Solid Waste

Resource Recovery Technology

An Implementation Seminar Workbook

RESOURCE RECOVERY TECHNOLOGY

AN IMPLEMENTATION SEMINAR WORKBOOK

U.S. ENVIRONMENTAL PROTECTION AGENCY
Revised Edition, 1978

This workbook (SW-3004) contains copies of some of the slides presented by the Resource Recovery Division of the Office of Solid Waste at its seminars.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF WATER AND HAZARDOUS MATERIALS

Welcome . . .

to this resource recovery seminar presented by the Office of Solid Waste of the United States Environmental Protection Agency.

The purpose of the seminar is to provide an overview of the status of resource recovery and a discussion of implementation procedures. We believe that this information can be particularly helpful to municipal and State agencies that are considering implementation of resource recovery. We view this activity as augmenting the in-depth technical assistance which is to be provided through the Resource Conservation Panels program mandated by the recently enacted Resource Conservation and Recovery Act.

In utilizing our own staff for presentation of this seminar, we in no way presume to be the foremost expert on each of the subjects presented. However, based on our tracking of nationwide activities in resource recovery, our experience in providing technical assistance, and our involvement in demonstration and evaluation projects, we hope to be able to provide a unique "third-party" perspective to this subject. We will endeavor to be fair and even-handed, yet honest and objective in the process.

In an attempt to make available a wide range of information, we have included references to technical reports to supplement the information which will be presented at the seminar. In addition, we have provided each registrant with a package of publications which includes an eight-part EPA publication series called: Resource Recovery Implementation: A Guide for Municipal Officials.

This is one in a series of regional seminars, and will be presented to State and local governments on a more individual basis if requested.

We thank you for your attendance and hope that this will be an informative and productive experience for both you and EPA.

Steffer W. Plehn Deputy Assistant Administrato

for Solid Waste

OFFICE OF SOLID WASTE MANAGEMENT PROGRAMS

LIST OF EPA

REGIONAL CONTACTS

I.	Dennis Huebner Solid Waste Program John F. Kennedy Bldg. Boston, MA 02203 (617) 223-5775	VI.	Richard O. Amber Solid Waste Program 1201 Elm Street First Intl. Bldg. Dallas, Texas 75270 (214) 767-2734
II.	Michael F. Debonis Solid Waste Branch 26 Federal Plaza New York, NY 10007 (212) 264-0503/4/5	VII.	Morris G. Tucker Solid Waste Section 1735 Baltimore Ave. Kansas City, MO 64108 (816) 374-3307
III.	C. Howard/Wm. Schremp Solid Waste Program 6th & Walnut Streets Philadelphia, PA 19106 (215) 597-8116	VIII.	Lawrence P. Gazda Solid Waste Branch 1860 Lincoln Street Denver, CO 80203 (303) 837-2221
IV.	James Scarbrough Solid Waste Section 345 Courtland St., N.E. Atlanta, GA 30308 (404) 881-3116	IX.	Charles Bourns Solid Waste Program 215 Freemont Street San Francisco, CA 94105 (415) 556-4606/7/8
٧.	Karl J. Klepitsch, Jr. Solid Waste Program 230 South Dearborn St. Chicago, IL 60604 (312) 353-2197	х.	Tobias A. Hegdahl Solid Waste Program 1200 6th Avenue Seattle, WA 98101 (206) 442-1260

RESOURCE RECOVERY TECHNOLOGY AN IMPLEMENTATION SEMINAR

AGENDA

DAY 1

TIME	TOPIC
8:00-9:00 am	REGISTRATION
9:00-9:15 am	INTRODUCTION AND STATUS OF IMPLEMENTATIONS
9:15-9:45 am	IMPLEMENTATION APPROACH
9:45-10:45 am	MARKETS
10:45-11:00 am	COFFEE BREAK
11:00-12:15 pm	SOURCE SEPARATION
12:15-1:30 pm	LUNCHEON
1:30-2:00 pm	COMPATIBILITY
2:00-3:00 pm	MECHANICAL PROCESSING
3:00-3:15 pm	COFFEE BREAK
3:15-4:30 pm	DIRECT COMBUSTION

DAY 2

TIME	TOPIC
8:30-9:45 am	REFUSE-DERIVED FUEL
9:45-10:00 am	COFFEE BREAK
10:00-10:45 am	PYROLYSIS
10:45-11:30 am	CO-DISPOSAL
11:30-12:00 pm	METHANE RECOVERY
12:00-1:30 pm	LUNCHEON
1:30-2:15 pm	INDUSTRIAL WASTE EXCHANGE AND WASTE OIL RECOVERY
2:15-2:45 pm	HEALTH, SAFETY AND ENVIRONMENTAL CONSIDERATIONS
2:45-3:00 pm	COFFEE BREAK
3:00-3:30 pm	ECONOMIC CONSIDERATIONS
3:30-4:30 pm	CONTRACTS, RISKS AND FINANCING

TABLE OF CONTENTS

Introduction and Status of Implementations

Implementation Approach

Markets

Source Separation

Compatibility

Mechanical Processing

Direct Combustion

Refuse-derived Fuel

Pyrolysis

Co-disposal

Methane Recovery

Waste Exchange and Oil Recovery

Health, Safety and Environmental Considerations

Economic Considerations

Contracts, Risks and Financing

Reading List

MARGIN INDEX - To use, bend book in half and follow margin index to the page with black-edge marker.

			-
*			

Introduction and Status of Implementations

INTRODUCTION

I. SEMINAR OBJECTIVES

- A. Purpose
- B. Who is it for?

II. SEMINAR MATERIALS AND ORGANIZATIONS

- A. Workbook
- B. Publications
- C. Plan for presentations
- D. Schedule

III. BACKGROUND

- A. RCRA mandates
- B. Activities of Resource Recovery Division
- C. Driving forces

IV. CURRENT STATUS

- A. Source separation
- B. Mechanical systems

SUMMARY OF RESOURCE RECOVERY MIXED WASTE FACILITIES IMPLEMENTATION

March 1978

Location	Type*	Capacity (TPD)	Products/Markets S	Start-up Date
SYSTEMS IN OPERATION:				
Altoona, Pennsylvania	Compost	200	Humus	1963
Ames, Iowa	RDF	400	RDF-Utility, Fe, Al	1975
Baltimore, Maryland (D)	Pyrolysis	200	Steam Heating &	1975
Baltimore (Ounty Maryland (D)	DNE	מצט	COOLING, FE	1076
RIVERS AND	Z Z		CHOSE DESCRIPTIONS	1075
Dry creville, Ar Annons		000	Steam Process	5/61
F Bridowator Massachusetts (D)	ж с п	160	Steam Process DDE-H+ili+v	1971
	10 + 0 H	2 5		+ 10 -
rrankiii, onio (b)	Wet rulp	0c	riber, re, Glass, Al	1761
Groveton, New Hampshire	MCC	30	Steam Process	1975
Milwaukee, Wisconsin	RDF	1000	RDF-Utility, Paper	2/77
			Fe, Al	
Nashville, Tennessee	MMC	720	Steam Heating & Colling	g 1974
Norfolk, Virginia	MMC	360	Steam-Navy Base	•
Oceanside, New York	RWI/WWC	750	Steam	1965/74
Palos Verdes, California	Methane Recovery		Gas Utility & Fe	1975
Saugus, Massachusetts	MMC	1200	Steam Process	1976
Siloam Springs, Arkansas	MCU	20	Steam Process	1975
South Charleston, West Virginia (D)	Pyrolysis	200	Gas, Fe	1974

^{*}RDF=Refuse-derived Fuel; WWC=Waterwall Combustion; RWI=Refractory Wall Incinerator with Waste Heat Boiler; MCU=Modular Combustion Unit; D=Pilot or Demonstration Facility.

SUMMARY OF RESOURCE RECOVERY MIXED WASTE FACILITIES IMPLEMENTATION

March 1978

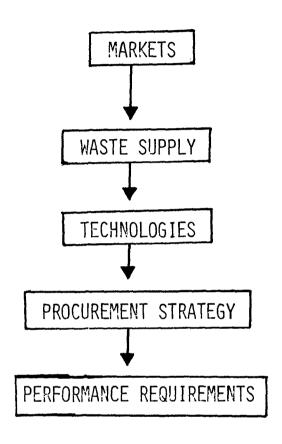
Location	Type*	Capacity (TPD)	Products/Markets C	Construction
SYSTEMS UNDER CONSTRUCTION OR IN STARTUP:	÷.			
Akron, Ohio Bridgeport, Connecticut	RDF/WWC RDF	1000	Steam Heating & Cooling RDF-Utility, Fe, Al,	9 7/78 6/78
Chicago, Illinois (Crawford) Hempstead, New York	RDF Wet Pulp/WWC	1000	RDF-Utility, Fe Electricity, Fe, Al,	11/76 9/78
Lane County, Oregon Monroe County, New York	RDF/WWC RDF	750 2000	RDF-Institution, Fe RDF-Utility, Fe, Al,	3/78 9/78
Mountain View, California (D) New Orleans, Louisiana (D)	Methane Recovery Materials	650	Gas-Utility Nonferrous, Fe, Glass,	6/77 6/78
Nigara Falls, New York Portsmouth, Virginia (shipyard) San Diego, California (D)	RDF/WWC WWC Pyrolysis	2200 160 200	Steam-Industry, Fe Steam Loop Liquid Fuel-Utility, Fe, Al, Glass	- 12/76 4/77

*RDF=Refuse-derived Fuel; WWC=Waterwall Combustion; RWI=Refractory Wall Incinerator with Waste Heat Boiler; MCU=Modular Combustion Unit; RDF/WWC=Waterwall Combustion using processed waste; D=Pilot or Demonstration Facility.

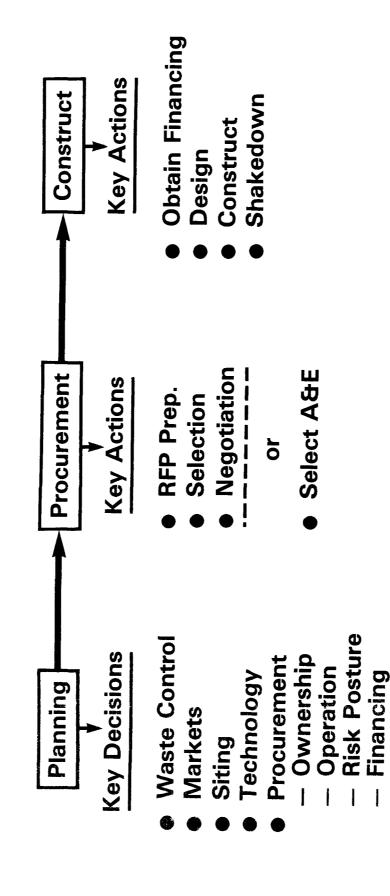
Implementation Approach

IMPLEMENTATION APPROACH

I. PRIMARY FACTORS


- A. Markets
- B. Waste supply
- C. Technologies
- D. Procurement strategy
- E. Performance requirements

II. ALTERNATIVE APPROACHES


- A. Procurement
- B. Financing

III. ISSUES

- A. Compatibility
- B. Citizen acceptance

The Implementation Process

Markets

MARKETS

I. INTRODUCTION

- A. "Markets first"
- B. Wasteville, USA

II. MARKETING TECHNIQUES

- A. Three marketing steps
 - 1. Identification
 - 2. Preliminary commitment
 - 3. Contract
- B. Waste composition defines potential products

III. ENERGY PRODUCTS FROM SOLID WASTE

- A. Energy products recovered from a ton of solid waste
- B. Potential buyers
- C. RDF
 - 1. Capacities of potential users
 - 2. Are electric utilities a viable market?
 - 3. Experience in marketing
- D. Steam
 - 1. Considerations in marketing
 - 2. Experience in marketing

E. Electricity

- 1. Considerations in marketing
- 2. Experience in marketing

F. Gas and oil

- 1. Considerations in marketing
- 2. Experience in marketing

IV. MATERIAL PRODUCTS FROM SOLID WASTE

- A. Ferrous metals
 - 1. Alternative users/values
 - 2. Buyer requirements
- B. Nonferrous metals
 - 1. Aluminum users/values
 - 2. Mixed nonferrous users/values
- C. Glass
 - 1. Use/value as cullet
 - 2. Use/value as aggregate
- D. Paper
 - 1. Matching of users and grades
 - 2. Values

MARKET IDENTIFICATION

TASK

IDENTIFY POTENTIAL USERS AND INITIATE DISCUSSION.

