersion

Plume Rise/Terrain Impaction

- Terrain adjustments = .5, .5, .5, .0, .0 for Stability A-F
- Minimum terrain approach = 10m
- Briggs final plume rise, including momentum rise
- Stack tip downwash for non-passive plumes

Limits to Vertical Mixing

- Full reflection at ground and mixing height
- Uniform vertical mixing beyond where $\sigma_z = 1.6 \times \text{mixing height}$

COMPLEX II

Transport

- Wind speed as input at release height
- Wind direction as input

Dispersion/Stability

- Turner stability categories (class 7 treated as class 6)
- Bivariate Gaussian distribution (PGT σ_y and σ_z)
- Buoyancy induced dispersion

Plume Rise/Terrain Impaction

- Terrain adjustments = .5, .5, .5, .0, .0 for stability A-F
- Minimum terrain approach = 10m
- Briggs final plume rise including momentum rise
- Stack-tip downwash for non-passive plumes
- Linear concentrations drop-off with height above plume centerline

Limits to Vertical Mixing

- Full reflection from ground and mixing height
- Uniform vertical mixing beyond where $\sigma_z = 1.6 \times \text{mixing height}$

COMPLEX/PFM

Transport

- Wind speed as input at release height for COMPLEX I/II calculations
- Wind speed adjusted in potential flow model (PFM) calculations as a function of streamline deformation
- Wind direction as input

Dispersion/Stability

- Turner stability categories (class 7 treated as class 6)
- COMPLEX I (22.5 sector averaging) for D, E or F stability when plume is below dividing streamline height
- COMPLEX II for A, B, or C stability
- PFM (adjusted PGT σ_y and σ_z) for D, E or F stability when plume is above dividing streamline height
- Buoyancy induced vertical dispersion

Plume Rise/Terrain Impaction

- COMPLEX I/II terrain adjustments = .5, .5, .5, .0, .0 for stability A-F
- COMPLEX I/II minimum terrain approach = 10m
- PFM plume height reduced for deformed streamlines
- Modified Briggs layered plume rise
- Stack tip downwash for non-passive plumes

TABLE 2-1 (Continued)

Limits to Vertical Mixing

- Full reflection at ground and mixing height
- Uniform vertical mixing beyond where $\sigma_z = 1.6 \times \text{mixing height}$

4141

Transport

- Wind speed as input at release height
- Wind direction as input

Dispersion/Stability

- Turner stability categories (class G treated as class F)
- Bivariate Gaussian distribution (PGT σ_z and time-enhanced PGT σ_y)
- Buoyancy induced dispersion

Plume Rise/Terrain Impaction

- Terrain adjustments = .5, .5, .5, .5, .25, .25
- Briggs transitional plume rise

Limits to Vertical Mixing

- Full reflection at ground and mixing height
- Uniform vertical mixing beyond where $\sigma_z = 1.6 \times \text{mixing height}$

IMPACT

Transport

- Input wind speed and direction at multiple sites extrapolated and interpolated to 3-dimensional grid cells
- Divergence-free wind field created

Dispersion/Stability

- Finite difference solution to diffusion equation
- Diffusivities from DEPICT model using Smith's (empirical) formulations

Plume Rise/Terrain Impaction

- Plume/terrain approach controlled by wind and diffusivity fields
- Briggs layered plume rise including penetration of stable layers

Limits to Vertical Mixing

- Temperature stratifications incorporated into wind and diffusion fields

PLUME5

Transport

- Wind speed as input at release height
- Wind direction as input

Dispersion/Stability

- Stability categories from horizontal turbulence intensity (σ_{Θ}) and time of day (class A treated as class B; class G treated as class F)
- Bivariate Gaussian distribution (PGT σ_v and σ_z)
- Enhanced horizontal dispersion due to vertical wind directional shear
- Buoyancy induced dispersion

Plume Rise/Terrain Impaction

- Conservative modification to one-half plume height concept
- Briggs final plume rise with determination of stable layer penetration

Limits to Vertical Mixing

- Full reflection at ground and mixing height
- Uniform vertical mixing beyond where $\sigma_z = 1.6 \times \text{mixing height}$

RTDM

Transport

- Wind speed extrapolated from release height to plume height
- Wind direction as input

Dispersion/Stability

- Stability categories from vertical turbulence intensity (σ_{Φ}) measured at Westvaco
- Bivariate Gaussian distribution (dispersion coefficients from measured turbulence data)
- Buoyancy induced dispersion
- Enhanced horizontal dispersion for plumes rising through a shearing wind

Plume Rise/Terrain Impaction

- Terrain impingement for stable plumes below critical height
- Half height correction for neutral or unstable conditions and stable conditions when plume exceeds critical height
- Briggs transitional plume rise; hourly potential temperature gradients for stable plume rise
- Stack tip downwash for non-passive plumes

Limits to Vertical Mixing

- Partial terrain reflection; full mixing lid reflection
- Mixing height adjustment for plume path
- Unlimited mixing height for stable conditions

SHORTZ

Transport

- Wind speed extrapolated from release height to plume height
- Wind direction as input

Dispersion/Stability

- Bivariate Gaussian distribution (Cramer dispersion coefficients from measured turbulence data)
- Cramer technique for enhanced horizontal dispersion due to vertical wind direction shear
- Buoyancy induced dispersion

Plume Rise/Terrain Impaction

- Terrain impingement within the mixing layer
- Modified Briggs final plume rise; hourly potential temperature gradient for stable plume rise
- Stack tip downwash for non-passive plumes

Limits to Vertical Mixing

- Full reflection at ground and mixing height
- Uniform mixing beyond where reflection terms (i=3) exceed exp(-10)
- Mixing height constant above sea level, for determination of plume penetration
- Minimum actual mixing depth of H = u x 200 meters (u = wind speed) for Westvaco; Height where vertical intensity of turbulence drops below 0.01 radians for Cinder Cone Butte.

Receptor Data

Each of the complex terrain models produces calculated concentrations at multiple receptor locations. In all of the models except IMPACT, discrete receptors at arbitrary locations are defined in Cartesian or polar coordinates. The IMPACT model defines receptor locations internally as the central cell position within each of the 3-dimensional grid "boxes." All of the complex terrain models require receptor elevations above a local reference plane.

Meteorological Data

Meteorological data are used by the models to calculate transport, dispersion, plume rise and limited mixing between sources and receptors. The complex terrain models expect a broad range of meteorological parameters, as summarized in Table 2-2. The IMPACT model allows data from one or multiple meteorological towers to be internally pre-processed into 3-dimensional fields for input to the grid model. The other complex terrain models are exercised with meteorological data from one "representative" station. The representative input data sets used in this evaluation consist of a composite of parameters measured at more than one site. A detailed description appears in Section 3.

TABLE 2-2

COMPOSITE OF ALL METEOROLOGICAL PARAMETERS EXPECTED BY THE COMPLEX TERRAIN MODELS TO EXERCISE VARIOUS MODEL FUNCTIONS

	Model	Function	
Transport	Dispersion (Stability)	Plume Rise	Limited Mixing
Wind Speed	P-G Stability	Temperature	Mıxing Height
Wind Direction	σ_{θ} or I _y	Wind Speed	
Anemometer Height	σ_{Φ} or I_z	dT/dZ	
Power Law Exponents	Wind Direction Shear	P-G Stability	
Temperature and Wind Speed for Froude Number and Critical Height			

Some of the complex terrain models contain preprocessor programs that must be exercised in order to obtain a complete set of model-consistent meteorological input data. CRSMET, the CRSTER preprocessor, is used to generate hourly Pasquill-Gifford stability categories from on-site wind speeds and National Weather Service (NWS) cloud observations for input to COMPLEX I, COMPLEX II, COMPLEX/PFM and 4141. RTDM uses this data for the Cinder Cone Butte application. Westvaco mixing heights from CRSMET are used by COMPLEX I, COMPLEX II and 4141. CONVRT, the preprocessor for PLUME5, is used to generate stability class from horizontal turbulence measurements. Westvaco mixing heights are also generated from CONVRT. METZ is the SHORTZ preprocessor which is used to generate mixing heights for Westvaco. The PROFILE preprocessor to COMPLEX/PFM is used with the Westvaco data set to develop vertical profiles of temperature and wind speed which are subsequently needed by the model for calculations of Froude number and critical streamline height. TRC developed preprocessors for providing profiles of meteorological data needed as input to the IMPACT model.

Description of specific model input data for both Westvaco and Cinder Cone Butte are provided in Section 3.

SECTION 3

DATA BASES FOR COMPLEX TERRAIN MODEL EVALUATION

The complex terrain models have been evaluated with data obtained from two field measurements programs which were carried out in complex terrain environments. The Cinder Cone Butte tracer data base provides air quality measurements with good spatial resolution for a limited number of study hours. The Westvaco data base, containing a small number of stations for an extended period of continuous monitoring, results from a rigorous routine-measurements program designed for developing a model to be applied in a regulatory setting. Terrain at the Westvaco-Luke Mill is steep, uneven and rugged; Cinder Cone Butte is a simple, isolated terrain feature.

Both data bases were originally obtained for what might be called research objectives, or diagnostic model evaluation. As a result, there existed an overabundance of meteorological data which was trimmed down to enable operational evaluation of the models. Trimmed down or "modeler's data bases" were recommended for use in this evaluation so that a common set of input data could be used in as many models as possible. The intention was to reduce uncertainties in model predictions resulting from minor differences in input data, and hence allow relative differences between the models to be evaluated strictly on the basis of technical merit. Of course, model input data requirements do differ somewhat from model to model. These model requirements were accounted for in the preparation of test run and final input data sets as described in this section.

CINDER CONE BUTTE DATA BASE

The Cinder Cone Butte experiment represents the first major component of the EPA-sponsored Complex Terrain Model Development Program. The broad objective of the experiment was to determine the behavior and impact of an elevated plume in the vicinity of an isolated elevated-terrain feature. During the period between October 16, 1980 and November 12, 1980, 18 multi-hour dual tracer gas experiments were conducted during primarily stable atmospheric conditions. The periods when tracer tests were conducted are listed in Table 3-1.

As can be seen from Figure 3-1, Cinder Cone Butte is a roughly axisymetric, 100 meter high isolated hill. The hill is located in southeastern Idaho about 50 m south-southeast of Boise. The surrounding Snake River Basin is a broad, nearly level plain.

TABLE 3-1

PERIODS WHEN TRACER TESTS WERE CONDUCTED DURING THE CINDER CONE BUTTE EXPERIMENT 17

Experiment No.	1980 Date	Experiment Hours (PST)	Hours	Typical Stability
201	10/16	1700-2300	6	E
202	10/17	1700-2300	6	E
203	10/20	0000-0800	8	E-F
204	10/21	0000-0800	8	E-F
205	10/23	0000-0800	8	E
206	10/24	0080-0000	8	E
207	10/25	0000-0800	8	E-F
208	10/27	1700-0100	7	E-F
209	10/28	1700-0100	7	F
210	10/30	0000-0740	7	E-F
211	10/31	0000-0800	8	E-F
213	11/04	0000-0800	8	E-F
214	11/05	0200-1000	8	E-F
215	11/06	0000-0600	6	E-F
216	11/09	0000-0700	7	E-F
217	11/10	0200-1000	8	E-F
218	11/12	0200-1000	8	E

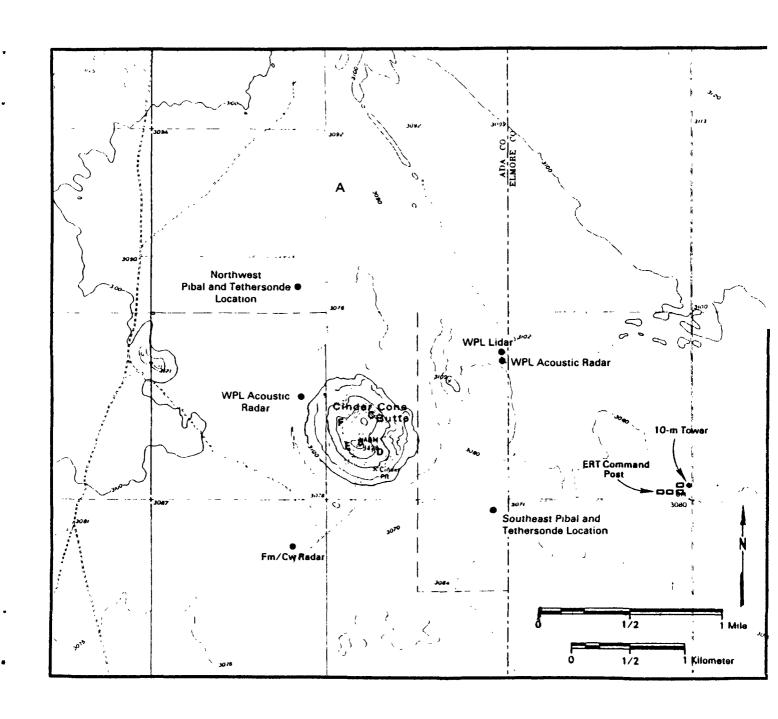
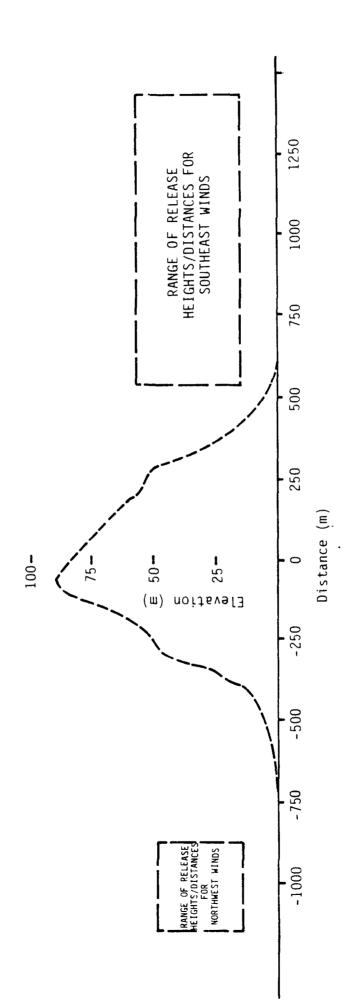


Figure 3-1. Cinder Cone Butte field experiment layout. A is the 150 m tower; B is the 30 m tower; C, D, E, F are 10 m towers (Ref. No. 17).

Ground-level measurements of two tracer gases, sulfur hexafluoride (SF₆) and freon (CF₃Br), were conducted during testing periods. Each test persisted for approximately eight hours with tracer gas releases occurring during five or six of these hours. Of the lll test hours, 104 were used in this model evaluation. Tracer measurements were accompanied by an extensive collection of meteorological measurements taken on multiple levels of several towers located in the area and on the butte itself. Additionally, plume characteristics were inferred from photography and remote sensing.

The Cinder Cone Butte data base, measured and compiled by Environmental Research and Technology (ERT) under contract to EPA, contains most of the parameters which are needed for the complex terrain model evaluation. The parameters describe source emissions, atmospheric dispersion characteristics and ambient measurements of tracer concentrations.

Source Data


The two tracer gases, SF_6 and CF_3Br , were released passively from different levels utilizing a mobile crane. The range of SF_6 release heights and release distances relative to the butte is displayed in Figure 3-2. The crane release heights ranged from 15 to 57 meters above the local terrain at the base of the butte. Tracer release distances from the butte center ranged from 540 meters to 1420 meters. The mobility afforded by the release system enabled tracer releases directly upwind of the butte, producing a high number of successful hours per test. Although the variability of gas flow for SF_6 and CF_3Br was monitored using separate rotameters, the weight loss of the cylinders was used to determine the emission rate of each tracer. The source data base compiled by ERT consists of the vertical and horizontal crane location (relative to the butte peak) for each release period and average emission rate for each test hour (see Table 3-2).

Meteorological Data

Six instrumented towers were used to measure local meteorology. These included: a 150 meter tower approximately 2 kilometers north of Cinder Cone Butte; a 30 meter tower at the summit of the butte; and four 10 meter towers on the hill. The locations of the towers (A, B, C, D, E, and F) are shown in Figure 3-1. The direct measurements and derived parameters obtained for each of the towers are given in Table 3-3.

Various atmospheric sounding devices were employed during tracer testing periods. A tethersonde was operated usually at a location within 700 m of the primary release point. An ascent-descent sequence conducted at a minimum of once per hour generated profiles of temperature, pressure, wind speed and direction to heights of at least 200 m above the local terrain. When high wind speeds precluded tethersonde operation, profiles were obtained from minisonde flights. Hourly wind profiles were also derived from pilot balloons (pibals). Additionally a frequency-modulated, continuous-wave (FM/CW) radar, and two monostatic acoustic radars were operated near the butte.

The meteorological tower data has been assembled by ERT and currently resides on magnetic tape. Corrections were made by ERT to known errors in the wind speed and wind direction measurements. Temperature corrections were not made, given that the results of two independent audits were

Cinder Cone Butte vertical cross section from northwest (315°) to southeast (135°). Figure 3-2.

TABLE 3-2

UNITS AND AVERAGING TIMES CORRESPONDING TO MEASURED VARIABLES REPORTED IN THE CINDER CONE BUTTE DATA BASE

	Averaging ts Time		depending	sequential	pesn	hourly, 10 minutes depending on mode of sequential sampling
Tracer	Parameter Units	SF _e ppt				CF ₃ Br Ppt
	Averaging	5 minutes	5 minutes	5 minutes	5 minutes	5 minutes
Meteorological	Units	ms 1	degrees	ວຸ	ly min-1	% radians
Mete	Parameter	wind speed	wind direction	temperature	radiation	intensity of turbulence
	Averaging Time	hourly				
Source	, w	gms - 1				
	Parameter	emission rate				-18-

TABLE 3-3

CINDER CONE BUTTE TOWER INSTRUMENTATION AND MEASURES¹⁷

			Derived
Site	Instruments*	Direct Measures	Measures
Tower A			
Level 0 (1 m)	Pyranometer Net radiometer	Insolation Net radiation	
Level 1 (2 m)	Triaxial props Cup and vane RTD	U, V, W, IX, IY, IZ UX, VX T	WS, WD SP, DR
Level 2 (10 m)	Triaxial props Cup and vane RTD Fast bead thermistor	U, V, W, IX, IY, IZ UX, VX, U, $\sigma\theta$ ΔT (10 m - 2 m) T, σ_T	WS, WD SP, DR T
Level 3 (20 m)	RTD	T	
Level 4 (40 m)	Triaxial props RTD	U, V, W, IX, IY, IZ ΔT (40 m - 2 m)	WS, WD T
Level 5 (60 m)	RTD	Т	
Level 6 (80 m)	Triaxial props RTD	U, V, W, IX, IY, IZ ΔT (80 m - 2 m)	WS, WD T
Level 7 (100 m)	RTD	T	
Level 8 (150 m)	Triaxial props Cup and vane RTD Fast bead thermistor	U, V, W, IX, IY, IZ UX, VX ΔT (150 m - 2 m) T, σ _T	WS, WD SP, DR T
Tower B			
2 m	Triaxial props	U, V, W, IX, IY, IZ T	WS, WD

^{*} All temperature sensors were mounted in aspirated radiation shields; an RTD is a Resistance Thermometric Device.

TABLE 3-3 (Continued)

CINDER CONE BUTTE TOWER INSTRUMENTATION AND MEASURES 17

Site	Instruments*	Direct Measures	Derived Measures
Tower B (Continu	ed)		
10 m	Triaxial props Cup and vane RTD	U, V, W, IX, IY, IZ UX, VX ΔT	WS, WD SP, DR T
30 m	Triaxial props Cup and vane RTD	U, V, W, IX, IY, IZ UX VX ΔΤ	WS, WD SP, DR T
Towers C, D, E,	F		
2 m	Triaxial props RTD	U, V, W, IX, IY, IZ T	WS, WD
10 m	Triaxial props Cup and vane RTD	U, V, W, IX, IY, IZ UX, VX ΔΤ	WS, WD SP, DR T

^{*} All temperature sensors were mounted in aspirated radiation shields; an RTD is a Resistance Thermometric Device.

Key

- U: westerly component of wind measured by east-west oriented propeller
- V: southerly component of wind measured by north-south oriented propeller
- W: vertical component of wind measured by vertically oriented propeller
- SP: horizontal wind speed measured by cup anemometer
- DR: horizontal wind direction measured by vane
- $\sigma\theta$: standard deviation of horizontal wind direction calculated from vane output
- UX: easterly component of wind calculated from the cup and vane outputs
- VX: southerly component of wind calculated from the cup and vane outputs
- WS: horizontal wind speed calculated from U and V
- WD: horizontal wind direction calculated from U and V
- IX: downwind intensity of turbulence
- IY: crosswind intensity of turbulence (IY approximates $\sigma\theta$ for small horizontal wind deviations)
- IZ: vertical intensity of turbulence (IZ approximates σφ for small vertical wind deviations)
- T: temperature (resistance thermometric device)
- σT : standard deviation of temperature
- ΔT : temperature difference

inconsistent. Turbulence intensity data were also left uncorrected although errors in these data are known to exist due to the response characteristics of the propeller sensors. Other identified errors that remain in the data base are due to the effects of the wake of one instrument on another and the effects of tower wakes on turbulence measurements and wind direction. Users of this data set have been advised by ERT to give precedence where possible to wind measurements from instruments that are more clearly out of wakes. The meteorological tower data has been recorded on tape as five-minute averages for the variables listed in Table 3-2. Data from pibal, mini-sonde, and tethersonde flights are available on a separate magnetic tape.

Tracer Data

Tracer samples were obtained with approximately 90 battery-operated samplers which were sequentially operated for either 10 minute or 1 hour periods. Figure 3-3 shows the locations of the 70 fixed samplers and the 10 movable samplers. The movable samplers were deployed either on the northwest or southeast side of the hill, depending on the prevailing wind direction. For a typical test, 60 of these 80 sites provided 1-hour average samples and 20 were designed to obtain 10-minute average samples. An additional 10 samplers were used: on masts for measuring plume reflection from the ground; for measuring background concentrations; and as collocated samplers for quality assurance purposes.

Bag samples were assayed for SF_6 and CF_3Br concentrations using gas chromatography. After all bags were analyzed, a data base consisting of approximately 14,000 tracer concentration measurements representing the entire experiment was assembled and recorded on magnetic tape. For each 10-minute and 1-hour assayed sample, the experiment number, sample identification, sampling start time, sampling end time, SF_6 concentration and CF_3Br concentration are stored on the data tape (see Table 3-2).

Data Selected for Model Input

A modeler's data base (MDB) was prepared by ERT from the archive of Cinder Cone Butte data. This MDB contains hourly averages of tracer release information, ambient tracer concentrations and meteorological parameters for each of the 111 test hours in which tracer gas was released. Data needed by the models and for the evaluation were selected from the MDB. Supplemental data were also obtained to meet the needs of each of the complex terrain models. These data are described below.

Tracer Release Information

The MDB contains tracer release information for lll test hours representing 17 different experiments. Freon gas was released along with SF_6 for nine of the experiments. Only the SF_6 releases were modeled in this evaluation, since the SF_6 data had been shown to be of higher quality. The tracer release information included:

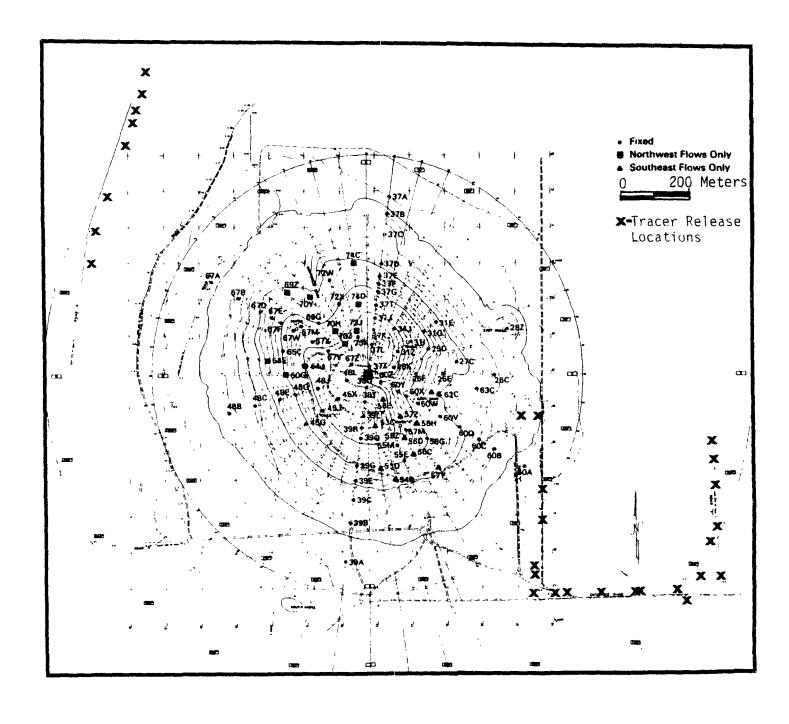


Figure 3-3. Cinder Cone Butte tracer gas sampler locations (Ref. No. 17). Contour intervals are 5 meters.

- average release rate for the period of each release
- start and end time of each release
- location of the crane (X, Y, Z, L) relative to a local reference frame

Seven of the experiment hours were found to have release periods of less than 40 minutes. These hours were then excluded from the evaluation, since only hourly averages were to be modeled. The net result was that 104 test hours were included in the evaluation.

The model results for Cinder Cone Butte have been evaluated on the basis of relative concentration (X/Q), so emission rates were input to each model as a fixed value of 1.0 g/s. The variable tracer emission rates provided in the data base represent the average tracer release rate for the duration of each release. Some of the experiment hours used in this study had release periods of less than an hour (but greater than 40 minutes). Tracer release rates for these hours were adjusted to hourly average rates. Hourly average tracer release rates were then used to convert the hourly measured concentrations to relative concentrations.

Ambient Tracer Concentrations

Hourly average SF_6 concentrations as measured at each of up to 94 sampler locations are included in the MDB. For the purposes of this evaluation, the measured concentrations (in the units of parts per trillion) were first converted to units of g/m^3 (using hourly on-site temperature; and pressure = 905 mb), and then converted to relative concentration, X/Q (using the release-time-adjusted hourly average tracer release rates).

Meteorology

Table 3-4 summarizes the meteorological inputs to the complex terrain models for Cinder Cone Butte. The input data are primarily from the MDB, but supplemental data were used to provide other required model input data.

The MDB contains hourly averages of measured and derived meteorological parameters representative of tracer release height (which varied from experiment to experiment). ERT used a "spline under tension" method of interpolating tower measurements to release height. Wind speed and direction are provided as both scalar and vector averages. Also provided are hourly values of critical streamline height, Froude number (for the layer between 2m and 150m), and scalar average wind speeds measured at the 10m level of Tower A.

Additional meteorological data were needed for input to some of the models. Vertical profiles using on-site tower measurements of temperature and wind speed were needed by the COMPLEX/PFM model to internally calculate critical streamline height and Froude number. Hourly P-G stability categories based on the Turner method (CRSTER preprocessor) were developed from concurrent Boise National Weather Service cloud cover observations and

TABLE 3-4 SUMMARY OF CINDER CONE BUTTE METEOROLOGICAL INPUTS TO THE COMPLEX TERRAIN MODELS

•	i i				[aboda]				
Model Function	Input Parameter	CX1	CX2	PFM	M41	IMP	PL5	RTD	SHZ
Transport	Wind Speed Wind Direction Wind Dir. Shear Anemometer Ht. Power Law Exponents	U-1 @-1 NR Z-1 ts NR	U-1 0-1 NR Z-1	U-1 0-1 NR Z-1	U-1 0-1 NR Z-1	U-4 -2 NR Z-1 P-1	U-1 0-1 NR Z-1	U-1 0-1 NR Z-1	U-1 0-1 NR Z-1 NR
Dispersion	Stability Horiz. Turb. Vert. Turb.	S-1 NR NR	S-1 NR NR	S-1 NR NR	S-1 NR NR	S-1 NR NR	S-2 NR NR	S-1 I y I z	NR I y
Plume Rise	Temperature Wind Speed dT/dZ Stability	NR NR NR			No Pl Calcu Passi Cinde	No Plume Rise Calculations for Passive Releases Cinder Cone Butt	se s for sases at Butte		
Limited Mixing	Mixing Height	L-1	L-1	L-1	L-1	NR	L-1	7	L-2
Critical Height	Temperature Wind Speed	NR NR	NR NR	T-2 U-3	NR NR	NR NR	NR NR	DT-1 NR	NR NR
Key		Description							
Model.	CX1 CX2 PFM M41 IMP PL5 RTD SHZ	COMPLEX I COMPLEX II COMPLEX/PFM 4141 IMPACT PLUMES RTDM SHORTZ							
Wind Speed	U-1 U-2 U-3 U-4	Release height scalar wind Release height vector wind Profile from 150 m tower U-1 interpolated to middle	height scalar wind height vector wind from 150 m tower proplated to middle	speed speed of sur			Data Base (MDB)	(MDB) sing P-1	

_
(Continued)
$_{2}$
3-4
吕
TABLE

$\Theta-1$ Release height vector wind direction from MDB $\Theta-2$ $\Theta-1$ minus 90° for rotated IMPACT grid	Z-1 Set to release height for each release	s P-1 Internal IMPACT values: P = .15, .17, .20, .26, .39, .48, .54 for S-1 (A-G)	S-1 P-G category from Turner method (CRSTER preprocessor) using Boise cloud data and Cinder Cone Butte 10 m wind speed S-2 P-G category from $\sigma\Theta$ (CONVRT preprocessor) using $\sigma_{\rm v}/U-2$ from MDB where $\sigma_{\rm v}$ is horizontal velocity turbulence at release height	$_{ m Jy}$ From MDB: (0,/U-2) at release height	Iz From MDB: ($\sigma_{WH}/U-2$) at release height where σ_{WH} is vertical velocity turbulence scale with Horst correction for non-cosine response	T-1 Release height temperature from MDB T-2 Profile from tower	L-1 Fixed at 10,000 m L-2 Height where tower value of Iz \leq 0.01 (radians)	DT-1 Derived from MDB values of Froude number (2 m $-$ 150 m), critical height, T-1, and U-1	NR Not required
0-1 0-2	Z-1	1-d	S-2	Iy	n H	T-1 T-2	L-1 L-2	DT-1	NR
Wind Direction	Anemometer Height	Power Law Exponents	Stability	Turbulence - Y	Turbulence - Z	Temperature	Mixing Height	dT/dZ	

10m wind speeds from the MDB. Except for SHORTZ, the effect of mixing height (for these predominantly night time tracer tests) was precluded through the use of a 10,000m mixing depth. SHORTZ requires mixing depth defined as the height above which the vertical turbulence intensity drops below 0.01. These heights were developed from the on-site tower data.

Plume rise calculations for Cinder Cone Butte were not needed due to the passive nature of the tracer releases.

WESTVACO-LUKE DATA BASE

Under an agreement between the Westvaco Corporation, the State of Maryland, and the U.S. EPA^{20} , ambient air quality and meteorological measurements were carried out near the Luke Mill in western Maryland, from December 1, 1979 through November 30, 1981. Data from these measurements are intended to assist in the development of a rough terrain diffusion model applicable in the Luke area. The complex topography of the area is shown in Figure 3-4. Vertical cross sections of the terrain relative to the Westvaco stack are presented in Figure 3-5 to give the reader a better feel for the source-receptor geometry. As can be seen from this figure, all of the monitors to the southeast of the mill are well above the top of the stack. Most of the monitor distances from the stack range from 0.75 to 1.5 km. The only exception is the Stony Run monitor (No. 10) at 3.4 km northeast.

The effective stack height (physical height plus plume rise) will vary significantly depending on operating load and meteorology. For normal operating loads, the effective stack height can be as low as 250-300 meters for stable conditions, or strong wind, neutral conditions; and can exceed 1000 meters for light wind, unstable conditions, based on Briggs plume rise equations.

Three types of data were measured in order to characterize SO_2 emissions from the stack, atmospheric transport and dispersion, and ambient SO_2 concentrations on the elevated terrain.

Source Data

The Luke Mill utilizes a 190 m stack to vent coal-fired emissions. Flue gas SO_2 concentration and temperature were measured continuously by an emissions monitor.

The source data base for the Westvaco-Luke stack includes sequential hourly-averaged values of SO_2 emission rate, temperature, SO_2 concentration, and steam flow (monitored continuously at the plant). Table 3-5 presents a summary of the measured stack parameters, averaging times and units of measure.

Meteorology

Three instrumented towers were used to measure meteorological parameters (see Figure 3-3). The 100 m Beryl tower had instruments mounted at 10 m and 100 m; the 30 m Luke Hill tower was instrumented at the 10 m and 30 m levels; and the 100 m Met Tower was instrumented at the 10 m, 50 m, and 100 m levels. The parameters measured at each tower are listed in Table These include measurements of horizontal wind speed and direction, vertical wind speed, intensity of turbulence in each of the three dimensions with respect to the mean wind, vertical temperature gradient at various and ambient temperature. Additionally: measurements radiation were obtained with a radiometer at the base of the Met Tower; and an acoustic sounder, operated near the Met Tower, provided mixing depth values.

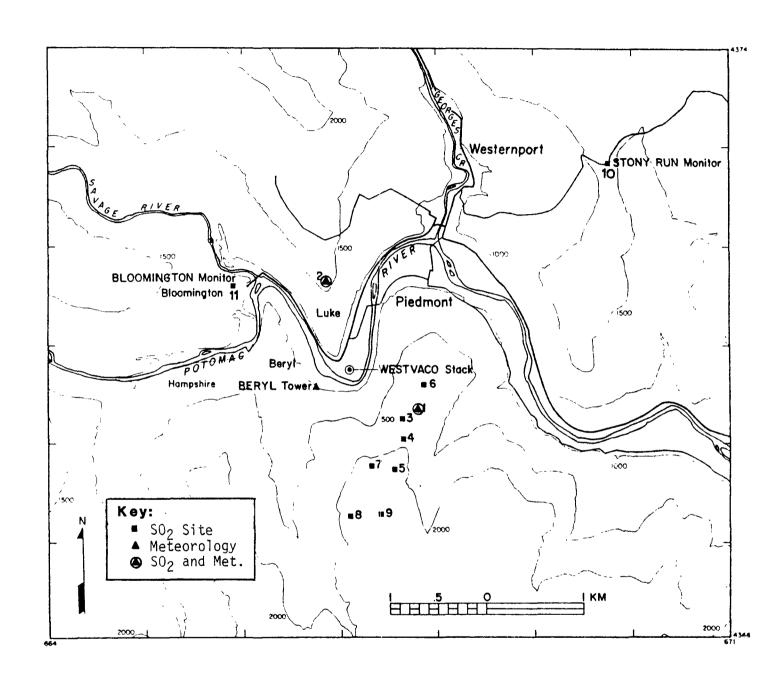
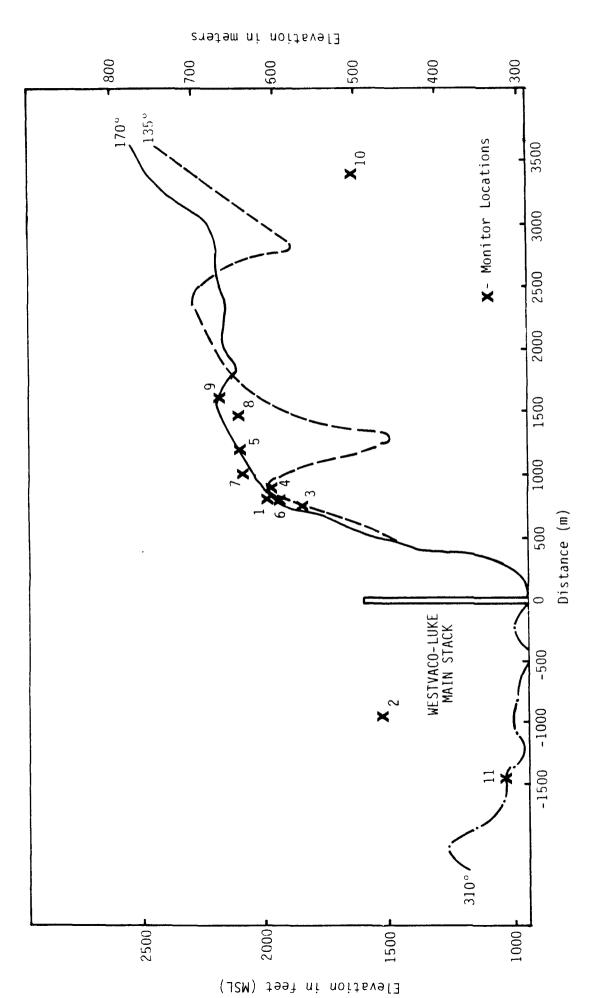



Figure 3-4. Map of the study area surrounding the Westvaco Luke Mill. Elevations are in feet above mean sea level (MSL) and the contour interval is 500 feet (Ref. No. 21).

Westvaco vertical cross sections for radials of 135°, 170° and 310°. The Westvaco stack height along with monitor heights and distancr are superimposed. Figure 3-5.

TABLE 3-5

UNITS AND AVERAGING TIMES CORRESPONDING TO MEASURED VARIABLES REPORTED IN THE WESTVACO DATA BASE

	Source	1	Meter	Meteorological		Ambient	Ambient Air Quality	1 1
Parameter	Units	Averaging Time	Parameter	Units	Averaging Time	Parameter	Units	Averaging Time
SO_z emission rate	tons hr	l hour	wind speed	x 10 miles hour 1	l hour	SO ₂ concentration	wđđ	l hour
stack	ĹŦ,	1 hour	wind direction	degrees	1 hour			
temperature			temperature	o [편	1 hour			
stack ${\rm SO}_2$	mdd	l hour	delta	x 10 °F	1 hour			
steam flow	1000 lbs		temperature					
	inon		turbulence intensity	x 10³ radians	l hour			
-30-			mixing depth	meters	l hour			

TABLE 3-6

INSTRUMENTATION AND PARAMETERS MEASURED ON THE WESTVACO METEOROLOGICAL TOWERS

Site	Instruments*	Parameters
Beryl Tower		
Level 0 (10 m)	Cup and vane Propeller anemometer Temperature probe	SP, DR, IX, IY, W, IZ T
Level 1 (100 m)	Cup and vane Propeller anemometer Delta temperature sensor	SP, DR, IX, IY, W, IZ ΔT(100 m - 10 m)
Luke Hill Tower		
Level 0 (10 m)	Cup and vane Propeller anemometer Delta temperature sensor	SP, DR, IX, IY, W, IZ ΔT (10 m - 2 m)
Level 1 (30 m)	Cup and vane Propeller anemometer Delta temperature sensor	SP, DR, IX, IY, W, IZ ΔT (30 m - 10 m
Met Tower		
Level 0 (10 m)	Cup and vane Propeller anemometer Temperature probe Delta temperature sensor	SP, DR, IX, IY, W, IZ T ΔT (10 m - 2 m)

^{*} All temperature sensors were mounted in aspirated radiation shields.

TABLE 3-6 (Continued)

Level 1 (50 m)	Cup and vane Propeller	SP, DR, IX, IY W, IZ
Level 2 (100 m)	Cup and vane Propeller Delta temperature	SP, DR, IX, IY W, IZ
	sensor	ΔT (100 m - 10 m)

Key

W: vertical wind speed

SP: horizontal wind speed

DR: horizontal wind direction

IX: downwind intensity of turbulence

IY: crosswind intensity of turbulence

IZ: vertical intensity of turbulence

T: temperature

 ΔT : temperature difference

The meteorological data base contains sequential hourly-averaged values of the parameters mentioned above. Table 3-5 indicates the units that meteorological data have been reported in.

Ambient Air Quality Data

Monitors for measuring ambient SO_2 concentrations were established at ll sites (see Figure 3-3). Eight of these sites were located within plant property boundaries (from 800 to 1,500 m from the stack) on the high terrain east and south of the mill. Ground-level elevations at these monitors exceed the physical stack height. Two additional monitors, Luke Hill and Stony Run, were located 900 m north-northwest and 3,300 m northeast of the stack, respectively. Terrain elevations for these two monitors are nearly level with stack top. The remaining monitor, Bloomington, located 1,500 m northwest of the stack, is in a valley where the elevation is comparable to stack base elevation.

