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PREFACE

The original goal of this work was to develop a specific model of
regional scale photochemical air pollution. However, as the work pro-
gressed and new developments and ideas continually emerged, the need was
seen for a general modeling framework within which the various physical
and chemical processes that play important roles could be treated in
modu]a; form. This would permit ongoing incorporation into the model of
state-of-the-art techniques without the need to overhaul the model each
time. The basic framework we have developed for this purpose is based on
phenomenological concepts and is presented in Section 2. Most of the sub-
sequent sections develop specific modules for use in implementing a first
generation model. Therefore, the techniques presented in those sections
should not be viewed as an integral part of the model but rather as one of
many possible methods that could be utilized to perform specific functions.
Moreover, in a few instances the techniques presented require further deve-
lopment before they can be employed in an operational role. This is par-
ticularly true of the mixed layer submodel given in Section 4.1. In short,
the reader will find in this report rather exact specifications of the
framework of a regional scale model but only rough sketches of some of the
components that are required to make the model work. In later parts of
this report we will describe the components that we assemble to construct
an operational, first generation regional scale model of photochemical air

pollution.
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As we approach the task of simulating air pollution chemistry and dis-
persion over multi day 1000 km scale domains, we move into a realm of prob-
lems that lies largely beyond the scope of empirical science. The classical
definition of turbulence and the empirical data that form the basis of
current short range diffusion models are insufficient to treat dispersion
and chemistry at long range. As a consequence we must turn to theoretical
science to provide the additional information we need and to formulate ex-
pressions for the quantities we wish to predict. With this shift from em-
piricism to theory there arises the somewhat philosophical question of
whether the limitations of theoretical science preclude the formulation of a
model that can provide the information that regulatory officials require.
One way of phrasing this question is this: given perfect emissions data,
perfect knowledge of the chemical kinetics, an exact solution to the turbu-
lence closure problem, and an infinitely large and fast computer, could one
predict within the limits of accuracy required the quantities needed in
regulatory studies? In Sections 6 and 7-we discuss this important question
in detail, and we lay the basis for an effort parallel to the model develop-
ment work that in principle can provide quantitative estimates of the uncer-
tainty, or “error-bounds", associated with the predictions of regional scale
models. In the author's view this task is crucial to the meaningful utili-

zation of model predictions in decision making processes.

R. G. Lamb
February 1982
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ABSTRACT

A theoretical framework for a multi-day 1000-km scale simulation model
of photochemical oxidant is developed. It is structured in a highly modular
form so that eventually the model can be applied through straightforward

modifications to simulations of particulates, visibility and acid rain.

The model structure is based on phenomenological concepts and consists
of th;ee and one-half layers. The interface surfaces separating the layers
are functions of both space and time that respond to variations in the
meteorological phenomena that each layer is intended to treat. Among the
physical and chemical processes affecting passage and distribution of photo-
chemical concentrations that the model is designed to handle are: horizontal
transport; photochemistry; nighttime wind shear and the nocturnal jet; cumulus
cloud effects; mesoscale vertical motion; mesoscale eddy effects; terrain
effects; subgrid scale chemistry processes; natural sources of hydrocarbons,
NOX, and stratdépheric ozone; and wet and dry removal processes, e.g., washout

and deposition.

The predictibility of pollutant concentrations at long range is considered
along with such related problems as the parameterization of "mesoscale" diffu-
sion and the design of model "validation" experiments. A basis is established
for estimating quantitatively the levels of uncertainty associated with disper-

sion model predictions.

This report focuses on theoretical aspects of the model and the question
of predictability. Results of the model's performance and quantitative assess-

ments of predictability will be presented in subsequent parts of this report.
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SECTION 1
INTRODUCTION

The objective of this study is to develop a model that can guide the
formulation of regional emissions control strategies. In this task the model
will be called upon to estimate the impact of sources on concentrations in
remote Eégions, to determine the pollution burden that cities impose on
distant neighbors, and eventually to analyze quantitatively emissions impacts
on acid rain, visibility and fine particulates. We believe that in all these
roles the utility and credibility of the model will be determined primarily
by the extent to which it accounts for all the governing physical and chemical
processes. Accordingly, in this report we will formulate a generalized
model that in principle can treat all of the chemical and physical processes
that are known, or presently thought, to affect the concentrations of air
pollutants over several day/1000 km scale domains. Among these processes

are (not necessarily in order of importance):
1. Horizontal transport;
2. Photochemistry, including the very slow reactions;

3. Nighttime chemistry of the products and precursors of

photochemical reactions;

4. Nighttime wind shear, stability stratification, and turbulence

"episodes" associated with the nocturnal jet;



___#

5. Cumulus cloud effects-—venting pollutants from the mixed
layer, perturbing photochemical reaction rates in their shadows,
providing sites for liquid phase reactions, influencing changes

in the mixed layer depth, perturbing horizontal flow;

6. Mesoscale vertical motion induced by terrain and horizontal

divergence of the large scale flow;

7. Mesoscale eddy effects on urban plume trajectories and growth

rates;
8. Terrain effects, on horizontal flows, removal, diffusion;

9. Subgrid scale chemistry processes--resulting from emissions

from sources smaller than the model's grid can resolve;

10. Natural sources of hydrocarbons, oxides of nitrogen (NOX) and

stratospheric ozone (03);

11. Wet and dry removal processes (e.g., washout and deposition).

Of the 11 processes listed above, only the first and last have been
treated in any detail in the regional scale models of air pollution developed
to date. In fact, a review of these models (see, for example, reviews by
Drake and Bass in Henderson et al. 1980) reveals that virtually all Eulerian
type models are in essence simply expanded urban scale models. They account
for the physical processes that are active during daylight hours and within
10 km or so of a source, but they neglect both the processes that are impor-

tant beyond this distance and those that are active at night.

When this model development work was initiated some 3 years ago, an

attempt was made to derive from the observational evidence available at



that time an estimate of the minimum vertical and horizontal resolutions
necessary to describe regional scale air pollution phenomena. The aim was
to arrive at the best compromise between the restrictions imposed upon the
model by computer time and memory limitations and the need to describe as
accurately as possible all of the governing processes cited earlier. We
reviewed the nitric oxide (NO), 0, and meteorological a "~ -aported in

Siple et al. (1977) by the participants of the 1975 Northeast Oxidant Trans-

port Study and made the following observations:

o 0Ozone concentrations at an elevation of 2 km are consistently
- between 40 and 60 ppb regardless of the concentrations below
this level. Exceptions occur when the base of the synoptic
subsidence inversion is above 2 km. On these occasions, 03
values at 2 km can reach 80 ppb. This suggests that the top

of the model need not be much higher than 2 km (- 800 mb).

o After the passage of a cold front and the onset of high pressure
in the study area, dry, strong subsidence inversions based
between 1700 m and 2000 m frequently occur. Ozone values within
these inversions usually appear to be about 50 ppb near the
base and to increase upward. Nitric oxide concentrations within
the inversion are very lean and are approximately constant with
height (see, for example, Siple et al. (1977), Flight 12,
Spirals 1 through 3; Flight 6, Spirals 1 through 3). These ob-
servations and the extreme dryness of the inversion air indicate
that this air might be of stratospheric origin. If so, entrain-
ment of inversion layer air into the mixed layer may result in

a contribution of stratospheric 03 to ground-level oxidant
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concentrations. This can be handled in the model by appropriate

material fluxes across the inversion base.

o Nitric oxide is usually uniformly distributed in the mixed layer
(the layer between the ground and the base of the subsidence
inversion). Exceptions consist chiefly of periods when maximum
NO occurs near the ground. Both characteristics can be accom-
modated in a model that represents the mixed layer with only 2

vertical levels.

0.- For the majority of the flights, there is strong evidence ¢f a
positive correlation between 03 concentration and dew point
temperature. The latter is a measure of the concentration
of water vapor (see Flight 3, Spirals 1 through 6; Flight 8,
Spiral 1). This suggests that the bulk of the 0, observed
in the study area is of an anthropogenic origin; if it originated
in the stratosphere, there would be a negative correlation between
03 and dew point. These observations also suggest that estimates
of the rate of transport of 03 and its precursors through the
top of the mixed layer by large-scale vertical motion and cumulus
clouds can be obtained from estimates of the transport of water
vapor in the upper atmosphere by these same processes. The latter
estimates can be obtained from surface and rawinsonde meteorolo-

gical data.

o When the Boston urban plume.spreads out to sea during daylight
hours, 03 concentrations in the plume are usually at a maximum
near the sea surface, and they decrease steadily upward (see

for example, Flight 2, Spirals 2, 3, 6, 7, 8; Flight 9, Spiral 1).



A plausible explanation of this pattern is that as the warm air
moves over the colder water, the layer of air in contact with
the water is cooled and thereby stabilized. As this occurs,
turbulent motions that otherwise would mix pollutants vertically
are attenuated, and rich mixtures of NOx and hydrocarbons remain
at Tow altitudes. With sufficient sunlight, large quantities of
03 can be produced in this air. The same type of stabilization
occurs at night over land as air in contact with the ground is
cooled by long wave radiation, but, in this case, the absence of
" sunlight results in a net decrease in 03 concentration. These
phenomena play a crucial role in determining the ultimate species
concentrations in an aged air mass that has spent part of its
1ife over the sea or over the land at night. To account properly
for these processes, the model must possess the ability to simu-
late the development of these shallow, stable layers adjacent to

the ground and the rates of chemical reactions within these layers.

o Marked changes in wind speed and direction often occur near the
interface between surface stable layers and the air mass above
and at the interface between the daytime mixed layer and the subsi-
dence inversion. The model must have separate layers to treat

each of these regions.

The characteristics of the 0, distribution described above would
require at the very least a 3-level .model: one level assigned to the
surface layer, a second leve] to the remainder of the daytime mixed layer,
and a third layer atop the mixed layer. The top level would be used in

conjunction with the mixed layer to account for downward fluxes of strato-



spheric 03 as well as upwérd fluxes of 03 and its precursors into the sub-
sidence inversion layer above. Material that entered this top layer could
be transported by winds aloft to areas outside the modeling region; it

could reenter the mixed layer by subsidence or entrainment; it could enter
precipitating clouds and be rained out of the atmosphere; or it could
undergo chemical transformation. Representing the subsidence inversion,
where cumulus clouds often form under stagnant high pressure conditions, the
top level of the model could be instrumental in simulating the chemical sink
effect of heterogeneous (within cloud droplets) reactions among 04, its
precuééors, and other natural and pollutant species. Including cloud effects
in the model would be especially important in simulating sulphur dioxide

(502) and sulfates.

Having 3 layers in a model is insufficient in itself to simulate the
phenomena we have discussed above. For example, 3 layers of constant thick-
ness are incompatible with the spatial and temporal variability that the
radiation inversion and mixed layer thicknesses are known to have. What is
needed in the model is 3 "dynamic" layers that are free to expand and con-
tract locally in response to changes in the phenomena they are intended
to treat. The model we will develop here possesses this property. Figure
1-1 illustrates the vertical structure of this model and the physical pheno-
mena that each layer is intended to simulate. The surfaces that comprise
the interfaces of adjacent layers in our model are variable in both space
and time in order that each layer can keep track of the changes that occur
in the particular set of phenomena that layer is designed to describe
(summarized in Figure 1-1). A consequence of this structure is that the

volumes of the grid cells vary in both space and time. By contrast, in
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conventional models the grid network and cell volumes remain fixed and
surfaces such as the mixed layer top move through the grid system. In
the following several paragraphs, we elaborate on some of the phenomena

cited in Figure 1-1 that our model will take into account.

During the day the highest layer shown in Figure 1-la represents the
synoptic scale subsidence inversion, which may or may not contain cumulus
clouds. Stratospheric 03 is transported downward through this layer and
anthropogenic O3 and its precursors can be carried into it by cumulus
clouds or penetrative convection, the depth of the penetration being deter-
mined mainly by the intensity of the temperature stratification in the in-
version and by the scale and intensity of convection in the mixed layer.

The base of this layer is normally 1 or 2 km above ground level. Below it
pollutants are kept well mixed vertically by turbulent convection. If the
winds are strong or the surface heat flux is weak, wind speed and direction
may vary appreciably within the first several hundred m above ground. There
is usually also a marked difference in the wind speed and direction between
the inversion Jayer and the mixed layer below. Over large lakes and along
sea coasts there is frequently a second inversion layer below that generated
by synoptic scale subsidence. This lower inversion is produced by sea or
lake breeze regimes and it restricts the vertical mixing of pollutants

emitted over the water and within several km inland from the water's edge.

Air drawn into young cumulus clouds originates primarily in the Tower
portion of the mixed layer. Fresh emissions of NOx and hydrocarbons can
transported by the vertical currents that feed these clouds from ground-
level to altitudes well above the top of the mixed layer in one steady, up-

ward motion. In the process little or no mixing with aged pollutants in



the mixed layer occurs. At night, cumulus clouds usually evaporate and, when
they do, they leave behind products of liquid phase reactions that can be

transported hundreds of km before sunrise.

When the daytime mixed layer is moist enough for cumulus humilis clouds
to form at its top, pollutant emissions can underg: , asi-cyclic series of
events that may have a great effect on the chemical Taté of pollutants and
particularly the formation of aerosol (Figure 1-~2). As shown in the figure,
the thermals, or vertical jets of warm air, of which cumulus humilis are a
part, have their roots near ground-level. Fresh emissions of pollutants
that enter a thermal can rise in 1 steady motion all the way to the top of
the mixed layer. Individual clouds mark the locations where air parcels
that compose thermals have become saturated and liquid water has formed.

In the saturated parcels, air pollution chemistry will be altered by the
sudden presence of 1iquid water and also by the accompanying-attenuation

of sunlight. The presence of cumulus humilis signifies that the upper layers
of the atmosphere are too stably stratified for thermals to penetrate higher,
and so in this instance the cloud tops bend over and the air of which they
are composed dives back down into the mixed layer (see Figure 1-2). As a
saturated parcel descends, it is warmed by compressional heating and even-
tually the cloud droplets within it evaporate leaving behind the residue

of aqueous phase reactions, probably in aerosol form. After some time the
parcel will arrive again at ground-level where new emissions may be injected
into it, and/or deposition on surfaces may occur; subsequently, the entire
process is repeated. The time required for 1 complete cycle would typically
be 30-50 min with maybe one-tenth of the time spent in the cloud stage.

The chemistry associated with the cycle we have just described could possibly

be studied in the laboratory by measuring the composition of initially moist,
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Figure 1.2, Idealized view of the fate of polluted air parcels in a
cumulus humilis topped mixed layer. A, parcel receives
emissions; B, it rises and cools; C, saturation occurs
producing cloud droplets; D, the parcel descends and
drys; and E, it receives new emissions and/or deposits
pollutants on surfaces. From E the cycle begins anew.
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polluted air as it is subjected to a series of expansions and compressions
in a cloud-chamber apparatus. The framework of the model that we develop

later will allow treatment of this process.

Dramatic changes occur in the mixed layer at night. With onset of
surface cooling following sunset, a stable layer of air forms near the
ground that quenches the vertical momentum fluxes that give rise to fric-
tional drag on the horizontal flow. With retardation forces eliminated,
the wind just above the stable layer accelerates giving rise to the pheno-
menon known as the nocturnal jet. Wind speeds in the core of the jet, which
usually lies between 300 apd 500 m above ground, may be 10-15 m/s while
at the same time the air is nearly calm at the surface. Emissions from tall
stacks and from sources within the urban heat island enter the jet region
at night. There they react with aged pollutants from the previous day and
are transported considerable distances by the strong flow. The remnant of
the previous day's mixed layer above the jet is isolated from the influence

of fresh emissions and it moves at a slower speed than air below.

Sporadic episodes of turbulence in the shear layer beneath the nocturnal
jet is a mechanism by which 03 and constituents of urban plumes are brought
to ground-level at night. There deposition on surfaces and reactions with
emissions of small, low-level sources occur. This sporadic mixing process
is perhaps the only mechanism by which the reservoir of aged pollutants aloft

can be depleted at night.

One point that we wish to emphasize here is that l-layer regional scale
air pollution models are incapable of simulating the effects on pollutants
Tike 03 of the vertical segregation of aged and fresh emissions that occur

at night. Being cut-off from contact with the ground and fresh NOx emissions,
12



03 above the nighttime radiation inversion . free to travel great distances
before it is mixed vertically by convection the following day. The effect

of this nighttime segregation of pollutants is to extend greatly the effective
residence times of species like 03 in the lower troposphere. Consequently,

a multi-layered model seems to be essential to simulate accurately the long

range transport of photochemical air pollutants.

The horizontal resolution of the model that we now plan to make opera-
tional is about 18 km. We want this resolution to be as high as passible
to mitigate the effects of subgrid scale concentration fluctuations. Since
appareﬁily few modelers are aware of this phenomenon, it is perhaps worth-

while to digress here with an'exp1anation of it.

Suppose we were simulating 03 concentrations within an urban region
covered by the 16 grid cells shown in Figure 1-3. Suppose further that at
some instant transport and diffusion ceased leaving NO and 03 unmixed and
partitioned in the manner shown. If NO and 03 are the only species present,
then clearly there will be no change in the concentrations in any of the

cells. In this case our model, using the rate equations

d0,
M- F- kW, (1-1)
would correctly predict
@:d =0
t  ~dt

where the overbar denotes an average over any 1 of the 16 cells shown in

Figure 1-3.

Suppose now that this same concentration distribution were contained

within a single cell (denoted by the heavy outer square in Figure 1-3) of

13



Figure 1.3.

NO 03 NO 03

03 NO 03 NO

Hypothetical case of an urban area in which ozone and NO
are segregated into 16 cells. If this distribution is
simulated in a regional model whose cell size is the large
outer square, subgrid chemistry phenomena arise.
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a regional model. Denoting mean values witi..n the regional cells by the

tilde (~) and using the counterpart of (1-1) we find

n
N

do N
dno _ SY3 -
e gp = -k N0O0y30 (1-2)

Thus, the regional model predicts decay of the O3 and NO within its cell
even though none is occurring. Note that this fictituous decay resulted
only from the increase in the horizontal cell size; with the small cells

the model simulated properly the absence of chemical reaction.

Obviously, it is the variability of concentrations within the model
grid céf1s (i.e., subgrid scale fluctuations) that is responsible for this
problem. In averaging a variéble we Jose information about its fine scale
structure. If this structure is important, as it is in second-order chemical
processes (but not first order reactions), and in rain out and washout pro-
Cesses where the spatial extent of the area of precipitation is comparable
to or smaller than the grid size, then either the loss of detajls must be
mitigated by keeping the averaging interval to a minimum size or a scheme
must be developed to parameterize the fine structure effects. We develop
such a scheme in this report (Section 5) and we implement it in Layer O,
which is adjacent to the ground (see Figure 1-1). This layer is treated

diagnostically in the governing equations.

There are 3 basic problems that must be overcome to make a model as

large and comprehensive as the one we plan to develop operational.

First, the empirical data needed to parameterize some of the physical
phenomena cited earlier are not presently available. To remedy this problem,
the Atmospheric Modeling Branch of Environmental Sciences Research Labora-

tory initiated project NEROS to collect during the summers of 197¢ and 1980

15



the meteorological and chemical data required to formulate the model. A
second goal of NEROS was to gather the data required to perform comprehensive

test runs and validation exercises of the model.

A second problem is limitations of computer storage capacity. To simu-
late air quality over the Northeastern United States w  the horizontal

4 g 1d points and it

resolution we desire, our model will have roughly 10
will treat 23 (eventually more) chemical species. Thus, the concentration
variables alone will require 250K words of storage and this is just under
the working 1imit of 260K words of memory on EPA's Univac computer. To
accommodate a model of the anticipated size we will have to develop special
techniques that permit handling the modeling domain in piecewise fashion.

This problem is addressed in Section 9 of this report.

Finally, due to the large number of processes that we will attempt to
treat, our model will be rather complicated. In order to alleviate the prob-
lems that this might cause in operating the model and in making future re-
finements, we will structure it so that its central core consists solely of a
set of algorithms for solving the coupled set of generalized finite different
equations that describe processes in each of its layers. The modeling
functions of describing the mixed layer dynamics, topographic effects on
wind, chemistry, cloud fluxes, etc., will be handled by a set of special
processors that are external to the central model and which feed the model
key variables through a computer file. Within this framework the techniques
used to describe the various physical processes can be altered without over-
hauling the model itself. An additional advantage is that execution times
are greatly reduced when several runs of a given scenario are to be performed

in which only 1 or a few parameter values are altered. Details of the model

16



system are given in Part II of this report.

In the sections that follow we develop in detail the theoretical bases
of the regional model. Operational aspects, refinements, validation exer-
cises and other details will be presented in subsequent volumes of this

report.
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SECTION 2

DERIVATION OF PROGNOSTIC EQUATIONS FOR LAYERS 1, 2 AND 3

Let ¢ denote the concentration of any pollutant species we wish to

model. Its mass continuity equation is

3C 3 =

T (cy) t 37 (cw) = S+ R - W (2-1)
where

Ty = the horizontal del operator

v = the horizontal component of the wind,

w = the vertical component of the wind, .

S = the source strength function of the species,

R = the net rate of production of ¢ by chemical reaction,
W = the rate of removal by rainout and washout.

Deposition is taken into account by the boundary conditions on (2-1).
In cases where c represents a photochemical pollutant, (2-1) is coupled
through the reaction term R to the equations governing other pollutant con-

centrations.

The surfaces separating the model layers will be expressed in the
implicit form

Hi(x,y,t) = zi(x,y,t) -z, i=0,1,2,3 (2-2)

18



The terrain surface will be denoted by g -nd we will allow it to extend
up through HO and H1 under certain conditions, which we will define later.

Each of the interface surfaces Hn is prescribed later, in Section 3.

Let ¢ be an arbitrary function of (r,t). We define the mean value

¢ in Layer j (= 0,1,2,3) to be

x+AX (y+ay Zj(x',y',t)

<¢(x,y,t)>js %1 o(x',y',2',t) dz'dy'dx’
I x-ax Jy-ay Jz. J(x',y',t)
3-1 (2-3)
where~
x+ax (y+Ay zj(x',y',t)
Vj(x,y,t) = dz'dy'dx’
Jx-ax |y-ay zj_l(x',y',t) (2-4)

In order to derive from Equation (2-1) the equation governing the mean
pollutant concentration <c>j in each layer, it is convenient at this
point to introduce some of the properties of time.and space derivatives
of volume averaged quantities defined by (2-3). Consider first the

time derivative 3<¢>j/at.

From (2-3) we obtain

' t gz-' - 1 H _Z_'_
J [o(x'sy'sz55t) 5H - ¢(x'ythzy gst) 331
A

wlow

Z-.

+

0 1 i t . oV,
5%-dz 1 dx'dy’ - <3?J P (2-5)

J
Zj-l

where dx dy denotes integration over an area 4axAy centered at

(x,y).
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From Equation (2-4), we obtain
. _ | 8z. _ 3z, _ . )
30 ° JA(atJ =gd - 1) dx'dy (2-6)

Let us define the following surface average:

X+AX  py+AY
. = -1_ 1 t 1 b} -
m.] i o[x',y ,Zj,t]dy dx (2-7)
X=AX y-4ay
where
A = 4axay (2-8)

This is simply the average of ¢, evaluated on the surface Hj, within the
rectangular area A centered at (x,y). We emphasize that (2-7) is not an

average over the projection of A on the surface H,. Using (2-7) and the

J
abbreviated notation
z; = az5/5t _ (2-9)
we can write (2-6) in the form
Vs | a3 _53-1, -
=£d A(zj zj_l ) (2-10)

Then, Equation (2-5) gives

3 = A J -1 3, 2 -

3T <¢>j VJ (¢2j ¢zj_1 ) + < 5t 3 <;;s>:j 5T In Vj (2-11)
Consider next the space derivatives of <>:

2>, = A [I.(x + 8x) - I.(x - ax)] - <>, == n V,  (2-12)

ax T J ViRl J J 3x J

J
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where
y+ay zj(a,y',t)
Ij(a) =

y-by

o(e,y',2',t)dz'dy’
zj_l(é,y »t)

(2-13)

We can transform Equation (2-12) into more familiar terms by comparing it with

%5
3%, .1 31t 4t Ayt i
<5yt 7, rdz'dy’ dx (2-14)
A zj_1
This equation can be simplified starting with
y+by
32 . 9Z;
_a___ ' = | [ J_ - ! ) -1
axl Ij(x ) {¢(X ’y ’zj’t) ax‘ ¢(X 9.y ’zj_19t) axl
y-by
z4 .
* 22+ dz')dy’ (2-15)
25
Combining Equations (2-14) and (2-15), we obtain
A —j-1 —
¢, -1 - - A (g 3Zi 1 o 4 9Z; -
< 3y v, [Ij(x + AX) Ij(x ax)] + Vj(¢ =31 - ¢ 533) (2-16)
and substituting from Equation (2-12), we find that
A —j-1 —
% . =23 A 3Z; 1 _ 4 324 a_ . -
S i T et v, (6 553-1 = ¢ 53) + <>y Fx ln Vy (2-17)
By analogy _
A —j-1 —j
3 o -8 A 32:.1 - 4 282 3_ . -
< 3y >J. 5y <¢>J. + Vj (¢ ByJ 1 -4 ayJ) + <¢>J. 3 In VJ (2-18)



Finally, we see from Equations (2-3) and (2-7) that

_3_2 = }_ ] ] - (] ] 1 ]
<5275 ° V. [o(x',y ,zj,t) o(x",y ,zj_l,t)]dx dy
3
3 A3 -1 -
<3273 vj( o7 - 9% ") (2-19)

We now have the relationships needed to derive the equations governing

<c>ye Performing the < > averaging on Equation (2-1) and making use of

Equations (2-11) and (2-17)-(2-19) we obtain

3 v 3 <uc>. aV.
3t <y - vs(czj - czj_l) + <c>, 3t n Vj e <ve> + —VE-J Y
J J j-1 j-1

<ve>. 3V, A az. 3z, A 3z, 3Z.
i i V& (uc 55 + ve 3}3) + v, (ue 333-1 + ve gyg-l)

v (ew -cw ) = <S>j + <R>j - <w>j - (2-20)

where v = (u,v). Recall that 2 = a3z/st.
Collecting terms representing averages over each of the surfaces Hj and

Hj-l’ we can express (2-20) in the more concise form

9 9 3
Sf'<c>j + <c>j 5T n Vj + YH <YC>j + <uc>j X £n Vj

3 _ - - -
+ <VC>j 3y in VJ = Vj[Fj Fj_l] + <S>j + <R>j <N>J. (2-21)
where dHJ
Fj = c g (2-22)
d__3 ,,. 3 )
etV WYy (2-23)
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v = (u,v) and Hj is given by (2-2). Note that Fj is the total flux of the
species represented by ¢ across the surface Hj within the area formed by

the projection of A, centered at (x,y), on Hj‘

In modeling atmospheric processes over 1000 km scale regions, earth
curvative effects must be taken into account. This can -~ done either
by transforming the governing equations into one of the u‘c:t1inear pro-
jections of the earth, such as polar stereographic, Albers equal area,
etc., or by casting the equations in curvilinear coordinates, such as
latitude - longitude. In either case the equations acquire a form different
from fhe well~known Cartesian form we have developed above. In Appendix
A we give the details of the transformation of Equation (2-21) into a
curvilinear frame in which latitude, Tongitude and elevation are coordinates
and the basis vectors point north, east and vertically upward at every point
on the earth. We have chosen this frame because it is a natural one from
which transformations to any rectilinear system are easily performed.
Also, it is the frame in which worldwide meteorological data are reported.

In the chosen frame Equation (2-21) takes the form

) alny. I<UC> . I<VEC> .
3¢ €5 T ey eI T uy T3 Ty T Y (2-24)
3lnV . alnV., ., A dH. dH.
M) <UC>j an 9 * Ho <VC>j 3¢ 3 * Vs (c dt‘]'1 -c dtJ]

= <S>j + <R>j - <W>.

J

where ¢ and u. are the metric factors

A ¢

! _
"X T3 cose * My T

1
a
a is the earth's radius at ms1; A is longitude; ¢ is latitude;

v is the north-south wind component; u is the east-west component;
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and

a_ R a_ a_ -
st T Uy Ty Vg YWz (2-25)

4
dt

The product mean terms that enter in (2-24) can be simplified through
use of the continuity equation for the atmosphere. In studies of flows
that are shallow comparable to the scale height of t - -mosphere, the
continuity equation can be simplified to the form

vevEQ (2-26)
(see Haltiner 1971, page 54).

Applying the < > averaging operation to this equation we obtain through
a process like that descr}bed in Appendix A,

atny .

I<U> + 2 .

UA X J u¢

<V> . alnV.
V> , oV, )
3o 9 T My Uy on d g vy

aH. 3H. -
——J-l + w 'a—Z—J-l] (2'27)

A
o ¥ 30

T
V; [v, ug3-1+u

+

A aH . 3H . dH.. _
- VS (uy U 53 +uy v 3gd T Wl s 0

In this equation, as in (2-24), the terms under the overbars are evaluated
on the surface Hj whose derivative is the product term.
Let us define the flux terms
<u'c's> = <uc> - <u><c>
<v'C'> = <vC> - <V><C> (2-28)
applicable to any of the 3 model layers. Note that under these de-
finitions, <u'> and <v'> are not necessarily zero. Making use of (2-27)

and (2-28) we can express (2-24) in the equivalent but more manageable form
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3 aLnV ; 3<C> 3<C>
2t <C>j + <C>j 3t ] + “A <U>j ™ J + “d: <V>j 3% -]
i alnV. 3lnV . 3
+ ) AR t A LY g 1)
1,1>‘<u(:>J 8AJ+U¢<VC>j 3% +u>\8>\<UC>j
§—<V'C'> + A [F .= F o] = <S>+ <R>. - <W>. (2-29)
Y 39 PTVRELE T j j J
where
F. ., = ¢c.v » VH. = <¢>, v » VH. + ¢ éﬂj (2-30)
ik T 7is 2 k2 25 j at -
and
=, O 3 4,3
VEL R Yy st ez

and cj and v denote concentration and velocity, respectively, evaluated on
surface Hj. By definition [Equation (2-30)], %,k is the rate of transport

of material ¢ across the surface Hj, to or from Layer k, per unit horizontal
area (not unit surface area of Hj) with Hj held fixed in time. Equation (2-29)
is the general form of the model equation with which we shall work in the

remainder of this report. In the sections that follow, we develop expressions

for each parameter that enters in this equation.
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SECTION 3

THE INTERFACE SURFACES Hj

We summarized earlier in Figure 1-1 the various roles that each of the
models' 4 layers are intended to serve. In this section we will specify
functional forms for the layer interface surfaces Hj (x4 ,t) that we believe

are compatible with those roles.