OUTPUTS

DATA ON:

PROMISING BUYERS

QUANTITIES SALABLE

 GENERAL QUALITY REQUIREMENTS APPROXIMATE VALVES

REMINDERS

- USE APPROPRIATE EXPERTISE
- KNOW WASTE STREAM AND RECOVERY POTENTIALS
- BE THOROUGH
- UNDERSTAND USER NEEDS
- BE AWARE OF LEGAL OBSTACLES

PRELIMINARY COMMITMENT

TASK

NEGOTIATE SPECIFICS; OBTAIN COMMITMENTS

OUTPUTS

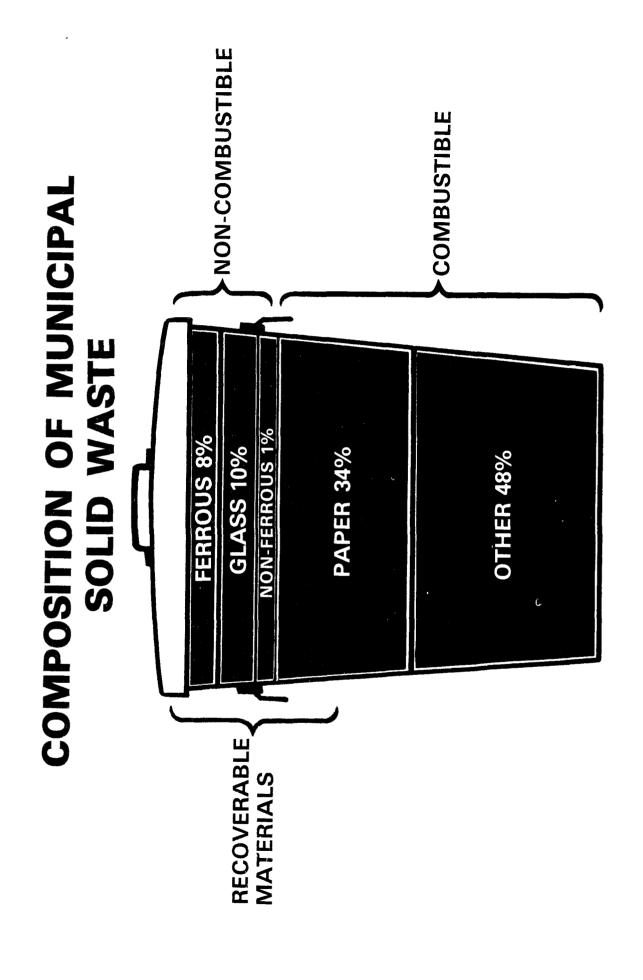
LETTER OF INTENT
MEMORANDUM OF UNDERSTANDING

REMINDERS

- UNDERSTAND PRICING
- CAN SPECIFICATIONS BE MET?
- COMPLETE BEFORE FINAL TECHNOLOGY SELECTION

FORMAL CONTRACT

TASK


OBTAIN COMPETITIVE BIDS; DEVELOP CONTRACT DOCUMENTS

OUTPUTS

SIGNED LONG TERM CONTRACTS WITH FLOOR PRICES

REMINDERS

- FINANCING, OWNERSHIP/OPERATION, ETC. FOLLOWS SELECTION OF TECHNOLOGY,
- PROBABLE CONTRACTOR RESPONSIBILITY

FROM 1 TON OF MUNICIPAL SOLID WASTE VALUE OF FUELS & ENERGY RECOVERED

\$ 2.10 — 8.40	\$3 - 12/TON	0.7 TONS	RDF
\$7.00 - 11.00	\$7 - 11/bbl	1 pp	OIL
\$5.00 — 15.00	$50 - 75 \text{¢} / 1000 \text{ft}^3$	20,000 ft ³	GAS
\$12.00 — 30.00	\$2 - 5/1000 lbs	sql 0009	STEAM
\$10.50 — \$35.00	1.5 — 5¢/KWH	700 KWH	ELECTRICITY
GROSS VALUE	VALUE/UNIT	OUTPUT	PRODUCT

FACTORS INFLUENCING UTILITIES INTEREST IN USING RDF

INFLUENCE	► STRONG POSITIVE FACTOR	LITTLE OR NO INCENTIVE	NOT A SIGNIFICANT SUPPLY	MAY CONFLICT	UNCERTAINTIES
FACTOR	PUBLIC IMAGE	ECONOMIC INCENTIVE	ALTERNATIVE FUEL	CONSISTENT WITH MISSION	TECHNICAL FEASIBILITY

DETERMINATION OF RDF VALUE

PRICE OF FOSSIL FUEL

INCREMENTAL COST OF USING RDF

VALUE OF RDF

NET

EXPERIENCE IN MARKETING RDF

	STATUS	USER	PRICE (\$/mmBtu)
Ames, Iowa	Operating	Municipal Power Plant	1.00 (Gross)
Chicago, Illinois	Shakedown	Commonwealth Edison Co.	0.30
Milwaukee, Wisconsin	Operating	Wisconsin Elec. Power Co.	To be Negotiated
Monroe County, New York	Construction	Rochester Gas & Elec. Co.	To be Negotiated
Bridgeport, Connecticut	Construction	United Illuminating Co.	To be Negotiated
Lane County, Oregon	Construction	To be Developed	To be Negotiated

EXPERIENCE IN MARKETING STEAM

	STEAM TYPE	USE	PRICE (\$/1000 lbs)
NASHVILLE	LOW TEMP./PRESS.	DISTRICT HEATING & COOLING	5.90
SAUGUS	HIGH TEMP./PRESS.	INDUSTRIAL	
BALTIMORE	LOW TEMP./PRESS.	DISTRICT HEATING	3.00
AKRON	LOW TEMP./PRESS.	DISTRICT HEATING & INDUSTRIAL	3.00

EXPERIENCE IN MARKETING ELECTRICITY

	USER	PRICE (¢/KWH)
HEMPSTED, L.I.	LONG ISLAND LIGHTING CO.	1.7—2.0
DADE CO., FLA.	FLORIDA POWER & LIGHT	

MATERIALS FROM MUNICIPAL SOLID WASTE

Component	Percent*	Recovery Efficiency	Gross Value (\$)	Revenue Per Ton of Waste (\$)
Steel	8	75 - 95	20-50	1.30-3.80
Non-Ferrous	1	40-70	200-350	.80-2.45
Glass	10	40-70	2-30	.10-2.10
Newspaper	6	40-70	10-35	.40-1.50

^{*}National Average

Source: U. S. Environmental Protection Agency, Office of Solid Waste, Resource Recovery Division, April 1977.

Notes:

- (1) Based on "most likely" outputs and values. Examples outside of these ranges are possible.
- (2) These are gross values and do not consider either the cost to produce these products or the cost of transport to a user.

MARKETS FOR FERROUS METAL

TYPICAL PRICE (\$/TON)	60 - 90% OF NO. 2 BUNDLES				
FORM	LOOSE NON-INCINERATED	LOOSE	L	DENSE	DENSE
USER	DETINNERS	COPPER PRECIPITATORS	STEEL MILLS	IRON FOUNDRIES	INTERMEDIATE PROCESSOR

MARKETS FOR FERROUS METAL

TYPICAL PRICE (\$/TON)	60 - 90% OF NO. 2 BUNDLES					
FORM	LOOSE NON-INCINERATED	TOOSE	DENSE		DENSE	
USER	DETINNERS	COPPER PRECIPITATORS	STEEL MILLS	IRON FOUNDRIES	INTERMEDIATE PROCESSOR	

MARKETS FOR NON-FERROUS METAL

User	Form	Typical Price* (\$/Ton)
Primary Producers	Clean Aluminum	300 - 350
	Medium Aluminum	200 - 250
Secondary Smelters	Mixed Aluminum	200 - 250
Intermediate Processor	Mixed Non-Ferrous	200 - 250

^{*}New York Market Price - March 1977 - F.O.B. Recovery Plants.

MARKETS FOR GLASS

USER	FORM	TYPICAL PRICE * (\$/TON)
CONTAINER PLANTS	HIGH PURITY	
- CLEAR	- COLOR SORTED	20-35
- COLOR	- COLOR MIXED	20-30
MISC.	LOW PURITY (80-90% GLASS)	2—5
* NEW YORK MARKET F	* NEW YORK MARKET PRICE - MAR. 77 - F.O.B. USER	B. USER

MARKETS FOR PAPER

TYPICAL PRICE* (\$/TON)	40	40	80	10
FORM	NEWS	CORRUGATED	LEDGER	MIXED NEWS CORRUGATED LEDGER
USER	NEWSPRINT MILLS	CORRUGATED BOARD MILLS	PRINTING/WRITING	BOXBOARD MILLS CONSTRUCTION PAPER MILLS

* CHICAGO MARKET PRICE — MAR, 78 — F.O.B. RECOVERY

Example of

Specification for Heavy Ferrous Metals

Composition: Miscellaneous magnetic steel of various

alloys substantially free of cans for

foods, beverages, and the like.

Dirt: Less than 1%.

Loose Organics: Less than 2%, including small amounts

of paint, paper, food wastes, etc.

Physical Description: Loose, free-flowing pieces, except for

miscellaneous lengths of wire.

Piece Size: 95% passing through an 8 x 8 inch screen.

Bulk Density: In excess of 50 pounds per cubic foot.

Example of

Specification for Light Ferrous

- Particle Size 90% 4" or less with not more than 20% being less than 1" nominal in size.
- 2. Ferrous Density Ferrous metal density should be between 20 and 24 pounds per cubic foot.
- 3. The recovered ferrous metals should not be in a balled form which would prevent MC&P's liquid chemical cleaners from reaching 95% of the metals surface.
- 4. There are no restrictions on inclusions of white goods in the recovered ferrous as long as such white goods are processed through shredder mills prior to magnetic separation and have a particle size not greater than 6" to 8" nominal.
- 5. Tramp inclusions in the recovered ferrous metal should not exceed 6%.

PROPOSED INDUSTRY SPECIFICATION FOR ALUMINUM

RECOVERED FROM MIXED MUNICIPAL REFUSE

GRADE A

The scrap aluminum in mixed municipal refuse must be separated from all other materials. If the material is reclaimed using dry processing following thermal treatment of the refuse, it must be baled to a density of 15-25 pounds per cubic foot. If the aluminum is separated from raw refuse or if wet processing techniques are used to separate the aluminum, the aluminum must be shredded or dried prior to baling. The shredded material must pass over a U.S. Standard 12 mesh screen to reduce fines (dust, dirt, sand, paint, etc.). Fines must not exceed three percent (3%) of gross weight. The finished product must be baled to a density of 15-25 lbs./ft. Alternatively, dry shredded material may be shipped loose if it has a density of 15-25 lbs./ft. Analyses will be on the melt of a total shipment.

Each shipment shall yield after melting a total net weight of at least 85 percent (85%) of the gross weight of aluminum scrap received and shall contain by chemical analysis the following maximum elements.

MAXIMUM
WEIGHT PERCENT
.30
.60
.25
1.25
2.0
.10
.05
.25
.05
.02
.02
.02
.04
.12
remainder

PROPOSED INDUSTRY SPECIFICATION FOR ALUMINUM

RECOVERED FROM MIXED MUNICIPAL REFUSE

GRADE B

The scrap aluminum in mixed municipal refuse must be separated from all other materials. If the material is reclaimed using dry processing following thermal treatment of the refuse, it must be baled to a density of 15-25 pounds per cubic foot. If the aluminum is separated from raw refuse or if wet processing techniques are used to separate the aluminum, the aluminum must be shredded or dried prior to baling. The shredded materials must pass over a U.S. Standard 12 mesh screen to reduce fines (dust, dirt, sand, paint, etc.). Fines must not exceed three percent (3%) of gross weight. The finished product must be baled to a density of 15-25 lbs./ft.³ Alternatively, dry shredded materials may be shipped loose if it has a density of 15-25 lbs./ft.³ Analyses will be on the melt of a total shipment.

Each shipment shall yield after melting a total net weight of at least 85 percent (85%) of the gross weight of aluminum scrap received and shall contain by chemical analysis the following maximum elements.

ELEMENT	MAXIMUM WEIGHT PERCENT
Si	.5
Fe	1.0
Cu	1.0
Mn	1.25
Mg	2.0
Cr	.3
Ni	.3
Zn	1.0
Ti	.05
Bi	.3
Pb	.3
Sn	.3
Others - Each	.05
Others - Total	.15
Al	remainder

SPECIFICATION FOR NONFERROUS METALS

Contents: Miscellaneous nonferrous metals,

including non-magnetic stainless

steel.

Size: 100% retained in 1/2 inch screen.

Cleanliness: Minimum 60% by weight metal.

Form: Loose, but not balled and dry.

SPECIFICATION FOR NON-COLOR SORTED GLASS FINES

- 1. SCREEN SIZING: 0% retained on 2-inch mesh screen. 10% max. through 140 mesh screen.
- 2. COLOR: Fines to contain only soda lime glass. No color mix specified.
- 3. LIQUID: No drainage from representative sample. Should be non-caking and free-flowing.
- 4. ORGANIC MATERIAL: Total paper, plastics and organic materials max. 0.25%.
- 5. MAGNETIC METAL: .05% max. .25 inch max. size.
- 6. NON-MAGNETIC METAL: SIZE
 +20 mesh

 NO. PARTICLES
 1 particle in 40 lbs.
 (max. size 0.25 inch)
- 7. SOLID INORGANIC OTHER THAN METAL:
 - 7.1 TOTAL INORGANIC AMOUNT: Max. 0.10% (nonrefractory) SIZE: Max. 0.25 inch
 - 7.2 REFRACTORY

 SIZE
 +20 mesh

 (Max. size 0.25 inch)

 -20+40 mesh
 2 particles in 1 lb.
 -40+60 mesh
 20 particles in 1 lb.

Special note -- it is anticipated that this product will be from flotation and size reduction processes where non-magnetic metals and refractory particles will have been removed.

Example of

Specification for Waste Newspapers

	Cons	ist	s of	new	spaper	packe	ed in	bales	of	not	less	than
54	inches	in	leng	gth,	conta	ining	less	than	five	per	cent	of
otl	ner pape	ers	•									

Prohib	oitive	mat	eria	ls	may	not	exc	eed	١.	•	•	•	•	•	•	•	•	0.5%
Total	outthr	ow	may	not	exc	ceed.						•					•	2%

Source: Paper Stock Institute of America, Specification Circular PS-72.