The air quality data base reports the sequential hourly-average values of the SO_2 concentrations measured at each of the ll sites. Units ascribed to each of the variables are given in Table 3-5.

Data Selected for Model Input

The hourly averaged measurements obtained during the Westvaco-Luke field program were first reduced by ERT and then compiled by H.E. Cramer Company into a modelers' data base (MDB) for input to the SHORTZ and LUMM* models. Most of the model inputs were obtained from this MDB, however, some additional data were compiled by TRC in order to meet all technical requirements of the complex terrain models. The data inputs were restricted to the second full year of measurements, December 1980 through November 1981.

Source Information

The source parameters, stack location (x, y, z), stack height and stack diameter, were input as constant values to each of the models. The following source parameters were input to the models on an hourly basis:

- Q Hourly SO₂ emission rate
- T Hourly stack gas exit temperature
- VF Hourly stack gas volume flow rate, or
- V_s Hourly stack gas exit velocity

In preparing the MDB, any missing values of Q, T, VF, or $V_{\text{\tiny S}}$ were substituted with the last reported value.

^{*}The Luke Mill Model (LUMM) was developed specifically for the Westvaco-Luke Mill site.

Air Quality Data

Hourly SO_2 concentrations at each of the eleven monitors were recorded in units of parts per trillion. Prior to the evaluation these concentrations were converted to ug/m^3 through the use of hourly on-site temperatures and an average atmospheric pressure (from the U.S. Standard Atmosphere) of 0.96 atmosphere. Receptor locations and elevations were directly input to each of the models, although the horizontal coordinates first had to be converted to source-oriented distance and direction for input to RTDM and COMPLEX/PFM.

Model predictions for the Stony Run monitor (labeled receptor No. 10) could not be made with the IMPACT model due to grid size constraints and computer limitations. The other IMPACT receptors were located in the center of the nearest grid cell.

Meteorology

The Westvaco MDB of meteorological data was developed by H.E. Cramer Company²³ to meet the input needs of the SHORTZ and LUMM models. The specific parameters and their corresponding primary data sources are listed in Table 3-7. In preparing the MDB, alternate sources of meteorological data were preferentially ranked for use when data from the primary source were unavailable or unreliable for certain time periods. These data substitutions are shown in Table 3-8.

The meteorological data provided in the MDB was supplemented with other on-site tower data as well as some off-site data needed as input to the models. Table 3-9 summarizes all of the Westvaco meteorological inputs to the complex terrain models.

Data from off-site locations were used to characterize stability category for four of the models (COMPLEX I, COMPLEX II, COMPLEX/PFM, and 4141), mixing height for most of the models (except IMPACT) and, for COMPLEX/PFM, profiles of wind speed and temperature. The CRSTER preprocessor program was utilized with cloud cover data from the nearest National Weather Service station (Morgantown, WV) in conjunction with Westvaco 10 m wind speeds (averaged from the three towers) to categorize stability. Mixing heights were developed from twice daily Pittsburgh mixing heights as obtained from the National Climatic Center, and interpolated to hourly values using the various model preprocessor programs. interpolation scheme used to generate hourly mixing heights for COMPLEX/PFM has been changed since the model was submitted for this study.) Pittsburgh twice per day radiosonde data (TDF5600 tape) were employed along with Westvaco tower data in the PROFILE program to generate hourly vertical profiles of wind speed and temperature. These profile data are used by COMPLEX/PFM to calculate Froude number and critical streamline height.

TABLE 3-7

PRIMARY HOURLY METEOROLOGICAL INPUTS INCLUDED IN THE WESTVACO MODELERS' DATA BASE AS COMPILED BY H.E. CRAMER ASSOCIATES²³

Input Parameter	Primary Source
Transport Wind Direction	100 m level of Tower 1
Reference Level Wind Speed	30 m level of Tower 2
Wind Profile Exponents	Based on speed difference between upper levels of Tower 1 and 2
Vertical Potential Temperature Gradient	Based on temperature difference between the 10 m level of Tower 2 and 100 m level of Tower 1
Ambient Air Temperature	10 m level of Tower 2
Lateral and Vertical Turbulent Intensities	30 m level of Tower 2
Mixing Depths	A constant value of 1000 m
Stability Class ¹	From vertical turbulent intensity, 10 m level of Tower 2
Vertical Wind Direction Shear ²	Direction difference between upper levels of Tower 1 and 2

Using the stability classification scheme suggested by EPA for a surface roughness length of 15 centimeters: A < 0.2094 (stability class/turbulent intensity in rad); B from 0.1746 to 0.2094; C from 0.1362 to 0.1745; D from 0.0874 to 0.1361; E from 0.0419 to 0.0873; and F < 0.0419.

Needed only for the modified version of SHORTZ submitted for evaluation.

TABLE 3-8

DATA SUBSTITUTIONS USED BY H.E. CRAMER ASSOCIATES
IN DEVELOPING WESTVACO HOURLY METEOROLOGICAL INPUTS²³

	Rank of	
Input Parameter	Parameter Source	Parameter Source
Transport Wind	1	100 m Level of Tower No. 1
Direction ¹	2	50 m Level of Tower No. 1
	3	10 m Level of Tower No. 1
	4	30 m Level of Tower No. 2
	5	10 m Level of Tower No. 2
Reference Level	1	30 m Level of Tower No. 2
Wind Speed ²	2	10 m Level of Tower No. 1
	3	50 m Level of Tower No. 1
	4	100 m Level of Tower No. 1
	5	10 m Level of Tower No. 2
Vertical Wind-	1	Direction difference between
Direction Shear ³		100 m Level of Tower No. 1 and
		30 m Level of Tower No. 2
	2	Direction difference between
		50 m Level of Tower No. 1 and
		30 m Level of Tower No. 2
	3	Direction difference between
		10 m Level of Tower No. 1 and
		30 m Level of Tower No. 2
	4	Direction difference between
		100 m Level of Tower No. 1 and
		10 m Level of Tower No. 2
	5	Direction difference between
		50 m Level of Tower No. 1 and
		10 m Level of Tower No. 2

TABLE 3-8 (continued)

DATA SUBSTITUTIONS USED BY H.E. CRAMER ASSOCIATES
IN DEVELOPING WESTVACO HOURLY METEOROLOGICAL INPUTS 23

	Rank of	
Input Parameter	Parameter Source	Parameter Source
	6	Direction difference between 10 m Level of Tower No. 1 and 10 m Level of Tower No. 2
	7	Direction difference between 100 m and 10 m levels of Tower No. 1
	8	Direction difference between 50 m and 10 m levels of Tower No. 2
Wind-Profile Exponent ⁴	1	Based on speed difference between 100 m Level of Tower No. 1 and 30 m Level of Tower No. 2
	2	Based on speed difference between 50 m Level of Tower No. 1 and 30 m Level of Tower No. 2
	3	Based on speed difference between 10 m Level of Tower No. 1 and 30 m Level of Tower No. 2
	4	Based on speed difference between 100 m Level of Tower No. 1 and 10 m Level of Tower No. 2
	5	Based on speed difference between 50 m Level of Tower No. 1 and 10 m Level of Tower No. 2

TABLE 3-8 (continued)

DATA SUBSTITUTIONS USED BY H.E. CRAMER ASSOCIATES
IN DEVELOPING WESTVACO HOURLY METEOROLOGICAL INPUTS 2 3

	Rank of	
Input Parameter	Parameter Sour	rce Parameter Source
	6	Based on speed difference between 10 m Level of Tower No. 1 and 10 m Level of Tower No. 2
	7	Based on speed difference between 100 m Level of Tower No. 1 and 10 m Level of Tower No. 1
	8	Based on speed difference between 50 m Level of Tower No. 1 and 10 m Level of Tower No. 1
Vertical Potential Temperature Gradient ⁵	1	Based on temperature difference between 100 m Level of Tower No. 1 and 10 m Level of Tower No. 2
Gradient	2	Based on temperature difference between 10 m Level of Tower No. 1 and 10 m Level of Tower No. 2
	3	Based on temperature difference between 100 m Level of Tower No. 1 and 10 m Level of Tower No. 1
	4	Based on temperature difference between 30 m Level of Tower No. 2 and 10 m Level of Tower No. 2
Ambient Air Temperature	1 2 3	10 m Level of Tower No. 2 10 m Level of Tower No. 1 10 m Level of Beryl Tower

TABLE 3-8 (continued)

DATA SUBSTITUTIONS USED BY H.E. CRAMER ASSOCIATES IN DEVELOPING WESTVACO HOURLY METEOROLOGICAL INPUTS 2 3

	Rank of	
Input Parameter	Parameter Source	Parameter Source
T b	1	20 m Lovel of Torron No. 2
Lateral and	1	30 m Level of Tower No. 2
Vertical Turbulent	2	10 m Level of Tower No. 1
Intensities	3	50 m Level of Tower No. 1
	4	100 m Level of Tower No. 1
	5	10 m Level of Tower No. 2
Stability Class	1	10 m Level of Tower No. 2
-	2	10 m Level of Tower No. 1
	3	30 m Level of Tower No. 2
	4	50 m Level of Tower No. 1
	5	100 m Level of Tower No. 1

When no non-variable wind direction was found, the hour was flagged by setting the wind direction equal to 090 degrees and the mixing depth equal to 1 meter.

When none of the data substitutions were possible, the wind-direction shear was set equal to zero.

The wind-profile exponent was set equal to zero when the calculated exponent was negative or if none of the data substitutions were possible. The wind profile exponent was not allowed to exceed unity.

When none of the data substitutions were possible, the vertical potential temperature gradient was set equal to the moist adiabatic value of 0.003 degrees Kelvin per meter.

When no turbulence measurements were available, the lateral and/or vertical turbulent intensities substituted were climatological values for the combination of season, wind speed and time-of-day categories.

Wind speeds above 0, but less than 1 meter per second, were set equal to 1 meter per second. When all of the wind speeds were calm, the hour was flagged by setting the wind direction equal to 090 degrees and the mixing depth equal to 1 meter.

TABLE 3-9

SUMMARY OF WESTVACO METEOROLOGICAL INPUTS TO THE COMPLEX TERRAIN MODELS

Model Function	Input Parameter	ਹੈ		CXZ	PEM	M41	11 IMP	PL5	RTD	ZHS
Transport	Wind Speed Wind Direction Wind Dir. Shear Anemometer Ht. Power Law Exponents		U-1 &-1 NR Z-1	U-1 0-1 NR Z-1 NR	U-1 0-1 NR Z-1 NR	U-1 0-1 NR Z-1 NR	U-2 0-2 NR Z-1 NR	U-1 0-1 NR Z-1 NR	U-3 0-1 NR Z-2 P-2	U-4 0-1 NR Z-1 P-1
Dispersion	Stability Horiz. Turb. Vert. Turb.	W Z Z	S-1 KR KR	S-1 NR NR	S-1 NR NR	S-1 NR NR	S-4 NR NR	S-2 NR NR	S-3 I _Y 2 I _Z 2	NR I y l I z l
Plume Kise	Temperature Wind Speed dT/dZ Stability	W 7 C 1	[-1 J-1 NR S-1	T-1 U-1 NR S-1	T-2 U-6 NR S-1	T-1 U-1 NR S-1	T-1 U-2 NR S-4	T-1 U-1 NR S-2	T-1 U-5 DT1 S-3	1-1 U-1 DT1 NR
Limited Mixing	Mixing Height		<u>.</u> -1	L-1	L-4	L-1	NR	L-2	[-1	L-3
Critical Height	Temperature Wind Speed	44	KR KR	NR NR	U-6 T-2	NR NR	NR NR	NR NR	DT1 U-1	NR NR
Legend		Description								
Model	CX1 CX2 PFM M41 IMP PL5 RTD SHZ	COMPLEX I COMPLEX II COMPLEX/PFM 4141 IMPACT PLUMES RTDM SHORTZ								

(continued on next page)

TABLE 3-9 (Continued)

puebend		Description
Wind Speed	U-1 U-2 U-3 U-5 U-6	"Stack height" wind speed from Westvaco modelers'data base (MDB) Wind speed from 3 towers, all levels; interpolated to mid-grid cell U-1 extrapolated to plume height from Z-2 using P-1 U-1 extrapolated to plume height from Z-2 using P-1 U-1 extrapolated to stack height from Z-2 using P-2 Profile of speeds from all tower levels merged with Pittsburgh radiosonde data through PROFILE (COMPLEX/PFM preprocessor)
Wind Direction	0-1 0-2	"Transport height" wind direction from MDB Wind direction from 3 towers, all levels; interpolated to mid-grid cell
Wind Direction Shear	ΔΘ1 ΔΘ2	From MDB $d\Theta/dz = \Delta\Theta1/70 \text{ m}$
Anemometer Height	Z-1 Z-2	Set to stack top (189.7 m) since U-1 represents stack top wind Z = 30 m (Tower 2 height), ZA = 179.6 m (Tower 2 base relative to stack base)
Power Law Exponents	P-1 P-2	Hourly from MDB As for P-1 but with observed negative values (from ERT)
Stability	S-1	P-G category from Turner method (CRSTER preprocessor) using Morgantown, WV cloud data and Westvaco 10 m wind speed (Avg. of 3
	S-2	towers) P-G category from CONVRT (PLUME5 preprocessor) using σ_{\odot} (I $_{y}$
	8 - 8 - 4	Iron MDD) P-G category using σ_{ϕ} (Iz on 50 m level of Tower 2, from ERT) Vertical profile of P-G category based on d Θ/dz from temperatures on 3 towers

TABLE 3-9 (Continued)

Кеу		Description
Turbulence - Y	I,1 I,2	Horizontal turbulence from MDB Horizontal turbulence measured at 50 m on Tower 1 (from ERT)
Turbulence - Z	$\begin{matrix} I_2 1 \\ I_2 2 \end{matrix}$	Vertical turbulence from MDB Vertical turbulence measured at 50 m on Tower l (from ERT)
Temperature	I-1 I-2	From MDB Profile of temperatures from all tower levels merged with Pittsburgh radiosonde data through PROFILE (COMPLEX/PFM preprocessor)
dI/dZ	DT1	Vertical potential temperature gradient from MDB
Mixing Height	1 - 1 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 4 - 4 - 4	From CRSTER preprocessor with Pittsburgh (Upper) and S-1 From CONVRT (PLUME5 preprocessor) with Pittsburgh (Upper) and S-2 From METZ (SHORTZ preprocessor) with Pittsburgh (Upper) and Westvaco 10 m wind speed From PROFILE (COMPLEX/PFM preprocessor) with Pittsburgh (Upper)
	NR	Not reguired

SECTION 4

STATISTICS APPROACH

The 1980 AMS Woods Hole workshop on model performance evaluation recommended a comprehensive list of performance measures and statistics for evaluating air quality models. The workshop recommended that performance evaluations be based on comparisons of the full set of observed-predicted data pairs, of the highest observed and predicted concentration per event (e.g., 1, 3 or 24 hour time period) and of the highest N values (unpaired in time or space). In addition, comparisons of observed and predicted concentrations are to be carried out on data subsets representing individual monitoring stations or selected meteorological conditions.

TRC and EPA reviewed the workshop report and formulated a statistical evaluations³ approach for the rural model based on recommendations. The approach was modified for the urban evaluations⁵, primarily to reduce the volume of information by eliminating redundant performance measures and statistics. Additional revisions as appropriate to the complex terrain models were also made, and the statistical approach followed for this evaluation is described below.

DATA SETS FOR COMPARISON OF OBSERVED AND PREDICTED CONCENTRATIONS

The data sets listed in Table 4-1 represent the different types of comparisons recommended by the AMS workshop. In each instance, comparisons were recommended for the basic 1-hour unit for model predictions and also for 3-hour and 24-hour averaging times. The numbering scheme in the table 1s derived from a summary prepared by William Cox of EPA of the data sets and statistics recommended by the AMS workshop.

To compare observed and predicted air quality values on a common basis, it is necessary to account for background concentration, i.e., contributions to measured air quality from sources whose impact is not modeled. This concern does not arise for the Cinder Cone Butte tracer study, since other sources of SF $_6$ are non-existent. The effects of background in the Westvaco monitored data were removed from measured SO $_2$ concentrations before statistical comparisons were made between observed and predicted concentrations. The uncertainty of plume transport in complex terrain poses an uncertainty in attempting to define a method for the determination of background concentrations. High observed concentrations in the Westvaco network tended to occur with light and variable winds which can result in

Peak Concentration Comparisons	(A-1)	Compare highest observed value for each event with highest prediction for same event (paired in time and location)	B. All-Concentrations Comparisons	(B-1) Compare observed and predicted values at a given station, paired in time (a total of 11 data sets).
	(A-2)	Compare highest observed values for the year at each monitoring station with the highest		(B-2) Compare observed and predicted values for a given time period, paired in space (not appropriate for data sets with few monitoring sites).
		prediction for the year at the same station (paired in location, not time)		(B-3) Compare observed and predicted values at all stations, paired in time and location (one data set) and by time
	(A-3a)	Compare maximum observed value for the year with highest predicted values representing different time or space pairing (fully unpaired, paired in location; paired in time; paired in space and time)		(B-4) Same as (B-3), but for subsets of events by meteorological conditions (stability and wind speed) and by time of day.
-44-	(q-3p)	Compare maximum predicted value for the year with highest observed values for various pairings, as in (A-3a)		
	(A-4a)	(A-4a) Compare highest N (=25) observed and highest N predicted values, regardless of time or location		
	(A-4b)	Compare highest N(=25) observed and highest N predicted values, regardless of time, for a given monitoring location. (A total of 1) data sets.)		
	(A-5)	Same as (A-4a), but for subsets of events by meteorological conditions (stability and wind speed) and by time of day.		

high measured concentrations at monitors located 180° upwind from the stack, using the measured wind direction. It was assumed that the background contribution is evenly distributed over the study area, and can be represented by the lowest measured concentration in the network each hour. Since observed concentrations of less than .005 parts per million (ppm) were set to the minimum instrument detection level of .005 ppm, background concentrations for these hours were set to .0025 ppm. The Luke Mill of Westvaco is relatively isolated from other point sources of SO_2 , so this background method should be effective. In Table 4-1, and in the discussions that follow, "observed value" denotes a measured concentration minus background.

For many hours during the year at Westvaco, none of the monitoring stations experienced significant observed or predicted SO_2 impact. These hours of effectively zero observed and zero predicted impact are relatively uninteresting for the evaluation of air quality models for regulatory purposes. Including those hours in statistical analyses adds to the computational burden and tends to dilute the model performance results from hours with significant impact. Consequently, threshold values were imposed to screen the data base for statistical analyses. If, for a given time period, both the observed concentration and the predicted concentration at a station were below the threshold, that data pair was excluded from further analysis. A threshold value of $25~\mu\text{g/m}^3$ was used for 1-hour and 3-hour averages, and a value of $5~\mu\text{g/m}^3$ was used for 24-hour averages. Threshold checks were not imposed on the Cinder Cone Butte data.

Peak Concentrations

For peak concentrations, comparisons are made to determine model performance both on an unpaired basis and for various pairings in time and space. The first two items in Table 4-1 represent a comparison of the highest observed and highest predicted concentrations, paired in time (A-1) and paired in location (A-2). For the Westvaco data set, these two comparisons provide quite different measures of performance since the number of events is large (1 year represents 365 days or 8,760 hours) while there are only 11 stations. Meanwhile for the Cinder Cone Butte data set, the number of events is relatively small (104 hours) while the number of stations (94) is relatively large. An additional (A-2) data set was added for the complex terrain evaluation, representing the second-highest values observed and predicted at each station.

Item A-3a represents a comparison of the highest observed concentration values, regardless of time or space, and predicted values representing different time and space pairing. Item A-3b is directly analogous to A-3a, but starts from the highest predicted value. Results for data sets (A-3a) and (A-3b) were relatively uninformative for the rural evaluation. These sets were therefore dropped from subsequent evaluations.

Items A-4 and A-5 involve comparisons of the "N" highest observed and predicted values, unpaired in time or space. The AMS workshop recommended that such comparisons be based on the upper 2 to 5 percent of concentrations, rather than on one or two extreme values. As an alternative

to the percentile approach, TRC recommended using a small number (N=25) which would more appropriately represent the set of highest observed and predicted values, while still providing a statistical basis for establishing confidence limits. On a percentage basis, 25 values represent roughly 7 percent of the 365 24-hour values in a year, about 1 percent of the 3-hour values, and about 0.3 percent of the 1-hour values.

Air quality data often exhibit spatial and temporal correlation, particularly over time periods of a few hours. For 1-hour and 3-hour periods, the highest 25 values were screened to eliminate cases with two or more high values from the same period, or with two consecutive high values (Westvaco only) at the same location. This screening is intended to reduce the effects of auto-correlation and to avoid double-counting a single event. For 24-hour averaging periods, less correlation is expected, and this screening was not included.

Comparisons of the highest 25 observed and predicted values were performed for all stations combined (A-4a), for each station individually (A-4b) and for subsets of events corresponding to selected source-receptor geometry and to selected meteorological conditions (A-5). The subsets selected for the evaluation of each data base are described in more detail later in this section.

Comparisons of All Concentrations

In addition to peak concentration analyses, the AMS workshop recommended that comparisons be made based upon all observed and predicted concentration values. Table 4-1 lists three items of this type. Item B-1 is the comparison of observed and predicted values at a given monitoring station (for all data pairs above the threshold values). Item B-3 represents comparisons based on the set of values from all 11 stations combined. Item B-4 represents subsets of B-3. The same criteria described for item A-5 above (for defining subsets of source-receptor geometry and meteorology) were used to define subsets for comparisons of all concentrations.

STATISTICAL ANALYSIS OF MODEL PERFORMANCE

The AMS workshop report recommended two somewhat different lists of performance measures for comparing model predictions with observed air quality, one appropriate for data sets representing pairs of observed and predicted values, the other appropriate for unpaired data sets. Paired data sets provide a means for assessing how well a model predicts on an event-by-event basis, while unpaired sets do not. Table 4-2 summarizes the basic list of performance measures, and the statistical methods recommended for establishing confidence limits on each measure. At the head of each column (Paired and Unpaired) are listed the data sets from Table 4-1 to which each list of measures and statistical methods has been applied.

TABLE 4-2. STATISTICAL ESTIMATORS AND BASIS FOR CONFIDENCE LIMITS ON PERFORMANCE MEASURES

Performance		Basis for Confid	dence Interval
Measure	Estimator	Paired Comparison	Unpaired Comparison
		(Sets A-1, A-2,	(Sets A-1, A-4, A-5,
		B-1, B-3, B-4)*	B-1, B-3, B-4)
Bias	Average	One sample "t," with adjustment for serial correlation	Two sample "t"
	Median	Wilcoxon match pair	Mann-Whitney
Noise/Scatter	Variance	Chi-squared test on variance of residuals	F test on variance ratio
	Gross variability	None	Not applicable
	Average		
	absolute		
	residual	None	Not applicable
Correlation	Pearson correlation coefficient	Fisher "z"	Not applicable
Frequency distribution comparison	Maximum difference between two cumulative distribution functions	Not Applicable	Kolmogorov-Smirnov (K-S) test on f (obs.) vs. f (pred.)

^{*} These sets refer to Table 4-1.

The data sets from item A-l (highest observed and predicted values for each event) and from items B-1, B-3, and B-4 all represent observed and predicted values paired in time. For these sets, statistical analyses based on the residual (i.e., the differences between each pair of observed and predicted values) are appropriate for measuring model performance. If the time pairing for these data sets is ignored, however, it is also possible to assess model performance (in aggregate) by comparing the features of the composite set of all observed values to those of the predicted values. Consequently, both paired and unpaired comparisons were recommended by the AMS workshop for these data sets. Data sets representing comparisons of the highest 25 values, regardless of time or space, provide no basis for paired analysis. For these sets (A-4, A-5), only unpaired comparisons were performed. Item A-2 represents comparison of the single highest observed and predicted values from each of the N stations. Only the paired comparison performance measures were computed for this case. No statistics were computed for the single-value comparisons in item A-3.

For paired comparisons, as noted above, the performance measures are based on an analysis of residuals. Model bias is indicated by the average and/or the median residual, with a value of zero representing no bias. The characteristic magnitude of the residuals is an indicator of the scatter between observed and predicted values on an event-by-event basis. Three measures of noise or scatter were computed:

• Variance
$$\frac{1}{N-1}$$
 \sum_{1} $(d_1 - \overline{d})^2$

• Gross variability
$$\frac{1}{N}$$
 \sum_{i} d_{i}^{2}

• Average absolute residual
$$\frac{1}{N}$$
 $\sum_{i} |d_{i}|$

where d_1 is the residual (observed minus predicted) for data pair i, d is the average residual, and N is the number of data pairs. The correlation of paired observed and predicted values is measured by the Pearson correlation coefficient.

For unpaired comparisons, the list of performance measures is somewhat shorter. Model bias is indicated by the difference between the average (or median) observed value and the average (median) predicted value. A ratio of the variances of the observed and predicted values is provided to indicate whether the distribution of values in the two data sets is comparable. Similarly, the frequency distribution of observed values is compared with that for predicted values.

Standard statistical methods have been used to estimate confidence limits for each of the performance measures. Discussion of the statistical procedures may be found in most statistics textbooks. For parametric procedures, the reader is referred to Snedecor and Cochran (1967), 24 while for nonparametric procedures Hollander and Wolfe (1973) 25 provide an appropriate description.

For paired comparisons, the confidence interval on the average residual can be estimated using the one-sample t test. This parametric test incorporates the assumption that the residuals follow a normal distribution, but for large N departures from normality are not critical. Serial correlation can affect results significantly, however, since the number of "independent events" will be overestimated and the calculated variance may understate the magnitude of the actual random error component. The AMS workshop recommended the adjustment of confidence limits for serial correlation. A method described by Hirtzel and Quon $(1981)^{26}$ has been used to adjust the confidence interval from the one-sample t test. The interval given by the standard one-sample t test is multiplied by the factor $[(1+r)/(1-r)]^{1/2}$, where r is the lag-one autocorrelation coefficient of the residuals.

An analogous nonparametric indicator of model bias is the median residual. The statistical method for estimating a confidence interval on the median residual is provided by the Wilcoxon matched-pairs test. No straightforward method of adjusting the confidence intervals from the Wilcoxon test for serial correlation has been identified.

A confidence interval for the variance of the residuals is calculated using a chi-squared test. No adjustment was made for serial correlation. No standard method is available for estimating confidence intervals for the gross variability or average absolute deviation measures. For the Pearson correlation coefficient, the Fisher z test provides a method of estimating the confidence interval.

Comparison of two cumulative distribution functions is accomplished using the Kolmogorov-Smirnov (K-S) test. For this test, the two distribution functions are compared across the full range of concentration (or residual) values, and the maximum frequency difference between the two functions is identified.

For unpaired comparisons, two bias measures are computed. The average of the observed values is compared with the average of the predicted values. The confidence interval on the difference of the averages is estimated with a two-sample t test. The median difference is also computed, and the confidence interval is estimated using the Mann-Whitney nonparametric test.

The variance of observed values is compared with the variance of predicted values for unpaired data sets. The performance measure is the ratio of the variances; the F test provides confidence limits on the ratio.

The frequency distribution comparison for unpaired data sets provides a measure of the difference between the observed and predicted distribution functions. The K-S test is again used to assess the statistical significance of the maximum frequency difference.

Statistical Measures for the Full Westvaco Data Set

For Westvaco, the full data set represents hourly observed and predicted concentrations at each receptor and hourly associated variables (for subset analysis) for a one-year period of record. The specific performance measures and statistics calculated for each of the unpaired and paired data sets are summarized in Table 4-3 and 4-4. The notation for identifying data sets corresponds to that employed in Table 4-1.

The routine monitoring network at Westvaco, with relatively few stations and a very large number of events lends itself to an evaluation approach focussed on peak values (unpaired in time or location), analysis by station, and analysis for meteorological subsets (by stability and wind speed). The added factor of terrain elevation is reflected in station-by-station results. The performance evaluation considers 1-hour, 3-hour, and 24-hour averaging times. In complex terrain, peak impacts are commonly thought to be associated with stable conditions. Four stability categories, therefore, have been selected: unstable (Class A, B, and C); neutral (Class D); slightly stable (Class E); and stable (Class F).

Table 4-3 indicates that the full set of estimators and confidence interval calculations will be provided for the 25 highest values over all stations and events (A-4a), but only a partial set of measures is provided by station (A-4b) or for subsets by meteorology (A-5).

For the paired data sets (Table 4-4), the highest priority is placed on comparisons of the highest value per station (A-2) and all events paired in time and location (B-3). The remaining data sets received a more limited analysis.

IMPACT Model: Analysis of Select Hours for Westvaco

The IMPACT model runs with Westvaco data were limited to selected periods in order to maintain reasonable computer costs. As previously discussed, the primary basis for evaluating the models (except IMPACT) with the Westvaco data is the set of performance statistics based on the full year of Westvaco data. In order to provide some basis for comparing the performance of the IMPACT model and the other complex terrain models, performance statistics have been prepared for the other models based on the same subset of hours selected for evaluation of the IMPACT model.

Based on benchmark computer costs, it was estimated that approximately 500 hours could be simulated with the IMPACT model. Selection of this many hours allowed the consideration of 24-hour as well as 3-hour and 1-hour averaging periods. However, the number of 24-hour periods, restricted to about twenty is marginal from a statistical standpoint. The selection of twenty 24-hour periods did ensure that a large number of 1-hour and 3-hour

PERFORMANCE MEASURES AND STATISTICS CALCULATED FOR THE WESTVACO UNPAIRED (25 HIGHEST) DATA SETS TABLE 4-3.

Median Variance Difference Ratio	/(C.I.) /(C.I.)	×	×
Difference of Averages	/(C.I.)*	>	•
Average Predicted	>	>	>
Average Observed	>	,	>
	All stations/ all events (A-4a)	By station/ all events (A-4b)	Subsets by met. conditions (A-5)

^{*} C.I. = confidence interval

Class A, B, C Class D Class E Class F Subsets include: Stability Class (4 groups):

Wind Speed (3 groups)

1, 3, 24 hours Averaging times:

TABLE 4-4. PERFORMANCE MEASURES AND STATISTICS CALCULATED FOR WESTVACO DATA SETS PAIRED IN TIME OR LOCATION

	Highest per event paired in time	Highest per station paired by location (A-2)	All data paired in time and location (B-3)	All events at each station paired in time (B-1)	Subsets of events paired in time and location (B-4)
Number of events	>	>	>	>	>
Average observed	>	>	>	>	>
Average difference	/(C.I.)*	/(C.I.)	/(C.I.)	>	>
Fraction Co > Cp	×	>	>	×	×
Characteristic Discrepancies	/(C.I.) x x	/(C.I.)	/(C.I.) / /	> × ×	> × ×
Correlation Coefficients					
Pearson R Spearman p	× ×	>>	>>	××	×
Variance comparison	×	/(C.I.)	/(C.I.)	×	×
Maximum frequency difference	/(C.I.)	×	/(C.I.)	×	×

* C.I. = confidence interval

periods were modeled. Not all these periods, however, involve significant observed and predicted impact at monitor locations. The following selection criteria were followed:

- 1. The days with the six highest observed concentrations at each of the 10 monitors to be modeled with the IMPACT model were identified.
- 2. 20 days (480 hours) were randomly selected from (1).
- 3. The 3-hour periods with the six highest observed concentrations at each of the 10 monitors were identified as in (1).
- 4. 20 3-hour periods were randomly selected from (3).

Model results for the hours selected in (2) and (4) above were then analyzed. Implementation of the above criteria resulted in a data set containing 480 hours. Performance statistics for this limited data set include only a portion of the measures listed in Tables 4-3 and 4-4. For unpaired (25 highest) analysis, the all stations/all events case was examined for the 1-hour averaging period. For data sets paired in time or location (Table 4-4), statistics for A-1, A-2, B-1, and B-3 were generated for the 1-hour average, but subsets of events (B-4) were not considered.

Statistical Measures for the Cinder Cone Butte Data Set

The tracer experiments at Cinder Cone Butte represent a different type of data set for evaluating model performance. The number of concentration measurements per hour is much greater, and the number of events much fewer, than those from a long-term, continuous monitoring program. The greater spatial density of measurements make comparisons between observed and predicted values event-by-event (paired in time) more informative for a tracer data set. Analyses for individual hours and/or individual tests are also feasible. By contrast, the number of monitors and the use of movable arrays make it difficult to perform station-by-station analyses.

The evaluation for Cinder Cone Butte shifts the emphasis toward event-by-event analysis. The Cinder Cone Butte data sets representing the 25 highest observed and predicted values (unpaired) received similar treatment to that for Westvaco, as indicated by Table 4-5. No analysis by station has been attempted. Subset analysis included station groups defined by receptor terrain elevation (relative to release height). Receptors were grouped into four categories: below release height; at release height (within 10 meters); between 10 and 30 meters above release height; and more than 30 meters above release height.

The paired data sets analysis for Cinder Cone Butte, summarized in Table 4-6, does not include any analyses by station. The highest-by-event data set (A-1) has been analyzed for the full set of paired performance measures, as was the "all pairs" (B-3) data set.

TABLE 4-5. PERFORMANCE MEASURES AND STATISTICS CALCULATED FOR THE CINDER CONE BUTTE UNPAIRED (25 HIGHEST) DATA SETS

	Average Observed	Average Predicted	Difference of Averages	Medians Difference	Variance Ratio
All stations/ all events (A-4A)	,	\		/(C.I.)	/(C.I.)
Subsets by receptor terrain elevation (A-5)	>	7	>	×	>

* C.I. = confidence interval

-54-

Averaging time: 1 hour only

TABLE 4-6. PERFORMANCE MEASURES AND STATISTICS CALCULATED FOR THE CINDER CONE BUTTE DATA SETS PAIRED IN TIME OR LOCATION

	Highest per event paired in time (A-1)	Highest per event paired in time- subsets (A-la)	All data paired in time and location (B-3)	Subsets of events paired in time and location (B-4)
Number of events	· · · · · · · · · · · · · · · · · · ·	,	<i>></i>	>
Average observed	>	>	>	>
Average difference	/(C.I.)*	>	/(C.I.)	>
Fraction Co > Cp	`>	×	>	×
Characteristic Discrepancies od RMSE AAR	/(C.I.) / /	> × ×	/(C.I.) / /	> × ×
Correlation Coefficients Pearson R Spearman ρ	>>	> ×	>>	××
Variance comparison	/(C.I.)	×	√(C.I.)	×
Maxımum freguency dıfference	/(C.I.)	×	/(C.I.)	×

* C.I. = confidence interval

Since the tracer releases for the Cinder Cone Butte experiments were generally shorter than three hours in duration (less than one hour in many instances), it was not feasible to evaluate model performance for averaging times as long as three hours. Analyses were limited to one-hour averaging periods.

For the Cinder Cone Butte data base, analysis of the unpaired 25 highest values for subsets of events was not attempted. Subset analysis was instead performed for the "highest-by-event" paired data set. The recommendation to replace "highest 25" subsets with "highest paired in time" subsets for Cinder Cone Butte reflects two considerations. First, the total number of events is small, and some subsets may contain fewer than 25 hours. Second, the sampler density provides relatively good estimates of peak values for all hours, and the experimental periods were generally selected to provide high impact at receptors.

Paired data subsets for Cinder Cone Butte (for 1-hour periods) were defined by stability group, wind speed, release hight and release distance. Stability group wind speed categories for Cinder Cone Butte are the same as those for Westvaco. Three release height categories (relative to the base elevation of 945 meters) were used: below 16 meters; between 16 and 26 meters; and above 26 meters. Two release distance categories were used: less than or greater than 900 meters from the release point to the top of the butte.

SECTION 5

MODEL PERFORMANCE RESULTS

Statistics comparing observed and predicted concentrations have been generated for each of the eight complex terrain models and two data bases. The results are presented by data set for the Westvaco full year model runs, Westvaco-IMPACT select hours, and Cinder Cone Butte tracer tests. Each data set is organized into four types of tables providing statistics for 25 highest values, highest concentrations by station (except for Cinder Cone Butte), highest concentrations by event and comparisons of all observed and predicted concentrations paired in space and time. Tables of statistical subsets by meteorology and source-receptor geometry are provided in Appendices B and C.

WESTVACO FULL YEAR RESULTS

The full year of Westvaco data was run for all of the models except IMPACT. Statistical measures were produced for three averaging times (1-hour, 3-hour, and 24 hours) for each of the seven complex terrain models.

Statistics for 25 Highest Values

Statistics for the set of 25 highest observed and 25 highest predicted 1-hour average SO_2 concentrations are presented for each model in Table 5-1. The first two columns of results are simply the average of the 25 highest observed values and the average of the 25 highest predicted values for each data set. The first performance measure, presented in column three is the difference between the two averages. A positive value implies model underprediction. In parentheses under the calculated differences are 95 percent confidence intervals, determined by using the two-sample Students' t test. These results show that all seven of the complex terrain models overpredicted the 25 highest values at the 95 percent confidence level. The largest overprediction, by a factor of 20, is by COMPLEX II, and the smallest overprediction, by a factor of 1.6, is by RTDM.

The second performance measure is the median difference (313th highest value) between all 625 possible pairings of the 25 highest observed and predicted concentrations. The 95 percent confidence interval is determined with the nonparametric Mann-Whitney test. Results for the median difference are very similar to those for the difference of averages.

TABLE 5-1

COMPARTON OF 25 4164EST PESERVED AND PREDICTED SP2 CONCENTRATION VALUES (UG/4**3) (UNPAIR/D IN TIME OR LOCATION) FOR THE 1-HOUR AVERAGINS PLAION WESTVACO (1987/1931)

; 6 1 1							
MAXI 4UM FREUDENCY OTFFERENCE	1.00 (.365)	1.00 (.783)	1.60 (.385)	.92 (.385)	1.03 (.385)	1.03	1.00
VARIANCE COMPARISON (OBS/PPED)	.017 (.069639)	.004 .002719)	.009 .004729)	.151 (.057, .544)	.008 (.004319)	.003	.007 (.003015)
MEDIAN DIFFERENCE* (09S-FRED)	-15972	-35616 (-37307+-3396R)	-9554 (-11689: -8080)	-635 (-943, -292)	-11472	-113mg (-12329,-18520)	-10153 (-11021, -9576)
DIFFERENCE OF AVERASES*	-15189 (-17149,-15249)	-3556P (-38555,-14782)	-16236 (-11549, -8922)	-1319 (-1652, -985)	-12554 (-13923,-11189)	-13193 (-15397,-10989)	-1139° (-13075*-10112)
AVERAGE PPENICIED VALUE	10159	39638	12205	3289	14525	15153	13553
AVERAGE OBSERVED VALUE	1969	1969	1969	1969	1969	1959	1969
TODEL	COMPLEXI	COMPLEXII	4141	r I D u	PLUML5	COMPLEXZPFM	SH04TZ

* 93 PERCEUT CONFIDENCE INTERVAL IN PARENTHESES

The third performance measure is the variance comparison. The variance of the 25 highest observed values was divided by the variance of the 25 highest predictions. The F test was used to calculate the 95 percent confidence levels for these comparisons. Results indicate that, for all of the models, the scatter of 25 highest model predicted concentrations is much larger than the scatter of 25 highest observations.

The last performance measure presented in Table 5-1 is the frequency The cumulative distribution function distribution comparison. represents the fraction of the data set (in this case, the fraction of 25 data points) with concentration values less than or equal to C. The value presented in this column is the largest absolute difference between the observed and predicted distribution functions (for the same concentration value) obtained when the two functions are compared for all concentration values. The value given in parentheses is the maximum difference which is significantly different from zero, at a 95 percent confidence level, as given by the Kolmogorov-Smirnov (K-S) test. This confidence interval is a function of the number of cases. The value is, therefore, the same (0.385) for all models, since the number of cases is always 25. The results for the comparison of maximum frequency differences (1.00 for six of the seven models) indicate there is no overlap between the distributions of 25 highest observations and 25 highest predictions.

Table 5-2 is presented to exemplify how comparisons of the 25 highest observations and 25 highest predictions selected by monitoring station and for various meteorological subsets reveal more detailed aspects of model performance. Results for the COMPLEX I model are depicted in Table 5-2, while results for all of the models are presented in Appendix B. Comparisons of median difference and frequency distributions have been eliminated from the subset tables since they don't provide a great deal of additional information.