The Model's Top Surface, H3

There are two conflicting constraints on the surfacg H3. The first is
that 23(x,y,t) must be high enough that no appreciable turbulent or cloud
fluxes of material cross it. The second requirement is that the depth of
Layer 3, i.e., Z3 = 2y, must be small enough that subgrid scale concentration
variations within the layer are negligible. To satisfy both these require-
ments, we will prescribe 23(x,y,t) based on observations of convective cloud -
top elevations and on the estimated level z, of the "mixed" layer top.

Further details will be presented in Part 2 of this report.

The Subsidence Inversion Base Surface, H2

This is one of the most important parameters in the model; because acting
as a barrier (a "leaky" barrier when cumulus clouds are present) to the upward
movement of pollutants, the height of H2 above ground determines the concen-

tration that fresh emissions produce once they become well mixed vertically.
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As a consequence, H2 has an' effect both on the rates of slow second order

chemical reactions that occur among the constituents of polluted air as it
moves over long distances and on the rate of surface deposition. In view

of its importance, the surface H2 (r,4,t) is treated rather rigorously in

the model. We will postpone further discussions of it until Section 4,

where we describe in detail the procedure we use to calculate H2.

The Nocturnal Jet Top, H1

We believe that an essential requirement for the model's ability to
simulaée accurately the long range transport of 03 is the ability to handle
properly the deposition of n{ghttime emissions of hydrocarbons and NOX.
Preliminary results of aircraft studies performed as part of project NERQS
in August, 1979 support our original speculation that nighttime surface
emissions are confined primarily to the lower one-quarter of the old daytime
mixed layer, and that 03 and aged precursors reside in the upper three-
quarters where they undergo virtually no mixing with the fresh emissions below.
It is this segregation of the old and fresh emissions at night that allows
03 to travel great distances before being scavenged by NO or hydrocarbon.
Thus, the surface H1 should be set just above the level that nighttime emis-
sions reach. This level is probably controlled by the temperature profile
of the nocturna] boundary layer, by the wind speed and by the buoyancy flux
of the urban plume. One of the objectives of the NEROS field program is to
determine just how these factors control the nighttime urban plume rise and

spread.

Another role intended for surface H1 is to represent the barrier to

upward diffusion imposed by the weak subsidence inversion associated with
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lake and sea breeze regimes. The base of this inversion is lowest over the
water, but it slopes upward inland until at some distance from the shore

it vanishes altogether. This feature of the boundary layer probably plays

an important part in the dispersion of emissions around the Great Lakes and

along the Atlantic Coast.

A third role of Layer 1 is to describe the daytime shear layer in
which mean transport Has a different direction and speed than in the upper

part of the mixed layer.

To serve in all these capacities, the surface H1 should be calculated
from the set of equations that describes the nocturnal inversion layer and
urban plume rise at night, the lake/sea breeze inversion by day and the shear
layer depth. At the present stage of the model development we attempt to
describe H1 rather rigorously under stable conditions but only approximately
in neutral and unstable situations. In the former case we prescribe the
volume flux ny across Hy, i.e.,

dt

-
=

" , stable conditions ., (3-1a)

Using computed values of the fluid velocity (ul, Vi wl) in the stable boun-
dary layer and the estimated value of nys we solve (3-1la) for H1 during
stable conditions. Details are given in Part 2 of this report. During
neutral and unstable conditions the methods employed in the stable case do
not apply and we rely then on an ad hoc formulation of z itself. The ob-
jective is to account for the shear layer depth and terrain effects mentioned
above but not the lake/sea breeze inversions. The same ad hoc method is

used to describe H0 under all conditions. We describe the method below.
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First, we assume that at any point the vertical velocity w is composed
of 2 components: one, Wes induced by the motion of horizontal flow over
terrain features and the other, Wps arising from turbulence and horizontal
divergence of the large scale flow. That is,

W= Wp ot Wy (3-1b)

If the vertical velocity component W were zero and the horizontal wind

(u, v) were steady, Hy would be a material surface if
Tl (3~1c)

where Vi1 = (ul, vl),

s oy (3-1d)

and where the subscript "1" denotes evaluation at level zq- We can express

le in the form .
Wrp = Af(%est) vy + Tuzql (3-1e)

where the term in brackets is a measure of Wrg i.e., vertical speed at the
ground surface s and A1 is an unknown function (which we approximate below).

If we express 3} in the form

zy = + H (3-1fF)

Zrt i
where H1 is the depth of the shear layer over smooth terrain, then we find
on substituting this expression and (3-1le) into (3-1lc) that in order for 2

to satisfy (3-1c), H1 must satisfy

v H, + (1 - A 0 (3-19)

1 )27 =

Thus, once we have an estimate of Al, we can use (3-1f, g) to define a sur-

face H; that will satisfy (3-1c).
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To approximate A1 we first define 2 smoothed terrain functions

X+ 2.5 ;y+ 2.5

1 ] [) ] )
2:(2s9) = 57 zp(x',y" Jdy'dx (3-2a)
x -2.57’y -2.5

x + 25 y + 25

z27(x50)

iL

zp(x',y")dy'dx’ (3-2b)
x-257y - 25

(A"
(82
(o)
(]

where (x, y) are Cartesian coordinates centered at (A, ¢), g is local topo-
graphy elevation (MSL), and distances are measured in kilometers. We next

define a rms topography

X+ 25 (y + 25

2 ( ! . N

L 1(x¢) = 3500 [zp(x',y') - zp(x',y')]2 dy'dx' (3-3)
x=-25)y - 25 -

Using Ly we define a terrain Froude number Fr by

U -
Fr N 2Nz; (3-4)

where N2 = g/® %g is the Brunt-Vaisala frequency and U is the horizontal

wind speed at an elevation It above the level ET' According to Godowitch
et al. (1979), nighttime inversions over rural areas around St. Louis were
observed to have intensities of between 10 and 20°K‘per kilometer. Thus,

1

we will adopt N = 0.33 s~ as a representative value for use in our modeling

studies of the Northeastern United States.

Hunt et al. (1978) found in laboratory studies that stably stratified

fluid tends to move horizontally rather than over an isolated hill of
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moderate slope when the Froude number is less than 0.3. Based on this

finding we propose as an interim approximation

A, = exp [~ (2—}::)2 - (H/31)2] Lk =1or 0 (3-5)

and Fr is given by Equation (3-4) with
0.03 s'l, nighttime hours
N = (3'6)

0.0 57!, éaytime

The last term in brackets in Equation (3-5) is intended to account for
the decrease in the amplitude of vertical velocity with height that is asso-
ciated with flow over obstacles. We expect that Hl will have a value of
about 300 m. Thus, terrain features smaller than about 50 m will have

virtually no influence on the slope of z,.

In summary, during stable conditions we prescribe

dH
—a%-= ny s stable conditions; (3-7a)

where b} is a function given in Part 2 of this report; and under neutral

and unstable daytime hours we define

2y = 27 + H) (3-7b)
where Hl satisfies
Ty + (1 - Apvzp = © (3-7¢)

in the interior of the model domain and has the value of the shear layer

depth at the boundaries. With A1 given by (3-5) we assume that z satisfies

"V T (3-7d)

VH1
In this case we have
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3z
St " " —3% - Wpp o neutral and unstable (3-7e)

Thus, in stable conditions " is prescribed and zZ, is computed, and con-

versely in neutral and unstable conditions.

A11 our assumptions regarding z, are speculative and are intended to
serve only as a first order estimate of the effects of topography on the
vertical transport of pollutants. More refined representatiohs of the sur-
face H1 that are consistent with the roles that Layer 1 serves in the model
can be incorporated as they become available without having to overhaul the
modél (see Part 2 of this report). Further discussions of the surface Z4

and its roles will be given in Section 4.

The Surface Layer Top, H0

The 2 main roles of Layer 0 are to treat the subgrid scale concentration
fluctuation effects on chemical reactions and to parameterize'surface removal
processes. Both phenomena are confined to a relatively shallow layer next
to the ground. Therefore, it is possible through a judicious design to for-
mulate the Layer 0 equations in a way that does not require additional com-
puter storage. In other words, the Layer 0 equations can be written in a
diagnostic form in which concentrations in Layer O are expressed in terms
of concurrent concentrations in Layer 1, surface source emission rates and
the 1ike. The details will be given later. The only restriction on such a
formulation is that the total mass flux of material through the top surface
of any Layer 0 cell be much larger than that through its sidewalls. If L

denotes the horizontal cell size and H0 the depth of Layer 0, then we require
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2
Vertical Flux o L

Horizontal Flux - >> 1 (3-8)
uLHO

where Oy is the effective turbulence velocity on the top surface of Layer 0

and u is the mean flow speed within the cell. This condition is satisifed if

L/H, >> ﬁ/ow ' : (3-9)

The velocity ratio on the right side of this expression is typically
of the order of 10 or less throughout the depth of convective mixed layers.
In stably stratified flows over flat terrain, it varies from a value of
about 10-a few meters above the ground to a value of several hundred near

the top of the nocturnal boundary layer (roughly 100 m).

Thus, using a grid cell L ~ 20 km we can let H0 be as large as 100 m
during the day (this wi11 allow us to encompass the bulk of the subgrid

“scale concentrations variations) but at night we will have to limit HO to

about 30 m.

Since we will neglect horizontal motions in Layer 0, we must define

H0 so that there is no net transport of air across it. That is

Vo YHO =0 (3-10)

To meet this condition, we will assume that the average divergent component

of the vertical velocity, i.e., WD [see (3-1a)] is zero at z = z,» rather

-

than at z = ZT,.and we will define z_ so that it follows approximately the

0
terrain induced flow, that is,

BZO BZO
Yo o TR Vo (3-11)

where Y10 is the component of w at z_ induced by flow over terrain. We

o]
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can satisfy this requirement and at the same time fulfill the constraints
on the depth of Layer 0 defined above by making z, similar to z4 in form,

namely

2o(0s0,t) = z7(2:0) + H (1) (3-12)
where Ao is given by (3-5), Hy satisfies

Tuflo + (1= Ag)Tyzp = 0 (3-13)

in the interior of the model domain and on the boundaries has the value

75.tSR+3<t<tSS
30 + (t-tSR)'IS, tep <t < tep +3

SR — SR

30 , otherwise
where tSS and tSR denote the hours of sunset and sunrise, respectively.

In later versions of the model a different formulation of-.the top sur-
face of Layer 0 can be adopted if the present one is found to be unaccept-
able. The modular structure of our model mentioned earlier permits changes

of this type to be performed with a minimum of effort.
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SECTION 4
THE INTERFACE FLUXES: G K

In this section we derive explicit forms for the interface fluxes % K

that enter in the governing equations (2-29) of each of the model's layers.

Flux Across the Model's Top Surface: % 3

We concluded in the previous section that the elevation Zq of the top

surface H3 of the model must be a prescribed function. In this case (2-30)

gives (see also 2-2, 2-22 and 2-23)

3,3 2 CV » VHy - <c>3 v - VHy + ¢ —¢
dH dH3 823

- 3
= ¢3 gt - 3 [ - e (4-1)

where c3 denotes concentratioz_gp the given surface H3. We will assume that
__ dH3
<(:>3 ’1f_cﬁ _<_0 4
= (4-2)

c. , otherwise

where c_ is the concentration of species ¢ in the free atmosphere above the

model domain. Combining (4-1) and (4-2), we obtain

. 3z
C - —— 3 9 h i
( o <c>3) T+ <C>3 - otherwise
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4_#

This approximation of Fg 3 assumes imp. citly that there is no turbulent flux
of material across H3. No error should be introduced by this assumption if,
as we intend, H3 is above the top of the mixed layer and above the top of any

convective clouds that might be present.
Flux Across the Subsidence Inversion Base: @ 2 and 5 3

We have defined H2 as the base of the synoptic scale subsidence inver-
sion. During daylight hours this surface marks the top of the region known
as the mixed layer in which, due to the action of convection, moisture and
pollutant concentrations become approximately uniformingly distributed
vertically. Observations have shown that potential temperature, water vapor
mixing ratio, and often pollutant concentration change abruptly at thé
mixed layer top. Based on this knowledge we shall assume, following Lilly
(1968), that all 3 of these variables have discontinuities on HZ‘ This
approximation will be used below to derive the expressions both for the
pollutant fluxes across H2 and for the spat{a] and temporal variations in

H2 itself.

He

LG G

Figure 4-1. Schematic view of cumulus clouds transporting
material aloft from the mixed layer and acting
to lTower the surface HZ'
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We consider the general situation depicted schematically in Figure 4-1
in which cumulus clouds transport heat, moisture, and pollutants through
the mixed layer top into the cloud layer above. The upward motion in the
clouds produces a compensatory downward velocity between clouds that acts

to lower the mixed layer top.

On H2 we assume that the concentration c, at any point is given by

Ce , beneath cumulus clouds

Cr = (4-4)
<c>, + ¢', , between clouds

where C. is the concentration of species ¢ in the updrafts feeding cumu-
Tus clouds in the given grid cell. This variable is a function of space

and time and will be evaluated later in this section.

Let Hp, be a surface parallel to H, that is just high enough that the
dry thermals that overshoot level z, between cumulus clouds cannot reach it.

On Hy, we assume that the local concentration C2, 1s given by

C. beneath cumulus clouds

Cz, = (4-5)
<c>3, between clouds
The latter expression is a result of our choosing Ha, high enough that
there are no fluctuations in concentration on this surface due to the tur-

bulent convection below.

Let o denote the fraction (0 < g, < 1) of any given cell area A
covered by cumulus clouds. Spatial and temporal variability of 9. will be

allowed but not explicitly stated.

For mathematical convenience we will express Fé,z and 1E,3 in the form

5k

o G (9
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where

Fa = ¢, %gl (4-7a) -
and
Sl + v (4-7b)
and vp is the velocity vector measured on Hy. Usi - 7) and (4-7a) we
obtain
Fa, 2 C2, %%2+ = %‘ | %%2+ da + | <c>3 %%2+ da ] (4-8)
% 1- o,

where the first integral is over the portion of H2+ beneath cumulus c¢louds
and the last integration is over the remaining area within a grid cell.
Assuming that there is negligible variation in Ce from cloud to cloud
within any grid cell, and that spatial variations of <c>3 within any cell

are small, we can reduce (4-8) to

a, ¢ a;.°

=g ¢ o2 - -
F2+ OCCC at + + (1 Uc) <C>3 at (4 9)
—
where ( ) represents a mean value over the portion of Ha, beneath clouds

—_—
and ( ) represents a mean value over the environment between clouds

within any grid cell.
Through a process similar to that leading to Equation (4-9), we obtain

for the flux F, on Hy:

_1 dH, .y dH, i
F, X [ Cc 4F da-+ (<c>5 + ¢5) 3T da] (4-10)
% 1 - 9.
—C - —_—
.= dh ) dA . dH, )
oS ar t (1-o) [ceagg *+chggt ] (4-11)
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Continuity of material flux across H, and the assumption that the

distance separating H, and Hp, is small require that

Fz = FZ (4-12)

+

Thus, equating (4-9) and (4-11) and noting that since H, and Hp, are

parallel,
dH dH
gnp . Gz -
dat " at -’ (4-13)
we obtain
- € - e e
<C>3 %%2 = <C>p %%2 + C¢5 g%z (4-14)

By definitions (2-2) and (4-7b) the downward mass flux of air across
the moving surface H, (i.e., measured by an observer at a fixed point on
surface H,) is

where o is the air density on Hy, A is the area of the projection of a
unit horizontal square on H, (see Figure 4-2), and F is the total downward

mass flux through area A. It follows

e m .. o-

?-umt horizontal square

Figure 4-2. Projection of a unit horizontal square on the
surface H2'
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from (4-15) that p dH,/dt is the dowm 1 mass flux of air per unit
horizontal area, rather than unit area of H,. Therefore, the last term on
the right hand side of (4-14) is the mean downward mass flux relative to
H, that includes the effects of mean vertical fluid motion, mean motion

of surface H, and turbulent convection.

For notational convenience we will write

fo =l %%2 ) (4-16)
Substituting this into (4-14) we get
g%; ) = f_/ac (4-17a)
c
where
AC = <C>3 = <C>; (4-17b)

An important point to note here is that <c>3 in this last expression
is used as a measure of the concentration on surface H, [see (4-5)] which
penetrating convective elements do not reach. This fact will be used
later when we develop an approximation for fc and the rate equation

governing H,.

The analyses that led up to (4-17a) are applicable also to other scalar

quantities, such as potential temperature 6. This fact and (4-17a) indi-

cate that

f./ac = f /a6 (4-17¢)
where

e
- ot dHo -

fB 82 at (4-17d)
and

A8 = <B>3 - <6>, (4-178)

40



As in the case of concentration, <6>3; i: .reated as a known quantity
and is used here as a measure of 6 at the level just above the altitude
of the highest reaching convective parcels from the mixed layer, or equi-
valently, the level where the turbulent heat flux becomes zero. Since
it is fe/Ae that we will parameterize later, we shall take advantage of

(4-17¢) and substitute it for fC/Ac from here on.

The surface H, is smooth in that it is not deformed abruptly within

individual cumulus clouds. As a result (4-17a) is equivalent to

32 v - W = .
3t + Vay YHZZ We + fe/Ae (4-18)

where ﬁe is the mean vertical velocity over the environment between cumulus

clouds.

By definition, the mean vertical fluid velocity w, at any instant
on H2 1s
Wwo =ow, + (1- oc) \-Ve (4-19)

where ﬁc is the mean upward velocity in cumulus clouds in the given cell.

This expression and (4-18) yield

V.IZ -0 ;l
S+ f /e . (4-20)

- - l-cc

The flux % , [see (4-6)] may now be expressed using (4-9), (4-12), (4-13),
(4-18) and assumptions invoked above concerning the variations of H, within

the horizontal scale of a single grid:

L3

Fé,z = Cczk[‘%?jfzii + fo/ne ] + <c>3(1 - OC)fG/AG
% = 22, (4-21a)
¢ = 2
- <c>2[1 — (w2 - wc) + fo/ne - =

41



and by similar means we obtain from (4-6)

WZ - WC —
B.3 = o=, * f/ellce - <o)t <oy

322
c ot

(4-21b)

Except for Ec all of the independent variables in (4-21) are inter-
related [see, for example, (4-20)]. Thus, to obtain meaningful estimates of
Fzﬁ(we must derive these variables from their governing equations. This

task is undertaken in the following subsection.

Equations governing Wz, fo/08, and z,

First, let us derive an approximation for fe‘ From its definition
(4-17d) we have
f == eéwR (4-22a)

where

Wp = Wp - 3Z2/3t - Vou * Y422 | (4-22b)

is the vertical component of fluid relative to Hz; and
85 = 83 - <8>p . (84-22c)

where 8, is potential temperature on surface Hy [cf. (4-4)]. A plausible

assumption regarding 8, is

<9>2 [ if WR i 0
8, = (4-23)
<@>, + 46' , W < 0

Since fluid that descends through H2 originates somewhere between levels H2

and H2+, the fluctuation a8' in (4-23) must 1ie in the range
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0 < a8' <48 (4-23a)
where A8 is given by (4-17e). Thus, the ratio

T = 06'/18 (4-23b)
has a value in the range

0 <1< 1 (4-23c)
that is determined by t;; ;Qmp1ex dynamic processes that occur within the
thin layer at the base of the inversion layer where penetrating thermals are
entraining the warm inversion layer air and carrying it down into the mixed
layer below. The value of ¢is also affected by our choice of the surface
H>. We chose H2+ so that it was in the stable layer of fluid above the mixed
layer where spatial variations in temperature associated with turbulent
mixing are not present. Thus, if we select H2+ as the lowest surface on
which this condition is satisfied, then H2+ is uniquely defined. But H2
is not so clearly established. We have required only that it be "near"
enough to H2+ that we can equate the instantaneous material fluxes across
H2 and H,, [see (4-12)]. There is probably a range of separations in which
flux equality holds to good approximation, and hence there may be a range
of values of T. Later we will have to specify the turbulent velocity

variance O on H2 and when this is done we will in effect have determined

this surface and with it a unique value for T.

An approximation that we shall make use of throughout our analyses of
the interfacial fluxes is that averages over the horizontal extent of any
surface within a grid cell, which we have been denoting by the overbar, are
equivalent to ensemble (or statistical) averages. This assumption is cer-
tainly reasonable given that the grid cells of interest to us are about

20 km on a side and that the scales of convective turbulence are comparable
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to the mixed layer depth, about 2 km. Here we shall extend this assumption
to include averages over the environment between cumulus clouds represented
by the overbar and superscript "e" in (4-22a). The validity of this approxi-
mation requires that the fractional coverage e of cumulus clouds be less

than about 0.5.

With this assumption, (4-22a) can be written

0
fg= - [82 rpr(wR)dwR + 83 f WoP (Wp)dwp] (4-24)

0 o
where p(wp) is the probability density of vertical velocity wp relative to

H,, as defined by (4-22b). Combining (4-22c), (4-23) and (4-24) we get

0

where a8 is given by (4-17e).

Figure 4-3 shows the probability density of the vertical velocity wj
at the inversion base H, as given by the numerical model of Deardorff (1974).
It indicates that to good approximation, w, has a Gaussian density, that is,

Wz-W} 2
(wp) = — Xp (-( 4-25
p2lwy =, e 5;;2-1 ) ( )

where w, is the mean vertical velocity at H2’ due to subsidence, and O\ is
the variance, which is proportional to the turbulent energy at H,. Since
the 2 last terms on the right side of (4-22b) are deterministic variables,

it can be shown that p(wR) is also Gaussian with mean

Wp = Wé - 3z,/3t - Vo V22 (4-25a)

and variance AR the same as that of w,. The Wé term enters this
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layer top (H,) derived from the numerical 5ode1 of
Deardorff (1374) .
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expression because we are averaging over the cumulus free environment only,
as indicated by (4-22a).

The Gaussian form permits the integral in (4-24a) to be evaluated analy-
tically. We get

f 28" R (1~ erf (—Ry ). 2w ( _3'——2"2 )] (4-26)
= - 5= - er — - —exp (- -
0 2 v 7 % Von 2C’w

where erf denotes the error function [see (4-23)].

Combining (4-25a) and
(4-18) we obtain

- W = fe/AB

and upon introducing (4-26) we get after some rearrangement of terms

2
J[1-2/2(1+erfJd)]-= exp (- J) (4-27a)
2/7
where _
"R
J = - (4-27b)
vZ_ %w

The solution J(T) of the transcendental equation (4-27a) in the interval
0 <t <0.9 is approximated closely by

2 T 2 -
A1) * 337" 5meT - 1,467 0<T<0.9 (4-27¢)

This relationship is plotted with the exact solution of (4-27a) in Figure 4-4.

Thus, from (4-27b), (4-25a) and (4-19) we obtain the mixed layer growth rate
equation

- W2 -0 W
32y T . cc o J(7) (4-28a)
3t T Yoy Vu%2 T-o, /20w

and

fe/Ae = fc/Ac = v/idw J(T) (4‘28b)
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The vertical velocity fluctuations on H2 are generated by convection
within the mixed layer below. Hence, it seems reasonable to assume, as is

often done, that O is proportional to the convective velocity scale w,:

o, = AW, (4-29a)

where

(g/6 Tw's’ )Qh)l/3 (4-29b)

Wae

Here © is the mean potential temperature in the mixed layer:

2 AtoA o+ad ZZ(A"¢'at)
o(r,e,t) = 3. 0S¢ [ { J o(r',¢',t) de'dr'dz

T . (4-30a)
A=ax Jo-80 z7(3'4",t)
2
A = 4a)A0a cose is the grid cell area;
h is the mean mixed layef depth in the cell,
, ATAN  d+Ad (Zp(M',9',t)
h(x,6,t) = a Zosg J [ J‘ dzde'dr’ (4-30b)
A=ax To-a¢ Czp(d',0',t)
= E} - ET

w'e' o is the kinematic heat flux at the ground; g is gravity and a is a
constant. Laboratory investigations of Willis and Deardorff (1974) and

numerical model results of Deardorff (1974) indicate that the value of a is

about 0.4.

The heat equation, which governs ©, is of the same form as (2-29) so

we have at once

9 ah . L1 aty .
5t T hat T VM T @ TR <Yy Oy TH2

5o

R ' i — 1 de - ——.__
POyt 0y = g [0n g - evarTyHa
dHT



where

SV 'Oy = <vyBay - <V (4-30d)

Here Yy denotes the mean horizontal wind in the mixed layer, 6, and V2
are the potential temperature and wind vector on Hj, HT represents the

ground surface where 8 = 65, and <vH'e'> is defined by (2-28).

The last term on the righthand side of (4-30c) is identically zero
because the ground is a material surface. The third term on the right side

of this expression is just the kinematic heat flux at the ground, namely

-0 gp = We'), = (4-31)

Comparing the first 2 terms on the righthand side of (4-30c) with (4-6),
which is the definition of F,, we see that the sum of these terms is
equivalent to (4-21), but with <c>, replqced by @; <c>3 - <c>, replaced by
26 [see (4-17b) and (4-17e)]; and with E; replaced by

8. = €0 (4-32)

where ¢ > 1 (assuming that the ground surface is warmer than the mean

temperature 6 of the mixed layer). Substituting these results into (4-30c)

we obtain
39 [] [ 1 ]
hat ¥ vy = Ty 0+ <yyletay o By + hT - <y tety
W, - W,) p
= 0. -T—:—;Z-'G(E -1) - cm(T) [e(1 - UCE)
-(1 - oc)(Ae +0)]+ fes' (4-33)

In order to close the system of equations (4-33) and (4-28a) we need an
expression for A8. Inasmuch as this is the difference between <6>;, the

potential temperature at a level just above the highest penetrating thermals
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(i.e., at the lowest level where o is free of spatial and temporal fluctuations)
and ©, the mixed layer mean temperature, we propose that

A8 = Tah (4-34)
where I is the temperature lapse rate above z,,

r = 36/32 , zZ>2, (4-35)

and aAh is the distance above z, that thermals penetrate.

To estimate aAh we assume that at the level z, + Ah of maximum overshoot,
gApsh = pw?

wherérp is the density of thermals at level z,, Ap is the difference between

their density and that of the environment at z, + ah, and w is the effective

upward speed of thermals at z,. Approximating p/Ap by 6/48, we get

= 8_W2
Ah = 26 g
or
2 2
(a8) = row /g ‘ (4-36)

In the case of a horizontally homogeneous atmosphere (4-28a) reduces to
Wz -0 W
M —CC 4 T 6 d0p) (4-37)

l-oc

and (4-30c) yields [see (2-21), (4-6) and (4-21)]

Wo = W

33 (1) = o0 £+ Z o e) [0+ (1 - o )ael + fy  (4-38)
where
1/3
o, = aldh f,) / (4-38a)
1
48 = [re/q] /zecw (4-38b)

Here B is the ratio of the velocity w at H, of the deepest penetrating

thermals and Oy Clearly 8 > 1. Also, in deriving (4-38) we assumed that
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the parameter £ in (4-32) is unity.

We have performed preliminary fests of the model equations (4-37,38)
using data from the Wangara experiments for validation. These tests have
shown that the accuracy of the model is so sensitive to the choice of the
parameter T that accurate results cannot be achieved with ¢ ~ ‘ approximations
of this parameter, as originally hoped. Therefore, based oh)cne‘findings
of Artaz and Andre (1980) who tested a number of mixed layer entrainment

models against observed data, we will adopt the simple empirical formulation

1.4f,
V2 0,0(1) = —F= (= - f,/00) (4-38¢)

At this point we have developed methods for determining the values of
all independent variables in the expression for the flux F, across H, (4-21)
except the material concentration E; entering cumulus clouds. We consider

this variable next.

Cumulus clouds are initiated by convective thermals, or updrafts, -in
the mixed layer which in turn are generated and sustained by the surface
heat flux. We noted in the Introduction that the roots of the updrafts that
feed young cumulus clouds extend down into a relatively shallow layer of air
next to the ground. There they can collect fresh emissions of NOx and hydro-
carbons and can transport them within a period of a few min into the clouds
above. This phenomenon is potentially quite important to the photochemistry
of the mixed layer because it is a mechanism by which fresh emissions are
somewhat selectively removed. It is also important to the photochemistry
of the atmosphere above the mixed layer because pollutants are injected
into this layer only after experiencing the saturated environment within

the clouds themselves.
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The depth of the cumulus roots, and hence the quantities of fresh
pollutants that can be removed, diminishes as the clouds grow. This occurs
because the shadows of the growing clouds attenuate the surface heat flux
until at some point continued cloud growth can be sustained only by the
latent energy of condensation within the clouds themsc_ as. If the atmosphere
is conditionally unstable and there is a sufficient supply of moisture in
the mixed layer, cumulus ‘clouds eventually become self sustaining. Once
this occurs and the surface heat flux has been diminished to very low levels,
the qurafts feeding each cloud probably drain most of their air from upper
levels of the mixed layer, and with it more aged pollutants than those

found near the ground.

We will attempt to parameterize these cloud effects in our model by
allowing cumulus clouds to draw a fraction y of their air from Layer 0.
The remaining portion will be taken from Layer 2. Keep in mind that con-
centrations in Layers 1 and 2 tend toward the same values during well mixed
daytime conditions. The fraction y will be made a function of time to
reflect the changes (discussed above) that occur in the life cycle of the

cloud updraft. The form of the cloud updraft concentration parameter ¢

c
follows at once:
_ (1-y)<c>y . » in F 5 formula ; (4-3%a)
c.= ’
¢ (1-y)<c>p + ylec’ + (1-g)c] , in F 5 formula. (4-39b)

The term in brackets in (4-39b) is the concentration in Layer 0. It will be
'discussed in detail later. The differences in the expression for EE for
Layers 3 and 2 as indicated in (4-39) are the result of transport of material
from Layer O directly into Layer 3 without any intermediate mixing in

Layers 1 and 2. Thus, the net loss of material from Layer 2 to Layer 3 is
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as specified by (4-39a); but the gain by Layer 3 is the loss of Layer 2 plus
the portion of the loss of Layer O that enters cumulus updrafts. Further
consideration of this partitioning of material will be necessary later

when we derive F and F
O O,

0 1°

Flux across the jet layer top: Fi 1 and ﬁ 2

In Section 3, we defined H1 to be just above the tops of nighttime
urban plumes, typically about.300 m above ground-level. In the present
version of the model, H1 will be maintained at approximately this same level
during the day {see Equations (3-5) - (3-7) for the mathematical definition
of H1], but eventually we plan to modify this formulation to allow Layer 1
to handle additionally the marine layers associated with lake and sea breeze

regimes.