WHEREAS, the	
Corporation (hereinafter called the CORPORATION) endorses resource	
recovery from municipal solid waste as a means toward a cleaner	
environment and preservation of natural resources; and,	

WHEREAS, the CORPORATION recognizes the need to develop firm expressions of intent to purchase materials or energy products recovered from waste within known financial parameters as part of the planning process for a new endeavor such as this; and,

WHEREAS, the City of Anytown (hereinafter called the JURISDICTION), is evaluating the prospects of substituting resource recovery for the traditional means of solid waste disposal in its area; and,

WHEREAS, the JURISDICTION recognizes the need to establ	ish product
revenue bases for the determination of the economic feasibil	ity of
processing up to tons per day of municipal solid wa	ste to
produce up to tons per day of	(herein-
after known as the PRODUCT) in a form usable and acceptable	to the
CORPORATION according to the Specifications attached to the	AGREEMENT
and made part hereof; and,	

WHEREAS, the JURISDICTION may wish to assign this AGREEMENT to either public or private groups (hereinafter called the ASSIGNEE) who may operate a resource recovery facility for the JURISDICTION and thus have a requirement for a user of the quantity of PRODUCT herein described.

THEREFORE, in consideration of the fact that the legal authority to sell recovered products may rest upon a requirement to advertise for the purchase of such products, it is mutally agreed between the CORPORATION that:

- I. The CORPORATION, as an expression of its support of the municipal solid waste recovery program, agrees to:
 - of _____ tons per day of the recovered PRODUCT at prices not less than those entered here should the JURISDICTION or its ASSIGNEE be required or decide to effect a competitive procurement; and,
 - (2) agrees that if public bidding is not necessary and not the course chosen by the JURISDICTION or its ASSIGNEE, then the conditions of the AGREEMENT may be considered as a bona fide offer to purchase the recovered PRODUCT at prices not less than those stated here.

- (3) respond, should a bid be required, with a bona fide offer to purchase which will include the following:
 - (a) It will be a firm bid for five (5) years offering an Exchange Price either fixed or related to a commodity quote, and if the Exchange Price is not fixed, it will offer a Floor Price below which the Exchange Price will not fall during the term of the contract.
 - (b) The periodic price paid shall be \$_____
 less than the _____ of the previous
 period's quotations published in ______.
 - (c) If the Exchange Price is not fixed, a
 Floor Price will be bid which will not be
 below \$____ per ton f.o.b. (fill in
 dollar amount) the recovery facility (or
 CORPORATION'S plant choose one).
 - (d) The CORPORATION shall retain the right to reject any material delivered which does

not meet Specifications. Such rejection will be at the expense of the resource recovery plant.

- (e) The bid will be subject to force majeur.
- (f) It will be noted the Additional Conditions of the CORPORATION covering general terms and conditions of purchase, acceptance delivery, arbitration, weights, and downgrading not explicitly covered in the Letter of Intent or by reference, will be negotiated according to good business practices and include such Additional Conditions as are attached to this AGREEMENT and made a part hereof.
- (g) This AGREEMENT is null and void if during the period between its execution and the actual bid or negotiated contract the CORPORATION'S plant ceases operation or ceases use of this or equivalent grade of recovered PRODUCT.

- II. In accepting the assignment of this AGREEMENT, the JURISDICTION or its ASSIGNEE agrees:
 - specification assurance procedures for the recovered PRODUCT, using good industrial quality control practices in recognition of the CORPORATION's use technology as practiced in their _______ plant, so as to produce and offer the recovered PRODUCT for sale in a form and to the required Specification, usable in the plant with minimum alterations to present processing technology and business practices, and
 - (2) to require, should a contract be effected as a result of this AGREEMENT, that the PRODUCT be delivered to the CORPORATION according to conditions and prices determined herein and not diverted to the spot market which may on occasion be higher than the Exchange Price determined by the pricing relationship set forth here or as modified by the contract.
 - (3) that should the CORPORATION's plant, as specified herein, become saturated in its

ability to handle the recovered PRODUCT as a result of other Letters of Intent issued by the CORPORATION being converted into firm contracts for delivery and purchase prior to effecting such arrangements as a result of this commitment, the provisions of this AGREEMENT become null and void.

The JURISDICTION will consult with and obtain the approval of the CORPORATION concerning its intent to assign this AGREEMENT to any ASSIGNEE prior to such assignment.

The CORPORATION will communicate to the JURISDICTION or its ASSIGNEE that information about its use, technology and business practices which the CORPORATION at its sole discretion shall consider necessary so as to assure receipt of the recovered material in form and cleanliness necessary for use by the CORPORATION. Such communication shall be on a nonconfidential basis, unless otherwise subject to a subsequent confidentiality agreement.

The JURISDICTION in executing this AGREEMENT does not represent or bind itself to any obligation, legal or otherwise, that a resource recovery plant will in fact be constructed or placed into operation as a result of its present efforts.

This AGREEMENT shall become n	ull and void on without
any obligation on either party unl	ess steps toward assignment are made
or it is mutually extended by both	the CORPORATION and the JURISDICTION.
Witnessed by:	JURISDICTION
	By:
	Date:
Witnessed by:	CORPORATION
	By:
	Date:
ATTACHN	MENT
Specification for	

Source Separation

٠

MATERIALS RECOVERY THROUGH SOURCE SEPARATION

I. INTRODUCTION

- A. Outline of talk
- B. Waste stream composition
- C. Percentage of waste stream recycled
- D. Recycling centers

II. SINGLE MATERIAL RECYCLING

- A. Aluminum can recycling
- B. Paper recovery techniques
 - 1. Corrugated paper
 - 2. High-grade office paper
 - a. Office waste stream composition
 - b. Office paper separation case studies
 - 3. Newsprint recovery
 - a. Separate collection Fort Worth, Texas
 - b. Piggyback approach
 - (1) Rack Madison, Wisconsin

(2) Other piggyback methods

III. MULTI-MATERIAL SOURCE SEPARATION

- A. Somerville-Marblehead
- B. Other multi-material programs

IV. IMPLEMENTATION OF SOURCE SEPARATION

- A. Success factors
- B. Contractual elements
- C. Factors influencing participation rate
- D. Publicity techniques
- E. Management plan

CONTRACT PRICE STRUCTURE

	MARE	MARBLEHEAD	SOM	SOMERVILLE
	FLOOR PRICE	1976 RANGE	FLOOR PRICE	1976 RANGE
PAPER	\$5	\$12 - \$27	\$2	\$6 — \$21
GLASS	\$12	\$12	\$10	\$10
CANS	\$10	\$10 — \$16	\$5	\$5 — \$14

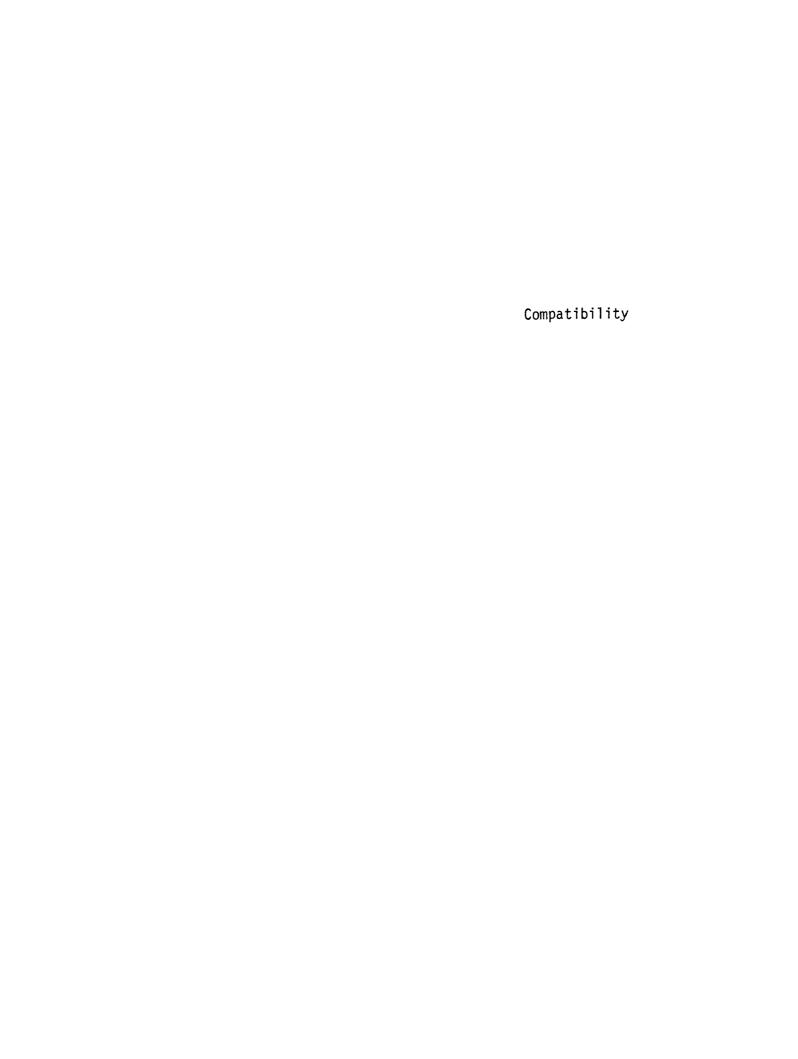
WASTE STREAM COMPOSITION (1974)

	% IN SOLID WASTE STREAM	% RECYCLED
PAPER		
NEWSPRINT	7.1	21.0
CORRUGATED	10.0	25.0
OFFICE PAPER	4.4	13.0
OTHER PAPER	14.2	9.8
GLASS	8.4	2.0
FERROUS CANS	4.1	1.0
ALUMINUM CANS	0.4	11.0
OTHER	51.4	0.0

WASTE COMPOSITION AT **EPA HEADQUARTERS**

PERCENT

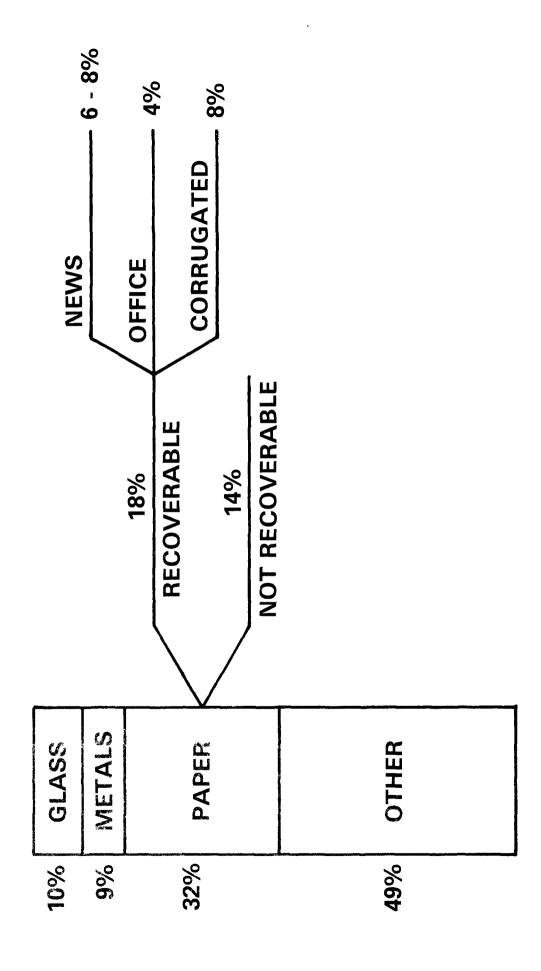
PAPER


WHITE LEDGER	40.2
COMPUTER TAB CARDS	0.7
COMPUTER PRINTOUT	10.6
COLORED LEDGER	3.3
NEWSPRINT	12.5
CORRUGATED	5.6
OTHER PAPER	13.4
OTHER WASTE	13.8

RECOVERY LEVELS 1976

	MARBLEHEAD	SOMERVILLE
RECOVERY RATE	%27	%8
TONNAGE PER MONTH:		
PAPER	92.5	134
GLASS & CANS	91.5	06
TOTAL	184	224

SOMERVILLE-MARBLEHEAD COST ANALYSIS (1976)


	Somerville	Marblehead
Revenue	\$32,449	\$34,003
Disposal Savings	36,225	37,406
Incremental Collection Costs	70,629	43,649
Net Savings	(1,825)	27,760

COMPATIBILITY

- I. COMPATIBILITY ISSUE DO ALTERNATIVE APPROACHES CONFLICT?
 - A. Source separation
 - B. Beverage container deposits
 - C. Energy and materials recovery plants
- II. IMPACT OF SOURCE SEPARATION OF PAPER ON ENERGY RECOVERY PLANTS
 - A. Quantity of paper recoverable
 - B. Impact on Btu content of solid waste
 - C. Impact on economics of an energy recovery plant
- III. IMPACT OF CONTAINER DEPOSITS ON SOURCE SEPARATION AND MECHANICAL RECOVERY
 - A. Quantity of metals and glass removed through deposits
 - B. Impact on economics of mechanical recovery
 - C. Impact on source separation
- IV. CONCLUSIONS

POTENTIAL FOR PAPER SEPARATION

PAPER SEPARATION PROGRAMS -

WHAT IS IMPACT ON BTU CONTENT? BIU CONTENI REDUCTION

4600 BTU/LB

No PAPER SEPARATION

Paper Separation (3-5 Percent Recovery)

0544

3%

WHAT IS IMPACT ON TIPPING FEE?

