EPA-650/9-75-001-a

OCTOBER 1974

12 11 11 1 2 1

MISCELLANEOUS SERIES

THE WORLD'S AIR QUALITY MANAGEMENT STANDARDS VOLUME I: THE AIR QUALITY MANAGEMENT STANDARDS OF THE WORLD, INCLUDING UNITED STATES

FEDERAL STANDARDS

#eshington BC 28400

U.S. Environmental Protection Agency Office of Research and Bevelopment

THE WORLD'S AIR QUALITY MANAGEMENT STANDARDS

VOLUME I: THE AIR QUALITY

MANAGEMENT STANDARDS OF THE WORLD,

INCLUDING UNITED STATES FEDERAL STANDARDS

by

Werner Martin and Arthur C. Stern Department of Environmental Sciences and Engineering School of Public Health University of North Carolina at Chapel Hill

> Contract No. 68-02-0556 ROAP No. 26AA Program Element No. 1-AA001

EPA Project Officer: Rudolph P. V. Boksleitner

Special Studies Staff National Environmental Research Center Research Triangle Park, N. C. 27711

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT WASHINGTON, D. C. 20460

October 1974

Benzine, Israel, Short Term, ppm underline 2.4

7 p 21. Butyric Acid, Yugoslavia, Long Term, ppm

reads: 0.002 should read: 0.003

Butyric Acid, Yugoslavia, Short Term, ppm reads: 0.003 should read: 0.004

8 p 22. Carbon Disulfide, East Germany, Short Term, ppm

reads: 0.001 should read: 0.01

9 p 23. Carbon Monoxide, Bulgaria, Short Term, ppm

reads: 2.6 should read: 2.7

10 p 24 Carbon Monoxide, Hungary, Long Term, ppm

reads. 1.7 should read: 1.8

Carbon Monoxide, Hungary, Short Term, ppm

reads: 5.2 should read: 5.4

Carbon Monoxide, Hungary, Short Term, ppm

reads: 2.6 should read: 2.7

Carbon Monoxide, Romania, Long Term, ppm

reads: 1.7

should read: 1.8

Carbon Monoxide, Romania, Short Term, ppm

reads: 5.2

should read: 5.4

2

Carbon Monoxide, Yugoslavia, Short Term, ppm reads: 2.6 should read: 2.7 II. p. 26. Chloroaniline (-m), USSR, Long Term, ppm reads: 0.002 should read: 0.003 12. p. 30. 2-3-Dichloro-I-4-, East Germany, Long Term, mg/m³ Naphthaquinone underline 0.02 2-3-Dichloro-I-4-, East Germany, Short Term, mg/m³ Naphthaquinone underline 0.05 13. p. 31. DIETHYLAMINE, Bulgaria, Long Term, ppm reads: 0.02 should read: 0.016 DIETHYLAMINE, Bulgaria, Short Term, ppm 0.02 reads: should read: 0.016 Diethylamine, East Germany, Long Term, ppm reads: 0.007 should read: 0.008 Diethylamine, Romania, Long Term, ppm reads: 0.03 should read: 0.016 Diethylamine, Romania, Short Term, ppm reads: 0.03 should read: 0.016 3

Diethylamine, West Germany (VDI 2306), Short Term, ppm

reads: <u>0.09</u>

should read: 0.02

Diketene, East Germany, Long Term, ppm

reads: 0.007

should read: 0.001

DIMETHYLANILINE, Bulgaria, Short Term, mg/m³

underline 0.0055

14. p. 32. Dimethyl, disulfide, East Germany, Long Term, ppm

reads: 0.78

should read: 0.05

15. p. 34. ETHANOL, Bulgaria, Long Term, ppm

reads: 2.4 should read: 2.5

16. p. 35. Ethylene Oxide, USSR, Long Term, ppm

reads: 0.15 should read: 0.015

17. p. 36. FLUORIDES (as F), Bulgaria, Long Term, mg/m^3 and ppm

reads: <u>0.02</u> and 0.01

should read: 0.005 and 0.002

FLUORIDES (as F), Bulgaria, Short Term, mg/m³ and ppm

reads: <u>0.005</u> and 0.002 should read: 0.02 and 0.01

18. p. 37. Fluorides (as HF), Hungary, Short Term

reads: 0.015 30 min

should read: 0.02 0.015 30 min

Fluorides (as HF), West Germany, Long Term, ppm

reads: 0.015

should read: 0.001

4

19. p. 39. Formaldehyde, Hungary, Short Term, ppm

reads: 0.005

should read: 0.05

Formaldehyde, Poland, Long Term, mg/m³ and ppm

reads: 0.01 and 0.007

should read: 0.02 and 0.014

Formaldehyde, Poland, Short Term, mg/m³ and ppm

reads: 0.02 and 0.014

should read: 0.05 and 0.033

20. p. 41. Hydrochloric Acid, Czechoslovakia, Long Term and Short Term

(as H+)

delete the two Long Term values; these same two values should be entered in the comparable columns under Short Term (mg/m² and Averaging time)

21. p. 48. MALEIC ANHYDRIDE, Bulgaria, Long Term, ppm

reads: 0.01

should read: 0.012

Maleic Anhydride, Yugoslavia, Long Term, ppm

reads: 0.01 should read 0.012

22. p. 50. Methanol, Hungary, Short Term, ppm

reads: 30.0

should read: 27.0

Methanol, Israel, Long Term, mg/m³

reads: 1.3

should read: 1.5

Methanol, Israel, Short Term, mg/m³

reads: 4.0

should read: 4.5

23. p. 51. METHYL ACRYLATE, Bulgaria, Short Term, ppm

0.003 should not be underlined

Methyl Acrylate, USSR, Long Term, mg/m³

reads: 0.001

should read: 0.01

24. p. 54. Short Term, ppm

last three values in this column should be 0.16 instead of 0.15

Nitric Acid, USSR, Long Term, ppm (as HNO₃) reads: 0.15 should read: 0.16

25. p. 60. Oxidants (as O_3), Short Term, mg/m³ and ppm

reads: <u>0.01</u> and 0.005 should read: <u>0.1</u> and 0.05

26. p. 6l. Phenol, Czechoslovakia

0.026 and 0.079 should not be underlined

Phenol, Hungary, Long Term, ppm

reads: 0.026

should read: 0.0026

Phenol, Hungary, Short Term, mg/m³

0.01 should be underlined

Phenol, Hungary, Short Term, ppm

reads: 0.026

should read: 0.0026

Phenol, Poland, Short Term, ppm

reads: 0.052

should read: 0.0052

Phenol, Poland, Short Term, ppm

reads: 0.026

should read: 0.0026

б

Phenol, USSR, Short Term, mg/m³ and ppm

 reads:
 0.001 and 0.0025

 should read:
 0.01 and 0.0026

27. p. 62. PHTHALIC ANHYDRIDE, Bulgaria, Long Term, mg/m³ and ppm

reads: <u>0.2</u> and 0.03 should read: 0.1 and 0.015

PHTHALIC ANHYDRIDE, Bulgaria, Short Term, mg/m³ and ppm

reads: 0.1 and 0.015

should read: 0.2 and 0.03

28. p. 64. Soot, Israel, Short Term, mg/m³

0.3 should be underlined

29. p. 65. Styrene, West Germany (VDI 2306), Long Term, ppm and Short Term, ppm

underline 4.6 and 15.16

Sulfur Dioxide, Canada, Long Term, ppm

reads: 0.11

should read: 0.01

Sulfur Dioxide, Canada, Short Term, mg/m³

underline 0.9

Sulfur Dioxide, Canada, Long Term, ppm

underline 0.06

Sulfur Dioxide, Canada, Short Term, ppm

underline 0.17

30. p. 67. Sulfur Dioxide, Israel, Short Term, mg/m³

reads: 0.78 should read: 0.75

 p. 74. Suspended Particulate Matter, United States, Long Term, Averaging time

reads:

should read: I yr

7

32. p. 75. TETRAHYDROFURAN, East Germany, Long Term, ppm

reads: should read: 0.07

TETRAHYDROFURAN, East Germany, Short Term, ppm

reads:

should read: 0.21

Toluene, Bulgaria, Short Term, ppm

reads: 0.15

should read: 0.16

33. p. 76. Toluene, East Germany, Short Term, ppm

reads: 0.5 should read: 0.16

34. p. 77. TRICHLORETHYLENE, Bulgaria, Long Term, ppm

reads: 0.17 should read: 0.18

TRICHLORETHYLENE, Bulgaria, Short Term, ppm

reads: 0.67 should read: 0.74

- 35. p. 78. Vinyl Acetate, Israel4.0 and 12.0 should not be underlined,1.0 and 3.0 should be underlined
- 36. p. 79. Xylene, East Germany, Long Term, ppm

reads: 0.046 should read: 0.05

Xylene, Hungary, Long Term, ppm

reads: 0.046

should read: 0.05

8

ERRATA FOR EPA-650/9-75-001a The World's Air Quality Management Standards, Volume I

I. p. 14. Acetophenone, East Germany, Short Term, ppm

reads: 0.0006 should read: 0.002

2. p. 15. Acrolein, USSR, Long Term, ppm

reads: 0.12 should read: 0.012

 p. 16. AMYL ALCOHOL, West Germany (VDI 2306), Short Term, mg/m³ underline 60.0

AMYL ALCOHOL, West Germany (VDI 2306), Short Term, ppm underline 15.0

Aniline, Czechoslovakia, Short Term, mg/m³ underline 0.05

4. p. 17. Long Term, mg/m³

underline all values in this column underline three consecutive values, 0.03, 0.01, and 0.005

5. p. 18. Benzene, Poland, Long Term, ppm

insert 0.09

Benzene, Romania, Long Term, ppm insert 0.03

Benzene, Israel, Short Term, mg/m³

reads: 1.6

should read: 4.8

6. p. 19. Benzine, Israel, Long Term, ppm

underline 0.8

Benzine, Israel, Short Term, mg/m³ 10.0 should not be underlined Xylene, Hungary, Short Term, ppm

reads: should read: 0.05

Xylene, USSR, Long Term, ppm reads: 0.005 should read: 0.05

Xylene, Yugoslavia, Long Term, ppm

reads: 0.46 should read: 0.05 Xylene, Yugoslavia, Short Term, ppm

reads: 0.46 should read: 0.05

RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into series. These broad categories were established to facilitate further development and application of environmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. These series are:

- 1. Environmental Health Effects Research
- 2. Environmental Protection Technology
- 3. Ecological Research
- 4. Environmental Monitoring
- 5. Socioeconomic Environmental Studies
- 6. Scientific and Technical Assessment Reports (STAR)
- 9. Miscellaneous Reports

Since it does not present research information oriented to the programs of ORD, this document has been assigned to the MISCELLANEOUS REPORTS series. Prepared in conjunction with the Office of Research and Development's activities as an International Reference Center for Air Pollution Control of the WHO, it provides an assembly of data on air quality management standards which were compiled in part for the information and support of other EPA offices.

EPA REVIEW NOTICE

This report has been reviewed by the Office of Research and Development, EPA, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

DISTRIBUTION STATEMENT

This report is available to the public through the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

ABSTRACT

This is as complete as possible an assembly of the numerical air quality management standards of the world, including the United States. The kinds of standards included are those for: air quality, concentration at point of impingement at ground level, deposited particulate matter, emergency procedure concentrations, emissions, fluorides in forage, fuel, measurement method, protection zone, soiling index, stack height and sulfation. It excludes air quality management regulations that do not have numerical limits; and, conversely, numerical limits that do not directly relate to air quality management. In the former category are open burning and fugitive dust regulations, that, almost without exception, do not include numerical limits. In the latter category are numerical design standards for fuel burning equipment which relate only indirectly to air quality management.

The standards are presented in tabular form, supported, where necessary, with figures.

This report was submitted in fulfillment of Contract Number 68-02-0556 by the Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill, under the sponsorship of the Environmental Protection Agency. Work was completed as of September, 1974.

This report is in two volumes: Volume I, The Air Quality Management Standards of the World, Including United States Federal Standards; and Volume II, The Air Quality Management Standards of the United States.

NOTICE

Errors, corrections, or other comments concerning this document should be addressed to:

U.S. Environmental Protection Agency Special Studies Staff Research Triangle Park, N. C. 27711

CONTENTS OF VOLUME I

Table	of C	ontents, Volume II	v
List of Tables			vi
List of Figures			xi
Acknow	ledg	gements	xiii
Sectio	ns		
I	Con	clusions	l
II	Rec	commendations	2
III	Int	roduction	3
IV	The	e Air Quality Management Standards of the	5
	Wor	ld, other than those of the Subsidiary	
	Jur	isdictions of the United States	
	A.	The Air Quality Standards of the World	6
	В.	The Emission Standards of the World	6
v	Ane	lysis	8
VI	Арр	endices	10 a
	A.	Tables - Air Quality Standards of the World	11
		(Tables 1 through 7)	
	В.	Tables and Figures - Emission Standards	108
		of the World (Tables 8 through 16 and	
		Figures 10-1 through 15-4)	
	C.	List of Information Sources	376

Page

,

-

Т

CONTENTS OF VOLUME II

		iii
List o	of Tables	iv
List o	of Figures	xiv
Acknow	vledgements	xvii
Sectio	ons	
I	Conclusions	l
II	Recommendations	2
III	Introduction	3
IV	The Air Quality Management Standards of the	5
	United States	
	A. The Air Quality Standards of the United	5
	States	
	B. The Emission Standards of the United States	6
v	Analysis	8
VI	Appendí ces	
	A. Tables - Air Quality Standards of the	11
	United States (Tables 17 through 24)	
	B. Tables and Figures - Emission Standards of	81
	the United States (Tables 25 through 30	
	and Figures 25-1 through 27-4)	

No.	
States of the local division of the local di	

1	List of Countries from which information was obtained.	11
2	Air Quality Standards, other than those from Subsidiary Jurisdictions of the United States	13
3	Point of Impingement at Ground Level Standards, other than those from Subsidiary Jurisidictions of the United States.	85
4	Fluorides in Forage Standards, other than those from Subsidiary Jurisdictions of the Unted States.	98
5	Deposited Particulate Matter Standards, other than those from Subsidiary Jurisdictions of the United States.	99
6	Soiling Index and Sulfation Standards, other than those from Subsididary Jurisdictions of the United States.	103
7	Emergency Procedure Concentrations Levels, other than those from Subsidiary Jurisdictions of the United States	104
8	Emission Standards for Specific Pollutants in Effluent Air or Gas from Stationary Sources, other than those from Subsidiary Jurisdictions of the United States.	108
8-1	Permissible Emission, Czechoslovakia	144
8-2	Emission Standards for Nitrogen Oxides from Stationary Sources, Japan	145
8-3	Emission Standardsfor Sulfur Oxides from Stationary Sources, Japan	146
8-4	Emission Standardsfor Sulfur Oxides from Stationary Sources, Newest Revision April 1974, Japan	147
8~5	Emission Standards for Stationary Sources, East Germany.	148

8-6	Area Classifications, East Germany	149
8-7	Classification of Gaseous Pollutants, West Cermany	150
9	Fuel Standards, other than those from Subsidiary Jurisdictions of the United States.	153
9-1	Sulfur Content in Fuel, New Brunswick, Canada	163
9-2	Sulfur Content in Fuel, Ontario, Canada	163
9-3	Sulfur Content in Fuel, Montreal, Canada	163
10	Emission Standards for Particulate Matter in Effluent Air or Gas from Stationary Sources, other than those from Subsidiary Jurisdictions of the Untied States	164
10-1	Maximum allowable discharge rates of dust and fumes, Philippines	212
10-2	Maximum allowable discharge for dust, Mexico	213
10-3	Dust Classification, West Germany	214
10-4	Emission Standards for Suspended Particulate Matter, Israel	216
10-5	Maximum allowable discharge rate of discharge of grit and dust from furnaces, other than incinerators, Great Britian	217
10-6	Special Districts and their K-values, Japan	218
11	Stack Height Requirements, other than those of Sub- sidiary Jurisdictions of the United States	219
11-1	Stack Height Requirement Based on Fuel Consumption, Sao Bernardo and Santo André, Brazil	225
11-2	Stack Height Requirement Based on Sulfur Dioxide Emissions, Sao Bernardo and Santo André, Brazil	225
11-3	Stack Height Requirement Based on Emissions and Specific Pollutants for Fuel Burning, Czechoslovakia	226

11-4	Allowable Emissions Based on Stack Height, Pollutant and Air Quality, East Germany	227
11-5	Definitions of Suspended Particulate Matter and Settleable Particulate Matter, East Germany	228
11-6	Stack Height Adjustments, East Germany	230
11-7	Calculations of h _s Based on Heat Input and Exit Gas Velocity, France	231
11-8	K-Values for Stack Height and Emissions, Japan	233
11-9	Calculation of Corrected Height of Discharge, Japan	234
11-10	Chimney Height Adjustment, Sweden	235
11-11	Example of Stack Height Calculation, USSR	236
11-12	Stack Height Requirements for Large Steam Power Plants, USSR	238
11-13	Stack Height Requirements for Plants Emitting Sulfur Dioxide, Belgium	239
1114	Stack Height Requirements for Sulfur Dioxide Emissions from Sinter Plants, VDI, West Germany	239
11-15	Basic Chimney Heights for Miscellaneous Warm Emissions of Sulfur Dioxide, Great Britain	239
11-16	Basic Chimney Heights for Sulfur Burning Sulfuric Acid Contact Plants, Great Britain	240
11-17	Basic Chimney Heights for Nitric Acid Production Plants, Great Britain	240
11-18	Chimney Heights for Cement Works, Great Britain	241
11-19	Basic Chimney Heights for Copper Works, Great Britain	241
12	Visible Emission Standards for Smoke from Stationary Sources, other than those from Sub- sidiary Jurisdictions of the United States	242

ļ

viii

12-1	Queensland, Australia	251
12-2	Victoria, Australia	251
12-3	India	252
13	Emission Standards for Soot in Effluent Air or Gas from Stationary Sources, other than those from Subsidiary Jurisdictions of the United States	253
14	Protection Zone Standards, other than those from Subsidiary Jurisdictions of the United States	257
14-1	Requirements in Protection Zones in Paris, France	259
14-2	Health Protection Zones for Industrial under- takings and other Sources of Environmental Pollution, USSR	260
14-3	Width of Sanitary Protection Zone Required for Coal-Fired Power Plants Burning over three Metric Tons of Fuel Per Hour, USSR	277
14-4	Area Classifications, East Germany	278
14-5	Temporary List of Protection Distances Between Emitting Industries and Residential Areas, Northrhine-Westphalia, West Germany	279
14-6	Buffer Zone Standards, Israel	280
14-7	Width of Protection Zones and Specification of Industrial Plants According to Classes in Poland	296
15	Mobile Sources, other than those from Subsidiary Jurisdictions of the United States	321
15-1	Emission Limits of the European Economic Community for Type Approval	334
15-2	Emission Limits of the European Economic Community for Production Spot Testing	334
15-3	U. S. Federal Emission Limits	335
15-4	Emission Limits of Japan	336

15-5	Smoke Standards for Diesel Vehicles, Switzerland	336
16	Recommended Measurement Methods, other than those from Subsidiary Jurisdictions of the United States	337
16-1	Requirements for Sampling Location and Site Density, West Germany	350
16-2	Basis for an Air Quality Inventory, East Germany	351
16-3	Stack Sampling Requirements, Sweden	352

1

.

No.		
10-1	Emission Standard for Solid Particulate Matter, West Germany	354
10-2	Total Dust and Fine Dust Emission Standards, General, West Germany	355
10-3	Emission Standard for New Cupolas, West Germany	356
10-4	Emission Standard for Cement Kilns, West Cermany	357
10-5	Determination of Factor A in Fly Ash Emission Limit Computation, Italy	358
10-6	Emission Standard for Asphalt Plants,West Cermany, Northrhine-Westphalia	359
10-7	Emission Standard for Fibre and Particle Board Production, West Cermany	360
11-1	Nomogram for Emission Calculations of Gaseous Pollutants and Suspended Particulates Based on Stack Height, Air Quality Load and Factor S, East Cermany	361
11-2	Nomogram for Emission Calculations of Settleable Particulate Matter Based on Stack Height, Partic- ulate Matter Fraction and Air Quality Load, East Germany	362
11-3	Stack Height Requirement Based on Factor A and Heat Input, Italy	363
11-4	Nomogram for Stack Height Calculation, West Germany	364
11-5	Heights of Single Chimneys for Cement Works, Great Britain	365
11-6	Heights Requirement for Cement Works (Multiple Chimneys), Great Britain	366
11-7	Determination of H _{ref} at Conventional Heavy Oil Fired Plants, Sweden	367
11-8	Determination of H _{ref} , Sweden	368
14-1	Calculation of Sanitary Protection Zone Measured from an Operating Petroleum Refinery, USSR	370

15-1	Test Cycle, European Economic Community	371
15-2	Test Cycle, U.S. Federal	371
15-3	Test Cycle, 10- Mode, Japan	372
15-4	Test Cycle, 11-Mode, Japan	372
16-1	Cyclone Sonde BCURA, Great Britain	373
16-2	Stack Sampling Requirements, Sweden	374
16-3	Sampling Line, Sweden	375

.

i.

xii

The work of this project was directed by a steering committee consisting of:

Rudolph P. V. Boksleitner, (EPA) Project Officer Peter Halpin (EPA) Donald Walters (EPA) Werner Martin (UNC-CH) Arthur C. Stern (UNC-CH)

We were greatly assisted in the assembly for Volume I of some of the material from outside the United States by the Division of Environmental Health of the World Health Organization, Geneva, Switzerland, which sent us material collected in behalf of the project by its representatives around the world. Also the Centre Interprofessionnel Technique d'Etudes de la Pollution Atmospherique (CITEPA) in Paris, France sent us continuously information on material included in Volume I.

The arduous task of typing the tables was performed by

Mrs. Ernestine McIver Mrs. Lou Sawyer Ms. Deborah Ginder

Dr. Yuji Horie of the University of North Carolina at Chapel Hill (UNC-CH) assisted in the preparation of some of the tables in Volume II involving United States Particulate Matter Emission Standards.

SECTION I

CONCLUSIONS

There is a need for tabulations of air quality management standards but no known effort, other than this project, to meet this need. Several national and international organizations have indicated their intention of developing and maintaining in current status a file of the world's environmental laws, regulations, standards, etc. However, as far as is known to the authors, none of these projects are operational, one reason being the enormity of the task of covering all aspects of the environment and all facets of legislation and regulation. To insure that the task gets done, it would be better to break it down into smaller and more manageable subtasks, such as the development and maintenance in current status of a file of the world's air quality management standards. This report forms a 1974 base which can be kept in current status with much less effort than would be required to redo the task from scratch if it is allowed to become obsolete.

SECTION II

RECOMMENDATIONS

It is recommended that the tables in this report be stored in a computer and that a computer program be developed to allow the file to be kept current by the addition of new standards and the up-dating and correction of those in the file. The program should allow the computer to respond to interrogation concerning individual file entries and classes of file entries, as well as to generate up-dated tables similar to those in this report and an up-dated version of this entire report. Thereafter the file and the program should be maintained on current status and its availability publicized among potential users.

Failing such computerization, it is recommended that this report be kept up to date by manual methods.

SECTION III

IN TRODUCTION

This report is as complete as possible an assembly of the <u>numerical</u> air quality management standards of the world, including the United States. The kinds of standards included are those for: air quality, concentration at point of impingement at ground level, deposited particulate matter, emergency procedure concentrations, emissions, fluorides in forage, fuel, measurement method, protection zone, soiling index, stack height and sulfation. It excludes air quality management regulations that do not have numerical limits; and, conversely, numerical limits that do not directly relate to air quality management. In the former category are open burning and fugitive dust regulations that, almost without exception, do not include numerical limits. In the latter category are numerical design standards for fuel burning equipment which relate only indirectly to air quality management.

The standards are presented in tabular form, supported, where necessary, with figures.

This report is in two volumes: Volume I, The Air Quality Management Standards of the World, Including United States Federal Standards; and Volume II, The Air Quality Management Standards of the United States.

Although the table and figure entries include no information on methods of sampling and analysis, the promulgating documents frequently cover these matters in considerable detail. The value of an air quality management standard is closely related to its method of sampling and analysis, and, in many cases would have been different had a different method of sampling and analysis been specified in the promulgating document.

In the tables, indented entries are subcategories of the last preceeding non-indented entry. In many cases, entries have been abbreviated to make them fit on one line. Such abbreviation forces the exclusion from the entry of qualifying phrases, sentances and paragraphs which appear in the promulgating document. For this reason, the user of an entry should verify that entry with the promulgating document, if decisions of importance depend upon the accuracy of the value and the applicability of the standard. Most common among the materials excluded from entries are: statements of standard temperature, pressure and dilution to which gas quantities are to be reduced and of the methods of sampling and analysis. Although in some cases a footnote has been added with respect to reduction of gases to a standard temperature, pressure or dilution or use of a standard method of sampling and analysis, the absence of such a footnote does not imply that no such reduction or method is required. The absence of such a footnote usually means that such reduction or method does not appear as an explicit part of the statement of the standard, even though it may appear elsewhere in the promulgating document.

SECTION IV

The Air Quality Management Standards of the World, Other than those of the Subsidiary Jurisdictions of the United States

This volume of the report (Tables 1 through 16) covers the air quality management standards of jurisdictions other than those in the United States. The jurisdictions from which information has been received are listed in Table 1. Where a country is absent from Table 1, it is because we tried to obtain information on its air quality management standards but were unsuccessful. The depth of our information varies considerably among the jurisdictions listed in Table 1. For some jurisdictions we have on file copies of pertinant laws and regulations: in other cases abstracts of these laws and regulations; in still other cases, only excepted data on the standards contained in them, and finally, for some jurisdictions we have word that no air quality management standards exist. Our experience with standards from states, counties and cities of the United States has taught us that organizations at higher jurisdictional levels do not have adequate compilations of the standards of lower jurisdictional levels. Since, outside the United States, we have relied upon organizations at higher jurisdictional levels for our data. it is highly probably that we have missed standards promulgated by many of the lesser jurisdictions of the world.

In general our requests for information have been directed to the national organization in each country responsible for air pollution matters, noting our interest in standards at the national, provincial and municipal level. This has been supplemented by similar requests to knowledgeable individuals and organizations in many countries.

The tables in this part of the report were compiled during the summer of 1974 and incorporated the latest material available at the time of compilation. Much of this material was received during 1973, so that the possibility exists that some of the standards listed may have changed between the time of their receiptand their compilation. A special case in point are the 1974 standards of the Federal Republic of Germany which were not formally promulgated until after the compilation of these tables. Those standards for this country listed as Provisional are now official and those not listed as Provisional have now been superceded by those listed as Provisional. Word of these changes were received too late to revise the tables involved.

A. The Air Quality Standards of the World

The air quality standards of the countries of the world other than the United States are presented in six tables (Tables 2 through 7). The principal table (Table 2) covers the limits on specific pollutants in the ambient air. Another table (Table 3) is a table of quasi-emission standards i.e. the limits on specific pollutants in the ambient air at ground level required by national or provincial regulation to be used in diffusion computations to determine limits of emission from specific sources. In this report, standards of this type are called Point of Impingement at Ground Level Standards. Standards for Fluorides which are based upon the fluoride content of vegetation, especially forage, are in Table 4. Table 5 covers standards for particulate matter deposited by sedimentation, rainout or washout as fallout, dustfall or sootfall onto or into exposed receptables. Table 6 covers the standards for the reflectance or transmittance of light by filters through which ambient air has been drawn for a prescribed period of time i.e. soiling index; and for the rate of conversion of lead oxide to lead sulfate by exposure of candles or plates covered with a paste of the material to the ambient air for a prescribed period of time i.e. sulfation. The alert, warning and emergency levels promulgated by jurisdictions outside the United States are in Table 7.

B. The Emission Standards of the World

The emission standards of the countries of the world other than the United States are presented in nine principal tables and several subsidiary tables and figures. One principal table (Table 8) covers limits on the emission of specific substances other than total particulate matter. A closely related table (Table 9) covers standards for some of these same specific substances in fuels. The other principal table (Table 10) covers limits on the emission of total particulate matter. The remaining tables of standards from jurisdictions outside the United States are those for stack height (Table 11); Visible emissions (Table 12); Soot emission (Table 13); Protection zones (Table 14); Mobile Sources (Table 15); and Measurement methods (Table 16).

The subsidiary tables and figures, e.g. Table 8-1, are not intended to be independent. They are extensions of the main tables, e.g. Table 8, are accessed through the footnotes to the main tables. It should be noted that Table 3, listed under the Air Quality Standards of the World, is a quasi-emission standard in that it sets forth limits on specific pollutants in the ambient air at ground level required by national or provincial regulation to be used in diffusion computations to determine the limits of emission from specific sources. In this report, standards of this type are called Point of Impingement at Ground Level Standards.