A discussion here of some of the characteristics of the nocturnal
boundary layer that fall within the bounds of Layer 1 will help provide the

rationale for the flux formulation Fl , that follows.

Figure 4-5 compares typical temperature mixing ratio and wind speed
profiles measured over rural and urban areas of St. Louis near dawn on
summer days. The top of the surface radiation inversion is at about 300 m
above ground level (AGL) at both sites. However, over the city there is a
shallow mixed 1§yer approximately 100 m deep. At both sites the mixing
ratio decreases with height up to a point near the top of the inversion
where it becomes approximately constant. Its value at this point is com-
parable to that observed in the mixed layer the previous day. This suggests
that nighttime mixing of air between ground~level, the source of moisture,

and the upper levels of the radiation inversion is weak, particularly over
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. =mew Mixing Ratio
Figure 4-5. Schematic illustration of typical temperature, wind speed,

and mixing ratio profiles over (a) rural and (b) urban
areas at night .

54



rural areas where the largest vertical gradients in the mixing ratios are

observed.

We have mentioned earlier that vertical fluxes of heat momentum and
drier air are often observed in rural areas at night during brief, sporadic
episodes of turbulence that are believed to be caused by the growth and
subsequent breakdown of waves in the nocturnal jet's shear layer. The jet
is evident in both sets of soundings in Figure 4-5 as the wind speed maximum
that occurs at about the top of the surface inversion layer. It is not
known whether these sporadic downward excursions of air are confined to a
shallow layer adjacent to the ground or whether they extend well up above
the jet itself. Telford et al. (1976) speculated on the basis of aircraft
observations that nighttime exchanges of air take place within layers
300 - 400 m thick at all levels up to about 1000 m. This is not supported
by vertical 93 profiles measured over St. Louis near sunrise (Evans 1979).
These data reveal the rather common occurrence of an 03 maximum in the core
of the nocturnal jet. If deep mixing of air occurs as suggested by Telford
et al., 03 maxima such as these could not persist through the night. One
of the goals of NEROS will be to determine the vertical extent of nighttime
mixing processes. This information is essential to the development of re-
Tiable regional scale oxidant models. Because if frequent exchanges of air
‘do occur between ground-level and layers above the top of the nocturnal in-
version, the maximum possible transport distance of 03 will be considerably
smaller than if deep mixing does not take place. Whatever the nature of the
mixing happens to be, we should be able to treat it in the model through a

suitable formulation of the flux term Fl,k'
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A feature of H1 not discussed in Section 3 that will affect the flux
formulation is that with 22 defined by (3-7), it is possible in regions
of rough terrain for hills to extend up through the surface z = z;.
Figure 4-6 illustrates a hypothetical case. We will denote by oTl(x,¢,t)
the fraction of the horizontal area A of the grid cell centered at (i,¢)
that is formed by the intersection of terrain with the surface z = z; at
time t. This possibility requires that the definition of the top surface
H1 of Layer 1 be modified as follows:

21(0,0,t)-z  ,  if 21(%,0,t) > z7(a,0)  (4-40a)

HI(A’¢9t) = R
zT(A,¢)-z s otherwise (4-40b)

where zy is given by Equation (3-7).

Using notation 1ike that employed earlier in formulating B K [see Equa-

tions (4-6) and (4-7)], we can express ﬁ.k in the form

&y T (4-40c)
Ak =€ - <© e

kY17
where ¢, and Vi denote values measured on surface H;, and the overbar
represents, as before, an average over the area A of a grid cell. To
evaluate (4-40c), we will divide the overbar averages into 2 parts: one over

the area °T1A intersected by terrain and the othér over the remaining area

(1 - ch)A.

Over the former, the first term in (4-40c) is the deposition flux onto
the ground surfaces that extend into Layer 2. We will parameterize this
flux by g<c>,, where g is the deposition velocity of species c. Over this
same area the last term in (4-40c) is identically zero; because by virture

of (4-40b), H, is coincident with the terrain surface where it extends into
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_21(09,t)

Z1ihg)

f_— (1—a71)A

oT1A

gure 4-p, Intersection of the surface z = z;, defined by Eq. (3-5),
with elevated terrain features. A fraction oo, of the
grid cell's horizontal area A is intersected g} terrain.
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Layer 2 and hence there it is a material surface. Thus, the component of

ﬁ,k over the area °T1A is

cT18<c>2 , if k=2 5
Flak)UTl = (4-41a)
0 L ifk=1.
an;
Audieoy, = (- omdley g = <o lyvi)] o (4-41b)

where vy = (ul, Vis wl). By design
My |
dadt M

where Ny is a given function in stable conditions (see 3-7a) and

"1 T 217 Yy
in neutral and unstable situations. Consequently, (4-41b) becomes

¢.n, - <¢> (n, - 2,) , stable ’
1), T (ep) l(f k5 i 1" t ]’ (4-41c)
’ ~-g c,(z, - w <C> W , heutra
T 1771 D1 k"Dl and unstable.

To approximate the terms in this equation that apply to unstable condi-
tions, we must take into account the effects of cumulus clouds that transport
material across H1 from Layer 0 to Layer 3. The zones occupied by these
roots on surface H1 contribute nothing to air exchénges between Layers 1
and 2. Given that the cumulus updraft velocity is W.» that a fraction o
of the cell area A is covered by cumulus clouds, and that a fraction y of

the cumulus flux is from Layer O, we see that the "excluded” area for air

exchanges between Layers 1 and 2 across H1 contains a total volume flux

wccwcA. (4-41d)
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We can express the total area of the excluded zones in terms of the
frequency distribution p(w) of vertical velocity on H; (i.e., all components
of w; except that induced by terrain le).

If we assume that the horizontal area A of a cell is large enough that
spatial averages of velocity over it are equivalent to »~semble averages,
it follows from the definition of the probability densx? £ W) that the
fraction of A covered by vertical velocity in the range w to w + dw is
p(w)dw.

Keep in mind that we are concerned at the moment with unstable cases and

with the component of F.

l,k
Thus, it follows from (4-41d) and the properties of p(w) discussed above that

through the area (1 - ch)A of H1 (see 4-41c).

in the region (1 - ch)A of H1 that contributes to ﬁ.k’ vertical velocity

Wpy 1s in the range - = < Wpp < W where w, is the value that satisfies

= VoW

- cc
{WDIP(WDI)pWDI ‘(1 _ O_Tl) (4-41&)
wm

In summary, we assume that all regions of H; in which the instanta-
neous vertical velocity is greater than w_do not contribute to ﬁdk be-
cause they are part of cumulus updrafts that are transporting material
directly from Layer 0 to Layer 3. 7

Looking now at the first two terms on the righthand side of (4-41c) and

keeping in mind that W1 includes turbulent velocity fluctuations, we have

C121 - Clwol s - Clel (4-423)
where

We1 = Wpp - 21 (4-42b)
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is the vertical component of the instantaneous fluid velocity relative to
surface Hy. As a first order approximation we shall assume that the concen-
tration c; at any point on H; is equal to <c>; if the relative speed Wa1
at that point is positive and that c; = <c>, if the local speed W1 < 0.
That is

<t>; , if Wa1 > 0

¢ = (4-42C)
<c>, , if Wpp 20

This and the assumption that spatial averages over (1 - °T1)A are equivalent

to ensemble averages 1eadoto

W= 2
CiWpy = <C>2 | Wpq P(le)dle + <C>, J Wp1 p(le)dle (4-42d)
0

-0

Averaging (4-42b) we obtain

-2 (4-42e)

Wep = | Wry P(Wgpldwpy = wpy

1

With this we can reduce (4-42d) to
0

CiwWpy - <C>1WD1 = (<c>p - <€>1) Wpy p(le)dle - <c>y [ +

Wa1 p(le)dle] . (4-42f)
wm—21
For simpl{city we will assume that the probability density of W51 is Gaussian

with mean Wbl and variance dﬁdl'- Note that

p(le) = pD(le + 21)
where Pp denotes the density of o1 (see 4-42b). In this case we find with

the aid of (4-41e) that the term in brackets in (4-42f) is
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. ® yo W y4 w “WDI
Wy =2+ ] wR}p(le)dwR1 =—C=C Zl'[l +erf (——)] (8-42¢)
W

1-0
T1 V2o
m %1 Y1
and that o
(g Yo = Ty - L exp (- L
W, = | wp p(Wpq)dwp, = Wy, - —=exp (- )
im R1 R1 R1 R1 /2‘7? 252 ‘
-0 W
1
(4-42h)
W, W,
- Bl v et (2]
/ﬁbw
1
where Wﬁl is given by (4-42e) and where
X 2
erf(x) = %= f e tat (4-43)
o

(Under this definition, erf (=) = 1.)

Applying a similar analysis to the stable case, where WR1 then plays
the role of -n (compare 4-41c and 4-42a) we find that in general ﬁ , can

be expressed in the form

Ak = omiBee>ydyp + (1 - oqp)leeyly + (<o>y = <o)y

(4-44)
+ (<c>k - <c>1)Wb1]
where ;
Equation 4-42g , neutral and unstable conditions;
W, = (4-443)
21 » stable case;

Equation 4-42h , neutral and unstable conditions ;

im (4-44b)

-1y , Stable case )
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_ given » neutr . and unstable
Wpp = (4-44c¢)

W, + W , Stable ;

1 1m

and 6mn =1 1if m=n; = 0 otherwise.

The variance Tl of the vertical velocity component Wy on surface H1
is caused only by turbulence. Kaimal et at. (1976) found from field studies

that in the daytime mixed layer,
°w2 ¥ 0.4w,2 (4-45)

throughout the upper 80 percent of the mixed layer. [Here w, is the con-
vective velocity scale defined by (4-29b)]. Surface H1 in our model lies

in this region most of the time.

Values of s, at the level of H1 are not as well known under stable
nighttime conditions. Pending the outcome of the NEROS nighttime studies
of vertical mixing, we will assume that under stable conditions at the
ground, there is no turbulence at the altitude of H1 (approximately 300 m).
In summary, we will assume on surface H1 ‘

0.6 w,, L <O
g, = (4-46)
1 0 , otherwise

where L is the local Obukhov length scale.

Flux Across the Surface Layer Top: Fo,o and Fo,l

Several factors complicate the form of F One is that in regions of

0,k’
rough terrain, not all of surface H0 is common to both Layer 0 and 1; part
of it 1ies on terrain (see Figure 4-7). Another complicating factor is

that part of the volume flux that leaves Layer 0 may enter cumulus clouds
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rather than Layer 1. A third factor is that to parameterize the subgrid
scale chemistry, which is one of the main roles of Layer 0, we require
different flux forms for each pollutant species. The last 2 factors will
be treated in the next section where we formulate the Layer 0 equations in
detail. Here we will develop the gross form of the ;B,k expression and

consider the terrain effects cited above.

The general form of %'k is the same as for all the other layers [see

Equation (2-30)]

Fo,k = Fo - <c>p YO.YHO (84-47)

By design of surface Ho’ the last term in this expression is identically zero
[see Equation (3-10)]. The remaining term is the total downward mass flux

of species ¢, across H0 per unit horizontal area.

Referring to Figure 4-7, we will assume that an area (oTo - ch) of the
horizontal projection.of surface H0 Ties on terrain. (Note that due to the

natural slopes of terrain, within any grid cell 970 is always greater than
o11-)
Assuming as before that the deposition flux can be approximated in

terms of layer-averaged concentrations, we have

Bk = (o7 = opplB<ex§yy + (1 - og,)F, (4-48)

where F0 is the mass flux through the portion of Ho common to both Layers
0 and 1, B8 is the deposition velocity of species c, and Son is the Kronecker

delta defined earlier following (4-44). In the next section we formulate

Fo.
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Figure 4.7. Coincidence of
Surface area of

(670 = og)A

surface H_ and H
Ho lying“on ter;a

with terrain surface.
in is approximated as
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SECTION 5
DERIVATION OF DIAGNOSTIC EQUATIONS FOR LAYER O

The aim of this section is to develop a scheme for parameterizing the
physical and chemical processes cited in the Introduction that occur within
about 100 m of the ground. Among these are the effects on chemical reac-
tion rafés of the spatial segregation of pollutant concentrations that re-
sult from the injections of material from point and line sources; the
stagnation of surface emissions in the calm surface layer of air over rural
areas and in mountain valleys at night; and the deposition of pollutants on

vegetation and other surfaces.

A basic constraint on the design of this scheme will be that it has
a diagnostic form; that is one that does not require computer storage in
addition to that taken by the other 3 layers of the model. (Appendix B
describes the constraints on the thickness of Layer 0 that allow the use of
diagnostic, rather than prognostic, equations to treat this layer.) With
this type of formulation, conditions in Layer 0 are expressed in terms of
current conditions in Layer. 1 immedijately above and local, independent para-
meters such as emission rates, deposition velocity and the 1ike. In essence
Layer 0 is simply a sophisticated lower boundary condition of Layer 1.
Indeed, since horizontal transport is negligibly small within Layer 0, it
is only through the vertical material flux Fo that the effects of events

in this layer are propogated to distant places.
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An added feature of the scheme we develop is that it provides an estimate
of the magnitude of spatial variations in concentration in Layer 0. This
feature is particularly valuable in comparing cell-averaged concentrations

that the model predicts with values observed at fixed point monitoring sites.

For simplicity we will formulate the scheme in "1y for the case in
which cumulus clouds are not present. Once this ba..c orm is established
it will be a relatively straightforward task to generalize it to include

cumulus cloud root effects,

~ The flux component Fo 1s given by [cf. Equations (4-47) and (4-48)]

This follows from (4-47) and the definition of Ho‘ Thus, to parameterize
Fo we must work with the fluid velocity

Wog = Wg = 2, (5-1)

relative to surface Ho. Here, W, is the vertical component of turbulent
velocity fluctuations on Ho' Its mean value is WB = Wbo = 0, by previous
assumption.

Some of the special notation that we will use to develop mathematical
relationships are defined schematically in Figure 5-1. Also illustrated is

a Tine source plume which we will use as an example in developing the physical

basis for the scheme.

Let 2_ represent the fraction of surface H  that is in descending
air relative to H0 at any moment and let A _ denote the corresponding area
covered by stationary and ascending air. If pro(w) represents the probabi-

lity density of Weg [given by Equation (5-1)] then

Ay [ pro(w)dw (5-2a)
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Line Source

Line Source Plume !
Volume = 5V |

Figure 5-1, Schematic illustration of Layer 0 and the notation used
to describe processes within it .
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and
(5-2b)

Let w_ be the mean value of Iwrol in the regions of descent (i.e., where
LI 0), and let w, denote the mean relative speed of ascending fluid. In

terms of Pro W€ have

W, = wpro(w)dw (5-3a)

o}

0
W = - J wpro(w)dw (5-3b)

In a Tater section we will prescribe forms for p ., from which x_, A, w_,

and w, can be evaluated.

The area marked 8A in Figure 5-1 is formed by the intersection of the
line source plume with the surface Ho' Since the source is at ground level,

fluid within A must on the average be ascending. We assume then that

SA
=g, 0<g <1 (5_4)
A A sz
where
A = a2cos¢arde (5-5)

In words, it is assumed that on the surface Ho the plumes of all

sources in Layer 0 are confined to zones of ascending fluid. Once these
emissions reach the cei]s above the lowest layer, thorough mixing of all
pollutants is assumed to result so that in all fluid descending through

H, concentrations are uniformly distributed.

Fluxes through the side walls of cells within Layer 0 are negligible,

as a consequence of our definition of H0 [ see the discussion preceeding



(3-8)], compared to those thfough the surfac. H, and will be neglected.

Within each cell of Layer 0, we distinguish between 2 domains: év,
the volume occupied by all emissions of sources in that cell and V - &v,

the region outside év (see Figure 5-1). Here V is the volume of the Towest

cell,
AHAX  rot+AS
V = a2cosé J J max{[zo(x',¢',t) - zT(A',¢')],O} (5-6a)
d=4Ad

A=AX

It is convenient to define also an effective cell depth

B Azo = V/Ao (5-6b)
and

Ay = (1 - op )aZcosearas (5-6¢)
0

Within the restrictions of assumptions introduced above, the only source
of fluid in V - 8v is subsidence through the surface Ho‘ However, there
are 3 avenues by which fluid leaves this domain. One is by direct trans-
port back though the cell top, that is, through an area (1 - g)r A.
A second path of escape is turbulent entrainment into the plume volume §v.
Finally, pollutant species can leave V - év by deposition on the ground
surface. Chemical reactions within V - év are neglected because in view of
the origin of fluid in this domain, pollutants there are somewhat aged and,
consequently, the ratios of their concentrations are brobab]y close enough
to their chemical equilibrium values that little reaction occurs during

the brief time that species are in residence.

Fluids enter the domain v by entrainment from V - év and from pollu-
tant sources, and they leave by chemical removal and by ascent through an
area £i_A of the top of the cell. (Note that by definition of &v, all

source emissions are injected directly into this volume.) For species such
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as O3 and NO, chemical processes within &§v are expected to be rapid because
the concentrations of these pollutants are greatly disturbed from their
chemical equilibrium values by the fresh injections of NOX. We believe that
03, NO and NO2 are the only species that are sufficiently reactive to be
affected by subgrid scale concentration variations (SSV), as it exists
within 8v. Accordingly, we shall assume in this study that only 03 and NO
undergo significant conversion within sv and that, moreover, the rate of
reaction between these species is infinite. A1l other poliutants will be
treated as pseudo-inert substances inasmuch as the time scales of their
reactions are much larger than the characteristic residence time of material

within Layer 0.

Our plan now is to write the mass balance equations for each of the
pollutant species in 6v and V - 8v and, from these, to formulate the desired
expressions for the net material fluxes through Ho and the mean pollutant
concentrations in Layer 0. For these purposes, it is convenient to introdﬁce

the following special notations:

net downward mass flow rate (mass/time) of given

M(x+)
species x across Ho into V - &v,

M(x+) = mass flow rate of species x into the ground

surface in V - sv by deposition,

&(X*l) = mass flow rate of y from V - év into &v by entrainment,
&(x**) = mass rate of removal of species x in &v by
chemical reaction,
ﬁ(x+) = net upward mass flow rate of x across H, from sv,
<x>1; = average concentrations of species y in Layer 1

in the cell atop the given cell of Layer 0,
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X average concentration of species y in V - §v,

X

average concentration of species x in §v.

Many of the terms listed above are illustrated in Figure 5 1.

A. Mass Balance Egquations in V - 8v

Consider first the mass balance of 03. We have

M(034) = M(0z>) + M(0,%) (5-7)

Straightforward analysis gives
M{05+) = w_x_A<O3>; - Omw, (1 - g)x A (5-8)
M(03—>1) = v6a03 (5-9)

In the last equation, v is the entrainment velocity of fluid into sv and

da is the effective surface area of §v. We use the approximation

= 8V -
sa = iz (5-10)

where &v denotes the total volume of the domain 8v. It is convenient at

this point to introduce a final parameter,

_ 68y -
C-KA—Z'; (5 11)

This is the fraction (0 < ¢ < 1) of the lowest cell occuppied by source

emissions. (Note that ¢z # 6v/V unless oT = 0.)
For the deposition mass flow rate of 05 in V - év, we assume
M(0,4) = BO3A03(1 i) (5-12)
where Bg is the deposition velocity of 03. The factor {1 - z) in Equation
3

(5-12) is intended to account for the fact that the domain V - &v does

not necessarily cover the entire ground surface. We assume that a fraction
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g of it is covered by &v.

Substituting Equations (5-8), (5-9) and (5-12) into Equation (5-7)

and making use of the relationship

Vg = WALE (5-13)
imposed by conservation of mass, we obtain
0, = -0 (5-14)
3w, + (1~ c)803
By analogy with this relationship, we obtain
W_A_<NO>y
W A <N02>1
NO, = — (5-16)
2 " wA_+ (1- c)eNoz
and in general
W_A_<x>; ( )
X = 5-17
wa, + (1 -‘ETBX
B. Mass Balance Equations in sv
For 03. we have
M(03+1) = M(0§+*) + M(Oéi) + M(Oéf) (5-18)
The first term of this equation was given earlier:
M(O3+1) = v6a03 . (5-19)
The deposition term is -given by Equation (5-6)
[] - | . -
M(03+) = so3cAo3 (5-20)
and the upward mass flow by
M(Oéf) = w+A+503A (5-21)

The chemical removal term M(0§+*) is somewhat more complicated. Under the
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assumption adopted previously that NO and O3 react infinitely rapidly in

dv, it is clear that ozone will be destroyed in 6v at the same rate at

which NO is produced by sources. But the rate of destruction of 03

cannot exceed the rate M(03+1) at which it is entrained into &v no matter
how large the NO emission rate might be. Let gNO repre<~nt the NQ emission
rate averaged over the lowest cell in units of moles/are ’ -. Then from

the considerations cited above, we conclude

. 03v6a if SNO > vc03
M(Oé»*) = (5-22)
SNOA otherwise

Substituting Equations (5-19) through (5-22) into Equation (5-18) and simp-
1ifying, we obtain

(0 if gno > ve0y

NO
00 - 7
——————=— , otherwise
By * v
0
. 3

The mass balance equation for NO in &v is
M(NO=\) + SygA = M(NO'+*) + M(NO'3) + M(NO'+) (5-24)

A1l of the terms here can be written down immediately based on information

supplied above:

M(NO+,) = NOvéa , (5-25)
M(NO'+) = NO'w, A EA (5-26)
M(NO'+) = BygNO'ZA \ (5-27)

. 0gvsa if Syq > vi0g
M(NO'>*) ={ . (5-28)
SNOA otherwise
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Combining these expressions with Equation (5-24), we obtain

~

S
-%Q'+ v(NO - 03) £ 3 0
] > Vg
, BNO + v NO 3
NO =<
wNO -
———— , otherwise
BNO + v
-

The mass balance equation for NO2 is

.
~

M(N02+1) + SNOZA + M(0é+*) = M(N0é+) + M(NOéi)

Note that we have neglected the loss of NO2 due to photolysis.

procedures like those used above we obtain

~

S

NO
rNOZv *0p + — 2
B, * v T N > V03
NOé = 4] 2
SNOZ * Sno
N02\> + .
T , Otherwise

(5-29)

(5-30)

Following

(5-31)

One of the assumptions we made earlier is that all pollutant species

except 0, and NO react too slowly to undergo significant chemical trans-
3

formation during the brief time they are in the lowest layer (Layer 0).

Let x' represent the mean concentration of 1 of these species in §v.

Its mass balance equation then has the form
MO ) + S A = M(x'e) + M(x'+)

which reduces after analyses like those performed earlier to
S

ot
LI
X 2 TTES

X
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Recall that x can be obtained from Equation .-17).

C. The flux component FO in the case of no cumulus clouds

We can now formulate the flux component Fo that enters in the general
expression (4-48) for the total flux IB - Let FO(O3) be the net down-
ward flux of 03 through H, over a horizontal area A. That fis,

F(05) = & [M(054) - M(041)] (5-34)

which reduces with the aid of (5-8) and (5-21) to
Fo(03) = w_x_<03>; - Oqwa (1 - £) - wr £0g (5-35)
Making use of Equations (5-14) and (5-23), we obtain finally

F0(03) = w_>\_<03>1 - 03W+)\+(1 - E)

-~

0 if SN0 > vc03
- (5-36)
2 -
0y - S,Av
3 NO otherwise
BO+V
3
where
w A <0,>
0 - - 31 (5-37)

3 - W+X+ + (1 - C)803

Note that Equations (5-36) and (5-37)-give the flux in terms of the predicted
mean concentration <03>1 in the cell above Layer 0, the NO emissions rate

in Layer 0, and other quantities, all of which are specified.

With the NO flux FO(NO) defined in the same manner as Equation (5-34),

we obtain through a process similar to that leading to Equation (5-37):
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FO(NO) = <N0>1W_X-

where

(1 - 2)8yg + WyAuE

Sun + vz(NO = 0.) .
NO z 3 if SNO > vC03
1 + N0
- { v

XENQE_ otherwise
NO

SR
<NO>yw_A_

NO =
wa, + (1 - E)BNO

and 03 is given by Equation (5-37).

The NO2 flux is found to be

Fo(NOZ) = <N02>1w-)‘— (1 - C78N02 F WA

r'\:;(Noz +0g) + §NO .
- 2 if SNo > vc03
NO2

_‘i 1+ —
vCNOZ ' SNOZ ’ SNO »  otherwise

6No2

\ 1+ v

where
<NOo>3W_x_

NO, =
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and Og is given by Equation (5-37).

Finally, for all pollutants x other than NO, 03, and N02, we have

(1 -¢)B +wozg vex + S
Folx) = v el B (5-42)
(1- c)BX WA, 1+ ;x
where

<x>1W_A-

S STy (5-43)

D.  Modifications of F_ to include effects of cumulus clouds.

When cumulus clouds are present overhead, they pull a volume flux
Foy = ¥V CA (5-44)
from Layer 0. Here

V = -

Wo = W,
c 1 o

—= - f, /a0 (5-45)
. C

[see Equations (4-15), (4-20) and (4-20a)]. The upward volume flux through
the top of Layer 0 is
w+l+ (1 - UTO)A (5"46)

This follows from the definitions of w,_and A_. Obviously, the cumulus

flux Fc cannot exceed that given by (5-46), so we must limit the values

u
we assign to y by

0
b — (5-47)

We must impose this restriction on ¢ at all times and at all points in

space during model simulation.
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Figure 5-2 illustrates the partitioning of the cumulus cloud flux.

O0f the upward volume flux through Ho a fraction a given by

bocle (5-48)
a - -

is destined for cumulus clouds. The remainder enters Layer 1. Thus, when
clouds are present, the flux component F , which is the net downward flux

into Layer O from Layer 1, has the form
Fo(x) = 7 (M0x) = M(xt) = M_(x#)] = TM(x"+) - M_(x'#)]}  (5-49)

where M_ represents mass flux into clouds. Modifying Equations (5-36)’(5-38)
and (5-40) in this manner we obtain the final forms of the flux component

Fo for use in Equation (4-48):
Fol03) = <0g> W x_ = OgW A, (1-¢)(1-a)

a -
0, if SNO > \)C03

-(1 =~a) - -
ﬁ 03V2C - SNO\)

L BO3+\)

where 0, is given by (5-37);

s otherwise (5-50)

Fo(NO) = <NO>jw_x_ = NOow, A, (1 - ¢) (1 - a)

.
SNO + VC(NO - 03) .
1+ BNOZv , if SNO > v;03 (5-51)
-(1 - a) .{
vz NO .
T_I—§§673 » Otherwise
-

where NO is given by (5-39);
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Figure 5-2. Partitioning of surface flux into cumulus clouds and
Layer 1 . . : .
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Fo(NO,) = <NOp>1w_ A = NOpw,A, (1 - ) (1 - a)

if SNO > v;03
-(1 - Cl) .{ 1+ BNOZ/\)
(5-52)
vgNO, + S + S .
2 NOZ NO , otr. wize
L 1 + BNOZ/V
where NO2 is given by 5-41;
Folx) = <cw A - xwra, (1 -¢) (1 -a)
(5-53)

~ -1
- (1 - +
( a) (vex SX)(l + Bx/v)
where x is given by (5-43).

E. Equations for the cell averaged and fluctuation concentrations in Layer O.

The average concentration of species y over the volume V of a cell in
Layer 0 is

x>, = % JV x dv (5-54)

where V is given by (5-6a). The assumed uniformity of concentrations

within each of the two domains V - &v and sv of each cell leads to

x> = (1= g)x + ax' (5-55)
where

-

z=1¢c/(1 -o05)
TO

Using this equation and those given earlier for 03, 05, NO, and so on, we

obtain the following:
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03> = 4 0, Syol5/%)

oy otherwise (5-56)

B
03

where 05 is given by Equation (5-37);

( -

- Snole/e) - o0 e S0 > w0,
<NO>_ = NO 1-8—&—\) + 4 Byp * v

+
NO 0 otherwise (5-57)

where NO is given by Equation (5-39);

<N02>O = NO2 1 -

03v2 -
-———-—BNO ) if SNO > vc03
+ 2 (5-58)
s (z/2)
E__NO_;_\_)_ otherwise
NO2

and NO, is given by Equation (5-41);

o A v+ (1-2)8 ] $ (z/¢)
<> = G X4 z X -
X

0 -
v+ lwa, + (1-2)e]

(5-59)

As we noted earlier, it is not necessary to evaluate the concentration

formulas [Equations (5-56) through (5-59] at every time step and in every grid
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cell. In the computer program these equations are coded as a subroutine

that is called only at those times and sites where ground-level concentration
estimates are needed. Concurrent evaluations of the root-mean-square con-
centration variation Gx within selected cells of Layer 0 are also performed.

In terms of the concentrations x and x' defined earlier, o, is given by
o 2= (1 - 2)(x - x')? (5-60)
This expression can be applied to any of the pollutant species. For example,

the rms ozone concentration can be obtained by substituting (5-37) for x

and (5-23) for x' in (5-60).

No other air pollution model predicts quantities like OX’ but information
about mean concentration variations within grid cells, such as GX provides,
is of value in estimating concentration extrema, in assessing the magnitude
of modeling errors from comparisons of predicted cell averaged concentrations
with values measured at fixed monitoring sites within those cells, and in

studies where subgrid scale concentrations fluctuations play an important

role.
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SECTION 6

THE REPRESENTATION OF ATMOSPHERIC MOTION: WINDS AND TURBULENCE

In classical studies of short-range dispersion, atmospheric motion is
assumed to consist of 2 rather distinct components: a large scale, uniform
(in space and time) flow (the so-called "mean" or "transport" wind); and
small scale spatial and temporal fluctuations in the flow known as turbulence.
The latter are generated by 2 physical processes: the transformation into
kinetic energy of potential energy acquired by the fluid when its lower
boundary is heated (so-called buoyancy generated turbulence); and small scale
motions associated with the instability or rolling-up of vortex sheets pro-
duced on rigid surfaces by viscous effects (so-called shear generated tur-
bulence). It has been found from observations over flat, uniform terrain that
if the "mean" wind is represented by a time average of the instantaneous
velocity over a period of about 30 min, that time averaged variances, covari-
ances, etc., of the corresponding turbulent velocity fluctuations acquire
universal forms when properly scaled with the speed of the "mean" wind, the
depth h of the fluid in which turbulence is confined, and properties at the

lower boundary, namely the surface roughness and heat flux.