While reviewing Table 5-2, the reader should notice from Figure 3-3 that the largest overpredictions by COMPLEX I occur at the close-in monitors (stations 1, 3, 4, and 6) on the ridge southwest of the stack; while underpredictions occur at the two monitors (stations 2 and 11) located northwest of the plant. Overpredictions of the highest 25 concentrations occur on average for all wind speed categories and for stable conditions. Neutral and unstable conditions, however, result in underpredictions of the highest 25 concentrations by COMPLEX I. The average of the 25 highest predictions for stability D is only 8 $\mu\text{g/m}^3$, while the observed average is 1517 $\mu\text{g/m}^3$, resulting in an extremely large variance ratio for this subset. For COMPLEX I (and some other models as well) this result is probably due to the half-height terrain treatment (lifting the plume over terrain) combined with small values of the vertical dispersion coefficients for stability D.

Comparisons of the highest 25 observed and predicted concentrations for data sets of 3-hour and 24-hour averaging periods are presented in Table 5-3 and 5-4. Subset tables for 3-hour and 24-hour averaging periods are

TABLE 5-2

COMPORTSON OF 25 HIGHEST OBSERVED AND PREDICTED SOZ CONCENTRATION VALUES (US/M**3)
(UNPAIRED IN TIME OR LOCATION)
FOR VARIOUS DATA SETS
MODEL: COMPLEXI
FOR THE 1-HOUR AVERAGING PERIOD
WESTVACO (1987/1981)

VARIANCE COMPARISON (OBS/PRED)	.017 (.008, .339)	.013 11.967 .264 .029	30.056 30.056 30.056 4.056	. P23 . 961 . 023	7.232 12133.506 .114
DIFFERENCE DF AVERAGES* (ORS-PRED)	-16199	-15257 -11257 -11015	11000 11000	-16592 -11013 -5111	674 1509 -15741 -16561
AVEPAGE PRESICTED VALUE	18169	16574 1276 12789 12789	155.72 63.98 23.54 42.22 42.8 19.1	18169 12828 5669	419 8 11855 1269
	1969	1316 318 1113 1072	1411 1347 1103 1103 339 315	110N 1576 1813 551	1092 1517 1118 1667
DATA SETS	ALL		STATION 5 STATION 7 STATION 8 STATION 9 STATION 1 STATION 1	<u>₹</u> ⊘ ເກ ເກ	A. STABILITY GROUP CLASS 3. B & C CLASS D CLASS F CLASS F
					- 6 9 8 1 5

TABLE 5-3

COMPARISON OF 25 HIGHEST OPSERVIO AND PREDICTED SP2 CONCENTRATION VALUES (UG/M**3) (UNPAIRED IN TIME CR LOCATION) FOR THE 3-HOUR AVERAGING PERIOD WESTVACO (1987/1931)

MAXIAUM FREQUENCY DIFFERENCE	1.63	1.00 (.385)	1.00 (.385)	,52 (,385)	1.03 (.385)	1.03 (-,385)	1.00 (.385)
VARIANCE COMPARISON (ORS/PRED)	.025 (.011058)	.007 (.005015)	.037 (.015, .0P4)	.473 (.209,1.075)	.008 (.004018)	.017 (.0007, .038)	.046 (.020, .164)
MEDIAN DIFFERENCE* (OBS-PRED)	-10433 (-11000,-10157)	-17793 (-21880,-17031)	-3552 (-4107+ -2712)	-256 (-502, -135)	-5554 (-6958, -4625)	-6053 (-6977• -5255)	-5043 (-5370, -4323)
DIFTERENCE OF AVERAGES* (09S-PRED)	-11075 (-11845,-10311)	-19435 (-20871,-17989)	-3642 (-4283, -3000)	-337	-5650 (-2031, -5329)	-4661 (-7549, -5552)	-5262 (-5786+ -4524)
AVERAGE PREDICTED VALUE	12205	23557	4769	1464	7817	7720	5336
AVERAGE ORSERVED VALUE	1127	1127	1127	1127	1127	1127	1127
мэрег	C642LEXI 1127	COMPLEXII	4141	RTDM	PLUMES	W3d/x3TcWU3	SH04T2

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPARTON OF 25 HIGHEST OFSERVED AND PREDICTED SAY CONCENTRATION VALUES (US/M**3) (UNPAIRED IN TIME OR LOCATION) FOR THE 24-HOUR AVERASING PERIOD WESTVALD (1987/1991)

43 D F L	AVERAGE 03SERVED VALUE	AVERAGE PREJICTED VALUE	DISTERENCE OF AVERAGES*	VEDIAV DIFFERENCE*	VARIANCE COMPARISON (OBS/PRED)	MAAXIAUM RREGUENOX DIFFERENCE
	354	3230	-20F* (-3101+-2524)	-2728 (-2886, -2574)	.007	1.03
	354	4482	-4127 (-4567, -3587)	-3504 (-4221• -3306)	.002 (.013044)	1.00
	354	855	-5ff (-544, -357)	-342 (-443, -317)	.924 (.011, .:55)	1.93 (.383)
	354	331	23 (-*7, 85)	57 (32, 92)	.143 (.053, .324)	\$5. (\$8.5.)
	354	1712	-1357	-73C (-892, -559)	.361 (.030, .9(2)	1.09
	354	1584	-1220 (-1480, -478)	-1231 (-1393, -887)	.008 (.003, .019)	1.63 (.385)
	354	1 38 R	-1037 (-1175, -991)	-944	.025 (.611057)	1.03 (.385)

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

presented in Appendix B. Results for 3-hour and 24-hour averages are similar to the results for the 1-hour averages. For 24-hour averages, RTDM predicted the average of the 25 highest values with no significant bias, at the 95 percent confidence interval.

Statistics for Highest Concentrations at Each Station

In Table 5-5 performance statistics are presented which compare the maximum concentration values observed and predicted during the year at each monitoring station (a total of 11 observed and 11 predicted values). This table illustrates results for the 1-hour averages, and seven models. Similar comparisons for second highest observed and predicted concentrations are presented in Table 5-6. Caution should be exercised when interpreting the meaning of some of the statistics for these rather small data sets.

The statistics provided in these tables compare observed and predicted values for 11 data pairs as shown in the first column. The next two columns present the average of the 11 observed concentrations and the average difference between observed and predicted values. The 95 percent confidence interval is given in parentheses, as calculated with a one-sample t test. As with the 25 highest concentrations, these results indicate overprediction (negative average differences), especially for COMPLEX II. At the 95 percent confidence level, the RTDM overpredictions are not significant. (The confidence interval is almost as large as the average observed value.)

The fourth column in these tables displays the fraction of positive residuals. This performance measure indicates the fraction of observed-predicted data pairs for which the observed concentration is larger than the predicted concentration. The results indicate overprediction at from 6 of 11 stations (for RTDM) to all 11 stations (COMPLEX/PFM).

The next three performance measures provide estimates of scatter, or characteristic discrepancies. They include the standard deviation of residuals (differences) with 95 percent confidence limits calculated from an F test; root mean square error; and average absolute residual. RTDM has the smallest values for all three measures, and COMPLEX II has the largest.

The Pearson correlation of observed and predicted concentration pairs and the nonparametric Spearman correlation of ranked sets of observed and predicted concentrations provide indications of the spatial correlation of the maximum concentration values at each station. Results from Table 5-5 and 5-6 show Pearson coefficients that range from 0.54 (4141 and SHORTZ) to 0.85 (COMPLEX II).

The last column in Tables 5-5 and 5-6 (variance comparison) presents the ratio of observed variance divided by the predicted variance, with 95 percent confidence bounds in parentheses as calculated by an F test. The l-hour variance comparisons for highest and second highest by station results are significantly less than unity for all seven models, reflecting the large magnitude and range of predicted values.

COMPARISON OF 41545ST
ORSERVED AND FREDICTED
SOZ CONCENTRATION VALUES (U3/M**5)
PAIRED BY STATION FOR THE 1 HOUR AVERASING PERIOD
WE STVACO (1586/1981)

	/ ARIANDE COMPA 1150 V* (03 \$5 F R E D)	.007 (.0032+ .028)	.002 (.030, .055)	.010 (-013; -035)	.171 (.545, .538)	.007 (.032, .027)	. JO5	.012629)
	S DE AR MAN COEFF	• 7 •	٠7٩	64.	8. 8.	• 75	۳ ه	.72
	PFARSON CORR. COEFF.	61.	. 85	• •	• 76	• 76	۵ •	• Ec
	AVERAGE ABSOLUTE RESIBUAL	9149	24393	5155	11 ° 6	9123	12033	6525
	ROOT MEAN SOUARE ERAOA	11789	29154	88 49	1428	11520	15351	5365
	STANDARD DEVIATION* OF RESIDUALS	5630,14141)	17600 (12297,3098£)	7204 5034•12643)	1527 927• 2329)	8181 5716+14357)	9976 6985•1754?)	7949 5554,13350)
	FRACTION STANDA OF DEVIATI FOSITIVE OF PESIDUALS RESIDUA (OBSSPRED)	.27	.18	.36	4.5	.18	90.	.18
	AVERAGE DIFFERENCE+	-8939 (-14352, -3526)	-23651 (-35674,-12028)	-5513 (-19353, -673)	-661 (-1552, 230)	-8679 (-14375, -3394)	-12032 (-18747; -5317)	-6469 (-11809, -1130)
	AVFRAGE OBSERVED VALUE	1259	1859	1859	1959	1859	1859	1 2 5 9
; ; ; ; ;	NUMBER OF DATA PAIRS	11	11	11	11	11	11	11
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	MODEL	COMPLEXI	COMPLEXII	4141	мстя	PLUMES	COMPLEX /PFM	SH3R1Z

* 93 PEPCENT CONFIDENCE INTERVAL IN PARENTHEVES

COMPAPISON OF SECOND HIGHEST ORSERVED AND PREDICTED SOZ CONCENTRATION VALUES (UG/M+*3) PAIRED BY STATION FOR THE 1 HOUR AVERASING PERIOD WESTVACO (1986/1981)

111111			* * * * * * * * * * * * * * * * * * * *				1 1 2 2 4 5 7 1 1 1 1		1111111111		:
7530%	NJMBER OF JATA PAIRS	A VERAGE OB SERVED VALUE	AVERAGE DIFFERENCE*	FRACTION OF POSITIVE PESIDUALS (ORS>PRED)	STANDAPD DEVIATION* OF RESIDUALS	ROOT MEAN SOUARE ERROR	AVERAGE ABSOLUTE RESIDUAL	PEARSON CORR. COEFF.	S P E A A A C C O R R • A A N C C O I F F F • • A A C C O I F F F • • A C C C C C C C C C C C C C C C C C	VARIANCE COMPARISON• (0359FRED)	
COMPLEXI	111	1517	-8039 (-12784, -3294)	.27	7r53 (4935 ₄ 1239 ^F)	10488	8156	2 2	α, ιΩ •	, 139 (*632* •634)	
COMPLEX II	T T	1617	-21317	.18	15691 (10964+27536)	56044	21440	• 8 8	& IC •	.025 (.031, .037)	
4141	11	1617	-4928 (-9125, -731)	35	624k (4365,10965)	7732	5430	• 54	65.	**************************************	
RIDM	11	1417	-450 (-1150, 250)	. ភ	1043	1092	9 18	÷1.	• സ	.245 (.655, .912)	
PLUMES	11	1517	-7082 (-11279, -2885)	• 18	6248 (4365,13354)	9255	7191	• 79	• 10	*312 (*933, *645)	
CCMPLEX/PFM	11	1517	-8256 (-12262, -4239)	00•	5971 (4172,1047°)	1025	R251	• 2 &	• 10 8	.912 (.013, .045)	
SHORTZ	11	1617	-5830 (-10667, -993)	€0•	7200 (5071,12535)	1236	5864	• ቀር	• 55	*169 (-035, •035)	

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTATORS

Tables of statistics for 3-hour and 24-hour averages of highest and second highest observed and predicted concentrations paired by station are presented in Appendix B. The results for the longer averaging periods are very similar to those for the 1-hour averages.

Statistics for Highest Concentrations by Event

Another data set consists of the highest observed and predicted concentrations over the monitoring network for each sampling period, paired in time (i.e., one pair of values for each 1-hour, 3-hour or 24-hour sampling period). Results for the 1-hour averaging period are presented in Table 5-7. While the data sets discussed up to this point contained relatively few points, event-by-event comparisons for a full year involve much larger volumes of data (i.e., a large "N"), as shown in the first column of this table. The numbers of events is different for each model, because the number of predicted values above the threshold values of $25\mu g/m^3$ is different. The performance measures and confidence intervals presented in this table have been discussed previously for Tables 5-1 and 5-5

The average differences displayed in Table 5-7 indicate that six of the seven models tend to overpredict. The largest overprediction is by COMPLEX II. The average difference predicted by 4141 is not significant at the 95 percent confidence level. RTDM underpredicted by 40 percent.

The standard deviation of residuals is an indicator of the range of residual values encountered for each model. The smallest standard deviation was obtained for RTDM, and the largest for COMPLEX II. Comparisons of observed and predicted frequency distributions of concentration values ignore any time pairing between observed and predicted values. Frequency differences were significantly different from zero for all of the models. The smallest frequency difference was obtained for SHORTZ (0.247), while four of the models gave frequency differences between 0.77 and 0.82.

Tables for 3-hour and 24-hour average highest concentrations by event are provided in Appendix B. The results are generally quite similar to the results for 1-hour values. All of the models except RTDM overpredict, on average, but the differences are not significant for 4141.

Statistics for All Concentrations Paired in Time and Space

The largest data sets considered in this evaluation represent all concentration values paired in time and location. Results for the 1-hour data sets are presented in Table 5-8 (Parts 1 and 2). Due to computer work-space limitations, the size of the data sets for 1-hour values was too large to calculate the maximum difference between observed and predicted frequency distributions.

On average, three of the models overpredicted and four of the models underpredicted. All of the over-and underpredictions are significant at the 95 percent confidence level. The largest average overprediction is by COMPLEX I and COMPLEX II, and the largest average underprediction is by RTDM. The smallest average difference is by PLUME5.

'ABLE 5-7

COMPACING TO PRICHEST OSSERVED AND PREDICTED SOC CONCENTRATION VALUES (US/Y**5) EVENT: Y-EVENT (PAIRED IN TIME) FOR THE I-FOUR AVERABLYS PERIOD WESTVACO (1980/1991)

PAXIMUS FREQUENCY DIFFERENCE	. 175	.754	.323)	.516	.153	.317	.247
G							
STANDARD DEVIATION* OF RESIDUALS	3461 3412 ₁ 3112)	5073 4992• 5158)	963	332 326, 337)	1354 1333, 1376)	1369 1347, 1392)	1297 1277• 1317)
STA DEVI	80.18	2664)	7 +6	326	(1333	1345	(1277
AVERASE DIRERENCE* (093-PRED)	-547	-1237 -1441, -1333)	-73, 1)	59 46• 72)	-153 -213, -94)	-125, -51	-355 -415, -315)
4 1 1 1	_	ŭ	•	ŭ	Č	~	~
AVERABE 09SEHVED VALUE	5 → 1	1 4 5	155	150	152	155	143
« ν							
NUMBER OF EVENTS	7175	7153	7132	7411	7365	7102	7785
						Σ	
MODEL	COMPLEXI	COMP_EXII	4141	RIPM	PLUMES	COMP_EX/PFM	SHORIZ

* 93 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

TABLE 5-8

COMPARISON OF ALL OBSERVED AND PREDICTED SOP CONCENTRATION VALUES (UG/M++3)
PRIRED IN TIME AND LOCATION
FOR THE 1-HOUR AVEFACING PERIOD SUMMARY TABLE (FART 1)
HESTVACO (1980/1981)

MODE	VUMREP Of Events	AVERAGE OBSERVED VALUE	AVERAGE DIFFERENCE (DRS-PRED)	STANDARD DEVIATION* OF RESIDUALS	MANIMUM FRGBURYON CONTRACTOR
COMPLEXI	30704	95	_227 (-252, -192)	1709	******
COMP_EXII	30682	95	-2824 -206)	2535 (2515, 2555)	**************************************
4141	30658	95	42 (35+ 50)	533 (531 540)	*****
RTOM	32336	0 0	55 (51, 59)	210, 214)	
PLUMES	31505	93	14 26)	675 (671• 681)	******
COMPLEX/PFM	30465	φ.	31 (29, 43)	733 (727, 739)	*****
SHORIZ	34879	\$ † &	-82 (-94• -71)	691 (686, 595)	***** (.)10)

** VALUES COULD NOT BE CALCULATED FOR THESE VERY LARGE DATA SETS DUE TO COMPUTER WORK SPACE LIMITATIONS * 95 PERCENT CONFILENCE INTERVAL IN PARENTHESES

TABLE 5-8 (Continued)

COMPARISON OF ALL OESERVED AND PPEDICTED SOL CONCENTRATION VALUES (US/M**3)
PAIRED IN TIME AND LOCATION
FOR THE 1-HOUR AVERABING PERIOD SUMMARY TABLE (PART 2)
UFSTVACO (1985/1981)

VARIGUCE COMPARISUM (035/PRED)	803. (FCC7(7.)	\$004 \$03* \$034)	. 6773. (855)	.844 (.757928)	.051 (.047, .056)	.045 (.641, .750)	
SPEARWAN CORRELATION COEFFICIENT	.115	•115	• 395	+000	, 16 g		- 138
PEARSON CORRELATION COEFFICIENT	• 008	• 015	• 55 8	• 0 7 9	.051	ธา เ •	• 046
AVERAGE ANSOLUTE RESIDUAL	4 (6	421	138	162	145	181	216
ROOT MEAN	1724	7994	537	219	576	7:3	. 946
FRACTION OF POSITIVE RESIDUALS (OBS)PRED)	36.	• 95	• 95	.87	.87	96•	.70
MODEL	СЭМРЦЕХІ	COMPLEXII	4141	RTDM	PLUMES	COMPLEX/PFM	SHJRIZ

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESFS

Values for standard deviation of residuals, root mean square error and average absolute residual are larger than average observed concentrations for all seven models. The largest values for all three measures occur with COMPLEX II. The smallest values of the standard deviation and root mean square error were obtained for RTDM. The smallest average absolute residual was obtained for 4141.

More than 50 percent of all residuals are positive, indicating that while all of the models tend to overpredict in terms of the average differences, there are more hours with underprediction than overprediction. COMPLEX/PFM underpredicted 96 percent of the values, while SHORTZ underpredicted 70 percent of the values.

As shown in previous studies, predicted concentrations correlate poorly with concentrations observed at the same time and place. Pearson correlations range from 0.008 (COMPLEX I and COMPLEX/PFM) to 0.079 (RTDM). Spearman correlations range from -0.138 (SHORTZ) to 0.151 (COMPLEX/PFM). Variance ratios are consistently less than 0.1 (except for 0.844 for RTDM) and significantly different from unity.

Similar results are found for the 3-hour and 24-hour average statistics for all concentrations paired in time and space (Appendix B). The same models over- and underpredict as for the 1-hour averages. Correlation coefficients improve for the 24-hour averages, but remain quite low ranging from 0.1 (COMPLEX/PFM) to 0.38 (RTDM).

Table 5-9 is presented here to exemplify the results for data subsets of observed and predicted concentrations paired in time and space. Subsets are presented by station and for various meteorological conditions. Subset tables for each of the models are presented in Appendix B. Table 5-9 shows how COMPLEX I produces a mixture of over- and underpredictions, with all overpredictions at the close-in receptors southeast of the stack. Underpredictions are noted at more distant receptors and receptors located in different directions from the plant. Overpredictions occur for all wind speed categories and for stable (E and F) conditions. Neutral and unstable hours produced underpredictions, on average.

Highest and Highest, Second-High Values

In many regulatory applications, model predictions of the highest or highest, second-high concentrations are of interest. Observed and predicted highest and highest, second-high 1-hour concentrations are presented in Table 5-10. These values clearly show an overprediction by all of the models with the largest 1-hour overprediction by COMPLEX II (nearly a factor of 20 for the highest prediction) and the smallest 1-hour overprediction by RTDM (a factor of just under two for both values). Table 5-11 shows similar results for 3-hour and 24-hour averages with the largest overpredictions again by COMPLEX II and smallest overpredictions by RTDM.

TABLE 5-9

CUMPARISON OF ALL OBSERVED AND PREDICTED SOZ CONCENTRATION VALUES (UG/M**3)
PAIRED IN TIME AND LOCATION (FOF VARIOUS DATA SETS)
MODEL: COMPLEYI
FOR THE 1-HOUR AVERAGING PERIOD WESTVACO (1980/1981)

	NUMBER OF EVFNTS	AVERAGE OBSERVED VALUE	AVERAGE DIFFERENCE (085-PRED)	STANDARD DEVIATION OF RESIDUALS	
ALL	40248	96	-227	1709	1 1 1 1 1 1 1
STATION	3722	112	-589	2610	
	2247	52	51	* *	
	3155	46	-302	1983	
A NOTATION	10 de c	104	-209	1742	
	2568	16	245	866	
	4.08%	161	-958	3012	
STATION	4400	106	9-	686	
	0880	7.6	53	383	
	2411	60	32	495	
	7.564	5.50	16	128	
STATION 11	9914	56	ភភ	\$ \$	
		• • • • • • • • • • • • • • • • • • •	; 5		
METEOROLOGICAL CONDITION	L CONDITION				
1. WIND SPFED				;	
S/W 5*2 >		135	-168	*	
2.5 10 5.	1/8	0.80	-359	77	
S 2 W 18	7451	٦٢	-20	26	
			, , , , , , , , , , , , , , , , , , ,	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	1 1 1 1 1 1 1
≻ 4	GROUP 5467	76	ઝે તે	11	
CLASS	14821	4 dr	6 .	11	
CL ASS F	3431	BE	0 1 6 -	49	
1 308 10	40.0	106	0001	754	

TABLE 5-10 - HIGHEST (H) AND HIGHEST, SECOND-HIGH (HSH) 1-HOUR CONCENTRATIONS FOR WESTVACO WITH ASSOCIATED METEOROLOGY

1-HOUR AVERAGES

Model	Cor	ncentration (ug/m³)	Receptor Number	Stability Category*	Wind Speed(m/s)*
OBSERVED	Н	2570	4	4	2.9
	HSH	2344	7	6	3.1
COMPLEX I	Н	23678	1	6	1.2
	HSH	21063	1	6	1.3
COMPLEX II	Н	50705	6	6	1.6
	HSH	46260	1	6	2.0
4141	Н	18714	9	6	2.1
	HSH	18020	9	6	1.8
RTDM	Н	5073	6	5	1.0
	HSH	4312	1	5	1.5
PLUME5	Н	26630	7	6	1.0
	HSH	16946	1	4	4.3
COMPLEX/PFM	Н	34281	4	4	1.0
	HSH	20960	1	6	1.5
SHORTZ	Н	24200	6	6*	3.8
	HSH	21810	6	6*	3.3

^{*} The SHORTZ model uses intensity of turbulence (Iy and Iz) to define dispersion. The stability categories presented here were the ones used to define meteorological subsets.

TABLE 5-11 - HIGHEST (H) AND HIGHEST, SECOND-HIGH (HSH)
3-HOUR AND 24-HOUR CONCENTRATIONS FOR WESTVACO
FULL YEAR MODEL RUNS

		3-HO	UR	24-HO	JR
Model	Co	oncentration (ug/m³)	Receptor Number	Concentration (ug/m³)	Receptor Number
OBSERVED	Н	2066	7	487	1
	HSH	1509	6	401	6
COMPLEX I	Н	17973	1	4647	1
	HSH	16827	1	4102	1
COMPLEX II	Н	26960	6	8854	1
	HSH	25537	6	6338	1
4141	Н	10088	9	2026	9
	HSH	6238	9	1260	5
RTDM	Н	2564	6	766	6
	нѕн	1954	6	596	6
PLUME 5	Н	15268	1	8450	6
	HSH	11901	6	3843	6
COMPLEX/PFM	Н	14007	1	3024	6
	HSH	11485	4	2949	6
SHORTZ	Н	10751	3	2227	3
	HSH	7605	6	1811	6

WESTVACO - IMPACT SELECT HOUR RESULTS

Performance statistics have been prepared for all models for the subset of hours selected from the Westvaco data set for IMPACT model runs. Using the criteria discussed in Section 4, a total of 20 days representing 480 hours were selected. The days selected for this analysis all contained high observed concentrations at one or more monitors, while at the same time other monitors recorded zero concentrations.

The 3-dimensional grid which was constructed for the IMPACT runs was constrained, due to computer limitations and model resolution requirements, to exclude the most distant monitor at Stony Run (receptor No. 10 in the full Westvaco model runs). Therefore the statistical comparisons for each model are based on data sets representing predictions made at 10 receptors for 480 hours (4800 receptor-hours/model).

Statistical comparisons were produced for the 1-hour, 3-hour and 24-hour averaging periods, except for the 25 highest data sets which do not contain 24-hour averages. Since only twenty 24-hour periods were analyzed, the highest by event data sets provide similar information for this averaging period.

Subsets of events by station or for various meteorological conditions are not presented for the Westvaco-IMPACT selected hour analysis.

Although the early test run package for IMPACT was approved by the model developer, the results suggest that the model did not operate properly for all prediction runs. In his review of the draft report, the model developer (Alan Fabrick) commented "the predicted concentrations are so large that they could not have occurred if the model was running correctly. For some reason the model's numerical algorithm for simulating advection and diffusion went unstable for a few hours of Westvaco simulations." The model input data for these periods of high concentrations have been reviewed along with the model code, however, to date, the specific technical problem has not been identified.

Statistics for 25 Highest Values

Table 5-12 presents statistics for the comparison of 25 highest observed and predicted SO_2 concentrations for 1-hour averages. The performance measures and confidence intervals are the same as those described for Table 5-1.

The largest overpredictions, as depicted by the difference of averages, are by COMPLEX II and IMPACT. The smallest overpredictions were obtained for 4141 and RTDM. The overpredictions are significant at a 95 percent confidence level for all models except RTDM.

Overpredictions are similarly indicated by the comparison of median differences, with two exceptions. The median differences predicted by 4141 and RTDM are not significant at the 95 percent confidence level. The IMPACT model has a much improved (but still poor) performance for this measure indicating that the average is affected by extreme overpredictions for a few hours.

TABLE 5-12

COMPARITON OF 25 HIGHEST OBSERVED AND PREDICTED SOC CONCENTRATION VALUES (US/N+*3)
(UNPAIRED IN TIME OR LOCATION)
FOR THE 1-HOUR AVERACING PERIOD WESTVACO (19R0/1981)
HOURS SELECTED FOR IMPACT MODEL RUNS

MJDEL	AVERAGE OBSERVED VALUE	AVERAGE PREDICTED VALUE	DIFFERENCE OF AVERASES* (09S-PRED)	MEDIAN DIFFERENCE* (OBS-PRED)	VARIANCE COMPARISON (OBS/PRED)	NCE ISON RED)	MAXIAUM FREQUENCY DIFFERENCE	
COMPLEXI	1192	11420	-9627 (-11043, -8212)	-R504 (-10169, -7752)		9333	1.00	
COMPLEXII	1792	21558	-19765 (-22874,-14557)	-18139 (-20821,-15630)	.002 (.001004)	.04)	1.00	
4141	1792	3430	-1637	-1537 -475 (-3257, -17) (-1570, 237)	.011 (.005•	.325)	.43 (.385)	
RTDW	1792	2031	-238 (-810• 332)	200 (-255, 559)	.096 (.0042217)	.217)	.35 (.385)	
PLUMES	1792	5413	-352f (-5034, -2205)	-2470 (-3835, -1617)	.015 (.306033)	•033)	• 88 (•385)	
COMPLEX/PFM	1792	9011	-721c (-9537+ -4893)	-6433 (-9785, -4617)	.005 (.002012)	.312)	.°4 (.385)	
SH0312	1792	7448	-5555 (-7813, -3498)	-4404 (-6854, -2151)	•005 (•003• •014)	.014)	.83 (.383)	
IMPACT	1786	17829	-16042 (-26484, -5500)	-4441 (-8189, -3115)	000 581)	.001)	1.0) (.385)	

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESE'S

Again, predicted variances are large relative to observed variances. The variance ratio for RTDM (0.096) is highest, while the lowest value occurs with IMPACT (0.000).

distributions reveal that there is very little overlap between them for most of the models. Differences between the observed and predicted distributions are shown to be significantly different from zero at the 95 percent confidence level for all models except RTDM.

Results for the 25 highest 3-hour averages (Appendix B) are quite similar to those for the 1-hour values. The main exception is that 4141 underpredicts the median difference for 3-hour values.

Statistics for Highest Concentrations at Each Station

Comparison of the sets of highest concentrations by station for the 1-hour values can be seen in Table 5-13. Results for second highest values are presented in Table 5-14. For these comparisons, each data set consists of only 10 data pairs.

Results indicate overprediction by all eight models for the highest values, and by all models except RTDM for the second highest values. However, for four models, the overpredictions are not significant at the 95 percent confidence level. The largest overpredictions occurred with the IMPACT model.

Results for the fraction of positive residuals indicate that IMPACT overpredicted the highest and second highest values at all 10 stations. PLUME5 underpredicted second highest values at 7 stations. Measures of scatter were largest for IMPACT and smallest for RTDM.

The variance comparison indicates that the variance of predicted values is significantly larger than the variance of observed values for all eight models.

Statistics for the 3-hour average and 24-hour average highest concentrations at each station are given in Appendix B. The results are similar to those for 1-hour values.

Statistics for Highest Concentrations by Event

Statistics for the comparison of highest observed and predicted concentration values event-by-event (paired in time) are provided in Table 5-15 for the 1-hour values.

The number of events (418-463), representing the number of hours analyzed for the 1-hour data sets, is less than the number of hours modeled (480) primarily as the result of screening for threshold values. Results for the average difference indicate that all of the models except 4141 and RTDM tend to overpredict the highest values each hour. However, three of the models neither over- nor underpredict significantly at the 95 percent confidence level. Large overpredictions (factor of three times observed values) occur for COMPLEX II, while the average underprediction for RTDM is about 50 percent of the average observed value.

CCMPARISON OF HIGHEST OESERVED AND FREDICTED SAZ CONCENTRATION VALUES (UG/4**3) PAIRED BY STATION FOR THE 1 HOUR AVERAGING PERIOD WESTVACO (1980/1981) HAURS SELECTED FOR IMFACT MODEL RUNS

						; ; ;			: :	
Σ	NUMBER OFF PAIRS	AVERAGF OBSLRVED VALUE	A V IFF	FRACTION OF POSITIVE RESIDUALS (03S>PRED)	STANDARD DEVIATION* OF RESIDUALS	ROOT MEAN SOUARE FROR	AVERAGE ABSOLUTE RESIDUAL	PEARSOCOEFF.	SPEAR SOCOEFF.	V&313NCE COMP&31S04 (O3S>P3E0)
COMPLEXI		1576	-7556 (-12685, -2425)	0 P •	7171	10153	7357	• 55	95.	*012 (*003* *043)
COMPLEXII	10	1876	-17123 (-28531, -5715)	• 20	15948 (10969,29117)	21994	17253	M Vr •		.0031 .011)
-77	10	1976	-3865 (-8676, 944)	0 4 •	6725 (4525,12278)	7726	4354	• 34	• 32	.015 (.034, .059)
F T D M	1 C	1876	-164 (-1116, 797)	0.4.	1331 (915, 243E)	3250	£6a	• 8	.73	.253 (.054.1.043)
FLUMES	10	1676	-3138 (-6573, 296)	0 4 •	4802 (3303+8767)	6076	3980	• 55	95.	•825 (•835• •135)
COMPLEX/2FM	10	1 4 7 6	-7520 (-13164, -1937)	0 10 10 10 10 10 10 10 10 10 10 10 10 10	7806 (5369+14251)	16575	7918	0 % •	9	.010 (-0135 .042)
SHORTZ	10	9241	-6026 (-11°29, -1023)	•10	6994 (4811 ₁ 12753)	2916	6975	• 59) 02.	.013 (.003* .051)
IMPACT	1.3	1876	-43309 (-54259,-22583)	0 ?	29392 (20111,53115)	40131	43460	7.6.	 8 ∺ •	.831 (•638• •863)

* 95 PERCEUT COMFIDENCE INTERVAL IN PARENTHEMES

COMPAPISON OF SECRY) HISHEST
ORSERVED AND PREDICTED
SP2 CUNCENTRATION VALUES (US/N**3)
PAIRED OY STATION FOR THE I HOJR AVERAGING PERIOD
WESTVACO (198(/1981)
HOURS SELECTED FOR IMFACT MODEL RUNS

; ; ; ;								
VAXIANCE COMPARISON+ (OBSYPRED)	.013 (.003, .053)	.004 (.001, .015)	*945 (*011* *191)	.317	.035 (.039, .147)	.611 (.033044)	.327 (.037, .167)	.000. (.000.
OPEAR CODAR COSTFF	ប្	. 43	\$ C •		.37	.53	4 5	• 54
PEARSON CORR. COEFF.	• 53	• 5	(C)	छ ब •	. 3 5	S i.e.		ر. در.
AVERAGE A9SOLUTE RESIDUAL	5871	11525	2350	9.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	2288	5640	2779	34199
ROOT MEAN SOURRE EROOR	8340	15274	7844	3198	4577	8115	5461	34524
STANDARD DEVIATION* OF RESIDUALS	6197 4262•113141	12009 8260•21926)	3193 2196+ 5829)	1173 867, 2142)	3756 2584, 6958)	5853 4714 ₉ 12513)	4357 2997• 7955)	24995
FRACTION OF POSITIVE RESIDUALS (03S>PREC)	_	0 **	ů ic	09*	.70	0 4 4	0 4 •	0 t *
AVERAGE DIFFERENCE*	652 5, -122J	-13808 (-19398, -2217)	-1725 (-4008+ 558)	112 (-726, 951)	-588 (-3275, 2097)	-4490 (-9392, 411)	-2390 (-5507, 725)	-30198 (-45216,-15189)
A V E 0 B S E V A	1654	1654	\$5 \$0 \$7	1654	1654	1654	1654	1654
A A S	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	? #	o H	10	10	16	10	10
MODEL	COMPLEXI	COMPLEXII	4141	RTJW	PLUMES	COMPLEX/2F4	SHORTZ	IMPACT

* 95 PERCENT CONFIDENCE IMTERVAL IN PARENTHPSES

TABLE 5-15

COMPAGISON OF HIGHEST DESERVED AND PREDICTED SOC CONCENTRATION VALUES (US/M**3)
EVENT-RY-EVENT (PAIPED IN TIME)
FOR THE 1-HOUR AVERASING PERIOD WESTVACO (1981/1981)
HOURS SELECTED FOR IMPACT MODEL RUNS

MAXIMUM FREQUENCY DIFFERENCE	355	.357 (.093)	.352 (.091)	.531	.557 (.090)	. 358 390)	. 4432 . 3833	0889 (480 ·)
STANDARD DEVIATION* OF RESIDUALS	3258 (3062, 3485)	5435 (5108, 5814)	1269 (1193, 1359)	682 (641, 730)	1557 (1557, 1772)	2572 (2417, 2751)	2788 (1942, 2231)	7452 (6342+ 7994)
AVERAGE DIFFERENCE* (J3S-PRED)	331,	-1136	128 (-27, 283)	189	-135 (-457, 198)	-235 (-546, 174)	-393 (-399• -47)	-1050 (-2278, 177)
AVERAGE DRSERVED VALUE	· ~	372	372	372	372	372	370	363
NUMBER OF EVENTS	094	461	461	461	461	461	463	418
40DE.	COMPLEXI	COMP_EXII	4141	ROTA	PLUMES	COMPLEX/PF4	SH0R12	IMPACT

* 93 PERCENT CONFIDENCE INTERVAL IN CARENTHESES

Standard deviations of residuals indicate the largest scatter for IMPACT (20 times average observed value), with the smallest scatter by RTDM. Maximum frequency differences indicate a distinct difference among the models. For four models (COMPLEX I, COMPLEX II, 4141, and COMPLEX/PFM) there is little overlap between observed and predicted distributions, and the maximum difference is close to 1. The lowest value, for IMPACT, is 0.385.

Tables of 3-hour and 24-hour comparisons of the highest concentrations by event are displayed in Appendix B. The results are quite similar to the 1-hour comparisons. The average observed value drops rather slowly with increasing averaging time (338-349 μ g/m³ for 3-hour periods; 261-269 μ g/m³ for 24-hour periods).

Statistics for All Concentrations Paired in Time and Space

Table 5-16 (Parts 1 and 2) presents the comparison of all observed and predicted 1-hour concentration values paired in time and location for the Westvaco IMPACT select hours. The total number of events (2476-2595) implies that roughly half of the hourly observed-predicted pairs (4800 total) passed the tests for threshold and/or missing data. Average observed values are quite high (about 200 $\mu\text{g/m}^3$) due to the nature of the data selection criteria.

Results for the average differences show considerable variability among the models. From the 95 percent confidence intervals, one model overpredicts significantly (IMPACT), four models underpredict significantly (4141, RTDM, PLUME5 and COMPLEX/PFM), and three models show no significant tendency to over- or underpredict (SHORTZ, COMPLEX I and COMPLEX II). The magnitude of the average differences represents from 12-71 percent of the average observed values, except for IMPACT (343 percent). The prediction biases indicated by these results should be interpreted with caution, since the selection criteria favored hours with high observed concentrations. Results for the full data set (for all models except IMPACT) are more reliable for judging bias, because they are not subject to this limitation.

Values for the standard deviation of residuals, root mean square error and average absolute residual all exceed the average observed values. The largest measures of scatter occur for IMPACT, followed by COMPLEX II; while the smallest values occur for RTDM, and also 4141 and PLUME5.

Maximum frequency differences and fractions of positive residuals are all quite large.

Correlations of observed and predicted concentrations are extremely low, and negative in many cases. Variance ratios indicate variances for predicted values are much greater than variances for observed values.

Results for the 3-hour and 24-hour concentrations paired in time and space can be found in Appendix B. The results are generally similar to the results for 1-hour values.

TABLE 5-16

COMPARISON OF ALL OPSERVED AND PREDICTED ROZ CONCENTRATION VALUES (US/W++3)
PAIRED IN TIME AND LOCATION
FOR THE 1-HOUR AVERAGING PERIOD SUMMARY TABLE (PART 1)
WESTVACO (1980/1981)
HOURS SELECTED FOR IMPACT MODEL RUNS

- H I I F C C I T T T T T T T T T T T T T T T T T	• 353 • 3 <u>3</u> 9)	. 353 . 339)	• 954 • 533)	.364 .339)	.339)	•348 •339)	•74J •038}	.326 .339)
MAXIMJ4 FREGJENCT DIFFERENCE	£ • •					6.	2 •)	,
STANDARD DEVIATION* OF RESIDUALS	1638 1534, 1685)	2471 2494, 2542)	724 705, 745)	439 398, 421)	783 762, 905)	1257 1232, 1303)	965, 1019)	4527
AVERAGE DIFFERENCE. (DBS-PRED)	-58	-191 ₀ -6) (145 (115, 174) (137 (120, 154) (100 (69, 131)	67 18, 117)	23 (-15, 63) (-517 (-797, -437)
AVERAGE OBSERVED VALUĒ	203	204	203	199	201	4 02	195	183
NUMPER OF EVENTS	2477	2475	2478	2531	2508	2474	2595	2526
MODE.	COMPLEXI	COMP_EXII	4141	M C F M	PLUMES	COMPLEX/PFM	SHORT Z	IMPACT

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

TABLE 5-16 (Continued)

COWPARISON OF ALL COSERVED AND PREDICTED SAC CONCENTRATION VALUES (US/M**3)
PAIRED IN TIME FNC LOCATION
FOR THE 1-HOUR AVERASING PERIOD SUMMARY TABLE (FART 2)
RESTVACO (1780/1981)

1 d	7 1 1 1 1 1 1 1 1 1					
MODEL	FRACTION OF POSITIVE RESIDUALS (ORS>PRED)	⊢ tı	AVERAGE ABSOLUTE RESIDUAL	PEARSON CORRELATION COEFFICIENT	SPEARMAN CORRELATION COEFFICIENT	/431AVCE COMPA31SOV* (03S/PRED)
COMPLEXI		1639	4 F 3	-•002	600	1 0
COMPLEXII	16.	2472	en en er	.018	-• 953	.015, .019)
だかだか	P	7 4 9	C) K,	699°	9 L ù = -	.234 (.212, .259)
RTJM	06.	431	217	•125	ဆို (O ငပ် •	1,140 (1,058, 1,393)
PLUMES	26.	642	269	•103	ნენ • •	*185 (*157; *204)
COMPLEX/PFM	96•	1258	327	•017	• 113	*56° (770° *583°)
S40RI7	• 82	991	9 už	.051	-•091	.111 (.191, .123)
IMPACT	94.	7554	613	020	680.	