SECTION V

ANALYSIS

LIST OF COUNTRIES FROM WHICH INFORMATION WAS OBTAINED

Table 1 shows that information was obtained from 85 foreign countries and Guam; and, within those countries from 27 of their states, provinces and cities. Of these, 44 countries and 2 provinces reported that they had no air quality management standards. Thus the tables in this volume contain the air quality management standard of 43 countries (since they also include the Federal standards of the United States, which also appear again in Volume II), and of 25 states, provinces and cities. The standards of the states, counties and cities of the United States appear in Volume II.

AIR QUALITY STANDARDS (TABLES 2 through 7)

Table 2 lists ambient air quality standards for 142 substances. Their frequency of listing varies from 25 substances listed by only one county, to two substances, suspended particulate matter and sulfur dioxide listed respectively by 20 and 25 countries. Except for these substances, the listings for other substances are predominantly from Bulgaria, Czechoslovakia, East Germany, Hungary, Israel, Poland, Romania, USSR, West Germany and Yugoslavia. The equivalent United States table in Volume II is Table 17.

Only 5 foreign countries explicitly employ Point of Impingement at Ground Level Standards (Table 3). They are Canada, France, Italy, Philippines and Yugoslavia. A number of other countries with ambient air quality standards implicitly employ them in stack height and emission limitation computation. The equivalent table for the United States is Table 18 in Volume II.

Fluoride in Forage standards (Table 4) are found, among foreign countries, only in Canada. Fluoride in Forage standards for the United States are in Table 19 of Volume II.

Nine foreign countries, Argentina, Canada, Colombia, Finland, Hungary, Poland, Romania, Spain and West Germany, employ Deposited Particulate Matter Standards (Table 5); whereas only Canada and Israel use Soiling Index and Sulfation Standards (Table 6). Standards of these types for the United States are listed in Tables 20 and 21, respectively of Volume II.

Five countries, Argentina, Canada, Israel, Japan and West Germany, have promulgated Emergency Procedure Concentration Levels (Table 7).

These involve Carbon Monoxide, Nitrogen Oxides, Oxidants, Sulfur Dioxide and Suspended Particulate Matter; and three emergency concentration levels: alert, alarm and emergency. The equivalent Table for the United States in Volume II is Table 27.

There are no tables in this Volume equivalent to Table 23 (Odor Standards of the United States) and Table 24 (Visibility Standards of the United States). Numerical standards of these two kinds were not found among the air quality management standards of foreign countries.

EMISSION STANDARDS (TABLES 8 through 16)

Table 8 lists emission standards for 42 substances, used by 17 countries. Of these countries, four, Czechoslovakia, East Germany, West Germany and Yugoslavia, are among those previously noted as being predominantly represented among the countries promulgating air quality standards. The majority of the emission standards in this table are from countries that promulgate few or no air quality standards-Australia, Canada, Creat Britain, Ireland, New Zealand and Singapore. The other foreign countries represented in the table are Brazil, Italy, Japan, Spain, Sweden and Switzerland. The frequency of listing of substances varies from 18 substances listed by only one country to one substance, sulfur oxides (including SO₂), whose emission are regulated by emission standard in 12 countries.

Table 9 lists standards for sulfur, lead and volatile matter content of liquid and solid fuels in 13 foreign countries, of which 10 are in Western Europe; the others being Canada, Israel and Japan. Table 25 in Volume II covers United States standards of the same types as are included here in Tables 8 and 9.

Emission Standards for Particulate Matter (Table 10) are mainly from Australia, Canada, France, Great Britain, Japan, Sweden and West Germany. In addition to combustion of fuels and refuse, the principal sources for which there are standards are asphalt, carbon black, cement, coal and pulp manufacture, and a variety of ferrous and non-ferrous metallurgical operations. The equivalent United States (Volume II) table is Table 26.

Stack height standards (Table 11) are listed for 15 countries. For seven of these, Czechoslovakia, East Germany, France, Italy, Japan, Sweden and USSR, computational procedures are given. United States stack height standards are in Table 27 of Volume 11.

Table 12 gives Visible Emission Standards for 18 foreign countries and Guam, all based upon emission opacity expressed in Ringelmann number. The equivalent Volume I table for United States Visible Emission Standards is Table 28. Table 13 is quite similar to Table 12 in that it lists Emission Standards for Soot, based mainly upon Bacharach Shade Number. This type of standard is not used in the United States as an air quality management standard but is to be found in the 9 foreign countries listed. Its application is primarily the limitation of smoke from oil burners.

Nine countries have promulgated Protection Zone Standards (Table 14), some of which are quite extensive. Table 14-2 for USSR runs for 18 pages; that for Israel (Table 14-6) for 16 pages; and that for Poland (Table 14-7) for 25 pages. Although air quality management is not the only determinant for the establishment of the width of a sanitary protection zone, it is one of the most important determinants along with noise, glare, vibration, fire hazard and explosion hazard.

Since no United States jurisdictions have promulgated Soot or Sanitary Protection Zone Standards as air quality management standards, there are no tables in Volume II equivalent to Tables 13 and 14.

The exhaust gases for which Emissions Standards for Mobile Sources (Table 15) have been promulgated are Carbon Monoxide, Hydrocarbons and Nitrogen Oxides. Other than the United States, the countries which have adopted such standards are Australia, Canada, Japan, Spain, and Sweden. The European Economic Community and the Economic Commission for Europe have also done so. A more diverse group of countries, 13 in number, have adopted vehicular smoke emission standards. The equivalent tables in Volume II are Tables 28 and 29.

The final table in Volume I is that for Recommended Measurement Methods (Table 16). Methods from 14 countries, for 16 substances, are listed. The equivalent Volume II Table is Table 30.

SECTION VI

APPENDICES

- A. Tables Air Quality Management Standards of the World (Tables 1 through 7)
- B. Tables and Figures Emission Standards of the World (Tables 8 through 16 and Figures 10-1 through 15-4)
- C. List of Information Sources

SECTION VI

APPENDIX A: Tables - Air Quality Management Standards of the World (Tables 1 through 7)

TABLE 1

I

LIST OF COUNTRIES FROM WHICH INFORMATION WAS OBTAINED

Afghanistan*	Colombia	Indonesia*
Argentina	Comoro Islands*	Iran*
Buenos Aires	Costa Rica*	Iraq
Australia	Czechoslovakia	Ireland
New South Wales Queensland	Dahomey*	Israel
South Australia Victoria	Democratic Rep. of Germany	Italy
Western Australia	Denmark	Ivory Coast*
Austria	Ecuador*	Japan
Bangla Desh*	El Salvador*	Tokyo
Belgium	Ethiopia*	Kenya *
Bolivia*	Federal Rep. of Germany	Korea*
Brazil	Northrhine Westphalia	Laos*
Guanabara S ao Paulo	Hessen	Lebanon*
Santo Andre Sao Bernardo	Fiji* Finland	Liberia*
Do Campo		Libya*
Bulgaria	France	Luxembourg*
Burma* ·	Gambia*	Madagascar*
Canada	Ghana*	Malawi*
Alberta British Columbia	Great Britain Greece	Malaysia*
Manitoba New Brunsvick	Guam	Malta
New Foundland Ontario	Honduras*	Mauritius*
Prince Edwards Is.* Quebec*		Mexico
Montreal Saskatchewan	Hong Kong	Morocco*
Chile*	Hungary	Netherlands
	India	Nepal*

Table 1 (Continued)

LIST OF COUNTRIES FROM WHICH INFORMATION WAS OBTAINED

New Guinea*	Rumania	Tunisia
New Zealand	Singapore	Turkey
Nigeri a*	South Africa	Uganda*
Norway	Spain	USSR
Pakistan*	Madrid	Venezuela*
Panama*	Sweden	Yugoslavia
Peru*	Switzerland	Zagreb
Phillippines	Thailand*	Sarajevo Serbia
Poland	Tanzania*	Zair*
Portugal*	Togo*	Zambia*

* No Air Quality Management Standards

	Locati	n]	Long Tern	16 1	SI	nort Ter	16 m	<u></u>
Substance	Country	City of Province	mg/m ³		Averaging time	mg/m ³		Averaging time	Foot- notes
ACETALDEHYDE	Bulgaria			-		0.01	0.005	20 min	
Acetaldehyde	East Germany		0.01	0.005	24 hr	0.03	0.016	30 min	3,4
Acetaldehyde	USSR		0.01	0.005	24 hr	0.01	0.005	30 min	6
Acetaldehyde	West Germany	(VDI 2306)	4.0	2.0	30 min	12.0	6.0	30 min	2,7,9
Acetaldehyde	Yugoslavia		-		-	0.01	0.005	30 min	
ACETIC ACID	Bulgaria		-	-	-	0.2	0.08	20 min	
Acetic Acid	East Germany		0.06	0.024	24 hr	0.2	0.08	30 min	3,4
Acetic Acid	USSR		0.06	0.024	24 hr	0.2	0.08	30 min	6
Acetic Acid	West Germany	(VDI 2306)	5.0	2.0	30 min	<u>15.0</u>	6.0	30 min	2,7,9
ACETIC ANHYDRIDE	Bulgaria		-	-	-	<u>0.1</u>	0.025	20 min	
Acetic Anhydride	East Germany		0.03	0.0075	24 hr	<u>0.1</u>	0.025	30 min	3,4
Acetic Anhydride	USSR		0.03	0.0075	24 hr	<u>0.1</u>	0.025	30 min	6
ACETONE	Bulgaria		0.35	0.15	24 hr	0.35	0.15	20 min	
Acetone	East Germany		0.35	0.15	24 hr	1.0	0.42	30 min	3,4
Acetone	Hungary		12.0	5.0	24 hr	180.0	75.0	30 min	

Table 2. AMBIENT AIR QUALITY STANDARDS OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES¹

	Loca	tion		Long Ter	16		Short Te	16	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes
Acetone	Hungary		0.35	0.15	24 hr	0.35	0.15	30 min	53
Acetone	Israel		7.2	3.0	24 hr	24.0	<u>10.0</u>	30 min	10
Acetone	Romania		2.0	0.83	24 hr	5.0	2.1	30 min	
Acetone	USSR		0.35	0.15	24 hr	0.35	0.15	30 min	6
Acetone	West Germany	y (VDI 2306)	120.0	50.0	30 min	360.0	150.0	30 min	2,7,9
Acetone	Yugoslavia		0.35	0.15	24 hr	0.35	0.15	30 min	
ACETOPHENONE	Bulgaria		0.35	0.07	24 hr	0.35	0.07	20 min	
Acetophenone	East Germany	7	0.003	0.0006	24 hr	<u>0.01</u>	0.0006	30 min	3,4
Acetophenone	USSR		0.003	0.0006	24 hr	0.003	0.0006	30 min	6
Acetophenone	Yugoslavia		0.003	0.0006	24 hr	0.003	0.0006	30 min	
ACROLEIN	Bulgaria		<u>0.1</u>	0.04	24 hr	<u>0.3</u>	0.12	20 m in	
Acrolein	Czechoslovak	ia	<u>0.1</u>	0.04	24 hr	<u>0.3</u>	0.12	30 min	
crolein	East Germany	,	0.01	0.004	24 hr	0.02	0.008	30 m in	3,4
crolein	Hungary		<u>0.1</u>	0.04	24 hr	0.3	0.12	30 min	

_

	Location		Long Te	rm16		Short Te	rm16	
Substance	City or Country Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes
Acrolein	Hungary	<u>0.1</u>	0.04	24 hr	0.3	0.12	30 min	53
Acrolein	Israel	0.1	0.04	24 hr	0.25	0.1	30 min	10
Acrolein	Romania	<u>0.1</u>	0.04	24 hr	<u>0.3</u>	0.12	30 min	
Acrolein	USSR	0.03	0.12	24 hr	0.03	0.012	30 min	6
Acrolein	West Germany (VDI 2306)	0.01	0.005	30 min	<u>0.025</u>	0.01	30 min	2,7,9
Acrolein	Yugoslavia	<u>0.1</u>	0.04	24 hr	<u>0.3</u>	0.12	30 min	
AMMONIA	Bulgaria	0.2	0.28	24 hr	0.2	0.28	20 min	
Ammonia	Czechoslovakia	<u>0.1</u>	0.14	24 hr	<u>0.3</u>	0.43	30 min	
Ammonia	East Germany	0.1	0.14	24 hr	<u>0.3</u>	0.43	30 min	3,4
Ammonia	Hungary	0.5	0.71	24 hr	<u>1.5</u>	2.14	30 min	
Ammonia	Hungary	0.2	0.28	24 hr	0.2	0.28	30 min	53
Ammonia	Romania	<u>0.1</u>	0.14	24 hr	0.3	0.43	30 min	
Ammonia	USSR	0.2	0.28	24 hr	<u>0.2</u>	0.28	30 min	6
Ammonia	Yugoslavia	0.2	0.28	24 hr	0.2	0.28	30 min	
AMYL ACETATE	Bulgaria	<u>0.1</u>	0.019	24 hr	<u>0.1</u>	0.019	20 min	

_

- <u></u>	Location		Long Te	rm.16		Short Te	rm16		
Substance	City or Country Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes	
Amyl Acetate	East Germany	<u>0.1</u>	0.019	24 hr	<u>0.3</u>	0.057	30 min	3,4	
Amyl Acetate	Hungary	30.0	5.7	24 hr	90.0	17.1	30 min		
Amyl Acetate	Hungary	<u>0.1</u>	0.019	24 hr	<u>0.1</u>	0.019	30 min	53	
Amyl Acetate	Israel	5.25	1.0	24 h r	15.75	3.0	30 min	10	
Amyl Acetate	USSR	<u>0.1</u>	0.019	24 hr	<u>0.1</u>	0.019	30 min	6	
Amyl Acetate	West Germany (VDI 2306)	30.0	5.0	30 min	<u>90.0</u>	15.0	30 min	2,7,9	
Amyl Acetate	Yugoslavia	0.1	0.019	24 hr	<u>0.1</u>	0.019	30 min		
AMYL ALCOHOL	West Germany (VDI 2306)	20.0	5.0	30 min	60.0	15.0	30 min	2,7,9	
AMYLENE	Bulgaria	<u>1.5</u>	0.5	24 hr	<u>1.5</u>	0.5	20 min		
Amylene	East Germany	<u>1.0</u>	0.33	24 hr	<u>1.5</u>	0.5	30 min	3,4	
Amylene	USSR	1.5	0.5	24 hr	<u>1.5</u>	0.5	30 min	6	
Amylene	Yugoslavia	1.5	0.5	24 hr	<u>1.5</u>	0.5	30 min		
ANILINE	Bulgaria	0.03	0.008	24 hr	0.05	0.013	20 min		
Aniline	Czechoslovakia	0.03	0.008	24 hr	0.05	0.013	3 0 min		

	Locat			Long Ter			Short Ter	.m16		
Substance	Country	City or Province	mg/m ³	ppm	veraging time	mg/m ³	ppm	veraging time	Foot- notes	
Aniline	East Germany	7	0.03	0.008	24 hr	0.05	0.013	30 min	3,4	
Aniline	Romania		<u>0.0</u> 2	0,005	24 hr	0.05	0.013	30 min		
Aniline	USSR		0.03	0.008	24 hr	0.05	0.013	30 min	6	
Aniline	West Germany	7 (VDI 2306)	0.8	0.2	30 min	2.4	0.6	30 min	2,7,9	
Aniline	Yugoslavia		0.03	0.008	24 hr	0.05	0.013	30 min		
ARSENIC (as As)	Bulgaria		0.003		24 hr	-	-	-	12	
Arsenic (as As)	Czechosloval	cia	0.003		24 hr				12	
Arsenic (as As)	East Germany	y	0.003		24 hr				3,4	
A r senic (as As)	Israel		0.006		24 hr				10,12	
Arsenic (as As)	Romania		0.01		24 hr	0.03		30 min		
Arsenic (as As)	Poland		0.003		24 hr	0.01		20 min	15	
Arsenic (as As)	Poland		0.002		24 hr	0.005		20 min	29	
Arsenic (as As)	USSR		0.003		24 hr				6,12	
Arsenic (as AsH ₃)	Yugoslavia		0.003		24 hr					
BENZENE	Czechoslova	kia	0.8	0.25	24 hr	2.4	0.75	30 min		

1

	Locat	ion		Long T	erm ¹⁶		Short T	16 erm	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Benzene	East Germany		0.8	0.25	24 hr	<u>1.5</u>	0.46	30 min	3,4
Benzene	Hungary		<u>3.0</u>	0.94	24 hr	<u>10.0</u>	3.12	30 min	
Benzene	Hungary		0.8	0.25	24 hr	<u>1.5</u>	0.46	30 min	53
Benzene	Israel		1.6	0.5	24 hr	1.6	<u>1.5</u>	30 min	10
Benzene	Poland		0.3		24 hr	<u>1.0</u>	0.31	20 min	15
Benzene	Poland		<u>0.1</u>		24 hr	0.2	0.06	20 min	2 9
Benzene	Romania		0.8	0.25	24 hr	2.4	0.75	30 min	
Benzene	West Germany	(VDI 2306)	<u>3.0</u>	0.94	30 min	10.0	3.12	30 min	2,7,9
Benzene (high alkyl)	West Germany	(VDI 2306)	<u>5.0</u>		30 min	15.0		30 min	2,7,9
Benzene	Yugoslavia		<u>0.8</u>	0.25	24 hr	<u>1.5</u>	0.46	30 min	
BERYLLIUM	Canada	Ontario	0.00001	-	24 hr	-	-	-	11
Beryllium	Israel		0.00001	-	24 hr	-	-	-	10
Beryllium	Yugoslavia		0.00001	-	24 hr	-	-	-	
BENZINE (Low sulfur as C)	Bulgaria		1.5	0.38	24 hr	<u>5.0</u>	1.25	20 min	

	Location		Long Te	rm 16		Short Te	rm16	
Substance	City Country Prov	. 1	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Benzine (from slate as C)	Bulgaria	<u>0.05</u>	0.012	24 hr	<u>0.05</u>	0.012	20 min	
Benzine	East Germany	0.03	0.007	24 hr	0.05	0.012	30 min	3,4
Benzine (crude oil low sulfur)	East Germany	1.5	0.38	24 hr	5.0	1.25	30 min	3,4
Benzine (oil shale)	East Germany	0.03	0.007	24 hr	0.05	0.012	30 min	3,4
Benzine	Hungary	80.0	20.0	24 hr	240.0	60.0	30 min	
Benzine	Hungary	<u>1.5</u>	0.38	24 hr	5.0	1.25	30 min	53
Benzine	Israel	3.3	0.8	24 hr	10.0	2.4	30 min	10,14
Benzine	Poland	0.75	0.19	24 hr	2.5	0.63	20 min	14,29
Benzine	Romania	2.0	0.48	24 hr	6.0	1.45	30 min	
Benzin e (crude oil)	USSR	<u>1.5</u>	0.38	24 hr	5.0	1.25	30 min	6,14
Benzine (from shale as C)	USSR	0.05	0.012	24 hr	0.05	0.012	20 min	6
Benzine	West Germany (VDI 23	06) <u>80.0</u>	20.0	30 min	240.0	60.0	30 min	2,7,9 14

	Location		Long Te	erm ¹⁶		Short T	erm ¹⁶	
Substance	City or Country Province	mg/m ³		Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Benzine (as C)	Yugoslavia	<u>1.5</u>	0.38	24 hr	5.0	1.25	30 min	
Benzine (low sulfur)	Yugoslavia	1.5	0.38	24 hr	5.0	1.25	30 min	
BUTANE	Bulgaria	-	-	-	200.0	<u>85.0</u>	20 min	
Butane	East Germany	50.0	21.0	24 hr	200.0	85.0	30 min	3,4
Butane	USSR	-	-	-	200.0	85.0	30 min	6
Butane	Yugoslavia	-	-	-	200.0	85.0	30 min	
BUTANOL	Bulgaria		-	-	0.3	0.1	20 min	
Butano1	East Germany	<u>0.1</u>	0.03	24 hr	0.3	0.1	30 min	3,4
Butanol	USSR	-	-	-	0.1	0.03	30 min	6
Butanol	West Germany (VDI 2306)	15.0	5.0	30 min	45.0	15.0	30 min	2,7,9
Butanol	Yugoslavia	-	-	-	0.3	0.1	30 min	
BUTYL ACETATE (-n)	Bulgaria	0.1	0.021	24 hr	<u>0.1</u>	0.021	20 min	
Butyl Acetate (-n)	East Germany	0.1	0.021	24 hr	0.3	0.063	30 min	3,4
Butyl Acetate (-n)	Israel	4.7	<u>1.0</u>	24 hr	14.0	<u>3.0</u>	3 0 min	10

	Locat	ion		Long Te	rm16		Short Te	rm 16	
Substance	Country	City or Province	mg/m ³		Averaging time	mg/m ³		Averaging time	Foot- notes
Butyl Acetate (-n)	USSR		0.1	0.021	24 hr	<u>0.1</u>	0.021	30 min	6
Butyl Acetate (-n)	West Germany	(VDI 2306)	25.0	<u>5.0</u>	30 min	75.0	<u>15.0</u>	30 min	2,7,9
Butyl Acetate (-n)	Yugoslavia		<u>0.1</u>	0.021	24 hr	<u>0.1</u>	0.021	30 min	
BUTYLENE	Bulgaria		<u>3.0</u>	1.2	24 hr	<u>3.0</u>	1.2	20 min	
Butylene	East Germany		2.0	0.8	24 hr	<u>3.0</u>	1.2	30 min	3,4
Butylene	USSR		<u>3.0</u>	1.2	24 hr	3.0	1.2	30 min	6
Butylene	Yugoslavia		3.0	1.2	24 hr	3.0	1.2	30 min	
BUTYRIC ACID	Bulgaria		0.01	0.003	24 hr	0.015	0.004	20 min	
Butyric Acid	USSR		0.01	0.003	24 hr	0.015	0.004	20 min	6
Butyric Acid	Yugoslavia		0.01	0.002	24 hr	0.015	0.003	30 min	
CADMIUM	Yugoslavia		0.003	-	24 hr	0.01	-	30 min	
CALCIUM OXIDE(lime)	Canada	Newfoundland	0.01	-	24 hr	-	-	-	
Calcium Oxide(lime)	Canada	Ontario	0.01	-	24 hr	-	-	-	11
CAPROLACTAM	Bulgaria		0.06	0.013	24 hr	0.06	0.013	20 min	
Caprolactam	East Germany		0.06	0.013	24 hr	0.1	0.022	30 min	3,4

	Locati	on		Long Ter	. _m 16		Short Te	.m16	
Substance	Country	City or Province	mg/m ³	A ppm	veraging time	mg/m ³	ppm	veraging time	Foot- notes
Caprolactam (fumes)	USSR		0.06	0.013	24 hr	0.06	0.013	30 min	6
Caprolactam	Yugoslavia		0.06	0.013	24 hr	0.06	0.013	30 min	
CAPRYLIC ACID	Bulgaría		0.005	0.001	24 hr.	0.01	0.002	20 min	
Caprylic Acid	East Germany		0.005	0.001	24 hr	<u>0.01</u>	0.002	30 min	3,4
CAPROIC ACID	USSR		0.005	0.001	24 hr	0.01	0.002	30 min	6
Caproic Acid	Yugoslavia		0.005	0.001	24 hr	<u>0.01</u>	0.002	30 min	
CARBON DISULFIDE	Bulgaria		<u>0.01</u>	0.0033	24 hr	<u>C.03</u>	0.01	20 min	
Carbon Disulfide	Czechoslovaki	a	<u>0.01</u>	0.0033	24 hr	0.03	0.01	30 min	
Carbon Disulfide	East Germany		0.003	0.001	24 hr	0.03	0.001	30 min	3,4
Carbon Disulfide	Israel		0.15	0.05	24 hr	0.45	<u>0.15</u>	30 min	10
Carbon Disulfide	Poland		0.015	0.005	24 hr	0.045	0.015	20 min	15
Carbon Disulfide	Romania		0.01	0.0033	24 hr	0.03	0.01	30 min	
Carbon Disulfide	USSR		0.005	0.0016	24 hr	0.03	0.01	30 min	6
Carbon Disulfide	Yugoslavia		0.01	0.0033	24 hr	0.03	0.01	30 min	

	Loc	cation		Long T	erm ¹⁶		Short I	lerm ¹⁶	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
CARBON MONOXIDE	Argentina		11.5	10.0	8 hr	57.7	50.0	1 hr	
Carbon Monoxide	Bulgaria		<u>1.0</u>	0.9	24 hr	<u>3.0</u>	2.6	20 min	
Carbon Monoxide	Canada		<u>6.0</u>	5.0	8 hr	15.0	<u>13.0</u>	1 hr	11,50
Carbon Monoxide	Canada		15.0	<u>13.0</u>	8 hr	35.0	30.0	1 hr	49,50
Carbon Monoxide	Canada	Alberta	6.0	5.4	8 hr	15.0	13.0	l hr	
Carbon Monoxide	Canada	Manitoba	15.0	<u>13.0</u>	8 hr	35.0	30.0	1 hr	49
Carbon Monoxide	Canada	Manitoba	6.0	5.0	8 hr	15.0	<u>13.0</u>	1 hr	11
Carbon Monoxide	Canada	Newfoundland	9.2	8.0	24 hr	35.0	<u>30.0</u>	1 hr	
Carbon Monoxide	Canada	Newfoundland	15.0	13.0	8 hr	-	-	-	
Carbon Monoxide	Canada	Ontario	9.2	8.0	24 hr	-	-	-	11
Carbon Monoxide	Canada	Ontario	17.3	<u>15.0</u>	8 hr	46.1	40.0	1 hr	11
Carbon Monoxide	Czechoslov	Czechoslovakia		0.9	24 hr	6.0	5.4	30 min	
Carbon Monoxide	East Germa	ny	<u>1.0</u>	0.9	24 hr	3.0	2.7	30 min	3,4
Carbon Monoxide	Finland		10.0	<u>9.0</u>	8 hr	40.0	35.0	1 hr	17

	Locati	.on		Long To	erm ¹⁶		Short T	erm 16	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Carbon Monoxide	Hungary		2.0	1.7	24 hr	6.0	5.2	30 min	
Carbon Monoxide	Hungary		1.0	0.9	24 hr	3.0	2.6	30 min	53
Carbon Monoxide	Israel		11.5	<u>10.0</u>	8 hr	34.6	<u>30.0</u>	30 min	51
Carbon Monoxide	Italy		22.5	20.0	8 hr	57.2	<u>50.0</u>	30 min	19
Carbon Monoxide	Japan		11.5	<u>10.0</u>	24 hr	-	-	-	41
Carbon Monoxide	Japan		23.0	20.0	8 hr	-	-	-	41
Carbon Monoxide	Poland		0.5	0.45	24 hr	3.0	2.7	20 min	15
Carbon Monoxide	Romania		2.0	1.7	24 hr	6.0	5.2	30 min	
Carbon Monoxide	Spain		15.0	13.0	8 hr	45.0	39.0	30 min	18
Carbon Monoxide	USA		10.0	8.6	8 hr	40.0	34.6	l hr	13
Carbon Monoxide	USSR		1.0	0.9	24 hr	<u>3.0</u>	2.7	30 min	6
Carbon Monoxide	West Germany		10.0	8.6	30 min	40.0	34.6	30 min	2,54
Carbon Monoxide	Yugoslavia		<u>1.0</u>	0.9	24 hr	<u>3.0</u>	2.6	30 min	
CARBON TETRACHLORIDE	East Germany		2.0	0.33	24 hr	4.0	0.66	30 min	3,4
Carbon Tetrachloride	Romania		1.0	0.15	24 hr	3.0	0.5	30 min	

_____ -

	Locat	ion		Long Te	rm 16		Short Te:	rm 16		
Substance	Country	City or Province	mg/m ³		Averaging time	mg/m ³		Averaging time	Foot- notes	
Carbon Tetrachloride	USSR		2.0	0.3	24 hr	4.0	0.7	30 min	6	
Carbon Tetrachloride	West Germany	(VDI 2306)	3.0	0.5	30 min	<u>10.0</u>	1.5	30 min	2,7,9	
CHLORINE	Bulgaria		0.03	0.01	24 hr	0.1	0.033	20 min		
Chlorine	Canada	Saskatchewan	0.03	0.01	24 hr	<u>0.3</u>	0.1	1 hr	48	
Chlorine	Czechoslovak	ia	0.03	0.01	24 hr	<u>0.1</u>	0.033	30 min		
Chlorine	East Germany	7	0.03	0.01	24 hr	<u>0.1</u>	0.033	30 min	3,4	
Chlorine	Hungary		<u>0.3</u>	0.1	24 hr	<u>0.6</u>	0.2	30 min		
Chlorine	Hungary		0.03	0.01	24 hr	0.1	0.033	30 min	53	
Chlorine	Israel		0.1	0.03	24 hr	0.3	0.1	30 min	10	
Chlorine	Italy		-	-	-	0 .58	0.2	30 min	19	
Chlorine	Poland		<u>0.03</u>	0.01	24 hr	<u>0.1</u>	0.033	20 min	15	
Chlorine	Poland		0.01	0.033	24 hr	0.03	0.01	20 min	29	
Chlorine	Romania		<u>0.1</u>	0.033	24 hr	0.3	0.1	30 min		
Chlorine	Spain		0.05	0.016	24 hr	0.3	0.1	30 min	18	
Chlorine	USSR		0.03	0.01	24 hr	<u>0.1</u>	0.033	30 min	6	