It is perhaps these universal characteristics that have given rise to
the common notion that turbulence, and turbulent diffusion in particular, are
intrinsic properties of atmospheric flow. This premise underlies the common

practice in air pollution models of representing the mean or transport wind
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by a mathematical expression fit to hourly averaged wind observations and
parameterizing the effects of small scale wind fluctuations by dispersion
coefficients or an eddy diffusivity whose values are taken from empirical
data. One of the purposes of this section is to emphasize that this is not
a sound method of representing atmospheric motion in regional dispersion
models. Our principal objective here will be to formulate a conceptual

and mathematical basis for representing fluid motion that not only is con-
sistent with the classical definitions of transport and turbulence asso-
ciated with boundary layer diffusion studies at short range but also is

app]iééble to simulations of dispersion over arbitrarily large scales.

Consider for a moment the universality of the structure noted above
of turbulence defined in the classical sense. When a fluid of given depth
is forced by some uniform, external agent to flow over an "“infinite", flat,
uniform surface of given roughness and temperature, the states accessible
to the velocity, pressure and temperature of the fluid comprise only that
Timited region of the phase space of these fields whose members satisfy all
the external constraints and physical laws jointly. It is in part the
limited domain of accessible states that is manifest in the tendency for
time-averaged quantities in idealized boundary flows to exhibit universal
forms; and in essence it is the quantification of the properties of those

states that is the objective of boundary layer turbulence studies.

Now in regional scale fluids the physical laws involved are the same
but the external constraints are different. The driving force of the fluid
is not uniform or steady; the bounding surface is not infinite, flat, or
uniform; the effective depth of the flow is not fixed; etc. Under these

conditions the accessible states of the fluid motion comprise a much

84



different region of phase space whose members -an not be characterized solely
by properties of the states accessible to the idealized boundary flow.

The existence of a broader set of possible flow fields in these conditions

is evident in a superficial way in the fact that a set of discrete, wind
observations collected over a regional scale area do not uniquely define

a flow field. Indeed, when one attempts to fit a continuous field to dis-
crete data using some objective analysis technique, one finds that each
technique produces a different field. The ability of any technique to

fit a single function to a given set of data is a result of the imposition
by that technique of additional constraints on the system. In most cases
these added constraints are artificial and have no relevance to the "physics"
of the system. One also finds that the flow field derived from a set of
data varies as the number of locations of the observation sites changes.

In short, the mean or transport flow fields commonly used in regional scale

diffusion models are not unique.

This brings into question the practice of parameterizing the disper-
sive effects of small scale velocity fluctuations using empirical expressions
that are completely independent of the data used to represent the "mean"
wind, If the flow field is decomposed into a "mean" and a “turbulent” part,
then for a given flow the character of the “turbulence" will change if one
alters the description of the "mean" flow, as, for exémp]e, by the incor-
poration of additional wind data into the analysis. Recent studies such as
that of Carras and Williams (1981) have measured the spread of point source
plumes out to distances of 1000 km from the source and expressed the spread
as a function of travel time or distance. Many long range transport models
utilize these data to estimate the width of a plume, and flow fields fit to

hourly averaged wind data in the model domain to estimate the centerline.
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This practice is simply an extrapolation of the concepts employed in the
empirical Gaussian model of short-range dispersion, and as we shall show,

it is not supported by theory.

That a basic problem exists in the current methods of treating diffusion
in regional scale simulations is evident in the following paradox, of which

apparently few modelers are aware.

In implementing K-theory in long range diffusion models, Taylor's
(1922) statistical theory of turbulence is usually invoked to support the
premise that for large-scale diffusion the eddy diffusivity is proportional
to the variance of the turbulence velocity, u'? say, times the Lagrangian

integral time scale TL of the turbulence, thus,

K~ TL ue (6-1)
Since TL is not an easily measureable quantity, its value is usually inferred
from diffusion data [see, for example, Draxler (1976)]. However, the inte-
gral time scale TL of a stochastic process is nonzero only if the energy
spectrum of the process has finite amplitude in the limit as the frequency

w + 0 (we show this in Section 7). But the zero frequency component of at-
mospheric motion is contained not in the "turbulence" but in the time aver-
aged wind u which is used to describe the "mean" flow. Consequently, the
integral time scale of "turbulence" as it is def%ned implicitly in regional

models should always be zero! The existence of this paradox is an indicator

that basic features of existing diffusion models are not well defined.

The questions and problems that we have cited above have come to the
forefront as the scope of diffusion models has been expanded from the micro
scale to the regional scale, and beyond. Short-range diffusion studies have

been based heavily on empiricism and in this way theoretical questions of

86



definition have been largely avoided. For example, the Gaussian plume for-
mula has been the mainstay of short-range dispersion analyses for many
years. Being an empirical relationship (based largely on diffusion data
collected during the Prairie Grass experiments), the plume formula provides
quite well defined concentration estimates (approximately 10 min averages

at fixed points in space) in terms of well specified inp - ﬂiameters.
Unfortunately, there does not exist a comparable empirical basis for regional
scale modeling, although we might add that there is some weak evidence that
such a basis might actually exist, at least for chemically inert material.
Specifically, the success of the Gaussian model in predicting 10-30 min aver-
aged concentrations out to 1 km from a point source is apparently due to the
small scatter in 30 m averaged concentrations that one finds from one obser-
vation to another conducted under the same flow conditions. And this small
scatter is apparently attributable to a gap in the turbulence energy spectrum
(Van der Hoven, 1957) at periods of about 1 h. It turns out that there is
another gap in the spectrum at periods of the order of 90 days, and this
suggests that perhaps there exists a regional scale counterpart of the em-
pirical Gaussian model that would provide estimates of seasonally averaged
concentrations out to 1000 km from a source in terms of certain seasonally
averaged meteorological fields. Demonstrating the viability of such a

model would require a large scale dispersion experiﬁent conducted over a

period of at least 1 year.

It is imperative now that unresolved theoretical aspects of the repre-
sentation of atmospheric motion in diffusion models be addressed. We attempt
that in this section. By this effort we hope to derive sound definitions
of transport and turbulence and at the same time lay the basis for

answering the following closely related questions which have great relevance
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to the utility of pollution models in regulatory decision-making roles:
(1) What aspects of pollutant concentrations are models capable of

predicting?

(2) Given our present state of knowledge, what are the theoretical
limits on the accuracy with which these quantities can be pre-
dicted (assuming perfect emissions data, chemical information,

etec.)?

(3) How does one assess the accuracy of a given model?

A Game Analogy of Diffusion Modeling

In order to help convey some of the basic ideas that we introduce later,
we present in this section a simple game analogy that possesses many fea-
tures in common with the diffusion modeling problem but which are less
abstract. Our game involves the throwing of 3 dice 3 times to produce a
3x3 matrix of, for example, numbers 5. (We consider 3 throws of 3 dice,
rather than a single throw of 9 dice, as a way of retaining space-time fea-
tures). We assume for simplicity that the faces of each of the 3 dice are
marked with an integer from the set 1, 2, 3, 4, 5 and 6. In this case the
matrix 5 is a member of the family of 69 = 10,077,696 matrices illustrated
in Figure 6-1. We will call this the global famiiy of matrices because it
contains all matrices that are consistent with the fundamental definition of
the system: 3 dice with faces marked 1, 2, 3, 4, 5 or 6 thrown 3 times.
Every realization of this system must be a member of the global family
shown in Figure 6-1, regardless of whether the dice involved are "loaded",
or whether some were accidentally stamped with the same number on more than

one face, or how the dice are thrown, etc. These details are characteristics
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Figure 6-1.
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=10,077,696 ( 6 6
6

The global family of possible outcome matrices A
resulting from the throw of three dice three -~
times (see text for more details) .
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of the specific system (i;e., the actual cice used in a particular instance,
the throwing method, etc.). For reasons that will become clear later, to
maintain a proper analogy with diffusion modeling we cannot restrict specific
details of the system beyond the 3 basic requirements given earlier. In
other words, in our game the choice of the dice, the throwing method, etc.,
are optional, so long as there are only 3 dice thrown 3 times with faces

marked with 1 of the integers, 1, 2, 3, 4, 5 or 6.

Suppose that a set of dice has been selected and is thrown. We ask
is it_possib]e to predict in advance the outcome matrix e? The determinism
that we associate with physical law leads us to believe that we could pre-
dict 5 if we knew all the physical details of the dice, their exact positions
at the beginning of the throw, etc. But like so many natural phenomena,
these details are so numerous and intricate that they are outside the scope
of our capabilities of quantitiative observation. And without precise
knowledge of the initial state of a system, physical laws are powerless as

predictors.

This is one of the key points that we wish to emphasize in this section.
We believe that one of the debilitating practices of atmospheric diffusion
modeling as it is now applied to large scales is the employment of physical
laws in deterministic roles when the observational data are too crude to
warrant it. In the next subsection we argue that under these conditions, a
more natural role for physical law is that of delineating the class or
family of possible atmospheric states (such as the family of e matrices
defined above). We will postpone further discussion of this point until

later in this section.
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Lacking ability to predict the specific matrix e that will result
on any outcome of our dice game, we next pursue the question of whether
there is not some attribute of each e that is so prevalent in the family of
e's that nearly all members possess it, or at least a value near some one
value. In seeking such an attribute, we consider only those that are analo-
gous to properties of interest in the diffusion modeling counterpart that
we introduce later. Here the space-time character of our 5 matrix will be
of value. Let's assume that each column in 5 represents the numbers on each
of the 3 dice on 1 of the 3 roles and is roughly analogous to 3 spatial
points at a fixed time. Similarly, each row of 5 contains the 3 outcomes
of each of the 3 successive roles and we will regard it as analogous to

temporal variation at a fixed space point.

Within this frame of view the attribute "the sum of the 9 elements of
ﬁ" is the analogue qf a space-time average of a single realization or out-
come of e and therefore it is a property of interest. Suppose we scan down
the family of 5n shown in Figure 6-1 and compute the sum Sn of the 9 elements

of each member, viz.,

3 3

S. =T I a,. (6-2)
N o4=1 j=1 "0

where aijn are the elements of en'

We find that the sums S, Tie in the range 9 < S < 54 for all n. Only
1 of the en has the sum 9, namely the member n=1; and only the last member
has the sum 54. Nine members have the sum 10 and 9 possess the sum 53.
But an inordinate 767,394 have the sum 31 and the same number have the sum
32. In fact, over one-half of the entire family have sums that are within

+10 percent of the family mean sum 31.5; and almost 90 percent have sums
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within £20 percent of the family mean. 7 : full distribution of sums Sn
is plotted in Figure 6-2. (We add in passing that since the profile shown
in Figure 6-2 is simply a property of the set of numbers illustrated in
Figure 6-1, we can argue that the Gaussian shape of this profile is attri-
butable to the "geometry" of the number system. Perhaps this is why suffi-
cient conditions for the occurrence of the Gaussian distribution, as set

forth by the Central Limit Theorem, are so weak.)

The tight clustering of the sums Sn about the family mean value suggests
that even though we cannot predict which of the matrices 5n will occur on
any ocEasion, we can predict with respectable accuracy what the sum of its
elements will be, provided that there is nothing inherent in the dice, the
throwing method, etc., that causes preferential occurrence of those matrices
whose sums are farthest from the family mean value. Thus, we are back to
the problem of predictability or, more generally, causality. What we lack
is information about the "mechanism" that selects from the family of e

matrices the ones we actually observe when a given set of dice are rolled.

Philosophically, one might argue that there is no causal "mechanism",
that the outcomes of 6 that we observe are simply revelations of the unfolding
of time. However, this point of view does not aid our understanding or
conceptualization of the problem so we will postulate a "mechanism" that is
consistent with observation. Specifically, we imagine that for every set of
dice, throwing method, surface, etc., there exists a well balanced wheel and
pointer with the family numbers n shown in Figure 6~1 inscribed on the cir-
cumference of the wheel. Before each throw (i.e., 3 throws of the 3 dice),
the wheel is spun (by "mother nature") and the number n indicated by the
pointer when the wheel stops determines the matrix @ that we observe on

that throw.
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Figure 6-2, Number cf matrices in the global family with given

element sum S .
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Now there are many ways to arrange the numbers n on the wheel. The
simplest is to include all the numbers, n=1,2,... 10,077,696 and to allocate
equal angles of arc to each. This configuation is the one we would associate
with "fair" dice games in which any one of the possible outcomes (5) is as
"likely" to occur as any other. Another possible arrangement of the numbers
is to include them all but to allocate more space to sor °~  .ers than to
others. This would represent a game in which the dice were "loaded". Yet
another possibility is to exclude some numbers n altogether. For example,
if due to some manufacturing flaw 1 of the 3 dice had had a "5" stamped on
the face that should be marked “6", our corresponding “"causal wheel" would
not contain the numbers n of Figure 6-1 that denote matrices with 6's 1in

row 2, say; and those numbers that represent matrices with 5's in row 2

would have twice the space allocations as the others.

Our wheel concept is quite crude but we believe that it provides an
easy way to conceptualize the link between the purely mathematical aspects
of the problem, such as the family of possible stafes of the system (or
sample space as it is usually referred to in probability theory), and the

sequence of system states that we would actually observe with a particular

DICLE TVITRTR ™ & KV ST

system (e.g., set of dice, throwing method, etc.). Also, in the context

of the wheel the probability of occurrence of a given matrix An is simply
n
Prob(A,) = = (6-3)
where An is the arc length in radians allocated to member n.

In statistical analyses one deals with ensembles of the function or

variable in question. We can produce an ensemble of A's by spinning the

wheel many times and listing the A's that result. One of the important
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purposes that an ensemble serves is to provide information about which
members of the global family of states is included on the wheel and the

relative space allocated to each (i.e., their probabilities).

In some instances we do not need to know anything about the “causal
wheel". For example, if we are designing a system and are concerned about
the occurrence of certain states that violate some safety criteria, and if
we are able to define the global family of possible states as we have done
in Figure 6-1 for the dice game, then there is no need for information about
the wheel if the states of concern are not members of the family. In most
cases, however, the violating states are members of the global family and
the problem is then one of estimating how frequently they will occur during
operation of the system. (The ultimate goal of the present study is the
estimation of the frequency of violation of air quality standards.) In

these situations information about probabilities is essential.

In this connection 2 important points must be ﬁade. The first is
that theoretical knowledge is generally incapable of describing exactly
which family members are on the wheel and how they are apportioned space.
We can only infer this information from observations, namely from an en-
semble as defined earlier. The second point, which is somewhat contradic-
tory of the first, is that the exact collection and layout of numbers on

the wheel cannot be determined from observation.

To see this, suppose we had a perfectly balanced wheel with the numbers
n=1,2,... N=10,077,696 arranged at equal intervals around its rim. Since
there exists no force to cause the wheel to stop on each of the N numbers
once and only once in N spins, an ensemble of N numbers produced by N spins

might not contain some of the n. Obviously, we would be wrong if we inferred
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from this ensemble that the missing n were not present on the wheel. It is
this same freedom of the action of the wheel that makes it impossible to

predict the frequency with which given states of a system will occur.

For example, our intuition tells us that throwing 9 dice and having
them all come up 6's (the last member of the 5 family of Figure 6-1), is
a "rare" event. Yet if the dice are "fair", this event is just as likely
as any of the others. Thus, all of the outcomes are equally rare so a "rare"
event occurs on every outcome of the throw! It follows that there is no
reason for “rare" events to occur infrequently. In the language of hydro-
logists, the "hundred year flood" may occur several years in succession.
Consequently, all we can do is base decisions on the expected frequencies

of events, and then to hépe that we're Tucky!

The expected frequency of the all-6 matrix of Figure 6-1 in a fair

game is 1 in 10,077,696 games. If, in some hypothetical game, the player
won $10 on évery throw that the all-6 matrix did not come up but was beheaded
the first time it did, one could "expect" to make a million dollars a year

at this game for 100 years before suffering the ultimate loss. But there

is nothing in the universe to prevent the all-6 matrix from coming up the
very first game! Similarly, we can "expect" the sum S of the dice to differ
from 31.5 by no more than 20 percent in only 1 géme in 10. But there is
nothing to prevent exceedance in 10 successive games. Our purpose in elabo-
rating on these basic concepts is partly to emphasize the limits on the know-
ledge that we can hope to acquire about the future behavior of natural systems.
We especially want to emphasize that the notion of determinism that under-
lies current thinking and practices in air pollution modeling and in the

expectations that regulatory officials have in the utility of model pre-
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dictions is unsupportab]e.' Another purpose is to lay the bases for the

general approach to diffusion modeling that we present in the next subsection.

Before proceeding we need to introduce a few more concepts and then

to summarize all that we have presented in this section.

We first define a subset of the global family of states as the collection
of all members that have some given property in common. For example, we
can speak of the subfamily of é's that have 1's along their main diagonal
(there are 66 members of this subfamily); or the subfamily whose element

sum S = 18 (there are 22,825 members of this subfamily); etc.

The ensemble mean of a parameter is obtained by generating an infinite
ensemble of system states (e.g., A's) in the manner described earlier, and
averaging the parameter values collected from each member of the ensemble.

We denote ensemble averages by angle brackets <>.

Intuitively, one can see that the ensemble mean can be computed from
the global family by weighting the parameter value associated with each
member of the family by the probability of that member, as defined in
Equation (6-3). For example, the ensemble mean of the matrix element sum
Sn discussed earlier is

10,077,696 )
<S> = L Prob(A )S, (6-4)
n=1 -

(In the remainder of this report the ensemble average <> and the cell average

<>j can be distinguished by the presence or absence of the subscript.)

If S represents the sum of the elements of the matrix A that occurs on
a given throw, then as we have already discussed, S is not predictable but

<S> is. Thus, it is of interest to know how far to "expect" S to fall from
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the ensemble mean value <S>. Denoting the difference by

€ =8 -<$ (6-5)

we see that the ensemble mean square value of ¢ is
10,077,696
<g2> = b Prob(An)(Sn - <5>)2 (6-6)
n=1 -

If <e2>LE is a small fraction of <S>, then within the ensemble the values of
S are clustered around <S> and we can expect values near <S> to occur fre-
quently. (The distribution of Sn shown in Figure 6-2 is an example.) This

measure of the range of likely values is one of the easiest to determine

and is used widely in statistical analyses.

In this section we have distinguished between 2 inherent aspects of
natural systems: the g]oBa] family of possible states of the system, and
the "causal wheel"” which we shall use here to conceptualize the agent that
causes particular states to occur on particular occasions when observing a
particular system. A precise description of the global family (or sample
space) can often be derived from the fundamental features of the syétem.
We did this earlier for the case of a system of dice.. However, a quantitative
description of the causal wheel is generally not derivable and can only be
inferred from actual observations of the system's behavior. The property
of concern is embodied in the concept of probability, which we defined in
Equation (6-3) in terms of our wheel. Having defined the global family and
estimated the probability of its various members, we can then calculate en-
semble mean values as in Equations (6-4) and (6-6) above. If our description
of the global family and its member's probabilities are accurate, we can ex-
tract certain ensemble statistics from this information that will delineate

bounds within which given system's parameter values can be expected to fall
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with given frequency. These expected frequencies represent averages over

an infinite period of observation and may differ greatly from those seen
during a finite period of observation, even when the information used to make
the expected frequency estimates is exact. The important point is that the
parameter value itself is not predictable. The best that can happen is

that the interval over which 90 percent of the values are expected to occur
is so narrow that, on average, 90 percent of the observed values differ

negligibly from the prediction.

The Statistical Bases for Air Pollution Modeling

The quantities of pollutants and their precursors emitted into the
atmosphere and the times and places where they are released are variables
that, for the most part, are controlled by man. In fact, it is this con-
trol that is to be exercised to achieve concentration levels that are in
compliance with air quality syandards. But once material is airborne, its
fate is determined jointly by atmospheric motion, chemistry and other pro-
cesses that are neither controllable nor observable (quantitatively) in
their entirety. Like the dice discussed earlier, atmospheric motion obeys
known physical laws but the information needed about the state of the atmos-
phere to apply these laws in a predictive role is far beyond our capabilities
to acquire. Consequently, the joint effects of atﬁospheric motion, chemistry,
etc., on pollutant concentration must be treated in a statistical manner like
that employed earlier with the dice game. Our first step, then, is to define

the global family of possible atmospheric states.
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The Global Family of Atmospheric States

1. General considerations

Let D denote the spatial region in which pollutants are to be modeled
and let T represent the period of interest. Let g(f,t\ represent the in-
stantaneous fluid velocity at any point (§,t) in spac © :. Then, by ex-
pressing atmospheric motion in the truncated form

a(x,t),‘if xeDand 0 <t < T
u{x,t) = (6-7)
0, otherwise

we can represent u by the complex Fourier transform

‘_‘(f’t) = '(2_;nﬁ } ]g('f"”)ei(‘f.).( * mt)dlfdw (6-8)

where n is the spatial dimensionality of the modeling region (n=1,2, or 3);
U is the complex Fourier transform of u; k is the wave number vector; w is
the angular frequency; and the integrations are over all k and w space.

By definition of U the inverse transform of (6-8) is
T »
Ulk,w) = I J u(x,t)e'1(5'§ * wt) ey (6-9)
D o

Consider for the moment the case where D is one dimensional. Equation (6-8)

reduces to

u(x,t) = — j JU(k,w)ei(kx * ot)gdx (6-10)
(2n)2

where now u, U, and x and k are scalar variables. We can imagine the

integrals in (6-10) to be the limits of sums, namely
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u(x,t) = —= - 1im > &mnei(knx tupt) poak (6-11)
(27)2 Akbw0 n=-= mM=-e

where kn = nak, wo = My and &nm are elements of the matrix é. In words,
given a one dimensional domain U and time period T, we can represent any
velocity fields u(x,t) in that region by a matrix @ usir . ~tion (6-11)
and its 1-D counterpart, Equation (6~9). For each possible vé]ocity

distribution u(k,t) there exists a matrix &, and conversely.

Note that the matrices Q are analogous to the 5 used in the previous
section.to represent the possible states of the system of dice. Our reason
for working with g rather than the velocity itself is that the former pro-
vides a much more concise way of representing continuous functions, especially

when they are to be approximated by a finite set of discrete data.

In order to illustrate important points, it is necessary to work with
at least 2-D fluids. Therefore, considering a two dimensional flow, we

adopt the notations

u(x,t) = [u(x,t), v(x,t)] (6-12a)
x = (x,y) (6-12b)
U(k,w) = [U(k,w), V(k,w)] (6-12c)
k = (kxf ky). (6-12d)
Then, from Equation (6-8) we have ,
1 } j j(k*x + wt)
u(x,t) = U(k,w)e =~ ~ dudk (6-13a)
- (2r)3 - ~
(x,t) = — j J e (KX +ut) _
vix,t) 23 ) [V dudk (6-13b)
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In the case of the dice game we were able to define the entire family
of possible states 5 using only the definition of the system. To some extent
we can do that with the fluid system. First, we note that since u is a real
function, the transform g, which is complex, must satisfy certain conditions.
Cne of these is found by taking the complex conjugate of (6-9). We get

T i(kex + wt)
g*(E,m) = J j E(f’t)e ol dtdf (6-14)
Do

where U* denotes the complex conjugate. Comparing (6-14) and (6-9) we see

that
U*(kyw) = U(-k, -a) (6-15a)

-

Also u*(-k, -w) = U(k,w) (6-15b)

Multiplying (6-15a) by (6-15b) we find that
lu(-k, ~0)| = |ulk,u)] (6-16a)
[V(-ks -w)] = [V(ku)] (6-16b)
In words, the amplitudes of the complex Fourier transforms must be even
functions of E and w in order for the fluid velocity components to be real

functions. Thus, the global family of transforms U is comprised of only

complex functions that satisfy Equations (6-15) and (6-16).

Strictly speaking this condition and any others that arise from the
realness of u are the only conditions that we should impose on the definition
of the global family. The constraints imposed by physical law should be

looked upon as properties of our causal wheel inasmuch as they are the re-
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sults of observations of the natural world. (This is the view we held
earlier in defining the global family of outcomes 5 of the dice game.)
Indeed, fluid flows that violate 1 or more of the so-called physical laws
may be possible but have such small probabilities that they have never been
observed. This philosophical argument notwithstanding, we shall proceed

to include physical law in the definition of the global family of velocity

transforms U.

2. The constraints of physical laws

Physical laws have the effect of imposing certain relationships among
the elements of each member of the U family. We will illustrate this here
considering only the mass continuity law in its incompressible form, and

the momentum law, both in the context of a 2-D fluid. Later we will consider

a more general case.
The continuity law is

du , 3V _
> F 3y " 0 (6-17)

Substituting (6-13a) and (6-13b) into this equation and performing the differ-
entiation, we get

ka(kx,ky,w) + kyU(kx,ky,m) =0 ) (6-18)

Thus, any function U = (U, V) that does not satisfy both (6-15) and (6-18)
is not a member of the global family. A1l other U, of which there are in-

finitely many, are eligible members.

The momentum law in 2 dimension, and somewhat simplified, can be expressed

in the form
_Yl 3( ) _a_(v ) = 32n + « azn (6’19)
3t | 3x AN ax? ayZ
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where n is the vorticity defined by

oV au

n = -—; - -a—‘-y— (6'20)
and « represents molecular viscosity. Denoting the transform of n by

N(k,w), we find from (6-19)

'in(lf,w) + 'iJ J N(lf',w')[ka(lf - lf',w -w') (6-21a)

+kv - bt - T4 'V = o 2+ ZN’
y (5 E S - )]dE dw »c(kX ky) (5 w)
and from (6-20) we obtain

N(k,w) = 1[kXV(§,w) - kyU(E,w)] (6-21b)

Any complex function g = (u,V) that does not satisfy all of the relation-
ships, (6-21), (6-16) and (6-15) is not a member of the global family of
fluid velocity transforms. In atmospheric studies we deal with a 3-di- _
mensional fluid that is heated and cooled and that contains water. In this
instance to describe the state of the system we need in place of the vector
(u, v) used in the preceeding example a 6-dimensional vector (uy v, Wy 0,

8, q), where (u, v, w) are the fluid velocity components, o is the fluid
density, 6 its temperature, and q the mass of water vapor per mass of air.
If we let g represent this 6-D vector, or its equivalent, in Fourier space,
then in the manner illustrated above we could derive from the conservation
laws of momentum, mass‘and energy the relationships that define the global
family of g. Let's call this family Q. The details of its definition,
corresponding to Equation (6-18) and (6-21), are not important at this point
and we can think of it simply as the intersection in function space of those

subsets of U each of whose members satisfies one of the physical laws.
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This is illustrated schematically in Figure 6-3.

The set Q represents all possible fluid motions. Specifying the fluid
(i.e., its viscosity, heat capacity, etc.) and suitable initial and boundary
conditions effects the selection from @ of a single function that describes
the exact state of the fluid system in space-time under the conditions pre-
scribed. This is the essence of determinism, but it is generally unachiev-
able in practice for the same reason that the outcome of the throw of a
set of dice is not deterministic: the initial and boundary conditions can-

not be determined with adequate resolution.

When we specify the initial and boundary conditions of a fluid, we do
so only in some macro sense. That is, we say that a surface is "smooth"
but on the microscale it is.very rough. Similarly, we say that a fluid is
initially "at rest", but on the microscale the fluid is in a constant state
of agitation (this is evident in Brownian motion). Generally speaking,
in low Reynolds number flows the state of the system is insensitive to micro-
scale details in the initial and boundary conditions. In this class of
problems a macro-specification of the initial and boundary conditions deter-
mines the macro state of the system uniquely. The analogous situation
with the dice is having a set that is so "loaded", that despite differences
in the way the dice are held or tossed, every throw results in the §gmgl
outcome matrix 5. In effect, the causal wheel has only 1 system state on
it.

The same is not true at high Reynolds numbers. It is found, for example,
that as the pressure gradient driving fluid through a pipe is steadily in-
creased, a "critical" Reynolds number is eventually reached at which the

flow field suddenly changes from the organized, Hagen-Poiseuille state
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Figure 6-3.

Global family of I

I1lustration of the set @ of complex functions U(k,w) that

comprise the global family of fluid flow velocity Fourier
Transforms. SetX represents functions that satisfy purely
mathematical constraints 1ike Eq. (6-15). Set A represents
functions that satisfy mass continuity relationships, like
Eq. (6-18); and set v denotes functions that satisfy all
other laws 1ike momentum and entropy. Intersection of &
and = defines the global family & of U.
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characteristic of the low Reynolds number regime into a chaotic state known
as turbulence. No matter how many times the experiment is repeated, the
state of the fluid after the onset of turbulence is different and it differs
from one pipe to another. In these cases the flow is so sensitive to small
scale details in the initial state of the fluid and the "~undaries that
specification of only macro properties of the initial ar ‘"ujadary conditions
is only adequate to delineate the subset of @ to which the fluid state y
belongs, but not the exact state f!itse]f (the causal wheel now contains a
subset of @ rather than a single member). Let's call this set W. We can
11lustrate the differences among the members of W and something of the nature

of the set W itself with the following analogous problem in free convection.

Imagine a closed air chamber with thermally insulated walls and top
and with a bottom made of a high resistance metal that becomes hot when an
electrical current is made to flow through it. And imagine that a velocity

probe is placed at some arbitrary, fixed location inside the chamber.

Suppose now that after waiting several days for the air inside the
chamber to reach a "state of rest", an electrical current were applied to the
bottom of the chamber and simultaneously recording of the signal from the
velocity probe were begun. We would expect that after some brief interval
the velocity would depart from its initial value of zero and would vary in
an erratic manner from that time on. Let's suppose that in this first ex-
periment the velocity is recorded for 1 h and after that the heating current

is switched off.

Suppose that after waiting many days for the heat injected into the
chamber in the first experiment to escape and for the air to return once

again to a "state of rest” the same experiment were repeated. Our intuition
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tells us that the initial portion of the velocity record made this second
time might coincide with that made in the first experiment, but in time the
2 records would diverge and would differ in a "random" way for all later

times.