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESE'S

CINDER CONE BUTTE RESULTS

All eight complex terrain models were run with the full Cinder Cone Butte data set, consisting of 104 hours of SF₆ tracer and meteorological Ambient tracer samples were observed at up to 94 receptor locations. Statistical performance measures were generated for the 1-hour average values, only. Results are not presented for highest concentrations by Otherwise, the performance measures and confidence intervals station. presented for Cinder Cone Butte are the same as the ones described Slightly different subsets by meteorology and previously for Westvaco. source-receptor geometry were selected for the Cinder Cone Butte analysis. All observed and predicted values and the corresponding performance measures are for relative concentrations (i.e., mass concentration per unit of emission rate, X/O). No screening was performed for threshold values of observed and/or predicted concentrations.

Cinder Cone Butte results for the IMPACT model did not show any evidence of the instability suspected for Westvaco. However, the model developer's comments to the draft report indicated that the eddy diffusivity algorithm in the IMPACT model is not appropriate for the grid resolution (50m horizontal; 10m vertical) used for the Cinder Cone Butte model runs. (This issue was not raised when the test package was reviewed).

Statistics for 25 Highest Values

Statistics for the comparison of 25 highest observed and predicted data sets are given in Table 5-17. From the difference of averages this table shows that six of the eight models overpredict on average, and that these differences between observed and predicted averages are non-zero at a 95 percent confidence level. The IMPACT model average underprediction is also significant at the 95 percent confidence level. Only the RTDM model shows no significant bias. Results for median difference are similar to the results for difference of averages.

Variance ratios are below 0.5 except for COMPLEX I and IMPACT. The confidence interval for COMPLEX I indicates that no significant difference exists between the variance of COMPLEX I predictions and the variance of observations at a 95 percent level of confidence.

Observed and predicted frequency distributions differ significantly for all of the models except RTDM and SHORTZ.

It should be noted that interpretation of the 25 highest observed and predicted concentrations for Cinder Cone Butte is not quite as simple as for Westvaco. This is because, in addition to the unpairing in space and time, the experiments included changes in source-receptor geometries since a mobile crane was used for the releases. One group of subsets based on source-receptor geometries was selected for investigation with the 25 highest Cinder Cone Butte data sets. Table 5-18 is presented here to exemplify the subset results for COMPLEX I. Additional subset tables are provided for all models in Appendix C. As shown in Table 5-18, the four subsets selected for the 25 highest comparisons are based on receptor height. The intention was to investigate whether model performance varied with receptor height. No pronounced differences in performance were identified.

Statistics for Highest Concentrations by Event

Comparisons of highest observed and predicted concentrations event-by-event for Cinder Cone Butte are found in Table 5-19 (Parts 1 and 2). This table is identical in form to the Westvaco tables for the full data sets paired in space and time. For this tracer data set, no threshold screening was performed. The number of events and average observed values are identified for all models.

Results for the average difference indicate overprediction by all of the models except IMPACT, which underpredicted by an average of 50 percent, and RTDM which exhibited no significant bias. The largest overprediction (by a factor of 3.6) occurred with COMPLEX II.

Measures of variability between observed and predicted concentrations (standard deviation of residuals, root mean square error and average absolute residual) are largest for CCMPLEX II and smallest for IMPACT and RTDM.

The predicted frequency distributions are all significantly different from the observed distributions for all models except RTDM and SHORTZ. The largest frequency difference occurs for COMPLEX II.

From the fraction of positive residuals, COMPLEX II overpredicted for 74 percent of the highest concentrations by event, while IMPACT overpredicted for only 28 percent. The best performance for this measure was by SHORTZ which overpredicted 52 percent of the events.

Correlation coefficients for Cinder Cone Butte show some improvement over Westvaco, but remain fairly low. Pearson coefficients range from 0.26 (SHORTZ) to 0.60 (RTDM), while Spearman coefficients range from 0.32 (COMPLEX II) to 0.51 (RTDM).

The variance ratios are significantly different from unity for all the models, with the variance of predictions larger than the variance of observations for all models except IMPACT.

Table 5-20 is presented here to exemplify, for COMPLEX I, the evaluation of model performance for various subsets of source-hill characteristics and meteorological conditions. Similar tables for each model are presented in Appendix C. Six of the subsets are based on two release distance categories (less or greater than 900 m from source to butte top) and three release height categories. Wind speed and stability categories are also evaluated. The number of events in some categories is quite small.

For COMPLEX I overpredictions occurred for five of the six distance/height categories, and for low wind speeds and stable conditions. Underpredictions, on average, occurred for the higher wind speeds and non-stable conditions.

TABLE 5-17

COMPARTYON OF 25 HIGHEST OBSERVED AND PREDICTED RELATIVE CONCENTRATION VALUES (19**(+6) S/M**3) (UNPAIRED IN TIME OR LOCATION) FOR THE 1-HOUR AVERASINS PERIOD CINDER CONE BUTTE (1980)

MAXIAU4 FREQUENCY DIFFERENCE	.52 (.383)	.95 (.385)	•9? (•383)	•23 (•385)	.63 (.385)	.63 (.345)	•35 (585.)	.75
VARIANCE COMPARISON (OBS/PRED)	.532 (.234.1.207)	.084 (.037191)	.255 (.112* .578)	.475 (.210,1.680)	.062 (.027, .140)	.151 (.067, .343)	.937 (.016284)	2.645 (1.165.5.083)
MEDIAN DIFFERENCE* (OSS-PRED)	-31	-148 -207; -115)	-120	5 -12, 24)	-57 -103+ -45)	-87 -121• -57)	-19	27 421
DIFFRENCE OF AVERAGES* (OBS-FRED)	-38 -15) (-163 -231• -135) (-129 -159, -100) (-23, ⁶ 22) (-110 -155, -55) (_9c -135, -53) (-143, -1) (31 47) (
AVERAGE PREDICTED VALUE	165	250	196	67	177	166	139	φ. 0
AVEKAGE OBSERVED VALUE	46	99	99	99	99	99	99	99
MODEL	COMPLEYI	COMPLEXII	4141	RID4	PLUMES	COMPLEX/PFM	SH0R12	IMPACT

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPAKISON OF 25 HIGHEST ORSERVED AND PREDICTED RELATIVE CONCENTRATION VALUES (10**(-5) S/M**3) (UNPAIRE) IN TIME OR LOCATION) FOR VARIOUS DATA SETS MODEL: COMPLEY! FOR THE 1-HOUR AVERAGING PERIOD CINDER COME RUTTE (1980)

1				
VARIANCE COMPARISON (OES/PRED)	,532 (,234,1,207)		.351 .579	1.270
DIFFERENCE OF AVERAGES. (ORS-PRED)	-38		-24	-32
AVEPAGE PREDICTED VALUT	105		ቀ የነ	74
AVFKAGE OBSERVED VALUE	99	ION RELATIVE Ase Height	3.9 51.9	4 4 11 10
	ALL	RECEPTOR ELEVATION RE TO SOURCE RELEASE HE	<-10. M -10. F TO 10. B	10. M TO 30. M >30. M

TABLE 5-19

COMPARISON OF HIGHEST DESERVED AND PREDICTED RELATIVE CONCENTRATION VALUES (10**(-5) S/***3) EVENT-BY-EVENT (PAIRED IN TIME) FOR THE 1-HOUR AVEPASING PERIOD PART 1 CONDER CONE BUTTE (1980)

່ ພ ພ	NUMBER OF EVENTS	AVERASE OBSERVED VALUE		AVERAGE DIFFERENCE+ (OBS-PRED)	0	STANDARD DEVIATION* OF RESIDUALS		MAXIMUM FREGJEVOY DIFFERENCE	,
COMPLEXI	104	5.2	_	-16	J	4.1	e.	.212 (.189)	
co"P_ExII	104	2.5	_	-68 -95, -39)	~	103 91, 120)	(0)	• 442 (• 183)	
4141	194	55	_	-6725)	J	75 56• R	ь7.)	• 345 (• 189)	
RIDM	134	25	<u> </u>	0 -8-	Ü	30 26• 35)	35)	.387 (.183)	
PLUME5	134	\$5	J	-62, -10)	J	38	()	• 113 (• 189)	
COMPLEX/PFM	164	5.5	Ü	-51, -15)	J	, 46 58, 75)	(4)	.299 (.189)	
SH0F12	104	5.2	_	-20	-	94 83, 110)	(3)	.135 (.189)	
IMPACT	104	17	_	13 201	J	234	31)	a62.	

* 95 FERCENT COVEIDENCE INTERVAL IN PARENTHESES

TABLE 5-19 (Continued)

COMPARISON OF HIGHEST DBSFRVED AND PREDICTED RELATIVE CONCENTRATION VALUES (10**(-5) S/***3) EVENT-PY-EVENT (PAIRED IN TIME) FOR THE 1-HOUR AVERASING PERIOD PART 2 CINDER CONF BUTTE (1980)

CE SON+ RED)	550)	394)	173)	364)	1350	149)	113)	(5 5 5
VARIAVCE C DYSARISON* (038°38'03'5")	.397 (.287+ .550)	.0969 .0949	,125 (,890, ,173)	.523 (.45(1, .3£4)	.097 (670, 135)	*144 (*1:4* 139)	**************************************	3.233 (2.315, 4.444)
SPENRMAN CORRELATION COEFFICIENT	.331	.317	• 355	.510	8 6 t •	86 + •	474.	. 337
PEARSON CORRELATION COEFFICIENT	\$4 2 4	• 3 4 5	• 389	• 593	972.	• 3 [5	• 5 5 5	• 414
AVERAGE APSOLUTE RESIDUAL	68	4 2	រក វេ	19	4.5	4 (1)	င့် ငံ	13
ROOT MEAN Souarf Error	4 +	123	හ අ	3.0	9 a	74	96	29
FRACTION OF PCSITIVE RESIDUALS (OBS>PRED)	6 4 G	• 25	436	• 80	•31	or P⊃ •	.	• 72
MODEL	CJMPLEX1	COMPLEXII	4141	RTOM	PLU4E	CJYPLEX/PFM	S-10812	IMPACT

* 95 PERCFUT FONFIDENCE INTERVAL TH PARENTHESES

COMPARISON OF HIGHEST OBSERVED AND PREDICTED
RELATIVE CONCENTRATION VALUES (10**(-6) S/4**3)
EVENT-BY-EVENT (FOR VARIOUS DATA SETS)
MODZL: COMPLEXI
FOR THE 1-HOUR AVERAGING PERIOD
CINDER CONE BUTTE (1980)

 1 4 4 1							
PEARSON CORRELATION COEFFICIENI	ቀ ፡		.188 .730	.649 070 127		• • • • • • • • • • • • • • • • • • •	. 529 . 556 . 551
STANDARD DEVIATION OF RESIDUALS	. 4		622 3.7 5.5	50 4 6 50 4 6	1	47 25 13	ይ የ የት
AVERAGE DIFFERENCE (DBS-PRED)	•		8 연구 시 당 연구 제 6 연구 제	ዋ መ ଫ ਜ ਜ ! !	1	-27 -1 5	- 25 - 21
AVERAGE OBSERVEN VALUE	2		59 27 69	57 13 13	1	29 22 22	3.1 2.5 2.5 2.5 2.5 3.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
NUMBER OF EVENTS	1		4 5 2 p	4 C)		52 27 7 - 1	38 36
	HISHEST CONCENTRATION EVENT BY EVENT	37 RELEASE DISTANCE/ RELEASE HEIGHT	DISTANCE < 916. P H< 15. Y H=16. M TO 26. M H> 26. M	DISTANCE > 900. M H< 15. K H=16. M TO 26. M H> 25. M	METEOROLDGICAL CORPITION	1. WING SPEED 2.5 M/S 2.7 TO 5. M/S 7.5 M/S	2. STABLLITY GROUP CLASS C+D CLASS F CLASS F

Statistics for All Comparisons Paired in Time and Space

Statistics for the full set of paired observed and predicted concentrations are presented in Table 5-21. These data sets have the largest populations (3836 data pairs) of any group for the Cinder Cone Butte data base.

As with the high-by-event data group, average differences for all concentrations indicate overprediction by all of the models except IMPACT, which underpredicts by about 50 percent, and RTDM, which exhibits no significant bias. The largest average overpredictions are by 4141 (by a factor of over two).

Measures of variability between observed and predicted concentrations are largest for COMPLEX II, and smallest for IMPACT and RTDM. Frequency distributions of observed and predicted values are significantly different (at a 95 percent confidence level) for all eight models.

Correlation coefficients for Cinder Cone Butte model results are substantially better than for Westvaco results for all concentrations. Pearson coefficients range from 0.22 (PLUME5) to 0.43 (RTDM), while Spearman coefficients range from 0.33 (COMPLEX I) to 0.45 (SHORTZ).

The variance ratio for RTDM was not significantly different from unity (at a 95 percent level of confidence). For the other models, the variance of predictions was significantly larger than the variance of observations, although IMPACT, the opposite relationship was true.

TABLE 5-21

COMPARISON OF ALL OBSERVED AND PREDICTED
RELATIVE CONCENTRATION VALUES (13**(-4) S/M**3)
PAIRED IN TIME AND LOCATION
FOR THE 1-HOUR AVERASING PERIOD
SUMMARY TABLE (FART 1)
CINDER CONE BUTTE (1990)

MAXIMUM PREDJENCY DIFFERSUCE	.348 .331)	•293 •331)	•121 •331)	•355 •0313	•301 •3513	.365 .331)	.031)	•13? •731)
MA FRE JIFF	J	J	~	~	~	Č	_	~
STANDARD DEVIATION* OF RESIDUALS	20. 21)	34 35)	30, 31)	13 12• 13)	28	26 27)	23 24)	11, 12)
1	•	J	_	-	_	-	J	~
AVERAGE DIFFERENCE* (08S-PRED)	-5.	-75)	-15, -7)	0 0 13	4- -5-	-5 -4)	-2, 0)	3 3)
1	J	J	J	J	J	~	-	~
AVERASE OBSERVED VALUE		νς.	9	ú	vn	ιn	3 0	3
NUMPER OF EVFNIS	, ₩ -	3836	383K	7836	2835	3836	38.35 3.50	3836
MOPE.	EXI	COMP_EXII	4141	ктом	PLUMES	COMPLEX/PFM	SHURT 2	IMPACT

* 05 PERCENT CONFIDENCE INTERVAL TY PARENTHESES

TABLE 5-21 (Continued)

COMPARISON OF ALL OFSERVED AND PREDICTED
RELATIVE CONCENTRATION VALUES (10**(-5) S/M**3)
PAIRED IN TIME AND LOCATION
FOR THE 1-HOUR AVERABING PERIOD
SJMMARY TABLE (PART 2)
CINDER CONE BUTTE (1990)

VARIANCE COMPARISOV* (OBS/PRED)	.327 (.238, .350)	.114 (.134, .125)	*195 *157)	1.035	.175 (.156, .194)	.173, .213)	.258, .267)	4.591 (4.174, 5.459)
SPERWAY CORRELATION COFFICIENT	* 333	10£.	112.	604•	• 409	• 353	744.	2 Z p •
PEASON CORRE_ATION COEFFICIENT	୍ଟ୍ରେନ୍ •	• 235	•277	* \$ \$ \$ \$ \$	• 223	•313	• 235	\$6Z.
AVERASE ARSOLUTE RESIDUAL	::	13	в	ú	10	11	7	æ
ROOT WEAN	21	ς Ω	32	13	ું હ	2.7	C.,	12
FRACTION OF POSITIVE RESIDUALS (OPSYPRED)		• 56	• 45	44.	• 55	• 55	• 0	\$ €
MJJEL	COMPLEXI	COMPLFXII	4141	RIDM	PLUMF5	COMPLEXZPER	SH34T2	IMPACT

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

SECTION 6

SUMMARY AND CONCLUSIONS

The performance evaluation of the complex terrain models has produced an imposing array of statistical measures to compare observed and predicted concentration values. The principal objective of this project is to produce performance statistics so that EPA and a group of reviewers may judge the relative merits of different models. In this report, the results have been discussed and explained, but no attempt has been made to compare the performance of one model versus another. Many of the model developers, upon reviewing this report, indicated the desire to see more detailed depictions the results such as scatter plots of observed and predicted concentrations, histograms, cumulative frequency plots, isopleth analyses and time series displays. Graphical displays can be useful in exploring possible causes of poor model performance and are particularly desirable in diagnostic model evaluations. One of the difficulties encountered in the presentation of operational evaluation statistics is selecting meaningful graphical or tabular displays with limited report space. An abundance of useful information remains to be extracted from the results of this study and it is hoped that further analyses are pursued in the future. conclusions and recommendations presented below are concerned with model evaluation methods and with the performance of the models as a group.

The complex terrain models were evaluated using two data bases representing different terrain settings and experimental approaches. The Westvaco data set consisted of one year of measurements at eleven SO_2 monitoring stations in the rugged terrain of western Maryland and northeastern West Virginia, for a buoyant tall-stack release. The Cinder Cone Butte experiments were conducted for 104 hours using a non-buoyant tracer release, with impacts measured from a 94-station sampling grid on an isolated small hill.

SUMMARY OF RESULTS

The results discussed in Section 5, plus those in Appendices B and C, contain a wealth of information concerning the performance of each of the eight complex terrain models. Distinct differences in performance are evident among the models. The patterns of results changed between the two data sets and, to a lesser extent, with averaging time (for Westvaco). A few key results are highlight below.

Westvaco. For Westvaco, seven of the models overpredicted the 25 highest concentration values for 1, 3, and 24-hour averaging times, by factors ranging from 2 to 20. RTDM predicted with less bias than the other models for all three averaging times. (The IMPACT model was evaluated only for selected hours from Westvaco.) The COMPLEX II model and the IMPACT model gave the largest overpredictions. COMPLEX I also overpredicted the average of the 25 highest 1-hour values by almost a factor of 10.

Cinder Cone Butte. Six of the eight models overpredicted the 25 highest l-hour values. IMPACT underpredicted, and RTDM predicted with no significant bias. COMPLEX II again gave the largest overprediction, roughly a factor of 4 times observed.

Thus, COMPLEX II showed the most consistent and pronounced tendency to overpredict peak concentrations; RTDM showed the least bias for estimating peak l-hour values; and IMPACT showed the greatest inconsistency between the two data sets.

Model performance results for the two data sets showed several striking differences:

- The models showed a much greater tendency to overpredict peak 1-hour concentrations for the Westvaco data set than for Cinder Cone Butte.
- Comparisons between predicted and observed concentrations, paired in time and location, showed smaller discrepancies and higher correlation for Cinder Cone Butte than for Westvaco.
- For Westvaco, model performance was very different for stable and neutral conditions (for most of the models). For Cinder Cone Butte, model performance was generally similar for both stability categories.

These differences point to the importance of the source characteristics and the local terrain setting (as well as other design factors) for model performance in complex terrain.

The Westvaco data set permitted model performance to be evaluated by monitoring station and for several averaging times. From these analyses, the following conclusions could be drawn:

- Distinct differences in model performance were found between those monitors within 2 km of the plant and those at greater distances. Overprediction was more pronounced at monitors close to the plant.
- Results for 1-hour and 3-hour averages were quite similar. For 24-hour averages, however, distinct differences in model performance were found for estimating peak concentrations.

REFERENCES

- 1. United States Environment Protection Agency, 1978. Guideline On Air Ouality Models. EPA-450/2-78-027. OAQPS, Research Triangle Park, NC.
- 2. Fox, D.G., 1981. Juding Air Quality Model Performance (A Summary of the AMS Workshop on Dispersion Model Performance, Woods Hole, MA, 8-11 September 1980). Bull. Am. Meteorol. Soc., 62, 599-609.
- 3. Londergan, R.J., D.H., Minott, D.J. Wackter, T.M. Kincaid and D.M. Bonitata, 1982. Evaluation of Rural Air Quality Simulation Models. Prepared for EPA by TRC Environmental Consultants, EPA-450/4-83-003, OAQPS, Research Triange Park, NC.
- 4. Minott, D.H., R.J. Londergan, W.M. Cox, and J.A. Tikvart, 1982. Comparative Performance Evaluations of MPTER and Alternative Rural Models. Presented at the 75the Annual Meeting of the Air Pollution Control Association, New Orleans, LA.
- 5. Londergan, R.J., D.H. Minott, D.J. Wackter and R.R. Fizz, 1983. Evaluation of Urban Air Quality Simulation Models. Prepared for EPA by TRC Environmental Consultants, EPA-450/4-83-020, OAQPS, Research Triangle Park, NC.
- 6. Pierce, T.D. and D. B. Turner, 1980. User's Guide for MPTER. EPA-600/8-80-016, U.S. Environmental Protection Agency, Research Triangle Park, NC.
- 7. Strimaitis, D.G., J.S. Scire and A. Bass, 1982. User's Guide for COMPLEX/PFM Air Quality Model. EPA-600/8-83-015, Environmental Protection Agency, Research Triangle Park, NC.
- 8. Enviroplan, Inc., 1981. User's Manual for Enviroplan's Model 3141 and Model 4141. Enviroplan, Inc., West Orange, NJ.
- 9. United States Environmental Protection Agency, 1977. User's Manual for Single Source (CRSTER) Model. EPA-450/2-77-013, OAQPS, Research Triangle Park, NC.
- 10. Pacific Gas and Electric, 1981. User's Manual for Pacific Gas and Electric PLUME5 Model. Pacific Gas and Electric, San Francisco, CA.
- 11. Environmental Research & Technology, Inc., 1982. User's Guide for the Rough Terrain Diffusion Model (RTDM, Rev. 3.00). ERT Report No. M 2209-585. Environmental Research & Technology, Inc., Concord, MA.

- 12. Bjorklund, J.R., and J.F. Bowers, 1982. User's Instructions for the SHORTZ and LONGZ Computer Programs, Volumes 1 and 2. EPA 903/9-82-004, U.S. Environmental Protection Agency, Research Triangle Park, NC.
- 13. Cramer, H.E., et al., 1972. Development of Dosage Models and Concepts. Final Report under Contract DAAD 09-67-C-00 20 (R) with the U.S. Army, Dessert Test Center Report DTC-TR-72-609, Fort Douglas, UT.
- 14. Fabrick, A.J. and P.J. Haas, 1980. User Guide to IMPACT: An Integrated Model for Plumes and Atmospheric Chemistry in Complex Terrain. Radian Corporation, Austin, TX.
- 15. Tran, K.T., R.C. Sklarew, 1979. User Guide To IMPACT: An Integrated Model For Plumes And Atmospheric Chemistry In Complex Terrain. Form & Substance, Inc., Westlake Village, CA.
- 16. Wackter, D.J., 1983. Test Run Package: Description of Models "As-Run" for Complex Terrain Model Evaluation. Prepared for EPA by TRC Environmental Consultants under Contract 68-02-3514, W.A. 27, OAQPS, Research Triangle Park, NC.
- 17. Lavery, T.F., A. Bass, D.G. Strimaitis, A. Venkatrom, B.R. Greene, P.J. Drivas and B.A. Egan, 1982. EPA Complex Terrain Model Development: First Milestone Report 1981. EPA-600/3-82-036, Environmental Protection Agency, Research Triangle Park, NC.
- 18. Strimaitis, D.G., A. Venkatrom, B.R. Greene, S. Hanna, S. Hesler, T.F. Lavery, A. Bass and B.A. Egan, 1983. EPA Complex Terrain Model Development: Second Milestone Report 1982. EPA-600/3-83-015 Environmental Protection Agency, Research Triangle Park, NC.
- 19. Truppi, L.E., and G.C. Holzworth, 1983. EPA Complex Terrain Model Development: Description of a Computer Data Base from Small Hill Impaction Study No. 1, Cinder Cone Butte, Idaho. Environmental Sciences Research Laboratory, Research Triangle Park, NC.
- 20. Maryland State Department of Health and Mental Hygiene, 1979. Westvaco Corporation Amended Consent Order.
- 21. Cramer, H.E., 1981. Westvaco-Luke, Maryland Monitoring Program: Data Analysis and Dispersion Model Evaluation (First Two Quarters). H.E. Cramer Company, Inc., Salt Lake City, UT.
- 22. Hanna, S., C. Vaudo, A. Curreri, J. Beebe, B. Egan, and J. Mahoney, 1982. Diffusion Model Development and Evaluation, and Emission Limitations at the Westvaco Luke Mill. Document PA439 prepared for the Westvaco Corporation by Environmental Research & Technology, Inc., Concord, MA.

- 23. Cramer, H.E., 1982. Portocol for the Evaluation of the SHORTZ and LUMM Dispersion Models Using the Westvaco Data Set. H.E. Cramer Company, Inc., Salt Lake City, UT.
- 24. Snedecor, G.W. and W.G. Cochran, 1967. Statistical Methods, 6the Edition. Iowa State University Press, Ames, Iowa.
- 25. Hollander, M. and R.A. Wolfe, 1973. Nonparametric Statistical Methods. John Wiley and Sons, New York, NY.
- 26. Hirtzel, C.S. and J.E. Quon, 1981. Estimating Precision of Autocorrelated Air Quality Measurements. Summary of Proceedings Environmetrics 81, 200-201.
- 27. United States Environmental Protection Agency, 1981. Regional Workshops on Air Quality Modeling: A Summary Report. EPA-450/4-82-015, EPA/OAQPS, Research Triangle Park, NC.

APPENDIX A

TEST RUN PACKAGE: DESCRIPTION OF MODELS "AS-RUN" FOR COMPLEX TERRAIN MODEL EVALUATION

TEST RUN PACKAGE:

DESCRIPTION OF MODELS "AS-RUN"
FOR COMPLEX TERRAIN MODEL EVALUATION

TRC Project No. 2164-R81

David Wackter Project Manager

September, 1983

800 Connecticut Blvd. East Hartford, CT 06108 (203) 289-8631

TABLE OF CONTENTS

SECTION		PAGE
1.0	INTRODUCTION	1
2.0	COMPLEX-I AND COMPLEX-II	3
2.1	Technical Modifications to COMPLEX-I and COMPLEX-II	3
2.2	COMPLEX-I and COMPLEX-II: Input Options and	•
	Variables for Cinder Cone Butte	4
2.3	COMPLEX-I and COMPLEX-II: Input Options and Variables for Westvaco	4
2.4	TRC Changes to COMPLEX-I for Cinder Cone Butte	_
2.5	TRC Changes to COMPLEX-I for Westvaco	5 5
2.6	TRC Changes to COMPLEX-II for Cinder Cone Butte	6
2.7	TRC Changes to COMPLEX-II for Westvaco	6
2.1	inc changes to communation westvaco	0
3.0	PLUME5	7
3.1	Technical Modifications to PLUME5	7
3.2	PLUME5: Input Options and Variables	8
3.3	TRC Changes to PLUME5 Code for Cinder Cone Butte .	9
3.4	TRC Changes to PLUME5 Code for Westvaco	10
4.0	RTDM	11
4.1	Technical Modifications to RTDM	11
4.2	RTDM: Input Options and Variables for Cinder Cone	
	Butte	12
4.3	RTDM: Input Options and Variables for Westvaco	13
4.4	TRC Changes to RTDM for Cinder Cone Butte	14
4.5	TRC Changes to RTDM for Westvaco	15
5.0	SHORTZ	16
5.1	Technical Modifications to SHORTZ	16
5.2	SHORTZ: Input Options and Variables for Cinder Cone	
F 3	Butte	16
5.3	SHORTZ: Input Options and Variables for Westvaco .	17
5.4	TRC Changes to SHORTZ for Cinder Cone Butte	18
5.5	TRC Changes to SHORTZ for Westvaco	18
6.0	4141	19
6.1	Technical Modifications to 4141	19
6.2	4141: Input Options and Variables for Cinder Cone Butte	19
6.3	4141: Input Options and Variables for Westvaco	20
6.4	TRC Changes to 4141 for Cinder Cone Butte	21
6.5	TRC Changes to 4141 for Westvaco	22
7.0	COMPT BY (PRY	
7.0	COMPLEX/PFM	23
7.1	Technical Modifications to COMPLEX/PFM	23
7.2	COMPLEX/PFM: Input Options and Variables for Cinder Cone Butte	24
7.3	COMPLEX/PFM: Input Options and Variables for	
	Westvaco	24
7.4	TRC Changes to COMPLEX/PFM for Cinder Cone Butte .	25
7.5	TRC Changes to COMPLEX/PFM for Westvaco	26

TABLE OF CONTENTS (continued)

AGE	CTION
27	3.0 IMPACT
27	8.1 Technical Modifications to IMPACT
	8.2 IMPACT: Input Options and Variables for Cinder
28	Cone Butte
29	8.3 IMPACT: Input Options and Variables for Westvaco .
30	8.4 TRC Changes to IMPACT (Version 1 from Radian) for Cinder Cone Butte
30	8.5 TRC Changes to IMPACT (Version 1 from Radian) for
	8.2 IMPACT: Input Options and Variables for Cinder Cone Butte

1.0 INTRODUCTION

EPA has contracted with TRC to evaluate the performance of complex terrain air quality simulation models using performance measures recommended by the American Meteorological Society. Eight models are to be evaluated: COMPLEX-I, COMPLEX-II, PLUMES, RTDM, SHORTZ, 4141, COMPLEX/PFM, and IMPACT. Prrior to running the complex terrain models for evaluation, it is desireable to confirm that the models have been implemented in accordance with the expectations of the model developers. To accomplish this, test-run packages were prepared and are being supplied to the model developers for their formal review and concurrence. The package supplied to each model developer contains the following information:

- Descriptions of the complex terrain model evaluation data bases (Cinder Cone Butte and Westvaco);
- Summary of model-code modifications;
- Summary of input options;
- Test-run data (listings of all input and output data) for the model developer's particular model;
- Complete listing of the model code "as run," (for the model developer's particular model) to enable the model developer to confirm the code line-by-line.

Also provided as part fo the test case package are three other relevant documents:

- "Data Archiving Recommendations for Complex Terrain Model Evaluations" (TRC, November 1982).
- "Addendum to: Data Archiving Recommendations for Complex Terrain Model Evalutions (Response to Comments from Model Developers)" (TRC, July 1983).
- "Statistical Evaluation for Complex Terrain Models" (TRC, June 1983).

This document summarizes the model code modifications made by TRC and input options selected by the model developers for each model and data base. Modifications to the models were needed for three basic reasons:

- To adapt the model to the EPA UNIVAC computer.
- To adopt particular models to accept the source-receptor inventories.
- To format calculated concentrations for input to the statistics system.

Detailed summaries of line-by-line changes made by TRC to each model's computer code are also described in this document.

Computer code listings for the models "as run," plus the test run input and output data listings are supplied separately.

2.0 COMPLEX-I AND COMPLEX-II

2.1 Technical Modifications to COMPLEX-I and COMPLEX-II

TRC altered COMPLEX-I and COMPLEX-II to accept input data from the model input file on Unit 18 rather than Unit 5. Statements were added to facilitate writing calculated concentrations to a work file for future statistical analysis. These changes were made for both the Westvaco and Cinder Cone Butte data bases.

To accommodate the Westvaco data base, TRC modified COMPLEX-I and COMPLEX-II in three areas. The models were altered to accept hourly input of source exit velocity and exit temperature. TRC made changes to circumvent problems that could be caused by the Westvaco data starting in one calendar year and ending in the next calendar year. Code was added to check for hours with missing stability during which no concentrations were calculated.

When COMPLEX-I and COMPLEX-II were tested with the Cinder Cone Butte data base, one technical modification was needed. The models were altered so that only the source with a source number (1-111) equal to the hour (1-111) being modeled has an impact on the calculated concentrations. This modification, consistent with the input emissions inventory, was needed because a single emission point was moved each hour in the Cinder Cone Butte study.

2.2 COMPLEX-I and COMPLEX-II: Input Options and Variables for Cinder Cone Butte

Variable Name	Input Value	<u>Description</u>
IOPT(1)	1	Use terrain adjustments.
IOPT(2)	1	No stack downwash.
IOPT(3)	1	No gradual plume rise.
IOPT(4)	1	Calculate initial plume size.
IOPT(25)	1	Use complex terrain option.
HANE	0.90	Anemometer height in meters.
PL	0.,0.,0.,0.,0.,0.	Wind profile power law exponents.
CONTER	0.5,0.5,0.5,0.5,0.,0.	Terrain adjustment factors.
ZMIN	10.	Distance limit for plume centerline from ground.
HAFL	0.	No pollutant loss.

2.3 COMPLEX-I and COMPLEX-II: Input Options and Variables for Westvaco

Variable Name	Input Value	<u>Description</u>
IOPT(1)	1	Use terrain adjustments.
IOPT(2)	0	Use stack downwash.
IOPT(3)	1	No gradual plume rise.
IOPT(4)	1	Calculate initial plume size.
IOPT(25)	1	Use complex terrain option.
HANE	189.7	Anemometer height in meters.
PL	0.,0.,0.,0.,0.,0.	Wind profile power law exponents.
CONTER	0.5,0.5,0.5,0.5,0.,0.	Terrain adjustment factors.
ZMIN	10.	Distance limit for plume centerline from ground.
HAFL	0.	No pollutant loss.

2.4 TRC Changes to COMPLEX-I for Cinder Cone Butte

Line Number	Description of Modification
1-2, 134-137	Comments.
358-360	Dimension TRC variables.
377-381	Define work file.
451-455, 466-475	Initialize I/O units and hour counter. Check data base ID.
736-740	Do not read met station identifiers.
945-948	Increment the TRC hour counter.
1061-1064, 1568-1570	Transfer TRC hour counter to subroutine PTR.
1065-1074	Write to hourly work file.
1617-1619	Ignore sources other than the one which corresponds to the hour of simulation.
1702-1703	Set distance to final plume rise equal to zero.
1734	Allow for stack temperature equal to ambient.

2.5 TRC Changes to COMPLEX-I for Westvaco

Line Number	Description of Modification
1-3, 135-138, 472	Comments.
359-362	Dimension TRC variables.
379-384	Define work file.
454-462, 474-485	Initialize I/O units. Check data base ID.
900-905, 910-912, 917-919, 924-931, 934-936, 1084-1087, 1482-1483	Changes to accommodate data from two calendar years.
978-987	Flag missing stability data.
1088-1101, 1722-1726	Read in hourly source data.
1108-1118	Write to work file.

2.6 TRC Changes to COMPLEX-II for Cinder Cone Butte

Line Number	Description of Modification
1-2, 132-135	Comments.
356-358	Dimension TRC variables.
375-379	Define work file.
449-454, 465-474	Initialize I/O units and hour counter. Check data base ID.
735-749	Do not read met station identifiers.
943-946	Increment the TRC hour counter.
1059-1062, 1565-1567	Transfer TRC hour counter to subroutine PTR.
1063-1071	Write to hourly work file.
1614-1616	Ignore sources other than the one which corresponds to the hour of simulation.
1699-1700	Set distance to final plume rise equal to zero.
1731	Allow for stack temperature equal to ambient.

2.7 TRC Changes to COMPLEX-II for Westvaco

Line Number	Description of Modification
1-3, 133-136, 465	Comments.
357-359	Dimension TRC variables.
376-381	Define work file.
451-455, 467-478	Initialize I/O units. Check data base ID.
893-897, 902-904, 909-911, 921-923, 926-928, 1077-1079, 1472-1473	Changes to accommodate data from two calendar years.
970-980	Flag missing stability data.
1080-1091, 1712-1716	Read in hourly source data.
1098-1108	Write to work file.

3.0 PLUME5

3.1 Technical Modifications to PLUME5

TRC added code to PLUME5 to write calculated concentrations to a work file for future statistical analysis. The model was altered to allow input from a disk file rather than cards. The meteorological data input unit has been set to 11. To reduce computer core requirements, receptor arrays dimensioned by 500 were reduced to the number of receptors in each respective data base.

For the Westvaco data base only, TRC modified PLUME5 to accept hourly values of emission rate, stack exit velocity, and stack exit temperature.

Several changes were made to adapt PLUME5 to the Cinder Cone Butte data base. Code was added to skip the reading of station identifiers on the disk file containing meteorological data and to read the meteorological data one hour at a time. The DO loops on days and hours were merged into a single loop to handle the non-sequential nature of the Cinder Cone Butte experiment hours. Daily and annual average output were skipped. Plume rise was set equal to zero. TRC also modified the model so that only the source with a source number equal to the consecutive hour number has an impact on calculated concentrations (See Section 2.1).

3.2 PLUME5: Input Options and Variables

<u>Varial</u>	ble Name	Input Va	lue CCB	Description
CONVRT (PI	LUME5 prep	rocessor):		
ISTAT		2	2	Stability classified by $\sigma_{\hbox{\scriptsize A}}.$
MST		1	1	Modify unstable stability at night as a function of wind speed.
DTHDZ		0.01	0.01	Default value for change of potential temperature with height through stable layer.
THICK		800.	NA	Default value for the thickness of stable layer.
SIGMAI	F	1	1	Default multiplier for sigma value.
LAT		39.5	43.0	Latitude of surface station.
LONG		79.3	115.5	Longitude of surface station.
ZONE		5	7	Standard time zone.
NCCOF	F	0	NA	NCC mixing height data used.
PLUME5:				
IUR		1	1	RURALl mixing heights used.
BKGRD		1.E-30	1.E-30	Background concentration in $\mu g/m^3$.
IGRID		0	0	Do not use receptor grid.
ICIRC		0	0	Do not generate receptors using radial rings.
IATOB		1	1	Changes Class A stability to Class B.
IPLUM	E	0	0	No hourly plume rise input.
ISGFL	G	1	1	Initial plume expansion allowed.
MODFL	G	1	1	Pasquill modification to the crosswind spread of plumes due to vertical wind directional shear allowed.
WINDH	T	189.7	10.	Wind speed measurement height (meters).
MSLFL	G	1	NA	Mixing heights are above ground level.

3.3 TRC Changes to PLUME5 Code for Cinder Cone Butte

General: Receptor array arguments reduced from 500 to 94 to reduce core requirements. The number of point source locations was raised from 10 to 111, while the number of release heights per location was reduced from 15 to 1. One source per hour of simulation. Mixing height set to 9999 meters.

Line Number	Description of Modification
1-13	Comments.
26-28, 523-524	Define TRC COMMON block.
47-60	Initialize I/O units. Define work file. Check data base ID.
84	Change loop on sources from 10 to 111.
117-119, 138-139	Skip section which reads station identifiers from meteorlogical data file.
145-146, 1402-1403	Change maximum number of sources allowed.
150-151	Change maximum number of heights per source.
178-180, 480-481, 485-486	Change write statement.
521-522	Dimension TRC variables.
552-554	Reduce maximum number of receptors allowed from 500 to 94.
628-636, 723, 728-730	Change the day and hour loops since CCB data is not in 24 hour groups.
651-652	Change unit number for input of meteorological data.
656-672	Read in the meteorological data, one hour at a time.
694-714	Change write statement and format for output of meteorological data.
766-769, 857	Separate the loops on source location and release height.

3.3 TPC Changes to PLUME5 Code for Cinder Cone Butte (Continued)

(1 × 1) (41) × 1	Description of Modification
//0//3, 889-893	Ignore sources other than the one which corresponds to the hour of simulation.
1211-1220	Write to the work file.
1222-1226	Skip output of daily and annual averages.
1855-1857	Set plume rise to zero.

3.4 TRC Changes to PLUME5 Code for Westvaco

General: Receptor array arguments reduced from 500 to 11 to reduce core requirements.

Line Number	Description of Modification
1-5	Comments.
18-20, 515-517	Define TRC common block.
39-60	Initialize I/O units. Define work file. Check data base ID.
119-123, 638-642	Change unit number for input of meteorological data.
511-514	Dimension TRC variables.
5 45-549	Change maximum number of receptors allowed from 500 to 11.
691-700	Read and print the hourly point source data.
1167-1173	Write to the work file.