	Location		Long Tei	rm16		Short Tei	_m 16		
Substance	City or Country Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes	
Chlorine	West Germany (VDI 2106)	0.3	<u>0.1</u>	30 min	6.0	2.1	30 min		
Chlorine	West Germany	0.3	0.1	30 min	0.6	0.2	30 min	20	
Chlorine	Yugoslavia	0.03	0.01	24 hr	<u>0.1</u>	0.033	30 min		
CHLOROANILINE (-m)	East Germany	0.01	0.003	24 hr	0.03	0.01	30 min	3,4	
Chloroaniline (-m)	USSR	0.01	0. 002	24 hr	-	-	-	6	
Chloroaniline (-m)	Yugoslavia	-	-	-	0.04	0.013	30 min		
Chloroaniline (-p)	Bulgaria	-	-	-	0.04	0.008	20 min		
Chloroaniline (-p)	East Germany	0.01	0.002	24 hr	0.04	0.008	30 min	3,4	
Chloroaniline (~p)	USSR	0.01	0.002	24 hr	0.04	0.008	30 min	1,6	
CHLOROBENZENE	Bulgaria	0.1	0.02	24 hr	0.1	0.02	20 min		
Chlorobenzene	East Germany	0.1	0.02	24 hr	<u>0.3</u>	0.06	30 min	3,4	
Chlorobenzene	USSR	0.1	0.02	24 hr	<u>0.1</u>	0.02	30 min	6	
Chlorobenzene	West Germany (VDI 2306)	5.0	1.0	30 min	15.0	<u>3.0</u>	30 min	2,7,9	
Chlorobenzene	Yugoslavia	0.1	0.02	24 hr	<u>0.1</u>	0.02	30 min		

	Locati			Long Ter	-m16		Short Te	_{rm} 16		
Substance	Country	City or Province	mg/m ³	A ppm	veraging time	mg/m ³	ppm	veraging time	Foot- note:	
CHLOROFORM (Trichloro- methane)	West Germany	(VDI 2306)	<u>10.0</u>	2.0	30 min	30.0	<u>6.0</u>	30 min	2,7,9	
CHLOROPHENYL ISOCYANATE (-m)	Bulgaria		0.005	-	24 hr	0.005	-	20 min		
Chlorophenyl Isocyanate (-m)	East Germany		0.003	-	24 hr	0.005	-	30 min	3,4	
Chlorophenyl Isocyanate (-m)	USSR		0.005	-	24 hr	0.005	-	30 min	6	
Chlorophenyl Isocyanate (-m)	Yugoslavia		0.005	-	24 hr	0.005	-	30 min		
Chlorophenyl Isocyanate (-p)	Bulgaria		0.0015	0.0002	24 hr	0.0015	0.0002	20 min		
Chlorophenyl Isocyanate (-p)	East Germany		0.0015	0.0002	24 hr	0.0015	0.0002	30 min	3,4	
Chlorophenyl Isocyanate (-p)	USSR		0.0015	0.0002	24 hr	0.0015	0.0002	30 min	6	
Chlorophenyl Isocyanate (-p)	Yugoslavia		0.0015	0.0002	24 hr	0.0015	0.0002	30 min		

	Locati	on		Long Te	rm 16	2	Short Ter	-m 16	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	A ppm	veraging time	Foot- notes
CHLOROPRENE	Bulgaria		0.1	0.028	24 hr	0.1	0.028	20 min	
Chloroprene	East Germany		0.05	0.014	24 hr	<u>0.1</u>	0.028	30 min	3,4
Chloroprene	Israel		0.14	0.04	24 hr	0.5	0.14	30 min	10
Chloroprene	USSR		<u>0.1</u>	0.028	24 hr	<u>0.1</u>	0.028	30 min	6
Chloroprene	Yugoslavia		<u>0.1</u>	0.028	24 hr	<u>0.1</u>	0.028	30 min	
CHLOROTETRACYCLIN (Aureomycin)	East Germany		0.03	-	24 hr	<u>0.05</u>	-	30 min	3,4
Chlorotetracyclin	USSR		0.05		24 hr	0.05	-	30 min	6,46
CHROMIUM (asCr ₆)	Romania		0.0015		24 hr	0.0015		30 min	
CHROMIUM-HEXAVALENT (as Cr0 ₃)	East Germany		0.001		24 h r	<u>0.0015</u>		30 min	3,4
Chromium-Hexavalent (as CrO ₃)	Israel		0.0015		24 hr	-	-	-	10
Chromium-Hexavalent (as Cr0 ₃)	USSR		0.0015		24 hr	<u>0.0015</u>		20 min	6
Chromium-Hexavalent (as CrO ₃)	Yugoslavia		0.0015		24 hr	<u>0.0015</u>		30 min	

	Locatio	on		Long Te	rm 16		Short Ter	rm16	
Substance	Country	City or Province	mg/m ³		Averaging time	mg/m ³		Averaging time	Foot- notes
CRESOL (All isomers)	West Germany	(VDI 2306)	0.2	0.05	30 min	0.6	0.15	30 min	2,7,9
CYCLOHEXANE	East Germany		1.0	0.3	24 hr	<u>1.4</u>	0.4	30 min	3,4
Cyclohexane	USSR		1.4	0.4	24 hr	<u>1.4</u>	0.4	30 min	1,6
CYCLOHEXANOL	Bulgaria		0.06	0.015	24 hr	0.06	0.015	20 min	
Cyclohexanol	East Germany		0.06	0.015	24 hr	0.15	0.037	30 min	3,4
Cyclohexanol	USSR		0.06	0.015	24 hr	0.06	0.015	30 min	6
Cyclohexanol	Yugoslavia		0.06	0.015	24 hr	0.06	0.015	30 min	
CYCLOHEXANONE	Bulgaria		0.04	0.008	24 hr	0.04	0.008	20 min	
Cyclohexanone	East Germany		0.04	0.01	24 hr	0.1	0.02	30 min	3,4
Cyclohexanone	Hungary		10.0	2.5	24 hr	30.0	7.5	30 min	
Cyclohexanone	Hungary		0.04	0.01	24 hr	0.04	0.01	30 min	53
Cyclohexanone	USSR		-	-	-	0.04	0.01	30 m in	6
Cyclohexanone	West Germany	(VDI 2306)	10.0	2.0	30 min	30.0	6.0	30 min	2,7,9
Cyclohexanone	Yugoslavia		0.04	0.01	24 hr	0.04	0.01	30 min	

	Location			Long Te	erm16		Short Ter	_m16	
Substance		City or Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes
CYCLOHEXANON OXINE	East Germany		0.04	0.01	24 hr	0.1	0.025	30 min	3,4
Cycloh exanon Oxine	USSR		-	-	-	<u>0.1</u>	0,025	30 min	6
DICHLOROETHANE	Bulgaria		1.0	0.25	24 hr	3.0	0.75	20 min	3,4
Dichloroethane	East Germany		1.0	0.25	24 hr	<u>3.0</u>	0.75	30 min	3,4
Dichloroethane	Israel		2.0	0.5	24 hr	6.0	1.5	30 min	10
Dichloroethane	Romania		<u>1.0</u>	0.25	24 hr	<u>3.0</u>	0.75	30 min	
Dichloroethane	USSR		<u>1.0</u>	0.25	24 hr	3.0	0.75	30 min	6
Dichloroethane	West Germany (V)	DI 2306)	8.0	2.0	30 min	25.0	<u>6.0</u>	30 min	2,7,9
Dichloroethane	Yugoslavia		<u>1.0</u>	0.25	24 hr	<u>3.0</u>	0.75	30 min	
2-3-DICHLORO-1-4- NAPHTHAQUINONE	Bulgaria		0.05	-	24 hr	0.05	-	20 min	
2-3-Dichloro-1-4- Naphthaquinone	East Germany		0.02	-	24 hr	0.05	-	30 min	3,4
2-3-Dichloro-1-4- Naphthaquinone	USSR		0.05	-	24 hr	<u>0.05</u>	-	30 min	6
2-3-Dichloro-1-4- Naphthaquinone	Yugoslavia		0.05	-	24 hr	0.05	-	3 0 min	

	Location		Long Ter	_{cm} 16		Short Ter	m16		
Substance	City or Country Province	mg/m ³	ppm	Averaging time	mg/m ³	A ppm	veraging time	Foot- notes	
DIETHYLAMINE	Bulgaria	0.05	0.02	24 hr	0.05	0.02	20 min		
Diethylamine	East Germnay	0.02	0.007	24 hr	0.05	0.016	30 min	3,4	
Diethylamine	Romania	0.05	0.03	24 hr	0.05	0.03	30 min		
Diethylamine	USSR	0.05	0.016	24 hr	0.05	0.016	30 min	6	
Diethylamine	West Germany (VDI 2306)	0.03	0.01	30 min	0.05	0.09	30 min	7,9	
Diethylamine	Yugoslavia	0.05	0.016	24 hr	0.05	0.016	30 min		
DIETHYLETHER	West Germany (VDI 2306)	65.0	20.0	30 min	<u>155.0</u>	60.0	30 min	2,7,9	
DIKETENE	Bulgaria	-	-	-	0.007	0.002	20 min		
liketene	East Germany	0.002	0.007	24 hr	0.007	0.002	30 min	3,4	
liketene	USSR	-	-	-	0.007	0.002	30 min	6	
liketene	Yugoslavia	-	-	-	0.007	0.002	30 min		
IMETHYLAMINE	East Germany	0.005	0.003	24 hr	0.015	0.0075	30 min	3,4	
Dimethylamine	USSR	0.005	0.003	24 hr	0.005	0.003	30 min	16	
Dimethylamine	West Germany (VDI 2306)	0.02	0.01	30 min	0.06	0.03	30 min	2,7,9	
DIMETHYLANILINE	Bulgaria	-	-	-	0.0055	0.001	20 min		

	Locati	on		Long Te	rm ¹⁶	5	Short Te	rm16	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ррш	Averaging time	Foot- notes
Dimethylaniline	East Germany		0.005	0.001	24 hr	0.015	0.003	30 min	3,4
Dimethylaniline	USSR		<u>0.0055</u>	0.001	24 hr	0.0055	0.001	30 min	6
Dimethylaniline	Yugoslavia		-	-	-	0.0055	0.001	30 min	
DIMETHYL DISULFIDE	Bulgaria		-	-	-	0.7	0.18	20 min	
Dimethyl disulfide	East Ge rma ny		<u>0.2</u>	0.78	24 hr	0.7	0.18	30 min	3,4
Dimethyl disulfide	USSR		-	-	-	0.7	0.18	30 min	6
Dimethyl disulfide	Yugoslavia			-	-	0.07	0.018	30 min	
DIMETHYLFORMAMIDE	Bulgaria		0.03	0.01	24 hr	0.03	0.01	20 min	
Dimethylform ami de	East Germany		<u>0.01</u>	0.003	24 hr	0.03	0.01	30 min	3,4
Dimethylformamide	Israel		0.018	0.006	24 hr	0.06	0.02	30 min	10
Dimethylformamide	USSR		0.03	0.01	24 hr	0.03	0.01	30 min	6
Dimethylformamide	Yugoslavia		0.03	0.01	24 hr	0.03	0.01	30 min	
DIMETHYL SULFIDE	Bulgaria		-	-	-	0.08	0.03	20 min	
Dimethyl sulfide	East Germany		0.03	0.01	24 hr	0.08	0.03	30 min	3,4
Dimethyl sulfide	USSR		-	-	-	0.08	0.03	30 min	6

	Locati	Lon	<u></u>	Long Ter	16		Short Ter	1 6 m		
Substance	Country	City or Province	mg/m ³	Appm	veraging tíme	mg/m ³	Appm	veraging time	Foot- notes	
Dimethyl sulfide	Yugoslavia		-	-	-	0.08	0.03	30 min		
DINITROBENZENE	West Germany	(VDI 2306)	0.035	0.005	30 min	<u>0.1</u>	0.015	30 min	2,7,9	
DINYL (Diphenyl + its oxide)	Bulgaria		0.01	0.0015	24 hr	0.01	0.0015	20 min		
Dinyl (Diphenyl + its oxide)	East Germany		0.003	0.0045	24 hr	0.01	0.0015	30 min	3,4	
Dinyl (Diphenyl + its oxide)	Romania		<u>0.01</u>	0.0015	24 hr	0.01	0.0015	30 min		
Dinyl (Diphenyl + its oxide)	USSR		0.01	0.0015	24 hr	0.01	0.0015	30 min	6	
Dinyl (Diphenyl + its oxide	Yugoslavia		0.01	0.0015	24 hr	<u>0.01</u>	0.0015	30 min		
DIOXANE (Diethylene dioxide)	West Germany		20.0	5.0	30 min	60.0	<u>15.0</u>	30 min	2,7,9	
DIVINYL	Bulgaria		<u>1.0</u>	0.4	24 hr	<u>3.0</u>	1.2	20 min		
Divinyl	East Germany		1.0	0.4	24 hr	<u>3.0</u>	1.2	30 min	3,4	
Divinyl	USSR		1.0	0.4	24 hr	<u>3.0</u>	1.2	30 min	6	
Divinyl	Yugoslavia		<u>1.0</u>	0.4	24 hr	3.0	1.2	30 min		

	Locati	on		Long Te	rm ¹⁶		Short T	erm^{16}		
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes	
EPICHLOROHYDRIN	Bulgaria		0.2	0.05	24 hr	0.2	0.05	20 min		
Epichlorohydrin	East Germany		0.06	0.016	24 hr	0.2	0.05	30 min	3,4	
Epichlorohydrin	USSR		<u>0.2</u>	0.05	24 hr	<u>0.2</u>	0.05	30 min	6	
Epichlorohydrin	Yugoslavia		0.2	0.05	24 hr	0.2	0.05	30 min		
ETHANOL	Bulgaria		<u>5.0</u>	2.4	24 hr	5.0	2.5	20 min		
Ethanol	East Germany		5.0	2.5	24 hr	<u>15.0</u>	7.5	30 min	3,4	
Ethanol	USSR		5.0	2.5	24 hr	5.0	2.5	30 min	6	
Ethanol	West Germany	(VDI 2306)	100.0	50.0	30 min	300.0	<u>150.0</u>	30 min	2,7,9	
Ethanol	Yugoslavia		5.0	2.5	24 hr	5.0	2.5	30 min		
ETHYL ACETATE	Bulgaria		<u>0.1</u>	0.029	24 hr	<u>0.1</u>	0.029	20 min		
Ethyl Acetate	East Germany		0.1	0.029	24 hr	<u>0.3</u>	0.085	30 min	3,4	
Ethyl Acetate	Israel		14.0	4.0	24 hr	42.0	12.0	30 min	10	
Ethyl Acetate	USSR		<u>0.1</u>	0.029	24 hr	<u>0.1</u>	0.029	30 min	6	

	Location		Long I	erm ¹⁶		Short Te	16 erm		
Substance		ty or ovince mg/m		Averaging time	mg/m ³	ррш	Averaging time	Foot- notes	
Ethyl Acetate	West Germany (VDI	2306) <u>75.0</u>	20.0	30 min	225.0	60.0	30 min	2,7,9	
Ethyl Acetate	Yugoslavia	<u>0.1</u>	0.029	24 h r	<u>0.1</u>	0.029	30 min		
ETHYLBENZENE	East Germany	0.02	0.005	24 hr	0.06	0.014	30 min	3,4	
Ethylbenzene	USSR	0.02	0.005	24 h r	0.02	0.005	30 min	6	
ETHYLENE	Bulgaria	<u>3.0</u>	2.3	24 hr	<u>3.0</u>	2.3	20 min		
Ethylene	East Germany	2.0	1.53	24 hr	<u>3.0</u>	2.3	30 min	3,4	
Ethylene	Israel	0.26	0.2	24 hr	0.65	0.5	30 min	10	
Ethylene	USSR	<u>3.0</u>	2.3	24 hr	3.0	2.3	30 min		
Ethylene	Yugoslavia	<u>3.0</u>	2.3	24 hr	3.0	2.3	30 min		
ETHYLENE OXIDE	Bulgaria	0.03	0.015	24 hr	0.3	0.15	20 min		
Ethylene Oxide	East Germany	0.03	<u>s</u> 0.015	24 hr	0.3	0.15	30 min	3,4	
Ethylene Oxide	USSR	0.03	<u>s</u> 0.15	24 hr	0.3	0.15	30 min	6	
Ethylene Oxide	West Germany (VDI	2301) <u>4.0</u>	2.0	30 min	<u>12.0</u>	6.0	30 min	2,7,9	
Ethylene Oxide	Yugoslavia	0.03	<u> </u>	5 24 hr	<u>0.3</u>	0.15	30 min		

	Locati	.on		Long Te	rm ¹⁶	Short Term ¹⁶			
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes
ETHYLENIMINE	East Germany		0.001	0.0005	24 hr	0.003	0.0015	30 min	3,4
Ethylenimine	USSR		0.001	0.0005	24 hr	<u>0.001</u>	0.0005	30 min	6
FLUORIDES (as F)	Bulgaria		0.02	0.01	24 hr	0.005	0.002	20 min	
Fluorides (as F)	Canada	Ontario	0.001	0.0005	30 days	-	-	-	11
Fluorides (a s F)	Canada	Ontario	0.002	0.001	24 hr	-	-	-	11
Flourides (as F)	Czechoslovaki	a	0.01	0.005	24 hr	0.03	0.015	30 min	43
Fluorides (as F)	East Germany		0.005	0.002	24 hr	0.02	0.01	30 min	3,4,43
Fluorides (as F)	Hungary		0.03	0.015	24 hr	<u>0.1</u>	0.05	30 min	
Fluorides (as F)	Hungary		0.01	0.005	24 hr	0.03	0.015	30 min	53
Fluorides (as F)	Israel		0.01	0.005	24 hr	0.03	0.015	30 min	10
Fluorides (as F)	Italy		0.02	0.01	24 hr	0.06	0.03	30 min	19
Fluorides (as F)	Romania		0.005	0.002	24 hr	0.02	0.01	30 min	
Fluorides (as F)	Spain		0.02	0.01	24 hr	0.06	0.03	30 min	18

36

	Locati	on		Long Ter	rm ¹⁶		Short Te	erm ¹⁶	
Substance	Country	City or Province	mg/m ³	ppm 7	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Fluorides (as F, gaseous compounds)	USSR		0.005	0.002	24 hr	0.02	0.01	20 min	6,43
Fluorides (gaseous and salt combined)	East Germany		<u>0.01</u>	-	24 hr	0.03	-	30 min	3,4
Fluorides (as HF)	Canada	Manitoba	0.0015	0.002	24 hr	-	-	-	49
Fluorides (as HF)	Canada	Manitoba	0.0008	0.0006	24 hr	-	-	-	11
Fluorides (as HF)	Canada	New Found- land	0.00045	0.005	3 0 days	0.0009	0.001	24 hr	
Fluorides (as HF)	Canada	Saskatche- wan	0.003	0.004	24 hr	-	-	-	48
Fluorides (as HF)	Hungary		0.02	0.015	24 hr	0.015	30 min	L	
Fluorides (as HF)	Hungary		0.0013	0.001	24 hr	0.005	0.004	30 min	53
Fluorides (as HF)	Netherlands		0.01	0.008	24 hr	-	-	-	
Fluorides (as HF)	Spain		<u>0.01</u>	0.008	24 hr	0.03	0,022	30 min	18
Fluorides (as HF)	USSR		0.01	0.008	24 hr	0.03	0.022	3 0 min	6,44
Fluorides (as HF)	West Germany		0.002	0.015	30 min	0.005	0.004	30 min	2,54

37

	Locati	on		Long Te	rm16		Short Te	erm ¹⁶	
Substance	Country	City or Province	mg/m ³		Averaging time	mg/m ³		Averaging time	Foot- notes
Fluorides (as HF)	Yugoslavia		0.005	0.004	24 hr	0.02	0.015	30 min	
Fluorides (readily soluble inorganic)	Bulgaria		0.01	-	24 hr	<u>0.03</u>	-	20 min	44
Fluorides (readily soluble inorganic)	East Germany		0.01	-	24 hr	0.03	-	30 min	3,4,44
Fluoride s (rea dily soluble inorganic	Poland		0.01	-	24 hr	0.03	-	20 min	15
Fluoride s (r eadily soluble inorganic)	Poland		0.003	-	24 hr	0.01	-	20 min	29
Fluorides (readily soluble inorganic)	Yugoslavia		<u>0.01</u>	-	24 hr	<u>0.03</u>	-	30 min	44
Fluorides (sparingly soluble)	East Germany		0.03	-	24 hr	0.2	-	30 min	3,4,42
Fluorides (sparingly soluble)	USSR		0.03	-	24 hr	<u>0.2</u>	-	30 min	6,42
Fluorides (in mix- ture with gaseous)	Bulgaria		<u>0.01</u>	-	24 hr	0.03	-	30 min	
Fluorides (insoluble)	Yugoslavia		0.03	-	24 hr	0.2	-	30 min	

	Location			Long Te	rm ¹⁶		Short Ter	_m16	
Substance		City or Province	mg/m ³	ррт	Averaging time	mg/m ³	ppm /	veraging time	Foot- notes
FORMALDEHYDE	Bulgaria		0.012	0.01	24 hr	0.035	0.025	20 min	
Formaldehyde	Czechoslovakia		0.015	0.01	24 hr	0.05	0.033	30 min	
Formaldehyde	East Germany		0.012	0.01	24 hr	0.035	0.025	30 min	3,4
Formaldehyde	Hungary		0.03	0.02	24 hr	0.07	0.005	30 min	
Formaldehyde	Hungary		0.012	0.008	24 hr	0.035	0.0025	30 min	53
Formaldehyde	Isra el		0.03	0.02	24 hr	0.07	0.06	30 min	10
Formaldehyde	Poland		0.01	0.007	24 hr	0.02	0.014	20 min	15
Formaldehyde	Poland		0.01	0.007	24 hr	0.02	0.014	20 min	29
Formaldehyde	Romania		0.01	0.007	24 hr	0.03	0.02	30 min	
Formaldehyde	USSR		0.012	0,01	24 hr	0.035	0.029	30 min	6
Formaldehyde	West Germany (VD	01 2306)	0.03	0.02	30 min	0.07	0.06	30 min	2,7,9
Formaldehyde	Yugoslavia		0.012	0.01	24 hr	0.035	0.029	30 min	

. <u> </u>	Location			Long Te			Short Te		
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	bbш	Averaging time	Foot- notes
FURFURAL	Bulgaria		0.05	0.013	24 hr	0.05	0.013	20 min	
Furfural	East Germany		0.05	0.013	24 hr	<u>0.15</u>	0.04	30 min	3,4
Furfural	Israel		0.08	0.02	24 hr	0.25	0.06	30 min	10
Furfural	Romania		0.05	0.013	24 hr	0.15	0.04	30 min	
Furfural	USSR		0.05	0.013	24 hr	0.05	0.013	20 min	6
Furfural	West Germany (VDI 2306)	0.08	0.02	30 min	0.25	0.06	30 min	2,7,9
Furfural	Yugoslavia		0.05	0.013	24 hr	0.05	0.013	30 min	
HEXACHLOROCYCLOHEXANE	East Germany		0.01	-	24 hr	0.03	-	30 min	3,4
Hexachlorocyclohexane	USSR		0.03	-	24 hr	0.03	-	30 min	6
HEXAMETHYLENEDIAMINE	Bulgaria		0.001	-	24 hr	<u>0.001</u>	-	30 min	
Hexamethylenediamine	East Germany		0.001	-	24 hr	0.003	-	30 min	3,4
Hexamethylenediamine	USSR		0.001	-	24 hr	0.001	-	30 min	6
Hexamethylenediamine	Yugoslavia		0.01	_	24 hr	<u>0.01</u>	-	30 min	

	Locat	ion		Long T	erm ¹⁶		Short 1	erm ¹⁶	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes
HYDROCARBONS (total)	Canada	Manitoba	0.16	0.24	3 hr		-	_	49
Hydrocarbons (total)	Canada	Manitoba	0.125	0.19	3 hr	-	-	-	11
Hydrocarbons (total)	Israel		2.0	3.0	24 hr	5.0	<u>7.5</u>	30 min	10
Hydrocarbons (total)	Italy		26.6	40.0	24 hr	53.3	80.0	30 m in	19,57
Hydrocarbons (total)	United State	s	0.16	0.24	3 hr	-	-	-	13,37
HYDROCHLORIC ACID (as H+)	Bulgaria		0.006	-	24 hr	0.006	-	20 min	
Hydrochloric Acid (as H+)	Czechoslovak	tia	<u>0.01</u>	-	30 min	-	-	-	
Hydrochloric Acid (as H+)	USSR		0.006	-	24 hr	0.006	-	30 min	6
Hydrochloric Acid (as H+)	Yugoslavia		0.006	-	24 hr	0.006	-	30 min	
HYDROCHLORIC ACID (as HC1)	Bulgaria		0.2	0.14	24 hr	~	-		

	Loca	tion		Long T	erm ¹⁶		Short Te	rm16	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes
Hydrochloric Acid (as HC1)	Czechoslova	kia		~		0.01	0.007	30 min	
Hydrochloric Acid (as HCl)	East German	у	0.015	0.01	24 hr	0.05	0.035	30 min	3,4
Hydrochloric Acid (as HCl)	Hungary		<u>0.7</u>	0.5	24 hr	<u>1.4</u>	1.0	30 min	
Hydrochloric Acid (as HCl)	Hungary		<u>0.2</u>	0.14	24 hr	0.2	0.14	30 min	53
Hydrochloric Acid (as HCl)	Israel		0.4	<u>0.3</u>	24 hr	1.4	<u>1.0</u>	30 min	10
Hydrochloric Acid (as HCl)	Italy		0.04	<u>0.03</u>	24 hr	0.28	0.2	30 min	19
Hydrochloric Acid (as HC1)	Poland		0.1	0.07	24 hr	0.2	0.14	20 min	15
Hydrochloric Acid (as HCl)	Poland		<u>0.02</u>	0.014	24 hr	0.05	0.035	20 min	29
Hydrochloric Acid (as HCl)	Romania		0.1	0.07	24 hr	<u>0.3</u>	0.21	30 min	

	Loca	tion		Long Te	rm ¹⁶		Short T	erm ¹⁶	
Substance	Country	City or Province	mg/m ³		Averaging time	mg/m ³	ppm	Averaging time	Foot- note:
Hydrochloric Acid (as HCl)	USSR		0.2	0.14	24 hr	<u>0.2</u>	0.14	30 min	6
Hydrochloric Acid (as HCl)	West German Part		<u>0.7</u>	<u>0.5</u>	30 min	<u>1.4</u>	<u>1.0</u>	30 min	2,7,47
Hydrochloric Acid (as HCl)	West German	ÿ	0.05	0.035	30 min	<u>0.15</u>	0.1	30 min	2,54
Hydrochloric Acid (as HCl)	Yugoslavia		-	-	-	<u>0.2</u>	0.14	30 min	
HYDROGEN CYANIDE	East German	y	0.005	0.004	24 hr	0.015	0.014	30 min	3,4
Hydrogen Cyanide	USSR		0.01	0.009	24 hr	-	-	-	e
HYDROGEN SULFIDE	Bulgaria		0.008	0.005	24 hr	0.008	0.005	20 min	
Hydrogen Sulfide	Canada	Alberta	0.004	0.003	24 hr	0.014	0.009	1 hr	
Hydrogen Sulfide	Canada	Alberta	-	-	-	0.017	0.011	30 min	
Hydrogen Sulfide	Canada	Manitoba	<u>0.017</u>	0.011	24 hr	0.028	0.018	l hr	
Hydrogen Sulfide	Canada	New Found- land	-	-	-	0.03	0.02	1 hr	49