Since it is axiomatically assumed that fluids of.’ physical laws
(whether those laws are represented accurately by the matfiematical equations
currently used is another matter) and that the solutions of the equations
that express those laws are unique functions of the initial and boundary
coantions, the only way the velocity records collected in our hypothetical
experiments could differ would be for the initial, or less likely, the boundary
conditions to be different in the 2 cases. (Actually, to the author's
knowledge an experiment of this type has never been conducted, so the con-
clusion that the velocity would differ from one outcome to the next is only
speculation. We look upon this simply as a "thought experiment" that illu-

strates the nature of an ensemble of flow fields.)

Our statement that the air in the chamber is initially "at rest" is a
macro-specification of the velocity distribution that does not uniquely de-
termine the precise mathematical state Y(t,to). In fact, there exists an
innumerable set of functions Y(f’to)’ (f e D, where D is the space inside
the chamber) each of which is consistent with the criteria, implicit or
otherwise, that define the macrostate "fluid at rest”. Let's call this set
of functions I. Then under our premise each member of I maps through the
equations that represent physical laws into a set W of functions Y(f’t)’
re D, to <t <= Thus, W represents the subset of the global family Q of
velocity fields that is delineated by the conditions that define our chamber

experiment and it is the members of the set W that our velocity probe
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samples. Since there is no known mechanism that would tend to cause any
member of I to occur more frequently than any of the other members of the
set, then each velocity field in W is equally likely to occur and hence W

is also the ensemble of flow fields.

As in the dice game, there is no way of determining which member of I
characterizes the air in the chamber at the beginning of any experiment and
therefore there is no way of predicting the outcome v(r,t). We can only

hope to determine properties of the ensemble W.

If the angle brackets <> denote an ensemble average and s represents
the location of the velocity probe in the chamber, then <v(r0,t)> and
<v2(ro,t)> are the mean and mean square velocities, averaged over infinitely

many experiments, that we could expect to observe.

Since the bounds on the subset W are determined by the parameters that
define our experiment, namely the dimensions of the chamber, the rate at
which heat is injected into it, physical properties of air, and the roughness
of the chamber walls, all ensemble mean quantities must be functions of these

variables. The aim of turbulence theory is to predict these relationships.

Two important points should be noted here. The first is that the "ensemble"
of flow fields is determined by the conditions that define the problem. In
the present example these include: thermally insulated, smooth- walled air
chamber with bottom heated uniformly at a specified rate; fluid initially at
rest; etc. In typical atmospheric boundary layer studies the defining con-
ditions include: flat infinite surface of given roughness length z, and
heat flux Ho; friction velocity u* (which is a surrogate for the pressure

gradient that drives the flow); etc.
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The second point is that in conventional turbulence studies the condi-
tions that define the ensemble are usually "external" parameters such as
those just listed rather than "internal” parameters that we define below.
Perhaps the purpose for this is that once the relationships between ensemble
averaged state variables and the external parameters have been determined,
those expressions can be used to predict averaged values in other similar,

but quantitatively different, situations.

In regional scale air pollution studies we are generally not interested
in prognostic capabilities of this sort. We consider the flow fields in
the region of interest to be fixed, in a climatological sense, and we attempt
to determine how air quality in that region would change if the source emis-
sions were altered in a‘prescribed way. Furthermore, external parameters
are not readily definable in these problems because there are no walls or
tops on the airshed of interest, the earth's surface is not uniform, etc.
In these cases the conditions that define the flow fields are measurements
of "internal" parameters such as wind velocity, temperature, pressure, and
so on. Therefore, these data must define the ensemble of flow fields. And
as we show in the next section, they define in turn the corresponding en-

semble of concentration fields associated with a given source distribution.

To define the ensemble in terms of "internal" parameters, let's assume
that in the space-time domain (D, T) of interest we have available observa-
tions of the horizontal wind components (u, v), temperature 6, etc.,
sites X1s X2s00e Xy Suppose further that these data are in the form of

moving time averages:
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t+T

Uﬁ(t) = ?%' J u(fn,t')dt' » nh=1l,...N (6-22a)
t-T
t+T

Eh(t) = 2%- J s(fn’t')dt' s nh=1l,...N (6-22b)
t-T

etc. Let's assume also that in addition to the N surface monitoring stations
there are M upper air soundings made at Tocations XN+1> XN+27 - XN that
give averages of winds, temperature and dewpoint over small vertical intervals

AZ:
z2 + az/2

-7 - 1 i
um(z,t) = u(xm, Yo Z' t)dz (6-23a)

zZ - Az/2

s
A2
m= N+1,...N+M
z + Az/2

e(xm, Y z', t)dz' (6~23b)
zZ - Az/2

=z 1
em(29t) -A-Z-

m = N+1,...N+M

etc. Since the functions on the lefthand side of (6-22) and (6-23) are given
(from the measurements), this set 6f equations constitutes a system of in-
tegral equations in phe unknown flow fields 9(§,t), e(f,t), and so on. We
now define the ensemble W of velocity fields associated with the space (D, T)
and observations Gh(t), Bh(t), etc in this space as the set of functions

u(x,t), e(x,t),etc (x,t) e (D, T) that satisfies jointly the system of Equa-

tions (6-22, 23) and the following set of equations that represents physical laws:

v

= - ;.Yp - f X Y + fH (6-24a)
3= - eg (6-24b)
L= v - (oY) (6-24c)
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(ere) T=tP-1+0 (6-24d)

p’ d
dq %68 R - CPRVe dp 4 (6-24e)
dt  p 2 2 [dt
chve + qSL

where
=1, if £ <0 and q 3 q

In Equation (6-24), V = (u,v); v = i+ i<l

- - X ay
d _ 3 3
otV VW

p is pressure; p is density; 6 is temperature; f is the Coriolis parameter;
fH is the friction term which is expressible approximately in terms of Y

and other parameters and generally is significant only in the Towest 2 km

of the atmosphere; q is the specific humidity and g the saturation specific
humidity, which is a function of 8 and p; £ is the concentration of liquid
water; cp and CL are the specific heats of air at constant pressure and
water, respectively; R and Rv are the gas constants for air and water vapor,
respectively; g is gravity; Q is the rate of heat loss or gain by radiation
processes or precipitation; and L is the latent heat of vaporization, or

sublimation, whichever applies.
 J

In our earlier discussion we defined the set Q (see Figure 6-3) to be
the set of (u, v, W, o, 8, q) that satisfy physical laws, namely the set
~ of equations (6-24). Thus, by imposing the additional constraints (6-22, 23)
we reduce the set of states (u, v, w, p, 6, q) accessible to the system to
a subset of Q, namely the subset we call W. By contrast, the classical

approach is to specify certain initial and boundary conditions in place of

12



(6-22), (6-23) that in prinéip]e reduce the set of accessible states to a
single member of Q. But as we discussed earlier, in the domain of Q asso-
ciated with "turbulent" flows, specifications of the initial and boundary
conditions that provide only a macro-description rather than point details

are only adequate to delineate a subset of systems states.

The observations ﬁn, etc., that enter in Equations (6-22) and (6-23)
reduce the number of possible flow states from the set Q to the subset W
for exactly the same reason that knowledge of the outcome after each roll of
1 of the 3 dice in the earlier game would reduce the number of possible matrices
e from fhe global set of 69 matrices to a subset of 66. These reductions
effect an improvement in the certainty with which we can describe events

that have already taken place. Indeed, in the case where all the dice are

observed or where flow variables are measured everywhere in space-time, the
subset W of possible states is reduced to a single member of the global set
Q. However, observations obviously do not exist for events that have not
yet taken place, and therefore in attempting to predict future states of the
fluid or outcomes e of the dice, the set of possible states is the ensemble
set which may be identical to the global set Q. As we pointed out earlier,
the purpose of observations is to provide us with a knowledge of the ensemble

set and the probabilities of its members. We return to this point in Section 7.

In Part II of this report we will show how (6-22), (6-23) and (6-24) are
used to derive an ensemble of cell-averaged fiow fields and cell layer heights
from which the regional model can generate the associated ensemble of pollu-
tant concentrations distributions, and we will begin to answer the 3 basic

questions raised at the beginning of this section.
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SECTION 7

MESOSCALE DIFFUSION; CONCENTRATION PREDICTABILITY;
MODEL "VALIDATION"; AND RELATED TOPICS
To derive the equations that describe the fate of pollutants in each
of the model's 3 layers, we started from the mass continuity equation
(2-15 which involves the instantaneous, point fluid velocity v. The final
form (2-29) of the model equations governing the cell-averaged species con-

centrations in each layer contain the subgrid "eddy" flux terms

<u'c'>j

> s = > o c: -

<v'c'>. = <vc>j - <v>j<c>j

J

where <>j denotes a cell average in layer j, j=0,1,2,3; u and v denote the
components of the horizontal fluid velocity u; and primed quantities repre-

sent deviations of the local, point value from the cell averaged value <>j‘

In the previous section we showed that from a discrete set of observations
of meteorological variables in a domain (D, T), one can determine the velocity
field V= (u, v, w) in that domain to within only a set of functions W. To
each member of this set there exists a <u'c'>j and <v'c'>j for each distri-
bution of species sources. Thus, our first task in this section will be to

express these subgrid eddy fluxes in terms of <v>j and <c>j. Following that

we will address the 3 questions raised at the beginning of Section 6,

which involve the relationship between the set of <c>j associated with the
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set W of meteorological fields and the concer.crations that one could expect
to measure under the meteorological conditions implicit in W. Finally, we
will look at whether the concepts we presented in the previous section are
consistent with the concepts of turbulent diffusion that form the basis of

the classical theories of microscale dispersion.

For simplicity we will approximate the subgrid eddy flux terms in the

gradient transfer form

<U'C'>j = - anl a—i—. <C>j (7'23)
’ ' = __8_ -
<v C'>J- == Kju¢ a¢ <C>j (7 Zb)

with the eddy diffusivity Kj given simply by
O0.lweh , ifL <0

K = (7-3a)
o , otherwise

Ky = o w h (7-3b)

where w, is the convective velocity scale, defined by (4-29b); h is the mixed
layer depth, or the elevation above ground of the top surface of Layer 2; L

is the Obukhov length; o. is the fractional sky coverage of cumulus clouds;

c
and w_ is the mean updraft speed in cumulus clouds. Higher order approxi-

c
mations than (7-2) could be written for the flux terms, but the advantage in
accuracy gained by these is not commensurate with the level of computational
effort required to implement them. Moreover, we believe that the envelope
of particle trajectories corresponding to supergrid components <Y>j of the
members of the set W is much broader at regional scale travel distances than

the spread of a plume due to subgrid scale velocity fluctuations in a single

member of W. One of the tasks that will be performed as part of the NEROS

field studies will be to assess the accuracy of Equations (7-2) and (7-3).
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Figure 7-1 illustrates that for a given distribution §(§,t) of sources
of J material species, that is, S(x,t) = [Si(x,t),..., SJ(f,t)], the prin-
ciple of mass conservation, which is represented in the present model by the
system of Equation (2-29), effects the unique mapping of each member of the
global family @ of fluid states into a set I of functions in cencentration
space. And each member of the subset W of @ maps into a subset C of T.

If there is no process under the observed flow conditions that define W [see
(6-22), (6-23)] that would tend to favor the occurrence of any particular
members of W over others, then we must assume that each member of W is
equq]?y probable and, therefore, that each member of C is equally probable.
Since there are infinitely many functions in the set W, the probability of
occurrence of any 1 of them is infinitesimally small. This fact precludes
our predicting the precise concentration distribution that will result in a
given situation and therefore, as in the case of the dice game, we must exa-
mine the members of C to determine whether they possess some property (like
the sum of the elements 3 in of the matrices 5n that make up the ensemble
of dice game outcomes) whose value can be expected to lie close to some

predictable value, regardless of the member of C that actually occurs.

Consider the time-averaged value of each member of c(x,t) of C at a

given point x

o t+T
Py - 1 [ [ -
c(fo,t) = 57 Jc(fo’t Yt cel (7-4)
t-T
where X, € D, T<t<T-T, and T is an arbitrary time interval. (In order

to avoid awkward notation, we will use c¢ in this section to represent the

members <c>j of C).
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Flow field phase space

Law of mass conservation
(Eq. (2-29) with S (x, t) given)

Concentration phase space

Figure 7-1. Mapping of the set @ and W in flow field function space
into the sets I and C in concentration function space for
a given source distribution S.
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By virtue of the assumption that the members of C are equally probable,

we obtain by averaging (7-4) over the set C the ensemble time averaaed con-

centration t+T

<EK§o,t)> = 7% [<c(§°,t')>df' (7-5)
t-T

Keep in mind that <c> is the mean value of all possible time averaged con-

centrations ¢ that could occur for a given source distribution S under

the discrete set of observed meteorological variables in (6-22), (6-23)

that define W.

Let
(7-6)

E(fo’t) = clxg»t) - <clx,,t)>
denote the difference between the time averaged value ¢ of any member of the

ensemble and the (predictable) ensemble mean value <c>. Squaring Equation

(7-6) we get t+T
2 3 = —1_- ' n 1 "
€ (§°,t) pome ] Jc(fo’t )c(fo,t )dt'dt
t’T (7_7)
t+T
<'E(x°,t)> _
- —_— c(xo,t)')dt' + <c(x0,t)>2
T t-T i

Averaginag this expression over the ensemble C we obtain
t+T

<e2(§o,t)> = —l;-J [<c(§o,t')c(fo,t")>dt'dt"
MM

- <E()fo,t)>2 (7'8)

Note that <e> = Q.
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The value of <e2> provides a measure of how closely the time averaced
concentration C at X, can be expected to 1ie to the predictable ensemble

mean value <c>.

From the Tchebycheff inequality of statistics, we find that with <e> = 0
the fraction A of the ensemble population whose values ¢ are within e, of
<c> is
<€2>

A>1 - (7-9)

- 2
€0

In words, in a large number of predictions the averaae frequency with which

the observed time average concentration c(x_.,t) exceeds the predicted value

0
<75(><0,t)> by an amount larger than some fixed value €0 decreases as <eg?2>
decreases. Thus, our next task is to relate <c(x,t)> and <c(x,t)c{x,t')>,

the quantities needed to compute <e2> and <c>, to the known ensemble properties

of W.

Lamb (1975) has shown that for materials that are chemically inert or
undergo only first order reactions (i.e., the function R in (2-29) is a

linear function), the ensemble mean concentration is given by

t
<c(x,t)> = ] j p(x,t|x",t')s(x",t")dt"dx’ (7-10)
and ot t!
f
<C(§,t)C(§,t')> = I j J [ p2(§’t; f!t'lfn’t"afnlyt".) (7_11)
0O 0

S(X",t")S(X'” ,t"| )dt"dt" ldxudxul

where S is the source strength function of the material species whose con-

centration is c.
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In Equations (7-10) and (7-11) the functions p and p, are Lagrangian
properties of the ensemble W, and hence it is these functions that link the

properties of W and those of C for given S.

The function p is called the single particle displacement probability

density and is defined for chemically inert material by
plxstlx',t") = <a(x,tlx’,t')>/6v (7-12)

Here, 8v denotes the (small) sample volume centered at x, <> denotes aver-
aging over W; and ¢ is defined for each Y(f’t) in W by
1, if v(x,t) is such that a particle released

ST N sl s .
o(x,t|x",t') = at (5 ,t') is in &v centered at X at time t

0 , otherwise (7-13)
In the case of a point source of strength S(t) located at X
S(x,t) = S(t)s(x - xo)

we obtain on combining (7-10) and (7-12)

t .
<c(x,t)> = (sv)°} j S(t )<o(x, tlx,,t')2dt" (7-14)
X . X:tlx

It is instructive at this point to comment on the function ¢ and the

physical significance of the forms it takes.

With the source location x_ and receptor site Xq given, we can plot ¢

s
as a function of t and t'. Figure 7-2 illustrates a hypothetical case.
Referring to the figure, we point out that a particle that leaves Xg at time
t} enters the sample volume Sv at Xo at time t; and exits at time t; + At.
The value of the time integral of ¢, which plays a role in (7-14), is also

indicated.
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Figure 7-2. Plot of a hypothetical example of the function ¢(x ortxest')
for given source location Xg and receptor site Xg The

function ¢ has unit value inside the shaded regions and is
zero everywhere else.
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If Xg is one of the points at which the meteorological data that enter
in the definition of W are collected, we can expect the functions ¢ corre-
sponding to each member W to have the same general features. By contrast,
if Xs and X, are far from a meteorological station, there will generally be
large variations in the form of ¢ from one member of * o ensemble to another.
(The reasons for this and its ramifications on model p..aic:ions are dis-

cussed under Remarks later in this section.)

If the plots of all ¢ within W are superposed and averaged at each point
(t,t'), we obtain the function <¢(§o’tl§s’t')> needed in (7-14) to compute
<C(§°,t)>. If the distribution of <¢> is aligned parallel to the line t = t'
and if its width and amplitude are constant along its length, then ¢ is a
statistically stationary function. In this case it is easy to see that

t
<J s(t,t')dt'> = <at> (7-15)
0

where <At> is the average time spent by a particle released at any time t'
in sv (cf. Figure 7-2). 1If, under these conditions, the source strength is

also steady in time, say S(t) = So» We have the simple result

SO
<c(x,t)> = i <At> (7-16)

In essence, it is this simple expression that the Gaussian plume formula

approximates in an empirical way.

The assumption of stationarity is applied almost routinely in turbulent
diffusion studies partly because it simplifies the mathematics. But it is
not hard to see by visualizing the shapes of ¢(t,t') that various flows would
produce that stationarity is generally not applicable in regional modeling

studies. In these cases calculation of <c> must be based on (7-13) and
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(7-10) rather than equations 1ike (7-16) that assume stationarity.

The function p, that enters in (7-11) is called the two-particle dis-

placement probability density and is defined as follows:
pz(x’t;x’tllxu,tn;xnl’tul) = <¢2(X,t;x,t'lX“,t"IX"|,t"l)>/(5V)2 (7-17&)

Here, as in the definition of p (see 7-12), the angle brackets <> denote
averaging over W; 6v is the sample volume centered at x; and ¢, is defined
for any v(x,t) in W by

T 1, if v(x t) is such that a

part1c1e released at (x",t")
Tda(Xstyx,t X", x", ") = ﬁ and one released at (x"',t"')
are found at (x,t) and (x,t'),

respectively:
(7-17b)

\9’ otherwise

For a single point source the autocorrelation <c(§,t)c(§,t')> is derivable
from the contracted form ¢2(§,t;§,t'|§S,t";§s,t"'). This function contains
4 independent variables for given X and Xs and is much more difficult to
visualize than ¢.

To summarize briefly the points made thus far, we have arqued in the
previous section that a discrete set of meteorological observations, as given
in (6-22), (6-23), in a given space-time domain (D, T) is adequate to specify
the flow field v(x,t) to within only a set of functions W. For a given source
distribution S, each member of the set W maps through the species mass con-
servation equation [e.g., (2-29)], onto a function é?éﬁ;gi of a subset C in
concentration space. Since it is impossible to say which member of W actually

describes the state of the fluid in (D, T) under the discrete set of con-

ditions specified, it is impossible to predict the precise concentration dis-

tribution that would occur under those conditions for aiven S. As in the
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dice analogy, we can only hope that thers exists some property, say g(c),
such that g(c) = <g(c)> for nearly all ¢ ¢ C. Here <g{(c)> is the mean
value of g(c) over the set C (or the ensemble mean), and it is a quantity
that, in principle, can be calculated for any g(c). We showed that if g(c)
is the moving time average defined by (7-4), then a fraction A of the mem-
bers of C possess g{c) = ¢ values that are within ze_ of the set mean value

o

<c>, where ¢_ is an arbitrary interval and 1 is given by (7-9).

0
At this point we have answered the first question raised at the end of
the introduction to Section 6 and we have obtained partial answers to the
othé} 2 questions. Specifically, we have shown that for a given source
distribution § and a given set of meteorological observations, a model can
delineate the set of functions C to which the actual concentration distri-
bution c(f,t) resulting from those conditions belongs, but not the function
¢ itself. From the model generated function set C, one can compute the set,
or ensemble, mean values of ¢ such as the first and second moments given
by (7-10) and (7-11) and from these one can specify the frequency with which
actual concentration can be expected to fall within a given interval of v;lues
in a large number of observations. The width of this interval [see (7-9)] is
a measure of the "predictability" of the concentration and it is determined
by the properties of the set C. These in turn are determined by § and the
set of meteorological data that define W. Thus, "validating" a model is
tantamount to testing whether observed concentrations fall within the inter-
val specified with the frequency specified and, if not, whether the failure

can be attributed to sampling fluctuation. Note that from the standpoint of
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regulatory needs the utility of a model is mez.ured partly by the width

of the interval in which a majority of observations can be expected to fall.
If the width of the interval is very large, the model may provide no more
1nformat%on than one could gather simply by quessing the expected concen-
tration. An important task in this regard is the "inverse" problem of
specifying the density and type of meteorological data that are needed to
achieve a given level of concentration predictability. We will consider

these topics again later in this section.

The conventional approach to turbulent diffusion modeling is to formu-
late equéfions for <c> and possibly higher moments that yield these quan-
tities directly. By contrast, the approach we are following here is to
generate members of the ensemble set C and then to compute the set mean
values <c>, etc., by averaging the individual members. In the author's view,
this is the only approach that can-produce accurate estimates of ensemble
mean values, because the closure problem that must be overcome to compute <c>,
<c2>, etc., directly is made virtually insurmountable by the combination of
the nonlinearity of the chemistry and the large time and space scales of

atmospheric motion. In Part Il of this report we will describe our progress in

implementing this approach.
Remarks

1. The character of diffusion at long range.

In this subsection we would like to examine the classical definition of
turbulence employed in microscale dispersion analyses from the perspective of
the mathematical set definition we are proposing here. Our main aims are

to examine the cause of the paradox described in the introduction to Section
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6 that results when the classical definition is applied to long range diffu-
sion and to determine whether this paradox is reconciled by our definition

of “turbulence".

Consider the frequent situation in microscale studies where only a
single wind observation site exists, at Xg and a single point source of
material is located nearby at Xg - Under our definition, this observation
establishes through (6-22), with N=1, and (6-24) a set of functions W that
contains the field Y(§,t) that describes the actual fluid velocity in the
domain (D, T) in which the observations were made. Suppose that the ob-

servation at x, is a moving time average, as defined by (7-4).

1f we were to superpose the trajectories originating at Xg (= xo) de-
derived from each flow fie]d in W, we might obtain a pattern 1ike that illu-
strated in Figure 7-3. The spread of these trajectories is what we regard

as "turbulent diffusion”.

Since each member of W satisfies (6-22), all trajectories have the same
general direction, namely that of gifo,t), near the source; but farther down-
Stream there is increasing freedom in the direction that the flow there, and
hence the trajectories, can take and still satisfy (6-22). For example, on

occasions when the wind vector is Uy o

downstream while on other occasions, with an identical flow at Xq it may

at x_, the flow can turn cyclonically

turn anticyclonically. Without more information than simply the wind vector
at Xgs there is no way to say which direction the trajectories will take.
indeed, it appears obvious from this perspective that the spread of trajec-
tories far from the source is affected by large scales of motion that one

normally associates with transport.
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iqure 7-3. Trajectories of particles eminating from Xg in the ensemble

W associated with the single wind observation ﬁ(xo,t) = io,

where fs = 50 .
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We can verify this important point by analyzing the problem mathemati-
cally. We will show that with “"turbulence" defined in the classical way,
jts spectrum is an implicit function of distance from the site at which
the observation used to define the "mean wind" is made. In the present

example we are assuming that a wind observation is made at the single location

X, and it provides the moving time averaged velocity
t+T
T =1 1 1 -
ug(t) = 2Tj u(xyst')dt (7-18)
t-T

where u(x,t) represents the instantaneous velocity at (x,t). Expressing u

in terms of its complex Fourier transform defined by (6-8) we have

u(x,t) = — j jL«k,m)e‘(E'f PPN (7-19)
== (2n)% 4 /== -

where U is the complex transform at wave number k and frequency w. Combining
(7-18) and (7-19), we get

f(kex_ + wt)

T (t) = j Jg(g,m) 513791 e -0 dkdu (7-20)

For notational convenience we will assume that the factor (2«)'4 is absorbed

in U.

-~

Since u is a real function, we must have

-i(k*x + wt)
E(§,t) = j Jg*(g,m)e - dgdm (7-21)

where U* is the complex conjugate of U. Thus the product of u measured at

Z points separated in space-time by (s, t) is
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u(x,t)u(x + 6, t + 1) = J J J jg(faw)g*(g',w')

~ - ~ .- -~

(7-22)
(kex + wt) = J[(k")(x +8) + o' (t + 1)]

€ dede
Averaging this product over the ensemble W defined by the observation at Xq

[and (6-22) and (6-24)], we have

X - 1k' § + 1(w-w')t-1m T (7-23)

<u(x,t)u(x + 8§, t + t)> = ] J ] J<u(k,w)u w')>
i(k-k')
=~ - ~ dkdk'duwdw'

By definition if the set W of velocity fields is homogeneous and sta-
tionary, then.

culk,thulx + 8, £+ <)> = R(8,7) (7-24)

That is, the set average of the velocity product depends on the separation
(8,7) of the velocity observations but not on the location (x,t) in (D, T)
at which the pair of observations are made. Comparing (7-23) and (7-24) we

see that stationarity and homogeneity can exist only if

<g(E,m)g*(E',m')> W(k,w)é(k k')6(w-w') (7-25)

where &§( ) is the Dirac delta function. Combining (7-23, 24, and 25) we get

~i(k*s + wt)
R(8,1) = ¥(k,w)e =~ ~ dkdw (7-26)
Now under the classical definition, the turbulent velocity component at

an arbitrary point (x,t) is

u'(x,t) = u(x,t) - u (t) (7-27)

- -

Thus,

u'(x,thu' (x + &, t+r) = [ulx,t) - u (t)Ilu(x + 8, t+r)
T T o - (7-28)
- u,(t+r)]
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Taking the ensemble average of this expression and making use of (7-25) we

obtain

¥(k,w)le =~ -

-~

j j ~i(ks + wt)

<u'(x,t)u'(x + 68, t + 1)> =

_ sinT

ike(x - xo) --dwt -
wT ~ =~

e’
(7-29)
sinwT eik-é + ik (x - xo) + jwt

. 2 3

Evaluating this expression at § = t = 0 we obtain the spectral representation

of the turbulent energy at (x,t):

<u'2(x,t)> = j J‘l'(k,m)fl - 2 Sl ek {x = x,)
(7-30)
; 2
+ (31200) Jdkd
This expression shows clearly that while the fluid velocity u is stationary
and homogeneous, "turbulence" defined by (7-27) is only stationary -- its

energy <u'2> is a function of distance x - x. from the wind monitoring site.

0
It is easy to see in (7-30) that as the distance from X, increases, pro-

gressively larger scales of the velocity u become embodied in u'.

If we evaluate (7-30) at the wind measurement site Xys We obtain the

conventional description
<u'2(§o,t)> = j ,W(E,w)[l - Eiqgljzdgdw (7-31)

which conceals the inhomogeneous character of u'.
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It is the inhomogeneity of u' that is rw.ponsible for the dispersion
paradox described in Section 6. To show this we evaluate (7-29) for § = 0
and use the result in the definition of the Eulerian integral time scale

TE: -

T,z 1 <u'(t)u' (t+r)>dr (7-32)
E
<u'2> ‘g '

Upon making use of the relationship

2%-J e tutyy = 8(w) (7-33)
we obtain
_ 27 jke(x - x_)-
TE(x) = ——— |2¥(k,0)[1 - ' ‘T To’ldk (7-34)

<u‘2(x)>

This expression shows that at the point x_ where the properties of turbulence

0
are measured, the integral time scale TE is identically zero. And it is from
this result and the assumption that the Lagrangian time scale TL is related
to TE by

TL = CONSTANT - T (7-35)

E

that the aforementioned dispersion paradox arises.

Eq. (7-34) reveals that the observed spreading of a plume at long range
is due to increasingly larger scales of motion, scales that are considered
part of the "transport" or "mean" wind at Xo Consequently, if one infers
values for TL from atmospheric data and then uses these values in a regional
model in which wind observations are made at multiple sites, the result will
be that certain scales of motion are treated twice, once in the transport

flow and once (implicitly) in the turbulent diffusivity that is based on T -

We consider this problem next.
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2. Parameterization of dispersion

If we increase the number of flow observation sites in (D, T) from 1,
as in the example above, to N, the set of equations (6-22), (6-23) and (6-24)
that defines the set W of flow fields acquires a different form and hence a
new set W of flows applies. Let NI and w2 represent the sets of flow fields
corresponding to a single flow observation, as in Figure 7-3, and to 2 ob-
servations, respectively. Suppose that in the case of 2 measurement

sites, one is located at the same site x_. as the monitor in the single

0
obserygtion set, and that the other is located at X1 downwind of Xo" Then

the sets of trajectories, associated with the sets wl and H2 will differ.

For example, those trajectories in H1 that pass through X1 but which have

a speed and/or direction at X1 that is inconsistent with the observation at

fl are not members of wz. ‘Thus, the addition of a second flow observation

has effectively altered the character of dispersion. This example illustrates
that dispersion is an artifact of our observations, rather than an intrinsic

property of the atmosphere, and it must be treated in this manner when

attempting to approximate it.

The proper way to estimate the functional form of an effective eddy

diffusivity for use in a diffusion equation model is the following. -

First, calculate <c> for the ensemble of concentration distributions
associated with the set W of flow fields. Second, define the transport
wind field to be the ensemble mean wind <9(§,t)> in W. Finally, using the
known <c> and w solve the diffusion equation "in reverse" (i.e., the
inverse problem for the diffusivity K(f,t)). Lamb and Durran (1978) illus-

trate this process.
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In problems involving nonlinear chemistry, the eddy diffusivity derived
by this procedure would be an implicit function of the source distribution
§ used to generate the concentration ensemble C, and therefore the model
would not be applicable to problems with different source distributions.
For this reason, we propose to generate the ensemble properties of concen-
tration like <c> from a set of functions approximatina C rather than from

an ad hoc model of the ensemble mean .

3. Predictability of concentration at long range

We have emphasized in this section that for a given set of meteorclogical
conditions and a given source distribution §, one can determine the concen-
tration distribution c(f,t) that would result to within only a set of func-
tions C(ceC). Therefore, in order to utilize a model in decision making
processes, it is necessary to know how much variation exists among the mem-
bers of C. For if the variation is large and each member of C is equally
likely to occur, then the information provided by the model has little or no

practical value.