4.0 RTDM

4.1 Technical Modifications to RTDM

TRC made general and data base specific modifications to RTDM. For both the Westvaco and Cinder Cone Butte data bases, code was added to write calculated concentrations to a work file, and to read model input data on Unit 18 rather than Unit 5. Meteorological data is read from Unit 10 for Cinder Cone Butte, and Units 10 and 11 for Westvaco, instead of Unit 7. For both data bases, assignment of the PROO5 parameter has been fixed to properly correspond to wind profile exponents, not terrain factors.

Modifications specific to the Westvaco data base include reading hourly source data from Unit 15, reading meteorological station identifiers from Unit 10, and checking for hours with missing stability. Concentrations are not calculated for the hours with missing stability.

For the Cinder Cone Butte data base, RTDM was modified to set plume rise and wind profile exponents equal to zero, to set anemometer height equal to release height, and to allow hours which are out of sequence. TRC modified RTDM so that only one source contributes to the calculated concentration in any given hour (See Section 2.1).

4.2 RTDM: Input Options and Variables for Cinder Cone Butte

Variable Name	Input Value	Description
ZWINDl	Release height	Anemometer height (m).
ZWIND2	Not used	
IDILUT	0	Wind speed at level l is used for plume rise and transport calculations.
EXPON	0.,0.,0.,0.,0.,0.	Wind speed profile power law exponents.
ICOEF	3	ASME (1979) stability-dependent dispersion parameters.
IPPP	0	No partial plume penetration.
IBUOY IALPHA	1 3.162	Use buoyancy-enhanced dispersion.
IDMX	1	Unlimited mixing height in stable conditions.
ITRANS	1	Use transitional plume rise.
TERCOR	0.5,0.5,0.5, 0.5,0.5,0.5	Plume path correction factors.
RVPTG	0.02, 0.035	Default VPTG for stabilities 5 and 6.
ITIPD	0	No stack-tip downwash.
IY	1	User-supplied Iy.
IZ	1	User-supplied I_z .
IRVPTG	0	Default VPTG for plume rise calculations.
IHVPTG	1	User-supplied VPTG for H_{crit} calculations.
ISHEAR	0	Wind direction shear is not used in $\sigma_{\mathbf{y}}$ computation.
IEPS	0	No hourly wind profile exponents.
IREFL	1	Use partial reflection algorithm.
IHORIZ	1	Off-centerline horizontal distribution function.
IEMIS	0 -1	Use constant emission rate.

4.3 RTDM: Input Options and Variables for Westvaco

Variable Name	Input Value	Description
ZWINDl	30.	Anemometer height (m) above ZA, for plume rise.
ZWIND2	Not used	Anemometer height for transport.
IDILUT	0	Wind speed at level 1 extrapolated to stack top for plume rise calculations and to plume height for transport calculations.
ZA	179.6	Height above stack base where the wind profile originates.
EXPON	0.,0.,0.,0.,0.,0.	Wind speed profile power law exponents.
ICOEF	3	ASME (1979) stability-dependent dispersion parameters.
IPPP	0	No partial plume penetration.
IBUOY IALPHA	1 3.162	Use buoyancy-enhanced dispersion.
IDMX	1	Unlimited mixing height in stable conditions.
ITRANS	1	Use transitional plume rise.
TERCOR	0.5,0.5,0.5, 0.5,0.5,0.5	Plume path correction factors.
RVPTG	0.02, 0.035	Default VPTG for stabilities 5 and 6.
ITIPD	1	Use stack-tip downwash.
IY	1	User-supplied Iy.
IZ	1	User-supplied Iz.
IRVPTG	1	User-supplied VPTG for plume rise calculations.
IHVPTG	1	User-supplied VPTG for H _{crit} calculations.
ISHEAR	1	Wind direction shear is used in $\sigma_{\mbox{\scriptsize y}}$ computation.

4.3 RTDM: Input Options and Variables for Westvaco (Continued)

Variable Name	Input Value	<u>Description</u>
IEPS	1	User-supplied hourly wind profile exponents.
IREFL	1	Use partial reflection algorithm.
IHORIZ	1	Off-centerline horizontal distribution function.
IEMIS	1	User-supplied hourly emission rate.

4.4 TRC Changes to RTDM for Cinder Cone Butte

Line Number	Description of Modification
1-4	Comments.
21	Define work file.
22-32	Check data base ID.
33-41	Read and print the experiment hours being modeled.
474-475	PR005 should read wind profile exponents, not terrain factors.
1177-1178	Change requested by ERT.
1365-1367, 1695-1696	Define TRC common block.
1436-1448, 1452-1453	Read meteorological data.
1463-1464	Allow hours which are out of sequence.
1510-1514, 1546-1547, 1549-1550, 1583-1586	Change output formats.
1697-1698	Dimension TRC variables.
1712-1717	Allow source contribution from only one source per hour.
1738-1734	Set wind profile exponents equal to zero and wind measurement height equal to release height.
1759, 1763	Set plume rise equal to zero.
1836, 1850-1856 -1	Write to the work file.

4.5 TRC Changes to RTDM for Westvaco

Line Number	Description of Modification
1-4	Comments.
21	Define work file.
22-34	Check data base ID.
35-36	Read station identifiers from meteorological data file.
471-472	PR005 should be reading wind profile exponents, not terrain factors.
1175-1176	Change requested by ERT.
1365-1374, 1736-1739	Define TRC common block.
2891	Dimension TRC variables.
1443-1475, 1479, 1485-1486	Read meteorological data from two files.
1480-1484, 1742-1748, 2897-2902	Flag hours with missing stability.
1491-1507	Read point source data file.
1610-1618, 1624-1627	Change error message formats.
1871-1874, 1887-1893	Write to work file.

5.0 SHORTZ

5.1 Technical Modifications to SHORTZ

The SHORTZ model was modified to accept input data from a disk file, and to write calculated concentrations to a work file for subsequent statistical analysis. For the Westvaco data base run, an hour counter and an alternate output format for the time period in question were added. Modifications specific to the Cinder Cone Butte data base include setting plume rise equal to zero, adding an array to hold calculated concentrations, and allowing the maximum number of hours in a case to equal 111.

5.2 SHORTZ: Input Options and Variables for Cinder Cone Butte

Variable Name	Input Value	Description
ISW(7)	1	Terrain elevation data are input.
ISW(9)	0	Wind speed is not terrain following.
ISW(17)	0	Rural option.
G	9.80	Acceleration of gravity (m/s^2) .
ZR	9.99	Wind speed measurement height (m) .
GAMMAl	0.60	Entrainment coefficient for unstable atmosphere.
GAMMA 2	0.66	Entrainment coefficient for stable atmosphere.
XRY .	50.	Distance (m) over which rectilinear expansion occurs downwind of source.
DECAY	0.	No pollutant loss.
нА	99.9	Elevation (m) of base of weather station.

5.3 SHORTZ: Input Options and Variables for Westvaco

Variable Name	Input Value	Description
ISW(7)	1	Terrain elevation data are input.
ISW(9)	0	Wind speed is not terrain following.
ISW(17)	0	Rural option.
G	9.80	Acceleration of gravity (m/s^2) .
ZR	30.0	Wind speed measurement height (m) .
GAMMA1	0.60	Entrainment coefficient for unstable atmosphere.
GAMMA 2	0.66	Entrainment coefficient for stable atmosphere.
XRY	50.	Distance (m) over which rectilinear expansion occurs downwind of source.
DECAY	0.	No pollutant loss.
на	467.6	Elevation (m) of base of weather station.

5.4 TRC Changes to SHORTZ for Cinder Cone Butte

Line Number	Description of Modification
2-14, 118-135	Comments.
26-55, 656-684	Define TRC COMMON block EVAL.
86-94	Initialize I/O units.
98-114	Define work file.
136-171	Check data base ID.
202-210	Set TRC variable NMON≠NXXYY.
232	Set MKQ=111, maximum number of hours.
1194-1199	Zero the TRCONC array each hour.
1211	Let maximum number of hours = 111.
1483-1488	Set plume rise equal to zero.
1797-1802	Put calculated concentrations into array TRCONC.
1812-1834	Write to the work file.

5.5 TRC Changes to SHORTZ for Westvaco

Line Number	Description of Modification
2-14, 118-135	Comments.
26-55, 656-684, 2043-2048	Define TRC COMMON block EVAL.
86-94, 154	Initialize I/O units.
98-114	Define work file.
136-171	Check data base ID.
202-210	Set TRC variable NMON=NXXYY.
1795-1817	Write to work file.
1875-1876	Set hour counter IHRTRC.
2120-2125	Change the output hour format.

6.0 4141

6.1 Technical Modifications to 4141

Modifications to 4141 are the same as for COMPLEX-I and COMPLEX-II.

6.2 4141: Input Options and Variables for Cinder Cone Butte

Variable Name	Input Value	Description
MODEL	4141	<pre>Select 4141 Model Option. Sets CONTER = 0.5,0.5,0.5,0.5, 0.25,0.25. Sets IOPT(4) = 1. Sets IOPT(1) = 1.</pre>
IOPT(1)	1	Use terrain adjustments.
IOPT(2)	1	No stack downwash.
IOPT(3)	0	Gradual plume rise.
IOPT(4)	1	Calculate initial plume size.
HANE	0.9	Anemometer height in meters.
PL	0.,0.,0.,0.,0.,0.	Wind speed profile power law exponents.
HAFL	0.	No pollutant loss.

6.3 4141: Input Options and Variables for Westvaco

Variable Name	Input Value	Description
MODEL	4141	<pre>Select 4141 Model Option. Sets CONTER - 0.5,0.5,0.5,0.5, 0.25,0.25. Sets IOPT(4) = 1. Sets IOPT(1) = 1.</pre>
IOPT(1)	1	Use terrain adjustments.
IOPT(2)	1	No stack downwash.
IOPT(3)	0	Gradual plume rise.
IOPT(4)	1	Calculate initial plume size.
HANE	189.7	Anemometer height in meters.
PL	0.,0.,0.,0.,0.,0.	Wind speed profile power law exponents.
HAFL	0.	No pollutant loss.

6.4 TRC Changes to 4141 for Cinder Cone Butte

Line Number	Description of Modification
1-2, 82-85, 185-188	Comments.
304-306	Dimension TRC variables.
325-329	Define work file.
404-409, 421-430	Initialize I/O units and hour counter. Check data base ID.
689-692	Do not read met station identifiers.
899-902	Increment the TRC hour counter.
1015-1018, 1597-1599	Transfer TRC hour counter to subroutine PTR.
1019-1028	Write to hourly work file.
1645-1647	Ignore sources other than the one which corresponds to the hour of simulation.
1729-1731	Set distance to final plume rise equal to zero.
1761-1762	Allow for stack temperature equal to ambient.

6.5 TRC Changes to 4141 for Westvaco

Line Number	Description of Modification		
1-3, 83-86, 186-189	Comments.		
305-307	Dimension TRC variables.		
326-331	Define work file.		
406-410, 423-434	Initialize I/O units. Check data base ID.		
848-853, 858-860, 865-867, 872-879, 882-884, 1033-1035	Changes to accommodate data from two calendar years.		
926-936	Flag missing stability data.		
1036-1047	Read in hourly source data.		
1054-1064	Write to work file.		

7.0 COMPLEX/PFM

7.1 Technical Modifications to COMPLEX/PFM

The technical modifications to COMPLEX/PFM consist of the same changes made to COMPLEX-I and COMPLEX-II, plus several alterations specific to COMPLEX/PFM.

For both the Westvaco and Cinder Cone Butte data bases, COMPLEX/PFM was modified to read receptor data from a unique disk file. Also, array sizes were reduced in accordance with data base requirements in order to reduce the need for computer core storage.

Some modifications were needed only for the Cinder Cone Butte data base.

These include reading the potentially non-sequential list of experiment hours to be modeled; reading hourly values of critical streamline height (Hcrit) and Froude number from a disk file; and accounting for the absence of vertical wind and temperature profiles in the Cinder Cone Butte input data set.

7.2 COMPLEX/PFM: Input Options and Variables for Cinder Cone Butte

Variable Name	Input Value	Description			
IOPT(1)	1	Use terrain adjustments.			
IOPT(2)	1	No stack downwash.			
IOPT(3)	1	No gradual plume rise.			
IOPT(4)	1	Calculate initial plume size.			
IOPT(25)	1	Use complex terrain option.			
IOPT(26)	1	Long-term PFM option.			
HANE	0.90	Anemometer height in meters.			
PL	0.,0.,0.,0.,0.,0.	Wind profile power law exponents.			
CONTER	0.5,0.5,0.5,0.5,0.,0.	Terrain adjustment factors.			
ZMIN	10.	Distance limit for plume centerline from ground.			
HAFL	0.	No pollutant loss.			

7.3 COMPLEX/PFM: Input Options and Variables for Westvaco

Variable Name	Input Value	Description
IOPT(1)	1	Use terrain adjustments.
IOPT(2)	0	Use stack downwash.
IOPT(3)	1	No gradual plume rise.
IOPT(4)	1	Calculate initial plume size.
IOPT(25)	1	Use complex terrain option.
IOPT(26)	1	Long-term PFM option.
HANE	189.7	Anemometer height in meters.
PL	.10,.15,.20,.25,.25,.25	Wind profile power law exponents.
CONTER	0.5,0.5,0.5,0.5,0.,0.	Terrain adjustment factors.
ZMIN	10.	Distance limit for plume centerline from ground.
HAFL	0.	No pollutant loss.

7.4 TRC Changes to COMPLEX/PFM for Cinder Cone Butte

Line Number	Description of Modification
1-18, 183-186, 314-316, 373-374, 429-430, 602, 2322, 4141-4142, 5960-5961.	Comments.
453-455, 2323-2327, 5495-5497	TRC common block definition.
458–460	Dimension TRC variables.
484–489	Define work file.
569-573, 4172-4175	Change the maximum number of receptors from 180 to 99 to reduce core requirements.
582-587	I/O device initialization.
604-625	Read and verify data base and work file identifiers. Read in the experiment hours to be modeled.
920-923, 1258-1264, 1298-1299	Modifications to account for the absence of wind and temperature profiles.
1141-1147	Read Horit and Froude number from TRC disk file.
1318-1328	Write calculated concentrations to work file.
1887	Write format change.
2423-2426	Print Hcrit and Froude number.
5549-5552, 5581-5584, 5856-5858	Do not call subroutines which calculate Hcrit and Froude number.
5607-5612	Allow source contributions from only one source per hour.
5714-5716, 5747-5748	Allow for ambient temperature identical to stack temperature.
6005-6010	Change format and input unit of statements which read receptor data.

7.5 TRC Changes to COMPLEX/PFM for Westvaco

Line Number	Description of Modification
1-11, 176-179, 307-309, 366-367 422-423, 592, 5933-5934	Comments.
448–450	Dimension TRC variables.
474–479	Define files.
559-563, 4166-4169	Change maximum number of receptors allowed from 180 to 15 to reduce computer core requirements.
572-577	Device initializations.
594-605	Read and verify data base and work file identifiers.
1064-1068, 1073-1075, 1080-1082, 1087-1094, 1098-1100, 1297-1298	Changes to accommodate data from two calendar years.
1142-1152	Check for missing stability. Set calculated concentration to missing.
1299-1311, 5659-5663	Read hourly point source data.
1318-1329	Write calculated concentrations to the work file.
5978-5983	Change format of statements which read receptor data.

8.0 IMPACT

8.1 Technical Modifications to IMPACT

TRC inserted additional codes within specific sections of the IMPACT model to produce the following two results:

- i) Identify and write to the output work file those 1-hour average surface level concentrations for calls corresponding to monitor sites. These changes were included for both the Westvaco and Cinder Cone Butte versions of the model.
- ii) Redimension arrays in the COMMON block TREFOR to accommodate the number of cells utilized in the X-, Y-, and Z- directions for each data base. In the case of Westvaco, the number of cells are 13, 15, and 20, respectively, with corresponding cell dimensions of 200, 200, and 60.96m. In the case of Cinder Cone Butte, the number of cells are 36, 45 and 14, respectively, with corresponding cell dimensions of 50m, 50m and 10m.

20

The IMPACT model allows for a maximum of 40 cells in the "X-" direction.

The actual grid developed by TRC for Cinder Cone Butte contains 45 cells in the East-West direction. In order to avoid additional code revisions, the grid was rotated 90° counter-clockwise. There are now 36 cells in the X- direction (north-south) and 45 cells in the Y- direction (east-west).

Another modification to the IMPACT model was required for the Cinder Cone

Butte application. The minimum time step, DTMIN (specified in a Data statement
0.5

located in subroutine DIFFUS), was reduced from 3.6 seconds to 1.0 seconds. This
change allows the model to calculate a time step appropriate for the small grid
spacing defined for Cinder Cone Butte.

1/8

8.2 IMPACT: Input Options and Variables for Cinder Cone Butte

Variable Name	Input Value	Description
DX	50.	E-W cell size in m.
DY	50.	N-S cell size in m.
DZ	20. 7.5	Vertical cell size in m. 1/87
NX	36	Number of grid cells in x-direction
NY	45	Number of grid cells in y-direction
NZ	14 20.	Number of grid cells in z-direction 1/84
IDOWND	1	WEST wind Model
IDOCEM	1	1 tracer effluent
IDOPLM	1	User specified ΔH for plume rise (ΔH =0.)
IDODIF	3	DEPICT algorithm diffusivities
IDOBAK	1	User specified background (background =0.)
NUMHRS	1	Number of hours to be modeled
IDOPLT	0	No contour plots
IDOPRN	1	Printer edit every hour for test run
IDOCAL	0	No CALCOMP plots
HRSAUG	1	Hourly printout for test run
IDOSUR	0	Hourly printout for vertical levels

8.3 IMPACT: Input Options and Variables for Westvaco

Variable Name	Input Value	Description
DX	200.	E-W cell size in m.
DY	200.	N-S cell size in m.
DZ	60.96	Vertical cell size in m.
NX	13	Number of grid cells in x-direction
NY	15	Number of grid cells in y-direction
NZ	20	Number of grid cells in z-direction
IDOWND	1	WEST wind model
IDOLEM	1	1 tracer effluent
IDOPLM	0	Briggs' '74 Plume Rise
IDODIF	3	DEPICT algorithm diffusivities
IDOBAK	1	User specified background set to 0.0
NUMHRS	25	Number of hours to be modeled
IDOPLT	0	No contour plots
IDOPRN	1	Printer edit every hour for test run
IDOCAL	0	No CALCOMP plots
HRSAUG	1	Hourly printout for test run
IDOSUR	1	Print surface values only

8.4 TRC Changes to IMPACT (Version 1 from Radian) for Cinder Cone Butte

Line Number	Description of Modification
1-18	Comments
113-130, 386-402, 898-915, 998-1014, 1325-1341, 1735-1751, 1975-1991, 2180-2196, 2569-2585, 2813-2829, 2962-2978, 3069-3085, 3145-3161	Common TREFR1, TREFR2
131-265	Comments, TRC COMMON verify input files, load I, J of receptors
2197-2224	TRC COMMON
2230-2239 2481-2514	DTMIN, minimum time step, set to 1.0 sec. Write to work file

8.5 TRC Changes to IMPACT (Verion 1 from Radian) for Westvaco

Line Number	Description of Modification
1-18	Comments
113-124, 381-392, 888-900, 983-994, 1305-1316, 1710-1721, 1945-1956, 2145-2152, 2531-2542, 2770-2781, 2914-2925, 3016-3027, 3087-3098	Common TREFOR
125–260	Comments, TRC COMMON, verify input files, load I, J of receptors
1969-1984	Set unset variable
2153-2186	TRE COMMON
2443-2476	Write to work file

APPENDIX B

STATISTICAL TABLES OF MODEL PERFORMANCE FOR WESTVACO

<u>Table</u>	Page
Westvaco Comparison of 25 Highest, 1 Hour	B-1
Westvaco Comparison of 25 Highest, 3 Hour	B-9
Westvaco Comparison of 25 Highest, 24 Hour	B-17
Westvaco Comparison of Highest by Station	B-25
Westvaco Comparison of Second Highest by Station	B-28
Westvaco Comparison of Highest by Event	B-31
Westvaco Comparison of All Events Paired in Space and Time	B-34
Westvaco-IMPACT Hours Comparison of 25 Highest	B-61
Westvaco IMPACT Hours Comparison of Highest by Station	B-63
Westvaco IMPACT Hours Comparison of Second Highest	B-66
Westvaco IMPACT Hours Comparison of Highest by Event	B-69
Westvaco IMPACT Hours Comparison of All Events Paired	
in Space and Time	B-72

COMPARISON OF 25 HIGHEST DESERVED AND PREDICTED SP2 CONCENTRATION VALUES (UG/M**3) (UNPAIRED IN TIME OR LOCATION) FOR THE 1-HOUR AVERAGINS PERIOD WESTVACO (1980/1931)

MAXIMUM FREGUENCY DIFFERENCE	1.03	1.00	1.60	,942 (,385)	1.03 (.385)	1.03 (.385)	1.00
VARIANCE COMPARISON (OBS/PRED)	.917 (.068, .(39)	.004 (.002, .010)	.009 (.004, . ⁰ 29)	.151 (.057, .344)	.008 (.004319)	.003 (.001, .007)	.097 (.003, .015)
MEDIAN DIFFERENCE+ (OSS-PRED)	-15972 (-17194,-14542)	-35616 (-37307•-3396A)	-9558 (-11689• -8080)	-655 (-945, -282)	-11472 (-12831,-19748)	-11389 (-12329,-10520)	-10153 (-11021, -9576)
DIFFERENCE OF AVERABES* (OPS-PRED)	-15109 (-17149,-15249)	-3556r (-38550,-14782)	-16236 (-11543, -8922)	-1319 (-1552, -985)	-1255£ (-13923,-11183)	-13193 (-15397 ₀ -10989)	-11594
1VERAGE PPEDICTED VALUE	18159	39634	12205	3289	14525	15153	13553
A 0 8 3	1969	1969	1969	1969	1969	1959	1969
MODEL	 	COMPLEXII	4141	RIDM	PLUMES	COMPLEX/PFM	SH031Z

+ 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPAKISON OF 25 HIGHESI CREEVED AND PREDICTED SO2 CONCENTRATION VALUES (US/M**3) (UNPAIRED IN TIME OF LOCATION) FOR VARIOUS DATA SETS MODEL: COMPLEYI FOR THE 1-HOUR AVERAGING PERIOD WESTVACO (198(/1981)

VARIANCE COMPARISON (03S/PRED)		11.967 .264 .029 .176	. 024 . 032 . 056 . 30.642	. 623 . 601	7 -232 12133-506 -114 -027
DIFFERFNCE OF AVERAGES* (ORS-PRED)	19	-15257 -1257 -11257 -11015 -6729	-7050 -1257 -3236 -86	-16592 -11613 -5111	674 1509 -17741 -16561
AVERACE PRESICTED VALUE	18169	16574 1674 12768 12189 8104 15372	8.798 2.354 44.22 4.28 1.31	169 12828 5664	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
AVFRAGE OBSLRVEN V°LUE	1969	1316 318 1113 1072 1374	1347 1103 1183 539 315	110N 1576 1813 551	1092 1517 1118 1667
DATA SETS	ALL		STATION 7 STATION 8 STATION 9 STATION 1	METEOROLOGICAL CONDITION 1. WIND SPEED 2.5 TO 5. M/S 5.6 M/S 5.8 M/S	ABIL ASS ASS ASS ASS
	!		! !		

COMPORISON OF 25 HIGHEST OBSERVED AND PREDICTED SOC CONCENTRATION VALUES (US/M++3) (UNPAIPED IN TIME OR LOCATION) FOR VARIOUS DATA SETS MCTEL: COMPLEXII FOR THE 1-HOUR AVERASING PERIOD WESTVACO (1980/1981)

VARIANCE COMPARISON (ORS/PRED)	C	34.003 .002 .002 .003 .003 .001 .001 .369	• 60. • 028 • 051	750. 474.005. 950.
DIFFERENCE OF AVERAGES* (03S-PRED)	-36558 (-38555,-34782)	-33840 -2274 -228472 -22051 -31555 -10228 -1414 -4068	-35749 -31060 -14792	816 1508 -2.588 -76973
AVERASE PREDICTED VALUE	863	35157 24 63 23 135 23 135 32 64 1157 5 125 18 172 2 140	37325 37874 37874 15344	276 16 2177 2177
AVERAGE OBSLRVED VALUE	1959	1316 1318 1318 1318 1318 1318 1318 1318	154 1575 1813 551	10°2 1517 1118 1667
DATA SETS	! !	STATION 3 STATION 4 STATION 4 STATION 6 STATION 7 STATION 7 STATION 7 STATION 1 STATION 1	MFTEOROLGGICAL CONDITION 1. WIND SFEED < 2.5 W/S 2.5 TO 5. M/S > 5. M/S	2. STABILITY GROUF CLASS 4, R & C CLASS P CLASS F CLASS F

COMPANISON OF 25 HIGHEST OBSERVED AND PREDICTED SO2 CONCENTRATION VALUES (U2/M++7) (UNPAIPED IN TIME OR LOCATION) FOR VARIOUS DATA SETS MODEL: COMPLEX/PFN FOR THE 1-HOUR AVERAGING PERIOD WESTVACO (1987/1981)

VARIANCE COMPARISON (OBS/PRED)	.093 (.001, .007)	.005 .169 .004 .003	.007 .030 .007 .008 .028 .107	. 533 • 680 • 682	ቀ 10 15 ቀ 6 ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ
DIFFERENCE OF AVERAGES* (03S-PRED)	-1319 97•-1	-9192 -3826 -4062	-2854 -2855 -2538 -1800 -1900 -105	-12713 -0444 -2091	1 1 5 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
AVEPAGE PREDICTED VALUF	15163	10569 318 4937 5136	4223 39657 37865 22855 4 221	142°(1°25°E °643	2547 72.5 9219 127.0
PRA LU	1969	1316 318 1115 1072	1374 1411 1347 1103 1103 339 339	1710V 1576 1813 551	1092 1517 1116 1667
rata sets	4 L	STATION 1 STATION 2 STATION 4	!	METEOROLOGICAL CONDITION 1. WIND STEED < 2.5 M/S 2.5 TO 5. M/S > 5. M/S	
i i i	4		1 1		

COMPAKISON OF 25 HIGHEST CBSERVED AND PREDICTED SO2 CONCENTRATION VALUES (UG/4**3) (UNPAIRED IN TIME OR LOCATION) FOR VARIOUS DATA SETS MODEL: 4141	WESTVACO (1981)
---	-----------------

VARIANC OMPARIS OPS/PPE		1 600 1	56.179 85105.851 .05P
IFFERENCI AVERAGE 03S-PRED	-11549, -8922) -3757 -3757 -3757 -2132 -5593 -5593 -5473 -5314 -5314	-6543 -7517 -1373	- c
	122 C 5 5 7 7 3 3 2 0 5 5 6 9 6 8 6 9 6 8 7 6 9 9 1 6 9 9	P 22 °C 23 ₹ 1 1925 °C	~ ~~
$\triangleleft \alpha \alpha \supset$	195 1316 1318 1318 1318 1347 11947 315 315 315	1710V 1576 1813 551	1992 1517 1118 1567
DATA SETS	STATION 1 STATION 2 STATION 2 STATION 4 STATION 5 STATION 7 STATION 9 STATION 1 STATION 1	METEGROLOGICAL CONDITION 1. WIND SPEED C.S. M/S 2.5 TC 5. M/S > 5. M/S	7. "TABILITY SROUP CLASS D. H & C CLASS U CLASS F CLASS F

COMPARISON OF 25 HIGHEST ORGERVED AND PREDICTED SOZ CONCENTRATION VALUES (UG/M++3)
(UNPAIRED IN TIME OR LOCATION)
FOR VARIOUS DATA SETS
MODEL: PLUMF5
FOR THE 1-HOUR AVERASING PERIOD
WESTVACO (1980/1981)

VAPIANCE COMPARISON (OBS/PRED)	,108 (,664 , 4019)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		.(35 .012 .6(1	
DIFFERENCE OF AVERAGES* (09S-PRED)	-12556 (-13923,-111P8)	-8379 238 -776 -1089	-10820 -10820 -10820 -128 -48 -48 -256	- R254 - 9593 - 9755	- 3252 -1222 - 3436 - 452
AVERAGE PRESICTED VALUE	14525	9696 86 1887 2154 2154	12232 2233 2231 689 1735 327 59	9831 11477 1317	4346 13745 4555 2526
AV TRAGE ORSERVED VALUE	1969	1316 318 1119 1072	1574 1341 1103 1103 333 315	01710N 1576 1813 551	1.092 1.517 1.11.8 1.65.7
DATA SETS	ירר	STATION 1 STATION 2 STATION 3 STATION 4	STATION S STATION 6 STATION 7 STATION 1 STATION 11	METEOROLOSICAL CONDITION 1. WIND SPEED 2.5 WS 2.5 TO 5. M/S 5.5 M/S	2. STABILITY GROUP CLASS A. B. & C CLASS P CLASS F CLASS F
	v 1 1 1 4 5 1 1 1 1 1		B-6		

.318,1.538) VARIANCE COMPARISON (OBS/PRED) 44.172 6.069 6.069 6.069 6.069 6.099 6 1,030 10,163 ,021 .26. R.697 かなな (-2212, -1823) DIFFERENCE OF AVERAGES* (OBS-PRED) -15 -1268 -1751 -1219 1808-204-1949-1949--2018 -151r -2492 -1985 -326 -2284 -1683 -2145 -2R41 COMPARISON OF 25 HIGHEST OBCERVED AND PREDICTED SO2 CONCENTRATION VALUES (UG/M++3) (UNPAIRF) IN TIME OR LOCATION) MCDEL: RTDM FOR THE 1-HOUR AVERAGING PERIOD WESTVACO (1987/1981) FOR VARIOUS DATA SETS AVERAGE PREDICTED VALUF 2780 27780 27789 2778 2778 2778 1109 1109 2118 3054 3944 3774 1460 3741 3742 365 P AVFRAGE 03 SERVED V BE UE 1935 1269 1930 1930 1284 1333 1335 1316 1113 275 1450 1787 534 809 1456 1035 1596 METEOROLPSICAL CONDITION STABILITY SPOUP CLASS A. F. R. C. CLASS P. CLASS F. < 2.5 M/S
2.5 TO 5. M/S
> 5. M/S 1. WIND SPEED こうきょうらん てらら DATA SETS STATION 111 ٠,

COMPARISON OF 25 HIGHEST OBSERVED AND PREDICTED SO2 CONCENTRATION VALUES (UG/M++3)
(UNPAIRED IN TIME CR LOCATION)
FOR VARIOUS DATA SETS
MODEL: SHORTZ
FOR THE 1-HOUR AVEPASING PERIOD
WESTVACO (1981/1981)

VARIANCE COMPARISON (OSS/PREU)	007	012 0.05 005 031 303 012 012 157 379 263 1.077	• C13 • 010 • C01	.017 .022 .026
DIFFERENCE OF AVERAGES+ (OBS-PRED)	59 -1	- 8715 - 53 - 61 - 53 - 61 - 13 5 5 - 13 5 - 15 6 -	-6823 -11246 -1906	-2585 -6394 -5395 -1:695
AVERAGE PREDICTED VALUÉ	13553	10732 38° 6491 5641 2700 10851 2442 1254 1490 410 215	8471 13060 2458	₹678 7912 5513 373€₹
AVFRAGE OBSCRVED V 1 LUE	1969	1316 318 1110 1372 1374 1411 1393 339 339	D1710N 1576 1813 551	1092 1517 1118 1667
DATA SETS	ירו	STATION 1 STATION 3 STATION 3 STATION 4 STATION 7 STATION 7 STATION 7 STATION 8 STATION 8 STATION 11	METEOROLOGICAL CONDITION 1. WIND SPEED < 2.5 M/S 2.5 TO 5. M/S > 5. M/S	2. STABILITY GROUF CLASS 4, B & C CLASS D CLASS F CLASS F CLASS F
	† † † †	1 1 1 1		

COMPARISON OF 25 HIGHEST PPSERVED AND PREDICTED She concentration values (UG/M++3) (UVPAIRED IN TIME CR LOCATION) FOR THE 3-HOUR AVERAGING PERIOD WESTVACO (1987/1931)

MAXIAUM FREGUENCY DIFFERENCE	1+03	1.00	1.00 (.385)	.552	1,03	1.03	1.03 (.385)
VARIANCE COMPARISON (ORS/PRED)	.025 (.011058)	.007 (.003015)	.037 (.015, .084)	.473 (.209.1.075)	.008 (.004,.918)	.617 (.007038)	.046 (.020, .154)
MEDIAN DIFFERENCE* (OBS-PRED)	-10433 (-11006,-10157)	-17793 (-21880,-17031)	-3552 (-4107, -2712)	-256 (-502, -135)	-5534 (-6958; -4625)	-5053 (-6977, -5255)	-5043 (-5370, -4323)
DIFTERENCE OF AVERASES* (OSS-PRED)	-11075 (-11845,-10311)	-1943((-20871,-17989)	-3642 (-4283, -3000)	-337 (-545, -127)	-6690 (-9051, -5329)	-4601 (-754°, -5552)	-5202 (-5786, -4524)
AVERAGE PREDICTED VALUE	12205	21557	4769	1464	7817	7720	333.0
AVERAGF OBSERVED VALUE	1127	1127	1127	1127	1127	1127	1127
ИЭБГС	COMPLEXI	COMPLEXII	4141	RIDW	PLUME 5	COMPLEX/PFM	SH03TZ

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESFS

COMPANISON OF 25 41GHEST OBSERVED AND PREDICTED SOC CONCENTRATION VALUES (UG/M+43) (UNPAIRED IN TIME OR LOCATION) FOR VARIOUS DATA SETS MODEL: COMPLEXI FOR THE 3-HOUR AVERASING PERIOD WESTVACO (1980/1981)

VARIANCE COMPARISON (OPS/PRED)	,026	
2 (5) W	-11078 (-11845,-10311)	-9672 -7665 -5518 -5702 -9161 -2752 -775 -141
AVERAGE PREDICTED VALUE	12205	11 40 40 40 40 40 40 40 40 40 40
AVFRAGE OB92RVED VALUE	1127	759 1165 6115 7117 7188 726 536 209
DATA SETS	Prr	STATION 1 STATION 3 STATION 4 STATION 5 STATION 7 STATION 7 STATION 7 STATION 7 STATION 1

COMPTRISON OF 25 41GHEST CBSERVED AND PREDICTED SOZ CONCENTRATION VALUES (UG/M+*3)
(UNPAIFED IN TIME OR LOCATION)
FOR VARIOUS DATA SETS
MODEL: COMPLEXII
FOR THE 3-HOUR AVERASING PERIOD
WESTVACO (198F/1981)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
VARIANCE COMPARISON (OBS/PRED)	.007 (.003016)	.004 20.051	.002	200°	• 607	\$00°	.367	.012	.017	•119	5.019
DIFFERENCE OF AVERAGES* (095-PPED)	-19430	-15939 155	-927n	-6837	-2823	-16453	15444	-259	-992	-472	137
AVERAGE PREDICTED VALUE	20557	16f°9	9683	7453	3541	17242 .	3164	787	1571	111	63
AVFRAGE OBSERVED VALUE	1127	759 165	618	615	717	788	718	526	578	204	202
NATA SETS	ΔŁŁ	STATION 1	STATION	STATION 4	STATION	STATION	STATION	STATION	STATION	STATION 15	STATION 11

COMPARISON OF 25 HIGHEST OPSERVED AND PREDICTED \$0.2 CONCENTRATION VALUES (U.5/4.*3)
(UNPAIRED IN TIME OR LOCATION)
FOF VARIOUS DATA SETS MODEL: COMPLEX/FFM
FOR THE 5-HOUR AVERASING PERIOD WESTVACO (1980/1991)

) 		
VARIANCE COMPARISON (OBS/PRED)	. £17 (.007038)	
DIFFERENCE OF AVERAGES* (095-PRED)	-6601 (-7549, -5652)	-3376 -1157 -1192 -840 -4727 -567 -200 -135
AVERACE PREDICTED VALUE	1726	4 1111811 1127711 1127711 112771 11274 112
AVFRAGE OBCERVED VALUE	1127	759 1659 615 717 718 718 728 726 504
UATA SETS	ALL	STATION 2 STATION 4 STATION 4 STATION 5 STATION 5 STATION 0 STATION 0 STATION 0

	VARIANCE COMPARISON (ORS/PRED)	.037 .016089 .088 .22.623 .82.469 .139 .029 .515 .027 .011 .23.916
COMP*RISON OF 25 HIGHEST 38°FRVED AND PREDICTED SO2 CONCENTRATION VALUES (US/M**3) (UNPAIRED IN TIME PR L3CATION) FOR VARIOUS 3ATA SETS MODEL: 4141 FOR THE 3-HOUR AVERAGING PERIOD WESTVACO (1987/1981)	DIFFERENCE OF AVERAGES+ (OBS-PRED)	-4283, -3400) -1487 -1487 -155 -1548 -1581 -1581 -1581 -1581
	AVERAGE PREDICTED VALUE	22 47 69 11 69 69 69 69 69 69 69 69 69 69 69 69 69
	AVFRAGE 0392RVED V1LUE	1127 . 759 165 615 615 717 718 718 526 578 526
	DATA SETS	ALL STATION STATION

COMPANISON OF 25 HIGHEST OBSERVED AND PREDICTED SOC CONCENTRATION VALUES (US/M**3)

(UNPAIRED IN TIME OR LOCATION)
FOR VARICUS DATA SETS
MODEL: PLUMF5
FOR THE 3-HOUR AVERAGING PERIOD
WESTVACO (1987/1981)

VAPIANCE COMPARISON (OGS/PRES)	,008 (,004 ,019)	700°	.021	• 064	212	010.	.027	*252	•115	1.699	25•630
DIFFERENCE OF AVFRAGES* (09S-PPED)	-669n (-8051• -5329)	0.608-	-265	NO I	-567	-4951	-210	237	151	46	172
AVERAGE PREDICTED VALUF	7617	ର ଜ ଜ ଜ ନ	α Λ φ ν ιυ	645	1285	574	n3 ()	283	457	125	24
AVFRAGE OGSERVED VALUE	1127	761	165 61 <i>p</i>	615	717	788	718	525	578	204	C 2
SETS	ALL	STATION	STATION 2 STATION 3	STATION 4	STATION 5	STATION 6	STATION 7	STATION	STATION	STATION 12	STATION 11

COMPAKISON OF 25 HIGHEST OBSERVED AND PREDICTED SOZ CONCENTRATION VALUES (UG/M**3)
(UNPAIRED IN TIME OR LOCATION)
FOR VARIOUS DATA SETS
MODEL: RTDM
FOR THE 3-HOUR AVERAGING PERIOD
VESTVACO (1987/1981)

1 1 1 1 4											
VARIANCE COMPARISON (OBS/PREJ)	.531	.151	.312	+203	က (၈) (၈)	.395	• (83	5.187	.267	1.515	3.597
DIFFERENCE OF AVERAGES. (OBS-PRED)	-2432 (-2730, -2283)	1957	-748	-1006	-961	-593	-2283	-473	-1001	99-	4
AVERAGE PREDICTED VALUE	E & D P	1666	1287	1513	1538	1314	2064	0.51	1538	228	189
AVFRAGE 03%ERVED V^LUE	1088	708	131 538	500	676	72.	681	476	536	163	184
DATA SETS	פרר	STATION	STATION S	STATION 4	STATION 5	STATION C	STATION 7	STATION "	STATION	STATION 17	STATION 11

COMPARISON OF 25 HIGHEST OBSERVED AND PREDICTED SOZ CONCENTRATION VALUES (UG/M+*3)
(UNPAIRED IN TIME CR LOCATION)
FOR VARIOUS DATA SETS
HODEL: SHORTZ
FOR THE 3-HOUR AVERASING PERIOD
WESTVACO (1987/1981)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
VAPIANCE COMFARISON (OES/PRED)	.045 (.020, .164)	. 041	1.739	.010	• 024	425.	• 0 4 3	•310	• 395	ai 40.•	.570	4 - 7 4 4
DIFFERENCE OF AVERAGES. (035-PRED)	-5202	-374R	មា ៖	-2459	-1959	-411	-4230	-57€	-12	69-	T-0-1	a a
AVEPAGE PREDICTED VALUF	6.36	4513	171	3679	2583	1129	5.19	1890	æ ት መ	249	552	112
AVFRAGE 98°cRVED V^LUE	1127	761	165	612	615	717	788	718	526	57R	204	203
DATA SETS	ALL	STATION	STATION 2	STATION 3	STATION 4	STATION	STATION	7 NOTIFICAL	a NOLIGIE	C NOTIFIES	STATION	STATION 11