_

	Locat	tion		Long Te	rm16		erm16		
Substance	Country	City or Province	mg/m ³		Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Hydrogen Sulfide	Canada	Ontario	_	-		0.03	0.02	l hr	11
Hydrogen Sulfide	Canada	Saskatche- wan	<u>0.007</u>	0.005	24 hr	0.07	<u>0.05</u>	1 hr	48
Hydrogen Sulfide	Czechoslovak	cia	0.008	0.005	24 hr	0.008	0.005	30 min	
Hydrogen Sulfide	East Germany	7	0.008	0.005	24 hr	0.015	0.01	30 min	3,4
Hydrogen Sulfide	Finland		<u>0.05</u>	0.03	24 hr	<u>0.15</u>	0.1	30 min	17
Hydrogen Sulfide	Hungary		0.15	0.1	24 hr	0.3	0.2	30 min	
Hydrogen Sulfide	Hungary		0.008	0.005	24 hr	0.008	0.005	30 min	53
Hydrogen Sulfide	Israel		0.045	0.03	24 hr	0.15	0.1	30 min	51
Hydrogen Sulfide	Italy		0.04	<u>0.03</u>	24 hr	0.1	0.07	30 min	19
Hydrogen Sulfide	Poland		0.02	0.013	24 hr	0.06	0.04	20 min	15
Hydrogen Sulfide	Poland		0.008	0.005	24 hr	0.008	0.005	20 min	29
Hydrogen Sulfide	Romania		0.01	0.006	24 hr	0.03	0.02	30 min	
Hydrogen Sulfide	Spain		0.004	0.0025	24 hr	0.01	0.006	30 min	18

	Locat	tion		Long Te	rm ¹⁶		Short Te	16 erm	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Hydrogen Sulfide	USSR		0.008	0.005	24 hr	<u>0.008</u>	0.005	30 min	(
Hydrogen Sulfide	West Germany	y (VD1 2107)	0.15	0.1	30 min	<u>0.3</u>	0.2	30 min	2,7,
Hydrogen Sulfide	West German	y	0.15	0.1	30 min	<u>0.3</u>	0.2	30 min	
Hydrogen Sulfide	West German	y	0.02	0.013	30 min	0.05	0.03	30 min	2,5
Hydrogen Sulfide	Yugoslavia		0.008	0.005	24 hr	0.008	0.005	30 min	
INTRATHION (M-81)	USSR		0.001	-	24 hr	0.001	-	30 min	
ISO-OCTANOL	East German	У	0.05	-	24 hr	0.15	-	30 min	3,
Iso-Octanol	USSR		-	-	-	0.15	-	30 min	
ISO-PROPANOL	East German	у	0.6	0.24	24 hr	2.0	0.82	30 min	3,
ISOPROPYL BENZENE	Bulgaria		0.014	-	24 hr	0.014	-	20 m/in	
Isopropyl Benzene	East German	у	0.014	-	24 hr	0.05	-	30 min	3,
Isopropyl Benzene	USSR		0.014	-	24 hr	0.014	-	30 min	
Isopropyl Benzene (hydroperoxide)	Bulgaria		0.007	-	24 hr	<u>0.007</u>	-	20 min	

	Loca	tion		Long 1	ferm ¹⁶		Short 7	Term ¹⁶	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Isopro p yl Benzene (hyd roperoxide)	East German	y	0.007	_	24 hr	0.02	-	30 min	3,4
Isopropyl Benzene (hydroperoxide)	USSR		0.007	-	24 hr	<u>0.007</u>	-	30 min	6
KRESOL	West German	y (V DI 2306)	0.2	-	30 min	0.6	-	30 min	2,7, 8,9
LEAD (as Pb)	Bulgaria		0.0007	-	24 hr	-	-	-	45
Lead (as Pb)	Canada	Manitoba	0.01		30 days	-	-	-	
ead (as Pb)	Canada	Manitoba	<u>0.01</u> 5	-	24 hr	-	-	-	
.ead (as Pb)	Canada	Newfound- land	<u>0.01</u>	-	30 days	-	-	-	49
ead (as Pb)	Canada	Newfound-	0.015	-	24 hr	-	-	-	
Lead (as Pb)	Canada	land Ontario	0.01	-	30 days	-	-	-	11
ead (as Pb)	Canada	Ontario	0.015	-	24 hr	-	-	-	
ead (as Pb)	Czechoslova	kia	0.0007	-	24 hr	-	-	-	45
Lead (as Pb)	East German	ÿ	0.0007	-	24 hr	_	-	-	3,4

	Locati	.on		Long '	Term ¹⁶		Short 7	lerm ¹⁶	<u> </u>
Substance	Country	City or Province	mg/m ³	ррш	Averaging time	mg/m ³	ррш	Averaging time	Foot- notes
Lead (as Pb)	Hungary		0.001	_	24 hr	0.002	_	30 min	
Lead (as Pb)	Hungary		0.0007	-	24 hr	0.0007	-	30 min	53
Lead (as Pb)	Israel		0.005	-	24 hr	-	-	-	51
Lead (as Pb)	Italy		0.01		8 hr	0.05		30 min	19
Lead (as Pb)	Poland		0.001		24 hr	-	-	-	15
Lead (as Pb)	Poland		0.0005		24 hr	-	-	-	29
Lead (as Pb)	Romania		<u>0.001</u>	-	24 hr	-		-	
Lead (as Pb)	USSR		0.0007	-	24 hr	-	-	-	6,45
Lead (as Pb)	Yugoslavia		0.0007	-	24 hr	-	-	-	
LEAD SULFIDE (as Pb)	Bulgaria		0.0007	-	24 hr	-	-	-	
Lead Sulfide (as Pb)	East Germany		0.0017	-	24 hr	-	-	-	3,4
Lead Sulfide (as Pb)	Israel		0.0035		24 hr	-	-	-	10
Lead Sulfide (as Pb)	USSR		<u>0.0017</u>	-	24 hr	-	-	-	(

71

	Locati	on		Long Te	erm ¹⁶		l6 erm	<u> </u>	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Lead Sulfide (as Pb)	Yugoslavia		0.0017	-	24 hr	_	-	-	
MALATHION (Carbophos)	Bulgaria		-	-	-	0.015	-	20 min	
Malathion (Carbophos)	USSR		-	-	-	0.015	-	30 min	6
Malathion (Carbophos)	Yugoslavia		-	-	-	0.015	-	30 min	
MALEIC ANHYDRIDE	Bulgaria		0.05	0.01	24 hr	0.2	0.05	20 min	
Maleic Anhydride	East Germany		0.05	0,012	24 hr	0.2	0.05	30 min	3,4
Maleic Anhydride	USSR		0.05	0.012	24 hr	0.2	0.05	30 min	6
Maleic Anhydride	Yugoslavia		<u>0.05</u>	0.01	24 hr	0.2	0.05	30 min	
MANGANESE (as Mn)	Israel		0.01	-	24 hr	0.03	-	30 min	10
Manganese (as Mn)	Romania		0.01	-	24 hr	0.03		30 min	
Manganese (as Mn)	USSR		0.01		24 hr	-	-	-	6
Manganese (as MnO ₂)	Bulgaria		0.01		24 hr	-	-	-	
Manganese (as MnO ₂)	Czechoslovaki	la	0.01	-	24 hr	-	-	-	

£

	Locati	on		Long 1	Cerm ¹⁶		Short 7	[erm ¹⁶	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Manganese (as MnO ₂)	East Germany		0.01	-	24 hr	-	_	_	3,4
Manganese (as MnO ₂)	Yugoslavia		0.01	-	24 hr	-	-	-	
MERCURY (as Hg)	Bulgaria		0.0003	-	24 hr	-	-	-	
Mercury (as Hg)	East Germany		0.0003	-	24 hr	-	-	-	3,4
Mercury (as Hg)	Hungary		0.0003	-	24 hr	0.0003		24 hr	
Mercury (as Hg)	Hungary		0.0003	-	24 hr	-	-	-	53
Mercury (as Hg)	Israel		0.001	-	24 hr	-	-	-	10
Mercury (as Hg)	Romania		0.001	-	24 hr	-	-	-	
Mercury (as Hg)	USSR		0.003	· _	24 hr	-	-	-	6
Mercury (as Hg)	Yugoslavia		0.0003		24 hr	-	-	-	
MESIDINE (2 -AMINO- 1,3,5 TRIMETHYL- BENZENE)	Bulgaria		-	-	-	0.003	-	20 min	
Mes idene (2-amino- 1,3,5 Trimethyl- benzene)	USSR		<u>0.003</u>	-	24 hr	0.003	-	30 min	6

	Location			Long Ter	16 rm		Short Te		
Substance	C	ity or rovince	mg/m ³		Averaging time	mg/m ³		Averaging time	Foot- notes
Mesidine (2-amino- 1,3,5 Trimethyl- benzene)	Yugoslavia		-		_	0.003	-	30 min	
METHANOL	Bulgaria		0.5	0.38	24 hr	1.0	0.77	20 min	
Methanol	Czechoslovakia		0.5	0.38	24 hr	<u>1.0</u>	0.77	30 min	
Methanol	East Germany		0.5	0.38	24 hr	<u>1.0</u>	0.77	30 min	3,4
Methanol	Hungary		<u>15.0</u>	10.0	24 hr	40.0	30.0	30 min	
Methanol	Hungary		0.5	0.38	24 hr	<u>1.0</u>	0.77	30 min	53
Methanol	Israel		1.3	<u>1.0</u>	24 hr	4.0	3.0	30 min	10
Methanol	Romania		<u>1.0</u>	0.77	24 hr	<u>3.0</u>	2.3	30 min	
Methanol	USSR		0.5	0.38	24 hr	1.0	0.77	30 min	6
Methanol	West Germany (VI	DI 2306)	<u>15.0</u>	10.0	30 min	40.0	30.0	30 min	2,7,9
Methanol	Yugoslavia		0.5	0.38	24 hr	1.0	0.77	30 min	
METHYL ACETATE	Bulgaria		0.07	0.023	24 hr	0.07	0.023	20 min	
Methy Acetate	East Germany		0.07	0.023	24 hr	<u>0.2</u>	0.066	30 min	3,4

->

	Location	1		Long Te	rm16		Short Te	rm ¹⁶	
Substance		City or Province	mg/m ³	ррт	Averaging time	mg/m ³	ррт	Averaging time	Foot- notes
Methyl Acetate	Israel		3.0	<u>1.0</u>	24 hr	9.0	3.0	30 min	10
Methyl Acetate	USSR		0.07	0.023	24 hr	0.07	0.023	30 min	6
Methyl Acetate	West Germ a ny (V	7DI 2306)	<u>15.0</u>	5.0	30 min	45.0	<u>15.0</u>	30 min	2,7,9
Methyl Acetate	Yugo s lavia		0.07	0.023	24 hr	0.07	0.023	30 min	
METHYL ACRYLATE	Bulgaria		-	-	-	0.01	0.003	20 min	
Methyl Acrylate	East Germany		0.01	0.003	24 hr	0.03	0.009	30 min	3,4
Methyl Acrylate	USSR		0.001	0.003	24 hr	<u>0.01</u>	0.003	3 0 min	6
Methyl Acrylate	Yugoslavia		-	-	-	0.01	0.003	30 min	
METHYL ANILINE	USSR		0.04	0.01	24 hr	0.04	0.01	30 min	6
Methyl Aniline	Yugoslavia		-	-	-	0.04	0.01	30 min	
METHYL ETHYL KETONE	West Germany (V	VDI 2306)	<u>30.0</u>	<u>10.0</u>	30 min	<u>90.0</u>	<u>30.0</u>	30 min	2,7,9
METHYL ISOBUTYL KETONE	West Germany (N	VDI 2306)	20.0	<u>5.0</u>	30 min	<u>65.0</u>	<u>15.0</u>	30 min	7,9
METHYL MERCAPTAN	Bulgaria		-	-		9x10 ⁻⁶	-	20 min	

ć

	Locatio	 On		Long Te	erm ¹⁶	<u> </u>	Short Te	erm ¹⁶		
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes	
Methyl Mercaptan	East Germany	·····	-	-		<u>10-</u> 5	-	30 min	3,4	
Methyl Mercaptan	USSR		-	-	-	<u>9x10⁻⁶</u>	-	30 min		
Methyl Mercaptan	Yugoslavia		-	-	-	<u>9x10⁻⁶</u>	-	30 min		
METHYL METHACRYLATE	Bulgaria		<u>0.1</u>	0.025	24 hr	0.1	0.025	20 min		
Methyl Methacrylate	East Germany		<u>0.1</u>	0.025	24 hr	<u>0.3</u>	0.075	30 min	3,4	
Methyl Methacrylate	Israel		0.2	0.05	24 hr	0.6	0.15	30 min	10	
Methyl Methacrylate	USSR		<u>0.1</u>	0.025	24 hr	0.1	0.025	30 min	6	
Methyl Methacrylate	Yugoslavia		0.1	0.025	24 hr	0.1	0.025	30 min		
METHYL PARATHION (metaphos)	Bulgaria		-	-	-	0.008		20 min		
Methyl Parathion (metaphos)	USSR		-	-	-	0.008	-	30 min	6	
Methyl Parathion (metaphos)	♥ Yugoslavia		-	-	-	0.008	-	30 min		

	Locat	ion		Long Ter	16		Short Ter	16		
Substance	Country	City or Province	mg/m ³	Appm	veraging time	mg/m ³	A ppm	veraging time	Foot- notes	
METHYLENE CHLORIDE	West Germany	(VDI 2306)	20.0	5.0	30 min	55.0	15.0	30 min	2,7,9	
METHYLSTYRENE (-a)	Bulgaria		0.04	0.01	24 hr	0.04	0.01	20 min	1,2	
Methylstyrene (-a)	East Germany		0.03	0.0075	24 hr	0.05	0.0125	30 min	3,4	
Methylstyrene (-a)	USSR		0.04	0.01	24 hr	0.04	0.01	30 min	6	
Methylstyrene (-a)	Yugoslavia		0.04	0.01	24 hr	0.04	0.01	30 min		
MONOETHYL AMINE	East Germany		0.01	0.005	24 hr	0.03	0.015	30 min	3,4	
Monoethyl Amine	West Germany	(VDI 2306)	0.02	0.01	30 min	0.06	0.03	30 min	2,7,9	
Monoethyl Amine	USSR		0.01	0.005	24 hr	0.01	0.005	30 min	e	
MONOMETHYL ANILINE	Bulgaria		-	-	-	0.04	0.009	20 min		
Monomethyl Aniline	East Germany		0.03	0.007	24 hr	0.05	0.01	30 min	3,4	
NAPHTHALENE	East Germany		0.001	0.0002	24 hr	0.003	0.0006	30 min	3,4	
Naphthalene	USSR		0.003	0.0006	24 hr	0.003	0.0006	30 min	(
Naphthalene	West Germany	(VDI 2306)	2.5	0.5	30 min	7.5	1.5	30 min	2,7,	
NAPHTHAQUINONE (-a)	Bulgaria		0.005	0.001	24 hr	0.005	0.001	20 min		

	Location		Long Ter	m16		Short Te	rm ¹⁶	
Substance	City or Country Province	mg/m ³	A ppm	veraging time	mg/m ³	ppm	Averaging time	Foot- notes
Naphthaquinone (-α)	East Germany	0.002	0.0004	24 hr	0.005	0.001	30 min	3,4
Naphthaquinone (-a)	USSR	0.005	0.001	24 hr	0.005	0.001	30 min	(
Naphthaquinone (-α)	Yugoslavia	0.005	0.001	24 hr	0.005	0.001	30 min	
NITRIC ACID	East Germany	0.06	0.024	24 hr	0.14	0.056	30 min	3,4
Nitric Acid	Hungary	<u>1.3</u>	0.52	24 hr	2.6	1.04	30 min	
Nitric Acid	Hungary	0.4	0.16	24 hr	0.4	0.16	30 min	53
Nitric Acid	Israel	0.42	0.17	24 hr	1.3	0.5	30 min	10
Nitric Acid	West Germany (VDI 2106)	<u>1.3</u>	0.5	30 min	2.6	1.0	30 min	2,7,47
Nitric Acid (as HNO ₃)	Bulgaria	-		-	0.4	0.15	20 min	
Nitric Acid (as HNO ₃)	USSR	0.4	0.15	24 hr	<u>0.4</u>	0.15	30 min	(
Nitric Acid (as HNO ₃)	Yugoslavia	-	-	-	0.4	0.15	30 min	

	Location		• • • • • • • • • • • • • • • • • • • •	Long Ter	16	<u></u>	Short Ter	16	
Substance		ity or rovince	mg/m ³		veraging time	mg/m ³	ррт	veraging time	Foot- notes
Nitric Acid (as H+)	Bulgaria		0.006	0.0024	24 hr	0.006	0.0024	20 min	
Nitric Acid (as H+)	Czechoslovakia		-	-	-	0.01	0.004	30 min	
Nitric Acid (as H+)	USSR		0.006	0.0024	24 hr	0.006	0.0024	30 min	6
Nitric Acid (as H+)	Yugoslavia		0.006	0,0024	24 hr	0.006	0.0024	30 min	
NITROBENZENE	Bulgaria		-	-	-	0.04	0.008	20 min	
Nitrobenzene	East Germany		0.005	0.001	24 hr	0.01	0.002	30 min	3,4
Nitrobenzene	Hungary		0.3	0.06	24 hr	0.85	0.17	30 min	
Nitrobenzene	Hungary		0.008	0.0016	24 hr	0.08	0.016	30 min	53
Nitrobenzene	USSR		0.008	0.0016	24 hr	0.008	0.0016	30 min	6
Nitrobenzene	West Germany (VD	1 2306)	<u>0.3</u>	0.005	30 min	0.85	<u>0.15</u>	3 0 min	2,7,9
Nitrobenzene	Yugoslavia		0.008	0.0016	24 hr	0.008	0.0016	30 min	
o-NITROCHLOROBENZENE	East Germany		0.004	-	24 hr	0.008	-	30 min	3,4
p-Nitrochlorobenzene	East Germany		0.004	-	24 hr	0.008	-	30 min	3,4

	Locatio	on		Long Te	16 .rm		Short Te		·
Substance	Country	City or Province	mg/m ³		Averaging time	mg/m ³	ррт	Averaging time	Foot- notes
Nitrochlorobenzene (o-and-p)	USSR		0.004	-	24 hr	-	-	-	e
NITROGEN DIOXIDE	Argentina		~	-	-	0.85	0.45	1 h r	
Nitrogen Dioxide	Bulgaria		0.085	0.045	24 hr	0.085	0.045	20 min	
Nitrogen Dioxide	Canada	Saskatche-	0.02	0.01	24 hr	0.04	0.02	1 h r	48
Nitrogen Dioxide	Czechoslovaki	wan a	<u>0.1</u>	0.05	24 hr	<u>0.3</u>	0.16	30 min	
Nitrogen Dioxide	Finland		0.2	0.1	24 hr	0.56	0.3	30 min	18
Nitrogen Dioxide	Hungary		0.15	0.08	24 hr	0.5	0.27	30 min	
Nitrogen Dioxide	Hungary		0.085	0.05	24 hr	0.085	-	30 min	53
Nitrogen Dioxide	Japan		0.04	0.02	24 hr	-	-	-	4]
Nitrogen Dioxide	Romania		<u>0.1</u>	0.05	24 hr	0.3	0.16	30 min	
Nitrogen Dioxide	USSR		0.085	0.045	24 hr	0.085	0.045	30 min	(
Nitrogen Dioxide	West Germany		0.1	0.05	30 min	0.3	0.16	30 min	2,54
Nitrogen Dioxide	Yugoslavia		0.085	0.045	24 hr	0.085	0.045	20 min	

	Locatio	on		Long T	erm ¹⁶		Short T	erm ¹⁶	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
NITROGEN MONOXIDE	West Germany		0.4		30 min	0.8	-	30 min	2,54
NITROGEN OXIDES (as NO ₂)	Argentina		0.9	<u>0.45</u>	1 hr	-	-	-	
Nitrogen Oxides (as NO ₂)	Canada	Alberta	0.06	<u>0.03</u>	1 yr	-	-	-	
Nitrogen Oxides (as NO ₂)	Canada	Alberta	0.2	<u>0.1</u>	24 hr	0.4	0.2	1 hr	
Nitrogen Oxides (as NO ₂)	Canada	Manitoba	0.1	0.05	l yr	-	-	-	4
Nitrogen Oxides (as NO ₂)	Canada	Manitoba	0.06	0.03	l yr	-	-	-	1
Nitrogen Oxides (as NO ₂)	Canada	Manitoba	0.13	<u>0.07</u>	24 hr	0.38	<u>0.19</u>	1 hr	4
Nitrogen Oxides (as NO ₂)	Canada	Manitoba	0.1	<u>0.05</u>	24 hr	<u>0.19</u>	<u>0.10</u>	1 hr	1
Nitrogen Oxides (as NO ₂)	Canada	Newfound- 1and	0.2	<u>0.1</u>	24 hr	0.4	<u>0.2</u>	1 hr	

•

	Locat	ion		Long Te	16 erm		Short Te	16 erm	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ррт	Averaging time	Foot- note:
Nitrogen Oxides (as NO ₂)	Canada	Ontario	<u>0.2</u>	<u>0.1</u>	24 hr	0.4	0.2	1 hr	11
Nitrogen Oxides (as NO ₂)	East Germany		0.004	0.002	24 hr	<u>0.1</u>	0.06	30 min	3,4
Nitrogen Oxides (as NO ₂)	Hungary		0.15	0.075	24 hr	0.5	0.25	30 min	
Nitrogen Oxides (as NO ₂)	Hungary		0.05	0.025	24 hr	<u>0.15</u>	0.075	30 min	53
Nitrogen Oxides (as NO ₂)	Israel		0.6	<u>0.3</u>	24 hr	1.0	<u>0.5</u>	30 min	51
Nitrogen Oxides (as NO ₂)	Italy		0.2	<u>0.1</u>	24 hr	0.6	<u>0.3</u>	30 min	19
Nitrogen Oxides (as NO ₂)	Poland		0.2	0.1	24 hr	0.6	0.3	20 m⁹. n	
Nitrogen Oxides (as NO ₂)	Poland		<u>0.05</u>	0.025	24 hr	0.15	0.075	20 min	29
Nitrogen Oxides (as NO ₂)	Spain		<u>0.2</u>	0.1	24 hr	<u>0.4</u>	0.2	30 min	18

	Locat	tion		Long Te:	rm16	Short Term ¹⁶				
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes	
Nitrogen Oxides (as NO ₂)	United Stat	es	0.1	0.05	l yr	-	-	-	13,37	
Nitrogen Oxides (as NO ₂)	West German	y (VDI 2105)	1.0	0.5	30 min	<u>2.0</u>	1.0	30 min	2,7,8	
NITROGEN PENTOXIDE	Yugoslavia		<u>0.1</u>	-	24 hr	<u>0.3</u>	~	30 min		
OXIDANTS (by KI)	Canada		0.05	0.025	24 hr	<u>0.16</u>	0,08	1 hr		
Oxidants (by KI)	Israel		0.2	<u>0.1</u>	24 hr	0.1	0.05	1 hr	10	
Oxidants (by KI)	Japan		-	-	-	0.12	0.06	1 hr		
Oxidants (as O ₃)	Argentina		-	-	-	0.2	<u>0.1</u>	1 hr		
Oxidants (as 0 ₃)	Canada		0.05	0.025	24 hr	<u>0.16</u>	0.08	1 hr	49,50	
Oxidants (as 0 ₃)	Canada		0.03	0.015	1 yr	-	-	-	11,50	
Oxidants (as 0 ₃)	Canada		0.03	0.015	24 hr	0.1	0,05	1 hr	11,50	
Oxidants (as 0 ₃)	Canada	Alberta	0.03	0.015	24 hr	0.1	0.05	1 hr		
Oxídants (as 0 ₃)	Canada	Manitoba	0.02	0.01	1 y r	-	-	-	11	

	Loca	tion		Long Ter	16	Short Term			
Substance	Country	City or Province	mg/m ³		Averaging time	mg/m ³	ррш	Averaging time	Foot- notes
Oxidants (as 0 ₃)	Canada	Manitoba	0.05	0.025	24 hr	0.16	0.08	1 hr	49
Oxidants (as 0 ₃)	Canada	Manitoba	<u>0.03</u>	0.015	l yr	-	-	-	49
Oxidants (as 0 ₃)	Canada	Manitoba	0.02	0.01	l yr	-	-	-	11
Oxidants (as 0 ₃)	Canada	Newfound-	0.065	<u>0.03</u>	24 hr	<u>0.21</u>	0.1	1 hr	
Oxidants (as 0 ₃)	Canada	land Ontario	0.06	0.03	24 hr	0.2	<u>0.1</u>	1 hr	11
Oxidants (as 0 ₃)	Israel		0.2	<u>0.1</u>	8 hr	0.4	0.2	30 min	51
Oxidants (as 0 ₃)	Romania		0.03	0.015	24 hr	<u>0.01</u>	0.005	30 min	
Oxidants (as 0 ₃)	United Stat	e s	-	-	-	0.16	0.08	1 hr	13,37
PENTANE	Bulgaria		25.0	8.5	24 hr	100.0	33.9	20 min	2
Pentane	East German	y	25.0	8.5	24 hr	100.0	33.9	30 min	3,4
Pentane	USSR		25.0	8.5	24 hr	100.0	33.9	30 min	6
Pentane	Yugoslavia		<u>25.0</u>	8.5	24 hr	100.0	33.9	20 min	
PERCHLORETHYLENE	•	y (VDI 2306)	<u>35.0</u>	<u>5.0</u>	30 mi n	110.0	<u>15.0</u>	30 min	2,7,9

	Locat			Long Ter	16		Short Ter		
Substance	Country	City or Province	mg/m ³		veraging time	mg/m ³	A ppm	veraging time	Foot- notes
PHENOL	Bulgaria		0.01	0.0026	24 hr	0.01	0.0026	20 min	
Phenol	Czechoslovak	ia	<u>0.1</u>	0.026	24 hr	0.3	0.079	30 min	
Phenol	East Germany		0.01	0.0026	24 hr	0.03	0.0079	30 min	3,4
Phenol	Hungary		0.2	0.052	24 hr	0.6	0.16	30 min	
Pheno1	Hungary		0.01	0.026	24 hr	0.01	0,026	30 min	53
Pheno1	Israel		0.1	0.025	24 hr	0.3	0.075	30 min	10
Phenol	Poland		0.01	0.0026	24 hr	0.02	0.052	20 min	15
Pheno1	Poland		0.003	0.0008	24 hr	0.01	0.026	20 min	29
Pheno1	Romania		0.03	0.0079	24 hr	0.1	0.026	30 min	
Pheno1	USSR		0.01	0.0026	24 hr	0.001	0.0025	20 min	6
Pheno1	West Germany	(VDI 2306)	0.2	0.05	30 min	0.6	<u>0.15</u>	30 min	2,7,9
Pheno1	Yugoslavia		0.01	0.026	24 hr	0.01	0.026	30 min	
PHOSPHORIC ACID	Romania		0.1	-	24 hr	0.3	-	30 min	

	Locati	on		Long Te	erm ¹⁶		Short Te	erm ¹⁶	
Substance	Country	City or Province	mg/m ³		Averaging time	mg/m ³		Averaging time	Foot- notes
PHOSPHORIC ANHYDRIDE	East Germany		0.05	0.0085	24 hr	0.15	0.026	30 min	3,4
Phosphoric Anhydride	Israel		0.1	0.017	24 hr	0.05	0.0085	30 min	10
PHOSPHOUS PENTOXIDE	USSR		<u>0.05</u>	0.0085	24 hr	0.15	0.026	30 min	6
Phosphous Pentoxide	Yugoslavia		0.05	0.0085	24 hr	0.15	0.026	30 min	
PHTHALIC ANHYDRIDE	Bulgaria		0.2	0.03	24 hr	<u>0.1</u>	0.015	20 min	
Phthalic Anhydride	East Germany		0.03	0.005	24 hr	0.1	0.015	30 min	3,4
Phthalic Anhydride (fumes, aerosols)	USSR		<u>0.1</u>	0.015	24 hr	<u>0.1</u>	0.015	30 min	6
Phthalic Anhydride	Yugoslavia		0.2	0.03	24 hr	0.4	0.06	30 min	
PROPANE-2-01	USSR		0.6	-	24 hr	0.6	-	30 min	6
PROPANOL	Bulgaria		-	-	-	<u>0.3</u>	0.12	20 min	
Propanol	East Germany		0.3	0.12	24 hr	1.0	0.36	30 min	3,4
Propanol	USSR		0.3	0.12	24 hr	0.3	0.12	30 min	6

.