TIPPING FEE \$8,50 NO PAPER SEPARATION

INCREASE

None

2%

\$8,65 PAPER SEPARATION

CONTAINERS AS A PERCENT OF MATERIALS IN SOLID WASTE

		Containers as a Percent of Components
•	Ferrous	15%
	Aluminum	38%
	Glass	45%

IMPACT OF CONTAINER DEPOSITS ON MECHANICAL SEPARATION ECONOMICS

Increased Costs
(\$/Ton Incoming Waste)

Case_A

Plants That Don't Include Glass/Aluminum Recovery

Fe Recovery
$$.30 - .40$$
 Glass/Aluminum 0 $.30 - .40$

Case B

Plant with Glass/Aluminum Recovery Operations with Reduced Revenues

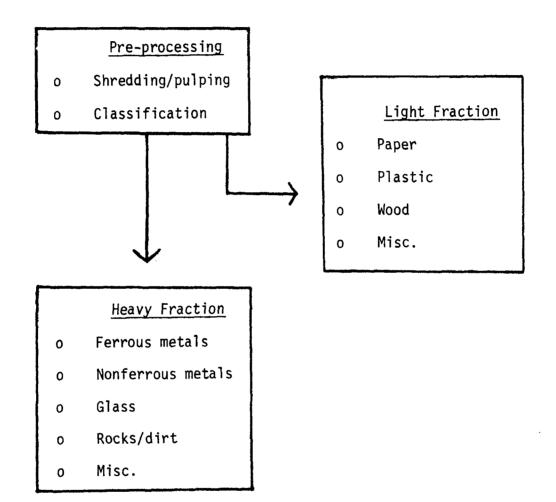
Fe Recovery	.3040
Glass/Aluminum	.4050
	.7090

Case C

Plant Discontinues Glass/Aluminum Recovery

Fe Recovery	.3040
Glass/Aluminum	.70 -2.00
	1.00 - 2.40

MECHANICAL PROCESSING AND RECOVERY


- I. INTRODUCTION "ADD-ON" CONCEPT
- II. PREPROCESSING FOR MATERIALS RECOVERY
 - A. Dry processing
 - Shred
 - 2. Air classify
 - 3. "Light" and "heavy" fractions
 - B. Wet processing
 - Hydropulper
 - 2. Liquid cyclone

III. MATERIALS RECOVERY SUBSYSTEMS

- A. Paper fiber recovery
 - 1. Equipment
 - 2. Product
 - 3. Franklin, Ohio demonstration results
- B. Ferrous metals recovery
 - 1. Equipment
 - 2. Product
 - 3. Postcombustion recovery
- C. Glass and nonferrous metals concentrates
 - 1. Trommel
 - 2. Jig

- D. Nonferrous metals recovery
 - 1. Recovery of a mixed nonferrous product
 - 2. Recovery of an aluminum product
 - a. Concept
 - b. Product characteristics
 - 3. Recovery equipment
 - a. Jig
 - b. Eddy current separator
 - 4. Economics of aluminum recovery
- E. Glass recovery
 - 1. Recovery of glassy aggregate
 - a. Recovery techniques
 - b. Uses of aggregate
 - 2. Cullet recovery
 - a. Froth flotation
 - (1) Equipment
 - (2) Product
 - (3) Economics
 - b. Color sorting
 - (1) Equipment
 - (2) Product
 - (3) Franklin, Ohio demonstration results
- IV. STATUS OF IMPLEMENTATIONS FOR GLASS AND METALS RECOVERY
- V. SUMMARY OF MATERIALS RECOVERY THROUGH MECHANICAL PROCESSES

MATERIALS RECOVERY PROCESSING

COMPOSITION OF HEAVY FRACTION¹ FROM AIR CLASSIFICATION

Combustibles	37.5
Glass	28.5
Ferrous	11.4
Non-Ferrous	6.8
Other Non-Combustibles	15.8

Average based on tests at the St. Louis RDF plant and the NCRR Environmental Test and Evaluation Facility in Washington, D. C. Assumes that 90 percent of ferrous metals are removed.

ALUMINUM RECOVERY ECONOMICS

	\$/Ton Raw Waste Input
Probable Gross Revenues	0.75 - 2.00
Probable Processing Costs	0.75 - 1.25
Net Revenues	(0.50)- 1.25

GLASS CULLET RECOVERY ECONOMICS (FROTH FLOTATION)

	\$/Ton Raw <u>Waste Input</u>
Probable Gross Revenues	0.50 - 1.75
Probable Processing Costs	1.25 - 2.00
Net Revenues	(1.50)- 0.50

GLASS CULLET RECOVERY ECONOMICS

(Color Sorting)

		ers/ton ste input
	(500 tpd msw facility)	(1000 tpd msw facility)
Probable gross revenues (includes glass and misc. ferrous and nonferrous metals)	\$2.78	\$2.78
Probable processing and facility amortization costs	\$3.46	\$2.30
NET COST (profit)	\$.68	(\$.48)

EFFICIENCY OF GLASS RECOVERY FRANKLIN OHIO

TO GLASS PLANT 6.3%

LOST IN HYDROPULPER 22%

STATUS OF NON-FERROUS RECOVERY

UNDER	HEMPSTEAD, N.Y.	MILWAUKEE, WISC. NEW ORLEANS, LA. MONROE CO., N.Y. BRIDGEPORT, CONN.
SHAKEDOWN		SAN DIEGO, CAL. (DEMO) BALTIMORE CO., MD. (DEMO)
OPERATIONAL	FRANKLIN, OHIO (DEMO)	AMES, IOWA
	JIGGING	EDDY CURRENT SEPARATION

STATUS OF GLASS RECOVERY

	OPERATIONAL	SHAKEDOWN	UNDER CONSTRUCTION
COLOR SORTING	FRANKLIN, OHIO (DEMO)		HEMPSTEAD, N.Y.
FROTH		SAN DIEGO, CAL. (DEMO)	NEW ORLEANS, LA. BRIDGEPORT, CONN. MONROE CO., N.Y.
GLASS RICH CONCENTRATE	AMES, IOWA	BALTIMORE CO., MD. (DEMO)	MILWAUKEE, WISC.

DIRECT COMBUSTION OF SOLID WASTE

I. INTRODUCTION

- A. Systems
 - 1. Waterwall combustion mass burning
 - 2. Waterwall combustion processed waste
 - 3. RDF
- B. Variations
 - 1. Adapt system to waste
 - 2. Adapt waste to system
 - 3. Adapt both

II. WATERWALL COMBUSTION - MASS BURNING

- A. History
- B. Terms
- C. Profile
 - 1. 260 plants world-wide
 - 2. Size
 - 3. Age
 - 4. Exportable energy products
- D. Description of technology
- E. American experience
 - 1. Chicago
 - 2. Harrisburg
 - 3. Saugus
 - 4. Norfolk
 - 5. Portsmouth
 - 6. Nashville
 - 7. Oceanside

- F. Implementations: Europe vs. America
 - 1. Land
 - 2. Energy
 - 3. Markets
 - 4. Commitment

III. WATERWALL COMBUSTION - PROCESSED WASTE

- A. Advantages/Disadvantages
 - 1. Fuel preparation
 - 2. Combustion method
 - 3. Materials recovery
- B. Experience
 - 1. Hamilton
 - 2. Akron
 - 3. Niagara Falls
 - 4. Dade County
 - 5. Hempstead

IV. SMALL STEAM GENERATORS

- A. Approach: Europe vs. America
- B. American technology
- C. Application
- D. Experience
 - 1. Siloam Springs
 - 2. Blytheville
 - 3. Groveton
 - 4. North Little Rock
 - 5. Crossville
 - 6. Industrial sites

E. Environmental considerations

V. CONCLUSIONS

- A. Available technology
 - 1. Waterwall combustion mass burning
 - 2. Waterwall combustion processed waste
 - 3. Small steam generators
- B. History of success
 - 1. Waterwall combustion mass burning
 - 2. Processed waste and steam generators
- C. Commitment

REFUSE FIRED STEAM GENERATORS PROFILE OF EUROPEAN

CATEGORY	PERCENT OF TOTAL SYSTEMS
SIZE	
 UNDER 500 T/D 	89
 500 TO 1000 T/D 	16
 OVER 1000 T/D 	16
DATE CONSTRUCTED	
 BEFORE 1960 	9
• 1960 — 1970	20
 AFTER 1970 	44
PRIMARY ENERGY PRODUCT	
 HOT WATER — DISTRICT HEAT 	
 STEAM — DISTRICT HEAT 	33
• ELECTRICITY	40

AMERICAN EXPERIENCE MASS BURNING

LOCATION	CAPACITY T/D	STATUS
• CHICAGO	1600	OPERATIONAL, NO STEAM RECOVERY
• HARRISBURG	720	OPERATIONAL, NO STEAM RECOVERY
NASHVILLE	720	OPERATIONAL
• SAUGUS	1200	OPERATIONAL
• U.S. NAVY NORFOLK	360	OPERATIONAL
PORTSMOUTH	180	OPERATIONAL
• BRAINTREE	240	OPERATIONAL
• OCEANSIDE	350	OPERATIONAL

EXPERIENCE

EUROPEAN - VS - AMERICAN

- LACK OF ALTERNATIVE DISPOSAL/NO LAND
- COSTLY ENERGY
- FAVORABLE INSTITUTIONAL FACTORS
- WASTE RESPONSIBILITY
- MARKETS
- COMMITMENT
- FINANCIALMANAGEMENT

- ALTERNATIVE DISPOSAL AVAILABLE/CHEAP LAND
- CHEAP ENERGY
- COMPLEX INSTITUTIONAL FACTORS
- LESS COMMITMENT
- BAD PRESS
- LOOK FOR CHEAPER OPTION
- NOT INVENTED HERE

WATERWALL COMBUSTION/ PROCESSED WASTE

FUEL PREPARATION

- SHREDDING
- PULPING

COMBUSTION

• SEMI-SUSPENSION

PRODUCTS

- STEAM
- ELECTRICITY

AMERICAN EXPERIENCE PROCESSED WASTE

LOCATION HAMILTON	CAPACITY T/D 600	OPERATING
AKKUN HEMPSTEAD	1,400	UNDER CONSTRUCTION
DADE COUNTY	3,000	UNDER CONSTRUCTION
NIAGARA FALLS	2,500	UNDER CONSTRUCTION

SMALL STEAM GENERATORS **APPROACH**

AMERICAN	
EUROPEAN	

- SCALE DOWN/
 FIELD ERECTED
- CONTINUOUS OPERATION
- WATERTUBE WALLS
- EXPENSIVE

PACKAGED UNITS/ SHOP FABRICATED

• WASTE HEAT BOILERS

CYCLIC OPERATION

• LESS EXPENSIVE

SMALL STEAM GENERATORS APPLICATIONS

- STEAM FLOW - 5,000 TO 50,000 CAPACITY RANGE - SOLID WASTE - 10 TO 100 TPD POUNDS/HR

SMALL COMMUNITIES

INSTITUTIONS/INDUSTRIES

LARGER COMMUNITIES (MULTIPLE UNITS)

SMALL MUNICIPAL STEAM GENERATORS EXPERIENCE

STATUS	
CAPACITY T/D	
LOCATION	

GROVETON, N.H.	45	OPERATIONAL
BLYTHEVILLE, ARK.	20	OPERATIONAL
SILOAM SPRINGS, ARK.	20	OPERATIONAL
CROSSVILLE, TENN.	09	OPERATIONAL
NORTH LITTLE ROCK, ARK.	901	OPERATIONAL

Refuse-derived Fuel

REFUSE-DERIVED FUEL

I. INTRODUCTION

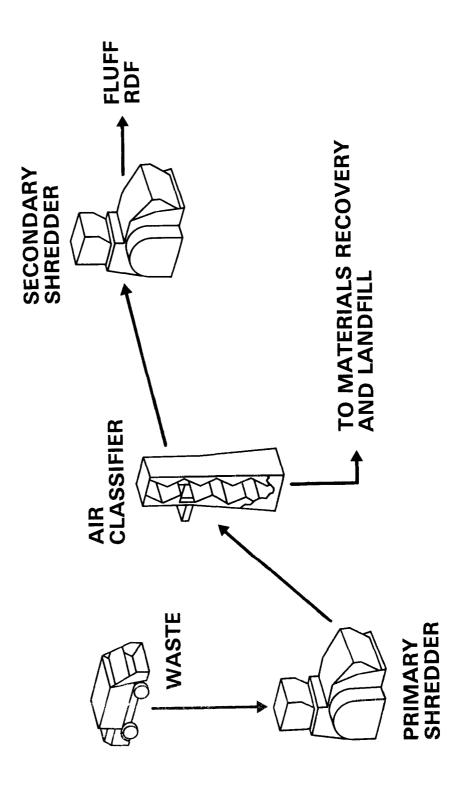
- A. Technology
- B. Operating results
- C. Review of recent implementations

II. TECHNOLOGY

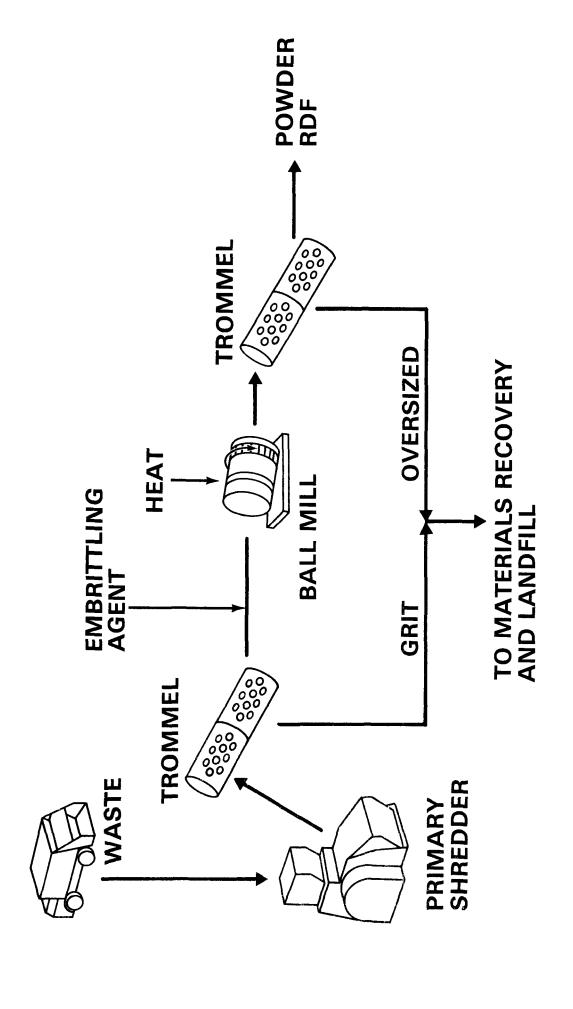
- A. Production of RDF
 - 1. Types of RDF
 - a. Fluff
 - b. Powder
 - c. Densified
 - 2. Characteristics of RDF vs. coal
 - 3. Fluff RDF production system
 - 4. Powder RDF production system
 - 5. Densified RDF production system
- B. Use of RDF as supplementary fuel
 - 1. Existing boilers designed to fire coal
 - a. Suspension
 - b. Grate and semisuspension
 - 2. Cement kilns