COMPARITON OF 26 HIGHEST OPSERVED AND PREDICTED SAC CONCENTRATION VALUES (US/M+*3)
(UNPAIRED IN TIME OR LOCATION)
FOR THE 24-HOUR AVERASING PERIOD WESTVACO (1985/1981)

<u>_</u> #	; ; ; ; ;						
MAXIAUM FREGUENCY DIFFERENCE	1.03	1.00	1.03	• 585 • 585)	1.03	1.63	1.03
VARIANCE COMPARISON (OBS/PRED)	.003 .017)	.002 (.001984)	.024 (.011, .255)	57 • 143 32• 92) (•353••324)	.001 (.000, .002)	.368 (.003918)	.025 (.611, .057)
WEDIAN DIFFERENCE* (OBS-PRED)	-272R (-2886, -2574)	-3504 (-4221, -3306)	-382 (-443, -317)	57 (32, 92)	-730 (-892, -559)	-1231 (-1393, -887)	-1033 -1175, -391) (-1150, -824) (.611, .057)
DIFFERENCE OF AVERASES* (OSS-PRED)	-29E3 (-3141+ -2524)	-4127 (-4667, -3587)	-50r (-644, -357)	23 (-37, 83)	-1357	-122° (-1480, -978)	-1033 (-1175+ -891)
AVERAGE PREJICTED VALUE	1	4482	855	331	1712	1584	1388
AVERAGE OBSERVED VALUE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	354	354	354	354	354	354
MODEL	COMPLEXI	COMPLEXII	4141	RTD4	PLUMES	COMPLEX/PFM	SH0312

* 93 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPANISON OF 25 HIGHEST DBYERVED AND PREDICTED SOC CONCENTRATION VALUES (UG/M++3) (UNPAIFFD IN TIME OR LOCATION) FOR VARIOUS DATA SETS MCDEL: COMPLEXI FOR THE 24-HOUR AVENASING PERIOD VESTVACO (1981/1981)

	22.010.028 .028 .028 .021 .039 .012 .059 .059
-2883 (-3141, -2624)	-2155 -1314 -1314 -2422 -2541 -292 -155 -35
3238	23 11 23 25 25 25 25 25 25 25 25 25 25 25 25 25
4 S S	201 172 4 155 2 155 2 133 2 65 8 65 8
B L L	STATION 3 STATION 3 STATION 5 STATION 6 STATION 7 STATION 7 STATION 3 STATION 1
	3238 -2843 (-3141• -2624) (

.002 (.061, .034) COMPARISON (OES/PRED) VARIANCE -4667, -3587) DIFFERENCE OF AVERAGES* (OBS-PRED) -4127 COMPARISON OF 25 HIGHEST CBGENVED AND PREDICTED SOC CONCENTRATION VALUES (UG/M++3) (UNPATRED IN TIME OR LOCATION) FOF VARIOUS DATA SETS MGDEL: COMPLEXII FOR THE 24-HOUR AVERASING PERIDD WESTVACO (1987/1951) AVERAGE PRECICTED VALUE 4482 AVFKAGE OBSERVED VALUE 354 201 63 1172 1156 1169 1152 1137 1138 651 こうろみに らてみロ DATA SETS STATION STATION STATION STATION STATION STATION STATION STATION STATION

ALL

COMPARISON OF 25 HIGHEST ORSERVED AND PREDICTED SOP CONCENTRATION VALUES (US/M**3) (UNPAIRED IN TIME OR LOCATION) FOR VARIOUS DATA SETS MCDEL: COMPLEX/PFM FOR THE 24-HOUR AVERASING PERIOD WESTVACO (1987/1981)

1 1 1 1 1 1 1 1 1			
VARIANCE COMPARISON (OBS/PRED)	.008 (.033, .918)		.279 .934 1.289
DIFFERENCE OF AVERAGES* (03S-PRED)	-1229	6 1 1 1 1 1 6 4 6 6 8 8 5 7 8 5 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	313
AVERAGE PREDICTED VALUF	1584	710 14 267 237 273 1745 152	108 555 37
AVFRAGE OBSERVED VALUE	354	201 172 172 156 158 152	138 55 67
	ALL	STATION 1 STATION 2 STATION 3 STATION 4 STATION 6 STATION 6 STATION 6	STATION 9 STATION 1

COMPTRISON OF 25 HIGHEST GESERVED AND PREDICTED	SO2 CONCENTRATION VALUES (US/M++3)	(UNPAIRED IN TIME OR LOCATION)	FOR VARIOUS DATA SETS	MODEL: 4141	FOR THE 24-HOUR AVERAGING PERIOD	WEST VACO (1987/1981)	
a WO							

VARIANCE COMPARISON (OBS/PRED)	.024 (.011, .055)	.214	43.534	189-567	•314	040	.215	• 114	• 055	.015	38-465	59.597
DIFFERENCE OF AVERAGES* (ORS-PRED)	-500	-208	29	156	-16	-264	-3	-143	₽ 4	-275	93	ያ ይ
AVERAGE PREDICTED VALUF	1 1 1 1 1 1 1 1 1 1 1	410	~	16	174	274	285	595	46	かかり	1	σ
AVFNAGE ORSERVED VALUE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	201	٤9	172	156	169	282	152	137	138	99	5.7
DATA SETS	ALL	STATION 1	STATION 2	STATION	STATION	STATION	STATION 6	7 NGITATS	STATION	C NOTITE	STATION	STATION 11

COMPARISON OF 25 HIGHEST OBSERVED AND PREDICTED SO? CONCENTRATION VALUES (US/M**3)
(UNPAIRE) IN TIME OR LOCATION)
FOF VARIOUS DATA SETS
MODEL: PLUME5
FOR THE 24-HOUR AVEPASING PERIOD
WESTVACO (1987/1981)

VARIANCE COMPARISON (OES/PRED)	.601 (.000 .002)	. 117	4.006	.095	.159	.037	.001	.628	.911	.311	1.605	162.463
DIFFERENCE OF AVERAGES* (ORS-PRED)	-1357	-516	56	02-	62	-15	-1008	25	16	7.7	41	62
ERAG Dict Alue	1712	719	ť	193	129	184	1296	127	0.4	61	2 5	IO
AVFKAGE OBSCRVED VALUE	354	261	63	172	156	169	282	152	137	138	99	19
DATA SETS	VFF	STATION	STATION	STATION	STATION 4	STATION	STATION	STATION 7	S NOTATE	STATION	STATION 1	STATION 11
	; ; ; ; ;						_	•	21	•		

	VARIANCE COMPARISON (OPS/PRED)	.002 .004 .0048 .055 .049 .016 .001 .001 .165
ND PREDICTED M**3) ION) ERIOD	DIFFERENCE OF AVERAGES. (OBS-PRED)	-1733 (-2111,-1355) -501 -577 -477 -1142 -133 -1144 -584 -584
COMPARISON OF 25 HIGHEST DEGRAVED AND PREDICTED SO2 CONCENTRATION VALUES (US/M**3) (UDAIRED IN TIME OR LOCATION) FOR VARIOUS DATA SETS MCDEL: RTDM FOR THE 24-HOUR AVEPAGING PERIOD WESTVACO (1980/1981)	AVERAGE PRFDICTED VALUS	2.80 6.39 1.15 6.33 4.05 1.296 1.14 99
COMPARISON OF 25 CONCEN CUNPAIR FOR MC FOR THE	AVFRAGE OBSERVED VALUE	345 192 167 163 163 124 129 63
	DATA SETS	STATION 1 STATION 2 STATION 2 STATION 4 STATION 6 STATION 5 STATION 7 STATION 1 STATION 1

COMPARISON OF 25 HIGHEST OPFERVED AND PREDICTED SOC CONCENTRATION VALUES (UC/M++3)
(UNPAIRED IN TIME OP LOCATION)
FOR VARICUS DATA SETS
MODEL: SHORTZ
FOR THE 24-HOUR AVERASING PERIOD
WESTVACO (1987/1981)

.011, .057)	. 655 . 511 . 650 . 650) H C	.151 1.259 1.197 .572 4.086
-1033 (-1175, -691)	731	6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
1388	4 F O 4	1195	 ከ ፍ ው ብ ይ ਜ እ ው ድ ©
354	291	155 169 282	152 137 138 65 67
ÄLL	STATION 1 STATION 2 STATION 3	STATION 5 STATION 5 STATION 6	STATION 7 STATION 9 STATION 9 STATION 12 STATION 11
	354 1368 -1033 (-1175, -F91) (ALL 354 1358 -1033 (-1175, -591) (STATION 1 577 57 577 578 577 578 5787 5787 5787	ALL . 354 1358 -1033 (-1175, -691)

COMPARISON OF HIGHEST ORSERVED AND PREDICTED SHO CONCENTRATION VALJES (U3/M**3) PAIRED BY STATION FOR THE 1 HOUR AVERASING PERIOD WESTVACO (1981/1981)

COMPLEX/PFM 11 1959 -12032 .30 9996 15351 12033 .82 .89 (-18747, -5317) (6945,1754?)	PLUMES 11 1459 -PA79 .18 8141 11820 9123 .76 .75	RTDM 11 1059 -561 ,45 1327 1428 1105 ,75 ,68 (927, 232°) (-1552, 230)	4141 11 1859 -5513 •36 7204 8879 6155 •54 •49 (5684•12543)	COMPLEXII 11 1859 -23P51 .18 176F0 29164 24193 .85 .74 .302 (-35674,-12028) (12297,369Bf) (25164 24193	1 11	VFRAGE AV SERVED DIFF VALUE	AVERAGE AVERAGE FRACTION STANDARD ROOT MEAN AVERAGE PEARSON SPEARWAN SAURE CORR. OBSLRVED OIFFERENCE* FOSTITUE OF SERVINGE CORR. OBSLAVED PESTODIALS RESIDUALS (DBS)PRED) 1859 -8939 1859 (-1955, -3526) 1859 (-1955, -27) 1859 (-1955, -2301) 1859 (-1554, -2028) 1859 (-1554, -2028) 1859 (-1955, -2381) 1859 (-1955, -2381) 1859 (-1955, -2381) 1859 (-1955, -2381) 1859 (-1955, -2381) 1859 (-1955, -2381) 1859 (-1955, -2381) 1859 (-1956, -2381) 1859 (-1956, -2381) 1859 (-1956, -2381) 1859 (-1956, -2381) 1859 (-1956, -2381) 1859 (-1956, -2381) 1859 (-1956, -2381) 1859 (-1956, -2381) 1859 (-1956, -2381) 1859 (-1956, -2381) 1850 (-1956,
---	--	---	--	--	------	-----------------------------------	---

* 95 PEPCENT CONFIDENCE INTERVAL IN PARENTHERES

COMPARISON OF HIS HEST ORSERVED AND PREDICTED SAZ CONCENTRATION VALUES (UG/M**3) PAIRED BY STATION FOR THE 3 HOJR AVERAGING PERIOD WESTVACO (1487/1951)

‡ 3							
VARIANCE COMPARISON* (03S>PRED)	.003 (.032, .034)	*503 (*(31+ *913)	- 6204 - 6259 + 1	*44% (*113*1.54%)	.983	.013	.035333)
SPEAP4AN CORR.	56	.63.	• 7 •	£7.	. 11.	ř.c.	и) Ф
PEARSON CORR. COEFF.	• 72	92.	.73	. 81	.73	19•	• 45
AVERAGE ASSOLUTE RESTOUAL	5482	11120	289K	401	ទ្ធពិធី	48.64	2401
SOUA AE BRADA	8336	14159	3915	7 6 7	1111	6249	4362
STANDARD DEVIATION* OF RESIDUALS	5553 (3887, 9763)	9340 6525,15391)	3165 2211+ 5454)	513 359• 9(1)	5534 3867+ 9712)	460((3214, 8973)	3562 2483+ 5251)
FRACTION OF POSITIVE FESIDUALS (03SSPRED)	.27	.18	•36	\$2.	£ 23 •	00.	• 1 A
AVERAGE DIFFERENCE+	-6391 (-10128, -2553)	-11006 (-17221, -4732)	-2495	-64 -409, 280)	-4564 (-85821147)	-4863 (-7953, -1773)	-2726 (-51294 -343)
AVERAGE OBSERVED VALUE	1229	1229	1229	1229	1229	1229	1229
VJABER OF DATA PAIRS	11	11	:	11	11	11	11
13 0 CM	×	COMFLEXII	4141	H GT M	FLUMES	COMPLEX/PFM	SH0R12

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHFYES

COMPARISON OF HIGHEST OPSERVED AND PREDICTED SOUR CONCENTRATION VALUES (US/***3)
PAIRED BY STATION FOR THE 24 HOUR AVERAGING PERIOD WESTVACO (1981/1981)

CONDUCT (03 SVI SCO)	57	.303 (.631) .510)	.24u (-011; .147)	.530 (.639,1.227)	*u93 (*C21* *912)	.315 (.f.44 .(51)	.)23 (*63% •174)
00000000000000000000000000000000000000	თ თ. •	ब्र क्य	- 45	.72	φ 4	φ 4	κ. ας •
CORRS	€ 0°	11.	C 4	• 7 4	• (4)	P.1	• 75
AVERAGE ANSOLUTE RESIDUAL	1453	2442	575	139	1334	750	355
CC CCC TUCA TRRCA TRRCA TRRCA	2015	3456	754	166	2521	1245	851
STANDARD DEVIATION*	1542 (1050, 2636)	2505 (1821• 4574)	659 460• 1154)	15° 117• 294)	2432 (1679, 4216)	973 5:4, 1717)	731 511. 1247)
FACTION OF PASITIVE PESIDUALS (09S>PREE)	.18	• 18	\$ 3.5	•73	• 36	69.	•36
AVERAGE DIFFERENCE*	-1416	-2401 (-41524 -650)	-455 -677• 5)	7 -105. 113)	-1272 -2886, 341)	-423 -1481+ -155)	-5f4 -995, -15)
AVERAGE OBSERVED VALUE	517	317	517	117	117	113	517
2018 13 10 10 10 10 10 10 10 10 10 10 10 10 10	1.1	11	11	11	11	11	11
N005L	COMPLEXI	COMPLEXII	1 † 1 † B-	至 6 - 27	FLUMES	COMPLEX/3FM	SHJRIZ

* 95 PERCENT CONFIDENCE INTERVAL IN PARTNIHERER

COMPAPISON OF SECOND 415HEST
ORSERVED AND PREDICTED
SOZ CONCENTRATION VALUES (US/M**3)
PAIRED BY STATION FOR THE 1 HOUR AVERASING PERIOD
WESTVACO (1986/1981)

MODEL	L NJMRER OF JATA PAIRS	AVERAGE OBSERVED VALUE	R AVERAGE AVERAGE OBSERVED DIFFERENCE*	FRACTION OF POSITIVE PESIDUALS (OBSYPRED)	STANDARD DEVIATION* OF RESIDUALS	ROOT MEAN SQUARE ERROR	AVERAGE ABSOLUTE RESIDUAL	PEARSON CORR. COEFF.	SPEAR4AN CORR• COEFF•	VARIANCE COMPARISON• (03S>PRED)
C OMPLEX I	11	1617	11 1617	.27	7053 (4935412395)	10489	8156	• 15	ω 	.303
COMPLEX II	11	1617	-21317 (-31857,-10776)	• 18	15691 (10964,27536)	26044	21440	€ •	928	.002 (.0011 .037)
1 7 8 B	11	1617	-4928 (-9125, -731)	• 36	6248 (4366,10365)	7732	5430	• 54	65*	•U12 (•0)3• •945)
₹ □ □ □ 2 1		1417	-450 (-1150, 250)	•55	1043 729+ 1930)	1092	918	• 75	.55	*245 (*(655* *912)
PLUMES	11	1617	-7082 (-11279, -2885)	.18	6248 4365 ₄ 19964)	9255	7191	• 19	• 10	•312 (•8039 •693)
COMPLEX/PFM	11	1617	-8250 (-12262, -4239)	00.	5971 4172,1047°)	10025	R251	. 82	• 58	.012 [.633046)
SHORIZ	11	1617	-5830 (-10667, -933)	60*	7200 5031,1253£)	1006	5964	٠ دن •	• 55	.103 (.813, .833)

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPARISON OF SECOND HIGHEST OBSERVED AND PREDICTED STOLCHCENTRATION VALUES (US/M**3)
PAIRED BY STATION FOR THE 2 HOUR AVERAGING PERIOD WESTVACO (1980/1981)

V4313N2E C)4P43159V* (0355P3ED)	.904 (.032+ .32A)	. ue3	.039 (.011146)	.435 (-133,1.844)	.014 (.004, .054)	•017 (•135• •655)	.331 (.036114)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 72	•76	• 71	16.	£8.	, 57	, 4 L.
PEARSOCORR.	• 73	•15	• 668	63 80 •	•71	15.	• 6 1
AVERAGE ABSOLUTE RESIDUAL	5833	10073	2150	345	3032	4565	2177
A SOUTH SOUT	7778	13179	2839	α΄ 	4722	5126	8289
STANDARD DEVIATION* OF RESTDUALS	5485 3833, 9526)	9019 (6301•15º27)	2255 1577• 396U)	425 297• 745)	3883 2713, 6914)	3533 2469 ₁ 6201)	2619 1830, 4597)
FRACTION OF POSITIVE PESIDUALS (OBSYPRED)	• 1 R	•18	.36	\$0 •	.27	60.	۵ •
MODEL NUMBER AVERAGE AVERAGE OF ORSERVED DIFFERENCE* DATA VALUE PAIRS	-5756 (-9441, -2071)	-9987 (-16345, -3928)	-1851 (-3367, -335)	47 (-238, 332)	-2930 (-55384 -322)	-7862 (-6236, -1489)	-2139 (-3899, -379)
AVFRAGE ORSERVED VALUE	θύε	6 8 8	190	066	ປິຣິບ	060	€ b c
04 04 05 05 05 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05	11	11	11	11	F1 F1	11	11
M 3 D 5 L	COMPLEXI	LOMPLEXII	B-	-29	PLUMES	COMPLEX /PFM	(H)R1Z

95 PERCINI CONFIDENCE INTERNAL IN PARENTHINES

COMPARISON OF SECOND HISHEST OPSERVED AND FREDICTED SOC CONCENTRATION VALUES (JG/M**3) PAIRED BY STATION FOR THE 29 HOUR AVERAGING PERIOD UESTVACO (1980/1981)

MODEL	NJMRER OF DATA PAIRS	A VFRAGE OBSERVED VALUE	A VERA DIFFERE	! ! ! * ! !!!	FRACTION OF POSITIVE PESIDUALS (GESSPRED)	STANDARD DEVIATION* OF OF RESIDUALS	AOOT MEAN SOUARE ERROR	AVERAGE A3SOLUTE RESIDUAL	PEARSON CORR. COEFF.	SPEARMAN CORR. COEFF.	VERIANCE COMPARISON*	
COMPLEXI	11	256	-1275 (-21479 -328	-325)	.18	1357 948, 2382)	1790	1252	.87	06.	.005 .005 .032, .024)	
COMPLEX 11	11	256	-1891	-445)	• 18	2152 (1564, 3777)	2791	1921	ح س	• 92	.003 (.011, .010)	
4141	11	255	-238	19)	•36	384 268 ₉ 674)	437	350	. 44	ю ю	.075 (.026, .279)	
RTDM	11	255	36 -194	96)	. 82	87 61, 152)	91	74	• 85	• B 5	.529 (.112,1.958)	
PLUMES	11	952	-635 (-1383•	112)	•35	1114 778, 1955)	1238	580	•73	6.69	•009 (•013• •035)	
COMPLEX/PFM	11	256	-578	-37)	•27	805 563• 1915)	963	591	•78	66 66 •	.017 (.035+ .053)	
SH0R12	11	256	-366 (-743•	10)	. 35	562 392• 98£)	6 a e	60%	€ a •	•91	*332 (*939* *118)	

* 95 PERCENT CONFIDENCE INTERVAL IN PARESTHFRES

C) ADAISON OF HIGHEST COSFRUED AND PREDICTED SOC CONCENTRATION VALUES (US/Y**5)
EVENI-FY-EVENI (PRIFED IN TIME)
FOR THE 1-F-UR AVERASING PERIOF WESTVACO (176(71991)

; ; ; ; ;								
PAXIMUM FREQUENCY DIFFERENCE	.773	•784 (•)23)	.345 (.223)	.515	. 453 (. 523)	.317	.322)	
	•	•	•	_	•	2	•	
STANDARD JEVIATION* OF RESIDUALS	3012, 3112)	5-73 4992, 5158)	963 947• 973)	332 3264 337)	1354 1333, 1376)	1369 1347, 1392)	1297 1277• 1317)	
S 0 JE 0 PF	30	64	6	₩ •	(13	(13	(12	
AVERASE DIPTEMEVOF* (03S-PRED)	-247	-1237 (-1441, -1033)	-73, 11)	59 46• 72)	-153 -213, -94)	-125, -51	-355 -415, -315)	
Q		•	-	J	Č	-	Č	
AVERA3E 09 SERVED VALUE	154 1	1. 10.	155	150	152	155	143	
NUMBER OF EVENTS	7173	7163	7132	7411	7305	7102	7785	
						5		
4005L	COMPLEXI	COMP_EXII	4141	RTCH	PLUMES	CONPLEX/PFM	SHORI2	
•	. J	U	4	αr	ŭ.	J	V)	

* 43 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPAPISON OF PISHEST DASFRYED AND PREDICTED SHOW CONCENTRATION VALUES (US/M++3)

EVENT-BY-EVENT (PAIFED IN TIME)

FOR THE 3-HOUR AVERAGIUS PEPIOD

WESTVACO (1787/1991)

FAEDJENDY DIFFERENCE	. 573 (, 159)	.715 (.0339)	• 743 (• 333)	. + ± 3 (.381 (.)33)	. 152	• 275 (• 339)
STAMPARD DEVIATION* OF PESIDUALS	2362 (2298• 2431)	3475 (3340, 3575)	625 (638, 644)	235	1029 (1011, 1059)	987	912 (¤78, 927)
AVERASE DIFFERENCE* (038-FRED)	-838 (-1005, -670)	-1677	-25 (-69, 17)	53 (73, 67)	-137 (-215, -50)	-55 (-113, 2)	-335 (-388, -281)
AVFRA3E OBSERVED VALUE	139	140	140	135	æ ₩:	140	131
NUMRER OF EVFNIS	5445	545à	2415	2514	2477	2415	2612
*GDE	C04P_EXI	CO 1PLEXII	4141	ሌ ድር	PLUMES	COMPLEX/PFM	SHORTZ

* 95 PERCENT CONFIDENCE INTERVAL IN PARGUTHESES

COMPARTION OF HIGHEST DESERVED PROPRETICED SOC CURCENTRATION VALUES (US/M**5)
EVENT-FY-EVENT (PAIRED IN TIME)
FOR THE PA-LUM AVENDING PERIOD WESTVACO (1987/1981)

MAXINGM FREQUENCY DIFFERENCE	.465 (.101)	.111	. +55	, 5 ± 7 (, 1 f 1)	.255	.519 (.151)	.173
STANDARD DEVIATION* OF RESIDUALS	949 485, 1623)	1320 1231, 1425)	225 239• 242)	96 33, 104)	574 536• 62))	357 425)	355 337)
AVERASE DIFFERSUCF* (OBS-PRED)	-5fJ	-725 -581) (-52, 19)	37 50) (-99 (-162, -35) (-32 17)	-255 (-3ú0, -210) (
AVERASE Observed Value	35	80 81	ф Ф	თ თ	G ' 5	n, gr	86 6
ND EV	363	36.	363	355	36 5	3 6 2	36.5
,	COMPLEXI	COAPLEXII	1 7 1 7	RTDM	PLUNES	COMPLEX/PFM	SHORT 2

* 35 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPACISON OF ALL OBSSENED AND PREDICTED SPE CONCENTRATION VALUES (UG/44.43)
PAIRED IN TIME AND LOCATION
FOR THE 1-HOUR AVERAGING PERIOD SUMMARY TABLE (FART 1)
WESTVACO (1980/1981)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUMMER OF EVELTS	AVERNED ORSERVED VALUE	4VERAGE 01FFEQEWCE* (08S-PRE0)	STANDARD DEVIATION* OF RESIDUALS	FREUDENCE STEFFERENCE	
COMP.EXI	30704		-227 (-252, -192)	1719	*****	! ! !
CONFLEXII	35682	ī. C	-241	2515, 2505)	******	
4141	30658	ę 6	42 (35. 50)	535 540)		
ктрм	35298	O O	55 (51• 54)	212 (210, 214)		
5 T UM 2 5	31505	£6	14 (1 26)	575 (671• 681)	******	
COMPLEX/PFM	36465	ē.	31 (21, 43)	753 (757 , 733)	******	
SH 2R 12	34879	ক এ	-22	671 (685, 595)	*****	

* 95 PERCENT CONFIDENCE INTERVAL I'S MARENTHESES

COMPARISON OF ALL OBSERVED AND PREDICTED SOC CONCENTRATION VALUES (U3/W**3)
PAIRED IN TIME AND LOCATION
FOR THE 1-HOUR AVERASING PERIOD SUMMARY TABLE (PART 2)
WESTVACO (1987/1981)

VARIANCE COMPARISON+ (OSS/PRED)	, 637, 9343)	\$40° (46° \$893°)	(565773.)	444° (9 <u>7</u> 66° (75 7°)	.251 (.047, .356)	(05r • 14) •)	. (45 (41, 922)
SPEARMAN CORRELATION COEFFICIENT	.115	• 115	395	-• :) 0 4	• 159	.151	- 1 × 8
PEARSON CORRELATION COEFFICIENT	• 008	.015	• 633	• 079	• 851	•) Ca	• 046
AVERAGE AMSOLUTE RESIDUAL	9) 4	491	138	102	145] =]	9) ?
ROOT MEAU SOUART ERROR	1724	7,950	755	219	576	7*3	9 b 5
FRACTION OF POSITIVE RESIDUALS (ORS>PRED)	• 95	• 95	• 95	. 8.7	.87	96•	• 7 u
MODEL	CO APLEXI	COMPLEXII	4141	RTDM	PUMES	C34PLFX/PFM	S19CHS

* 35 PERCTUT CONFIDENCE INTERVAL IN PARENTHESTS

STANDARD PEVIATION OF RESIDUALS	0	2610	44	1983	1742	860	3012	986	283	495	129	45	; ; ; ; ; ; ; ; ; ;			44	77	2.5	#	•			7	56
AVERASE DIFFERENCE (ORS-PRED)	-227	-589	51	-302	-209	941	866+	9-	ចាភ	32	16	5	r 1			-168	-359	٦٥٠-	: ::::::::::::::::::::::::::::::::::::	Š	4.4	3 *	Úr 8 1	د. 0 م ا
AVERAGE OBSERVED VALUE	υ , ο , ο , ο , ο , ο , ο , ο , ο , ο ,	112		76	104	7 6	161	106	7.1	385	, 1 00	56				135	8 o	7.			96	2 AT	۵۵	125
NUMBER OF EVFNTS	807.8	3772	7.52	×155	2423	756R	1864	2344	2840	2411	4.4.5.0	2766	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NOILI		9,26	15227	7451			F867	14621	3431	6285
DATA SET	ארר		C NOTIFIC									STATION 11		METEOROLOGICAL CONDITION	1. WIND SPEED	S/* 7.0 >	2.5 TO F. M/S				•			CLASS F
1 † † 1 	1 												1											

COMPARISON OF ALL OBSERVED AND PREDICTED SOZ CONCENTRATION VALUES (UG/M+*3)
PAIRE IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MCDEL: COMPLEYII
FOR THE 1-HOUR AVERAGING PERIOD WESTVACO (1987/1981)

STANDARD DEVIATION OF RESIDUALS	2535 4072 644 2669 1369 4477 1642 619 804 239 45	ଅବନ ଅକ୍ର	11 11 59 59
AVERAGE PIFFRENCE (0%S-PRED)	24 252 1213 1229 123 55 55 55	-187 -371 -34	ר ר 80 40 מ ת מ 40 ב ר ר ר ב
AVERAGE OBSERVED VALJE	112 9 4 9 9 4 7 7 9 9 4 7 7 9 9 8 7 7 9 8 7 8 8) & (6 9 7 7	۲ = ۱ , ۲ ۵ : ۵ : ۵ : ۳
NJMUER PEVFNTS	1 3 FNH+10 00 00 4 NF 1	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 5 3 3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
 	100 N N N N N N N N N N N N N N N N N N	FOLDSICAL C ND SPEED 2.5 M/S .5 TO 5. M/	2. STABILITY GROUP CLASS 1. P & C CLASS P CLASS F CLASS F

CUMPARISON OF ALL OBSERVED AND PREDICTED SO2 CONCENTRATION VALUES (UG/M**3)
PAIRED IN TIME ANT LOCATION (FOR VARIOUS DATA SETS)
HODEL: COMPLEX/FFY
FOR THE 1*HOUR AVERATING FERIOD WE STVACO (1387/1981)

DATA SET	NJMBER NJF EVENTS		AVERAGE DIFFERENCE (09S-P9ED)	STANDARD FFVIATION OF RESIDUALS	
	37465	95	31	733	
	₹ 9 99	11.7	-13	1.54	
	2545	()	æ (76	
	3109	16	Oi t	56.8	
	2413	104	1 o	70.7	
	4752	8.97	55-	121.9	
	2346	105	61	654	
	2836	3.1	10 10	8.45	
	2418	ئ	ንጽ	247	
	7264	55	ю М	116	
	7817	55.5	4	67	
• • • • • • • • • • • • • • • • • • •			. 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	, 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	† † † † † † † † † † † † † † † † † † †
METEOROLOGICAL CONDITION	>				
WINE SPEED	α - α	ŭ 0	7.6	ю	
S/ N.	10801		21	27	
	7449	75	5.7	16	
1	8 † } 8 8 8 9			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
GROUP	c P	Ċ	4	<u>,</u>	
د	14895	م می	÷ 49	25	
	1,273	70 .	1 23 1	5.5 R ×	
	1777	101	r I	n n	

CUMPARISON OF ALL OBSERVED AND PREDICTED SOZ CONCENTRATION VALUES (U3/M**3)
PAIRED IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MCDEL: 4141
FOR THE 1-HOUR AVERAGING PERIOD VESTVACO (1980/1981)

STANDARD DEVIATION DF RESIDUALS	0 1 14880 8 844870 10 4481862	6 4 4 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	25 24 13	11 11 20 73
AVERAGE DJFFERENCE (ORS-PRED)	4 N Q N H O C S 4 H H S C C S F	7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	78 18 54	87 84 -14
AVERAGE OBSERVED VALUE	99 111 169 199 199	10 F 7 P 5 P 5 P	13,	99 99 101
2 W	8 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	44477	7997 15183 7478	13621 13621 1448
DATA SET	ALL STATION 1 STATION 2 STATION 4 STATION 5 STATION 5	STATION 7 STATION 8 STATION 9 STATION 19 STATION 11 STATION 11	1. WIND SPFFD < 2.5 W/S 2.5 TO 5. M/S > 6. M/C	2. STAPILITY GROUP CLASS A. B. 8. C CLASS F CLASS F CLASS F

CUMPARISCN OF ALL OBSERVED AND PREDICTED SOP CONCENTRATION VALUES (UG/Y**3)
PAIRED IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MODEL: PLUMES
FOR THE 1-HOUR AVEPAGING PERIOD WE STVACO (1940/1981)

											! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !									
STANDARD DEVINTION OF RESIDUALS	678	10 G	43	865 Y	1252	698 	7-2	2923	T 4	1	• • • • • • • • • • • • • • • • • • •		2.2	. P. C	27		ć	200	n *	18
AVERAGE DIFFERENCF (ORS-PRED)	14	-56	.: C 49	55	-155	72	υL	6.4	<. i	د د	, , , , , , , , , , , , , , , , , , ,		13	- α α •-	94-		•	a t	181	31 1f3
AVERAGF ORSERVED VALUE	56	106	. 6	101	140	105	7.0	ls •	50	56			501	- C Q	- a - 9			0.0	m '	127
NUMBER OF SVTNTS	31205	u 26%	7245 3241	2491	4231	7367	7453	1429	2320	3976	! ! ! ! ! !	TION	***	7	7635	; ; ; ; ; ; ; ; ; ; ; ;		F 0 91	15470	*421 4488
Data SET	ALL	STATION 1	STATION 2 STATION 3	STATION	STATION S	STATION 7	STATION 8	STATION 9	STATION 10	STATION 11		METEOROLOGICAL CONDITION	1. WIND SPEED		5.0 10 10 10 10 10 10 10 10 10 10 10 10 10		2. STAPILITY GROUP	CLASS A+ P & C	CLASS D	CLASS 7 CLASS 7
	; ; ; ; ; ; ;										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									

CUMPARISON OF ALL OBSERVED AND PREDICTED SO2 CONCENTRATION VALUES (UG/***3) FAIREC IN TIME ANE LOCATION	M AVERAG 1987/1
---	-----------------------

0 0 0 0 1 1 1 1 1								
STANDARD DEVIATION OF RESIDUALS		ቁ ፍር ል	ኤ ቀ ቁ ይ የ የ የ የ	333 706 782	ድ ቁ ል ል ይ ል ል ይ ል		222	21 118 119
AVERAGE DIFFERENCE (ORS-PRED)	-82	0 8 0 1	-86 -165 -108	-16 -211 -100	-116 -4 11		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-125 -552 -165
AVERAGE OBSERVFD VÆLUE	99	M) (©∪ ਵ ਾ	77 64 67	122 61 52	ひめ 4 . C. ト (વ ત હ છે છે	ស្តែ ជា មិន ស្តេច មិន ស្តេច មិន
3 C L	30,028	4503 2452	1535 1271 1179	4572 3599 833	7514 2753 7219	NOI	732 27291 2006	7743 1685 A29 0,44
DATA SET	Atl	STATION 1 STATION 2	STATION 3 STATION 4 STATION 5		STATION 9 STATION 19 STATION 11	METEOPCLOGICAL CONDITION	1. WIN'S PEFD < 2.5 W/S 2.5 TO F. M/S > 5. M/S	PILITY ASS A. ASS D. ASS E.
	! \$ #					!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		;

CUMPARISON OF ALL ORSFRYED AND PREDICTED SO2 CONCENTRATION VALUES (US/M**3)
PAIPEE IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MODEL: SHORTZ
FOR THF 1-HOUR AVERAGING PERIOD WESTVACO (1987/1981)

STANDARD PEVIATION OF RELIDUALS	691 998 71	795 1157 1157 191 191 591 58	28 53 71	18 22 27 34
AVERAGE DIFFERENCE (OPS-PRED)	S 50 40 40 40 40 40 40 40 40 40 40 40 40 40		- 1163 - 1163 - 1163	- 1 - 1 - 1 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
AVERAGE ORSCRVFD VALUE	o bva. a k∫li	82 87 102 102 77 833 55	11. 8.	85 77 76 11
NUMBER OF EVINTS	34679 4580 9433	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ns26 17139 1914	4562 17c15 7841 7197
DATA SFT	ALL STATION 1 STATION 2	STATION S STATION 5 STATION 5 STATION 7 STATION 8 STATION 10 STATION 10 STATION 10	TEORCLOGICAL C WIND SPFED < 2.5 M/S 2.5 TO 5. M/S > 5. M/S	
				1 1 1 1 1 1 1

COMPARISON OF ALL OBSERVED AND PREDICTED SOZ CONCENTRATION VALUES (US/4**3) PAIRED IN TIME AND LOCATION FOR THE 3-HOUR AVERASING PERIOD SUMMARY TABLE (PART 1) VESTVACO (1980/1991)

2 W	NUMBER OF EVENTS	AVERAGE OBSERVED VALUE	AVERAGE DIF=E4ENCE+ (JBS-PRED)	STANDARD DEVIATION* OF RESIDUALS	MAXIMU4 FREOJENCY DIFFERENCE
	10901	ec ec	-222 (-262, -181)	1322 (1364, 1340)	.391 (.319)
	10556	6 d	-237 (-285, -188)	1806 (1782, 1831)	.385 (.019)
	10510	er. a	39 47)	359 (354, 354)	.393 (.119)
	11139	.e.	51 (47, 55)	160 (157, 162)	• 595 (• 118)
	10825	8.7	11 -5, 27)	524 (517, 531)	.745
COMPLEX/PFM	10487	g. 8.3	27 (14, 41)	529 543)	. 3399
	12096	7.9	-91 (-94, -67)	597 (501, 514)	.555 (.017)

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPANISON OF ALL OBSERVED AND PREDICTED SOC COLCERTRATION VALUES (US/N**5)
FAIRED IN TIME AND LOCATION
FOR THE 3-HOUR AVERABING PERIOD SUMMARY TABLE (PART 2)
NESTVACO (1280/1981)

VANIAVOE CONSARIACON* (ONSYFRED)	(En) * (B) *)	(Gr. + + 4, 9 +)	,112, ,156)	(760.1 4798.)	1654 1549, 1559)	943. • 053)	(656 • (66) • 1
SofiayAv CORRE_ATION CORFICIENT	.162	.106	163.	© 8% •	# & C •	•134	. 001
PEARSON CORRELATION COEFFICIENT	.313	.019	• 364	ତ ପ୍ର	6 L û •	• 0 0 3	27.
AVERAGE ABSOLUTE RESIDUAL	() ()	t, u	125	0 E	132	140	168
ROOT MEAN Square ARROR	1340	1921	361	151	524	537	514
FRACTION OF PCSITIVE RESIDUALS (ORSYRER)	• 91	-92	4.6.	• P.S	ເກ ແ •	*6	• 65
MJJEL	COMPLEXI	COMPLEXII	4141	RTDM	P_JME5	C34PLFX/PFM	2120+8

* 05 PERCENT CONFIDENCE INTERVAL 17 PARENTHESES

CUMPARISON OF ALL OBSERVED AND PREDICTED SOZ CONCENTRATION VALUES (US/M**3)
PAIREC IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MCDEL: COMPLEXI
FOR THF 3-HOUR AVEPASING PERIOD WESTVACO (1987/1981)

1 1 1 1 1 1 1 1												
STANDARD DEVIATION OF RESIDUALS	1322	1978	3,	1459	1283	747	2281	499	277	341	101	7.2
AVERAGE DIFFERENCE (OBS-PRED)	-222	-547	o o	-288	-202	-50	-870	-11	5.5	۵ <i>۵</i>	12	51
AVERAGF ORSFRVED VALUE	48	102	ŗ	F. 80	46	91	144	9 9	75	70	7 4	ል የ
NUMBER OF Evtnis		1539	137	1112	ສີລີກຸ	869	1420	194	754	621	418	£0 F
DATA SET	ALL	STATION 1	STATION 2	STATION 3	STATION 4	STATION 5	STATION 6	STATION 7	STATION P	STATION 9	STATION 1º	STATIOM 11

COMPADISON OF ALL ORSFRVED AND PREDICTED SOP CONCENTRATION VALUES (UG/M**3)
PAIPEE IN TIME AND LOCATION
(FOR VARIOUS SATA SETS)
MODEL: COMPLEXII
FOR THE 3-HOUR AVERAGING PERIOD WESTVACC (1987/1991)

STANDARD DEVIATION OF RESIDUALS	1896	2825	3.7	1794	1674	٠ ١	3221	186	392	477	159	3.7
AVERAGE DIFFERENCE (OBS-PRED)	-237	-609	6 7	-261	-201	-22	-941	- 28	k io	22	σ	5.1
AVERAGE OBSEPVED VALUE	<u>58</u>	102	ľυ (8.7	70	91	144	56	75	70	r L	54
NU"BER OF EV ^F NTS		1335	739	1113	មទភា	849	1420	195	938	623	169	905
	ALL	STATION 1	STATION ?	STATION 3	STATICY 4	STATION 5	STATION A	STATION 7	STATION P	STATION 9	STATION 16	STATIOW 11