	Locat	ion	_	Long I	erm16		Short I	erm ¹⁶	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Propanol	West Germany	(VDI 2306)	50.0	20.0	30 min	150.0	60.0	30 min	2,7,9
Propanol	Yugoslavia		<u>0.3</u>	0.12	24 hr	0.3	0.12	30 min	6
PROPYL –ISOBENZENE HYDROXIDE	Yugoslavia		0.007	-	24 hr	<u>0.007</u>	-	30 min	
PROPYLENE	Bulgaria		3.0	1.5	24 hr	3.0	1.5	20 min	
Propylene	East Germany	,	2.0	1.0	24 hr	<u>3.0</u>	1.5	30 min	3,4
Propylene	USSR		<u>3.0</u>	1.5	24 hr	<u>3.0</u>	1.5	30 min	6
PYRIDINE	Bulgaria		0.08	0.023	24 hr	0.08	0.023	20 min	2
Pyrid ine	East Germany	7	0.03	0.009	24 hr	0.08	0.023	30 min	3,4
Pyridine	Romania		0.05	0.014	24 hr	0.15	0.04	30 min	
Pyridine	USSR		0.08	0.023	24 hr	0.08	0.023	30 min	6
Pyridine	West Germany	v (VDI 2306)	<u>0.7</u>	0.2	30 min	2.1	0.6	30 min	2,7,9
Pyridine	Yugoslavia		0.08	0.023	24 hr	0.08	0.023	30 min	
SILICA OXIDE	Italy		0.02	-	24 hr	<u>0.1</u>	-	2 hr	19

	Locat	ion		Long Te	erm ¹⁶		Short To	erm ¹⁶	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ррш	Averaging time	Foot- notes
SOOT	Bulgaria		0.05		24 hr	0.15	-	20 min	
Soot	Czechoslovał	la	0.05	-	24 hr	0.15	-	30 min	•
Soot	East Germany	7	0.05	-	24 hr	<u>0.15</u>	-	30 min	3,4
Soot	Hungary		<u>0.1</u>	-	24 hr	-	-	-	
Soot	Hungary		0.05	-	24 hr	-	-	-	5 3
Soot	Israel		0.1	-	24 hr	0.3	-	30 min	10
Soot	Romania		0.05	-	24 hr	0.15	-	30 min	
Soot	USSR		0.05	-	24 hr	0.15	-	30 min	6
STYRENE	Bulgaria		0.003	0.0007	24 hr	0.003	0.0007	20 min	
Styrene	East Germany	7	0.003	0.0007	24 hr	0.01	0.0023	30 min	3,4
Styrene	Hungary		20.0	4.6	24 hr	<u>50.0</u>	11.7	30 min	
Styrene	Hungary		0.003	0.0007	24 hr	0.003	0.0007	30 min	53
Styrene	USSR		0.003	0.0007	24 hr	0.003	0.0007	30 min	6

Table 2 (continued). AMBIENT AIR QUALITY STANDARDS OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

61

	Locati	lon		Long Te	rm ¹⁶	Short Term ¹⁶				
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes	
Styrene	West Germany	(VDI 2306)	20.0	4.6	30 min	65.0	15,16	30 min	2,7,9	
Styrene	Yugoslavia		0.003	0.0007	24 hr	0.003	0.0007	30 min		
SULFUR DIOXIDE	Argentina		0.07	0.03	30 days	-		-		
Sulfur Dioxide	Belgium		0.15	0.06	1 yr	-	-	-	15	
Sulfur Dioxide	Brazil	Santo André	0.05	0.02	24 hr	-	-	-	55	
Sulfur Dioxide	Bulgaria		0.05	0.02	24 hr	0.5	0.2	20 min		
Sulfur Dioxide	Canada		0.06	0.02	1 yr	-	-	-	49,50	
Sulfur Dioxide	Canada		<u>0.03</u>	<u>0.11</u>	24 hr	0.9	0.34	1 hr	49,50	
Sulfur Dioxide	Canada		0.03	0.01	l yr	-	-	-	11,50	
Sulfur Dioxide	Canada		0.15	0.06	24 hr	0.45	0.17	1 hr	11,50	
Sulfur Dioxide	Canada	Alberta	0.03	0.01	l yr	-	-	-		
Sulfur Dioxide	Canada	Alberta	<u>0.15</u>	0.06	24 hr	0.45	0.17	1 hr	11,50	
Sulfur Dioxide	Canada	Alberta	-	-	-	0.525	0.2	30 min		

.

,

	Loca	ition		Long	Term ¹⁶		Short 2	16 Term	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Sulfur Dioxide	Canada	Manitoba	0.06	0.02	l yr		-		49
Sulfur Dioxide	Canada	Manitoba	<u>0.3</u>	<u>0.1</u> 1	24 hr	<u>0.9</u>	0.34	l hr	49
Sulfur Dioxide	Canada	Manitoba	0.03	0.01	l yr	-	-	-	11
Sulfur Dioxide	Canada	Manitoba	0.15	0.06	24 hr	0.45	0.17	l hr	11
Sulfur Dioxide	Canada	Montreal	0.06	0.02	l yr	-	-	-	
Sulfur Dioxide	Canada	Newfound- land	0.06	<u>0.02</u>	l yr	-	-	-	
Sulfur Dioxide	Canada	Newfound land	<u>0.29</u>	<u>0.10</u>	24 hr	<u>0.73</u>	<u>0.25</u>	1 hr	
Sulfur Dioxide	Canada	Ontario	0.06	<u>0.02</u>	l yr	-	-	-	11
Sulfur Dioxide	Canada	Ontario	0.29	<u>0.10</u>	24 hr	0.73	0.25	1 hr	11
Sulfur Dioxide	Canada	Saskatche- wan	0.2	0.08	24 hr	<u>1.0</u>	0.4	1 h r	
Sulfur Dioxide	Colombia		0.07	0.03	1 yr	-	-	-	56
Sulfur Dioxide	Czechoslova	kia	<u>0.15</u>	0.06	24 hr	<u>0.5</u>	0.2	30 min	

	Locat	ion		Long 1	Cerm ¹⁶		Short 1	16 Term	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ррт	Averaging time	Foot- notes
Sulfur Dioxide	East Germany	,	0.15	0.06	24 hr	0.5	0.2	30 min	3,4
Sulfur Dioxide	Finland		0.25	0.1	24 hr	0.72	0.28	30 min	17
Sulfur Dioxide	Finland		0.18	0.07	l yr	-	-	-	
Sulfur Dioxide	France		1.0	0.38	24 hr	-	-	-	
Sulfur Dioxide	France	Paris	<u>0.75</u>	0.29	24 hr	-	-		40
Sulfur Dioxide	Hungary		0.5	0.2	24 hr	1.0	0.38	30 min	
Sulfur Dioxide	Hungary		<u>0.15</u>	0.06	24 hr	<u>0.5</u>	0.2	30 min	53
Sulfur Dioxide	Israel		0.26	<u>0.1</u>	24 hr	0.78	0.3	30 min	51
Sulfur Dioxide	Italy		0.38	<u>0.15</u>	24 hr	0.75	0.3	30 min	19
Sulfur Dioxide	Japan		0.1	0.04	24 hr	0.26	<u>0.1</u>	l hr	41
Sulfur Dioxide	Netherland		0.075	0.03	24 hr	-	-	-	21,22
Sulfur Dioxide	Netherland		0.25	0.1	24 hr	-	-	-	21,23
Sulfur Dioxide	Netherland		0.15	0.06	24 hr	-	-	-	24,28

	Locati	ion		Long 1	lerm ¹⁶		Short	Term ¹⁶	
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes
Sulfur Dioxide	Netherland		0.35	0.13	24 hr		-	_	25,28
Sulfur Dioxide	Netherland		0.125	0.05	24 h r	-	-	-	26,28
Sulfur Dioxide	Netherland		0.275	0.1	24 hr	-		-	27,28
Sulfur Dioxide	Poland		0.35	0.13	24 h r	<u>0.9</u>	0.35	20 min	15
Sulfur Dioxide	Poland		0.075	0.03	24 hr	0.25	0.1	20 min	29
Sulfur Dioxide	Romania		0.25	0.1	24 hr	0.75	0.3	20 min	
Sulfur Dioxide	Spain		0.4	0.15	24 hr	0.8	0.3	30 min	18
Sulfur Dioxide	Spain		0.256	0.1	30 days	-	-	-	18
Sulfur Dioxide	Spain		<u>0.15</u>	0.06	l yr	-	-	-	18
Sulfur Dioxide	Sweden		0.25	<u>0.1</u>	24 hr	0.625	0.25	30 min	30
Sulfur Dioxide	Sweden		0.125	0.05	30 days	-	-	-	30
Sulfur Dioxide	Switzerland		<u>0.5</u>	0.2	24 hr	0.75	0.3	30 min	31
Sulfur Dioxide	Switzerland		0.75	0.3	24 hr	1.25	0.5	30 min	32

	Loca	tion		Long 1	Term ¹⁶	···• _	Short 1	l6 Term	
Substance	Country	City or Province	mg/m ³	pp m	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Sulfur Dioxide	Turkey		0,15	0.06	24 hr	-	-	-	33,34
Sulfur Dioxide	Turkey		0.30	0.12	24 hr	-	-	-	33,35
Sulfur Dioxide	USSR		0.05	0.02	24 hr	0.5	0.2	30 min	6
Sulfur Dioxide	United Stat	es	0.08	0.03	1 yr	-	-	-	36
Sulfur Dioxide	United Stat	es	0.365	0.14	24 hr	-	-	-	36,37
Sulfur Dioxide	United Stat	es	<u>1.3</u>	0.5	3 hr	-	-	-	37,38
Sulfur Dioxide	West German	y (VDI 2108)	0.5	0.2	30 min	0.75	0.3	30 min	2,7,47
Sulfur Dioxide	West German	У	0.4	0.15	30 min	0.75	0.3	30 min	2
Sulfur Dioxide	West German	у	0.15	0.06	24 hr	0.5	0.2	30 min	2,54
Sulfur Dioxide	Yugoslavia		0.15	0.06	24 hr	<u>0.5</u>	0.2	30 min	
SULFURIC ACID	East German	у	0.02	-	24 hr	0.05	-	30 min	3,4
Sulfuric Acid	Hungary		0.1	-	24 hr	0.3	-	30 min	
Sulfuric Acid	Hungary		0.1	-	24 hr	0.3	-	30 min	53

.

.

Table 2 (continued). AMBIENT AIR QUALITY STANDARDS OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

	Locatio	n		Long 1	16 Term		Short 7	16 Cerm		
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- note:	
Sulfuric Acid	Israel		0.1	-	24 hr	0.3	-	30 min	10	
Sulfuric Acid	Poland		<u>0.1</u>	-	24 hr	0.3	-	20 min	15	
Sulfuric Acid	Poland		0.05	-	24 hr	0.15	-	20 min	29	
Sulfuric Acid (as H+)	Bulgaria		0.006	-	24 hr	0.006	-	20 min		
Sulfuric Acid (as H+)	Czechoslovaki	8	-	-	-	0.01	-	30 min		
Sulfuric Acid (as H+)	USSR		0.002	-	24 hr	0.006	-	30 min	(
Sulfuric Acid (as H+)	Yugoslavia		0.006	-	24 hr	0.006	-	30 min		
Sulfuric Acid (as H ₂ SO ₄)	Bulgaria		<u>0.1</u>	-	24 hr	0.3	-	20 min		
Sulfuric Acid (as H ₂ SO ₄)	Romania		<u>0.1</u>		24 hr	<u>0.3</u>	-	30 min		
Sulfuric Acid (as H ₂ SO ₄)	USSR		<u>0.1</u>		24 hr	<u>0.3</u>	-	30 min		
Sulfuric Acid (as H ₂ SO ₄)	Yugoslavia		<u>0.1</u>	-	24 hr	<u>0.3</u>	-	30 min		

.

	Locat	ion		Long T	erm ¹⁶		Short 1	Term ¹⁶	
Substance	Country	City or Province	mg/m ³		Averaging time	mg/m ³		Averaging time	Foot note
SUSPENDED PARTICULATE MATTER	Argentina		<u>0.15</u>	-	30 days	-	-	-	10
Suspended Particulate Matter	Bulgaria		0.15	-	24 hr	0.5	-	20 min	
Suspended Particulate Matter	Canada		0.07	-	l yr	-	-	-	5,4 5
Suspended Particulate Matter	Canada		0.12	-	24 hr	-	-	-	
Suspended Particulate Matter	Canada		0.06	-	l yr	-	-	-	5,1 5
Suspended Particulate Matter	Canada	Alberta	0.06	-	l yr	-	-	-	
Suspended Particulate Matter	Canada	Alb er ta	0.1	-	24 hr	-	-	-	
Suspended Particulate Matter	Canada	Montreal	0.8	-	1 yr	-	-	-	
Suspended Particulate Matter	Canada	Montreal	0.25	-	24 hr	-	-	-	
Suspended Particulate Matter	Canada	Manitoba	0.07	-	l yr	-	-	-	5,4
Suspended Particulate Matter	Canada	Manitoba	<u>0.12</u>	-	24 hr	-	-	-	
Suspended Particulate Matter	Canada	Manitoba	0.06	-	1 yr	-	-	-	5,1

•

77

•

	Locatio	n		Long 7	Term16		Short 1	Cerm16	
Substance	Country	City or Province	mg/m ³		Averaging time	mg/m ³		Averaging time	Foot- notes
Suspended Particulate Matter	Canada	Manitoba	<u>0.1</u>	-	24 hr	_	-	-	
Suspended Particulate Matter	Canada	Newfound- land	<u>0.7</u>	-	1 yr	-	-	-	
Suspended Particulate Matter	Canada	Newfound- land	0.12	-	24 hr	-	-	-	
Suspended Particul at e Matter	Canada	Ontario	0.06	-	1 yr	-	-	-	5,11
Suspended Particulate Matter	Canada	Ontario	0.09	-	24 hr	-		-	
Suspended Particulate Matter	Canada	Saskatche- wan	<u>0.15</u>	-	24 hr	-	-	-	48
Suspended Particulate Matter	Columbia		0.1	-	24 hr	-	-	-	56
Suspended Particulate Matter	Czechoslovakia	1	<u>0.15</u>	-	24 hr	0.5	-	30 min	
Suspended Particulate Matter	East Germany		<u>0.15</u>	-	24 hr	<u>0.5</u>	-	30 min	3,4
Suspended Particulate Matter	Finland		<u>0.15</u>	-	24 hr	0.5	-	30 min	17
Suspended Particulate Matter	France	Paris	0.06	-	l yr	-	-	-	40

Table 2 (continued). AMBIENT AIR QUALITY STANDARDS OTHER THAN THOSE FROM
SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

-1 N •

Substance	Location		Long Term ¹⁶			_			
	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Suspended Particulate Matter	France	Paris	<u>0.35</u>	-	24 hr	-	-	-	40
Suspended Particulate Matter	Hungary		0.2		24 hr	-	-	-	
Suspended Particulate Matter	Hungary		<u>0.15</u>	-	24 hr	-	-	-	53
Suspended Particulate Matter	Israel		<u>0.075</u>	-	1 yr	-	-	_	51
Suspended Particulate Matter	Isra el		<u>0.2</u>	-	24 hr	-	-	-	51
Suspended Particulate Matter	Italy		0.3	-	24 hr	0.75	-	2 hr	19
Suspended Particulate Matter	Japan		<u>0.1</u>	-	24 hr	0.2	-	l hr	41
Suspended Particulate Matter	Poland		0.2	-	2 4 hr	0.6	-	20 min	15,5
Suspended Particulate Matter	Poland		0.075	-	24 hr	0.2	-	20 min	29,52

.

Substance	Location		Long Term 16			Short Term ¹⁶			
	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes
Suspended Particulate Matter	Romania		<u>0.15</u>	-	24 hr	0.5	-	30 min	
Suspended Particulate Matter	Spain		<u>0.13</u>	-	1 y r	-	-	-	*
Suspended Particulate Matter	Spain		0.202	-	30 days	-	-	. –	18
Suspended Particulate Matter	Spain		<u>0.3</u>	-	24 hr	0.6	-	30 min	18
Suspended Particulate Matter	Sweden		-	-	-	0.1	-	<u>1 hr</u>	39
Suspended Particulate Matter	Turkey		0.15	-	24 hr	-	-	-	33,34
Suspended Particulate	United States		0.075	-	1 yr	-	-	-	36
Matter Suspended Particulate Matter	United States		<u>0.26</u>	-	24 hr	-	-	-	
Suspended Particulate	United States		0.06	-	1		-	-	38
Matter Suspended Particulate Matter	United States		0.15	-	24 hr				
Suspended Particulate Matter	USSR		0.15		24 hr	<u>0.5</u>	-	30 min	6,39

Substance	Location		Long Term ¹⁶			Short Term ¹⁶			
	City Country Prov	vince mg/m ³	ppm	Averaging time	mg/m ³	ррш	Averaging time	Foot	
Suspended Particulate Matter	West Germany	_	-	-	0.48	-	30 min	2,39	
Suspended Particulate Matter	West Germany	0.1	-	30 min	<u>0.3</u>	-	30 min	2,54	
TAR	Israel	1.0	-	24 hr	3.0		30 min	10	
TETRACHLOROMETHANE	Bulgaria	-	-	-	4.0	-	20 min		
TETRAHYDROFURAN	East Germany	0.2	-	24 hr	0.6	-	30 min	3,	
Tetrahydrofuran	USSR	0.2	0.07	24.hr	0.2	0.07	30 min		
Tetrahydrofuran	West Germany (VDI 2	2306) <u>30.0</u>	10.0	30 min	90.0	30.0	30 min	2,7,	
THIOPHENE	Bulgaria	-	-	-	0.6	0.17	20 min		
Thiophene	East Germany	0.2	0.06	24 hr	0.6	0.17	30 min	3,	
Thiophene	USSR	-	-	-	0.6	0.17	30 min		
Thiophene	Yugoslavia	-	-	-	0.6	0.17	30 min		
TOLUENE	Bulgaria	0.6	0.15	24 hr	0.6	0.15	20 min		

,

	Location			Long Term ¹⁶			Short Term ¹⁶		
Substance	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes
Tolu en e	East Germany		0.6	0.16	24 hr	0.6	0.5	30 min	3,4
Toluene	Hungary		20.0	5.3	24 hr	50.0	13.3	30 min	
Toluene	Hungary		0.6	0.16	24 hr	0.6	0.16	30 min	53
Toluene	USSR		0.6	0.16	24 hr	0.6	0.16	30 min	6
Toluene	West Germany	(VDI 2306)	20.0	5.0	30 min	60.0	<u>15.0</u>	30 min	2,7,9
Toluene	Yugoslavia		0.6	0.16	24 hr	0.6	0.16	20 min	
TOLUENE DI-ISOCYANATE	Bulgaria		0.02	0.0029	24 hr	0.05	0.0071	20 min	
Tolu a ne Di-Isocyanate	East Germany		0.02	0.0029	24 hr	0.05	0.0071	30 min	3,4
Toluene Di-Isocyanate	Romania		0.02	0.0029	24 hr	0.05	0.0071	30 min	
Toluene Di-Isocyanate	USSR		0.02	0.0029	24 hr	0.05	0.0071	30 min	(
Toluene Di-Isocyanate	West Germany	(VDI 2306)	0.007	0.001	30 min	0.021	0.003	30 min	2,7,9
Toluene Di-Isocyanate	Yugoslavia		0.02	0.0029	24 hr	0.05	0.0071	30 min	
TRIBUTYL PHOSPHATE	Bulgaria		_	-	~	0.01	-	20 min	
Tributy1 Phosphate	USSR		0.01	_	24 hr	0.01	-	30 min	i

76

.

Substance	Location			Long Term ¹⁶			Short Term ¹⁶			
	Country	City or Province	mg/m ³		Averaging time	mg/m ³	ррт	Averaging time	Foot- notes	
TRICHLORFON (chlorophos)	USSR		0.02	-	24 hr	0.04	-	30 min	6	
TRICHLOROETHANE	West Germany	(VDI 2306)	<u>30.0</u>	<u>5.0</u>	30 min	90.0	15.0	30 min	2,7,9	
TRICHLORETHYLENE	Bulgaria		<u>1.0</u>	0.17	24 hr	4.0	0.67	20 min		
Trichlorethylene	East Germany		<u>1.0</u>	0.18	24 hr	4.0	0.74	30 min	3,4	
Trichlorethylene	Hungary		30.0	5.6	24 hr	<u>50.0</u>	9.3	30 min		
Trichlorethylene	Hungary		0.2	0.04	24 hr	0.2	0.04	30 min	53	
Trichlorethylene	USSR		1.0	0.18	24 hr	4.0	0.74	30 min	6	
frichlorethylene	West Germany	(VDI 2306)	<u>30.0</u>	5.0	30 min	90.0	15.0	30 m i n	2,7,9	
Trichloret hyl ene	Yugoslavia		1.0	0.18	24 hr	4.0	0.74	30 min		
TRIETHYL AMINE	East Germany		0.05	0.012	24 hr	<u>0.14</u>	0.035	30 min	3,4	
Iriethyl Amine	USSR		0.14	0.035	24 hr	0.14	0.035	30 min	6	
Triethyl Amine	West Germany	(VDI 2306)	0.04	0.01	30 min	<u>0.12</u>	0.03	30 min	2,7,9	
2-4-6-TRIMETHYL ANILIN (Mesidiue)	East Germany		0.003	-	24 hr	0.01	-	30 min	3,4	

e

Substance	Location			Long Term ¹⁶			Short Term ¹⁶		
	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³		Averaging time	Foot- notes
TURPENTINE	West Germany (VDI 2306)		25.0	5.0	30 min	75.0	<u>15.0</u>	30 min	7,8,9
VALERIC ACID (-n)	Bulgaria	Bulgaria		0.003	24 hr	0.03	0.008	20 min	
Valeric Acid (-n)	East Germany	East Germany		0.003	24 hr	0.03	0.008	30 min	3,4
Valeric Acid (-n)	USSR		0.01	0.003	24 hr	0.03	0.008	30 min	6
Valeric Acid (-n)	Yugoslavia		0.01	0.003	24 hr	0.03	0.008	30 min	
VANADIUM PENTOXIDE	Bulgaria		0.002	-	24 hr	-	-	-	
Vanadium Pentoxide	Czechoslovak	Czechoslovakia		-	24 hr	-	-	~	
Vanadium Pentoxide	East Germany		0.002	-	24 hr	-	-	~	3,4
Vanadium Pentoxide	USSR		0.002	-	24 hr	-	-	-	6
Vanadium Pentoxide	Yugoslavia		0.003	-	24 hr	-	-	-	
VINYL ACETATE	Bulgaria		0.2	0.006	24 hr	<u>0.2</u>	0.006	20 min	
Vinyl Acetate	Czechoslovak:	la	0.2	0.006	24 hr	0.2	0.006	30 min	
Vinyl Acetate	East Germany		0.15	0.0045	24 hr	0.4	0.012	30 min	3,4
Vinyl Acetate	Israel		4.0	1.0	24 hr	12.0	3.0	30 min	10

Substance	Loca	tion		Long Term ¹⁶			Short Term16		
	Country	City or Province	mg/m ³	ppm	Averaging time	mg/m ³	ppm	Averaging time	Foot- notes
Vinyl Acetate	USSR		0.15	0.0045	24 hr	0.15	0.0045	30 min	6
Vinyl Acetate	West German	y (VDI 2306)	20.0	<u>5.0</u>	30 min	60.0	<u>15.0</u>	30 min	2,7,9
Vinyl Acetate	Yugoslavia		0.2	0.006	24 hr	0.2	0.006	30 min	
XYLENE	Bulgaria		0.2	0.05	24 hr	0.2	0.05	20 min	
Xylene	East German	у	0.2	0.046	24 hr	0.6	0.14	30 min	3,4
Yylene	Hungary		20.0	4.6	24 hr	50.0	11.5	30 min	
Xylene	Hungary		0.2	0.046	24 hr	0.2	-	30 min	53
Xylene	USSR		0.2	0.005	24 hr	0.2	0.05	30 min	6
Xylene	West German	y (VDI 2306)	20.0	5.0	30 min	60.0	<u>15.0</u>	30 min	2,7,9
Xylene	Yugoslavia		0.2	0.46	24 hr	0.2	0.46	30 min	

FOOTNOTES

- 1. Underlined concentration represents the value listed in legislation, others are approximate conversions.
- 2. West Germany = Federal Republic of Germany.
- 3. East Germany = Democratic Republic of Germany.
- 4. Permissible standard, averaging time is defined as 10-30 minutes.
- 5. Annual mean = annual geometric mean.
- 6. USSR =Union of Soviet Socialist Republics
 - A. If several substances with synergistic toxic properties are present in the air, the maximum permissible concentration (MPC) of the mixture is calculated from the following formula:

$$x = \frac{A}{M_1} + \frac{B}{M_2} + \frac{C}{M_3}$$
(1)

where X is the (relative) MPC; A,B,C, are the concentrations of the substances in the mixture and M_1 , M_2 , M_3 , their respective maximum permissible concentrations.

- B. If formula (1) is applied to the following two, three or four component systems, the value X: should not exceed 1.0 for
 - (a) acetone and phenol
 - (b) SO₂ and phenol
 - (c) SO_2 and NO_2
 - (d) SO_2 and HF
 - (e) SO_2 and sulfuric acid aerosol
- (f) H₂S and "dinyl"
- (g) isopropyl benzene and isopropyl benzene hydroperoxide
- (h) furfural, methanol, and ethanol
- (i) strong mineral acids (sulfuric, hydrochloric, and nitric, concentrations expressed as H+)
- (j) ethylene, propylene, butylene and amylene

should not exceed 1.3 for

FOOTNOTES

acetic acid and acetic anhydride

should not exceed 1.5 for

- (a) acetone and acetophenone
- (b) benzene and acetophenene
- (c) phenol and acetophenone
- C. If (a) H₂S and CS₂, (b) CO and SO₂, (c) phthalic anhydride, maleic anhydride and α-naphthoquinone are present in the mixture, the MPC values of individual substances should not be exceeded.
- D. If ρ -chlorophenyl isocyanate is present together with m-chlorophenyl isocyanate the MPC is determined by the presence of the more toxic substance i.e., of ρ -chlorophenyl isocyanate.
- 7. VDI = Verein Deutscher Ingenieure Kommission Reinhaltung der Luft, VDI Verlag GmbH, Duesseldorf, Federal Republic of Germany.
- 8. Short term standard = short term exposure limit, not to be exceeded more than once in any 8 hrs.
- 9. Short term = Short term exposure limit, not to be exceeded more than once in any 4 hrs.
- 10. Tentative standards.
- 11. Criteria for desirable ambient air quality.
- 12. Also the inorganic compounds, except arsine AsH₃
- 13. Primary and secondary ambient air quality standard.
- 14. In regulations listed as gasoline (< 10% aromatics).
- 15. For protection areas.
- 16. The terms "Short Term" and "Long Term", if not otherwise stated, reflect only short or long averaging times.

FOOTNOTES

- 17. Not national legal norms, communal health councils can enforce them.
- 18. Proposed standards.
- 19. Once in 8 hrs.

- 20. 0.6 mg/m^3 just once during a 30 min. average in a time period of 8 hrs.
- 21. Nationwide standard with low smoke level.
- 22. Percentile of the cumulative frequency distribution of consecutive 24 hr. sample: 50%.
- 23. Percentile of the cumulative frequent distribution of consecutive 24 hr. sample 38%.
 - 24. Soot level <0.03 mg/m^3 , frequency 50%.
 - 25. Soot level $<0.09 \text{ mg/m}^3$, frequency 98%.
 - 26. Soot level <0.04 mg/m³, frequency 50%.
 - 27. Soot level <0.125 mg/m³, frequency 98%.
 - 28. Transitory limit value.
 - 29. Special protection areas.
 - 30. As guideline.
 - 31. During summer March 1 October 31, Guideline.
 - 32. During winter November 1 February 28/29, Guideline.
 - 33. Recommended, but not adopted standard.
 - 34. Residential areas.

FOOTNOTES

- 35. Industrial areas.
- 36. Primary ambient air quality standard.
- 37. Not to be exceeded more than once a year.
- 38. Secondary standard.
- 39. Basis for stack height calculation.
- 40. Special zone in Paris.
- 41. Average of hourly means for 24 hrs. value.
- 83
- 42. AlF₃, NaAlF₆, CaF₂.
- 43. HF, SiF₄.
- 44. NaF, Na₂SiF₆.
- 45. Lead and its compounds, except tetraethyl lead.
- 46. For mixing with animal feed.
- 47. Short term standard not to be exceeded more than once in 2 hours.
- 48. Provisional Maximum Quantities, 1970.
- 49. Maximum acceptable level.
- 50. Proposed National Air Quality Objectives.
- 51. National Air Quality Standard.
- 52. Particle size <20 µm.