III. OPERATING RESULTS

- A. St. Louis project
 - 1. Test facility operated intermittently from 1972-1976
 - 2. Process system


- 3. RDF product
- 4. Power plant facilities
- 5. Processing plant operating results
- 6. Power plant operating results
- B. Ames project
 - 1. Full-scale "commercial" facility
 - 2. Process system
 - 3. Power plant farilities
 - 4. Processing plant operating results
 - 5. Costs

IV. REVIEW OF RECENT IMPLEMENTATIONS


- A. Plants in shakedown
 - 1. Milwaukee Fluff RDF
 - a. Process system
 - b. Power plant facilities
 - c. Americology/WEPCO agreement
 - d. Status
 - 2. Chicago Fluff RDF
 - a. Process system
 - b. Power plant facilities
 - c. Status
- B. Powder and densified RDF test facilities
 - 1. Powder RDF
 - a. Process system
 - b. Test burns

- 2. Densified RDF
 - a. Process system
 - b. Test burns
- C. Plants under construction
 - 1. Bridgeport, Connecticut
 - 2. Lane County, Oregon
 - 3. Monroe County, New York
- V. SUMMARY

PROCESSING STEPS FLUFF RDF

PROCESSING STEPS: POWDER RDF

CHARACTERISTICS OF RDF AND COAL

	<u>Fluff</u>	Powder*	Coa1
Heat Value (BTU/1b)	4,500- 6,000	7,800	11,000- 14,000
Particle Size (in)	12-112	<0.015	-
Moisture (%)	20-30	2.0	3-12
Ash (%)	15-25	9.4	3-11
Sulfur (%)	0.1-0.5	0.1-0.6	0.5-4.3

^{*}Data provided by CEA

RDF PARTICULATE EMISSIONS

- o St. Louis emissions not typical
 - Each situation is different
- o Need air pollution control engineer
 - St. Louis data on resistivity, size distribution, gas flow rates, etc.
 - Consider your project: ash, moisture, sulfur content of fuels; collection efficiency; boiler operation; etc.
- o If problem expected
 - Reduce RDF firing rate
 - Reduce boiler load
 - Beef up APC equipment

AMES EXPERIENCE POWER PLANT

- SPREADER STOKERS
- CONTINUOUS FIRING
- UP TO 50% RDF
- EXCELLENT BURNOUT
- SLAGGING
- SUSPENSION UNIT
- POOR BURNOUT
- LITTLE FIRING EXPERIENCE
- INSTALLING GRATE

AMES EXPERIENCE PROCESSING PLANT

- AVERAGE THROUGHPUT 150 TPD
- WASTE QUANTITY OVERESTIMATED
- DUSTY PROCESSING AREA
- ALUMINUM RECOVERY NOT **OPERATIONAL**

AMES ECONOMICS

	Cost per Ton
Capital Cost	\$14.50
(\$6.3 million, 7%, 20 years)	
Operating Cost	13.00
Revenues	
RDF (\$7.80)	
Ferrous (\$3.25)	(11)
Net Cost	\$16.50

MILWAUKEE SUMMARY

- o 1,200 tpd; fluff RDF
- o Operational spring 1977
- o Low quality RDF slagging
- o Shakedown/modification stage
- o WEPCO
- o Full service contract with American Can

CHICAGO SUMMARY

- o 1,000 tpd; fluff RDF
- o Operational 1978
- o Commonwealth Edison
- o EPA evaluation
- o A&E; G.O. bonds; city operation

BROCKTON SUMMARY

- o 20 tph; powder RDF
- o CEA
- o Demo/test facility
- o Operational spring 1977
- o Test burns at Waterbury, CT

D - RDF PRODUCTION

500 tons produced

Textiles jammed pelletizer

Die wear

No problem with moisture

Power: 6-8 KW-HR/ton

Costs: \$3-6/ton

Savings

D - RDF FIRING

20/40/100% of fuel requirement

No major problems

Air emissions

Particulates: No change

 SO_X : Decreased

C1: Increased

RDF PROJECTS UNDER CONSTRUCTION

Location	RDF	<u>Size</u>	RDF User
Bridgeport, Connecticut	Powder	1,800 tpd	UI
Lane County, Oregon	Fluff	400 tpd	UO
Monroe County, New York	Fluff	2,000 tpd	RG&E

WHO HAS (WILL HAVE) EXPERIENCE?

CONSULTING ENGINEERS

St. Louis - Horner & Shifrin, Inc.

Ames - Henningson, Durham & Richardson

Chicago - Ralph M. Parsons Co.; Consoer Townsend & Associates

CONTRACTORS

Milwaukee - American Can Co.

Bridgeport, CT - Combustion Equipment Associates, Inc.; Occidental
Research Corporation

Monroe County, NY - Raytheon Service Co.

Lane County, OR - Allis-Chalmers

Pyrolysis

PYROLYSIS

I. INTRODUCTION

- A. Definition
- B. Process parameters
- C. Major systems

II. UNION CARBIDE PROCESS

- A. Description
- B. Status

III. ANDCO PROCESS

- A. Description
- B. Status

IV. SAN DIEGO

- A. Process description
 - 1. Preliminary processing
 - 2. Organic pretreatment
 - 3. Flash pyrolysis
- B. Project status

V. BALTIMORE

- A. Process description
 - 1. Receiving and storage
 - 2. Shredding
 - 3. Storage of shredded waste
 - 4. Waste firing

- 5. Pyrolysis kiln
- 6. Afterburner
- 7. Steam production and distribution
- 8. Air pollution control equipment
- 9. Residue handling
- B. Project status
- C. Problems and solutions

VI. LESSONS LEARNED

PRODUCTS OF PYROLYSIS

REACTOR

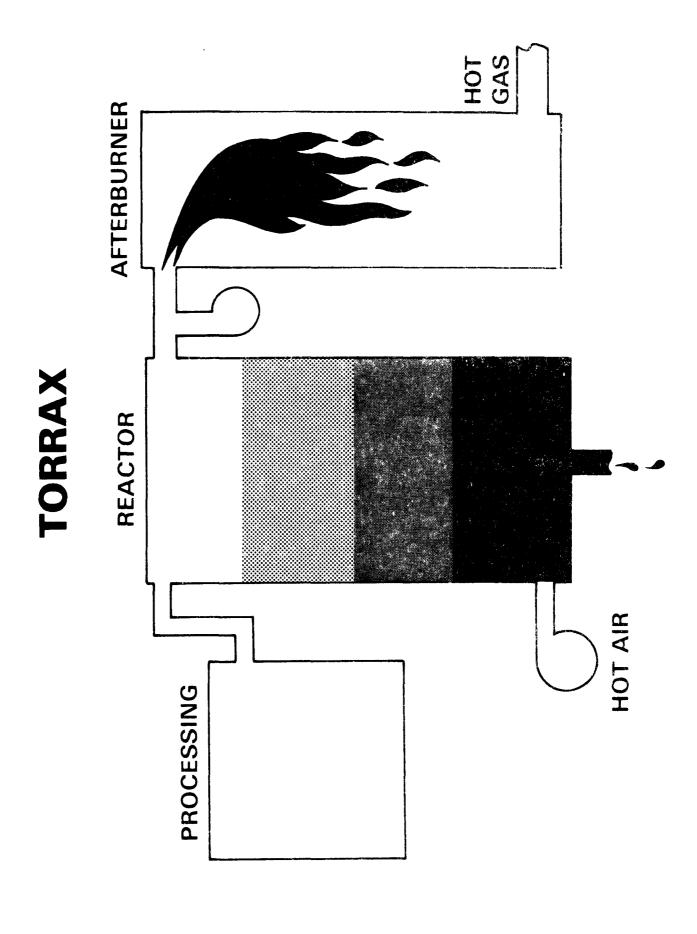
LITTLE OR NO OXYGEN

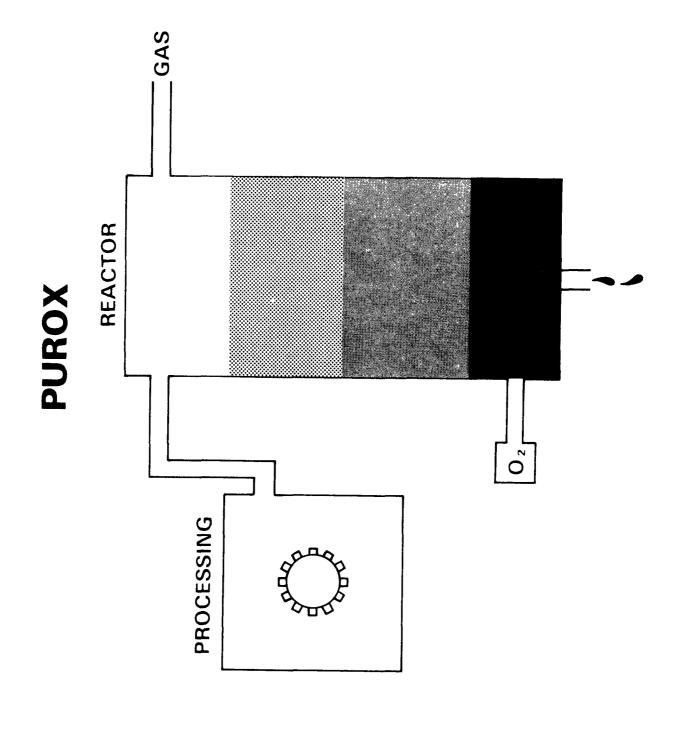
TEMPERATURE

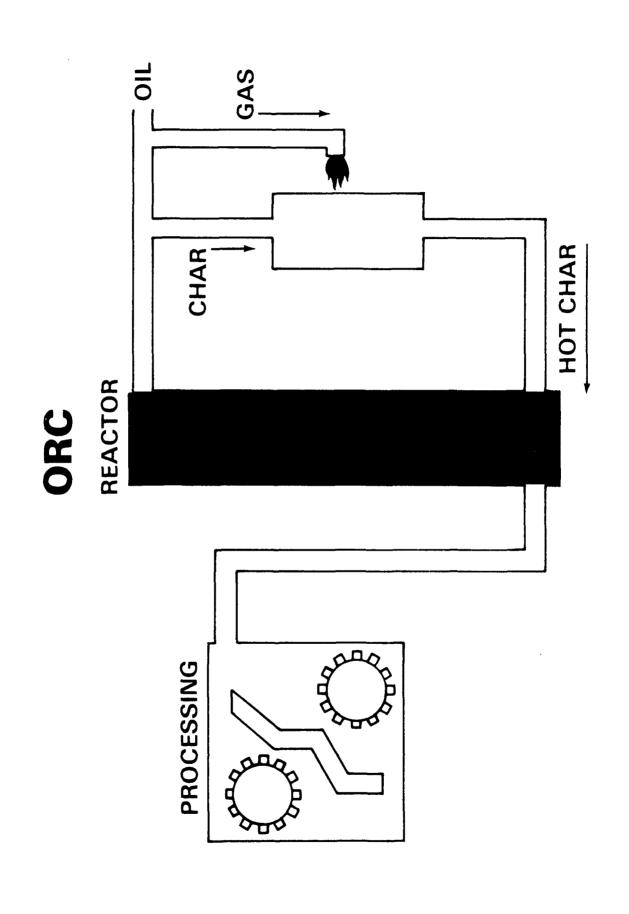
GASES

- TIME
- PRESSURE
- CATALYST

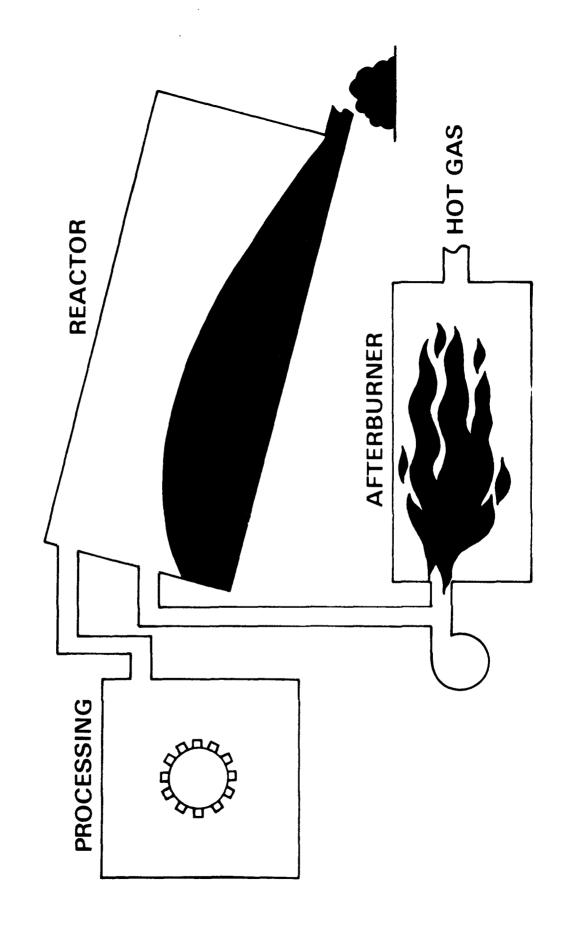
<u>louids).</u>




CHAR


CHEMICAL REACTION

ORGANICS


	PYROLYSIS	
PROCESS	PRODUCT	STATUS
LANDGARD (MONSANTO)	LOW BTU GAS FOR ON-SITE STEAM GEN.	EPA BALTIMORE DEMO (1,000 TPD)
FLASH PYROLYSIS (OCCIDENTAL PETROLEUM)	OIL-LIKE LIQUID FUEL	EPA SAN DIEGO DEMO (200 TPD)
PUROX (UNION CARBIDE)	MEDIUM BTU GAS	S. CHARLESTON W. VA., PILOT PLANT (200 TPD)
TORRAX (ANDCO)	LOW BTU GAS FOR ON-SITE STEAM GEN.	COMMERCIAL PLANT (200 TPD) IN LUXEMBOURG

BALTIMORE

Co-disposal

CO-DISPOSAL

I. INTRODUCTION

- A. Sludge disposal methods
 - 1. Landfilling
 - 2. Land application
 - 3. Ocean dumping
 - 4. Incineration
- B. Incineration technques
 - 1. Multiple hearth furnace
 - 2. Fluidized bed furance
 - 3. Other
 - 4. Energy recovery

II. APPROACHES

- A. Solid waste technology
 - Past attempts
 - 2. Evolved systems
 - 3. Experience
 - a. Germany
 - b. France
 - c. America
- B. Sludge incineraters RDF fuel
 - 1. Fluidized bed
 - 2. Multiple hearth
 - 3. Experience
 - a. Franklin
 - b. Concord

III. CONCLUSIONS

- A. Available technology
 - 1. Solid waste-fired steam generators
 - 2. Being replicated
- B. Developmental technology
 - 1. Incineration with RDF
 - 2. Pyrolysis with RDF
 - 3. Autothermic pyrolysis
- C. Integrated facilities optimal option?

