United States Environmental Protection Agency Atmospheric Sciences Research Laboratory Research Triangle Park NC 27711

Research and Development

EPA/600/S3-86/035 Sept. 1986

Project Summary

Oxygen-18 Study of SO₂ Oxidation in Rainwater by Peroxides

Ben D. Holt and Romesh Kumar

This study was conducted to examine the usefulness of oxygen isotope ratio measurements in assessment of the importance of peroxide oxidation of SO₂ to SO₄² (hence to acid rain) in the atmosphere. A new analytical method was developed by which the oxygen isotope ratio in peroxide (ppb range) in rainwater could be determined. Supplies of H₂O₂ of differing isotope ratios were then generated, and, using these supplies to oxidize SO₂ to SO₄²⁻, a comprehensive isotopic relationship was established among H₂O₂, H₂O, and SO_4^{2-} . With this relationship, the isotopic quality of sulfate that might be formed in the atmosphere from aqueous-phase oxidation by peroxide was calculated. By comparing calculated to measured isotopic data for sulfates in rainwater, and assuming that this sulfate was formed by either metal (or carbon) catalyzed oxidation or by oxidation by peroxides, it was concluded that 40% or more of atmospheric sulfates in the summer rains in the northeastern U.S. are formed by peroxide oxidation.

This Project Summary was developed by EPA's Atmospheric Sciences Research Laboratory, Research Triangle Park, NC, to announce key findings of the research project that is fully documented in a separate report of the same title (see Project Report ordering information at back).

Introduction

Considerable interest has been shown in the possibility of using oxygen isotopy to elucidate the role of H_2O_2 in the oxidation of SO_2 to sulfates in the

atmosphere. Aqueous-phase oxidation of SO₂ to H₂SO₄ probably accounts for a major fraction of the observed SO₄² in the precipitation occurring in the northeastern United States. The key reactants responsible for this oxidation are not well known, although a large number of possible catalysts and oxidants exist in the atmosphere, including carbon, transition metal ions, hydroxyl and organic free radicals, hydrogen peroxide (including organic peroxides), and ozone. Of these, the last two are the only ones believed to be present in sufficient quantity to produce the observed amounts of SO₄² in wet deposition. It has been postulated that the atmospheric oxidation of SO2 is limited by the availability of one or both of these oxidants, rather than by the availability of SO₂ itself. This is the so-called phenomenon of nonlinearity between the concentration (and, by implication, the emission) of SO₂ in the atmosphere and the conversion of this SO₂ to H₂SO₄. If such is indeed the case, it is important to determine if peroxides have a pivotal role in acid formation and deposition from the atmosphere.

Oxygen isotopic studies are useful in distinguishing between the different oxidation mechanisms effective in the atmosphere. We have previously shown, by laboratory simulation of several different atmospheric reaction sequences, that the oxygen isotope ratio in the product SO₄² is uniquely related to the reaction pathway followed in its formation. The present work was undertaken to determine if atmospheric peroxide is responsible for significant oxidation of

SO₂ to sulfate and if it limits the aqueous-phase formation of sulfuric acid. The results of such studies can have significant implications for energy technology, particularly if they indicate that, because of the nonlinearity in SO₂ conversion discussed above, it may be more important to reduce the ambient concentrations of H₂O₂ than of SO₂.

in the 1981 JASON Committee Report to the U.S. Department of Energy, some recommendations for further research were based, at least in part, on our earlier work on SO₂ oxidation by laboratory reagent-grade H₂O₂. According to results of our earlier work, the $\delta^{18}O$ [deviation in parts per thousand (%) of the ¹⁸O/¹⁶O ratio of the sample from that of the standard reference material, Standard Mean Ocean Water (SMOW)] of sulfates produced by H₂O₂ oxidation were significantly lower than the δ¹⁸O of sulfates found in rainwater. However, the δ¹⁸O of the reagent-grade H₂O₂ used in those experiments was not known (although it has been found, in our current work, to be very different isotopically from atmospheric peroxides). It became evident that there was a need for isotopic analysis of H2O2 in dilute solutions and for a methodology in which the δ^{18} O values of H_2O_2 , H_2O , and SO_4^{2-} in rainwater could be compared to assess the importance of H₂O₂ in the formation of sulfate-constituted acid rain.

Approach

The plan of the investigation was to develop a method for the determination of the $\delta^{18}O$ of H_2O_2 in dilute aqueous solutions (simulating rainwater); to prepare solutions of H_2O_2 of various ^{18}O enrichments; to use the freshly prepared solutions of H_2O_2 to oxidize SO_2 to SO_4^{2-} for evaluation of the relationship between $\delta^{18}O_{SO_2^{2-}}$ and $\delta^{18}O_{H_2O_2}$; and to apply this relationship to the measured $\delta^{18}O_{H_2O_2}$, $\delta^{18}O_{SO_2^{2-}}$, and $\delta^{18}O_{H_2O}$ in precipation water, for assessment of the importance of H_2O_2 in the atmospheric transformation of SO_2 to sulfate.