FOOTNOTES

- 53. Highly protected and protected areas.
- 54. Proposed Federal Standard (stations of October, 1973).
- 55. Municipal Law.
- 56. Reference Level, set by PAHO and adopted by Colombia.
- 57. As Hexane, for Hydrocarbons emitted by oil refineries

		Location		tandard		
Substance	Country	Province or City	Original Units	ppm	Averaging Time	Foot- notes
Ammonia	Canada	Manitoba		5.0	30 mins.	
Ammonia	Canada	Ontario		5.0	30 mins.	
Ammonia	Philippines			l hr.		
Ammonia	Philippines			10.0	24 hrs.	
Arsenic	Yugoslavia	Serbia	0.003 mg/m ³		24 hrs.	20
Beryllium	Canada	Manitoba	0.01 ug/m3		30 mins.	
Beryllium	Canada	Ontario	0.01 ug/m ³		30 mins.	
Bromine	Canada	Ontario		0.01	30 mins.	
Cadmium Oxide	Canada	Ontario	10.0 µg/m ³		30 mins.	
Carbon Bisulfide	Canada	Manitoba		0.15	30 mins.	
Carbon Bisulfide	Canada	Ontario		0.15	30 mins.	
Carbon Bisulfide	Yugoslavia	Serbia	0.01 mg/m ³	0.003	24 hrs.	
Carbon Bisulfide	Yugoslavia	Serbia	0.03 mg/m ³	0.009	30 mins.	

		Location		tandard		
Substance	Country	Province or City	Original Units	ppm	Averaging Time	Foot- notes
Carbon Monoxide	Canada	Manitoba		5.0 30 mins.		
Carbon Monoxide	Canada	Newfoundland	$\mu g/m^3$	5.0	30 mins.	23
Carbon Monoxide	Canada	Ontario		5.0	30 mins.	
Carbon Monoxide	France			50.0	8 hrs.	25
Carbon Monoxide	France	France		100.0	peak	25
Carbon Monoxide	Italy	Italy		50.0	30 mins.	15
Carbon Monoxide	Italy		22.89 mg/m ³	20.0	8 hr.	
Carbon Monoxide	Philippines			100.0	l hr.	
Carbon Monoxide	Philippines			30.0	24 hrs.	
Carbon Monoxide	Yugoslavia	Serbia	1.0 mg/m ³	0.9	24 hrs.	
Carbon Monoxide	Yugoslavia	Serbia	3.0 mg/m ³	2.7	30 mins.	22
Chlorine	Canada	British Columbia		0.10	24 hrs.	l
Chlorine	Canada	Manitoba		0.10	30 mins.	

_ ___

	<u></u>	Location		andard			
Substance	Country	Province or City	Original Units	ppm	Averaging Time	Foot- notes	
Chlorine	Canada	Newfoundland	320.0 µg/m ³	0.10	30 mins.	23	
Chlorine	Canada	Ontario		0.10	30 mins.		
Chlorine	Canada	Saskatchewan	300.0 µg/m ³	0.10	60 mins.		
Chlorine	Canada	Saskatchewan	30.0 µg/m ³	0.01	24 hrs.		
Chlorine	Italy		0.58 mg/m ³	0.20	30 mins.	15	
Chlorine	Philippines			1.0	l hr.		
Chlorine	Philippines			0.20	24 hrs.		
Chlorine Dioxide	Canada	British Columbia		0.10	24 hrs.	l	
Dustfall	Canada	British Columbia	15 tons/mi ² /mo		2 weeks	2	
Dustfall	Canada	British Columbia	20 tons/mi ² /mo		2 weeks	3	
Dustfall	Canada	Manitoba	15 tons/mi ² /mo		l month		
Dustfall	Canada	Newfoundland	5.25 g/m ²		30 d a ys	4,23	
Dustfall	Canada	Ontario	15 tons/mi ²		30 days		

		Location		tandard			
Substance	Country	Province or City	Original Units	ppm	Averaging Time	Foot- notes	
Dustfall	Canada	Saskatchewan	2.0 mg/cm ²	- <u></u>	30 days		
Dustfall	Yugoslavia	Serbia	300 mg/m ²		24 hrs.		
Ethylene	Philippines			5.0	l hr.		
Ethylene	Philippines			0.20	24 hrs.		
Fluorides	Canada	Manitoba		0.005	30 mins.	5	
Fluorides	Canada	Newfoundland	4.5 µg/m ³	0.005	30 mins.	5 , 23	
Fluorides	Canada	Newfoundland	1.8 µg/m ³	0.002	24 hrs.	5 , 23	
Fluorides	Canada	Ontario		0.005	30 mins.		
Fluorides	Canada	Saskatchewan	3.0 µg/m ³	0.004	24 hrs.	5	
Fluorides	Italy		4.5 ug/m ³	0.006	30 mins.	15	
Fluorides	Italy		0.02 mg/m ³	0.02 6	24 hrs.		
Hydrocarbons	Yugoslavia	Serbia	0.125 mg/m ³		30 mins.	19,22	
Hydrogen Chloride	Canada	Manitoba		0.04	30 mins.		

		Location		Standard		
Substance	Country	Province or City	Original Units	ppm	Averaging Time	Foot- notes
Hydrogen Chloride	Canada	Newfoundland	65.0 µg/m ³	0.04	30 mins.	23
Hydrogen Chloride	Canada	Ontario		0.04	30 mins.	
Hydrogen Chloride	Italy		0.30 mg/m ³	0.20	30 mins.	15
Hydrogen Chloride	Italy		0.05 mg/m ³	0.003	24 hrs.	
Hydrogen Chloride	Philippines			1.0	l hr.	
Hydrogen Chloride	Philippines			0.50	24 hrs.	
Hydrogen Cyanide	Canada	Ontario		1.0	30 mins.	
Hydrogen Fluoride	Yugoslavia	Serbia	0.005 mg/m ³	0.0075	24 hrs.	
Hydrogen Fluoride	Yugoslavia	Serbia	0.02 mg/m ³	0.03	30 mins.	22
Hydrogen Sulfide	Canada	Manitoba		0.03	30 mins.	
Hydrogen Sulfide	Canada	Newfoundland	30.0 µg/m ³	0,02	30 mins.	23
Hydrogen Sulfide	Canada	Ontario		0.03	30 mins.	
Hydrogen Sulfide	Canada	Saskatchewan	70.0 µg/m ³	0.05	60 mins.	
Hydrogen Sulfide	Canada	Saskatchewan	7.0 µg/m ³	0,005	24 hrs.	

		Location		tandard		
Substance	Country	Province or City	Original Units	ppm	Averaging Time	Foot- notes
Hydrogen Sulfide	Italy		0.10 mg/m ³	0.07	30 mins.	15
Hydrogen Sulfide	Italy		0.04 mg/m ³	0.03	24 hrs.	
Hydrogen Sulfide	Philippines			0.20	l hr.	
Hydrogen Sulfide	Philippines			0.10	24 hrs.	
Iron	Canada	Newfoundland	10.0 µg/m ³		30 mins.	23
Iron	Canada	Ontario	10.0 µg/m ³		30 mins.	
Lead	Canada	Manitoba	20.0 µg/m ³	20.0 µg/m ³		
Lead	Canada	Newfoundland	20.0 µg/m ³		30 mins.	23
Lead	Canada	Ontario	20.0 µg/m ³		30 mins.	
Lead	Italy		0.05 mg/m ³		30 mins.	15
Lead	Italy		0.01 mg/m ³		8 hrs.	
Lead	Yugoslavia	Serbia	0.0007 mg/m ³		24 hrs.	
Lead Sulfide	Yugoslavia	Serbia	0.0017 mg/m ³		24 hrs.	
Lime	Canada	Manitoba	20.0 µg/m ³		30 mins.	

		Location		tandard		
Substance	Country	Province or City	Original Units	ppm	Averaging Time	Foot- notes
Lime	Canada	Newfoundland	20.0 µg/m ³		30 mins.	6,23
Lime	Canada	a Ontario $20.0 \ \mu\text{g/m}^3$			30 mins.	
Lime	Philippines	Residential Area	Area 20.0 $\mu g/m^3$		30 mins.	18
Nitric Acid	Canada	Newfoundland	65.0 µg/m ³		30 mins.	23
Nitric Acid	Canada	Ontario	65.0 µg/m ³		30 mins.	
Nitrogen Dioxide	Canada	Saskatchewan	40.0 µg/m ³	0.02	60 mins.	
Nitrogen Dioxide	Canada	Saskatchewan	20.0 µg/m ³	0.01	24 hrs.	
Nitrogen Dioxide	Italy		0.56 mg/m ³	0.30	30 mins.	15
Nitrogen Dioxide	Italy		0.19 mg/m ³	0.10	24 hrs.	
Nitrogen Dioxide	Yugoslavia	Serbia	0.085 mg/m ³	0.047	24 hrs.	
Witrogen Dioxide Yugoslavia		Serbia	0.085 mg/m ³	0.047	30 mins.	22
Nitrogen Oxides	Canada	Newfoundland	510.0 µg/m ³	0.25	30 mins.	7 ,2 3
Nitrogen Oxides	Canada	Ontario		0.25	30 mins.	

_

		Location		andard		<u> </u>
Substance	Country	Province or City	Original Units	ppm	Averaging Time	Foot- notes
Nitrogen Oxides	France		200.0 mg/m ³	<u></u>	24 hrs.	24
Nitrogen Oxides	Philippines			2.0	l hr.	
Nitrogen Oxides	Philippines			0.30	24 hrs.	
Organic Substances	Italy			80.0	30 mins.	16
Organic Substances	Italy			40.0	24 hrs.	
Oxidant	Yugoslavia	Serbia	0.125 mg/m ³		30 mins.	22
Ozone	Philippines			0.30	l hr.	
Ozone	Philippines			0.10	24 hrs.	
Potash	Canada	Saskatchewan	0.3 mg/cm ²		30 days	8
Silica (Free)	Italy		0.10 mg/m ³		120 mins.	15 , 17
Silica (Free)	Italy		0.02 mg/m^3		24 hrs.	17
Silver	Canada	Ontario	1.0 µg/m ³		30 mins.	
Soiling Index	Canada	Saskatchewan	1.5 c.o.h. units		24 hrs.	
Soot	Yugoslavia	Serbia	0.05 mg/m ³		24 hrs.	

		Location		tandard		
Substance	Country	Province or City	Original Units	ppm	Averaging Time	Foot- notes
Soot	Yugoslavia	Serbia	0.15 mg/m ³		30 mins.	22
Sulfur Dioxide	Canada	British Columbia		0.20	24 hrs.	9
Sulfur Dioxide	Canada	British Columbia		0.30	24 hrs.	10
Sulfur Dioxide	Canada	British Columbia		0.50	24 hrs.	11
Sulfur Dioxide	Canada	Manitoba		0.30	30 mins.	
Sulfur Dioxide	Canada	Newfoundland	880.0 µg/m ³	0.30	30 mins.	23
Sulfur Dioxide	Canada	Ontario		0.30	30 mins.	
Sulfur Dioxide	Canada	Saskatchewan	1000.0 µg/m ³	0.40	60 mins.	
Sulfur Dioxide	Canada	Saskatchewan	200.0 µg/m ³	0.08	24 hrs.	
Sulfur Dioxide	Canada	Saskatchewan	4.0 mg/100 cm ²		30 days	12
Sulfur Dioxide	France		250.0 uz/m ³	0.096	24 hrs.	24
Sulfur Dioxide	Italy		0.79 mg/m^3	0.30	30 mins.	15
Sulfur Dioxide	Italy		0.39 mg/m ³	0.15	$2^{l_{4}}$ hrs.	

		Location		tandard		
Substance	Country	Province or City	Original Units	ppm	Averaging Time	Foot- notes
Sulfur Dioxide	Philippine s			2.0	l hr.	
Sulfur Dioxide	Philippines			0.30	24 hrs.	
Sulfur Dioxide	Yugoslavia	Serbia	0.15 mg/m ³	0.058	24 hrs.	
Sulfur Dioxide	Yugoslavia	Serbia	0.50 mg/m ³	0.19	30 mins.	22
Suspended Particulate Matter	Canada	Manitoba	100.0 µg/m ³		30 mins.	
Suspended Particulate Matter	Canada	Newfoundland	100.0 µg/m ³		30 mins.	23
Suspended Particulate Matter	Canada	Ontario	100.0 µg/m ³		30 mins.	14
Suspended Particulate Matter	Canada	Saskatchewan	150.0 µg/m ³		24 hrs.	13
Suspended Particulate Matter	France		150.0 u.g/m ³		24 hrs.	24
Suspended Particulate Matter	Italy		0.75 mg/m ³	120 mins.	15	

		Location	St	andard		
Substance	Country	Province or City	Original Units pr		Averaging Time	Foot- notes
Suspended Particulate Matter	Italy		0.30 mg/m ³		24 hrs.	- <u>-</u>
Suspended Particulate Matter	Philippines		900.0 µg/m ³		l hr.	26
Suspended Particulate Matter	Philippines		300.0 µg/m ³		24 hrs.	26
Suspended Particulate Matter	Philippines		600.0 µg/m ³		l hr.	27
Suspended Particulate Matter	Philippines		200.0 µg/m ³		24 hrs.	27

FOOTNOTES

- 1. As Cl₂
- 2. Objective Level B for Wood Waste Burners Measured at property line (level to which existing installation should be upgraded).
- 3. Objective Level C for Wood Waste Burners Measured at property line (existing installations).
- 4. Equivalent to 15 tons/mi²/month.

% 5. As HF.

- 6. As CaO.
- 7. As NO2.
- 8. As KCl.
- 9. Objective Level A for sulfite pulp mills (new or proposed installations).
- 10. Objective Level B for sulfite pulp mills (level to which existing installation should be upgraded).
- 11. Objective Level C for sulfite pulp mills (existing installations).
- 12. Lead Peroxide Candle (DSIR).
- 13. High Volume Sampler.
- 14. Also the specific limit for permanent asphalt paving plants unless lower concentration in $\mu g/m^3$ is calculated by:

(100) (Tons/hr operating rate) X (% of material passing 200 mesh sieve) (Actual design rate of dryer for 5% moisture content material)

FOOTNOTES (continued)

- 15. Peak concentration allowable once in eight hours.
- 16. As hexane derived from refineries.
- 17. As SiO2.
- 18. Also commercial areas.
- 19. As CH).

- 20. As the metal.
- 21. Ash and inert dust.
- 22. Designated "short term" assumed to be 30 mins.
- 23. Proposed. ppm are "approximate equivalents" of gravimetric standard.
- 24. Basis for stack height calculations.
- 25. Underground parking lots.
- 26. Industrial area.
- 27. Residential area.
- 28. Although these standards have the form of air quality standards, they are standards limiting emission from a source to an amount that will not allow the limits in this table to be exceeded at ground level, usually beyond the property line of the source.

TABLE 4										
	FLUOR	IDES	IN	FORA	GE	STANDARDS	OTH	ER	THAN	
THO SE	FROM	SUBS	SIDI	LARY	JUF	RISDICTION	OF	THE	UNITED	STATES

Country	Province	Standard
Canada	New Foundland	35 ppm (by wt.) individual sample
	Manitoba	35 ppm individual sample
	Ontario	35 ppm
	Manitoba	40 µg/100 cm ² (30 days)
	Ontario	$40 \mu g/100 cm^2$ (30 days)

Locati					
Country	City or Province	Land Use	Original Units	Tons/sq mile/month	Footnotes
Argentina			1.0 mg/cm ² /month		
Canada	Alberta	Residential and recreational area	53.0 mg/100cm ² /month		
Canada	Alberta	Commercial and industrial areas	158.0 mg/100cm ² /month		
Canada	Manitoba	Air basin, avg. 1 month	0.8 mg/cm ² /month		5
Canada	Manitoba	Air basin, avg. 1 month	0.6 mg/cm ² /month		6
Canada	Manitoba	Single point over 1 month	1.5 mg/cm ² /month		5
Canada	Manitoba	Single point over 1 month	1.1 mg/cm ² /month		6
Canada	Newfoundland		7.0 $g/m^2/month$	20.0	
Canada	Newfoundland		4.6 g/m ² /year	13.0	1
Canada	Ontario		tons/sq mile/month	20.0	
Canada	Ontario		tons/sq mile/year	13.0	1
Canada	Saskat chewan		2.0 mg/cm ² /month		

TABLE 5. DEPOSITED PARTICULATE MATTER STANDARDS, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

Locati					
Country	City or Province	Land Use	Original Units	Tons/sq mile/month	Footnotes
Colombia			0.5 mg/cm ² /month		9
Finland					
Lead			10.0 mg/m ² /month		
Chromium			10.0 mg/m ² /month		
Vanadium			10.0 $mg/m^2/month$		
Total			10.0 $g/m^2/month$		
Hungary			200.0 tons/km ² /year		
Hungary		Protected areas	150.0 tons/km ² /year		
Poland		Protected areas	250.0 tons/km ² /year	48.0	
Poland		Special protected areas	40.0 tons/km ² /year	8.0	
Pol <i>a</i> nd		Special protected areas	6.5 tons/km ² /month	15.0	
Romania			200.0 tons/km ² /year		
Spain			200.0 $mg/m^2/day$		2
West Germany	,	General	0.42 $g/m^2/day$		3,4

TABLE 5 (CONTINUED).DEPOSITED PARTICULATE MATTER STANDARDS, OTHER THAN THOSEFROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

n				
City or Province	Land Use Original Units		Tons/sq mile/month	Footnotes
	General	0.65 g/m ² /month		4
	Industrial	0.85 $g/m^2/day$		3,4
	Industrial	1.3 $g/m^2/month$		4
		$0.35 \text{ g/m}^2/\text{day}$		3,8
		$0.65 \text{ g/m}^2/\text{day}$		7,8
	City or Province	City or Province Land Use General Industrial Industrial	City or ProvinceLand UseOriginal UnitsGeneral0.65 g/m²/monthIndustrial0.85 g/m²/dayIndustrial1.3 g/m²/month0.35 g/m²/day	City or ProvinceLand UseOriginal UnitsTons/sq mile/monthGeneral $0.65 \text{ g/m}^2/\text{month}$ Industrial $0.85 \text{ g/m}^2/\text{day}$ Industrial $1.3 \text{ g/m}^2/\text{month}$ $0.35 \text{ g/m}^2/\text{day}$

TABLE 5 (CONTINUED).DEPOSITED PARTICULATE MATTER STANDARDS, OTHER THAN THOSE
FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

TABLE 5 (CONTINUED). DEPOSITED PARTICULATE MATTER STANDARDS, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

FOOTNOTES

- 1 Based on monthly averages.
- 2 Proposed standard.
- 3 Yearly average of the 12 monthly averages.
- 4 Measured by Bergerhoff method, described in VDI guideline 2119.
- 5 Max. acceptable level.
- 6 Max. desirable level.
- 102
- 7 Monthly average.
- 8 Proposed Federal Standards (status of October, 1973).
- 9 Set by PAHO and adopted by Colombia

Location City or		Soilin COH*/1000	g Index ft of Air	Sulfation mg/SO3/100cm ² /day		
Count ry	Province	annual mean	24/hr mean	(30 days)	Footnotes	
Canada	Manitoba	0.4	0.8	0.4	2	
Canada	Manitoba	0.45	1.0	1.0	3	
Canada	New Foundland	0.45	1.0	0.8	1	
Canada	Ontario	0.45	1.0	0.8		
Canada	Saskat chewan	-	1,5	-		
Israel	-	-	1.0	-	4	
Israel	-	-	2.0 (2 hrs)	-	4	

TABLE 6. SOILING INDEX AND SULFATION STANDARDS, OTHER THAN THOSE FROMSUBSIDIARY JURISDICTIONS OF THE UNITED STATES

*Coefficient of haze

FOOTNOTES

- 1 Coefficient of haze per 300 meters
- 2 Max. desirable level
- 3 Max. acceptable level
- 4 National Air Quality Standard

Locatio	n			ugu yan amang kang kang kang kang bang bang kang bang bang bang bang bang bang bang b	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······	
Country	City or Province	SO2 ppm (24 hrs)	Susp. Part. COH (24 hrs)	CO ppm (8 hrs)	ppm (I hr)	Oxidants ppm (1 hr)	Foot- notes
Argentina		1.0 (1 hr) 0.3 (8 hrs)		50.0 100.0 (1 hr)	0.6 0.15 (24 hrs)	0.15	
Canada	Ontario	API <u>></u> 50					1,2
Canada	Toronto	API <u>></u> 50					3
Canada	Montreal	0.35(6 hrs) or 0.25	4.0 (6 hrs) 4.0	30.0 (6 hrs)			4,5 4,5
West Germany	Northrhine- Westphalia & Hessen	2.5 mg/m ³					б
Israel		3.5 1.5 (6 hrs) 2.0 (6 hrs)	10.0 2.5 (6 hrs)				4 4 4
Japan		0.2 (3 hrs) 0.3 (2 hrs) 0.5 (1 hr) 0.15 (48 hrs)	2.0 mg/m ³ (2 hrs)	30.0 (1 hr)	0.5	0.14	

ALERT LEVELS

TABLE 7. EMERGENCY PROCEDURE CONCENTRATIONS LEVELS, OTHER THAN THOSE FROM

SUBSIDIARY JURISDICTION OF THE UNITED STATES

Location	1						
Count ry	City or Province	SO2 ppm (24 hrs)	Susp. Part. COH (24 hrs)	CO ppm (8 hrs)	NO2 ppm (1 hr)	Oxidants ppm (1 hr)	Foot- notes
Argentina		5.0 (1 hr)		30.0 120.0 (1 hr)	1.2 0.3 (24 hrs)	0.25	
Canada	Ontario	API <u>></u> 75					1,2
Canada	Toronto	API <u>></u> 75					3
Canada	Montreal	0.60	1.0 4.0	50.0 (24 hrs)			4,5 4,5
West Germany	Northrhine- Westphalia & Hessen	5 mg/m ³					6
Israel		5.0 2.0 (6 hrs) 3.0 (6 hrs) Operation Stats.	10.0 2.5 (6 hrs)				4 4 4
		7.5 3.0 (6 hrs) 4.5 (6 hrs)	10.0 2.5 (6 hrs)				4 4 4

TABLE 7 (CONTINUED). EMERGENCY PROCEDURE CONENTRATIONS LEVELS, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTION OF THE UNITED STATES

ALARM LEVELS

TABLE 7 (CONTINUED).	EMERGENCY PROCEDURE	CONCENTRATIONS LEVELS, OTHER THAN THOSE FROM	
	SUBSIDIARY	JURISDICTION OF THE UNITED STATES	

Locati	ion			· · · · · · · · · · · · · · · · · · ·			
Country	City or Province	SO2 ppm (24 hrs)	Susp. Part. COH (24 hrs)	CO ppm (8 hrs)	NO2 ppm (1 hr)	Oxidants ppm (1 hr)	Foot- notes
Argentina		10.0 (1 hr)		50.0 150.0 (1 hr)	0.4 (24 hrs)	0.4	
Canada	Ontario	API <u>></u> 100					1,2
Canada	Toronto	API <u>></u> 100					3
Israel		12.5 7.5 (6 hrs)	20.0				4 4
Japan		0.5 (3 hrs) 0.7 (2 hrs)	3.0 mg/m ³ (3 hrs)	50.0 (1 hr)	1.0	0.5	

EMERGENCY LEVELS

TABLE 7 (CONTINUED). EMERGENCY PROCEDURE CONCENTRATIONS LEVELS, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTION OF THE UNITED STATES

FOOTNOTES

1 - Levels are called "first alert", "second alert" and "episode threshold".

- 2 See Eq. A.
- 3 See Eq. B.

4 - If stagnation period is forecasted for further 12 hrs.

5 - SO₂ and COH combined for same averaging time.

6 - If level I is reached and stagnation can be expected for 2 more days.

107

Equations to Table 7

A) API =
$$\frac{SO_2 \text{ index + COH index}}{2}$$

SO_2 index = 84 (SO_2[ppm])^{0.431}
COH index = 26.6 (COH)^{0.576}

B) API = $0.2(30.5(COH) + 126.0(SO_2) \cdot 1.35)$

SECTION VI

APPENDIX B: Tables and Figures - Emission Standards of the World (Tables 8 through 16 and Figures 10-1 through 15-4)

107a

Table ⁸															
EMISSION	STANDARDS	FOR	SPECIFIC	D POI	LUTANTS	ĪN	EFFLUENT	AIR	OR	GAS	FROM	STAT	TONARY	SOURCES,	
	OTHER	THAN	THOSE I	TROM	SUBSID:	LARY	JURISDI	CTION	IS O	F TH	E UNI	ETED	STATES	-	

Substance	Country	Location Province or City	Source	Standard Original Units	mg/m3	Foot- notes
Acid gases	Australia		Mfgr. of sulfuric acid	3.0 g/m ³	3000.0	1,15,16,22
Acid gases	Australia	New South Wales	Mfgr. of sulfuric acid from other than elemental S	9.0 g/m ³	9000.0	1,16
Acid gases	Australia	New South Wales	Mfgr. of sulfuric acid from elemental sulfur	7.0 g/m ³	7000.0	1,16,27
Acid gases	Australia	New South Wales	Mfgr. of sulfuric acid from elemental sulfur	3•5 g/m ³	3500.0	1,16,28
Acid gases	Australia	Queensland	Mfgr. of sulfuric acid by chamber process	2.0 grains/ft3	4576.0	1 , 16
Acid gases	Australia	Queensland	Mfgr. of sulfuric acid by contact process	3.0 grains/ft ³	6864.0	1,16,17,
Acid gases	Australia	Victoria	Mfgr. of sulfuric acid by chamber process	2.0 grains/ft ³	4576.0	1 , 16
Acid gases	Australia	Victoria	Mfgr. of sulfuric acid by contact process	4.0 grains/ft3	9153 . 0	1,16,17,18

		Location		Standar	Foot-		
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes	
Acid gases	Australia	Victoria	Mfgr. of sulfuric acid by contact process	3.0 grains/ft ³	6864.0	1,16,17,1	
Acid gases	Great Britain	ı	Superphosphate fert. Mfgr.	0.1 grains/ft ³	228.8	1 9 11	
Acid g as es	Ireland		Mfgr. of sulfuric acid	4.0 grains/ft ³	9153.0	l	
Acid g as es	New Zealand		Mfgr. of sulfuric acid	5.0 g/m ³	5000.0	1,22	
Acid gases	Singapore		Mfgr. of sulfuric acid	6.0 g/m ³	6 000 .0	1,16,17	
Acrolein	Czechoslovaki	a		3 kg/hr		35	
Aldehydes	West Germany			mg/m ³	20.0	60,64	
Ammonia	Czechoslovaki	.a		3 kg/hr		35	
Antimony	Australia		Any trade, industry or process	mg∕m ³	10.0	4,5,15,16 22,23	
Antimony	Australia	New South Wales	Any trade, industry or process	0.02 g/m ³	20.0	4,5,6, 16,23	

		Location		Standard		Foot-
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Antimony	Australia	Queensland	Any trade, industry or process	0.01 grains/ft ³	22.8	4,5,6, 16,25
Antimony	Australia	Victoria	Any industrial plant	0.01 grains/ft ³	22.8	4,5,6, 16,23
Antimony	Great Britair	1	Less than 5000 cfm	0.05 grains/ft3	114.4	5,43
Antimony	Great Britair	1	More than 5000 cfm	0.02 grains/ft ³	45•7	5 , 43
Antimony	Singapore		Any source	0.02 g/m ³	20.0	4,5,16,2
Arsenic	Australia		Any trade, industry or process	mg/m ³	10.0	4,5, 16,22,23
Arsenic	Australia	New South Wales	Any trade, industry or process	0.02 g/m ³	20.0	4,5,6, 16,23
Arsenic	Australia	Queensland	Any trade, industry or process	0.01 grains/ft ³	22.8	4,5,6, 16,25
Arsenic	Australia	Victoria	Any industrial plant	0.01 grains/ft ³	22.8	4,5,6, 16,23
Arsenic	Czechosl ovkia	L		0.03 kg/hr		35,36

	L	ocation		Standard		Foot-
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Arsenic	Great Britain		Less than 5000 cfm	0.05 grains/ft ³	114.4	5,43
Arsenic	Great Britain		More than 5000 cfm	0.02 grains/ft3	45•7	5,43
Arseni c	Singapore		Any source	0.02 g/m ³	20.0	4,5,16,25
Benzene	Czechoslovakia			24.0 kg/hr		35
Beryllium	Australia		Any trade, industry or process	mg/m ³	0.1	5,12, 16,22
Cadmium	Australia		Any trade industry or process	mg/m^3	3.0	4,6, 16,22,23
Cadmium	Australia	New South Wales	Any trade, industry or process	0.02 g/m ³	20.0	4,5,6, 16,23
Cadmium	Australia	Queensland	Any trade, industry or process	0.01 grains/ft3	22.8	4,5,6, 16,25
Cadmium	Australia	Victoria	Any industrial plant	0.01 grains/ft ³	22.8	4,5,6, 16,23
Cadmium	Great Britain		Maximum-30 lbs/168 hrs	0.017 grains/ft	³ 38.9	4,5