SLUDGE DISPOSAL METHODS

TECHNIQUE	• LANDFILL	• LAND APPLICATION	OCEAN DUMPING	• INCINERATION
PERCENTAGE	25	25	15	35

APPROACHES TO THERMAL CO-DISPOSAL

- SOLID WASTE TECHNOLOGY
- MASS BURNING SYSTEMS
- REFUSE FIRED STEAM GENERATORS
- SLUDGE INCINERATOR TECHNOLOGY
- RDF AS A FUEL
- MULTIPLE HEARTH/FLUIDIZED BED FURNACES

SOLID WASTE TECHNOLOGY **EXPERIENCE**

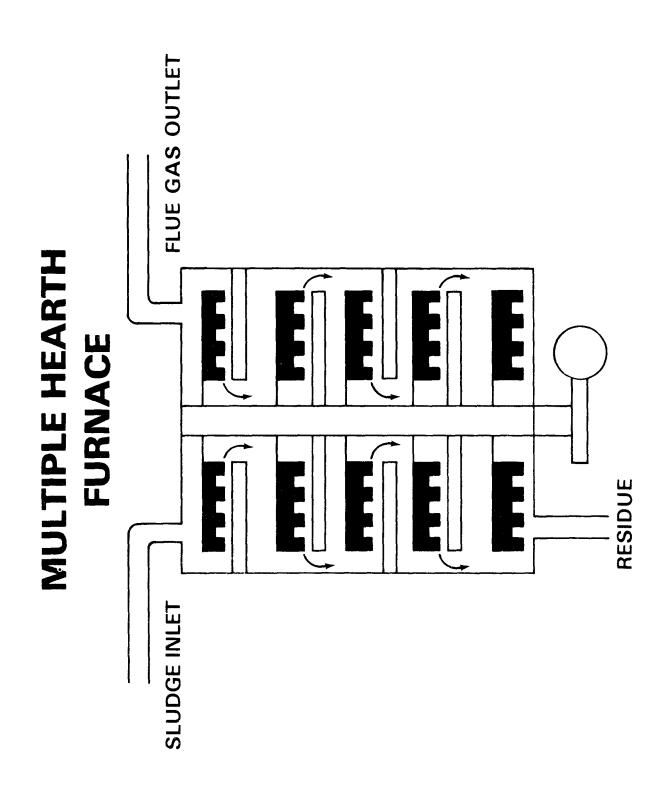
SLUDGE DRYING METHOD

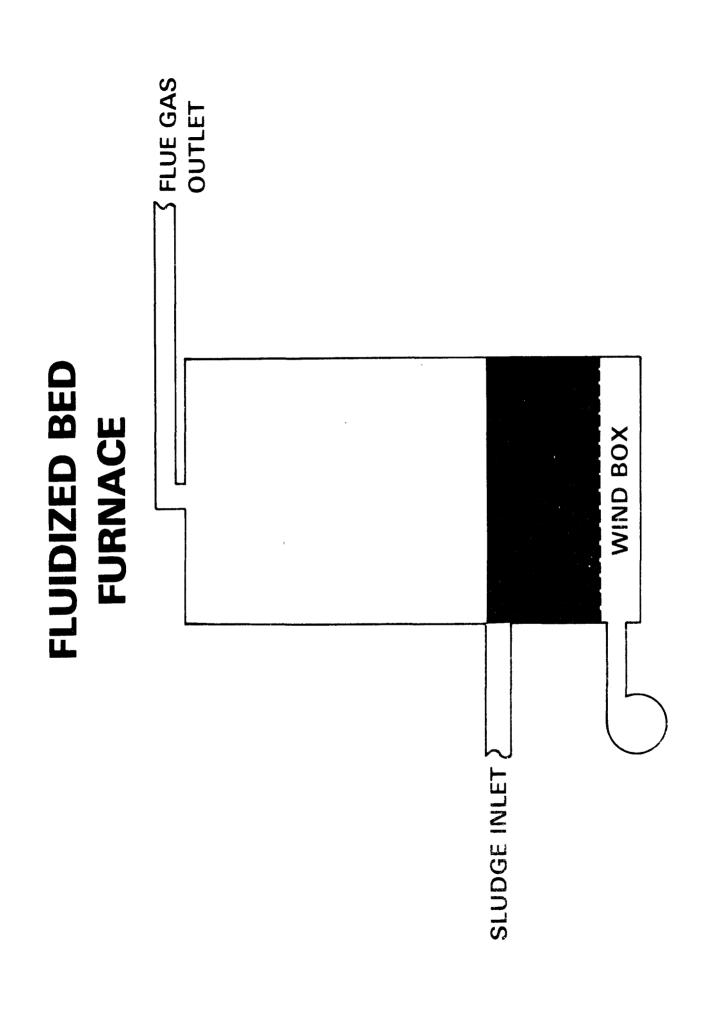
FLUE GAS

STEAM

ANSONIA, CT. DIEPPE, FR.

HOLYOKE, MA. BRIVE, FR.


DEAUVILLE, FR. ESSEN, F.R.G. GLEN COVE, N.Y. KREFELD, F.R.G.


INGOLSTADT, F.R.G.

HORSENS, DEN.

SLUDGE INCINERATION TECHNOLOGY FIRED WITH RDF

- FRANKLIN, OHIO
- CONCORD, CALIF.
 - DULUTH, MINN.
- MEMPHIS, TENN.

CONCLUSIONS

- AVAILABLE TECHNOLOGY
- DEVELOPMENTAL TECHNOLOGY
- INTEGRATED FACILITIES

Methane Recovery

METHANE GAS RECOVERY FROM LANDFILLS

- I. BIOLOGICAL DECOMPOSITION OF SOLID WASTE IN LANDFILLS PRODUCES
 METHANE GAS
- II. MIGRATION/BUILD-UP OF METHANE GAS CAN BE HAZARDOUS

Solutions: A. Install impermeable barriers

- B. Counterpumping
 - 1. Flare gas
 - 2. Recover gas

III. TYPICAL LANDFILL METHANE GAS COMPOSITION

	%
Methane (CH ₄)	50
Carbon dioxide (CO ₂)	48
Hydrogen (H ₂), Oxygen (O ₂),	
Nitrogen (N ₂), misc.	_2
	100%

IV. POTENTIAL UTILIZATION OF METHANE GAS FROM LANDFILLS

		BTU/SCF
Α.	Onsite use (raw gas)	450-500
В.	Offsite use (raw gas) in small	450-500
	industrial boiler	
С.	Offsite use in industrial boiler,	750-900
	in utility pipe line (after CO ₂ ,	
	H ₂ O removal)	

D. Onsite generation of electric power through use of landfill gas as fuel

V. METHANE RECOVERY OPERATIONS AT LANDFILLS

- A. Palos Verdes, CA
- B. Mountain View, CA
- C. Sheldon-Arleta, CA
- D. Azusa-Western, CA

VI. ECONOMIC FACTORS

- A. Quantity of landfill gas available
- B. BTU content of gas
- C. Cost per BTU of local natural gas and/or alternative fuels
- D. Capital cost for landfill gas processing equipment and facilities

Waste Exchange and Oil Recovery

WASTE EXCHANGE

I. INTRODUCTION

- A. What is a waste exchange?
- B. How does a waste exchange work?

II. DEFINITIONS

- A. Information exchange
- B. Materials exchange

III. HISTORY

- A. Foreign
- B. Domestic

IV. SUCCESS

- A. Past; present; future
- B. Most likely to succeed
- C. Potential partners
- D. Deterrents

V. SUMMARY

Waste Oil Recovery

- I. Waste Oil Resources.
 - A. Approximately 1.2 billion gallons of waste oil are generated each year in the United States.
 - B. Automotive lubricating oil accounts for the majority of the waste oils generated.
- II. Waste Oil Destinations.
 - A. Energy recovery accounts for over 50% of the waste oil reuse today.
 - B. Approximately 10% of the waste oil is rerefined.
 - C. 20% is used as a dust suppressant or asphalt extender.
 - D. As much as 20% is dumped or incinerated without any recovery occuring.
- III. Environmental/Resource Conservation/Energy Conservation.
 - A. Rerefining offers the most conservation benefits.

В.	Energy recovery requires complete "cleaning" of the oil or
	adequate pollution control technology to protect against air
	pollution problems.

IV. Federal Actions.

- A. Resource Conservation and Recovery Act.
 - 1. Hazardous Waste Management.
 - 2. Procurement.
- B. Energy Policy and Conservation Act Labeling Containers of 0il.
- V. Examples of State and Local Activities.
 - A. Utah.
 - B. Maryland.
 - C. San Diego, California.
- VI. What You Can Do.
 - A. Procurement of rerefined lubricating oil.
 - B. Selling of crankcase drainings to rerefiners.
 - C. Collection of waste oil by lube oil sellers.
 - D. Incentives for locating rerefiners in your region.

INFORMATION EXCHANGES IN THE UNITED STATES

March 1978

California

California Waste Exchange California State Health Department Vector and Waste Management 2151 Berkeley Way Berkeley, CA 94704 (415)843-7900 Ex. 434

Illinois

Environmental Clearinghouse Organization Illinois Liquid Waste Haulers Association 3426 Maple Lane Hazelcrest, IL 60424 (312)335-0754

Iowa

Iowa Industrial Waste Information Exchange CIRAS, Building E Iowa State University Ames, Iowa 50010 (515)294-3420

Georgia

Georgia Waste Exchange Georgia Business and Industry Association 181 Washington Street, S.W. Atlanta, GA 30303 (404)659-4444

Minnesota

Minnesota Waste Exchange Minnesota Association of Commerce and Industry 200 Hanover 480 Cedar Street St. Paul, Minnesota 55101 (612)227-9591

Missouri

St. Louis Industrial Waste Exchange St. Louis Regional Commerce and Growth Association 10 Broadway St. Louis, MO 63102 (314)231-5555

New Jersey

New Jersey State Waste Exchange New Jersey State Chamber of Commerce 5 Commerce Street Newark, N.J. 07102 (201)623-7070

New York

Industrial Material Bulletin EnKarn Corporation P.O. Box 590 Albany, N.Y. 12201 (518)436-9684

Syracuse Waste Exchange Allied Chemical P.O. Box 6 Solvay, N.Y. 13209 (315)487-4198

Ohio

Industrial Waste Information Exchange Columbus Industrial Association 1515 West Lane Avenue Columbus, OH 43221 (614)486-6741

Oregon

Portland Recycling Team 1801 N.W. Irving Portland, OR 97209 (503)228-5375

Tennessee

Tennessee Waste Swap
Tennessee Department of Public Health
Division of Solid Waste Management
230 Capitol Hill Building
Nashville, TN 37219
(615)741-3424

Texas

Houston Waste Exchange Houston Chamber of Commerce 1100 Milam Building - 25th Floor Houston, TX 77002 (713)651-1313

Washington

Western Environmental Trade Association Park Place Suite 314 1200 6th Avenue Kent, WA 98101 (206)623-5235

MATERIAL EXCHANGES IN THE UNITED STATES

March 1978

California

Zero Waste Systems 2928 Popular Street Oakland, CA 94608 (415)893-8257

Massachusetts

National Resources Recycling Exchange 286 Congress Street Boston, Mass. 02210 (617)482-2727

New York

Union Carbide Surplus Products Group Investment Recovery Department 270 Park Avenue New York, N.Y. 10017 (212)551-2345

Health, Safety and Environmental Considerations

HEALTH, SAFETY AND ENVIRONMENTAL CONSIDERATIONS

I. INTRODUCTION

- A. Any waste processing facility will have environmental impacts
- B. It is possible to satisfy all environmental requirements
- C. Don't try to cut corners
- D. Topics to discuss
 - 1. Air emissions
 - 2. Bacteria and virus
 - 3. Fires and explosions
 - 4. Noise
 - 5. Water effluents
 - 6. Solid residuals