In Equation (7-6) we defined a parameter ¢ that provides, through Equation
(7-8) and (7-9), an estimate of how closely the time-averaged members ¢ of C
are clustered around the set mean value <c>. Using this parameter, we will
illustrate briefly below that the scatter of E(f,t) about <E(§,t)> increases

as the distance x - x_ from the source increases (assuming x_ = x_, the

S S -0

wind observation site).

Referring to Figure 7-4, let's assume that the 2 plumes shown represent
the extreme lateral deviation from the x axis of all plumes in the C ensemble.

By "plume"”, we mean the superposition of particle trajectories oriainating
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Figure 7-4. Plumes from the C ensemble that mark the limits of
lateral motion. . ‘
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continually at the source over some small time interval for EEEE g(f,t) in
W. Thus, the plume envelopes in the figure represent the locus of travel

of the particles released during this small time period. Also, the plumes
shown assume that C is an ensemble in which a wind observation site is lo-

cated at the source but that no other observations are available.

For simplicity, we will assume that the concentration .. orrelation
has the form
<¢%> , 1 <T

<c(t)e(t + t)> = (7-36)
<¢>2 , > T

where T is arbitrary and independent of t and x. Assumina that within C,
plumes are equally distributed over the lateral ranges L1 and L2 shown in
Figure 7-4, aﬁd their width £ is nearly the same within C for a fixed x, we

obtain by straightforward calculations based on the definition of ensemble

averaging
2
<cy> = <cp>? L/
, (7-37)
<Cyp> = <C2>2 Lo/2,.
Now from (7-36) and (7-8) (and assuming stationarity) we obtain
<e2> = %.(2 - %b(<c2> - <¢>2) (7-38)

where, it will be recalled, € is the difference between an observed concen-
tration averaged over the moving interval T, or equivalently a member ¢ of
C. and the corresponding predicted ensemble mean value <c>. Making use of

(7-37) and assuming £; = £, = £, we aet

2 2
<gy> <g1> |_2 -2

= ( 7-39
<Ez>2 <El>2 Ly - 2) ( )
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Thus, for the same averaging time T, concentrations measured at x, can be
expected to differ from the mean value at that site by a larger fractional
margin than at the point x; closer to the source. Judging from the Prairie
Grass data, on which the empirical Gaussian plume formula is based, we ex-
pect that for points x; within 1 km of a source, the sc *ter in 15 min aver-
aged concentrations c is relatively small if meteorolog " .7 conditions are
steady over comparable time periods. However, according to (7-39) the
scatter in similar measurements made at a site x, farther from the source
will be greater by an amount proportional to the square root of the ratio of
the plume envelope widths L measured at sites x, and x,. This result is con-
sistent with our earlier finding, Equation (7-34), that the local integral
time scale of turbulence increases with distance from the flow observation
site Xqe
If the flow were stationary, the scatter in ¢ measurements at x, would
be smaller for concentrations averaged_over longer time intervals than 15
min. But atmospheric flows are not stationary over arbitrarily long periods.
The alternative to reducing the spread of ¢ about <c> is to restrict the
spread L within the flow ensemble W. This would require a redefinition of
W using additional meteorological observations at sites in the vicinity of
the source. For example, it is easy to see that with an additional wind
observation near x,, the spread of trajectories in the new W ensemble would
be less in general than in the single station ensemble shown in Figure 7-4
because some trajectories in the latter would be eliminated by the constraint

of the observation at x,.

4. Model validation exercises

Our discussion in the preceding subsection illustrates the natural

deviation between observations and model predictions that is not attribu-
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table to model error. The proper way to establish whether the model assump-
tions and data are correct is to examine the frequency with which observed
values satisfy (7-9). If the observed frequencies differ from that pre-
dicted by (7-9) by an amount that is not 1ikely to be due to sampling fluct-
uations, the modeling hypotheses must be judged to be in error. Obviously,
we can find an interval 250 centered at <c> within which all observations

will lie. But as we pointed out earlier, if the size of the interval in which
a majority of the observatioﬁs can be expected to fall exceeds some value,

the model is worthless.

5. Predicting impact of future emissions distributions

Currently the method of judging the effectiveness of proposed emissions
control strategies is to predict concentration levels that proposed sources
would produce undef so-called "worst case" meteorological conditions. Within
the context of the approach we have developed here, this entails defining
the ensemble W for the set of "worst case” meteorological conditions and then
computing <c> and <e2> for the proposed source distribution S(f,t). However,
since meteorology and the source distribution jointly affect concentrations,
the concept of "worst case" meteorology is not well defined. Furthermore,
the flow regime associated with a past pollution episode might have such a
low probability that its expected frequency of occurrence is, say, once in
a century. A more meaningful approach, therefore, would be to compute <c>
and <e2> for the ensemble C associated with the flow ensemble W where W is
the union of the sets wi, i=1,2,...N, each of which is defined by Equations
(6-22), (6-23) and (6-24) from meteorological observations in (D, Ti)’
i=1,2,...N; and the T; are a collection of time intervals selected from the

period in which climatological records are available for the modeling region
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0. By this definition W is an estimate of the flow ensemble set, referred
to at the end of Section 6, which forms the basis for predicting future

states of a system.
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SECTION 8
FORMULATION OF MISCELLANEOUS FIELDS AND MODEL PARAMETERS

Model parameters not yet considered will be discussed in this section
and possible techniques for deriving them will be described. Chemical
kinetics schemes will not be treated in this report because no particular
scheme is an integral part of this model. Rather, the chemical mechanism
is a peripheral component that can be interchanged as desired. A number of
kinetics schemes are currently used in various urban modeling studies and
in the course of our regional modeling work we plan to utilize several of
them in comparative studies. At the time of this writing we are performing
operational tests of the regional model computer code and for these purposes
we have implemented the Demerjian-Schere (1979) mechanism that simulates 36

reactions among 23 chemical species.

Deposition Velocity, 8.

Following Wesley and Hicks (1977) we shall express the deposition velo-

city 8 of each species in terms of the deposition resistance re:

B(A,¢,t3n) = O.8u, [£n(10/2,) + 2.6 + O.4uurg - v J71 (8-1)

where the surface roughness z_ and friction velocity u, are functions of

o]

(X,¢,t) and the resistance r_ is a function of space and time and the pollu-

s
tant n. The function Ve in (8-1) is an empirical function given by

be = exp[.598 + .39 tn (-10/L) - .09 [n (-10/L)3%]  (8-2)
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and L is the Obukhov length at (Xx,¢,t).

The surface roughness zo(A,¢) is prepared from land use data. The
resistances ry are functions of both land use and time of day. The methods

we used to formulate both these variables are described in Part II.

-

Source Emission Rates <S$>;, S

The stationary source emissions inventory will be prevared in such a
manner that the information necessary to make plume rise calculations will
be avqi]ab]e for the set of sources that together are responsible for 50
percent of the total emissions of a particular pollutant in the modeling
region. Given the stack parameters and a plume rise estimate for each hour
of the simulation, the emissions of this set of sources will be partitioned
between <S>; and §, depending on whether the estimated effective plume height

is above or below Ho'

The emissions of all remaining stationary sources and those from mobile
sources will be included in §. It is important to note that <S>; is a
volume source, that is, it has units of mass per volume per time, and it
represents uniform emission rate of pollutant from each point within a
single grid cell. By contrast, S is an area source -- units of mass per
area per time. Emissions from the 10 or so largest point sources in the
modeling domain (all power plants) will be handled separately and treated

by a puff type model embedded within the regional scale model. Special
| treatment of these sources is necessary because the injection of material
into the upper layers of the model in the form of slender, highly concentrated
plumes can cause enormous subgrid scale chemistry effects at altitudes where

there is currently no provision in the model to treat them. Moreover,
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these sources can cause large subgrid scale variations in ground-level con-

centrations that the grid model alone cannot resolve.

The Plume Volume Fraction, ¢

This parameter was introduced in the Layer O formulation as part of
the scheme to treat subgrid scale chemistry associated with low level
point and line sources. It was defined in (5-11) as the volume fraction
of any Layer 0 grid cell occuppied by plumes from point and line sources

within that cell.

As %h (5-6) let Az0 represent the depth of a Layer O cell whose hori-
zontal area is A. In the surface layer of the atmosphere we can assume to
good approximation that the relative rate of expansion of a point source
plume is proportional to the friction velocity u, and that the centroid of
the plume rises at about the same rate. Hence, the centroid of a surface

source plume reaches the top of Layer 0 in a time
TV AZO/U* (8-3)

and it has a diameter o there of order u,t = Azo. The volume Sv of a single

point source plume in Layer 0 is thus
sv v (az,)? (8-4)

If there are p point sources per unit area, then

¢ = AAz v p(Az°)2 (8"5)

This expression is not valid if many of the point source plumes overlap.
In fact, since ¢z < 1 by definition, we see that the total number N of point

sources in any grid cell must satisfy
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N < (22,
in order for (8-5) to be a consistent approximation. In our case where

A ~ 400 km? and 4z < 100m, Equation (8-5) is consistent as long as there are

many fewer than about 4.10% point sources within any grid cell.

Suppose there is a total length L of nonoverlapping 1ine source plumes
in a given cell. The volume fraction of these plumes, derived by the same

analyses used for the point sources, is
LAz

0
g v A (8'6)
When both point and line sources are present we shall assume that
: LAzo
¢ = o(az))2 + (8-7)

where p and L are values derived from the source inventory. A much more

detailed method of aporoximating ¢ is aiven in Lamb (1976).

Turbulence Parameters w_, XA_, etc., on H, and in Layer 0.

In Equation (5-2a) we introduced the probability density pro(w) of ver-
tical velocity relative to surface Ho' In this section we shall derive values
for the parameters A_, Ay, w_and w, that stem from pro [see Equations (5-2)
and (5-3)] by assuming that the turbulent velocity fluctuations at the level

of surface Ho have a Gaussian density, viz

2

p(Wy) = —L— exp (- —2) (8-8)
/2ro 202
wo wO

Implicit in this expression is the earlier assumption that the mean vertical

motion Wb at the level of H0 is everywhere and at all times zero. Since
0
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the velocity of surface Hj is 20, it follows from (5-1) and (8-8) that the

density P. (w) is

0 1 (204- w)?
p. (W) = —L— exp [- —C——] (8-9)
) 210 202

WO Wo

Thus, from (5-2a) and (8-9) we get

24
A, = 45[1- erf (Vf' )] (8-10)

W
0

where erf ( ) is defined by (4-43); and from (5-2b)
(8-11)

Using (5-3a) and (8-8) and making use of the integral equivalence (4-42h),

we obtain
g
W 22 p4 2
0 0 0 0
-w_==2 -—exp (- —)+ ~[1- erf( )] (8-12)
° & 262 ° /2,
0 0
and from (5-3a)
[0
W 32 b4 2
0 0 0 0
w, = —=exp (- ) - 5= [1 - erf ( )] (8-13)
v 262 z Y26 '
%o Yo

The speed zo of surface Ho is obtained directly from the definition

of H0 [see (2-2) and (3-12)]. The variance o, of turbulent velocity fluc-

tuations is estimated from the following expr:gsion proposed by Binkowski
(1979): o - 2/3

oy = W) (8-14)
where

and u, is the friction velocity. A1l of the terms appearing in (8-14) will
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be described in detail in Part II.

The Plume Entrainment Velocity, v

We use as a measure of the plume entrainment rate the rms spread rate
of particle pairs in the surface layer. Using similarity theory, Batchelor

(1950) showed that in homogeneous turbulgnce the rate of expansion of a

cloud is

T = ;3 0 P32 (8-15)

where

O
-
n

a constant of order unity,

(]
"

the energy dissipation rate of the turbulence,

-
]

the travel time of the cloud,

(2]
)

= the initial cloud size,

ZZ7 = the mean square diameter after a time .

Deardorff and Peskin (1970) have shown that Equation (8-15) is also
valid for shear flows, such as that characteristic of the lowest layer in

our study. Defining

4 102
v = a-i-z? (8‘16)

and making use of Equation (8-15), we obtain
v

< c11/2(520)1/3 (8-17)

Combining this expression with the surface layer formulation of € given by

Wyngaard and Cote (1971), namely
nyn 32
3
e = (1 + 0.5131%/3) (2-18)
where k is the von Karman constant (= 0.4) and L is the Obukhov length, we

get
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5, \1/3
c, (L) 1/2
v = '1'(‘21";‘1/‘3" u (1 + o.s)%lm) (8-19)

where < is a constant of order unity. If we take the release height z of
the cloud to be z = to (which is not unreasonable for motor vehicle emissions)
and 20 to be approximately 1 m, then the term in bracket- 'n Equation (8-19)

has a value near unity for values of L typical of urban :_3ions, consequently,

v = GU* (8"20)

where a is a constant that we assume for the time being to be 1.

Rainout ‘and Washout Processes

The term W on the righthand side of the general model equation (2-1)
represents the scavenging rate of poliutant species ¢ by precipitation pro-
cesses. We can express it in the form

W= Ac (8-21)
where ¢ is the material concentration and A is the scavenging coefficient.
The latter is a function of many variables among which are rainfall rate,
gas solubility, and in the case of aerosols, size distribution. McMahon
and Denison (1979) have summarized the few measurements of A available to
date and attempts to relate A theoretically to some of the parameters cited
above. We will postpone further consideration of wet removal processes
until a later report; because in the near-term oxidant studies that are
of concern to use, the meteorological regimes of interest are generally not

associated with precipitation.
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SECTION 9

COMPUTER SOLUTION OF THE GOVERNING EQUATIONS

Introduction

The differential equations that we formulated in the previous sections
to describe concentrations in each of the model's 3 layers cannot be
solved in general without the use of a large computer. If a digital machine
is employed, each of the concentration and input parameter fields must be
represented in discrete value form. In this case it is also customary to
model the governing differential equations by a system of finite difference
equations. There are countless methods of generating finite difference
analogues of differential equations but many of them do not preserve essen-
tial properties of the differential equations that are important in simu-

lating physical phenomena.

For example, in modeling regional scale air pollution it is not possible
in practice to represent the concentration fields in discrete form with
sufficient spatial resolution to resolve all of the major variations in the
concentration distribution. In some finite difference representations of
the advection equation, this limited resolution gives rise to the well
known phenomenon of pseudo-diffusion, which is not present in the true

advection process.
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Another source of potential trouble in applying a conventional method
to our set of equations is the large vertical concentration gradients that
can arise. In the atmosphere, there are extended periods (usually the night~
time hours) when vertical fluxes of material are very small. During these
periods very large vertical gradients in concentration can arise, and these
lead in a simulation model to large surges of material from one layer to
another once the physical processes that produce interlayer exchanges begin.
With many finite difference expressions, large transients of this kind can

cause computational instability.

Ffﬁa11y, the multitude of chemical reactions that make up the photo-
chemical air pollution phenomenon possess an extremely wide range of char-
acteristic time scales. A common method of mitigating the problems that
this disparity of scales causes the computer simulation is to adopt the
steady-state approximation for the fastest of the reactions. The effect
of this approach is to "hardwire” a particular chemical kinetics parameteri-
zation scheme into the model. Consequently, it is virtually impossible
to examine alternative representations of the chemistry and hence the

utility of the model as a research tool is diminished.

In this section we seek to develop ways of generating approximate
solutions of the governing equations that avoid the p%ob]ems just cited.
We hope to achieve this in 2 ways. First, we will express the governing
equations in an alternate form that permits the advection, vertical flux
and chemistry phenomena to be treated separately and in modular forms.

This will allow the computer version of the model to have sufficient flexi-
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bility that various numefical schemes can be utilized without having to
overhaul the entire code. Second, we will develop numerical techniques
for treating advection, vertical fluxes and chemistry that are well suited
to handling the specific problems that arise in regional scale modeling.
These schemes are developed later in this section following a modification

of the governing equations.
Transformation of the Governing Equations

The differential equations that describe concentrations within each

of the model's 3 layers that the general form

ac

¢+ le, +ac, + Fpo= S+ R 1n=1,2,3 (9-1)
(see Section 10) where C, = <c>,. Here L is the linear advection and diffu-
sion operator (which for illustration purposes only we write in the K-theory
form)

3 3

= 3 3 3 3
L:ua—x- +VW-§YKHW-WKHW (9-2)

Sn is the source emissions in layer n; Rn represents all chemical reactions
in this layer; and Fn is a function involving concentrations in layers

m % n that describes material fluxes from one layer to another.

Our intent here is to restructure (9-1) so that the advection, vertical
flux and chemistry processes are decoupled and treatable separately. This

suggests looking for a product solution

Cn = ann (9-3)
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Substituting this into (9-1), dropping the subscript temporarily for
notational convenience, collecting terms in y and T, and assuming that spatial

variations in KH are of a much larger scale than those in <C>, We obtain

;1 3y _
I3 +u—l+v KHEY} KHSS}+ay]

3y
orl ol ar 32T 92T
typrusm vy - R Kag (9-4)
- 3y 3l _ 9y 3¢ =
ZKH 3% 3X ZKH Yy 3y + F=S+R

Suppose -that we set the first group of terms in brackets equal to (-F + R)/T
and the second group of bracketed terms equal to S/y. Then if I is the
solution of the equation

3T ar v 3L 32r 32 _ g

3? + y—%+ y KH 3X KH 3/ (9'5)
with initial conditions
r(r, t,) = c(r, t.) (9-6)

and.boundary conditions identical to those on Eq. (9-1); and if y is the
solution of

dy 3y dy _ 3%y _ 32y '
ST UtV ay - Kyar - Ky ayZ'* ay = (-F+S+R)/T (9-7)

with initial conditions

Y(r: t =1 (9‘8)

o)
wé see that ¢ = yT satisfies Eq. (9-1) and its initial and boundary con-

ditions for a period to <t«< to + AT. The magnitude of AT is determined
by the rate at which spatial variations in y arise. Note that T has units

of concentration while y is dimensionless. Note also that by construction,
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y is initially uniform in space. However, according to (9-7) horizontal
variations in y are generated by inhomogeneities in the vertical fluxes F

of material, in the rate R of chemical processes, and in the source strengths
S. Once horizontal gradients in y have been generated, the last two terms

on the left side of (9-4), which effectively couple vy *~ T, became finite

and ¢ = yI is no longer an exact solution of (9-1). ’ . T are also

coupled through the chemistry term R, which we treat later.)

Working within this Timitation on AT, we can use T, as given by (9-5)
and (9-6), and vy, given by (9-7) and (9-8), to obtain approximate solutions
of the differential equation (9-1) at discrete intervals AT forward in time.
The procedure is as follows. First, we use the initial concentration dis-
tribution c(t, to) in (9-6) to solve (9-5) for T at time t = ty + AT. Note
that T is independent of emissions, chemistry and vertical material fluxes.
Concurrently, we solve (9-7) and (9-8) for y at time t = t, ¥ 4T. We then

form the approximate solution
c(r, t, +4T) = y(to + aT)r(r, t, + 4T) (9-9)

We now use this expression in (9-6) to solve for I at time to + 2AT. The
equations governing vy, (9-7) and (9-8), have the same form during this second
time interval except r(r, ty + AT) is used for I in (9-7). This process can
be continued indefinitely in time provided that the size of the interval aT

is kept within the limits discussed above.

At this point we have succeeded in splitting the basic model equation
into 2 parts, one of which is independent of the emissions, chemistry and
vertical fluxes. This component is given by Equations (9-5) and (9-6) and
it can be treated by any suitable 2-dimensional numerical scheme without

regard to the complicating effects of chemistry.
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The second part of the solution v is affected by emissions, vertical
fluxes and chemistry and we wish now to split this component into 2 subparts

which account for these processes separately.

As before, we shall try a product solution of (9-7) and (9-8); but
first it is convenient to exploit the smalliness of the horizontal gradients

in y during each interval AT and write (9-7) in approximate form

%%r+ ay + F/T = R/T + s/ (9-10)

where y now pertains to arbitrary, local regions of space in which F, R, and
I have prescribed values. A better approximation is obtained by dropping
only the second order derivatives and translating to a system moving with

the fluid. In this case ay/3t in (9-10) becomes dy/dt.

It is necessary now to resume the use of subscripts to denote the

model layer. We then have from (9-10)

oy
.'n 1 -
5T T4t ﬁnFn LR -1,n ~ ';,n] = Rp/Ty + Sp/T,  (9-11)

where I; m is the flux across surface Hn to or from Layer m, and hn is the
local thickness of layer n. The flux f; K can be written in the general form

3
Fn,k - mfl[bllnmcm] t 9y

(9-12)

Thus, let

(Fqn -

n-1,n B /Py = Sp ¥ 23S, = b6 * boaCo * Bpas = 9, (9-13)

Combining this and (9-11) we get

o, by, + b *
3T 7 PmY1 * Pn2Ye * bpavy = g/t v R T (9-14)
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where

*
Brm = Prm'm/Tn (9-15)

Note that the term 2, which appears in (9-11), is absorbed into the coeffi-

cient bnn

We look now for a product solution of (9-14) of the form Yo = Yn'n
in which the component Y& represents the chemical processes and Yn describes
the effects of vertical material fluxes and sources on Yp Substituting the

proposed solution into (9-14) and collecting terms we have

~

o aY * g
Yn [ lYlYl/Yn +b 27272/Yn +b 3Y373/Yn - ""—T'n.{ ]
- 3! R -
+ 'yn [ﬁ - Q ] =0 (9".16)
Ty
n'n

The chemistry-free component n is therefore the solution of

3Y

3T T by

nlYl * bn2*2 * bn3Y3 8/ (Tpyp) (9-17)

with initial condition

Yalty) = 1 (9-18)
and
r J
*x m'm _
bnm = bnm Tn_Y;_ (9 19)

Similarly, the component ya that handles the effects of chemistry satisfies

3y, R
n n
5t T T2 (9-20)
Y
n'n
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with initial condition
Yé(to) =1 (9-21)

We must solve (9-20) and (9-21) for each of the pollutant species present

in each layer. For species a, we have

RECLERC (9-22)
T(a)nY(a)n

with Y|(a)n = 1 for all « and n. For bimolecular reactions of the form

prevalent in photochemical air poliution, R(a)n can be written

Cae ) >4

I
Radn = Iy 5o Kadd S50 (5-23)
where 1 is the total number of species present and where < >n denotes a cell
average in Layer n, as used throughout the analyses in this report [(see
(2-3)]. We discussed in Section 5 the existence of subgrid scdle variations
in the concentration fields and pointed out that they are probably most
pronounced near the ground where they are generated by the highly inhomo-
geneous field of sources. Based on this assumption and motivated by the
need to keep the mathematical structure of the model tractable, we devé]oped
a scheme for parameterizing the subgrid scale concentration variation effects
in the lowest layer of the model, Layer 0, but we chose for simplicity to
neglect subgrid scale phenomena in the other layers (n = 1,2,3). In keeping
with this assumption we will assume that the product averaged term in (9-23)

can be approximated by
I T ) @)

Combining this with the product solution form ¢ = F;y' we obtain finally
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av' I I
Tladn . 5 g e (9-24)

a3’ ()0 (§)n

3t i=1 §=1
where . r - ,
e =k, Ln (GIn"()nT(3)n (9-25)
aij aij T
(a)nY(a)n
with initial condition
y'(c)n(to) =1 ,allcandn (9-26)

Note that (9-24) is a coupled system of I nonlinear ordinary differential
equations. Solving this system for y' for each species, in each layer, and
at each grid point of the model domain we obtain 1 of the 3 factors

in the solution <>, = y';f. The second factor ¥ is derived from the
solution of the system of 3 linear ordinary differential equations (9-17)
for each pollutant at each grid point. And the final component I is ob-
tained by numerical solution of Equation (9-5) for each pollutant and within

each layer over the entire modeling region.

Numerous techniques already exist for treating each of these 3 sets
of equations but we seek new ways of treating them that possibly are better
suited to our specific modeling needs. In the sections below we develop
these alternative methods of solving the T, ;, and y' equations given above

((9-5), (9-17), and (9-24), respectively].

Solution of the I' Equation, (9-5)

In formulating the equation for I', (9-5), from equation (9-4), we

collected only those terms that describe horizontal transport and diffusion.
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Chemical processes, vertical.dispersion and emissions were relegated

to the y equation. As a result (9-5) is a linear, homogeneous partial

differential equation with a solution of the form
I'(r,t) = J P(r',to)p(r,tlr',to)dr’ (9-27)

where p is the Green's function of (9-5). In the present instance we have

P(xaystlx'ay'sty) = Lo expl- L (x=x'-R)2 - == (y-y'-7)2]  (9-28)
10 202 202
where

o2 = 2Kk (t - t,) (9-29a)
t

x(t) = Itu[x' + x(t'),y' + y(t'),t']dt (9-29b)
0
t

y(t) = }tv[x' + x(t'),y' + y(t'),t' 1dt'. (9-29¢)
0

We wish to emphasize that (9-5) is a specific form of the general equation

ar
SEHLr=0 (9-30)

where L is an operator describing the transport and diffusion processes.

The solution form (9-27) still applies except in this case p is the Green's
function of (9-30). For reasons discussed in the previous Section, we use
K-theory in our model to describe subgrid scale turbulence only; ensemble
average material fluxes, associated with the flows in W, are estimated in

a direct manner that does not require the gradient transfer assumption.
Thus, for each member of the flow ensemble W, the effects on cell averaged
concentration <c>j, j=1,2,3, of subgrid scale variations in the velocity and

concentration fields are approximated by the gradient transfer expression

(7-2) with the diffusivity Ky given by (7-3).
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Keep in mind that Equation (9-5) and its initial condition (9-6) apply
only to discrete-time intervals. If tO and t1 denote the beginning and end
of one of these intervals, solution of (9-5) and (9-6) yields r(tl). Within
the same interval the y equation (9-7), (9-8) is solved concurrently to give
y(tl). The product c(tl) = r(tl)y(tl) then serves as ~ = initial condition
(9-6) for r in the next time interval tl >t [cf. (9-k14. “We will use the
general solution (9-27) as the basis of a scheme for deriving I at the re-

quired time intervals.

In the computer model we will represent P(r,tn) on a fixed grid net-
work;- A grid system that moves with the wind would yield more accurate
descriptions of the time evolution of T but such netwarks pose problems
operationally, particularly at the boundaries of the region and when the
wind fields are horizontally divergent, as they are in the problems of
interest to us. Thus, in the present study we will utilize a fixed grid

network.

Let the coordinates of the lattice point (I,J) be given by

x = IAx

y = Joy
where (4x, Ay) is the grid mesh dimension; and let

tn = nit
denote the elapsed time between the initial instant t, and the end of the
n-th time interval. Since (9-27) is applicable to any interval for which

the initial value of T is known, we have

r(lax, Jdy, nat) = J jr(x',y‘,tn_l)p(IAx, Jay, tnlx‘,y',tn_l)dx'dy' (9-31)
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To evaluate this expression we must express F(x,y,tn_l) as a continuous,
rather than a discrete, function. Regardless of whether we use polynomials
or trigonometric functions to represent the discrete set of P(tn_l) values,
the integrals that result in (9-31) with p given by (9-28) can be evaluated
analytically to yield algebraic expressions for r(tn) at - -~h grid point.

We can illustrate this most easily by considering a one a¢. =n:ional problem.

In this case the counterpart of (9-31) is

To 20

r(Iax,nat) = j P(x',(n-l)At)(’FE, Yexp [~ —l;(x-x'-uAt)z]dx' (9-32)

-

We have assumed here that the time interval at is small enough that (9-29b)
and (9-29¢) reduce to the form

X = udt (9-33a)
= vat (9-33b)

<1

This assumption is adopted here to keep the math simple. In our general
scheme, X and y are calculated from (9-29) and this gives the method an

"upstream" characteristic that ensures unconditional computational stability.
The exponential term in (9-32) has a maximum value at the point
x' = x = x - uAt = IAX - ult (9-34)

and it has values significantly different from zero over an interval
4x' = 4o centered at this point. These facts indicate that the continuous
functional representation we use for I'[x',(n-1)at] should be most accurate

within the interval x - 2 < x! :_; + 20.

Let ;K = Kax denote the grid point (on which the T values are stored)

that is nearest to the point X given by (9-34), and let
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~

£=x - x = (K=~ I)&x + uat (5-35)

denote the separation between points ;K and x. By virtue of the definition

of ;K we have

le] < ax/2 (9-36)

Introducing the new coordinate

n=x'- ;K =x' - x~-£ (9-37)

into (9-32) we have

T(IAx, nat) = J I'(n + ;K’(n-l)At)(/?;b)exp (- Lﬂzizﬁlzidn (9-38)

Suppose now that we represent I'[x',(n-1)at] by a quadratic expansion

about the point ;K; that is,
~ ~ 2
I(x', (n-1)at) = a + b(x' - xK) + c(x' - xK) (9-39)

In terms of the grid point values of I', the coefficients of the expansion

(9-39) are found to be

a=T 1 (9-40a)

b= A1 ne1 = Tge1ne1] (5-400)

c= %{rm,nq * Tpe1n-1 = ¥y peq? (9-40c)
where

Fy.ne1 = T(Kax, (n-1)at) (9-41)

Substituting (9-39) into (9-38) we get

S j (a + bn + cn2)( ld)exp[ - jn-z-izél?]dn (9-42)
(o]

- V2n
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The integral here is one of the many t..ulated by Gradshteyn and
Ryzhik (1965). (Note that it is equivalent to the expression for the
moments of a normal random variable.) Thus, we are able to reduce (9-42)

to the simple, closed form

Pp,= 2= gb+ (o2 + g2)c. (9-43)

Making use of (9-40) we have

£
Tron ™ Tkon-1 ¥ 2 Ukaa,n-1 = Tke1,n-11
(9-44)

=12, 2 -
3o + ey ne1 * Tke1on-1 = 2Tk, n-13

where £ is given by (9-35) and o2 = 2K, at.

An interesting aspect of (9-44) is that if we set K= 1 (and if 02 = 0),
then £ = uAt and we have the well known Lax-Wendroff finite difference
approximation of the advection equation, which was derived originally by a

method different from the one we have used.

The Lax-Wendroff scheme is known to be computationally stable only if
lul < &x/at. From the perspective of the method we have used to derive
(9-44), it is easy to see why this criterion must be satisfied. If |ul
exceeds Ax/At and yet we use K = I, as is done in the Lax-Wendroff scheme,
we introduce a systematic error into the calculations by representing T in

the vicinity of x'=Kax by a quadratic expansion about the distance point x'=Iax.