	Location			Standar	Foot-	
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Cadmium	Japan		Cadmium pigment, cadmium carbonate and glass mfgr. copper, lead and cadmium refining	mg/m3	1.0	5,40
Cadmium	Singapore		Any source	0.02 g/m ³	20.0	4,5,16,25
Carbon	West Germany		Electrode Mfgr.	_{mg/m} 3	250.0	60 , 73
Carbon black	Czechoslovaki	a	Amorphous carbon	l.5 kg/hr		35
Carbon dioxide	Italy		Thermal Installations	10% volume	20.0	
Carbon dioxide	Switzerland		0il burners < 3 kg/hr	8.0% volume		58
Carbon dioxide	Switzerland		0il burners 3-9.9 kg/hr	10.% volume		58
Carbon dioxide	Switzerland		0il burners; 10.0 kg/hr	12.0% volume		
Carbon disulfide	Czechoslovaki	a		0.3 kg/hr		35
Carbon monoxide	Australia		Any trade, industry or process	0.5 g/m ³	500.0	16 ,22

		Lo	ocation		Standar	d	Foot-
	Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
1	Carbon monoxide	Czechoslovakia			60.0 kg/hr		35
1	Carbon monoxide	France		Electric generating plants	0.05% volume		
	Carbon monoxide	France		Incinerators	0.1% volume		
	Carbon monoxide	United States		Fluid catalyst regenerator	0.050% volume		51
I	Carbon monoxide	West Germany		Gas burning	mg/m ³	250.0	60,81
I	Carbon monoxide	West Germany (VDI 2117E)		Vaporizer oil burners	0.1% volume		50,81
	Carbon monoxide	Yugoslavia	Zagreb	Heating installations	0.1% volume		
	Chlorine and Chlorine Compounds	Australia		Any trade, industry or process	0.2 g/m ³	200.0	4,5, 16,22
	Chlorine	Australia	New South Wales	Any source	0.2 g/m ³	200.0	16
1	Chlorine	Australia	Queensland	Any trade, industry or process	0.1 grains/ft ³	228.8	16

		Location		Standard		Foot-
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Chlorine	Australia	Victoria	Any industrial plant	0.1 grains/ft ³	228.8	16
Chlorine	Czechoslovak	ia		l.0 kg/hr		35
Chlorine	Great Britai	n		0.1 grains/ft ³	228.8	4
Chlorine	Japan		Ferric chloride, chlorinated ethylene, activated carbon and other chemical mfgr.	mg/m3	30.0	39
Chlorine	Singapore		Any source	0.2 g/m ³	200.0	16
Chlorine	West Germany		Aluminum Reduction	mg/m ³	3.0	60,81
Chlorine	West Germany		Chlorine Mfgr.	mg/m ³	3.0	60,81
Chlorine	West Germ a ny		Chlorine Mfgr.	mg/m3	6.0	60,70,8
Chlorine	W e st Germany		Chlorine Mfgr. Amalgam method	l g/ton Cl		60 , 81
Copper	Australia	Queensland	Any trade, industry or process	0.01 grains/ft ³	22.8	4,5,6, 16,25

	Location			Standar	Foot-	
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Copper	Singapore	₩, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Any source	0.02 g/m ³	20.0	4,5,16,25
Formaldehyde	Czechoslovaki	8.		0.5 kg/hr		35
Fluorine	Australia	New South Wales	Aluminum reduction	0.04 g/m ³	40.0	3,16,27
Fluorine	Australia	New South Wales	Aluminum reduction	0.02 g/m ³	20.0	3,16,28
Fluorine	Australia	New South Wales	Any other process	0.1 g/m ³	100.0	3,16,27
Fluorine	Australia	New South Wales	Any other process	0.05 g/m ³	50.0	3,16,28
Fluorine	Australia	Queensland	Any trade, industry or process	0.05 grains/ft3	114.4	3 ,1 6
Fluorine	Australia	Victoria	Mfgr. of superphosphate, triple-phosphate or aluminum			3 ,1 6
Fluorine	Czechoslovaki	8.	Gaseous inorganic compounds	0.3 kg/hr		35
Fluorine	Japan		Aluminum reduction- discharge ducts	mg/m ³	3.0	

		Location			Standar	Foot-	
	Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
	Fluorine	Japan		Aluminum reduction- roof ve nts	mg/m ³	1.0	
	Fluorine	Japan		Calcium superphosphate mfgr.	mg/m ³	15.0	
911	Fluorine	Japan		Phosphoric acid fertilizer mfgr.	mg/m ³	20.0	
	Fluorine	Japan		Tri-sodium phosphate, phosphoric acid and glass mfgr.	mg/m ³	10.0	38
	Fluorine	Singapore		Any source	0.1 g/m ³	100.0	3,16
	Fluorine	West Germany (VDI 2286)		Aluminum reduction	0.05 g/m3	50.0	50,81
	Fluorine compounds	Australia		Aluminum reduction	0.02 g/m ³	20.0	3 ,15, 16, 22
	Fluorine compounds	Australia		Any other process	0.05 g/m ³	50.0	3,15,16, 22
	Fluorine-inorganic compounds	Australia	New South Wales	Aluminum reduction	0.04 g/m ³	40.0	3 , 16 ,2 7

	La	ocation		Standard		Foot-
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Fluorine-inorganic compounds	Australia	New South Wales	Aluminum reduction	0.02 g/m ³	20.0	3,16, 2 8
Fluorine-inorganic compounds	Australia	New South Wales	Any other process	0.1 g/m ³	100.0	3,16,27
Fluorine-inorganic compounds	Australia	New South Wales	Any other process	0.05 g/m ³	50.0	3,16,28
Fluorine-inorganic compounds	Australia	Queensland	Any trade, industry or process	0.05 grains/ft ³	114.4	3 , 16
Fluorine-inorganic compounds	Australia	Victoria	Mfgr. of superphosphate triple-phosphate or aluminum	0.05 grains/ft ³	114.4	3 , 16
Fluorine-inorganic compounds	Singapore		Any source	0.1 g/m ³	100.0	3 , 16
Heavy metals (total)	Australia		Any trade, industry of process	mg/m ³	10.0	59
Hydrochloric acid	Czechoslovakia		As hydrogen ion	0.1 kg/hr	100.0	35

		Location			Standard		Foot-
	Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
	Hydrochloric acid	West Germany		Mfgr. of hydrochloric acid	mg/m ³	10.0	60 ,8 1
	Hydrogen chloride	Australia	New South Wales	Any process except terra cotta roofing tile	0.4 g/m ³	400.0	16
118	Hydrogen chloride	West Germany		Incinerators (all)	mg/m ³	100.0	60,61,81
	Hydrogen chloride	Great Britain		Alkali (salt cake) works	0.2 grains/ft3	4576.0	
	Hydrogen chloride	Great Britain		Hydrochloric acid works	0.2 grains/ft ³	4576.0	
	Hydrogen chloride	Ireland		Hydrochloric acid works	0.2 grains/ft ³	4576.0	
	Hydrogen chloride	Japan		Ferric chloride, chlorinated ethylene, activated carbon and other chemical mfgr.	mg/m3	80.0	39
	Hydrogen chloride	Singapore		Any source	0.4 g/m ³	400.0	16
	Hydrogen chloride	West Germany (VDI 3451E)		Adiabatic and isothermic absorption	0.025 g/m ³	25.0	50,53,81
	Hydrogen chloride	West Germany (VDI 3451E)		Sulfate methods	0.40 g/m3	400.0	50,53,81

	Location			Standard	Foot-	
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Hydrogen chloride	West Germany (VDI 3451E)		Hydrogen chloride electrolysis	0.10 g/m ³	100.0	
Hydrogen chloride	West Germany (VDI 3451E)		Filling and transfer stations	0.10 g/m ³	100.0	50,53,8I
Hydrogen chloride	West Germany (VDI 3451E)		Zinc chloride mfgr.	0.16 g/m ³	160.0	50,53,8I
Hydrogen chloride	West Germany (VDI 3451E)		Silicon tetrachloride mfrg.	0.20 g/m ³	200.0	50,53,8 <u>5</u>
Hydrogen chloride	West Germany (VDI 3451E)		Vinyl chloride mfgr.	0.17g/m ³	170.0	50,53,8:
Hydrogen chloride	West Germany (VDI 3451E)		\prec chlorpropion acid mfgr.	0.18 g/m ³	180.0	50 ,53, 8:
Hydrogen chloride	West Germany (VDI 3451E)		Sintering crude phosphate	0.35 g/m ³	350.0	50,53,8
Hydrogen chloride	West Germany (VDI 3451E)		Burning chloric organic by-products	0.30 g/m ³	300.0	50 ,53, 8

		Lo	ocation		Standard	1	Foot-
	Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
	Hydrogen chloride	West Germany (VDI 3451E)		Absorption of HCl from collected reaction gases	0.33 g/m ³	330.0	50,53,81
12(Hydrofluoric acid	Australia	New South Wales	Aluminum reduction	0.04 g/m ³	40.0	3,16,27
ö	Hydrofluoric acid	Australia	New South Wales	Aluminum reduction	0.02 g/m ³	20.0	3 , 16 ,2 8
	Hydrofluoric acid	Australia	New South Wales	Any other process	0.1 g/m ³	100.0	3,16,27
	Hydrofluoric acid	Australia	New South Wales	Any other process	0.05 g/m ³	50.0	3,16,28
	Hydrofluoric acid	Australia	Queensland	Any trade, industry or process	0.05 grains/ft ³	114.4	3,16
	Hydrofluoric acid	Australia	Victoria	Mfgr. of superphosphate, triplephosphate or aluminum	0.05 grains/ft ³	<u>,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3,16
	Hydrofluoric acid	Singapore		Any source	0.1 g/m ³	100.0	3 , 16
	Hydrogen fluoride	Great Britain			0.1 grains/ft ³	100.0	7
	Hydrogen fluoride	West Germany		Incinerators, Iron Sintering	mg/m ³	5.0	60,62,81
	Hydrogen fluoride	Japan		Aluminum reduction discharge ducts	mg/m ³	3.0	

	L	ocation		Standar	a j	Foot-
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
lydrogen fluoride	Japan		Aluminum reduction- roof vents	mg/m ³	1.0	
lydrogen fluoride	Japan		Calcium superphosphate mfgr.	mg/m ³	15.0	
Hydrogen fluoride	Japan		Phosphoric acid fertilizer mfgr., Baking Furnace	mg/m ³	30.0	
Hydrogen fluoride	Japan		Tri-sodium phosphate, phosphoric acid and glass mfgr.	mg/m ³	1.0	38
lydrogen fluoride	West Germany		Ceramic Kilns	mg/m3	30.0	60,66,81
lydrogen fluoride	West Germany		Aluminum Reduction	mg/m ³	2.0	60,81
lydrogen fluoride	West Germany		Aluminum Reduction closed furnaces	l kg/ton Al		60 , 81
Hydrogen fluoride	West Germany		Aluminum Reduction open furnaces	0.8 kg/ton Al		60,81
lydrogen sulfide	Australia		Any trade, industry or process	mg/m ³	5.0	16,22

	Ic	ocation		Standar	d	Foot-
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Hydrogen sulfide	Australia	New South Wales	Any trade, industry or process	5.0 ppm	7•5	
Hydrogen sulfide	Australia	Queensland	Any trade, industry or process	5.0 ppm	7•5	
Hydrogen sulfide	Australia	Victoria	Any industrial plant	5.0 ppm	7•5	
Hydrogen sulfide	Canada	British Columbia	Kraft pulp mill recovery stack	5.0 ppm	7•5	30
Hydrogen sulfide	Canada	British Columbia	Kraft pulp mill recovery stack	20.0 ppm	30.0	31
Hydrogen sulfide	Canada	British Columbia	Kraft pulp mill recovery stack	70.0 ppm	105.0	32
Hydrogen sulfide	Czechoslovakia			0.08 kg/hr		35
Hydrogen sulfide	Great Britain			5.0 ppm	7•5	
Hydrogen sulfide	Singapore		Any source	5.0 ppm	7•5	
Hydrogen sulfide	Sweden		Kraft pulp mill recovery furnace	mg/m3	10.0	45

		La	ocation		Standard	1	Foot-
	Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
	Hydrogen sulfide	United States		letroleum refineries	ung/m ³	230.0	51,52
	Hydrogen sulfide	West Germany		Refineries	l g∕m ³	1000.0	60,71,81
123	Hydrogen sulfide	West Germany (VDI 2110)		Waste coke oven gas	1.5 g/m ³	1500.0	50,5 ¹
	Hydrogen sulfide and compounds	West Germany		Coke oven gas	1.5 g/m ³	1500.0	60,72,81
	Lead	Australia		Any trade, industry or process	mg/m3	10.0	4,5,6 16,22,23
	Lead	Australia	New South Wales	Any trade, industry or process	0.02 g/m ³	20.0	4,5,6, 16,25
	Lead	Australia	Queensland	Any trade, industry or process	0.01 grains/ft ³	22.8	4,5,6, 16,25
	Lead	Australia	Victoria	Any industrial plant	0.01 $grains/ft^3$	22.8	հ,5,6, 16,23
	Lead	Czechoslovakia		Except tetraethyl lead	0.007 kg/hr		35

	Location			Standard		Foot-
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Lead	Great Britain		Up to 3000 cfm of cxlaust gas	0.05 grains/ft ³	114.1	Σį
Lead	Great Britain		3000-10,000 cfm	0.05 grains/ft ³	114.4	⁾ 1,8
Lead	Great Britain		10,000-140,000 cim	0.01 grains/ft ³	22.8	4,9
Lead	Great Britain		over 140,000 cfm	0.005 Grains/ft3	11.4	⁾ +,10
Lead	New Zealand			mg/m ³	100.0	5,22
Lead	Japan		Refining copper, lead or zinc-blast and sintering furnaces	mg/m ³	30.0	5
Lead	Japan		Glass afgr. using lead oxides, baking furnace	.ng/m ³	20.0	5
Lead	Japan		Pipe, sheet, wire, pigment and storage battery mfgr. and secondary refining	m€/m ³	10.0	5
Lead	Japan		Refining copper, lead, and zinc-other furnaces	mg/m ³	10.0	5
Lead	Singapore		Any source	0.02 g/m ³	200.0	4,5,16,

		Location		Standar	đ	Foot-
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Jaiganese	Czechoslovaki	a	As MnO ₂	0.1 kg/hr		35
Mercury	Australia		Any trade, industry of process	mg/m ³	3.0	4,5,6, 16,22,23
Mercury	Australia	New South Wales	Any trade, industry or process	0.02 g/m ³	20.0	4,5,6, 16,23
Mercury	Australia	Queensland	Any trade, industry or process	0.01 grains/ft ³	22.8	4,5,6, 16,25
Mercury	Australia	Victoria	Any industrial plant	0.01 grains/ft ³	22.8	4,5,6, 16,23
Mercury	Czechoslovaki	a	Metallic	0.003 kg/hr		35
Mercury	Singapore		Any source	0.02 g/m ³	20.0	4,5,16,25
Mercury	Sweden		Ventilation air from chlorine mfgr.	0.001 kg/ton		15
Mercury	Sweden		Hydrogen vented from chlorine mfgr.	0.0005 kg/ton		15

Substance	Location Country Province or City		Source	Standard		Foot-	
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes	
Nickel	Australia		Any trade, industry or process	mg/m ³	20.0	4,5,12,13, 16,22	
Nickel carbonyl	Australia		Any trade, industry or process	mg/m ³	0.5	4,12, 16,22	
Ŋitric acid	Australia		Nitric or sulfuric acid mfgr.	1.0 g/m ³	1000.0	2,15,16,22	
Nitric acid	Australia		Any other process except gas-fired power plants	0.5 g/m ³	500.0	2,15,16,22	
Nitric acid	Australia	New South Wales	Nitric or sulfuric acid mfgr.	4.5 g/m ³	4500.0	2,16	
Nitric acid	Australia	New South Vales	Any other process	2.5 g/m ³	2500.0	2,16	
Mitric acid	Australia	Queensland	Nitric acid mfgr.	2.0 grains/ft3	4500.0	2,16	
Nitric acid	Australia	Queensland	Process other than nitric or sulfuric acid mfgr.	1.0 grains/ft ³	2288.3	2,16	
Nitric acid	Australia	Victoria	Nitric or sulfuric acid mfgr.	2.0 grains/ft3	4500.0	2,16	

.

		Location		Standar	Foot-	
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Nitric acid	Australia	Victoria	Any other proce ss	1.0 grains/ft ³	2288.3	2,16
Nitric acid	Czechoslovak	ia	As Hydrogen ion	0.1 kg/hr		35
Nitric acid	Singapore		Nitric acid mfgr.	4.0 g/m ³	4000.0	1,16
Nitric acid	Singapore		Any other proce ss	2.0 g/m ³	2000.0	1,16
Nitrogen oxides	n oxide s Czechoslovakia	ia	As NO ₂	3.0 kg/hr		35
Nitrogen oxides	Australia		Nitric or sulfuric acid mfgr.	1.0 g/m ³	1000.0	2,15,16
Nitrogen oxides	Australia		Gas-fired power plants	0.35 g/m3	350.0	2,15,11,
Nitrogen oxides	Australia		Any other proce ss	0.5 g/m ³	500.0	2,15,16,
Nitrogen oxides	Australia	New South Wales	Nitric of sulfuric acid mfgr.	4.5 g/m ³	4500.0	2,16
Nitrogen oxides	Australia	New South Wales	Any other process	2.5 g/m ³	2500.0	2,16
Nitrogen oxides	Australia	Queensland	Nitric acid mfgr.	2.0 grains/ft ³	4576 .0	2,16

		Location		Standar	Foot-	
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Nitrogen oxides	Australia	Queensland	Process other than sulfuric or nitric acid mfgr.	1.0 grains/ft ³	2288.3	2,16
Nitrogen oxides	Australia	Victoria	Nitric or sulfuric acid mfgr.	2.0 grains/ft ³	4576.6	2 , 16
Nitrogen oxides	Australia	Victoria	Any other process	1.0 grains/ft ³	2288.3	9 1
Nitrogen oxides	Great Britain	ı		1.0 grains/ft ³	2288.3	2,16
Nitrogen oxides	Great Britain	ı	Nitric acid mfgr.	10000 ppm	1800.0	2,14
Nitrogen oxides	Japan		Boiler			41
Nitrogen oxides	Japan		Metal heating furnaces ≥10,000 m ³ /hr ga s	200 ppm	360.0	65,76
Nitrogen oxides	Ja pan		Metal heating furnaces 240,000 m ³ /hr gas	220 ppm	396.0	65,77,7
Nitrogen oxides	Japan		Heater for petroleum and petroleum industry ≥10,000 m ³ /hr gas	170 ppm	306.0	76,79
Nitrogen oxides	Japan		Heater for petroleum and petroleum industry 240,000 m ³ /hr gas	210 ppm	378.0	77,78,7

	L	ocation		Standard	Foot-	
Substance	Country	Province or City	Source	Original Units	د mg/m	notes
Nitrogen oxides	Japan		Nitric acid production ≥10,000 m3/hr gas	200 ppm	360.0	76
Nitrogen oxides	Japan		Nitric acid production 240,000 m ³ /hr gas	200 ppm	360.0	77 ,8 8
Nitrogen oxides	Singapore		Nitric acid mfgr.	4.0 g/m3	4000.0	1 ,1 6
Nitrogen oxides	Singapore		Any other proc ess	2.0 g/m ³	2000.0	1 ,1 6
Nitrogen oxides	United States		New gas fuel power plants	0.2 lb/MBTU		
Nitrogen oxides	United States		New liquid fuel power	0.3 lb/mbtu		
Nitrogen oxides	United States		New solid fuel power plants	0.7 lb/MBTU		
Nitrogen oxides	United States		New nitric acid plants	3.0 lb/ton acid		
Nitrogen oxides	West Germany		Gas burning units	mg/m ³	400.0	60 ,8 1
Nitrogen oxides	West Germany		Mfgr. of nitric acid	lg/m ³	1000.0	60,67,
Nitrogen oxides	West Germany		Mfgr. of nitric acid	0.7 g/m ³	100.0	60,68, 81

	Lc	ocation		Standar	d	Foot-
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Nitrogen oxides	West Germany (VDI 2295)		Nitric acid mfgr.	4.0 g/m ³	¹ 4000.0	50,55,81
Nitrogen oxides	West Germany (VDI 2295)		Nitric acid high pressure plant	3.0 g/m ³	3000.0	50,81
Organic compounds	West Germany					60,63,81
Organic compounds	West Germany		Incineration of fluids	mg/m ³	50.0	60,65,81
Phenol	Czechoslovakia			3.0 kg/hr		35
Phosphoric acid	Australia	Victoria	Any industrial plant	0.2 grains/ft ³	457.6	16,21
Phosphorus pentoxide	Australia	Victoria	Any industrial plant	0.2 grains/ft ³	457.6	16,21
Silicon fluoride	Japan		Aluminum reduction-discharge ducts	mg/m ³	3.0	
Silicon fluoride	Japan		Aluminum reduction-roof vents	mg/m ³	1.0	
Silicon fluoride	Japan		Calcium superphosphate mfgr.	mg/m ³	15.0	
Silicon fluoride	Japan		Phosphoric acid fertilizer mfgr.	mg/mJ	20.0	

		Location		Standar	<u> </u>	Foot-
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Silicon fluoride	Japan		Tri-sodium phosphate, phosphoric acid and glass mfgr.	mg/m ³	10.0	38
Sulfur compounds	Canada	Manitoba	Any process	0.2% volume		34
Sulfur compounds- bivalent	Canada	British Columbia	Kraft pulp mill recovery stack	0.14 lbs/ADT		29 , 30
Sulfur compounds bivalent	Canada	British Columbia	Kraft pulp mill recovery stack	0.64 lbs/ADT		29,31
Sulfur compounds- bivalent	Canada	British Columbia	Kraft pulp mill lecovery stack	2.24 lbs/ADT		29,32
Sulfur compounds- bivalent	Canada	British Columbia	Kraft pulp mill-other	0.4 lbs/ADT		29,30
Sulfur compounds- bivalent	Canada	British Columbia	Kraft pulp mill-other	0.7 lbs/ADT		29,31
Sulfur compounds- bivalent	Canada	British Columbia	Kraft pulp mill-other	1.5 lbs/ADT		29 , 32
Sulfur dioxide	Brazil	Santo Andre		200.0 ppm	520.0	

		Location		Standar	d	Foot-
Substance	Country	Province or City	Source	Original Units	mg/m ³	note s
Sulfur dioxide	Brazil	Sao Bernardo do Campo		200.0 ppm	520.0	
Sulfur dioxide	Brazil	Sao Coetano d e Sul		200.0 ppm	520.0	
S ulfur dioxide	Canada	British Columbia	Kraft pulp mill recovery stack	200.0 ppm	520.0	30,33
Sulfur dioxide	Canada	British Columbia	Kraft pulp mill recovery stack	250.0 ppm	ώ 50₊ υ	31 ,3 3
Sulfur dioxide	Canada	British Columbia	Kraft pulp mill recovery stack	300.0 ppm	780.0	32,33
Sulfur dioxide	Czechoslovaki	a				37
Sulfur dioxide	East Germany					49 , 82
Sulfur dioxide	France		Space heating sources Smokeless zones 1&2	2.0 g/10 ⁴ cal (as S)		83
Sulfur dioxide	Great Britair	1	Sulfuric acid concentration	1.5 grains/ft ³	3432.4	l
S ulfur dioxide	Great Britain	1	New contact sulfuric acid plants	0.5% of the sulfur burned		

		Ix	ocation		Standard	Foc
	Substance	Country	Province or City	Source	Original Units me	7m ³ not
	Sulfur dioxide	Great Britain		Old sulfur-burning acid plants	2% of the sulfur burned	
133	Sulfur dioxide	Great Britain		Old sulfuric acid plants- other than sulfur burning	4.0 grains/ft ³ .15	3.2 1
•	Sulfur dioxide	Italy		Heating plants	0.20% volume	74
	Sulfur dioxide	Japan				46
	Sulfur dioxide	Spain	Madrid	Home heating furnaces- solid fuels	0.25% volume	
	Sulfur dioxide	Spain	Madrid	Home heating furnaces- liquid fuels	0.20% volume	
	Sulfur dioxide	Sweden		New sulfuric acid plants	5 kg/ton acid	47
	Sulfur dioxide	Sweden		Existing sulfuric acid plants	20.0 kg/ton acid	47
	Sulfur dioxide	Sweden		Ammonia mfgr.		48
	Sulfur dioxide	Sweden		New sulfite pulp mills	20.0 kg/ton pulp	
	Sulfur dioxide	Sweden		Existing sulfite pulp mills	30.0 kg/ton fuel	

	Ŀ	ocation		Standard	Foot-	
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Sulfur dioxide	Sweden		Oil steam-electric power plants over 300 mw	20.0 kg/ton fuel		
Sulfur dioxide	United States		New liquid fuel power plants	0.8 lb/MBTU		
Sulfur dioxide	United States		New solid fuel power plants	1.2 lb/MBTU		
S ulfur dioxide	West Germany		Sulfur mfgr.	l ton/hr		0 , 81
Sulfur dioxide	West Germany		Sulfuric acid (100%)	mg/m ³	30.0	60,81
Sulfur dioxide	West Germany		Gas burning units	ing/m ³	50.0	0,81
Sulfur dioxide	West Germany		Non-ferrous rough metal processing	3 g/m3	30 0 0,0	60,81
Sulfur dioxide	Mest Germany (VDI 2110)		Waste coke oven gas	2.54 g/m ³	2540.0	50 , 81
Sulfur dioxide	West Germany (VDI 2110)		Waste coke oven gas	0.59 g/m ³	500.0	50,56,8
Sulfur dioxide	West Germany (VDI 2110)		Sulfuric acid (100%) mfgr.	1.5 g/m ³	1500.0	50,81

13h

		Lc	ocation		Standar	đ	Foot-
	Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Su	lfur oxides	Australia	Victoria	Industrial plants	0.27 lbs/MBTU		1,15,16
	lfuric acid	Australia		Any trade industry or process	0.1 g/m ³	100.0	22,26
л Л Su	lfuric acid	Australia	New South Wales	Any trade, industry or process	0.2 g/m ³	200.0	1,16,26, 27
Su	lfuric acid	Australia	New South Wales	Any trade, industry or process	0.1 3/ 3	-0.0	1,16,26 28
Su	lfuric acid	Australia	Queensland	Processes other than combustion or sulfuric acid mfgr.	0.1 grains/ft ³	228.8	1,16,26
Su	lfuric acid	Australia	Victoria	Processes other than combustion or sulfuric acid mfgr.	0.1 grains/ft ³	228.8	1,16,24
S u	lfuric acid	Czechoslovakia		As hydrogen ion	0.1 kg/hr		35
Su	lfuric acid	Singapore		Processes other than combustion or sulfuric acid mfgr.	0.2 g/m ³	200.0	1,16,26

	L	ocation		Standard	Foot-	
Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
Sulfuric acid	United States		New sulfuric acid plants	0.15 lb/ton acid		44
Sulfuric acid	West Germany (VDI 2298)		$SO_3 \& H_2SO_4$ mfgr.	mg/m ³	5.0	50,81
Sulfuric acid	West Germany (VDI 2298)		$SO_3 \& H_2SO_4 mfgr.$	2 kg/ton acid		50,81
Sulfur trioxide	A ustr a lia		Any trade, industry or process	0.1 g/m ³	100.0	1,15,10 22,26
Sulfur trioxide	Australia	New South Wales	Any trade, industry or process	0.2 g/m ³	200.0	1,16,20 27
Sulfur trioxide	Australia	New South Wales	Any trade, industry or process	o.l g/m ³	100.0	1,16,20 28
Sulfur trioxide	Australia	Queensland	Processes other than combustion or sulfuric acid mfgr.	0.1 grains/ft ³	228.8	1,16,20
Sulfur trioxide	Australia	Victoria	Processes other than combustion or sulfuric acid mfgr.	0.1 grains/ft ³	228.8	1,16,2