II. AIR EMISSIONS

- B. New ESP's on waterwall combustion units are meeting new Federal and State regulations
- C. There have been problems too

- D. It's cheaper to do it right the first time
- E. St. Louis results
 - 1. No increase at design load of boiler
 - 2. Two-fold increase at "normal" operating load
- F. New attainment of National Ambient Air Quality Standards
 - 1. Conflicting objectives
 - 2. Must offset new sources by eliminating existing sources
- G. Dust
 - Plant interior
 - 2. Plant exterior
 - 3. Controlling dust can be costly

III. BACTERIA

- A. Associated with high dust levels
- B. High counts measured in St. Louis
 - 1. Not in worker areas
 - 2. No dust control
 - 3. Sampled within ducts
- C. Controlling bacteria

IV. FIRES AND EXPLOSIONS

- A. Two types of explosions
 - 1. Deflagrations
 - 2. Detonations
 - 3. Control of explosions

V. NOISE

- A. At the property line
- B. Within the plant

VI. WATER EFFLUENTS

- A. No unique problems
- B. Conventional solutions available

VII. SOLID RESIDUALS

- A. No system recycles everything
- B. Still must have a sanitary landfill
- C. Some residue can be recycled

Economic Considerations

TWO COMMON QUESTIONS

- A. Which system is cheapest?
- B. How much will it cost?
 - Questions cannot be answered as stated because:
 - o Each situation is different
 - o There is no universally cheapest system
 - o Cost data, without details, are meaningless

II. WHICH SYSTEM IS CHEAPEST?

No answer - RDF vs. Waterwall combustion example

III. HOW MUCH WILL IT COST?

- A. Which cost elements are included?
 - 1. Capital cost elements examples of relative magnitude
 - 2. 0 & M cost elements examples of relative magnitude
- B. Specific features of project
 - 1. Financing method
 - 2. Design features
 - Markets
- C. Accuracy of estimates
 - 1. Level of technology development
 - 2. Level of system design

IV. SUGGESTIONS FOR EVALUATING COSTS

V. KEEP COSTS IN PERSPECTIVE

HOW MUCH WILL IT COST?

- o Which cost elements are included
- o Specific features of implementation
 Financing method
 Design features
 Markets
- Accuracy of estimate
 Level of technology development
 Level of system design

CAPITAL COST ELEMENTS

	(000)	%
Construction	\$26,400	57
Land and site preparation	2,100	4.5
Contingency	2,800	6.0
Engineering	4,000	8.6
Start-up	5,200	11
Interest during construction	4,500	9.7
Financing, legal, spare parts,		
construction management	1,500	3.2
Debt reserve	-	-
	\$46, 500	100
	\$46,500	100

O & M COST ELEMENTS

	(000)	_%
Labor (including overhead)	\$2,000	35
Utilities	1,100	19
Consummables (supplies, parts)	1,100	19
Replacement Equipment	-	-
Residue Disposal	530	9.3
Insurance, Taxes, Licenses	160	2.8
Management Fees	790	14
Bond Reserve Fill-up	-	-
		-
	\$5,680	100

COST VS. DESIGN FEATURES

Reliability

Utilization

System Size

Products

Health and Safety Considerations

Site Conditions

Architectural Treatment

COST VS FINANCING

%8		\$11.25	\$9.00	
6 %		\$10.00	\$7.50	
INTEREST RATE	AMORTIZATION	15 YR	25 YR	ACCIIMEC.

ASSUMES:

\$50 MILLION CAPITAL COST 2000 TPD, 260 DPY

ACCURACY

NS

LEVEL OF SYSTEM DESIGN

DESIGN LEVEL

ACCURACY DEVIATION

FEASIBILITY STUDY

20-40%

40 - 50%

PRELIMINARY DESIGN

10 - 20%

FINAL DESIGN

SUGGESTIONS FOR EVALUATING COSTS

- o Published costs will not apply to your situation.
- O Understand the limitations of cost estimates -- ask for ranges and accuracy limits.
- o Ask for costs to be broken down in detail -- compare apples with apples and make sure all apples are accounted for.
- o Be wary of cost estimates for unproven technologies.
- o Acquire proper expertise to help analyze costs.

Contracts, Risks and Financing

CONTRACTS, RISKS, AND FINANCING

I. INTRODUCTION

- A. The implementation process
- B. Outline of talk
 - 1. Managing implementation
 - 2. Plant procurement
 - 3. Risk management
 - 4. Financing
 - 5. Developing the RFP

II. MANAGING IMPLEMENTATION

- A. Elements of good management
- B. Minimize conflicts of interest

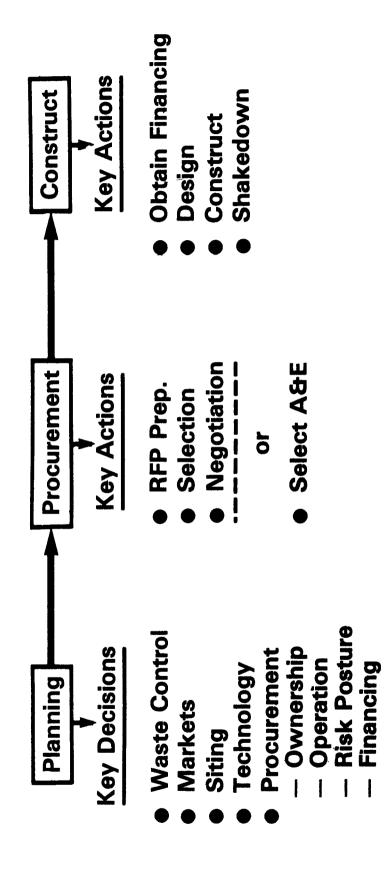
III. PLANT PROCUREMENT

- A. Procurement strategy
- B. Procurement approaches
- C. Which procurement approach is best?
- D. Why it is important to select one procurement approach and stick with it

IV. RISK MANAGEMENT

- A. Elements of risk management
 - 1. Identify the sources
 - 2. Identify the consequences
 - 3. Identify the probabilities
 - 4. Reduce the risk
- B. Categories of risk
- C. Ways to reduce risk
- D. Who will accept the responsibility?

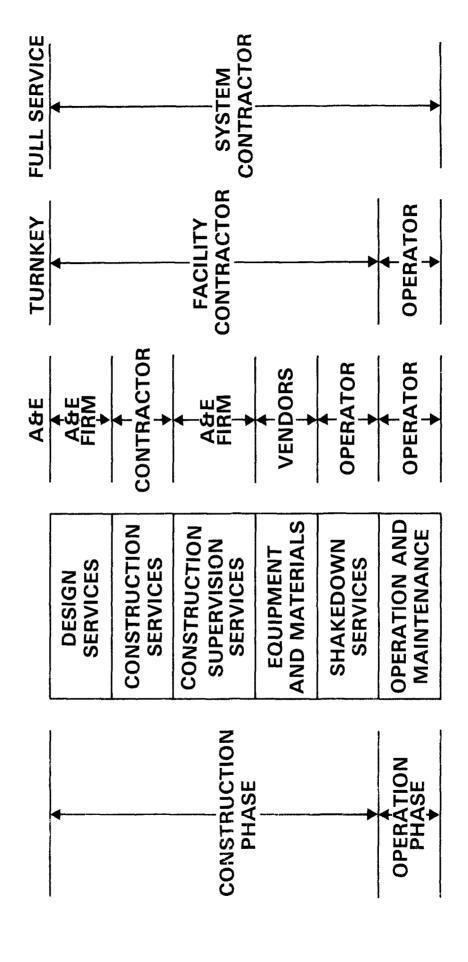
V. FINANCING


- A. Options to consider
- B. Making a project financeable

VI. DEVELOPING THE RFP

- A. What the RFP should include
 - 1. Technical requirements
 - 2. Management requirements
 - 3. Financing requirements
 - 4. Environmental requirements
 - 5. Contractual requirements
- B. Alternative approaches
- C. Selection and negotiation

- D. Resource recovery categories
- E. Ways of reducing risks
- F. Who will accept risks
 - 1. How many involved, who has control
 - 2. Who will accept risks
- G. Cost of accepting risks
- H. Conclusion


The Implementation Process

ELEMENTS OF GOOD MANAGEMENT

- COMMITTMENT TO THE PROJECT
- STRONG LEADER/GOOD STAFF
- APPROPRIATE USE OF CONSULTANTS
- COORDINATION WITH OTHER INTERESTED GROUPS
- CAREFUL PLANNING, SCHEDULING, REVIEW

FACILITY CONSTRUCTION AND OPERATION PROCUREMENT APPROACHES

EXAMPLES OF RISK

CATEGORY

EVENT

- FACILITY
- CONSTRUCTION
- OPERATION

UNRELIABLE PERFORMANCE

INCREASE IN REQUIRED INVESTMENT

- AM CHANGE IN TONNAGE
- WASTE STREAM
- MARKETS
- CATASTROPHIC EVENTS
- CANCELLATION OF CONTRACT
- STORMS, SABOTAGE, STRIKES

WAYS TO REDUCE RISK

CATEGORY

STRATEGY

FACILITY

LESS COMPLEX TECHNOLOGY
MORE PROVEN TECHNOLOGY
EXPERIENCED DESIGNER
BUILT-IN RELIABILITY
EXPERIENCED OPERATOR

WASTE STREAM

CONTROL OF WASTE

MARKET

EARLY SURVEY OF MARKETS
MORE ACCEPTABLE PRODUCT
LONG TERM CONTRACT

CATASTROPHIC EVENTS

DESIGN INSURANCE

WILL A CONTRACTOR TAKE THE RISK?

APPROACH	FULL SERVICE		YES	YES	NO	YES	SHARE
PROCUREMENT APPROACH	TURNKEY		YES	NO	NO	NO	NO
PR(A&E		ON	NO	ON	NO	ON
CATEGORY		• FACILITY	- CONSTRUCTION	- OEPRATION	 WASTE STREAM 	• MARKET	• CATASTROPHIC EVENTS

FINANCING AND PROCUREMENT APPROACHES

	A&E	TURNKEY	FULL SERVICE
GO BONDS	AMES CHICAGO		LANE COUNTY
REVENUE BONDS	HARRISBURG NASHVILLE		SAUGUS BRIDGEPORT HEMPSTEAD
отнев	NORFOLK BALTIMORE CO. MONROE CO.	BALTIMORE	MILWAUKEE NEW ORLEANS DADE COUNTY

SELECTION ALTERNATIVE STRATEGIES

2	PERFORMANCE	RFP	MARKETS	TECHNOLOGY	CONTRACTOR	
	PERFORMANCE PERFORMANCE	MARKETS	RFP	TECHNOLOGY	CONTRACTOR	
	PERFORMANCE	MARKETS	TECHNOLOGY	RFP	CONTRACTOR	
Parket.	PERFORMANCE	MARKETS	DESIGNER	TECHNOLOGY	BID	CONTRACTOR

FURTHER READING

ON

RESOURCE RECOVERY AND WASTE REDUCTION

The following information is a compilation of published and unpublished resource recovery and waste reduction information. Most have recently been developed by the U.S. Environmental Protection Agency. Unless otherwise stated, for copies, please write to:

Solid Waste Information
U. S. Environmental Protection Agency
Cincinnati, Ohio 45268
(Order blank attached)

I. GENERAL INFORMATION

- 390+ DECISION-MAKERS'S GUIDE IN SOLID WASTE MANAGEMENT. Environmental Protection Agency, 1976. 158 p.

 A series of two to five-page discussions of approximately thirty solid waste management topics including resource recovery and separate collection.
- 448 RESOURCE RECOVERY AND WASTE REDUCTION: THIRD REPORT TO CONGRESS. Environmental Protection Agency, 1975. 96 p.
 Examines policy issues, reviews technological progress, summarizes city and States activities, and reviews EPA studies and investigations for 1974.
- 600 RESOURCE RECOVERY AND WASTE REDUCTION: FOURTH REPORT TO CONGRESS. Environmental Protection Agency. January 1977. (In preparation.)

 Examines policy issues, updates solid waste generation and summarizes city, State and Federal Government activities in R&D, Guidelines and implementation of resource recovery and waste reduction programs during 1975-76.
- 344 RECYCLING AND THE CONSUMER. Environmental Protection Agency, 1974. 12 p.

 An introduction to recycling and waste reduction and what the individual can do to promote them.
- 443 COMPARATIVE ESTIMATES OF POST-CONSUMER SOLID WASTE. Smith, Frank. 1975. 18 p.

 Presents a comparison of the quantity and composition of municipal solid waste.

⁺The number at left is the number for ordering publications from the above address.

- A32 NATIONWIDE SURVEY OF WASTE REDUCTION AND RESOURCE RECOVERY ACTIVITIES.

 McEwen, L. 1977.

 A summary of progress in resource recovery projects throughout the United States. Updated periodically.
 - BASELINE FORECASTS OF RESOURCE RECOVERY. Midwest Research Institute. March 1975. 376 p. Distributed by the National Technical Information Service, U. S. Department of Commerce, Springfield, Va. 22151. Publication No. PB-245 924. Forecasts to 1990 the quantity of waste generation, the recovery of resources from municipal solid waste, the recovery of specific materials in solid waste, the total recoverable quantity of seven specific materials and the sources of generation for residential, commercial and industrial wastes.
- 528 DEMONSTRATING RESOURCE RECOVERY. EPA Staff. Reprinted from Waste Age, June 1976.