COMPARISON OF ALL OPSERVED AND PREDICTED SOZ CONCENTRATION VALUES (UG/M**3)
PAIREN IN TIME AND LOCATION
(FOR VAPIOUS DATA SETS)
MODEL: COMPLEX/PFY
FOR THE 3-HOUR AVERAGING PERIOD WESTVACO (1987/1981)

STANDARD DEVIATION OF RESIDUALS	53.6	764	47	51.	715	451	914	391	183	215	κ. α
AVERAGE DIFFERENCE (OBS-PRED)	27	-14	94	3 A	96	*	-25	J.	61	5.2	3.0
AVEPAGE OBSERVÍD VALUE	C CC	163	6h	ထိဆ	9 6	9.1	148	36	75	عد	51
NUMBER OF EVFNTS	1 "487	1519	743	1085	647	872	1378	161	941	631	641
DATA SET	ALL	STATION 1	STATION 2	STATION 3	STATION 4	STATION 5	STATION &	STATION 7	STATION P	STATION 9	STATION 13

EQ LO

(·

۲, س)

925

COMPARISON OF ALL OBSERVED AND PREDICTED SOR CONCENTRATION VALUES (UG/M**3)
PAIRED IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MODEL: 4141
FOR THE 3-HOUR AVERAGING PERIOD WESTVACO (1987/1991)

STANDARD DEVIATION OF RESIDUALS	359	423	c S	117	279	555	285	560	282	615	. 4	3.7
AVERAGE DIFFERENCE (OPS-PRED)		5-	64	8	4 5	ור	Ç 9	21	56	7 -	51	51
AVERAGE ORSFRVFD VALUE	8	102		œ.	96	91	144	a 6	16	62	5.	54
	1.510	1546	139	1694	หรร	67.9	1425	794	939	u22	719	404
DATA SET	ALL	STATION 1	STATION 2	STATION 3	STATION 4	STATION 5	STATION 6	STATION 7	STATION P	STATION 9	STATION 13	STATION 11

CUMPARISON OF ALL OBSERVED AND PPEDICTED
SOZ CONCENTRATION VALUES (UG/M**3)
PAIREC IN TIME AND LOCATION
(FOR VARIOUS DATA SETS)
MODEL: PLUMES
FOR THE 3-HOUR AVERAGING PERIOD
WESTVACO (1981/1981)

STANDARD DEVIATION OF RESIDUALS	524	746	c M	316	252	549	966	415	139	186	51	3.5
AVERAGE DIFFERENCE (ORS-PRED)	-	-62	4	4 10	ů 9	g.	-146	99	5 3	€.	б м)	53
AVERAGF OBSERVED VALUE	87	d 6	'n	3) B	26	91	135	ა6	7 =	42	1 4	54
NUMBER OF EVFNTS	1.825	1415	139	1132	698	881	1526	មលទ	846	835	977	768
DATA SET	ALL	STATION 1	STATION 2	STATION 3	STATION 4	STATICH 5	STATION 6	STATION 7	STATION B	STATION 9	STATION 13	STATION 11

COMPARISON OF ALL OMRIRVED AND PREDICTED

SOZ CONCENTRATION VALUES (UG/M**3)

PAIRE IN TIME ANT LOCATION

(FOR VARIOUS DATA SETS)

MOPEL: PTOM

FOR THE 3-HOUR AVERASING PERIOD

WESTVACO (1987/1981)

STANDARD DEVIATION OF RESIDUALS	175	359	7.7	325	45,	493	568	131	267	379	75	6.4
AVERAGE DIFFERENCE (OSS-PRED)	-85	- 78	c.	-86	-166	-118	-17	-223	-102	-120	មា រ	Œ.
AVERAGE OBSERVED VALUE	29	31	æ	9;	5.6	9	112	a 73	D 4	بر ,	3 ዓ	. 4
NJMBER OF FVFNTS	11569	1342	716] u 6 R	986	923	1403	6401	1140	1,26	112	1 7 J
DATA SET	ALL	STATION 1	STATION 2	STATION 3	STATION 4	STATION 5	STATION &	STATION 7	STATION B	STA110% 9	STATION 1C	STATION 11

CUMPARISON OF ALL OBSERVED AND PREDICTED SO2 CONCENTRATION VALUES (UG/M**3)
PAIREE IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MODEL: SHORTZ
FOR THE 3-HOUR AVERASING PERIOD WESTVACO (1987/1981)

1 1 1 2 1 1 3 1 1												
STANDARD DEVIATION OF RESIDUALS	507	469	51	576	5 5 5	245	824	287	143	163	75	47
AVERAGE DIFFERENCE (09S-PRED)		-216	32	06-	-73	19	-350	29	5.4	4.7	۲.	38
AVERAGF OBSERVED VALUE	61	u OC	ধ ু	14	7.6	ar ar	119	76	74	76	4 7	5.
NJMBER OF EVFNTS		1658	820	1505	1058	945	1748	642	a 5 ¢	657	717	988
DATA SET	ALL	STATION 1	STATION 2	STATION 3	STATION 4	STATION 5	STATION 6	STAT10', 7	STATION 8	STATION 9	STATION 19	STATIO": 11

COMPARISON OF ALL DASFRVED AND PREDICTED AND CONCENTRATION VALUES (UG/M+4)
PAIRED IN TIME ANT LOCATION
FOR THE 24-HOUR AVERASING PERIOD SUMMARY TABLE (FART 1)
WESTVACO (1346/1931)

M07F_	VUMRER OF FVE:ITS	AVERAGE 03SERVED VALUE	AV=RAGE DIF=ERENCE* (DBS+PRED)	STANDARD DEVIATION. OF RESIDUALS	MAXIMUM FREGUEVOY DIFFERENCE
COMPLEXI	3463	1 	-75	411	* 341 (*)33)
COMPLEXII	3463	5.9	-4103, -58)	525 (513, 537)	*351 (*333)
4141	3463	59	20 (15. 24)	38 (95• 1 ^{nu)}	•353 (•333)
RIDM	3482	6,	25 (23, 27)	50 48, 51)	• ? 6 C
PLUMES	3482	39	10 17)	203 (178, 269)	•78. (585.
COMPLEX/PFM	3456	98 8	16 10, 22)	157 (154, 161)	.351 (.333)
SHURTZ	3486	68	-29	171 (167, 176)	• 5 ½ 1 • 033)

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPARISON OF ALL OBSERVED AND PREDICTED SPE CONCENTRATION VALUES (U3/M**3)
PAIRED IN TIME AND LOCATION
FOR THE 24-HOUR AVERAGING PEFIOD SUMMARY TABLE (PART 2)
WESTVACO (1980/1931)

VAXIAVCE COMPAXISON+ (OBS/PAED)	.013 .012015)	.008 .007009)	.237, .294)	1.295, 1.554)	.054 .643, .553)	860. 669.	. 854 •
; ; ; ;	_	-	~	J	~	~	Č
SPE4R4AN CORRELATION COEFFICIENT	*320	.32p	122.	\$ 4 P S	• 335	.316	100.
PSARSON CORRELATION COEFFICIENT		• 205	. 194	er ex er,	-282	.105	•32₽
AVERAGE ABSOLUTE RESIDUAL		192	4.5	EC EV	Ę	ر. 2	7.0
ROOT WEAN SGUARF ERROR	417	531	100	ភូទ	213	155	174
FRACTION OF POSITIVE RESIDUALS (OBS>PRED)	, 8 5	σ •	46 •	0 ខ៍ •	ប្រ. •	• 93	•73
	COMPLEXI	COMPLEXII	4141	RIDW	PLUMES	COMPLEX/PFM	SH0812

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPARISON OF ALL OBSERVED AND PREDICTED SOP CONCENTRATION VALUES (US/M+**)
PAIREE IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MODEL: COMPLEXI
FOR THE 24-HOUR AVEPAGING PERIOD WESTVACO (1287/1991)

STANDARD DEVIATION OF RESIDUALS	411	712	d L	478	317	200	લ છે.	160	99	ú <u>7</u>	27	ró l
AVERAGE DIFFERENCE (ORS-PRED)	-75	-277	2.1	-147	156	-11	p6 4-		23	15	σ	23
AVERAGE Observed Value	ج وي وي	57	22	5.	37	37	9.1	ш. М)	3.2	см	. 2.	54
VUMBER OF EVTNIS	7463	517	287	264	317	519	285	521	336	341	349	527
DATA SET		STATION 1	STATION 2	STATION 3	STATION 4	STATION 5	STATION 6	STATION 7	STATION A	STATION 9	STATION 10	STATION 11

CUMPARISCN OF ALL OBSERVED AND PREDICTED SOZ CONCENTRATION VALUES (US/M**3)
PAIRED IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MONEL: COMPLEYII
FOR THE 24-HOUR AVERASING PERIOD UFSTVACO (1987/1981)

STANDARD PFVIATION OF RESIDUALS	525	971	19	557	3,89	217	1167	227	9,1	167	38	19
AVERAGE DIFFERENCE (OBS-PRED)	-91	-309	21	-135	-52	۶-	-551	ю I	24	13	α	23
AVERAGF ORSERVED VALUE	0	57	22	w L	37	37	91	35	3.5	'n	2.	24
NU WEER NO PEV TNTS	3463	517	287	264	317	519	285	321	536-	541	645	327
DATA SFT	ALL	STATION 1	STATION 2	STATION 3	STATION 4	STATION 5	STATION 6	STATION 7	STATION P	STATION	STATION 19	STATION 11

CUMPARISON OF ALL OBSERVED AND PREDICTED SOL CONCENTRATION VALUES (UG/M**3)
PAIRED IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MODEL: COMPLEY/PFM
FOR THE 24-HOUR AVERASING PERIOD VESTVACO (1980/1981)

; ; ; ; ; ; ; ; ;												
STANDARD DEVIATION OF RESIDUALS	157	25.	20	162	163	100	365	75	4.7	, ru	22	21
AVERAGE DIFFERENCE (ORS-PRED)	16	-5	۶۵	23	10	2.1	-12	23	27	22	14	נמ
AVEPAGE OBSERVED VALUE	3.0	57	25	ŭ,	37	57	91	35	32	ю	25	42
NU ^M JER OF EV ^F NTS		316	187	263	316	519	582	329	335	645	349	326
DATA SET	ALL	STATION 1	STATION 2	STATION 3	STATION 4	STATION 5	STATION 6	STATION 7	STATION &	STATION 9	STATION 10	STATION 11

COMPARISON OF ALL OBSERVED AND PREDICTED SO2 CONCENTRATION VALUES (US/M+43)
PAIRED IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MODEL: 4141
FOR THE 24-HOUR AVERASING PERIOD WESTVACO (1987/1981)

STANDARD CEVIATION OF RESIDUALS	46	135	19	54	73	14 C	118	122	75	143	1.7	19
AVERAGE DIFFERENCE (OSS-PRED)	טכ	5	21	84	2.2	u	41	1.2	25	u T	19	23
AVERAGF OBSERVED VALUE	αε	57	22	. R	37	37	16	35	۲- ۲-	, K	20	54
NUMBER OF EVFNTS	1463	517	287	797	517	319	285	321	536	341	349	32.7
V 4	ALL	STATION 1	STATION 2	STATION 3	STATION 4	STATION 5	STATION 6	STATION 7	STATION 8	STATION 9	STATION 19	STATION 11

COMPAPISON OF ALL ORGERVED AND FREDICTED SOR CONCENTRATION VALUES (US/M**3)
PAIREE IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MCDEL: PLUMES
FAR THE 24-HOUR EVERAGING PERIOD WESTVACO (1987/1981)

STANDARD DEVIATION OF PESIDUALS	203	272	1.9	120	62	124	7-96	882	4 1	5 4	18	13
AVERAGE DIFFERENCE ORS-PRED) OF	€: ert	-29	21	27	25	22	06-	25	53	25	1.7	23
AVERAGE ORSERVED VALUE	39	57	22	ر 5	37	37	σ	к. К	3.5	C (N	2,	54
NUMBER OF EVTWIS	44.8	519	289	597	318	321	187	323	338	343	351	328
DATA SFT	ALL	STATION 1	STATION 2	STATION 3	STATION 4	STATION 5	STATION 6	STATION 7	STATION P	STATION 9	STATION 15	STATION 11

COMPARISON OF ALL OBSERVED AND PREDICTED SO2 CONCENTRATION VALUES (US/M**3)
PAIRED IN TIME ANT LOCATION (FOR VARIOUS DATA SETS)
MODEL: RTDM
FOR THE 24-HOUR AVERAGING PERIOD WESTVACO (1981/1981)

STANDARD DFVIATION OF RESIDUALS	251	241	4.3	241	289	271	164	513	197	592	3.7	35
AVERAGE DIFFERENCE (OBS-PRED)	ю •	-55	ю	-59	-83	0 + 1	-11	-119	-57	-57	·	a
AVERAGE OBSERVED VALUE	75	56	2،	47	ts.≀ MO	36	96	34	31	'n	41	54
NUMA OF EV ^F N	2876	25R	241	223	269	. 897	234	768	284	282	291	797
SET	ALL	STATION 1	STATION 2	STAT104 3	STATION 4	STATION 5	STATION 6	STATION 7	STATICK A	STATION 9	STATION 13	STATION 11

CUMPARISON OF ALL OBSFRVER AND PREDICTED SCOOLEMIRATION VALVES (UG/M**3)
PAIRED IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MGDEL: SHORT?
FOR THE 24-HOUR AVEPAGING PERIOD WESTVACO (1987/1991)

STANDARD DEVIATION OF RESIDUALS	171	267	20	2.5	135	7.1	343	64	۲.4	41	23	5.0
AVERAGE DIFFERENCE (09S-PRED)	-29	-137	16	-51	-21	12	-255	14	52	21	CL.	18
AVERAGE GRSFRVFD VALUE	gr. HG	. 52	22	₹U F	5.7	57	ā,	1D 10	(C)	ю.	~	54
NUMBER OF EVFWTS	1486	319	687	265	321	321	287	323	338	ال ال	352	52 A
DATA SET NUMBEI	ALL	STATION 1	STATIO' 2	STATION 3	STATION 4	STATION 5	STATION 6	STATION 7	STATION &	STATICN 9	STATION 1"	STATION 11

COMPARION OF 25 HIGHEST OBSERVED AND PREDICTED SOC CONCENTRATION VALUES (US/N**3)
(UNPAIRE) IN TIME OR LOCATION)
FOR THE 1-HOUR AVERASING FERIOD WESTVACO (1980/1991)
HOURS SELECTED FOR IMPACT MODEL RUNS

1 9 0 1 3 1								
MAXIJUM FREJUENCY DIFFERENCE	1.0J	1.00	.43 (.385)	•35 (•385)	. 883)	£4°	(842)	1.00) (.385)
VARIANCE COMPARISON (DES/PRED)	.015 (.005* .033)	.002 (.001004)	.011 (.005, .125)	.096 (.0042, .217)	•015 (•366••033)	.005 (.00212)	.005 (.003.014)	.ung (.unconl)
MEDIAN DIFFERENCE* (OBS-PRED)	-8594 (-10169, -7752)	-1 <u>8</u> 139 (-20821•-15638)	-475 (-1570, 237)	200 (-255, 559)	-2470 (-3835, -1617)	-5433 (-9785, -4617)	-4404	-4441 (-8189, -3115)
DIFFERENCE OF AVERASES* (055-PRED)	-9527 (-11043, -8212)	-18765 (-22874,-14557)	-1637	-23F (-810, 332)	-352f (-5934 ₁ -2295)	-721g (-9537, -4899)	-555a (-7813, -3498)	-16442
AVERAGE PPEDICTED VALUE	11420	27558	3430	2031	5413	9011	7448	17829
AVERAGE OBSERVED VALUE	1792	1792	1792	1792	1792	1792	1792	1756
MODEL	COMPLEXI	COMPLEXII	4141	RTD4	PLUML5	COMPLEXZPFM	SH031Z	IMPACT

* 95 PERCENT COVEILENCE INTERVAL IN PAREMIHESE'S

COMPARITON OF 25 HIGHEST ORSERVED AND FREDICTED SAP CONCENTRATION VALUES (US/Y++3) (UNPAIR/) IN TIME OR LOCATION) FOR THE 3-HOUR AVEPAGIVS PERIOD WESTVACO (1987/1991) HAJRS SELECTED FOR IMPACT MODEL RUNS

430EL	AVERAGE OBSERVED VALUE	AVERAGE PPEDICTED VALUE	DIFERENCE OF AVERAGES* (035*FRED)	MEDIAN DIFFERENCE* (OPS-PRED)	VARIANCE COMPAPISON (ORS/PRED)	MAXIJON FREGUENCY DIFFERENCE
COMPLEXI	941	5310	-4375 (-5610, -3141)	-3371 (-5253, -2634)	.015 (.007, .335)	.92 (.385)
COMPLEXII	941	7898	-5955 (-9377, -4834)	-6377 (-9133 ₄ -4796)	.005 (.632*.012)	•63 • \$45)
4141	941	1277	-534	179 150, 396)	•053 (•023• •121)	.43 (•385)
RTD4	941	934	107 +230, 445)	305 (-20, 509)	*243 (*107* *553)	-585 -585)
PLUMES	941	1868	-925 (-1918, 55)	-54 (-961, 352)	.024 (.011, .055)	(+4°)
COMPLEX/PFM	941	2871	-1929 (-3378, -479)	-132 (-2854, 431)	.011 (.005, .025)	* 4 * * * * * * * * * * * * * * * * * *
SH031Z	941	6992	-1727	-549 (-1337, -328)	.026 (.012755)	• 385.
I J b c ii	620	5693	-5770 (-10960, -580)	-1355 (-2262, -658)	.001 (.0000, .752)	•53 (• 385)

* 95 PERCENT CONFIDENCE INTERVAL TH PARENTHESES

CCMPARISON OF HIGHEST OESERVED AND FREDICTED SPC COMCENTRATION VALUES (UG/4**3) PAIRED BY STATION FOR THE 1 HOUR AVERAGING PERIOD WESTVACO (1980/1981) HOURS SELECTED FOR IMPACT MODEL RUNS

VARIANCE COMPARISOU* (CBSYPRED)	.312 (.003043)	.063 (.631^113)	.034, .059)	.233 (.054.1.343)	.025 (.035, .175)	.313 (.01304?)	.013 (.033051)	.j01 (.6j0013)
SPEARRAD CORR. COEFF.	95•	i0 •	• 50 50	• 73	959	• 54	.73	R
PEARSON COA3. COEFF.	55.	KG 40 ♦	٠ 45	ቁ ርን		• 50	• ਨ •	10
AVERAGE ABSOLUTE RESIDUAL	7317	17253	4354	26a	3380	d I é L	6015	43460
AOOT MEAN SOUARE ERAOR	10153	21994	7726	3250	6076	10505	£9 1 6	49131
STANDARD DEVIATION* OF RESIDUALS	7171 (4932,13692)	15948 (10969,29117)	6725 (4525,1227P)	1331 915, 2430)	4892 3353+ 9767)	7886 5369,14251)	6994 4811•12753)	29992 (20011,53115)
FRACTION OF POSITIVE RESIDUALS (03SYPREE)	9 6 8 9	0 2 •	04.	.70	0++	•30	.10	ე ი . -
AVERAGE DIFFERENCS*		-17123 (-28531+ -5715)	-3865 (-8676, 944)	-164 (-1116, 787)	-3138 (-5573, 295)	-7520 (-13104, -1937)	-6026 (-11 ⁿ²⁹ , -1025)	-43399 (-54259,-22583)
AVERAGE OBSLKVED VALUE		1876	1076	1076	1676	1976	9261	1 + 76
VUMBER OF DATA PAIRS	10	0.1	10	10	10	1.9	10	1.1
M3DEL	COMPLEXI	COMPLEXII	4141	втом	FLUMES	COMPLEX/2FM	SH0R12	IMPACT

* 93 PERCEUT CHETIDENCE INTERVAL IN PARENTHEMES

COMPARISON JF 4154EST
URSFRVED AND FFEDICTED
SOZ CONCENTRATION VALUES (UG/M++3)
PAIRED PY STATION FOR THE 3 HOUR AVERAGINS PFRIOD
WENTVACO (1980/1981)
HOURS SELECTED FOR IMPACT MODEL RUNS

, , ,								
VARIANCE COMPARISON* (OBSYPRED)	*315 (*694* *651)	.504 (.032, .530)	.053 (.012, .261)	.441 (.116.1.779)	.032 (-134, .127)	.017 (.034, .059)	.394 (.011, .175)	+301 +306+ +306+)
S USEAR CORRECTED STATES	9 9 •	٠ و ا	ۍ ښ •	4	.73	÷ 10	£ 5°	. 7.9
PEARSON CORR.	•37	۲ •	.51	• ©	ઈ ઋ •	• 4 1		• 73
AVERAGE ARSOLUTE RESIDUAL	3567	5388	1552	704	1702	3175	1947	23387
ADDI MEAN SOUARE ERROR	9209	១៤៩៩	3828	3114	4 j 3 4	ក ភូមិ ភូមិ	41.75	33832
STANDARD DEVIATION* OF RESIDUALS	4518	5413 4411•11768)	2343 (1515, 428F)	804 553+ 1467)	3033 2086+ 5538)	4217 2960• 7599)	2529 (1751, 9726)	16743 (11316+3556?)
FRACTION OF POSITIVE PESIDUALS (OBSYPRED)	3.0	•30	69.	. 80	คร•	04.	Ç9.	50.
€ ¥ € ₩	-3421 (-6652, -183)	-6178 (-10765, -1590)	-1674	242 (-282, 867)	-1031 (-3201# 1138)	-2684	-1562 (-3434, 259)	-23996 (-35063,-11119)
AVERAGE OBSERVED VALUE	10 1273	1273	1273	1273	1273	1273	1273	1273
7 O4		10	1.9	10	10	13	10	∰. ••••
₩ 00 130 130 130 130 130 130 130 130 130	COMPLEXI	COMPLEXII	4141 9-8	F13.	FLUMES	CO4PLEx/PF4	SH0R12	IMPACT

* 95 PEACENT CONFIDENCE INTERVAL IN PARENTHINES

CCMPARISON OF HIGHEST OPSERVED AND PPEDICTED SAC CONCENTRATION VALUES (UG/M++3)
PAIRED RY STATION FOR THE 24 HOUR AVERAGINS PERIOD WESTVACO (1987/1981)
HOURS SELECTED FOR IMPACT MODEL RUNS

VARIANCE COMPARISON* (ORSYPRED)	.311 (.033, .043)	.005 (.031, .013)	•195 (•045, •787)	.244 (.051995)	.011 (.003, .045)	.013	.028 (.037, .114)	.003
SPEAR 4A R	.79	.71	. 33	.91	• 40	. 64	दी व. •	.27
PEARSON CORR.	\$ 0. •	• 20	•16	.78	• •	• 52	• 5 •	.32
AVERAGE ABSOLUTE RESIDUAL	721	1214	235	154	532	531	4 G A	843 8
SQUARE SQUARE FROR	3245	3566	3027	3020	3195	3140	3026	4964
STANDARC DEVIATION* OF RESIDUALS	1149 799, 2997)	1764 1213, 322F)	292 201• 532)	175 126, 320)	1135 781• 29721	889 611• 152*)	673 463, 122°)	2279 (1567, 4159)
FRACTION OF POSITIVE PESIDUALS (3BS>PRED)	06*	0 4 •	.80	• 80	09.	04.	09•	00.
AVERAGE DIFFERENCE*	-626	-1989 (-2350* 172)	44 (-164, 252)	45 (-79, 170)	-257 (-1069, 554)	-357 (-1003+ 258)	-255 (-737, 225)	-3432 (-5061, -1803)
AVERAGE OBSERVED VALUE		326	326	326	326	325	326	325
NUMBER OF DATA PAIRS	1.0	10		16	10	1.3	10	·
MODEL	COMPLEXI	COMPLEXII	4141	RIDM	FLUMES	COMPLEX/PFM	SH0 R 12	IMPACT

* 93 PERCENT CONFIDENCE INTERVAL IN PARENTHMES

COMPARISON OF SECOND HISHERT OPSERVED AND PREDICTED AND CAZOUS CONCENTRATION VALUES (US/M**3)
PAIRED BY STATION FOR THE 1 HOUR AVERAGINS PERIOD RESTVACO (198//1981)
HOURS SELECTED FOR IMFACT MODEL RUNS

(038982ED)	.913 (.033, .053)	.064 (.021, .015)	(+0114 +191)	•317 (•r79,1,279)	.035 (.039147)	.611 (.033644)	.327 (.037, .167)	(*000, *75)
00000000000000000000000000000000000000	• ©	. 4.1	\$ <u>5</u> \$.37	, s	• •	• 54
PEARSON CORR.	• 50	• •	ය ග •	4.8	ко ко •	5.5	. 41	۵۰ ش
AVERAGE ASSOLUTE RESIDUAL	5873	11525	2350	332	2288	5040	6110	3 1199
ROOT YEAN SQUAPE ERROR	P 3 4 0	15274	1844	3198	4577	8115	5451	34524
STANDARD DEVIATION* OF RESIDUALS	6197 4262•11314)	12909 8260•21926)	3193 2196• 5829)	1173 867, 2142)	3755 2524, 6959)	5853 4714 ₁ 12513)	4357 2997, 7955)	21995 (14441,34231)
FRACTION OF POSITIVE FESIDUALS (09S>PAEE)	024	04.	0 :: •	e 9 •	.70	04.	000	02.
AVERAGE Differoce*	-5652 (-10985, -1220)	-12368 (-19398, -2217)	-1725 (-4008, 558)	112 (-726, 951)	-588 (-3275, 2097)	-4496 (-9392, 411)	-23°0 (-5507, 725)	-3319R (-45216,-15198)
AVERAGE OBSERVED VALUE	1654 (-1	1654	1554	1654	1654	1654	1654	1654
NJMBER OF DATA PAIRS	1 1	1.3	18	10	C [10	O H	10
M305L	(OMPLExI	COMPLEXII	B66	K124	PLUMES	COMPLEX/PF4	SHORTZ	IMPACT

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHERES

COMPARISON OF SECOND HIGHEST

ORSERVED AND PREDICTED

SAD CONCENTRATION VALUES (US/M**3)

PAIRED BY STATION FOR THE 3 HOUR AVERAGING PERIOD

WESTVACO (1987/1981)

HOURS SELECTED FOR IMPACT MODEL RUNS

MODER N	NJMBER OF JATA PAIRS	AVERAGE OBSFRVED VALUE	AVFRAGE DIFFEPENCE*	FRACTION OF POSITIVE RESIDUALS (09SSPRED)	STANDARD DEVIATION* OF RESIDUALS	ROOT MEAN SOUARE ERROR	AVERAGE ABSOLUTE RESIDUAL	DEARSON CORR. COEFF.	SPEARAN CORR. COEFF.	//A1/AVCE COMPANISON+ (03/S>PRED)
COMPLEXI	10	1921	-2036 (-3848, -224)	• 30	2533	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2185	1 1 1 1 1 1 1 1 1 1 1	• 7 1	.035 (.038, .132)
COMPLEXII	10	1521	-4219 (-8293, -145)	0.4	5695 3917 ₁ 10390)	7198	4559	• 6.9	• 7 •	.057 (.032, .030)
	10	1621	-82 (-676• 511)	9 09•	930 571+ 1516)	3108	581	• 76	689	.193 (.049, .802)
	1.0	1721	246 (-224, 637)	01.	602 414+ 1099)	3070	486	• 60	45.	.459 (.116.1.234)
	1 0	1321	-129	9 •	2225 1530+ 4162)	3627	1251	• 45	63	.045 (.011137)
COMPLEX /PFN	13	1321	-1374 (-3235, 485)	95.	2501 1789, 474=1	4 4 5	1928	• 13	₩ α •	•331 (•038• •124)
	1.0	1921	-937 (-2688, 713)	. 69	2378 1656• 4341)	3522	1442	€ 10 •	•57	.333 (.010. 156)
	1.3	1921	-119*1 (-1715), -6712)	00.	7297	13494	11932	€	ن ن ن	.005 (-021, .019)

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHINES

COMPARISON OF SECUND HISHEST

OPSERVED AND PREDICTED

SOR CONCENTRATION VALUES (UG/M**3)

PAIRED BY STATION FOR THE 24 HOUR AVERAGING PERIOD

WESTVACO (1986/1931)

HOURS SELECTED FOR IMPACT MODEL RUNS

VA314VCE C34PA31SONA (03S>P3ED)	.315 (.634638)	.035 (.038, .122)	*455 (*115*1*675)	.393 (.637,1.574)	.153 (.038; .515)	.228 (.607, .113)	.572	(663* •8E3*)
Na	درد. درد.	. 9.8 (-0.0	¥ 00	(6°)	,94 (0.3	.91 (.60	19*)	.25
PF ARSON CORR • COFFF •	.72	• 78	• •	.74	• 55	• 73	61.	• > 1
AVERAGE ABSOLUTE RESIDUAL	4 2 4	462	e C	145	204	6 6	1 3 0	2149
ROOT MEAN SAUARE ERAOA	3126	3072	3021	3019	3623	3052	3631	8 1 4 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STANDARD DEVIATION* OF RESIDUALS	825 568, 150F)	543 373• 991)	159 199, 2903	116 814 215)	222 153• 405)	573 394• 1047)	331 227, 604)	1255 854• 2294)
F1 ACT 10N DF PNS 111 VE RESIDUALS (39S > PRED)		0 4 •	9 06 •	06*	06*	0 0	02.	65.
AVERAGE DIFFERENCE*	-366 -956, 224)	-337 (-726, 53)	140 255)	136 (22, 191)	155 (-53, 264)	-138 (-548, 272)	-69 (-305, 15 <i>(</i>)	-2148 (-3647, -1250)
AVERAGE OBSERVED VALUE	251	251	251	251	251	251	251	751
JMBER OF DATA AIRS	ů .	10	16	10	13	10	1.	10
120 CW	(OMPLEXI	COMPLEXII	414]	RIDM	FLUMES	COMPLEX/PFM	SHOR12	IMPACT

* 95 PERCENT CONFIDENCE INTERVAL IN PARENTHEMES

COMPAPISON OF HIGHEST DRSERVED AND PREDICTED SOC CONCENTRATION VALUES (U3/M**3) EVENT-BY-EVENT (PAIPED IN TIME) FOR THE 1-HOUR AVERASING PERIOD WESTVACO (198C/1981) HOURS SELECTED FOR IMPACT MODEL RUNS

	•352 •096)	.357 .293)	.852 .030)	.531 .993)	.557 .090)	• 933 • 396)	• 432 • 309)	• 345 • 094)
MAXIMUM FREGUENCY DIFFERENCE		m 6	m 6			in in	÷.	ν · ·
STANDARD DEVIATION* OF RESIDUALS	3258 (3062, 34F5)	5435 (5108+ 5814)	1269 (1193, 135º)	692 (541, 730)	1557 1772)	2572 (2417, 2751)	279A (1962, 2234)	7452 (5942, 7999)
AVERAGE DIFFERENCE* (38S-PRED)	-1331, -259)	-1136 (-1793, -482)	128 (-27, 283)	189 (75, 301)	-135 (-457, 198)	-235 (-545, 174)	-593 -693	-1650 (-2278, 177)
AVERAGE OBSERVED VALUE	373	372	372	372	372	372	373	853 8
NUMBER OF EVENTS	460	461	461	461	461	451	463	418
4 0 D.E.	COMPLEXI	COMP.EXII	4141	RIDM	PLUMES	COMPLEX/PFM	SHORIZ	IMPACT

* 95 PERCENT CONFIDENCE INTERVAL TH PARENTHESES

COMPAPISON OF HIGHEST OESFRVED AND PREDICTED SOC CONCENTRATION VALUES (US/M**3)

EVENI-RY-EVENT (PAIRED IN TIME)
FOR THE 3-HOUR AVERASING PERION
WESTVACO (1946/1981)
HOURS SELECTED FOR IMPACT MODEL RUNS

MODEL	NUMPER OF EVENTS	AVERABE ORSFRVED VALUE	AVERAGE DIFFERENCE+ (09S-PRED)	STANDARD DEVIATION* OF RESIDUALS	MAXIMUM FREGUENCY DIFFERENCE
COMPLEXI	150	E # P	-752 (-1290, -244)	2496 (2245+ 2821)	151.
COMP_EXII	150	349	-11C0 (-1755, -443)	3564 (3296, 4142)	•773 (•157)
4141	150	349	124	856 (770, 968)	.783 (-157)
ятрм	151	747	179 (55, 293)	524 (471, 592)	*503 (*157)
PLUMES	152	344	-111 (-575, 353)	1339 (1205, 1512)	.467 (.155)
COMPLEXZPFM	FM 152	344	-205 (-581, 170)	1858 (1672, 2092)	.730 (.150)
SHORIZ	152	344	-541 (-574, -28)	1350 (1215, 1525)	.335 (.156)
IMPACT	137	338	-1648	57RS (51RO, 65RA)	.329 (.164)

* 95 PERCENT CONFIDENCE INTERVAL IM PARENTHESES

COMPARISON OF HIGHEST DESERVED AND PREDICTED SOC CONCENTRATION VALUES (UG/M**3)
EVENT-BY-EVENT (PAIRED IN TIME)
FOR THE 24-HOUR AVERAGING PERIOD WESTVACO (1967/1981)
HOURS SELECTED FOR IMPACT MODEL RUNS

MODEL	NUMBER OF EVENTS	AVERASE ORSERVED VALUE	AVERAGE DIFFERENCE* (DBS-PRED)	STANDARD DEVIATION* OF RESIDUALS	MAXIMJY FREGJEVCY DIFFE. REVCE
COMPLEXI	5 0	652	-564 (-1043, -78)	1159 (888, 1733)	040°
COMPLEXII	20	569	-693 (-1222, -164)	1473 (1129, 2203)	.503 (0.84.0.)
4141	0 &	269	123	248 (190, 370)	.550 430)
RTOM	20	563	138 (40, 235)	211 (162, 315)	430)
PLUMES	23	569	-115 (-501, 272)	836 (641, 1253)	.505.
COMP_EX/PFM	20	583	-90 (-397)	796 (1910)	.559 (384.)
SHORIZ	<i>د</i> د	269	-242 (-499, 15)	524 (432, 784)	0.00 to 0.00 t
IMPACT	α Ι	261	-958 -2456+ 490)	2354 (1554, 3164)	କ୍ଷୟ • (୭୦୫ •)

93 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPARISON OF ALL OBSERVED AND PREDICTED SOLVE CONCENTRATION VALUES (US/4**3)
PAIRED IN TIME AND LOCATION
FOR THE 1-HOUR AVERASING PERIOD SUMMARY TABLE (PART 1)
UESTVACO (1980/1981)
HOURS SELECTED FOR IMPACT WODEL RUNS

MAXIMUM FREDJENCY DIFFERENCE	•358 (•339)	• 353 (• 354)	\$100°	•369 (•359)	*370 (*138)	*348 (*339)	. 74) (. 033)	• 355 • 338)
STANDARD DEVIATION* OF RESIDUALS	1538 (1594, 1685)	2471 (2404, 2542)	724 (775, 745)	469 (398, 421)	762 9'5)	1257	943) (965 _† 1019)	4527 (4534)
AVERAGE JIF=ERENCE* (DBS-PRED)	-59 (-126, 11)	-92 (-191, 6)	145 (115• 174)	137	100 (69, 131)	67 18, 117)	23	-517
AVERAGE OBSERVED VALUE	2 6 3	\$0.2	203	193	201	505	195	Cat
NUMBER OF EVENTS	2477	2476	2479	2531	2508	2474	2595	2526
MODEL	COMPLEXI	COMP_EXII	4141	RIDM	PLUMES	COMPLEX/PFM	SHORTZ	IMPACT

* 93 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

SOWPASISON OF ALL OBSERVED AND PREDICTED SOC CONCENTRATION VALUES (UG/M+*3)
PAIRED IN TIME AND LOCATION
FOR THE 1-HOUR AVERASING PERIOD SUMMARY TABLE (PART 2)
HOURS SELECTED FOR IMPACT MODEL RUNS

/431AVCE COMPARISON* (038/PRED)	,041 (,637, ,045)		,234 (,212, ,259)	1.140 (1.058, 1.303)	.195 (.157, .204)		*111 (*191* *123)	(500 • 400)
SPEARYAN CORRELATION COEFFICIENT	600•-	- 953	P 0 7 9	α ΩΩ •	139	• 013	091	e 2 û •
PEAASON CORRELATION COEFFICIENT	- 002	• 01 R	• 0 6 2	•125	•109	.017	• 051	050
AVERAGE ABSOLUTE RESIDUAL	44 3	& a +	250	217	269	132	ريم ريم	c 7 g
ROOT MEAN	1639	2412	739	431	769	1258	Ict	1554
1110N S111 10UA S>PR	16.	16*	16.	06•	• 92	96•	• 82	0.4.0
MODEL	COMPLEXI	COMPLEXII	4141	RTJW	PLUMES	COMPLEXZPER	S+0RT7	IMPACT

* 93 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

COMPARISON OF ALL DESFRVED AND PREDICTED SOZ CONCENTRATION VALUES (US/W+*3)
PAIRED IN TIME AND LOCATION
FOR THE 3-HOUR AVERASING PERIOD SUMMARY TABLE (PART 1)
UESTVACO (198C/1941)
HOURS SELECTED FOR IMFACT MODEL RUNS

MAXIMUM FREGUENCY DIFFERENCE	. 372 (366)	.337	.933 (.955)	.745.	.328 (.055)	.911	.553 (.154)	355)
STANDARD DEVIATION+ OF RESTOUALS	1221	1597 (1621 ₁ 1782)	475	321	516 (588+ 545)	899 (850, 954)	589 (559, 723)	3669 (35/15, 3852)
AVERAGE DIFFERENCE* (33S-PRED)	-58 -160. 44)	-92 (-220, 37)	137 (102, 171)	129 (100, 157)	94 (15, 172)	52 (-3, 132)	21 77)	-601 (-853, -332)
п Б								
AVERAGE OBSERVED VALUE		193	193	189	189	191	192	173
α υ		R59 193	861 193	883 189	877	191	913 192	173

+ 95 PERCENT CONFIDENCE INTERVAL IN MARENTHESES

COMPARISON OF ALL OPSERVED AND PREDICTED SOLEONCENTRATION VALUES (US/W**3)
PAIRED IN TIME AND LOCATION
FOR THE 3-HOUR AVERASING PERIOD SUMMARY TABLE (PART 2)
WESTVACO (1986/1981)
HOURS SELECTED FOR IMPACT WODEL RUNS

VARIANCE COMPARISON* (OBS/PRED)	840.	(20° (123°)	.345. •345)	1.255 (1.115, 1.430)	,167, ,214)	.092 (.391, .134)	.150 (.133, .159)	.333 .437335
SPEARMAN CORRELATION COEFFICIENT	021	051	- 048	•105	د وي • ا	• (55	:71	•162
PEARSON CORRELATION COEFFICIENT	019	• 0 0 •	•062	-134	•132	600.	520	€ v . •
AVERAGE ABSOLUTE RESIDUAL	421	4 7 7 7 4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	236	194	242	0 1 5	275	۵ د ۵
ROOT MEAN SOUARE ERROR	1222	1598	464	345	623	89 95 85 84 85 85 85 85 85 85 85 85 85 85 85 85 85	6 5 5	*716
CTION O OSITIVE SIDUALS BSYPPED	46.	• 95	• 5	• &	Ú 6 •	66.	-17	· 69
MODEL	COMPLEXI	COMPLEXII	4141	R T D 4	PLUMES	COMPLEX/PFM	S40RI7	IMPACT

* 93 PERCEUT CONFIDENCE INTERVAL IN PARENTHESES

COMTARISON OF ALL ORSERVED AND PREDICTED FOR CONCENTRATION VALUES (US/W+*3)
PAIRED IN TIME AND LOCATION
FOR THE 24-HOUR AVERASING PERIOD SUMMARY TABLE (PART 1)
UESTVACO (12HF/1981)
HOURS SELECTED FOR IMPACT MODEL RUNS