It appears that the method we have introduced above to derive difference
schemes inherently guarantees stability, consistency, and certain conser-
vation properties. This ability combined with its ease of application to
multi-dimensional problems makes this procedure particularly useful in

mode] development. Numerous finite difference schemes are available for
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1-dimensional problems but‘many lose their stability, consistency and con-
servation properties when applied straightforwardly to several dimensions.
For example, Leith (1965) showed that if the Lax-Wendroff representation of
the space derivatives is applied with forward time differencing to the 2-D

advection equation

3¢ ac ac _ _
EtUtVyy =0 (9-45)

the resulting finite difference approximation is unconditionally unstable.
The stability properties possessed by l-dimensional schemes can be preserved
in several dimensions by using either the alternating direction or the time
splitting techniques. Both of these methods are very popular but they are
not well suited to our needs. The principal difficulty is that both methods
require that the dependent variables at each grid point be treated twice

(3 times in 3-D simulations) in order to advance these variables to the

next time level. Thus, if the available computer'memory is not large

enough to accomodate the entire model domain (our model exceeds the memory
capacity of EPA's Univac 1182 by a sizeable margin) costly I/0 operations
are necessary to implement these schemes. The most desirable difference
scheme is one that allows small portions of the model domain to be processed
at a time, particularly subregions small enough to fit within the high-speed
memory of the computer; and that require only 1 sweep of the entire domain
to advance the dependent variables 1 time level. Difference schemes gene-

rated by the above method possess these properties.

Thus far, we have developed a series of 3 schemes using this technique
each of which is applicable to 2-dimensional equations, specifically (9-5).

Each permits the dependent variables to be stepped forward in time in a

160



spatially piecewise fashion. These schemes have differing orders of accuracy
but each is unconditionally stable and the computer memory requirements of
each is independent of the size of the modeling region or the number of
dependent variables. We illustrate below the derivation of the lowest order
2-D scheme and comparative results obtained from test studies conducted with

it and the next higher order schemes in the sequence.

Recall in the earlier demonstration of the method using a l-dimensional
problem that we expanded the dependent variable I in a quadratic series
about the point ;, given by Equation (9-34), where the Green's function p
[see Eqdétions (9-31) and (9-32)] has its maximum value. To derive an
analogous 2-D scheme we proceed in the same way except in place of the

quadratic approximation (9-39) we use the 2-D, biquadratic expansion
= 2 2 ’
Fns8) = Rgg + Aygn + Agy& + Appne + Aggn? + Agy? + Agyn®c

+ Alzné;2 + Azzanz (9-46)

where (n,&) are the space variables (x,y) transformed as in (9-37). The
coefficients Anm in (9-46) can be determined using the Lagrange interpo-

lating polynomial

3 3
I (n-n;) T (&-g,)
(o) = 3 3 qn LT K )
r(n,g) = £ I (I 9-47

m=ln=1 " 3 o n) 3 ~ (3-47)
I (n -n;) T (€ -£)
SRS LI

where
ny/8x = gy /8y = - 1
Ny =g, =0 (9-48)

i
[y

n3/AX = 53/A.Y =
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and Pam = I'(Kax + Nps Lay + &, NAt). Here (Kax, Ldy) denotes the grid
point nearest [(Iax - uat), (Jdy - vat)] where the Green's function (9-28)
has its maximum value [see (9-34) and the ensuing di%ébssion]. This and
other aspects of the representation (9-46) and (9-47) of r(n,t) are illu-

strated in Figure 9-1.

Using (9-46) and a procedure similar to that which led to (9-38) we

obtain

3 3 R S,
r(1sx, Jay, (n+1)At) = 1 r L A j j %;5“ (75;
) 1 -0 ¢

2702 n=1 m=
¢ns(00,02)¢£.(Bo,02)dn'd5' (9-49)
where
n' = néx g' = gay
a, = (I-K)ax - uat (9-50a)
Bo = (J-L)Ay - vAt (9-50b)
and
(n'-a_ )2
41 (ags02) = exp[ - ———1]
202
(g'-8,)2
¢,1(8.,02) = exp[ - —2—
&' 202
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/
3 l
° ®
[i2
° O] d
(1,J)
° ® ® °
'[-1‘1 ‘[—é" '[;1 trajectory segment over a
period At ending at (1,J)
at time NAt
. ' [ . ° —>X
Figure 9-1, ITlustration of the grid, coordinate system, and other

parameters on which the 2-D representation (9-46, 47)
of the function I'(n,t) is based .
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The integrals in (9-49) can be evaluated analytically. We get

1 o @ n| m gl n 2 2 d ‘d .
2mo @ e (zgﬁ (z§9 ®p (ao’o )¢5'(Bo,c Jdn'dg' =
n=20 n=1 n=2
-2 2
m=0 1 EQ_ Bo + 0
v (ay)?
2 2
ax AxLy ppmY
m=2 ay® + o2 (0,2 + 0?)8, (a2 + 02)(8 2 + o2)

Making use of these results in (9-49) we obtain

r(Iax,Jday,(n+l)at) = Aoo + A10°‘o + A0180 + Allaoso

AX 2y AXAY

2 4 2 2 4 2
. Agqlag? + o%)8, . Ajpe (842 + o)

(ax)2ay ax(ay)?

(9-51)

2 4 o2 2 4 2 2 4 2V 2 4 A2
N A20(°‘o + o?) . AOZ(BO + %) . A22(“0 *o )(Bo * o°)
(ax)?2 (ay)? (axay)?

The coefficients Anm are found from (9-46) and (9-47) to be

Ayo = F/2

Ayg = (M-C)/a

Aoy = E/2

Ajp = (H-BY4 (9-52)
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Ayy = (B-2E + N)/4

A12 = (G-A)/4

Ay = (C-2F + My4

A02 = D/2

A22 = (A-2D + G)/4
where

A sty - 2+ T

B=Ti3- T

C= 2ri2

D= rél - Zréz + rés (9-53)

E=Ty3-Ty

F = 2ry,

G=T3 =23 +T33

H

T33 - T3
M= 2rs,

The other 2 difference schemes that we have developed are derived in
exactly the same way as the biquadratic scheme (9-51) above except they
are based on bicubic and biquintic expansions, respectively, of the r field.
Whereas (9-51) uses I values at 9 points to estimate r'(I,J,n+l1) [note that
there are 9 terms on the right side of (9-51)], the bicubic scheme employs
16 points and the biquintic scheme 36 points. The last scheme requires

more computer time to operate than either of the 2 lower order schemes,

but by streamlining the algebraic operations executed by the computer
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code, we have reduced the CPU time requirements of the biquintic scheme to
levels of the same order of magnitude as the time required by other differ-

ence schemes in current use. We will show this later.

Because they are based on odd ordered polynomials, both the bicubic
and biquintic schemes possess much different (and more desirable) properties
than the biquadratic (9-51). We illustrate several of these in Figures 9-2
and 9-3 where we show the results of a simulation of a conic-shaped T dis-
tribution advected by a flow in counter-clockwise, solid body rotation about
the center of the square model domain. Tha angular speed of fluid rotation
is w = (408t)" s™! and the eddy diffusivity K, = 0. The initial r dis-

tribution is
1-R/M4s , ifR< 44

[(x.y,0) = (9-54)

0 , otherwise

where R = [(x - 214x)2 + (y - 15Ay)2];5 and we assume Ax = Ay = A. The results
of our solution of Equation (9-5) in a 304 x 30a domain using the parameter
and initial values given above are shown in Figures 9-2a,b and 9-3a,b. The
former displays the results after 50 and 100 steps using the biquadratic

scheme and Figure 9-3a,b exhibits the corresponding solution given by the

bicubic scheme. 1In both cases a = 1 = at.

An obvious deficiency of the biquadratic scheme seen in Figurés 9-2a,b
is its generation of "ripples" of positive and negative I values that appear
as a "wake" behind the moving conical cloud. Actually, the amplitude of
the ripples is exaggerated in the Figure by the heavy contours and tic
marks drawn along the lines of ' = 0. Within the regions of negative T,
the amplitudes are mostly of the order of -0.02; but there is a region of
r = -0.1 immediately behind the cloud that has deepened to I = -0.13 after
100 time steps.
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biquadratic scheme of the advection of a conic shaped
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Figure 9-2p.

Same as 9-2a, except results are after 100 time steps .
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Although the bicubic scheme also gener-.as negative I values, they are
of much smaller amplitude and are confined to a ring that completely sur-
rounds the moving cloud. This is apparent in Figures 9-3a,b. More impor-
tantly, the size of the domain of negative numbers and the maximum magni-
tude of the values do not increase with time. In contrast, the crests and
troughs of T values generated by the biquadratic scheme increase slowly
in magnitude with time and successively more and more crests and troughs
are formed. We should add that many tests of difference schemes reported
in the literature refer to these negative concentrations as "bad numbers"
and refrain from showing them. We include them in this discussion because
they can have serious effects in air pollution simulations that treat non-

linear chemical reactions.

Another superior feature of the bicubic scheme is its maintenance of
axial symmetry of the moving cloud. The biquadratic scheme shows a slight

tendency to elongate the cloud along its direction of motion.

The biquadratic excels in its ability to preserve the peak concen-
tration in the cloud. After 100 time steps the highest concentration in
the cloud simulated by the biquadratic method is TMaAx = 0.8 whereas the bi-
cubic method gives TMax = 0.7. Both schemes preserve total mass to within

1 part in 104 out to 100 time steps, and apparently indefinitely.

We have found that the accuracy with which the differencing scheme
preserves both mass and symmetry is quite sensitive to the accuracy with which
the point (;. }) is specified. Recall that this is the point where a par-
ticle located at a given grid point (I, J) at time t = nat was Jocated at
time t = (n-1)at. In the vast majority of advection-diffusion differencing

schemes, the point (;, ;) is assumed implicitly to be the point of inter-
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section of the straight line of slope v/u that passes through (I, J) and the
circle of radius (u2 + vz)%At centered at (I, J). This assumption is good

as long as At and/or the flow speed are small; but in schemes such as those
derived above that allow arbitrarily large values of At, the estimation of

(i, 9) by a simple linear extrapolation can cause significant errors in mass
conservation and symmetry preservation. To circumvent these errors, we
convert the flow speed (u, v) at each grid point and time step into the corre-
sponding (;, ;) array. This is done outside the model using an algorithm of
high-order accuracy to evaluate (9-29). The array (%, 9) is then used as

input to the model, rather than (u, v).

Another difference between the 2-D schemes derived from the technique
introduced above and most of those in current use is the neglect in the
latter of cross product terms in the polynomial representation of the de-
pendent variable. Examples of these terms are those with coefficients All’
AZI’ A12 and A,, in the biquadratic expansion (9-46) of I'(n, £). The errors
incurred by the neglect of these terms are not revealed by the popular test
of advection differencing schemes used in Figures 9-2 and 9-3 that simulates
clouds of axially symmetric shapes in a rotating flow, because the cross
product terms in question are nonzero only when the cloud is asymmetric.

We illustrate this below in simulations of the advection of a cloud of ellip-

soidal shape in a rotating flow.

Figure 9-4 shows the results of tests of 3 differencing schemes: the
biquintic scheme (Q) derived by the procedure illustrated above with (9-46)
replaced by the 36-term biquintic polynomial; the upstream cubic spline scheme
(S) reported by Mahrer and Pielke (1978); and the fourth-order flux corrector
scheme (Z) of Zalesak (1979). A1l 3 are explicit schemes. Each of the
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5 panels of Figure 9-4 shows a different cross-section of the cloud (indi-
cated in the upper right corner of each panel) after 1 complete revolution
about the axis of fluid rotation (also indicated in Figure 9-4). In the
tests of the Q and S schemes, which are unconditionally stable, 1 revolu-
tion was completed in 100 time steps. A slower rotat® rate was required
with the Z scheme to maintain computational stabi]ityzm ... ‘therefore in its

test 1 revolution marks the completion of 150 time steps.

The results presented in Figure 9-4 show clearly the superior ability of
the biquintic scheme to preserve symmetry, shape, phase, amplitude and other
important properties. The upstream cubic spline distorts the shape and orien-
tation of the simulated cloud but the errors are somewhat smaller than those
generated by the Zalesak scheme (Z). The errors generated by both of these
schemes raise the question of whether either could provide a viable basis
for simulating advection in regional models of photochemical pollutants, where

the chemical reaction rates are nonlinear functions of concentration.

The principal asset of the Zalesak scheme is that it preserves the posi-
tive definite property of concentration. In both the Q and S schemes, nega-
tive concentrations are produced. However, it is apparent from Figure 9-4
that to maintain positive amplitudes, the Z scheme induces sizeable, non-
symmetrical errors whose effects in some applications, such as simulating
photochemical pollutants, are larger than those incurred in schemes like the
Q and S schemes simply by setting negative amplitudes to zero. The maximum
negative values generated by the biquintic scheme are about 3 percent of
the peak amplitude of the cloud, depending on the width of the cloud rela-

tive to the grid dimensions, Ax, Ay.

178



The computer time requirements of each of the 3 schemes are summarized
in Table 9-1. The time shown for the biquintic scheme is based on the opti-
mized code, mentioned earlier; and it includes simulation of both advection

and diffusion. The S and Z schemes treat advection only.

TABLE 9-1. COMPUTER TIME REQUIREMENTS FOR THE Q, S AND Z SCHEMES

Scheme CPU time (UNIVAC 1182) per grid point per time step
Biquintic (Q) 8.8 -+ 1074 s

Upstream -4

cubic spline (S) 7.0 -+ 10 " s

lalesak f&urth 4

order flux corrector (Z) 3.0 - 107" s

* Advection and diffusion combined. S and Z schemes treat advection only.
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Solution of the Yn Equations, (9-17)

If the time interval At that we use as the time step in solving the
I' equation is subdivided into periods small enough that changes in Yﬁ’ the
"chemistry variable", are negligible, then within each of these subintervals
we can treat Equation (9-17) which govern ;n in each of the 3 layers
n=1,2,3 as a system of linear, ordinary differential equations. We should
point out here that with the grid cell sizes we anticipate, the time scale
At of the horizontal transport and diffusion process is much larger than
that of vertical mixing, which is implicit in the coefficients b;; of the
;n equation; and that both time scales are generally larger than that of the

fastest chemical reaction processes described in the yh equations (9-24).

With the concentration <>y split into the 3 phenomenological

n® Yn and Yﬁ’ these intrinsic differences in time scales can

be handled separately and, moreover, locally in the simulations. This

components T

permits optimal efficiency in solving the governing equations because
those phenomena that are changing slowest can be treated with large time
steps, faster phenomena can be simulated using smaller time steps. And
in regions of the modeling domain where approximate equilibrium prevails
among the various phenomena, larger time steps can be employed than in

those areas where transient processes are taking place.

Rather than approach the solution of Equation (9-17) by finite difference
methods, we propose instead to exploit the pseudo-linear character of these
equations during the subintervals in At to obtain analytic solutions. Aside
from the obvious advantage of precision that the analytic solutions afford,

there is the added asset that time steps can be chosen as large as the
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chemistry variable ya will allow. We pointed .t earlier that during
nighttime hours when vertical fluxes among the model layers are negligible,
large gradients in material concentration can arise. Once vertical mixing
begins following sunrise, large transient fluxes of material result as
concentration levels proceed toward the well-mixed state. These transients
could cause computational instability in numerical solutions of (9-17);

but by using the analytic solution, we can use time steps of arbitrary length

without adverse effects. We will demonstrate this feature later.

Detailed mathematical descriptions of each of the coefficients bnm that
enter infﬁ the definition (9-19) of the coefficients b:; of the ;n equations
(9-17) are given in Appendix C. Also provided there are expressions for
the inhomogeneous terms g, that appear in (9-17). For notational conven-

ience we will represent (9-17) here by

X 0

3y - -
W+ Ex + Epy + Egz = 6, S (9-55)
Y- -

3t + le + F2y + F3z = G3.J

First, we look for solutions of the homogeneous equations, (9-55),
with G1 =G, = G3 = 0, of the form
- At - At - At _
X kxe , Y kye y 2 kze (9-56)
Substituting these into the homogeneous equations, expanding and collecting

terms we obtain
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kx(x + Dl) + kyD2 =0
kxE1 + ky(x + E2) + sz3 =0 } (9-57)
kxF1 + gsz + (A + F3)kZ = O_J

This system of equations has a solution only if

A+ D1 DZ. 0
E1 A+ Ey E3 =0 (9-58)
Fy Fo At Fy

Expanding this determinant we obtain the characteristic equation
AMB+p2+gr+r=0 (9-59)

whose roots are the eigenvalues of (9-55). Here

p = F3 + Ez + Dl (9"60)
q = EoF5 - E5F, + DyF3 + DiE, - DZEI (9-61)
r = D (EFy = E4F,) - Dy(E;Fy - E5F) (9-62)

Due to the physical nature of the system that (9-55) represents, all 3

of the roots of (9-59) must be real and negative.

The characteristic equation (9-59) can be solved rather easily. First
we use Newton's jterative method to find the root nearest zero. With this

technique the estimate of a given root after n iterations is

FO31)
Nl T (9-63)
f (An-l)

where (1) represents the left side of (9-59) and f'()) = df/dx. Starting

182



(9-63) at A* = 0 to find the root nearest 0 we find from (9-59) and (9-63)

A¥p =A% - r/g = - r/g (9-64)

With only 4 more iterations of (9-63) we obtain an estimate of 1 root of
(9-59) that is accurate to 8 significant figures. Let us call this result
Ay, i.e., Ag = X\). Then the remaining 2 roots A, and A3 are found by

synthetic division of (9-59) to be

Ao =al- (p*+a) + AP F A2 - 8q - a(p ¥ i) 1 (9-65)

and a similar expression for A3 except for a minus sign before the square

root term.

Now for each eigenvalue A there is a system of equations (9-57) for the
components of the eigenvector k. For example, the components of the eigen-

vector associated with \; satisfy the equations

k + + =

XI(J\I D;) klez 0

kxlEl + (A + EZ)k,Yl + k21E3 =0 (9-66)
=0

k. Fy +k, Fp + (Ap + F3)k
x, 1t ky Fat (A + Fodky

We can choose one component of this system arbitrarily. If we pick

o * (9-67)
then
A + Dy
k Z — 9-68
Y1 Dy ( )
=1 - -
kp = s (R - kg Fals (9-69)

provided that D, and (F3 + A;) are not zero

, kyz’ etc. Thus, the general

form of the solution of the homogeneous system (9-55) is

Through a similar process we obtain kxz’ kx3
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[

<
!

N
1

where x; = kx
mined by the initial conditions on (x,y,z).
can solve the inhomogeneous system (9-55) using (9-70) with the vn‘s treated

as time dependent variables.

= ViX] + VoXa + V3X3

= Viy1 * Voya t V3y3 ?

= V1Zy + Vazp t V323

B

At _ At
e s =k e
. Y1 Y1

, etc; and the vn's a

(9-70)

zonstants deter-

Following ..piaa {1962) we

Substituting (9-70) into (9-55) and making use

of the fact that (9-70) is the solution of the homogeneous system {9-5%)

we get

Y1

Z;

Solving this

dV1

dt
where

G,
and

K =

T T Xe g

at T Y2 g

@ ‘g

dV1 dV2 dV3

dvy dv, dvs

dVl de dV3

system first for dv,/dt

___=G_1e"ht
K
= k k - k. k +
G Yo 23 %, y3)
k. [k k., -k k ]-
1" Y, 23 2, ¥,

ﬁ
G1

2 P

Gg-J

we obtain

Gy(k, k., -
X2 Y3

k. [k k, -k, k. ]
Xom Y123 21 Y,

+ k, [k - k. k
Xy ¥1k22 z; Yz]
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Hence, from (9-72)

J1% gt a0
dVl Al K
vy = aTdt = (9"75)
Gt
< , Otherwise

Solving for v, and v3 in a similar manner and subst  ~° 3 the results into
(9-70) we obtain finally for the general solution of (9-55)

3

] pt o, 1 )

with similar expressions for y and z except with kyi and kzi replacing kxi‘
In this equation

1 R

u; = (9-77)

t , Otherwise

and the Ci's are constants that are evaluated by setting t = 0 in (9-76)
and solving the resulting set of equations with x, y, and z assigned their
initial (t = 0) values. We will not write the expressions here for these
constants nor will we discuss any of the operational aspects of determining
the k's that enter in (9-76) in special situations (such as the case of
double roots of the characteristic equation). We have developed a computer
code for evaluating (9-76) which we use in the regional model to solve the‘
;n equations (9-17). Below we illustrate some results of exercises per-
formed with this code which, in essence, constitutes a 3% layer, l-dimen-

sional diffusion model.

Returning to our original notation, we can express Equation (9-17) in

the concise form
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dy )

where i = (;1, ;2, ;3), B is a 3x3 matrix whose elements are the coeffi-
cients of (9-17), and G = (Gy, Gy, G3). Figure 9-5 shows solutions we

have derived for 3 sample cases. The first, depicted in Figure 9-5a, is

the case of no sources, 9 = 0, no material sinks, and layers of equal
thickness. There is vertical mixing between each of the 3 layers but

mixing across the interface between layers 2 and 3 is only one-half as

strong as across the surface between layers 1 and 2. Starting with initial
values ;1 = §3 = 0, ;2 = 10, the evolution of i(t) is as shown in the Figure.

After a time t

n

15, layers 1 and 2 are well mixed, but the concentration
in layer 3 is smaller reflecting the weaker mixing between layers 2 and 3.
In the 1imit as t » =, the material initially present in layer 2 is equally
partitioned among the 3 layers, as is evident in the ; values shown for

time t = 500.

Incidentally, the curves shown in Figure 9-5(a), (b) and (c) were ob-
tained by recursive application of the algorithm we developed above for
solving (9-78). That is, we solve (9-78) for y at t = 1 using the initial
conditions. This result is used as the initial condition in a second appli-
cation of the algorithm in which we solve for g at time t = 2. It is not
difficult to show that this second value of i is equivalent to the sclution
of (9-78) at time t = 2 using the given value of i at t = 0 as initial con-
dition. The use of a small time step like At = 1 would be essential in
solving (9-78) by finite difference methods under the conditions given in
Figure 9-5(a) to reproduce accurately the ;n values in the interval 0 < t < 10

where changes are occurring most rapidly. In fact, since d;z/dt =1.5
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Figure 9-5. Sample solutions of the y equation (9-78) .
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initially, a time step larger than about 7 in a finite difference solution
of (9-78) would produce negative values of ; and possibly computational
instability. Using the analytic solution one can obtain exact solutions

for arbitrary values of t with essentially a single iteration of the algo-
rithm. Of course, more computations are required than in a single time

step of a numerical solution technique, but the total computer time require-
ments are certainly comparable, and the flexibility and accuracy provided

by the analytic method are most valuable.

In the second sample calculation presented in Figure 9-5(b}, a source
of unit strength is Jocated in layer 1 and there is also material deposition
in this layer (deposition rate = 0.1;1). Mixing of equal strength occurs
between eaéh of the layers and initially no material is present. The
solution i(t) shown in the figure displays the expected behavior, with
;1 > ;2 > ;3 due to the source in layer 1. The steady-state is reached
in this system when the concentration ;1 has become large enough that the
deposition rate 0.1;1 is equal to the source ehission rate G; = 1. Our

algorithm gives the correct steady-state solution ;1 = ;2 = ;3 = 10, as

indicated in the figure for t = 500.

The final calculation shown in Figure 9-5(c) is for the same case just
presented except instead of a material source, we begin with a puff of
concentration 10 initially in layer 3. The results show that ;1 rises
from a value of 0 initially to a peak value of about 1.4 at time t = 20
and then declines after that. The total mass of material present, indicated
by the dashed 1ine in the figure, is almost constant until t = 5, but after
that it begins a rather rapid decline as material filters into layer 1

and is subsequently removed by deposition.
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Using the 3 case studies just described and others, we have validated
the accuracy of the algorithm we have developed above for use in solving
the ;n equations, (9-17). This algorithm is currently operational in our

regional model.

Solution of the Y'(a)n Equations (9-24)

Since the ; and v’ equations (9-17) and (9-24) are coupled, they
must be solved simultaneously. (By contrast the T equation (9-5) is vir-
tually independent of both ; and y'.) The method we developed above for
solving'(9-17) gives ; at the end of time intervals of arbitrary length
provided that the parameters b:; and Gn that enter (9-17) are approximately
constant during each interval. Both of these parameters are functions of
v', [see (9-19) and (9-55)], so the time interval used to evaluate ;n is

determined by the rate of change of Yﬁ'

The system of equations (9-24) that governs Yia)n [recall that the
Eubscript (a) refers to the pollutant species] is nonlinear. Despite its
relatively simple form this system is particularly difficult to handle
numerically; because being representative of the chemical reactions that
occur among air pollutants, some eigenvalues of the system are 108 times
larger than others. We develop below a numerical technique that appears to
be able to handle this particular system. It is computationally stable; it
does not produce negative concentrations, as most numerical schemes do when
. have greatly disparate values; and it provides easy control

J
over the accuracy of the solutions.

the constants k .
ai

To develop this method we first write (9-24) in the equivalent form

k (9-79)

([ e M o)

; I I
—_— y'y! + I L ayiy!
3 Lk Y5 3 aij¥i?j

i

j=1
(idad)
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where I represents the total number of chemical species present. For no-
tational convenience we have dropped the layer reference subscript n from
Yza)n and use the subscript to refer to the pollutant species. The first
summation on the right side of (9-79) represents all reactions of the type

k .
ool
a+i >+ L+nm (9-80)

These reactions destroy species o by transforming it into different

species £ and m. It follows then that kaa. is negative.

i
The last term on the right side of (9-79), which by design does not
contéin y;, represents all reactions of the type
Kaij
i+j =+ a+n (9-81)
These reactions produce species o from other pollutant species and hence
kaij is positive. Having noted these aspects of the summation terms in

(9-79) let us now write this equation in the more abbreviated form

ay;
ot * PaYé = Qa (9-82)
where
I 1

Pa = -izlkaaiYi (9-83)
11 L

Qu = f §=';a1jYin (9-84)
(i%a%])

Consider now a time interval t; < t < t; for which the values vi(t )
are known for all i = 1,2,...1 pollutants. And let Pao and an be the
values obtained from (9-83) and (9-84), respectively, using the given values
of y% at t.. If P_and Q were constant in (to, t;), Equation (9-82) would

have the solution
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YA(t) = Q /Py + [xl(t) - Q /P Texp [- P (t-t)]  (9-85)

Obviously the degree to which this expression approximates the general solu-
tion of (9-82) is determined by the rate at which P, and Q, are changing

n (to, t,).

Suppose that from the set of solutions (9-85) for .ue . pollutants
we determine a time t;, say, such that no value y%(tl) differs from its
initial value Y%(to) by more than some given small fraction A, say 1 percent
(We will elaborate on this procedure later.) Using the Y%(t1) values ob-
taine&-from (9-85) we can define Pc‘1 and Qm1 from (9-83, 84) just as we
defined Pao and an before. Treating Pm1 and Qal constants and using the

Y% values at t; as initial conditions for (9-82) we obtain from (9-85)

vi(t2) = Q, /Py + [yi(ta) - G, /P, Texp [ -P_ (tz - t1)]  (9-86)

where t, is chosen such that none of the y;(tz) exceeds Y%(t1) by a fraction
larger than A. Continuing this process forward in time we obtain an approxi-

mation of the general solution of (9-82) at discrete time intervals.

We have tested this method for use in the regional model and we have
found it to perform well. However, in simulating air pollution chemistry
where the reaction rates cover a wide range of values, the computer time
required by this technique can become quite large unless the X parameter
is chosen in a particular way. To elaborate on the definition of this term

~and its selection, we note first that in (9-85) or (9-86),
Q. /P, = & (9-87)

o 8

is the asymptotic or steady-state value of yé, which may be larger than,
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smaller than, or equal to the initial value

Yo (ty) = Y0 (9-88)

As we noted earlier, (9-85) is a good approximation of the solution of

(9-82) only for times t such that

avi = lyi(t) - vi(t )] < avj(t)) ' (9-89)

where A is a small fraction. The “smallness" of A is determined by what

we define a "close" approximation of the solution of (9-82) to be.

~The 1imit on t imposed by (9-89) can be found by substituting (9-85)
into (9-89) for y%(t). We get

dyi = [vilty) - & L1 - exp(-Py (t -t ))] < awj(t)) (9-90)
or
SHUN i
1 - exD(-PiO(t = to)) h ly;‘(to) = E.‘l = F'I (9-91)

If F; > 1 then any value of t > t  satisfies (9-90); but when F, < 1, we

require
ty -ty 2 -l - F)/Pg (9-92)
Thus, a sufficient condition for (9-85) to be a close approximation of the

solution of (9-82) for all I species in the interval t <t < t; is that

t; satisfy

t) =t + m}n { - (1 - F)/P; ) (9-93)

We should add here that in evaluating Fi using (9-91), Ay%(to) is replaced
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by AES if y%(to) < £
In the studies we have performed to date with this method of solving

(9-82) we have found that the time intervals at, =t -t _; given by

n
(9-93) are unnecessarily small when the same value of A is used for all
species. Our available evidence is that A can be made much larger for
pollutant species like oxygen atom that are present in extremely small

concentration than for the more plentiful species like NO, 03, etc.

For example, we used the scheme above to simulate the 4-species

mechanism
k1
NO2 - NO + O
k2
0+02+M-»03+M (9-94)

ks
NO + 03 - NO2 + 02

with rate constants

ky = (3Y36) - 1072 572

ka(0) (M) = & + 20857

k3 = (4/9) . 10'1 ppb'l s'l

Note that the effective rate constant k2(02)(M) is about 108 times larger than k;.