 A summary of EPA's resource recovery demonstration projects. Discusses problem encountered and gives current status.
- 505 WASTE REDUCTION AND RESOURCE RECOVERY: THERE IS ROOM FOR BOTH.
 Humber, N. Reprinted from Waste Age, November 1975.
 Defines terms and explains how resource recovery, source separation and waste reduction can work together.
 - THE IMPACT OF SOURCE SEPARATION AND WASTE REDUCTION ON THE ECONOMICS OF RESOURCE RECOVERY FACILITIES. Skinner, J. H. Presented at the Fifth National Congress on Waste Management Technology and Resource and Energy Recovery sponsored by the National Solid Waste Management Association. Dallas, Texas, December 9, 1976. Distributed by the Resource Recovery Division (AW-463), Office of Solid Waste, U. S. Environmental Protection Agency, Washington, D. C. 20460.
- II. WASTE REDUCTION
- 487 BEVERAGE CONTAINERS: THE VERMONT EXPERIENCE. Loube, M. 1975.
 16 p.
 Analyzes the impact of the Vermont beverage container legislation.
- 462 QUESTIONS AND ANSWERS ON RETURNABLE BEVERAGE CONTAINERS FOR BEER AND SOFT DRINKS. Environmental Protection Agency, June 1975. 9 p.
 Gives answers to frequently asked questions on deposit legislation and its impacts.

- 463 SOLID WASTE MANAGEMENT-GUIDELINES FOR BEVERAGE CONTAINERS.
 Federal Register, September 20, 1976. (40 CFR Part 244.)
 Guidelines for implementing a deposit system on beverage containers sold on Federal facilities.
- 572 UNTRASHING YOSEMITE PARK. Pierce, C. Reprinted from <u>EPA Journal</u>, October 1976.

 Review of the Yosemite National Park's experience with returnable beverage containers.
- PRICE SURVEY OF BEVERAGES IN REFILLABLE AND NONREFILLABLE CONTAINERS.

 Peterson, C. October 1976. 2-pg. press release.

 Summary of price comparison survey of beverages in refillable and nonrefillable containers.

III. MARKETS

- 518 MARKET LOCATIONS FOR RECOVERED MATERIALS. Howard, S. 1976. 88 P. Contains lists of actual or potential users of recycled paper, steel, glass, and aluminum. Certain key data are presented when available for each facility, including whether they use recycled materials and their yearly capacity.
 - OVERCOMING INSTITUTIONAL BARRIERS TO SOLID WASTE UTILIZATION AS AN ENERGY SOURCE. Prepared for Federal Energy Administration by Gordian Associates Inc., 1976. Distributed by the National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va. 22151. Will be available in July 1977.
- 343 THE NATIONAL BUYER'S GUIDE TO RECYCLED PAPER. Environmental Educators, Inc. October 1973. 208 p.
 Directory of paper companies and their distributors who manufacture products containing recycled paper. Products and recycled contents are listed.
 - USE OF REFUSE-DERIVED SOLID FUEL IN ELECTRIC UTILITY BOILERS.
 Lingle, S. A., and J. R. Holloway. Presented at the Fifth
 National Congress on Waste Management Technology and Resource
 Recovery sponsored by the National Solid Waste Management
 Association. Dallas, Texas, December 9, 1976. Distributed
 by the Resource Recovery Division (AW-463), Office of Solid
 Waste, U. S. Environmental Protection Agency, Washington, D. C.
 20460.
 Discusses the status of electricity utility use of solid waste
 as a supplemental boiler fuel, the concerns of the utilities

and a method for estimating value of solid waste as a fuel.

- IV. SOURCE SEPARATION AND PAPER RECYCLING
- 486 RESIDENTIAL PAPER RECOVERY: A MUNICIPAL IMPLEMENTATION GUIDE.
 Hansen, P. 1975. 26 p.
 Discusses municipal separate collection in terms of methods of collection, public vs. private collection, success factors, pilot vs. full-scale programs, and mandatory vs. voluntary separation.
- 553 RESIDENTIAL PAPER RECOVERY: A COMMUNITY ACTION PLAN.
 National Center for Resource Recovery, Inc. 1976.
 Describes how to conduct a public education campaign implementing a community source separation program.
 This is a companion document to #486.
- 400 A NEW LOOK AT THE ECONOMICS OF SEPARATE REFUSE COLLECTION.

 SCS Engineers and EPA Staff. Reprinted from Waste Age,
 May/June 1974.

 Discusses the economic implications of separate refuse collection.
 - ANALYSIS OF SOURCE SEPARATE COLLECTION OF RECYCLABLE SOLID WASTE. (2 vols.) SCS Engineers. 1974. Distributed by the National Technical Information Service, U.S. Dept. of Commerce, Springfield, Va. 22151. Will be available in July 1977. Final report of detailed case studies of separate collection and recycling centers. Discusses economics, equipment, public response and other influencing factors.
- 446 WHAT YOU CAN DO TO RECYCLE MORE PAPER. Environmental Protection Agency. 1975. 12 p.

 Guide for citizens interested in ways to recycle paper.
- 473 MATERIALS RECOVERY: SOLID WASTE MANAGEMENT GUIDELINES FOR SOURCE SEPARATION. <u>Federal Register</u>, April 23, 1976. (40 CFR Part 246.)
 Guidelines for source separation in Federal facilities.
 - A NEW LOOK AT RECYCLING WASTE PAPER. Citizens' Advisory Committee on Environmental Quality. 1976. 88 p. Distributed by the Superintendent of Documents, U.S. Government Printing Office, Washington, D. C. 20402. No. 040-000-00369-0. \$1.55/copy, 25% discount on orders of 100 or more.

 Report on a conference held May 11, 1976, sponsored by NCRR, involving key people knowledgeable on the subject of the recycled paper problem.

WASTEPAPER RECYCLING. 12 p.
WASTEPAPER RECYCLING FOR COMMERCE AND INDUSTRY. 12 p.
WASTEPAPER RECYCLING FOR CIVIC AND CHARITABLE GROUPS. 12 p.
OFFICE PAPER RECYCLING. 12 p.

Distributed by the American Paper Institute, Paper Stock Conservation Committee, 260 Madison Avenue, New York, N. Y. 10016.

Four brief brochures outlining considerations for starting municipal, civic, office or industrial paper collection programs.

- 510 DEMONSTRATING MULTIMATERIAL SOURCE SEPARATION IN SOMERVILLE AND MARBLEHEAD, MASSACHUSETTS. Hansen, P. and Resource Planning Associates. Reprinted from Waste Age, Feb. 1976. Describes two demonstration projects, funded in part by EPA, where source separated materials are collected for recycling.
 - EVALUATION OF A COMPARTMENTALIZED REFUSE COLLECTION VEHICLE FOR SEPARATE NEWSPAPER COLLECTION. SCS Engineers. 1976. 94 p. Distributed by the National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va. 22151. Publication No. PB-257 969.

 Presents information on the economic viability of a compartmentalized refuse collection vehicle for separate newspaper collection.
- 575 RESOURCE RECOVERY THROUGH MULTIMATERIAL SOURCE SEPARATION.
 Hansen, P. Reprinted from <u>Waste Age</u>, October 1976.
 Review of Somerville and Marblehead, Mass., source separation demonstrations.
- 551 SOURCE SEPARATION: THE COMMUNITY AWARENESS PROGRAM. Resource Planning Associates. 1976. 88 p.

 Describes the public education campaign conducted to kick-off the source separation programs in Somerville and Marblehead. Mass.

V. ECONOMICS

- 482 RESOURCE RECOVERY PLANT COST ESTIMATES. A COMPARATIVE EVALUATION OF FOUR RECENT DRY-SHREDDING DESIGNS. Smith, Frank.
 October 1975. 20 p.
 A standardized evaluation of cost estimates for four dry-shredding facilities.
 - ENGINEERING AND ECONOMIC ANALYSIS OF WASTE TO ENERGY SYSTEMS. Ralph M. Parsons Co., 1977. Distributed by the National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va. 22151.

 An evaluation of existing resource recovery systems. EPA Contract No. 68-02-2101.

- VI. MECHANICAL MATERIALS RECOVERY
- 558 COLOR SORTING WASTE GLASS AT FRANKLIN, OHIO. Garbe, Y. M.
 Reprinted from <u>Waste Age</u>, September 1976. An evaluation
 of the waste glass color sorting subsystem at the Franklin,
 Ohio, resource recovery demonstration project.
 - A TECHNICAL, ENVIRONMENTAL AND ECONOMIC EVALUATION OF THE GLASS RECOVERY PLANT AT FRANKLIN, OHIO. Systems Technology Corporation. 1977. Distributed by the Resource Recovery Division (AW-463), Office of Solid Waste, U. S. Environmental Protection Agency, Washington, D. C. 20460.
- VII. WATERWALL COMBUSTION
- 548 CAN NASHVILLE'S STORY BE PLACED IN PERSPECTIVE? McEwen, L. B,. and S. J. Levy. Reprinted from <u>Solid Waste Management</u>, August 1976. An evaluation of the technical problems encountered by the Nashville Thermal Transfer Corporation's waterwall incineration facility.
- 537 AIR EMISSIONS FROM SOLID WASTE-FIRED STEAM GENERATORS IN THE U.S. Sussman, D. Reprinted from Waste Age, July 1976.

 A list with discussion compiled from Various sources of particulate emission data from 100 percent solid waste-fired steam generators.
- VIII. SOLID WASTE AS A SUPPLEMENTARY FUEL FOR POWER PLANTS
- 538 EPA RESOURCE RECOVERY DEMONSTRATION: SUMMARY OF AIR EMISSIONS ANALYSES. Holloway, J. R. Reprinted from Waste Age, August 1976.

 Summary of St. Louis RDF project particulate, and bacteria and virus emissions testing at processing plant, and particulate and gaseous emissions at power plant.
 - ST. LOUIS/UNION ELECTRIC REFUSE FIRING DEMONSTRATION AIR POLLUTION TEST REPORT. Midwest Research Institute. August 1974. Distributed by the National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va. 22151. Publication No. PB-237 630.

 The result of EPA's air emission test conducted in December 1973 as part of the St. Louis energy recovery demonstration.
 - ST. LOUIS DEMONSTRATION PROJECT AIR FMISSION TESTS: EVALUATION OF UNREGULATED PARTICULATES, VAPORS, AND GASES IN POWER PLANT FLUE GASES. Holloway, J. R., and S. J. Levy. Distributed by the Resource Recovery Division (AW-453), Office of Solid Waste, U. S. Environmental Protection Agency, Washington, D. C. 20460. A summary of air emissions tests for unregulated substances.

IX. PYROLYSIS

- 537 BALTIMORE PYROLYSIS PLANT STATUS REPORT. Sussman, D. Reprinted from Waste Age, July 1976.

 A status report on the Baltimore demonstration project covering the period of January 1-June 30, 1976.
 - DEMONSTRATION OF PYROLYSIS AND MATERIALS RECOVERY IN SAN DIEGO, CALIFORNIA. Garbe, U. M. Reprinted from <u>Waste Age</u>, December 1976. Distributed by the Resource Recovery Division (AW-463), Office of Solid Waste. U. S. EPA, Washington, D. C. 20460.
 - REVIEW OF THE STATUS OF PYROLYSIS AS A MEANS OF RECOVERING ENERGY FROM MUNICIPAL SOLID WASTE. Levy, S. J. Presented at the Third Annual U. S. Japan Conference on Solid Waste Management May 12-14, 1976. 29 p. Distributed by the Resource Recovery Division (AW-463), Office of Solid Waste, U. S. Environmental Protection Agency, Washington, D. C. 20460.

 A technical review of four pyrolysis systems currently being marketed in the United States.

X. IMPLEMENTATION

- RESOURCE RECOVERY PLANT IMPLEMENTATION: GUIDES FOR MUNICIPAL OFFICIALS.
 - A series of publications covering all aspects of the planning and procurement process for resource recovery.
 - 533 PLANNING AND OVERVIEW. Lowe, R. A., and A. Shilepsky. 1976. 34 p.
 Discusses three major steps--study, selection, and procurement--leading to implementation of resource recovery with emphasis on significant issues and problems.
 - 550 TECHNOLOGIES. Levy, S. J. and H. G. Rigo. 1976. 81 p. A review of various technologies available to recover energy and resources from municipal solid waste.
 - 496 RISKS AND CONTRACTS. Randol, R. 1976. 52 p.
 Examines risks in resource recovery and possible risk allocations. Case studies of contractual arrangements in Milwaukee, Nashville, and Bridgeport.
 - 499 MARKETS. Garbe Y. M., and S. J. Levy. 1976. 47 p. Discusses the markets for energy and material products recovered from municipal solid waste.

- 493 ACCOUNTING FORMAT. Sussman, D. 1976. 17 p.
 Presents a standardized accounting procedure
 for resource recovery facilities.
- 471 FINANCING. Randol, R. 1975. 20 p.
 Discusses alternatives for financing resource recovery facilities.
- 495 PROCUREMENT. Shilepsky, A. 1976. 66 p.
 Discusses the process of preparing a Request
 for Proposals and evaluating the responses.
- 470 FURTHER ASSISTANCE. Hawkins, D. 1975. 29 p.
 Provides sources for information on resource recovery.
- 567 RESOURCE RECOVERY PLANNING: AN OVERVIEW OF THE IMPLEMENTATION PROCESS. National League of Cities. 1976.

 A brief discussion of issues to assist local officials in preparing and mobilizing the investigation of local resource recovery opportunities. This is a short version of # 533.
- 552 RESOURCE RECOVERY RFP AND CONTRACT SUMMARIES. Hawkins, D. 1976.
 54 p.
 Summaries of 12 requests for proposals (RFP's), 5 contracts
 and a letter of intent issues by cities, counties and States
 for resource recovery projects.

Order Blank

for

RESOURCE RECOVERY AND WASTE REDUCTIONCurrent Reports

	Name		
	Street		
	City, State, Zip		
Order Nos.		Publication Titles	

μσ1580R SW-3004

,		