MAXIMJM FREGJEVOY SIFFEREVOE	. 300 . 150)	.305	.318	.555 .153)	.721	.159)	.191	.390
0110	Č	J	_	·	~	_	-	_
STANDARD DEVIATION* OF RESIDUALS	572 454 , 564)	515 555, 691)	143 129• 160)	121 110, 136)	311 281, 359)	344 311, 385)	273 246, 305)	1225 1102, 1345)
0F °	4	r.	- 13	- T	•	31	54	(110
AVERAGE DIFFERENCE* (03S-PRED)	-117, 50)	-139, 47)	95	86 57, 105)	61 Р, 114)	43	15 -34, 65)	-435 -543, -226)
i 1 1 1	~	~	_	J	~	-	~	·
AVERAGE OBSERVED VALUE	124	124	124	124	124	124	124	122
NUMBFR OF EVENTS	165	165	165	165	165	165	165	153
		COMP.EXII				COMPLEX/PFM		

* 95 PERCENT CONFIDENCE INTERVAL IM MARENTHESES

SOMPARISON OF ALL OBSERVED 4V3 PRESICTES
SOE CONCENTRATION VALUES (U3/M**3)
PAIRED IN TIME AND LOCATION
FOR THE 24-HOUR AVERASING PERIOD
SUMMRAY TABLE (PART 2)
WESTVACO (1966/1981)
HOURS SELECTED FOR IMFACT MODEL RUNS

VARIANCE COMPARISON* (DESCPRED)	(990° *620°	.625042)	1.075	1.127	.115 .058147)	.174 .033, .1463	.113, .131)	. 603 . 675 . 6113
SPEAR4AV CORRELATION COEFFICIENT	.170	. 222	662.	, c o b •	.235	.333	1 200	.551
PEASSON CORRELATION COEFFICIENT	700.	• n1a	.126	• • •	ው ወ. ርና •	.075	÷15.	.361
AVERASE ARSCLUTE RESIDUAL	262	245	123	165	135	163	143	530
० न	502	615	171	148	316	345	272	1226
FRACTION OF POSITIVE RESIDUALS (OES>PRED)	• 8.2	• 8 5	• 95	• 92	ŋ 6 •	c > σ •	• E:	ថ ភេ •
	COMPLFXI	COMPLEXII	4141	RIDM	PLUME5	COMPLEX/PFM	SHORT2	IMPACT

+ 95 PERCENT CONFIDENCE INTERVAL IN PARENTHESES

APPENDIX C

STATISTICAL TABLE OF MODEL PERFORMANCE FOR CINDER CONE BUTTE

<u>Table</u>	Page
Cinder Cone Butte Comparison of 25 Highest	C-1
Cinder Cone Butte Comparison of Highest by Event	C-10
Cinder Cone Butte Comparison of All Events Paired in	
Space and Time	C-20

COMPARTSON OF 25 HIGHEST OBSERVED AND PREDICTED RELATIVE CONCENTRATION VALUES (19**(-6) S/M**3) (UNPAIRED IN TIME OR LOCATION)
FOR THE 1-HOUR AVERASING PERIOD CINDER CONE BUITE (1980)

мэрег	AVERAGE OBSERVED VALUE	AVERAGE PREDICTED VALUE	DIFFERENCE OF AVERASES* (ORS-FRED)	MEDIAN DIFFERENCE* (09S-PRED)	VARIA COMPAR COSS/P	VARIANCE COMPARISON (OBS/PRED)	MAXIMUN FREDUENCY DIFFERENCE
	999	165	-38 (-50, -15) (-31 .552 -56, -18) (.234,1,207)	1,1.207)	۶۳. (385.)
	98	250	-183 (-231, -135)	-148 (-207, -115)	J	.084 .037, .191)	.95 (.885)
	99	196	-129 (-154, -100)	-120 (-154, -92)	J	.255 .112* .578)	92 (• 385)
	99	6.7	(-23, 22)	5 -12• 5	-12, 24) (.210,1.080)	75]•1•680)	.23
	99	177	-110	-67 (-103, -45)	J	.027, .140)	. 585.
COMPLEX/PFM	99	166	_9° _ (-135, -53) (-87 (-121+ -57)		.151	. 583 (. 585)
	99	139	-72 (-143, -1)	-19	-3) (-016	. 016, .(84)	.35 345)
	94	4	(15, 47) (27	2.54 42) (1.165	2•645 (1•165•5•003)	•75 (•365)

* 95 PERCENT CONFIDENCE INTERVAL 14 PARENTHESES

COMPAKISON OF 25 HIGHEST OPFERVED AND PREDICTED RELATIVE CONCENTPATION VALUES (15*(-5) S/4**3) (UNPAIRE) IN TIME OR LOCATION) FOR VARIOUS CATA SETS MODEL: COMPLEXI FOR THE 1-HOUR AVERAGING PERIOD CIMPER CONE RUTTE (1980)

VARIANCE COMPARISON (OPS/PRE3)	.234.1.277)		.351 .579 .471
DIFFERENCE OF AVERAGES. (ORS-PRED)	-38		4 1 4 4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4
AVEFAGE PREDICTED VALUF	1 0 E		ጥዐ ፫ በ ቀሥ ታ ር
AVFRAGE OPSLRVFD V1LUE	99	ELATIVE EIGHT	ស ៧ ቀ ቀ ው ≃ • ፡ ፡
PATA SETS	411	RECEPTOR ELEVATION RELATIVE TO SOURCE RELEASE HEIGHT	<pre><-10* M -10* M TO 10* M 17* M TO 30* M >>1**</pre>

1 1 1 1 1 1						
VARIANCE COMPARISOU (OBS/PRED)	(1E1750.)		£53.	M3 L.	•189	•15P
NIFFERENCE OF AVRAGES ((OSS-PRED)	-183 (-231, -135)		42-	-138	-115	-102
AVERAGE PREDICTED VALUF	. d		114	1 - 1	147	345
AV FRAGE 0°5 LRVED VåluE	λ) .c	LATIVE IGHT	6°	53	41	F) †
CATA SETS	אור	RECEPTOR FLEVATION RELATIVE TO SOURCE RELEASE HEISHT	2 - 21 - 2	-17. N TO 10. M	11. N TO 30. R	£ •00/A

COMPAKISON OF 25 416HEST CECCRVED AND PREDICTED RELATIVE CONCENTRATION VALUE (15**(-5) S/M***) (UNFAILE) IN TIME OF LOCATION) FOR VARIOUS EATS SETS MODEL: COMPLEY/PRY FOR THE 1-HOUR AVEGASIVG FERIOD (INDER COTE PUTTE (1945)

VARIANCE COMFARISON (OBS/PRED)	.151		8 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
OIFFERFUCE OF AVERAGES. (ORSORED)	-00 (-135, -65)		727 - 77 - 75 - 75 - 75 - 75 - 75 - 75 -
AVEPAPE PRECICYED VALUF	165		77 129 115
	6.5	FLATIVE EISHT	ው En en en
U	ערר	RECEFTOP FLEVATION RFLATTVE TO SOURCE RELEASE HEISHT	200 M TO 100 M

VARIANCE COMPARISON (OPS/PRED)	.255 (.112• .578)		194	192.
DIFFERENCE OF AVERAGES* (OBS-PRE")	-129 (-15P, -100)		42-1	. ମଟେ ଓ ଅଟେ ଅଟି । ଅଟି ।
AVERAGE PREDICTED VALUE	t. 29.		4.04	150 o
	59	LATIVE IGHT	80 B	4 E #)
DATA SETS	At.L	RECEPTOR FLEVATION RELATIVE TO SOURCE RELEASE HEIGHT	<pre><-10. n -10. m = 0.00. m</pre>	10. M 10 30. M

COMPARISON OF 25 HIGHEST OBSERVED AND PREDICTED RELATIVE CONCENTRATION VALUES (13*4(-6) S/M++3) (UNFAIRE) IN TIME OR LOCATION) FOR VARIOUS (ATA SETS MOBEL: PLUMES POR HE I-HOUR AVEPAGING PERIOD CINDER CONE RUTTE (1980)

VFRIANCE COMPARISON (OSS/PRED)	140)		. 227 . 243 . 180 . 678
DIFFERENCE UF AVERAGES* (OPS-PRED)	66 -110 .062		-67 -51 -57 -67
AVERAGE FREDICTED VALUF	77!		173 173 112
سا < ئ	•	LATIVE IGHT	339 43
CATA SETS	Ü H	RECEPTOR FLEVATION RELATIVE TO SOURCE RELEASE HEIGHT	A - 10 - M TO 10 - M 10 - M 10 - M TO 10 - M NO 30 - M N

ERVED AND PREDICTED	CONCENTRATION VALUES (10++(-6) S/M++3)	R LOCATION)	A SETS
COMPARISON OF 25 HIGHEST OBSERVED AND	RELATIVE CONCENTRATION V	(UNFAIRED IN TIME OR LOCATION)	FOR VARIOUS DATA SETS

FOR THE 1-HOUR AVERASING PERIOD CINDER CONE BUTTE (1990)

		AVERAGE PREJICTED VALUF	DIFFRENCE OF AVFRAGES* (D3<-PRED)	VARIANCE COMPARISON (OST/PRED)	,
ALL	6.5		(-27, 25)	.332	
PECEPTOR FLEVATION RE TO SOURCE RELEASE HE	RELATTVE Height				
<-10. *	BN FO	3.5	3	•166	
-17. F TO 10. M	5.1	کان	e-i	1.053	
1f. M TO 30. M	41	43	#: 	. 403	
>30. ₹	43	84	c	1.098	

COMPAKISON OF 25 HIGHEST OBTERVED AND PREDICTED PELATIVE CONCENTRATION VALUES (19**(-5) S/M**3) (UNPAIRED IN TIME OR LOCATION) FOR VARIOUS DATA SETS MODEL: SHORTZ FOR THE 1-HOUR AVEPASING PEPIOD CIMER COME RUTTE (1988)

VARIANCE COMFARISON (OPS/PPED)	.037 (.016, .0P4)		. 419	. 921
	(-143, -72		· · · · · · · · · · · · · · · · · · ·	18.1
AVERAGE PREDICTED VALUF	139		7 T C D D D D D D D D D D D D D D D D D D	5 6 5 6
	65	ELATIVE EIGHT	39	4 4 3
	ALL	PECEPTOR ELEVATION RELATIVE TO SOURCE RELEASE HEIGHT	<-10. M -10. M TO 10. M	10. N TO 30. H

COMPARISON OF 25 HIGHEST OBSERVED AND PREDICTED	PELBTIVE CONCENTRATION VALUFS (10**(-6) S/M**7)	(UNPAIRED IN TIME OR LOCATION)	FOP VARIOUS DATA SETS	MODEL: IMPACT	FOR THE 1-HOUR AVERABING PERIOD	CINDER CONE PUTTE (1990)

(1 1 2 3 1 1				
VAPIANCE COMPARISON (OPS/PRED)	2,645		1,250 16,390 21,332	23+397
DIFFERENCE OF AVERAGES* (09S-PRED)	31 (16, 34)		3	34
AVERAGE PREDICTED VALUE	в		₩ C) €	10
AVFRAGE ORSLRVED V3LUE	59	RELATIVE HEIGHT	3 S S S S S S S S S S S S S S S S S S S	4 F &
DATA SETS	ארר	RECEPTOR ELEVATION RE TO SOURCE RELEASE HE	<pre><-10</pre>	7 - B - C 20 - 7 - C 20 - 7 - C 20 -

COMPANISON OF HIGHEST DESERVED AND PREDICTED RELATIVE CONCENTRATION VALUES (10**(-5) S/4**3) EVENT-PY-EVENT (PAISED IN TIME) FOR THE 1-HOUR AVERASING PERIOD PART 1 CINDER CONE BUITE (1980)

500 500 500	•212 •149)	• 142 • 189)	•345 •1891	.)87 •149)	.11. .189)	16a]•	•135 •1891	4.29. 1.99.
MAXIMUM FREGUENCY DIFFERENCY	5.1		W			22.0		1.0
STANDARD DEVIATION* OF RESIDUALS	41 36, 43)	103 91• 125)	75 56, 87)	30 25)	98 78• 132)	58 74)	34 83, 110)	26 31)
	~	-	~	-	-	~	-	~
AVERAGE DIFFERENCE+ (085-PRED)	-256)	-68	-47	93	-62, -10)	-34 -514 -16)	-43. 0)	13 20)
	~	-	-	_	~	J	~	_
AVERASE OBSEPVED VALUE	52	52	70	.00	,,,	25	52	VIII CV
NUMBER OF EVENTS	164	1 04	104	134	154	9.54	104	164
MODEL	COMPLEXI	COMPLEXII	4141	RTDW	PLUMES	COMPLEX/PFM	SHOPIZ	IMPACT

* 95 PERCENT COVFIDENCE INTERVAL IM PARENTHESES

COMPARISON OF HIGHEST DRSFRVED AND PREDICTED RELATIVE CONCENTPATION VALUES (10**(-5) S/**3) EVENT-PY-EVENT (PAIRED IN TIME) FOR THE 1-HOUR AVEPASING PERIOD PART 2 CINDER CONE BUITE (1980)

VARIBNCE COMPARISO** (038/PRED)	(287. *255)	(560 + 660 +)	.125 . 696, .173)	. 623 (.450, .964)	.097 (.670* .135)	*144 (*174* *199)	, 11.3 (44544 ¥35846)
SPEARMAN CORRELATION COEFFICIENT	, × 3 1	.317	ଓଡ଼	010	& € ¢ •	ላር ት •	474.	168.
PEASSON CORRELATION COEFFICIENT	• 40	• 3 4 5	• 38°	£55°	• 27g	₹ ŋ <u>ç</u> •	• 255	. 4 1 4
AVERAGE APSOLUTE RESIDUAL	6%	7.4	ic C	ÉI	4.7	6	F.J.	13
RONT MEAN SOUARE ERROR	5 7	123	σ 5 α	3.0	9 6	7.4	96	66
FRACTION OF POSITIVE RESIDUALS (OBS>PRED)	5.4.	• 25	ಕಿ ಕಿ	• 53	• 31	а му •	844	• 72
мэрег	CJMPLEXI	COMPLEXII	4141	RTD"	5 <u>3</u> k0-d	COMPLEX/PFM	S+0RT2	IMPACT

* 95 PERCENT CONFIDENCE INTERVAL I'S PARENTHESES

COMPARISON OF HIGHEST OFSERVED AND PREDICTED RELATIVE CONCENTRATION VALUES (10**(-5) S/M**3) EVENT-MY-EVENT (FOR VARIOUS DATA SETS) MOCEL: COMPLEXI FOR THE 1-HOUR AVERASING FERIOD CIND'R COME BUTTE (1950)

	4 6 6 8 8 9 9			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DAIA SET	NUMBER OF EVENTS		2VERAGE DIFFERENCE (OBS-PRED)	STANDARD PEVIATION OF RESIDUALS	PEARSON CORRELATION COEFFICIENT
HISHEST CONCENTARTION FYENT SY ENEM	1	9.0	-16	4 1	• •
37 RELIASE DISTANOF/ PELIASE PETONT					
71STARGE < 91 N	5 ,	6.4	OI E	() t	Ct si
H=15, B TO 26, B H> 25, F	1.2 a	63	114	ម្ត	. 567
DISTANCE > 90 . W	IJ	13	14	P3 CC	649*
H=14. V TO 26. M	\$ 5 5	13	ന ദ പ ! !	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	070
METEORCLOGICAL COURTIENT	5.0				
OBLAS INT * *	c, vr	6 0	-27	L 17	• 48B
S/w -5 01 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 17 19	22.		บ พ (` ฅ	•• 013 • 454
2. STA-1_11ff GROUP CL:SS C+D CL:SS F CL:SS F	ମ ମ ପ ଧର ପ	50 C3	. 25 - 21	K व K दा उ.त	 529 625 195

COMPAPISON OF HIGHEST OBSERVED AND PREDICTED RELATIVE CONCENTRATION VALUES (10**(-6) S/4**3) LVENT-PY-FVFUT (FOR VAPIOUS DATA SETS) NODEL: COMPLEXIT FOR THE 1-HOUR AVERASING PEPIOD CINDER COME RUITE (1980)

					200041.0
	NUMBER OF EVFNTS	AVERAGE DESERVED VALUE	AVERAGE DIFFERENCE (DBS-PRED)	SIMUDARU DEVIATION OF RESIDUALS	CORRELATION COFFFICIENT
HISHEST CUNCENTRATION EVENT SY EVENT	104	Sc	и 9°	1,5	. 345
DISTANCE/ HEIGHT					
31STANCE < 909. " HC 15. "	4	6%	-176	154 4	•12°
H=16. N TO 26. M H> 25. N	12 9	700	- 135 - 145	ति के हिं	• 439 • 437
015TARCE > 9:0.	J	37	रा	4 55	.891
H#16. F TO 26. H H> 25. M	9 4 CJ	13	- 72	114 61	1 1
TETESA DESIGAL CONSTITUE					
OFFICE OF THE STATE OF THE STAT	, ,	œ «	70-	121	.152
v / 1	27	. C.; C	- 1/ F) - 1	49	• 8 8 8 8
	 ▼	y		•	
2. STATILITY GINUE	M	15	ņ	\C	. 65 ₽
0+23 C+D	3.5	201	26-	1-7	4 3 's 4

COMPARISON OF HISHEST DESTRUED AND PREDICTED RELATIVE CONCENTRATICA, VALUES (10**(-5) S/M**3) LVENT-PY-EVENT (FOR VARIOUS DATA SEIS) HOFEL: COMPAGENCE PROPING PERIOD PRINTS (1996)

		FOR THE 1-HOU CINDER CON	THE 1-HOUR AVERABING PERION CINDER COVE PUTTE (1998)		
5: 1	JURALR OF EVENTS	ERAGE Serve Aluf	V	1475 V 147 E < 10	EARSON FELATI FFICIE
HISHEST CONCENTANTION FVENT AY EVENT	104	2.54	+ + + + + + + + + + + + + + + + + + +	5 7	. 63Fa
37 RELFASE DISTANCE/ RELEASE HEIGHT					
DISTAUSE < 975. M	3	ດ າ ພໍາ	a	4	745.
HA16. M TO 26. M HA 25. M	12.00	5.7	141	45	577
DISTANCE > 90cm N	σ	1 2	ľ	r,	159.
H=16. P TO 26. H	34 44	19	-32	5.2 4.5	6 0 6 0 • •
METERROLDSICAL CONSITION			1		1
1. 4140 SPEED 4.5 4/8 2.1 10 5. 4/8	52	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	າ . ກ່າ	5. 2	ക്കുന്ന എന്നാ ഇലുവ കേരം (
2. STABLITY GROUF CLASS C+D CLASS F CLASS F	L 1848	S 53 %	1 m n n n n n n n n n n n n n n n n n n	6.5 5.7 5.7	

CO"PARISON OF HIGHEST DRSERVED AND PREPLICTED RELATIVE CONCENTRATION VALUES (19**(-6) S/***3) LVENT-RY-EVEUT (FOR VAFIDUS DATA SFIS) POTEL: 4141
FOR THE 1-HOUR AVERAGINS PERIOD CINDER COVE BUTTE (1980)

COMPARISON OF HIGHEST DESCRIVED AND PREFICTED ENTRY CONCENTRATION VALUES (1)+*(-6) s/4+*3) EVENT-BY-EVENT (FOR VAFICUS DATA SETS) MODEL: PLUMFS FOR THE THOUR AVERASING PERIOD CINDER COVE BUTTE (1950)

			11 11 11 11 11 11 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	DATA SIT	NUMPER OF EVENTS	AVERAGE DRSERVEN VALUE	AVERAGE FIFFERFNCE (735-2RED)	STANDARD DEVIATION OF RESIDUALS	PEARSON CORRELATION COEFFICIENT
	HISHEST CONCENTRATION FVENT BY FVENT	1 1 1 1 1 1 1 1 1 1 1 1 1	9.2] +	a u	975.
	AY RELFASE HISTANCE/ RELFASE HEIGHT					
	DISTABLE < 900. H H< 15. M	7	η. Ο 1	\$0 č -	ກ : ທ	M7 () () () () () () () () () (
	H=16. P TO 26. M . H> 25. M	., o	69	2	↑ ()	- 20 C
	JISTANCE > 930 M H< 16 d	űτ	37	(v	เกิ (ช	.731
	H=16. M TO 26. 1 H> 25. M	46 24	ō ю H —	- 18	5 G	የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ
-	METEOR(L) GICAL CONSITION	70				
	1. TIME SPEED	<u>د.</u>	G.	រា វិ 1	aù [.257
	2-0-10 10 1-10 10 10 10 10 10 10 10 10 10 10 10 10 1	27 15		-25	100	• 13P • 431
	2. STAULITY GROUP CLISS C+D CLESS F CLASS F	50 KM KM		0.1.1	7.5 13.1 4.7	. 051 155. 321

SOMPARISON OF HIGHEST OBSERVED AND PREDICTED RELATIVE CONCENTRATION VALUES (10**(-6) S/M**3) LVENT-BY-EVENT (FOR VARIOUS DATA SETS) MCDEL: RIDM FOR THE 1-HOUR AVERASING PERIOD CIMER CONE BUITE (1980)

	11 11 11 11 11 11 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
JATA SET	NUMBER OF EVENTS	1VERAGE OPSFRVED VALUE	AVERAGE DIFFERENCE (098-PRED)	STANDARD DEVIATION OF RESIDUALS	PEARSON CORRELATION COEFFICIENT
HISHEST CONCENTRATION FVENT OF EVENT	+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 3	-	₹,	. 551
BY RELFASE DISTANCE/ RELFASE HEIGHT					
DISTANCE C 950. **	7	<u>თ</u>	4 0	45.	0 යෙ. ල
H=16, M TO 26, M H> 25, M	C- 0	69 67	-31	54 A	7.5°.
DISTANCE > 9 G. P. HA 15 - 4		75	4.0	47	
HE16. M 10 26. M	2 4 6	13.4	\ **	c	* & # # # # # # # # # # # # # # # # # #
METEOROLOGICAL CON'ITIEM					
1. INF SPEED (62 67 1 s	D 10 00	L 7 U	5 0 0 0	ကောင် ရောဂါသ မောက် မောက်
2. STAPLITY GROUP CLASS C+0 CLASS C CLASS E	e a s M r, r)	F (2) (3)	A 4		\$

COMPARISON OF HIGHEST CREFAVED AND PREDICTED PELOTIVE CONCENTRATICE VALUES (17**(-4) 5/W***)

EVERT-BY-FUFUT (FOR VARIOUS DATA SETS)

MODEL: SHORTZ

FOR THE 1-HOUR AVERAGING PERIOD (INDER CONE BJITE (1780)

77 36 263 4 12 27 -1 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ISHEST CONCENTRATION EVENT RY EVENT	EVENTS EVENTS 1:4	AVERAGE OBSERVED VALUE 26	AVERAGE OPS-PRED)	STANDARD SEVIATION OF RESIDUALS a4	COERFICENTON COERFICIENT COERFICIENT . 256
24 62 19 -3 13 24 13 -40	AELFASE DISTANCE/ AELFASE HEISHT DISTANCE < 900. P HC 15. B H=15. B H=15. A H> 25. A	م 2 م	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-15 -115	36 6 2 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2	6 6 7 8 8 9 1 1
	DISTACE > 900. f. 14 15. x H=15. x 10 26. x	4 C 1	37 13 13	er Ma Nier	22 13 145	• 724 • 51.7 • 49
	STAFILITY GROUP CLASS C+D CLASS F	а. М М ^г	5 G G	Hide (, v.	277.

COMPARISON OF PIGHEST OFSCAVED AND PREDICTED RELATAVE CONCENTRATION VALUES (10**(-6) S/4**3) LVENT-9Y-EVFNT (FOF VAPIOUS DATA SETS) MOFEL: IMPACT FOR THE 1*HOUR AVERAGING PERIOD CINCER CONE BUTTE (1990)

 1 1 1 1 1	NUMBER OF EVEVIS	AVERAGE OSSERVED VALUE	4VERAGE 31F=EPEVCE (ORS-PRED)	STAMDARD DEVIATION OF RESIDUALS	PEARSON CORRELATION COEFFICIENT
HISHEST CUPCENTRATION FVENT - Y EVENT	1.34	26	13	56	.414
DISTANCE / HEIGHT					
SIANCE < 0. M H< 15. M H=16. M TO 26. M	4 % ا	59	4 0. p.	2 n 3 2	. 471 . 359
	σ	65	37	t 9	₽0 ₽ •
3187446E > 9*** } 4< 15* M	c	7 × 3	<u>ව</u>	4 (1)	10 N 0 N 0 N
H=15. M TO 76. M H> 25. N	46 24	19 13	1- 3	12	
METEORELOGICAL CONTITIO"					
۵۷	o,	ט	[]	31	554.
2 · · 10 · · · / S	27.5	. 55	15 15	- w- tu ==	-, 275 -, 711
\$1371LIT7 6690F CL:SS C+0 CL:SS :	6. J. (33 11 20 12	21	* (C 0	დ. დ
	·) .	22	,	1.2	J -

COMPARISON DE ALL OPSERVED AND PREDICTED
RELATIVE CONCEMPATION VALUES (10**(-5) S/M**3)
PAIRED IN TIME ANT LOCATION
FOR THE 1-HOUR AVERASIVG PERIOD
SUMMARY TABLE (FART 1)
CINDER COME BJITE (19*0)

MOUS. OF EVENTS	NUMPER OF EVENTS	AVERASE OBSERVED VALUE	AVERAGE DIFFERENCE+ (OBS-PRED)	STANDARD DEVIATION* OF RESIDUALS	MAXIMUM FREDJENCY DIFFERENCE
P . E		vn	(55-)	20, 21)	.344 333
COMP_EXII	3830	\$	-6 -7• -5)	34. 35)	.293 (.031)
4141	3836	\$	-107)	30, 31)	.121
RTDM	2836	U D	0 0 1)	12, 13)	.15s (.031)
PLUMES	3835	v n	4 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	2 2 2 3)	.301 (.331)
COMPLEX/PFM	3836	vn	Ŕ	26, 27)	. 303 ()31)
SH0412	3836	5	-1 () -2, ()	23, 24)	.167
IMPACT	ንዶዓና	ď	3 3)	12 12 12)	*132 (*331)

* 05 PERCENT CONFIDENCE INTERVAL LY FARENTHESES

COMPARISON OF ALL OPSERVED AND PREDICTED
RELATIVE CONCENTRATION VALUES (10**(-5) S/M**3)
PAIRED IN TIME AND LOCATION
FOR THE 1-HOUR AVERASING PERIOD
SJMMARY TARLE (PART ?)
CINDER COVE BUITE (1950)

***************************************	633	(5)	(1)	(a s	(6)	(61	, T.	(()
VARIAVCE COMPARISON* (038/PRED)	.327 (?35°, 996°,)	*114 (*134 *125)	•143 (•130 •137)	1.535	.175 (.151 .194)	.173, .213)	.251 (7852547)	9.531 (4.174. 5.137)
SPEARMAN CORRFEATION COEFFICIENT	.333	•391	112.	604.	€9 b •	٠ ٢ ٢	200.	č 2 v •
PEARSOV CORRELATION COEFFICIENT	ರ್ಚ.	• 235	115.	යා ව •	€ 60 60 •	.313	\$ 5 5 5	\$6ĉ.
AVERASE ARSOLUTE RESIDUAL	11	13	4	'n	10	11	4	¥.
ROJT MEAN SQUART FRROR	21	r F)	32	13	a Ci	7.0	с. С.	1.2
FRACTION OF POSITIVE RESIDUALS (OPSSPRED)	9	• 56	• 42	74.	• 56	• 55	C 4+ •	• • 0.0 •
MJJEL	50	COMPLFXII	4141	RIJM	PLUMES	COMPLEXZPEN	S40812	IMPACT

* 93 PERCENT CONFIDENCE INTERVAL TI MAPENTHESMS

COMPAPISON OF ALL DESTRVED AND PREDICTED RELATIVE CONCENT ATTOM VALUES (15**(-5,) s/M**5) PAIRED IN TIME AND LOCATION (FOR VARIOUS DATA SETS)

FOR THE LHOUR AVERASING PERIDD CINCER COME FUTTE (1980)

· · · · · · · · · · · · · · · · · · ·	! ! ! ! ! !	. 6 9 8 8 7 5 5 6 6 8 9 5 5 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	· e 1 P e e e e e e e e e e e e e e e e e		,	
	DAT4 SET	NJWBER 7t EVFNIS	AVFRAGE U3SERVED VALJE	AVERAGE DIFFERENCE (OPS-PRED)	STANDARD REVIATION OF RESIDUALS	
	ALL	988			20	
	BY RELEASE DISTANCE/ PFLFASE MEIGHT					
	21STARCE < 903. M H< 15. M H=16. W TO 26. W H> 26. M	155 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	a	-1 -7 -12	ରା ୫ ଟ ବା ବି ଅ	
	DISTANCE > 900. 4 H< 16. M H=16. W TO 26. W H> 26. "	508 1771 914	te ui Þ,	د د ۱ ۱ د د د د	13 13 13	
	METEOROLOGICAL CCNDITION	NO			, , , , , , , , , , ,	
	1. WING SPEED C 2.5 W/S 2.5 TO G. W/S > 5. W/C	201 500 500 500 500	.	2 0 T	13	
	2. STAPTLITY GROUP CLASS C+D CLASS F CLASS F	1247 1478 1441	with #	- 0 €	15 23 21	

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
DATA SFT	NJ46E		AVERAGE ORSERVES VALJE	AVERAGE DIFFERENCE (OBS-PRED)	STANDARD DEVIATION OF RESIDUALS	
ALL	1	9892	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9-	34	
BY RELFASE TISTANCE/ RELFASE WEIGHT	ISTAUCE/ 21641					
EISTANCE < 900. M H< 15. V H=16. V TO 26. W H> 26. "		15 15 15 15 15 15 15 15 15 15 15 15 15 1	, ,	-1 -5 -16	ቁ ሪስ ሲ ዓ ሪስ ሲ	
31STANCE > 900. M H< 16. W H=16. P TO 26. N H> 26. W	.	508 771 914	a u Ko	0 1	6 8 4	
METFOR OLD SICAL CONDITION	LOGICAL CONDITION	1	, , , , , , , , , , , , , , , , , , ,			
1. JIM. SPFTD < 7.5 v/5 2.5 TO 7. M/S > 5. M/S		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	€ (17)	0 M m	4 0 L	
2. STAFILITY GPOUP CLASS (+D CLASS !		1,47	ل ⊔ ب	- = 0	א ל ה	

FUMPATISON OF ALL ORSERVED AND PREPICTED PELATIVE CONCENTRATION VALUES (10++(-5) S/M++3)
PAIRED IN TIME AND LOCATION (FOR VARIOUS DATA SETS)
MOPEL: COMPLEX/DFY
FOR THE 1-HOUR AVERAGING PERIOD CINETR COME BUTTE (19PE)

TANDARD VIATION RESIDUAL	52		ድ (3 e) የ (3 e)	15 26 12		32 1	11 2.9.5 3.5.0
VIRAGE FFEREN BR-PRE	ري - ا		1 1 2 2 2 4 2 3 5 2	OI UP KS		a	α 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SPRVE ALJE			3: p 3: 1	C: L' P		w n L	w u 4
12 F	, , , , , , , , , , , , , , , , , , ,		1 + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.08 1771 914	NO	5 t t t t t t t t t t t t t t t t t t t	1647 1478 1411
DDIA STI	466	BY RELEASE PISTANCE/ PELEASE MEISHT	FISTANCE < 950. M P< 16. F H=16. F TO 26. T H> 26. V	FISTSHCE > 950. 4 H< 15. 4 H=16. M TO 26. M H> 26. M	METFORCLOGITAL CONDITION	1. WIND SPESD < 2.5 M/S 2.5 TO 5. M/S > 5. M/S	2. STABILITY GROUP CLASS C+D CLASS F CLASS F

COMPATISON OF ALL ORSERVED AND FREDICTED RELATIVE CONCENTRATION VALUES (10**(-5) S/M**3) PAIRED IN TIME AND LOCATION (FOR VARIOUS DATA SETS) MOFEL: 4141 FOR THE 1-HOUR AVERAGING PERIOD CINCLES CONE SUTTE (1980)

TANDARD VIATION RESIOUA			EN EN EN	17 33 17		37 17 11	11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
AVERAGE Difference (OBS-PREN)			000	C 6 - 1 - 1	3	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 2 4 11 4
VERAGE RSERVE VALUE	1		3 5	G. H. P.	1	u 11, u /	ט ע ט
ŧu ⊨	1 1 5 1 5 1 1 1 2 1 2 1 2 1 4		155 41¢ 259	3 5 7 7 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	164	Ø 50 F	1472
DATA SET	ALE	BY PELEASE DISTANCE/ PELEASE HEIGHT	DISTANCE < 960, 7 H< 15, 7 H=16, M TO 26, M H> 25, 7	01STANCE > 000, M H< 16, T H=15, M TO 26, M H> 26, M	METFORMUDGICAL CONSTITUT	1. JIW SFEED < 7.5 W/S 2.5 TO % W/S > 7. M/S	2. STEWILITY GROUP CLASS (**) CLASS C CLASS F

COMPERISON CE ALL ORSERVES AND FEFDICTED RELATIVE SONCENTEATION VALUES (1)**(-5) S/M**3) PAIREL IN TIME AND LOCATION (FOR VARIOUS EATA SETS) MCDEL: FLUNTS FOR THE 1-40UR AVERACIUS PERIOD CINTER CONE BUTTE (1990)

				į	1 1 1 1 1 1 1 1 1 1 1 1 1 1		
STANDARD DEVIATION OF RESIDUALS	8 Z		M: 40 CV	33.27		3, 11, 12, 13, 14, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	v ar a N ko ⊨i
AVERAGE DIFFERENCE (035-9RED)	4			C 10 €		ਪੰ⊤ਪਤ ਦਰ 1 1 3	1 1 1 1 V
AVERAGI OBSENYED VALJE	u		6 b U	a te F		uju li	r. 1 4
	, s 3.6		155 419 269	5.0.5 1771 914		5 7 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1247
DATA SFT	ALL	SY RELEASE "ISTANCE." RELEASE PEIGHT	PISTANCE < 956. W H< 15. " H=16. W TO 26. M H> 26. V	nIST: UCE > 900 • M H< 16 • W H=16 • M TO 26 • M H> 26 • F	METEOROLOGICAL CONDITION	1. HIND SPEED < 2.5 M/S 2.5 TO 5. M/S > 5. M/S	2. STAPLLITY GROUP CLASS C+D CLASS F CLASS F

	STAMDARD PEVIATION OF RESIDUALS	13		មកស	n n e		15	න (3 කි මෙ ඒ ව
S × 8	AVEPAGE DIFFEREVCE (O3S-PRED)	چ.		7 L 4	-2		1 1	~ ← €.
035ENVED INC JALUFE OUS JATA 8 RIDM UR AVERAGI VE 3JTTE	AVER/GF 085FFV°C) VALUE	Xi-		α n n	. u.e		St. Iv. u	ت د ي
CLMEARIS ELATIVE CON FA	1 1 2 V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	कि व क विक्रम्	505 1771 314	70	2 k 3 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1247 1477 1111
	1.0	A L I.	BY PELFASE PISTANCE/ RELEASE MEIGHT	(1) STANCE < 960. M H< 16. M H=16. M TO 26. M H> 26. M	21STince > 900, M H< 16, P H=16, M TO 26, H H> 26, P	00	1. WIM: SPFID	2, 574, TLITY GROUP CLASS (+D CLASS F CLASS F

FUMPARISON OF ALL ORSERVED AND POEDICTED PELATIVE CONCENTRATION VALUES (13**(-5) °/"**3) PAIREU IN TIME AND LOCATION (FOR VARICUS EATA SETS) MCDEL: SHORTZ FOR THE 1-HOUR AVERAGING PERIOD CIEDER CONE SUITE (1390)

STANDARD NEVIATION OF RESIDUALS	23		1 15 5 5 5 5	6. K. P.		19 18 43	କଟ ଅ ଟେ ଅ
AVERAGE Olfference (OPS-PRED)	f		- 1 - 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 1 2		777	5 1 1 2 4
6.VEP.DGF 08.SEP.VFD VALUE			1 S	6 to 6		Q 1 U/	. u 3
NU"SEP OF EVENTS	1		155 410 269		1	7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	147
D&T& SET	ALL	BY PELCASE DISTAUCE/ RELCASE MEIGHT	DISTANCE < 900. M H< 16. ff H=16. W TO 26. W H> 26. F	96 × 96 × 10	METFOFUL CHUBITION	1. WIND SPETO < 7.5 "/S 2. TO 5. H/S > E. H/S	2. STAFILLITY GROUF CLASS C+D CLASS F CLASS F
	1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

CUMPAPISON OF ALL OBSERVED AND PREDICTED
PELATIVE CONCENTRATION VALUES (12**(-6) S/M**3)
PATRED IN TIME AND LOCATION
(FOR VARIOUS DATA SETS)
HOPEL: IMPACT
FOR THE 1-HOUR AVERASING PERIOD
CINFER CONE BUTTE (1950)

STAMBARD PEVIATION OF RESIDUALS	-		15 12 23	S C 10		M) C Vi.	111
AVEP4GE njeseqence (OBS-PREU)	r		7 2 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	№ ю п		נא גא פא	й (C С
EPAG SERVI ALUE			3 " 01	4 L F/	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	et hu	u u, u
E 8 E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	508 171 514	NO) 272 1,533 0.53	1647
DATA SET	ALL	PY WOLFASE DISTANCE/	DISTINCE < 950. A F< 16. F H=16. ** 10.26. Y H> 26. **	SISTANCE > 930. M H< 15. " H=16. M TO 20. H H> 26. "	MFTSOROLOGICAL CONDITION	1. VIME SPECD < 7.5 P/5 2.5 TO 7. V/c > 5. H/c	2. STAFILITY GROUF CLYSS C+D CLYS F CLRSS F

TECHNICAL REPORT DATA (Please read Instructions on the reverse before completing)					
1. REPORT NO. 2.	3. RECIPIENT'S ACCESSION NO				
EPA-450/4-84-017					
4. TITLE AND SUBTITLE	5 REPORT DATE				
	<u>June 1984</u>				
Evaluation of Complex Terrain Air Quality Simulation Models	6 PERFORMING ORGANIZATION CODE				
7. AUTHOR(S)	8. PERFORMING ORGANIZATION REPORT NO.				
David J. Wackter & Richard J. Londergan					
9. PERFORMING ORGANIZATION NAME AND ADDRESS TRC Environmental Consultants	10. PROGRAM ELEMENT NO.				
800 Connecticut Boulevard	11 CONTRACT/GRANT NO				
East Hartford, CT 06108	68-02-3514				
12. SPONSORING AGENCY NAME AND ADDRESS U.S. Environmental Protection Agency	13. TYPE OF REPORT AND PERIOD COVERED				
OAQPS, MDAD, SRAB (MD-14)	14. SPONSORING AGENCY CODE				
Research Triangle Park, N.C. 27711	EPA-450/4-84-017				
15. SUPPLEMENTARY NOTES					

16. ABSTRACT

This report summarizes the results of a comprehensive evaluation of eight air quality models applicable to complex terrain. Seven of the models are "Gaussian" and one is "numerical." The models are evaluated with data obtained from two field measurements programs. The Cinder Cone Butte data base is for tracers released upwind of a dense sampler network for a limited number of hours. The Westvaco data base contains a year of routine hourly SO₂ measurements for an 11 station network. The report includes numerous tabulations of each model's performance in terms of statistical measures of performance recommended by the American Meteorological Society.

The purpose of the report is two-fold. First, it serves to document for the models considered, and similar models, their relative performance. Second, it provides the basis for a peer scientific review of the models. To stay within the spirit of this latter purpose, the report is limited to a factual presentation of information and performance statistics. No attempt is made to interpret the statistics or to provide direction to the reader, lest reviewers might be biased.

7. KEY WORDS AND DOCUMENT ANALYSIS						
. DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Lield/Group				
Air Pollution	Air Quality Impact					
Mathematical modeling	Assessment					
Meteorology						
Power Plants	New Source Review	Ì				
Sulfur Dioxide						
Statistical Measures						
Performance Evaluation						
8. DISTRIBUTION STATEMENT	19 SECURITY CLASS (Thus Report)	21 NO OF PAGES				
	<pre>Unclassified</pre>	244				
Release to public	20. SECURITY CLASS (This page)	22. PRICE				
	Unclassified					

U.S. Environmental Protection Agency Region V, Library 230 South Dearborn Street Chicago, Illinois 60604