We solved the rate equations for this system

9%%-= k1 (NO,) - k3(03)(NO)

etc, using a value » = .1 for each species. The inital conditions were

chosen arbitrarily as NO = 100 ppb, NO2 = 500 ppb, 03 = 300 ppb, 0 = 10'5 ppb.
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The results are shown in Figure 9-6a. We repeated this simulation using
the same initial conditions but with 1 = 0.1 for NO, NO,, and 03 and

A = 0.4 for oxygen atom, 0. The results obtained in this calculation for

t = 100 were within approximately 0.1 percent of the values obtained in the
first run (shown in Figure 9-6a); yet the computer time required was only
2/3 that required in the first case. The time difference was due to the
fact that 18 time steps were needed to reach t = 100 with x = 0.1 for all

4 species whereas only 12 steps were required when the A value assigned to
oxygen atom was relaxed to 0.4. In the former case the first 7 of the 18
time gteps were smaller than 0.001 s. During these 7 steps oxygen atom con-
centration increased gradually (by 10 percent increases) from its initial

5 -5

value of 10~ ppb to 4.06 - 10~ ppb. During these 7 steps the concentrations

of 03, NO and NO2 were virtually unchanged from their initial values. Once

the 0 concentration had reached 4.06 - 10"5

ppb it was within 10 percent of
its equilibrium value for the NO, NO2 and 03 concentrations existing at that
time and thus infinitely large subsequent steps were permissib]é "with respect
to 0." Consequently, control of the time step size then shifted to NO, NO2
and 03 at this point and, due to their slower reaction rate, the remaining
time steps were larger than 1 s. The actual time intervals are indicated

by the arrows in Figure 9-6a. Also shown is the sum (NO + N02) which,

according to (9-93), should remain constant. The scheme maintains this

property to within a few percentage points depending on the value of A chosen.

The interesting feature of the simulation is that when the value of
A used for oxygen atom was increased from 0.1 to 0.4, with the other 3 A
values held the same, the model used only 1 sub-millisecond time step ini-
tially, rather than 7, yet in doing so it commited no error (the values of

0 at t = 1.027 are identical in the 2 cases).
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As a further check of the effect of letting A vary with the species,
we performed a second pair of simulations as above but with initial condi-
tions 1/10th those used in the first set -- NO = 10 ppb, NO2 = 50 ppb,

0, = 30 ppb, 0 = 10'6ppb. The results of this experiment with A = 0.1 for

3
all 4 species are depicted in Figure 9-6b. The values obtained with

A =0.1 for NO, NO2 and 03 and A = 0.4 for oxygen atom were within 1 percent
of the values derived in the first example at t = 100 s. However, with this
set of initial concentrations, the simulation that used » = 0.4 for oxygen
atom took only 5/11 the computer time needed with A set to 0.1 for all
species. This reduction in machine time is considerably larger than that
realized in the first pair of experiments where different initial concen-
trations were used. The reason is that with smaller initial concentrations
of NO, NOZ and 03, the rates of change of these species are considerably
reduced (compare Figures 9-6a and b) and thus a larger fraction of the
iterations required to reach time t = 100 are dominated by the rapid varia-
tions in oxygen atoms. Incidentally, it is interesting to note in Figure
9-6 that due to the nonlinear character of the chemistry, the temporal be-
havior of all of the species is reversed when the initial concentrations are

all divided by 10.

Having found that the performance of our solution technique is much
more sensitive to the behavior of some species than others, we restructured
the method to achieve maximum execution efficiency. This work was performed
through applications of the scheme to the 23 species kinetic mechanism re-
ported by Demerjian and Schere (1979). As a result of this work, the tech-
nique presented above for solving the y' Equations (9-24) was modified and

it now has the following form:
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Compute preliminary estimates P;o, Q;o of the decay and pro-

duction coefficients (9-83, 84) using the known values of
Yoo = Yalto) -
Compute the sum CON of the concentrations of NO, NO2 and 03 at

time tQ:
CON = [NO]o * [N02]o ¥ [03]o
Note that [NO]. =T Y] » ete. (cf. 9-3
o = T(no), Y(no), ( )

Determine the time t; using (9-93) but with the function min{}
I
replaced by min{}, where K denotes the subset of the I species
K

whose concentrations [1]0 at t, satisfy
[1]0 3_C0N/100

Using the values P:O, Q;o from Step 1 and the Y;o’ compute pre-

liminary estimates y;: = y;(tl) using (9-85)
Using the Y&t values from Step 4 and (9-83, 84), compute P:l, Q;l

Compute corrected, final estimates of Pao, an by

Pao = Pa,
Qo = (@ * Q,)/2

(These expressions are the result of empirical findings rather

than theoretical considerations.)

Compute the final estimates of y&l using the Pmo and an from

Step 6 and the y&o

Return to Step 1 and repeat the steps above to obtain at Yéz’ etc.
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In Part III of this report we will present detailed comparisons of the
performance of this scheme with that of the well~known Gear routine. We
will show that the solutions of (9-24) given by the technique above are
within about 1 percent of those given by the Gear method for each of the
23 species in the Demerjian-Schere mechanism over 24 h simulations.

The method developed above achieves this level of accuracy with about % the
computer time required by the Gear method. If the control parameter A in
the scheme is increased until the maximum differences between the generated
solutions and those given by Gear are of the order of 25 percent, the exe-
cution time is about 1/5 the Gear routine requirement. This difference in
machine times is due chiefly to the fact that the method above is in essence
a8 2-step scheme whereas Gear is multi-stepped. In our regional model where
the ; and y' equations are solved alternately over short time intervals,
the need for multiple values of y' by the Gear method to produce solutions

within each subinterval results in a large computational "overhead".
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SECTION 10

SUMMARY OF MODEL EQUATIONS

For convenience we summarize below the basic forms of the governing

equations in each of the model's 4 layers.

Layer 1:
3<C>, 3lnV, 9<c>y 3<C>
3T + <C>3 5T + uX<U>1 30 + U¢<V>1 30
1 1 a‘enVI ] t BKVLV]
+ ux<u c'> 3 + u¢<v c' > 3
a<u'c'>, a<v'c'>,y
YU T Hy 5
+A.[+F -F]=<R> + <S>
Vl 0,1 1’1 1
where
=1
A T 3 cose
=1
My % 3
a = earth radius at MSL (in meters)
X = longitude
¢ = latitude
A = a? (Aa¢ar) cosSo
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A¢,Ax = latitude, longitude grid cell dimensions
= constants (a¢ ='% Ax = %°)

A+AN/2  pdtAd/2
{ MAX {0, [z;(r',¢',t)

v1(k,¢,t) = azc°5¢ J
A=AA/2 T o~00/2

- MAX [zp(0'50')s 2o (A" 54" ,t)1T0de dn"

<u'c'>1

subgrid scale fluxes of ¢ (see Section 7)
<v'c'>1
<R>; = all chemical, rainout and washout processes.

<S>; = all emissions of ¢ in Layer 1 (includes stacks and surface

sources above nighttime radiation inversion.

<u>;, <v>; = layer averaged horizontal wind components

(u = east-west component), (v = north-south component).

Fl’l = (1—°T1) [((C)l - <C>2)w1m + <C>1 wIJ

g8 = deposition velocity of species c

oTl(A,¢,t) = fraction of surface H, penetrated by terrain

Yo W 2 W= W
Wy = ——< 4+ 5= [1+erf (-1 Dl)]
1-0 2
T1 o
W
Oa WzR QR W
m=- = exp (-—=>)+L[1-erf (=L )]
™ o2 o
Wy L1
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QDI - 21, neutral and unstable conditions;

W =
R1 - ﬁl, ( = given inversion layer depth growth rate), stable
WDI = mean vertical velocity on H1 (terrain induced component
excluded)
Oy, = rms vertical turbulence on H1 ( = 0 in stable cases)
Wo = threshold of cumulus "root" updraft vei..ity on H1
21 = 321/3t
Vs O.s WC (see Layer 2 equations)
X 2
erf(x) = £ et 4t
Y
0
Fo,l = (O’To - ch) g<c>; + (1 - GTO)FO

op = fraction of surface H0 in given grid cell penetrated by
o
terrain

Ozone:

Fo(03) = <03>1 w_x_ = 0w, A (1 - €)(1 - o)

0, if Sy.>vz0
S (1-a) - "No”V%%3
0.,v2z - S

3 NOY

, Otherwise
+ v

8
Oy

Nitric Oxide:
Fo(NO) = <NO>; w_x_ - NO wA (1~ g)(1 - a)

~

Syo + ve(NO - 05) , if §N0’YC°3

- (1o 1+ Byg/v

vzNO

T—:f§E67;-“', otherwise
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Nitrogen Dioxide:

FO(NOZ) = <N02>1w_k_ - NO2 WA (1 - g)(1 - a)

-(1-aq)-
L B0,/
veN02 * Sno * Sno,
, otherwise
L Broy/v
all other species, x.
Folx) = ax>aw_a_ = xwa (1 - £)(1 - a) - (1 - a)(vex + gx)(l + Bx/v)"l
Yo Wo - W
c 2 C
a = - ———— - fo/46]
W+X+(1 - UTO) 1 - Cc

See Layer 0 equations for specification of 03, NO, NOZ’ Xs Wo» A, etc.

Layer 2:
9 9LnV a<C> . 3<C>
3 SOzt <O STy SE ¥y 2
v, 38nV ety 3aVo 3 it
+ u}\<u C > ™ + u¢<v C > oY) “A 0 <u'c’ >g

I A
tuy g Vet LR, - F L]

= <R>2 + <S>2

A+AA/2  r9tAG/2
Va(r,0,t) = a2cos¢ I J {zo(x',0",t) - MAX [z;(}",0")
A=AN/2 Y o-00/2

z1(2',0',t)]}de dN!
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<u'c'>,
subgrid scale fluxes of ¢ (see Section 7)
<v'c'>, ) )

[

<R>, = all chemical, rainout and washout processes in Layer 2

<S>, = source emissions in Layer 2 (if any)

<u>3, <v>; = Layer 2 averaged winds.

- 2 8 -
P2 = -5 (€ = <ep) # <wrp =5 - g [- {1 - o )<erg - o Cp + <]
c

AL,z = opBee>y + (1= opllce gy + (<eop= <co))yp + (<o>p - <c>y ]
wl, wlm’ see Layer 1; Wpp» see (4-44c)

fractional area coverage of cumulus clouds

O‘C.-.

WC = mean upward velocity in cumulus clouds

fe

i turbulent entrainment rate of inversion air into mixed layer

WZ = mean vertical velocity (mean of both terrain induced component
Wro and divergent component WDZ)

322 .

St - % * Tocal time rate of change of mixed layer top

C. = (1- w)<c>2
y = fraction of cloud air from surface layer

0<y<land v <wi(l-op)/(Vo.)

c, ¢'s £ W,» A, = See Layer 0 equations
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3LnV 9<C> 9<C>

aZnV
*uy cutets B, ety B

a<u'c'> a<v'e'>s A B =
+ u)\ TJ-““ u¢ —8—¢——j~ + ; [FZ 3 F3’3j <R>3

A+HAN/2 (o+Ad/2

V3(x,6,t) = a%cose [z3(1'50"') - zo(2',0',t)]de " dA’
A=AN/2 Y p-00/2

z,(2,¢,t) = mixed layer top

z3(X,¢ ,t) = model top

<U'C'>3

sutgrid scale flux of ¢ (see Section 8)
<v'c'>y :

<R>3 = all chemical (wet and dry) rainout and washout processes

<u>3, <v>3 = layer averaged winds

;‘2 - wc - 3-2.
f2,3 7 ocl 1=+ ferellc - «c23) + <cx5 7
323
B3 °

3z
(¢, - <c>3) Eﬁ§7dt + <C>3 —3% » Otherwise

¢, = concentration of species ¢ above Z4

H3/dt = given volume flux through model top surface

€. = (1 - w)<e>, +ylee' + (1 - g)c]

where c¢' and ¢ are defined with the Layer 0 variables.
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Layer O:

<03>0

<NO>0

NO

NO'

NO,

NO 2

(1-2) 0y + 20y’

W_A_<03>;
W+}\+ + (1 - C)Bo3

0, if SNO > v§03
O0qv = Spp/s , otherwise
BO + v
3

(1 -¢z) NO + gNO'
w_X_<NO>,
W+l+ + (1 - mNO

Sno/s * vINO - 03) e c L0
No ~V&03
Byo ¥V

ra , otherwise

W_A_<N02>1
Wi, + (1 - aéNOZ

NOv + O.v + Syn /C .
R R Syo *Ve0s

B + v
NO2

NO,v + (Syn + Sun )/Z
2 NO NOZ , otherwise

8 + v
NO2
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Species x other than 03, NO, and N02:

<x>9 = (1 - g)x + cx'

w_x_<x>1
x -
wa, + (1 - c)BX
v+ S /t
NI s
B + v
X
Parameters:
[ <z° )]
X, = %1 - erf
* V2o
0
A= 1=,
g 22
-wW_ =2 - exp ( - 5=—)
T W,

v = u* (plume entrainment velocity)

g = plume volume fraction

g = rms vertical turbulent velocity on Ho
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Appendix A. Transformation of the Governing Equations to Curvilinear
Coordinates.

Figure A-1. The curvilinear coordinate system used in the model.

To transform the divergence operator (V+) into the coordinates of the

frame depicted in Figure A-1 in which the basis vectors e, and e, are every-

where parallel to latitude and longitude circles, respectively, and in
which ep is vertically upward, we use the vector calculus relationship [see
Lass (1950)]

g.f=m[_§.<h¢“)+ (hyheF,) + 5% (hn FR)l (A-1)

where F is an arbitrary vector with components (Fl, F.s FR) and h,, h  and

¢ ¢
hR are the metric factors that transform the coordinate increments Ax, A4,

and AR into arc lengths ds:

ﬂ
dsA = hAdA
ds¢ = h¢d¢ > (A-2)
dsR = hRdR )

In our case it is easy to see from Figure A-1 that

h, = Rcoss
= A-3
h, = R (A-3)
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Thus, we find from Equations (A-1) and (A-3) that in the curvilinear frame,

divergence of a vector field is given by

aF oF oF F 2F
{ = 1 A l 9 Z__¢ _i -
div E Rcos¢ 3A + R 3¢ * 3z R tang + R (A-4)
where
R=a+2z
Fr=Fet Fue, + Faeg
The mass continuity equation
) .
3%.+ div (ve) = Q (A-5)

can now be expressed in curvilinear coordinates using Equation (A-4), where

the velocity vector v is

V= ue, +ve, +wep (A-6)

In the curvilinear frame we define cell volume averages by
AtAX o+ad Zj(X,¢,t)

<F> v_l F(A',6',R,t)(Rd¢')(Rcose'dr')dR  (A~7a)
(As0,t)

3 ). -
A-aL C9-a¢ Yzg 4

where the cell volume Vj is defined by

ATAN (oA zj(x,¢}t)
V. = R2cos¢'dRde'dr’ (A-7b)
A=AX  J =49 zj_l(k,¢,t)

Since the angular dimensions (Ax,a¢) of the cells we plan to use are small

with respect to unity, and since we are concerned with elevations z that are

a small fraction of the earth radius a, we can simplify (A-7) to
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AHAX po+8d 0Z5(Rs45t)
2
<F>.()\,¢,t) =a__(;_0_5i [ [ {F()\I,d}‘,t)de(#'dk' (A-8)

J V.,
A=AX J =0 zj_l(k,¢,t)

J
AL (404 (2
Vj(l,¢,t) = a2cosé ] ] Jde¢'dA' (A-9)

>\"AA ¢"A¢ zj'l

Consider now the forms that cell averaged spatial derivatives acquire.

For notational convenience we will drop the layer designation subscripts.
3<F>

Let's ook first at —— . From Equation (A-8) we find using Leibniz' theorem
a<F> _ . 1 I - <Py
53 a%cos¢ [ v (I(x + ax) = I{(x - ar))] T
where
¢+80  Zp(E,59")
I(g) = J lF(s,¢',R)de¢' (A-10)
¢-a¢ “21(g,9")
In a similar fashion we obtain
o+AD Zy(e,9")
A . ‘z,) 22 gy 321, | 3F !
d=46 21(g,9")
Integrate this with respect to £:
g+ag | E+AE  (9t+ho
ol . _ - Fle',0',2,) 22 - Fle',0',2,) 2EM]de’
3¢ 48 = I(g + a) - I(g - 2¢) = [F(e'50"522) 57F - F&',0",2y) 5zTlde
£~-Ag E-AE “¢-4¢

SHAL retas r2p(g',0")

3F
3¢ dRde'de’
E-08 J¢-a¢ Jz7(g',¢')
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Letting £ = X we get

I()\ + A}\) - I(X - Al) = -a-z%as—¢ [F(l,d},Zz) %2' - F(l O 21) ]
v 3F -
* A%coss < % (A-11)

where

AHAN (o+Ad
azn 1 1o azn ' ! 1
F()‘s¢szn) 3')"—' = A’ F()‘ ' 0 ’zn) W (Rndd’ )(RnCOSCb )d)‘ (A-IZ)

A=AX ¢ ¢-Dd
A+AN  o+AG
A= j I R%cos¢dx'd¢' = a2cos¢(44¢4N) (A-13)
A=A\ ‘¢-Ad
and
Rn =a+ zn

From (A-10) we have

V. a<P> . _<F> 3V

I(A + &x) = I(x - &) = a’cos¢ 9A  aZc0S¢ oA

Substituting this into (A-11) we obtain

3<F> + SP> 0V _ A rpdz; _ pd2) aF
*yar Sy P - PR/l 4 <gn e

In the governing equation, we have the term

1
Rcose

From the analyses above we conclude that

_E
3

1 2aF _ 1 a<f>. | <F>. £ 97 _

* Rcose 8% _j - 3cose [ =539 V J AJ v [F =53-1 - F33i1] (A-14)
a<F>
3¢
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From Equation (A-8) and Leibniz' rule,

a<F> _ a2cos¢ aZsing aZcosy , aV
5o - v Ll(o +ae) - I (e - a0)] - ——v - 2 e (A-15)

where ¥ represents the triple integral in (A-8), and

AHAN (Zp(A',E)
I¢(E) - l [F(A »E,R)dRdA
A=ax ‘zy(2',E)
: A+AX Zy
3E {[F(k :5,22) 3t F()‘ sEle) 3L ] + 3E dR}dx
A=AX Zl

Integrating with respect to ¢

E+ag

al

4 = - - ag) = A 32 . 32y
ge 48 = I(e +a8) - 1(e - a8) = g [F(0,0022) 522 - Fh0.20) 554 ]
E-48 -

+ _2____V < -?i >
a<cosy¢ 13

where the overbar term: are defined as in (A-12).

Let £ = ¢:

- - = __A 3z _p 32y v af }
I(o + 89) = 1,(0 - 80) = gzcgey [F "72/00 = F 7139 ] + sy < 50> (A-16)

Then from (A-15) we obtain

v o<F> ¥ a3V
¢(¢ - 4¢) aZcose 8¢ vtang + 3%

I¢(¢ +a¢) - 1

=V a<F> V<F> <F> aV
aZcoss a6 T tang a‘cos¢ * aZcos¢  9d
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Substituting this relationship into (A-16, yields

a<F> B> oV A [T T oF
50 + <F>tan¢ + V35 - v-[F /30 - FO l/ap ] + < 30

We conclude that on averaging the governing equation the term é-gg»becomes
1 3F -1 3<F>. <F>. 3V, A 3Z.

“R3%7; "3 [ 5ot <Prjtang 4 _ng 509 * V. (F 3 ¢J -1-F 3¢J)]] (A-17)

Performing the <> averaging on the governing equations and using results

(A-14), (A-17) and ( 2-11) we get

¢ _ 9<c> A 32 3Zy <c> 3V
et Tt tylesgr -cesptl v
1 Juc 1 a<uc> , <uc> anV A 52 EY4
= + e N L2
RCose oA ~ _ acose  Br | acoss ox  « avVcoss [uc 35 uc 3= 1
1 3ve 1 3<ve> | <ve> <vVe> aznv 3Z
K v cmm— = - ~——L- -—-2'
R 36 > " a 8¢ T2 tamt—/— = [VC ) ve ]

A
]

we | . %.[Wgzz - we?l]

< %9 tang > = 5§51 tang = 0
<2_§l>=0

Adding these terms and recalling the form (A-6) of the wind vector v, we obtain

the governing equations of layer-averaged species concentrations in curvilinear

coordinates:
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3<C>. 3LnV . d<uc>, 3<ves ., 3LnV. 3LnV
g2L> . oAl g AR I L2 IS ;
3t ] + <C>J 5T ]+ \J)\ o ]+ u¢ 36 J + uA<UC>J = ] u¢<VC>J )

J

A - dH. dH. - _
+V_j[cd-tﬂ-1 - CE‘] ] = <S->j+<R>j +<w>j
where

5 TiEm ety

= 1
Hx T acose

.1
K T a

and Hj(i,¢,t) = z.(x,05t) - z.

J
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Appendix B. Criteria for Validity of the Steady-State Assumption
in Layer 0.

We shall investigate here the error incurred by the assumption of
steady-state conditions in Layer O made in the formulation of the governing
equations of this layer in Section 5. Since the meteorological conditions
under which the steady-state assumption is most erroneous are those that
confine mixing to Layers 1 and 0, we will consider only these 2 layers

in the analyses below.

Figure B-1. Two-layer system for analysis of the steady-state
mixing assumption.

Figure B-1 shows the two-layer system we will consider. The equations
used in the model to describe concentrations q and c¢_ in the Towest 2

)
layers have the form (for inert species)

]

3c /ot = - (c1 - co)cw/h1 (B-1)

3c/at = - ge /ho + S/h + (eq - ¢ )o, /by (8-2)
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where O is the rms turbulence veloci- on surface Ho which separates the
layers. Here we have neglected horizontal transport and sources in Layer 1.
The surface deposition process is so slow that no significant error arises

in treating it with steady-state approximations, so we shall set the deposi-

tion velocity 8 = 0 in (B-2). The solution of the resulting equation is

h
¢,(t) = ¢ (o) + %f o (5 8001 - €7 (8-3)
W
Sh h A
- St oA 0 00 -2
co(t) = cl(o) tEo ot (1 -e )(S/cw “F T R ) - 8,8 (B-4)
1 1"w 1
where
by = cl(O) - co(o) (B-5)
A= owt/ho (B-6)
and where we have assumed
hy >> hy | (B-7)

The corresponding steady-state (i.e., aco/at = 0) solutions are
clss(t) = cl(o) + St/h1 (B-8)
Coss(t) = ¢y(0) + S/o, (B-9)

Thus, the error committed in assuming the steady-state in Layer 0 is:

h

. _ -2
17 C1ss ~ 17 o, (S + 0,8,)(1 - ™) (8-10)
Sh h.a
- 20l 00 4 -2 -2 i
€ = Coss = Co = ow [1-2-e7"] + g (1-e™%) + e (A° + S/cw) (B-11)
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The steady-state solutions will have the largest error during early

morning and later afternoon hours in rural areas as o  undergoes a rapid

W
change. Suppose that in the hours just before sunrise, O has some small

value %o and that within 1 time step At of the model simulation it jumps

to a much larger value o, From (B-8) and (B-9) we get

by = S(At/h1 - 1/°wo)

and hence :
h S h o]
gt pem (L4 22 - =2 )(1-e™) (B-12)
1w 1 WO
where i is
c At '
A = ‘; (B-13)
0

and At and ho are given. We have already assumed that

so if we multiply € by hl’ we get a measure of the total mass lost or gained
oM as a result of the steady-state assumption. Using a typical regional
scale model time step at = 600 s, h° =30m (h1 > 300 m) and a post-sunrise

value Oy = 0.3 ms, we see that A = 6 and that

AM = -hOS/cwo (sunrise) (B-14)

After sunrise there is a mass loss from the system equal to the quantity
emitted by the sources in the time interval ho/owo required to traverse the
depth of Layer 0 moving at a speed o If h0 = 30 and %o is only several
centimeters per second, AM can be quite sizable. However, the source emission
rate prior to sunrise is usually a minimum and, moreover, the occurrence of

a large increase in O following sunrise occurs only in rural areas where S
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is generally quite small. Nevertheless, a constraint on the nighttime depth

of Layer 0 should be
ho/cwo < At (nighttime) (B-15)

In the late afternoon the reverse condition arises and 9y drops abruptly

in a short period. Assuming °w/°wo << 1 we get )

AM = Sat (sunset) (B-16)

That is, the system gains mass at sunset equal to the emissions of the

sources in 1 time step.

During the nighttime hours when Oy is increasing slowly,

hO
aM - (TI_) Sat
1

We conclude that the steady-state approximation that we used in formulating

the Layer 0 equation is acceptable provided that
ho/hl << 1
and that during nighttime hours

ho/owo N at

where Swo is the rms vertical velocity fluctuation on surface HO and At is the
model time step.
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Appendix C. Explicit Forms of the b and g Matrix Elements b

x s 9
That Enter in the y Equation. m" -n

The ; equation (9-17), that describes the vertical material fluxes,
source functions, surface deposition and the 1ike contains the matrix b
and the vector g, both of which are defined in Equation (9-13). Here we

prescribe the exact forms of these two parameters.

Rewriting Equation (9-13) here for reference we have

1 = -
'F; [ %-l,n - ﬁ1,n] *ac, -5, = bnlcl * bpats * bp3e3 - gy (C-1)

where hn is the thickness of layer n, ¢_ is the average concentration in that

n

layer, S_ is the emission rate, and a, = aLnVn/at.

n

Consider, for example, the Layer 1 equations. From Section 10 we have
.17 R,1 7 (ogg = oqpleey + (1= ogg)Fy = (1 - opy)lWjcy

+(c) = €)1 (c-2)

In the case of ozone, we obtain from Equation (5-50)
Fo (ozone) = w_A_c, - Qo3w+x+(1 - 8)(1 - o)gy

. (1 - Uo)(l - a)v

By * Vv [Sno = veQg,¢1] (€-3)
0, 3
where ~
1, is Sy, > vzQy <0.>
U, - NO 0577371 (C-4)
0 , otherwise
and
W_A_
Q = Wi, T (1= 2B x = 03, NO, NO, or x  (C-5)
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Let

ey = (o0 = orp)8y = (1= apy){uy + Uy ) (C-6)
ey = W - w (1 - 8)(1 - a)Q (c-7)

Then on substituting (C-2, 3 and 4) into (C-1) and noting that
ay = hy/hy

and that for ozone the emission rate S in any layer is identically zero,

we get
Ozone (03)
0 0 (1 - U1 - a)v2zQ
s a3, _ 3 _ 0 0
by = Ry [ TRt (- og)leg By + 31
. 3 v
byy = b (1 = gy )0
12 hy T1"1m
(C-8)
by3 =0
. =-(1 - U1 = og ) (1 - a)vSy,
1 h1(§03 +v)
In a similar manner we find that for species NO
Nitric Oxide (NO)
_1..NO, ) NO o 1-4a 5
bip =gy Lo 0y * (1 - oppdleg - S Vi Elg)]
=-L(1- -
137 ( N )
U, (l1-o0 l-a -
NO 0 To
g, =Sy (vSyg = v25Qy <05>,)
1 1 hy v+ Bno NO 0,731
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Nitrogen Dioxide (NOZ)

NO NO
_ 1 2 2_ l-aqa 2
by =g [e, ° # Ay + (1 - S rYACH 3‘37??__l v¥2lyo, )]
b =—1(1-o)w
12 h1 T1"1m
(c-10)
bj3 =0

NOZ (1 - UTO)(I - G.) -~ 2 ~
DI TS N O [vSyg, *+ Upv2eQg <055 + (1 - Uy)vSyo]
1 NO, 2 3

Species x (excluding 03, NO and NO,)

1 rax - X_. 1l-a o
Py Doty (- o) (ef - S 5 o]

e
by, = EI'(I - oy,

(c-11)
b3 = 0
g, =X+ (1 - opp)(1 - o) VS
LT TR BT vy
All Species
- 1 _ .=
by, = By (1= oy + up - )
1 vo_(W, - w.)
by, = = - : c'2 c
22 My Thy *opgs + (1 - oq)) Gy - wy) - 2, + —S 2 5
+ 0 o)) (C-12)
A6 C C
. fe
byy = - h,28 (1- o)
9 =35,
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Ozone (03)

WMQq 1-U
b3y = i Loy e *1- €]
3 v 0,
bay = 2 (1 - y)M
327 R,
bag = =L (= M+ HU.)
337 W, 3Y3
=L WEL - Uy )Syg + AU c0
93 T q z(v * Bp ) 3°3
3 0,

Nitric Oxide (NO)

¥MQpo
by, = [ 25— +1-¢]
31 hy v sy

32=F§'(1‘¢)M

= 1 :
b33 * §, [ - M+ H3U,]
. WMEU, Sy,
9; = H§ [iuel’ - 5% ZNO(‘EQ - “Q03<°3>1)]

Nitrogen Dioxide (NOZ)

¥MQyo
2 EV
by = +1-¢]
ban = =L (1 = )M
32 7 Ry
=L (-M+F
b33 = 7, ( H3U3)
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Species x (excluding 03, NO and N02)

MQ
by, = R[5 +1-¢]
31 h3 v + Bx
b,, = —l-(l - YIM
32 h3
Bag = 7 [ - M+ fi,U,]
33 h3 373
e YMES
g3 = h—3— H3U C“ - h_3'c('v '2+_B_)-X
where
U3 - 1 s if H3 > 0
Wo = W_ -
_ 2 c
M= oc[ T, + fo/a8]
H3 = dH3/dt

~

SN0
+ \sQ03Uo<03>1 + (1 - UO) -

(C-16)

(C-17)

{c-18)

(C-19)

]

We can check the correctness of the coefficients bnm that we have just

formulated by determining whether they satisfy certain integral constraints.
In particular, in the absence of emissions (§ = Sn = 0), chemical reactions
(Rn = 0), and surface deposition (8 = 0), the total mass of pollutant in a

vertical column extending through all 3% layers must be constant.
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——————————— |

d ' _ -
gt (hyyy * hovp + haval = 0 (C-20)
or
dvy dvy dy
1 2 3 - : . )
hy ¢ *ho—gt *hygg TP vy tyshy=0 (C-21)

Since this condition must hold for any combination of values of Y15 Y2 and
Y3s We find from (9-14) that (C-21) holds in general only if the following

three conditions are satisfied:

hibyq *+ hobyy + hgbgy = hy =0
hibyg * habps + by - hy =0

Consider for example the elements bnm in the equations governing ozone

(03). From (C-8, 12, and 13) we obtain with the aid of (5-13)

hlbll + h2b21 + l‘|3b31 - h1 = (1 - oTo)w_)\_a + q,MQQB : (C-23)

On substituting the expressions for a (5748), M (C-18), and 003 (C-5) we
find that the righthand side of (C-23) is identically zero, and hence the
first condition in (C-22) is satisfied. In like manner we find that the
expressions given above for bnm for all species satisfy the consistency

conditions (C-22).
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