Results

A new analytical method was successfully developed for the determination of the $\delta^{18}O$ of H_2O_2 (ppb range) in rainwater. The procedure that was finally adopted after many developmental experiments follows. Rainwater, collected in 25-L plastic bottles by four funnels (inverted plastic skylights, each of 1 m² catchment, connected to the bottles by plastic hose), was acidified

and kept refrigerated until the time of analysis for effective prevention of peroxide decomposition. A 20-L sample of the rainwater was degassed of dissolved air by a process of combined evacuation, ultrasonic agitation, and helium sparge (VUS). The dissolved peroxide was then oxidized to O2 by KMnO₄; the O₂ was removed from the water sample by the VUS treatment and conducted through a bed of charcoal and platinum, where it was quantitatively converted to CO2. The CO2, containing the same oxygen atoms as the peroxide from which it was derived. was analyzed mass spectrometrically for its δ^{18} O. Measurement of the amount of CO₂ also yielded information on the concentration of peroxide in the atmosphere.

Since there was no commercial source of $\rm H_2O_2$ solutions of various ^{18}O enrichments, solutions were prepared in the laboratory. Using a high-voltage method, water vapors of various $\delta^{18}O$ were subjected to a corona discharge that caused the formation of OH radicals; the OH radicals were condensed on a cold surface, where they combined to form $\rm H_2O_2$; the $\rm H_2O_2$ was diluted with water and preserved by refrigeration.

These stock solutions of H_2O_2 of different $\delta^{18}O$ values were then used to oxidize SO_2 to SO_4^{2-} . A linear relationship was established between the $\delta^{18}O$ of the sulfate and the $\delta^{18}O$ of the H_2O_2 . This relationship, combined with one we had previously determined between the $\delta^{18}O_{SO_4^{2-}}$ and $\delta^{18}O_{H_2O}$, gave a comprehensive one:

 $\delta^{18} O_{SO_4^{2-}} = 0.57 \ \delta^{18} O_{H_2O_2} + 0.43 \ \delta^{18} O_{H_2O} + 8.4\%.$

This relationship could then be used to calculate the $\delta^{18}O_{8O_2^{2-}}$, when both $\delta^{18}O_{H_2O}$ and $\delta^{18}O_{H_2O_2}$ were known. The relationship was used to com-

pare calculated values to measured values of $\delta^{18}O_{SO_4^2}$ in rainwater samples, in which all three isotopic qualities, $\delta^{18}O_{H_2O_2},\;\delta^{18}O_{H_2O},\;\text{and}\;\;\delta^{18}O_{SO_2^2-},\;\text{were experimentally determined.}$ It was found that the measured δ18O_{SO2}- in rainwater samples from four collection sites (Argonne, IL; Research Triangle Park, NC; Whiteface Mountain, NY; and Dearborn, MI), in the late spring and summer of 1985, ranged consistently between the corresponding calculated values for peroxide oxidation and for metal-catalyzed aqueous oxidation, indicating that the sulfate in the rainwater was a mixture of sulfates formed by the two mechanisms.

Conclusions

Relative deviations of the measured $\delta^{18}O_{SO_2^2}$ —values from the corresponding calculated values of the two competing mechanisms (peroxide oxidation and metal-catalyzed aqueous oxidation) indicated that at least 40%, and probably more, of the sulfate was formed by peroxide oxidation. Thus, the isotopic data obtained by our investigation indicate that peroxide oxidation of SO_2 is a major source of sulfate in rainwater and, therefore, that investigations of the origin and possible means of control of atmospheric peroxides are of prime importance.

B. D. Holt and R. Kumar are with the Argonne National Laboratory, Argonne, IL 60439.

Marcia C. Dodge is the EPA Project Officer (see below).

The complete report, entitled "Oxygen-18 Study of SO₂ Oxidation in Rainwater by Peroxides," (Order No. PB 86-216 751 / AS; Cost: \$9.95, subject to change) will be available only from:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-487-4650

The EPA Project Officer can be contacted at:
Atmospheric Sciences Research Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711

United States Environmental Protection Agency Center for Environmental Research Information Cincinnati OH 45268 OCT 21'86 PLANT U.S. POSTAGE U.

Official Business Penalty for Private Use \$300

EPA/600/S3-86/035

O000329 PS
USENVIR PROTECTION AGENCY
REGION 5 LIBRARY
230 S DEARBORN STREET
CHICAGO IL 60604