		Lo	cation		Standard	1	Foot-
	Substance	Country	Province or City	Source	Original Units	mg/m ³	notes
	Sulfur trioxide	Singapore		Processes other than combustion or sulfuric acid mfgr.	0.2 g/m ³	200.0	1 , 16, 2 6
ц	Sulfur trioxide	Sweden		New sulfuric acid plants	0.5 kg/ton acid		47
7	Sulfur trioxide	Sweden		Existing sulfuric acid plants	0.8 kg/ton acid		47
	Sulfur trioxide	West Germany (VDI 2298)		$SO_3 \& H_2SO_4$ mfgr. contact method	0.4 kg/ton aci		50,57,81
	Trichloraethylene (including Perchlor-)	West Germany	Northrhine- Westphalia	Dry cleaning	n.g/m ³	200.0	81

Table 8

EMISSION STANDARDS FOR SPECIFIC POLLUTANTS IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

- 1. As SO3
- 2. As NO₂
- 3. As hydrofluoric acid
- 4. As the element
- 5. Also compounds of the element

- 6. Also limit for addition of each heavy metal or compound expressed as the metal in each case
 - 7. As SO_3 equivalent in original units
 - 8. One hundred lb/week mass emission limit
 - 9. Four hundred 1b/week mass emission limit
- 10. One thousand lb/week mass emission limit
- 11. Or efficiency of condensation of acid gases greater than 99%
- 12. Tentative standard only
- 13. Except Nickel Carbonyl
- 14. And the emission shall be colorless
- 15. Intended for application to new plants
- 16. STP at O^o and 1 atmosphere (dry)

Table 8

EMISSION STANDARDS FOR SPECIFIC POLLUTANTS IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

- 17. Discharge free from persistent mist
- 18. Plants which came into operation before January 1, 1965
- 19. Plants which came into operation after Junuary 1, 1965
- 20. Emission shall be substantially free from persistent mist
- 21. As P₂0₅
- 22. National guidelines for new plants
 - 23. Total of antimony, arsenic, cadmium, lead, mercury or their compounds may not exceed this limit
 - 24. Total acidity, expressed as SO₃, not to exceed this limit
 - 25. Total of antimony, arsenic, cadmium, copper, lead, mercury or their compounds not to exceed this limit
 - 27. Plants for which applications for approval were made before January 1, 1972
 - 28. Plants for which application for approval were made after January 1, 1972
 - 29. ADT Ton of air-dried screened pulp produced
 - 30. Objective level A Average value for 24 hour period
 - 31. Objective level B Average value for 24 hour period
 - 32. Objective level C Average value for 24 hour period
 - 33. Every eight hours but preferably 8-hour composite 3 times a day

- 34. As SO2
- 35. Emission rate above which it is necessary to submit a report to the government: Where discharge is for less than 1 hour, there is a proportionate increase in emission rate permissible without such reporting
- 36. Inorganic compounds except arsenic
- 37. See Table 8-1
- 38. Glass manufacture using fluorite or sodium silicofluorate as raw materials
- 39. Includes chlorine quick cooling for chlorinated ethylene manufacture
- 40. Glass manufacture using cadmium sulfide or carbonate as raw materials
- 41. See Table 8-2
- 42. As H2S
- 43. As the trioxide
- 44. As H₂SO4
- 45. Winety nime per cent of the time per month for new units, 90% for existing units; also

Concentration	in	stacl	s gas			1	10,000
Concentration	at	odor	threshold	and the second sec	$a\tau$	least	10,000

46. See Table 8-3

Table 8

EMISSION STANDARDS FOR SPECIFIC POLLUTANTS IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

- 47. Sulfur or pyrite as raw material
- 48. Equipment for releasing sulfur required
- 49. See Table 8-5, Table 8-6
- 50. Verein Deutscher Ingenieure
- 51. Proposed
- 52. Unless burned to SO_2 in a manner that prevents release of SO_2 to atmosphere
 - 53. Wet
 - 54. Other sulfuric compounds 500 mg/m^3
 - 55. Undiluted tailgas
 - 56. By using partly desulfured coke oven gas
 - 57. At least 99% SO2 has to be recycled
 - 58. As guideline
 - 59. Addition of each metal or compound expressed as the metal in each case
 - 60. Proposed Federal Standard (status of October, 1973)
 - 61. Applies to sources with 3 kg/hr Hydrogen chloride or more
 - 62. Applies to sources with 150 g/hr Hydrogen fluoride or more

Table 8

EMISSION STANDARDS FOR SPECIFIC POLLUTANTS IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

- 53. See Table 8-7
- 64. As Formaldehyde
- 65. 11% volume O_2 in gas
- 66. If diffusion conditions are unfavorable 5 mg/m^3 F
- 67. During 95% of production time per year standard shall be met; during 5% of production time per year 1.5 g/m³ shall not be exceeded.
- 68. For units with process pressures above 4.5 bar
- 59. During 75% of production time per year standard shall be mer; during 5% or production time per year, 0.9 g/m³ shall not be exceeded.
- 70. If complete liquification
- /l. If $\rm H_2S$ concentration 10% volume, gases have to be treated or burned. After treatment limit is 2 mg $\rm H_2S/m^3$
- 72. An hourly average, other sulfuric compound, 0.5 mg/m^3
- 73. With 8% volume COp
- 74. For thermal installations burning liquid fuels with viscosity > 5° Engler and > 4% S
- 75. See Table 8-2

Table 8

EMISSION STANDARDS FOR SPECIFIC POLLUTANTS IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICITONS OF THE UNITED STATES

- 76. For facilities to be constructed
- 77. For facilities already constructed
- 78. Transitional period ends August 1975.
- 79. With 6% volume Op in stack gas
- 80. Transitional period ends August 1976
- 143
- 81. West Germany = Federal Republic of Germany
- 82. East Germany = Democratic Republic of Germany
- 83. Includes areas in: Paris;Lille,La Madelene, Loos, Lomme, Hauborlin, Roubaix, Tourcoing, Croix Wasquehal, Wattrelos, Villeurbanne

1 BTU = 0.252 kcal1th = 1000 kcal

TABLE 8-1 PERMISSIBLE EMISSION -Czechoslovakia

	Pe	Permissible emission in kg/hour							
Stack height ^e	From combu	suon of fuel	Multipher for K _{ma} for other harmful						
(meters)	Fly ash	SO2	substances ^{b,c}						
7	2.5	2	4						
8	3	2.3	4.6						
10	4	3.2	6.4						
12	5	4.2	8.4						
14	7	5.3	10.6						
16	9	6.8	13.6						
18	11.4	8.4	16.8						
20	14	10	20.0						
25	21	13.5	27.0						
30	31	22.5	45.0						
3 5	42	32.5	65.0						
40	55	46	92.0						
45	70	60	120.0						
50	84	82.5	165.0						
55	110	100	200						
60	130	122	245.0						
65	160	145	290.0						
70	192	170	34 0.0						
75	225	195	390.0						
80	260	227	455						
85	290	257	514						
90	32 5	295	590						
95	360	335	670						
100	400	375	750						
110	490	900	930						
120	580	1425	1130						
130	675	1950	1340						
140	785	2475	1540						
150	900	3000	1790						
160	1010	3555	2060						
170	1130	4110	2320						
180	1270	4665	2600						
190	1400	5220	2890						
200	1550	5779	3200						
220	1820	6355	3840						
240	2110	6930	4500						
260	2400	7510	5160						
280	2700	8085	5820						
300	3000	8665	6500						

Footnotes:

^aWhere the harmful substances are discharged through two or more chimneys situated within the area of a circle of 1 km in diameter, the chimneys of one and the same establishment are regarded as one chimney. For varying heights of chimneys, the method of calculation shall be established by the Ministry of Forest Administration and Water Conservation in a work instruction manual.

^b For substances listed for Czechoslovakia in Table II, " K_{max} " is the concentration for 30-minute averaging time; e.g., for ammonia, $K_{max} = 0.3 \text{ mg/m}^3$. Therefore the permissible emission of ammonia from a 100-m stack is $750 \times 0.3 = 225 \text{ kg/hour}$.

^c Where the discharge is for less than 1 hour, there is a proportionate reduction in allowable emission in kilograms.

TABLE 8-2 EMISSION STANDARDS FOR NITROGEN OXIDES FROM STATIONARY SOURCES -Japan

	% Oxygen	Emission Sta	andard-ppm(b)
Type of Source	in flue gas used as computation basis (a)	New Plants	Existing Plants
Nitric Acid Plants	(c)	200	200
Boiler Furnaces		> 40,000 $\frac{m^3}{h^r}$ flue gas	>100,000 m ³ /hr flue gas
Gas-fired	5	130	170
Coal-fired >5000Kcal	6	480	600
Coal-fired ₹5000Kcal	6	480	750
Oil-fired	4	180	230
Tar-fired	4	180	280
Other Furnaces		>10,000 m ³ /hr flue gas	<pre>>40,000 m³/hr flue gas</pre>
Metal Heating	11	200	220
Petroleum Heating	6	170	210

(a) Computed NO_x concentration = Measured NO_x concentration $\left\{ \frac{21-\% O_2 \text{ from column}}{21-\text{Actual } \% O_2} \right\}$

(b) NO_x measured by JIS Method K 0104, time-averaged where emission varies extremely with time. Nitric acid plants allowed 3 years for compliance; all others - 2 years

(c) No computation required

TABLE 8-3 EMISSION STANDARDS FOR SULFUR OXIDES FROM STATIONARY SOURCES - JAPAN Allowable Emission in m³/hr STP = 10^{-3} (k)(effective stack height in m) STP = 0°C and 1 atmosphere pressure

Ordinary	Feriod	1 1963.12.1	Feriod	11 1970.2.1 -	Period III 1971.	Period	IV 1072.1.5 -	Period	v 1973.1.1
Renk	K value	District	K value	District	Added dis.T13	K VALUE	Destruct	X valuo	Districi
1	(ppm) 20.4 (0.055)	Tokyo A, Yokohama Kawanaki, Tokke- ichi, Ozaka A, Kobo Amagasaki	11.7 (0.020)	Токур А, Yokohama, Коминика, Токка- ichi, Сики А, Бора, Азадирикі	Tokosula. Inkresuka Kawanishi	7.01 (0.012)	Takyo A, Yokohama, Kawasaki oto, Yokraichi, Caska J, Kobe, Amagalaki etc.	6.42 (0.011)	Tokyo A, Yokobama Kuansah, etc., Nacoya, etc., Tobkaichi, Oaska A, Kobo, A.agnauki, etc.
2	26.3 (0.045)	Chiba, Ichihara, Fuji, Negoya, Osaka B, Kurashiki, Northern Kyuohu	12.8 (0.022)	Kashimo, Chiba Ichihara, Kujashiki	Akita, Toyohaahi ote., Handa ete., Kuusoka, Fubu- yama	7.59 (0.013)	Chibe, Ichihare etc., Fuja etc., Nacoya etc., kurachiki, Mizu- shime District	7.59 (0.013)	Karaguchi, Haio- gnya, etc., Criba, Ichinhra etc., Funda etc., Handa etc., Hiroja, Akneha etc., Wakayaan, Kainan etc., Kurewhiki, Misuwhian etc., Northern Kyuchu
3	29.2 (0. 0 50)	Muroran, Kanalahi, Hitachi, Kwequchi, Hatogow, Nigeta, Toyama, Tařacka, Xyoto, Vakayama, Kalnan, Kure, Otake, Ube, Onda, Tokuyasa, lvekuni, Nihama, Saijo, Omuta, Nobeoka	14.0 (0.024)	Yuroran, Fuji Naçoya, Eimoji, Wakaynag, Kallan, Northern kyushu, Oita	Tomakomai, lwaki, Anacka, Takasaki, Anacka Karukame, Salaide, Kishima, Kawanos	9.34 (0.016)	Sapioro, Muroraa, Kawaguchu, Hato- gewa etc. Kyotu, Habugi, Areshi etc. Wakugesa, Kuinaa, Karathuku and other districts, Nortern Kyushu, Oita	9.34 (0.016)	Sapporo, Kuroran, Shiziru, Kyoto, Oaska F, Kurachikh and ottor districto, Kasuoka, Bisen, Fukuyama, Otale, Ube, Onoda, Toku- yame etc., Irakudi, Kurukane, Sakaide, Omuta, Karata, Arao, Oata
4			15.8 (0.027)	Sapporo, Kavaguchi, Aatogaya, Kyoto	Soka, Marsbi, Utuundiya, Tokusbiza, Anan	11.7 (0.020)	Kashuma etc., Tolyo T, hilgata, Toyoma, Takaoka, Osaka B, Otake, Ube, Oroda, Iva- kuni, Nihera, Saijo, Couta, Karita, Arao	11.7 (0.020)	Tonakompi, Sendai, Shiqoyan etc., Akia, Yaki, Hitachi, Kashar, Takasaki, Arnaka, Tokyo H, Niigrta, Toynan, Taksoka, Toyna, Taksoka, Toyna, Taksoka, Toyna, Taksoka, Toyna, Taksoka, Sur, Shisonoseki, Rikojina, Tokyunina etc., Niihama, Saji Kobeca.
5			17.5 (0.030)	Hitachi, Toryo B, Osaka b, Otare, Iwakuni, Ninhama, Saljo, Omuta, Arao	Xoriyama	12.8 (0.022)	Akita, Toyohashi atc., Ekndr. etc., Kasaoka, Pukuyama	14.0 (0.024)	Eachinche, Ishimaki etc., Natori etc., Korijama, Utsuno- miya, etc., Setc etc., Bofu, Mishima Vaminoo
6			20.4 (0.035)	Niigeta, Toyana, Tekaoka, UNO, Onoda		14.0 (0.024)	Tomakomai, Rachi- nohe, Jeaki, Bitechi, Anjaka, Takanaki, Shiniku, Bizen, Kure, Tcku- yama, Sekaide, Barukune, Nishisa, Kawanoc, Shimonc- seki, Fikogina	15.8 (0.027)	Kanazava, Fukui, Tauruga, Otau etc., Aidi, Akaho etc., Shimonoseki Metro- politan districte, Kochi
7			23.3 (0.040)	Kure, Tokushima		15.8 (0.027)	Sendai, Shiogaee etc., ISh.rakh etc. Natori etc., Koriyamak, Utumo- Miya etc., Konazawa Fukui, Tsuruge, Soto etc., Jou etc., Roiw, Toku- shimo, Kobacka, Kochi	F	Kamaishi, Salata, Okaysma, Diroshima, Kaidaichi eit., Kihara, Onsaini, Fukuoka, Nagamaki
8			26.3 (0.045)	Hachinobe, Kama- ithi, Sendai, Nobeoka	Other districts	18.7 (0.032)	Kamarahi, Jokata, Aloi, Jkrho etc., Bircoinma, Kaida- ichi, etc., Kihara, Gaolichi etc., Furbuck, hagasaki, Chaynan, Simono- seki Fetropolitan districts		
9						22.2 (0.038)	Other districts	22.2 (0.036)	Other districts
l				Period I 1969.7.29	Period II Addition 1971.6.24	Pariod	III Revised on Jan.	5, 1972	
Special Emission			5,26	Tokyo (Special Words), Yobohras,	Kawagueni, Haic- geya etc., Chile		2.92 To' Jo A, Osek (0.05) / turgaski oto	a A, Yokoh Yokkwic	nma, kawanaki, Kobo, hi etc., Neroya etc.
Standard			(0.009)	Yavaaki, Cida, Amagenaki, Cida, Yakhichi	otc., Fu 1. Napoja, Kyoto, Kotc. Pireji. W 5 gama, Fura-	2	3.50 Ohita etc., B (0.006) Firedi, etc.,	Cowaguchi e Kiinstiiki	te., Yekosuka, Feji A, Northern Kyushu
					North Fire Kyachu, Ocuta		5.26 Kyoto etc., W (0.009) Coute, Marita	lakayn a el I	c., Ube, Orisda,

Notes: 1. The figures in parentheses below K value indicate maximum ground concentration

Tokyo A includes aperial varia, Mitaka City etc., and Tokyo B includes HachtojiCi:y, Tachikawa City etc., Osaka A includes Meaka City etc., and Tokyo B includes Constraints

Table 8-4 Emission Standards for Sulfur Oxides from Stationary Sources, Newest Revision, April 1974, Japan

Relationship between K Values and Maximum Densities at Ground Level

	Special S	Standard	General	Standard
Previous K value	2.29	5.26	6.42	22.2
Maximum densities at ground level (ppm)	0.005	0.009	0.011	0.038
New K values	1.17	2.34	3.50	1.75
Maximum densities at ground level (ppm)	0.002	0.004	0.006	0.030

Table 2: General Standards

K Values	Arcas
3.5	Tokyo, Yokohama • Kawasaki, Nagoya, Yokkaichi, etc. (6 areas)
4.67	Chiba • Ichihara, Kurashiki • Mizushima, Kitakyushu, etc. (7 areas)
6.42	Sapporo, Muroran, Kashima, etc. (16 areas)
8.7 6	Tomakomai, Niigata, Shimonoseki, etc. (19 areas)
11.7	Okayama, Hiroshima, Fukuoka, etc. (16 areas)
14.6	Asahikawa, Kushiro, Shizuoka, Nagasaki, Sasebo, Kagoshima, etc. (35 areas)
17.5	Other areas

(B) Special Standards

The number of districts where the special standards, applying to newly built facilities, are enforced was increased from 18 to 28, with the standard K values strengthened from 2.92-5.26 to 1.17-2.34 at the same time. This means that when a thermal power station with 200-meter-high smokestack for 600,000 kilowatts is built in Tokyo where the K value of 1.17 applies, the sulfur content in

See also Table 11 Stack Heights Requirements, other than those from Subsidiary Jurisdiction of the United States

Effective	Allowable SO ₂ emission (kg/hr) when the given background level concentration exists			s,b	
stack ht, 	0.4 mg/m ³	0.3 mg/m ³	0.2 mg/m ³	Other pollutant	
10	4.26	3.20	2.13	10.65	
15	9.59	7.19	4.79	23.96	
20	17.04	12.78	8.52	42.60	
25	26.63	19.97	13.31	66.56	
30	38.34	28.76	19.17	95.85	
35	52.19	39.14	26.09	130.46	
40	68.16	51.12	34.08	170.40	
45	86.27	64.70	43.13	215.66	
50	106.50	79.88	53.25	266.25	
60	153.36	115.02	76.68	383.40	
70	208.74	156.56	104.37	521.85	
80	272.64	204.13	136.32	681.60	
90	345.06	258.80	172.53	862.65	
100	420,00	319.50	213.00	1,065.00	
120	613.44	460.08	306.72	1,533.60	
140	834.96	626.22	417.48	2,087.40	
160	1,090.56	817.92	545.28	2,726.40	
180	1,380.24	1,035.18	690.12	3,450.60	
200	1,704.00	1,278.00	852.00	4,260.00	
220	2,061.84	1,546.38	1,030.92	5,154.60	
240	2,453.76	1,840.32	1,226.88	6,134.40	
260	2,879.76	2,159.82	1,439.88	7,199.40	
280	3,339.84	2,504.88	1,669.92	8,349.60	
300	3,834.00	2,875.50	1,917.00	9,585.00	

Table 8-5. Emission Standards for Sulfur Dioxide and Multiplication Factor s for Other Gaseous Pollutants in East Germany^a

^aSee also Figure 11-1, 11-2

^bAllowable emission in kg/hr = S (Ambient air quality standard (MIK_k) , in mg/m³ listed in Table II for "East Germany" for 30-minute averaging time); e.g. for acetaldehyde - MIK_k - 0.03 mg/m³. Therefore the permissible emission of acetaldehyde from a 100-m stack is 1,065.0 X 0.03 = 31.95 kg/hr. -148-

TABLE 8-6 AREA CLASSIFICATION -Democratic Republic of Germany (East Germany)

R- <u>Actual Air Quality</u> Air Quality Standard	Class Number	Class Description	Ambient SO ₂ Concentration level - mg/m ³	Q- Actual Ambient Conc. Multiplying Factor for Settleable Dust Computation
<u><</u> 0.5	1	Slightly polluted	0.4	0.8
>0.5 - <1.0	2	Polluted	0.3	0.6
>1.0 - <1.5	3	Over polluted	0.2	0.4
>1.5 ~ <2.5	4	Considerably over polluted	-	-
>2.5	5	Heavily over polluted	-	-

TABLE 8-7 CLASSIFICATION OF POLLUTANTS, WEST GERMANY

Klasse I

Acetaldehyd Acrolein Athylenoxid Amelsensäure Anilin Benzol Buttersäure Caprinsäure Capronsäure Caprylsäure Diäthylamin Dimethylamin Dinitrobenzol Formaldehyd Furfurol Kresol

Isomere des Kresols Monoäthylamin Monomethylamin Nitrobenzol Önanthsäure Phenol Propionsäure Pyridin Thiophenol Triäthylamin Trimethylamin Valeriansäure

 $CII_{Z} - CIIO$ $CH_2 = CH - CHO / cH_2 - CH_2$ HCOOH HCOOH $C_6H_5 - NH_2$ C6H6 $CH_3 - (CH_2)_2 - COOH$ $CH_{2} - (CH_{2})_{8} - COOH$ $CH_{3} - (CH_{2})_{4} - COOH$ $CH_{3}^{-} - (CH_{2}^{-})_{6}^{-} - COOH$ (C2H5)2 NH $(CH_3)_2$ NH $C_6H_4^2 - (NO_2)_2$ $H_2C = 0$ CH = CH - CH = C - CHO $CH_3 - C_6H_4 - OH$ $C_2H_5 - NH_2$ $CH_3 - NH_2$ $C_6 H_5 - NO_2$ сн₃ (сн₂) соон

с₆й₅ - Он

 $(C_2H_5)_3 N$ $(CH_2)_2 N$

сн₃(с́н₂)₃ соон

C5^H5^N C6H5SH

CH3 CH2 COOH

Lösemittel mit Benzolgehalten Merkaptane Thioäther

TABLE 8-7 cont'd CLASSIFICATION OF POLLUTANTS, WEST GERMANY

Klasse II

Acrylsäuren Derivate der Acrylsäure Äthylbenzol Amylacetat Amylalkohol Isomere des Amylalkohols i-Butanol n-Butanol n-Buthylacetat Chloroform Cyclohexanon Diaceton-Alkohol Dichloräthan (Äthylenchlorid) Dichloräthylen o-Dichlorbenzol Dimethylformamid (DMF) Dioxan Essigsäure Methylacetat Methyläthylketon (MEK) Methylcyclohexanon Methylenchlorid Methylglykol Methylisobutylketon (MIBK) Monochlorbenzol Naphtalin Perchloräthylen (Tetrachlor) Schwefelkohlenstoff Styrol (Vinylbenzol) Tetrochlorkohlenstoff Tetrahydrofuran (THF)

 $CH_2 = CH - COOH$ C6H5C2H5 $CH_3 - CO - O - C_5H_{11}$ $C_5H_{11} - OH$ $C_{4}H_{q} - OII$ $C_{4}H_{0} - OH$ $CH_{3} - CO - O - C_{4}H_{9}$ CHCIZ C₆H₁₀O $(CH_3)_2$ C (OH) CH₂ - COCH₃ C₂H₄ Cl₂ CHC1 = CHC1C₆H₄ Cl₂ HČON (CH₃)₂ $CH_2 - CH_2 - 0 - CH_2 - CH_2$ CHZCOCH $CH_{3} - CO - O - CH_{3}$ $CH_3 - CO - C_2H_5$ CH3C5H9CO CH2C12 сн² - сн₂ - сн₂ - сн₂он $CH_{3} - CO - CH_{2} - CH - (CH_{3})_{2}$ C₆H₅ Cl C10H8 $CCl_2 = CCl_2$ CS2 $C_6\overline{H}_5 - CH = CH_2$ CCIL $CH_2 - CH_2 - CH_2 - CH_2$

TABLE 8-7 cont'd CLASSIFICATION OF POLLUTANTS, WEST GERMANY

Tetrahydronaphtalin	C10H12
Toluol	$C_{6}H_{5} - CH_{3}$
Trichloräthan (1,1,1)	$CH_3 - CCl_3$
Trichloräthylen	$cci_2 = chci$
Vinylacetat	$CH_3 - CO - O - CH = CH_2$
Xylol	$C_{6}H_{4}$ (CH ₃) ₂
	64 32

Klasse III Acetor CH3-CO-CH3 Athylacetat CH2-CO-O-C2H5 Äthylglykol (Cellosolve) C2H50-CH2-CH2OH Cyclohexan C6H12 Diäthyläther C2H5-0-C2H5 n-Heptan C7H16 n-Hexan с₆н₁₄ Methanol CHz OĦ Methylcyclohexan C6H11CH2 n-Pentan C5H12 (сн3)2сн-о-сн(сн3)2 i-Propyläther Propanol C₃H₇-OH

The gaseous compounds not included in this table shall be placed into the classes where they seem to fit in by toxicological properties. If this is not possible the chemical similarity with listed compounds is the only criterionfor a classification.

Emissions of Class I (>0.1 kg/hr) 20 mg/m³ Emissions of Class II(>3.0 kg/hr) 150 mg/m³ Emissions of Class III (>6.0 kg/hr) 300 mg/m³

Table 9. FUEL STANDARDS, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

LIQUID FUELS

Location		Fuel Type	Lead Content	Sulfur Content	Foot-
Country	Province or City		(g/l)	(%)	notes
Austria		Gasoline	0.4	1	
Austria		Fuel Oil light medium heavy		1.5 2.5 3.5	
Austria	Insbruck	All Kinds		1.0	
Belgium		Gasoline		1.0	
Belgium		Fuel Oil light medium heavy extra heavy heating oil		1.5 2.7 3.8 4.5 1.0	8,11
Canada		Gasoline	2.5 g/imp. gal.		12
Canada	New Brunswick				2
Canada	Ontario				3
Canada	Montreal				4

Table 9 (continued). FUEL STANDARDS, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

LIQUID FUELS

Country	Location Province or City	Fuel Type	Lead Content (g/l)	Sulfur Content (%)	Foot- notes
Denmark		Gasoline	/	0.8	13
Denmark		Fuel Oil light heavy		0.8 2.5	
Denmark	Copenhagen Fredericksberg	All kinds		1.0	14
West Germany		Gasoline	0.4		12 , 15
West Germany		Gasoline	0.15		13 , 15
West Germany		Gasoline		0.3	15,16
West Germany		Fuel Oil extra light heavy		0.8 2.8	15
West Germany	Northrhine- Westphalia	Furnaces > 8000000 kal/hr		1.8	15
France		Gasoline	0.55		12
France		Gasoline	0.45		17

15h

Table 9 (continued). FUEL STANDARDS, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

LIQUID FUELS

Location		Fuel Type	Lead Content	Sulfur Content	Foot-
Country	Province or City		(g/l)	(%)	notes
France		Gasoline		0.7	
France		Gasoline		0.3	18
France		Fuel Oil light medium heavy		2.0 2.0 4.0	
France		Fuel Oil domestic and gas oil		0.7	
France	Paris, zones 1 & 2	Heating Oil if furnace < 350 th/hr		0.5	
Great Britain		Gasoline	0.64		19
Great Britain		Gasoline	0.55		12
Great Britain		Gasoline	0.45		17
Greece		Gasoline premium regular military	0.84	0.15 0.15 0.25	

LIQUID FUELS

	Location	Fuel Type	Lead Content	Sulfur Content	Foot-
Country	Province or City		(g/l)	(%)	notes
Greece		Kerosene		0.2	
Greece		Diesel Fuel	0.5		
Greece		Fuel Oil light heavy	3•5 4•0		
Italy		Gasoline		1.1	
Italy		Fuel Oil extra light light medium heavy		2.5 3.0 4.0 4.0	
Italy	Zone A	Kerosene/gasoline		1.1	7
Italy	Zone A	Fuel Oil light		3.0	7
Italy	Zone B	Kerosene/gasoline		1.1	7
Italy	Zone B	Fuel Oil only for ≥ 500000 kcal/hr		3.0	7

LIQUID FUELS

	Location	Fuel Type	Lead Content	Sulfur Content	Foot-
Country	Province or City		(g/l)	(%)	notes
Italy		Fuel Oil visc. 75 [°] E/50 [°] C		<4.0	5
Israel		Gasoline	0.42		
Israel		Diesel		0.25	9
Israel		Kerosene		0.4	
Israel		Fuel Oil		0.2	10
Japan		Gasoline	$0.3 \text{ cm}^3/1$		6
Japan		Fuel Oil		1.0-1.5	
Norway	Oslo	Furnace <700t/yr >700t/yr		0.8 1.2	
Norway	Dramenen	Fuel Oil s ummer winter		2.5 1.2	
Spain	Madrid	Fuel Oil industrial use domestic use		3.0 2.6	

LIQUID FUELS

I	ocation	Fuel Type	Lead Content	Sulfur Content	Foot-
Country	Province or City		(g/1)	(%)	notes
weden		Gasoline	0.7		
weden		Gasoline	0.4		19
weden		Gasoline	0.15		17
weden		Fuel Oil		2.5	
weden	Stockholm, Malmö Göteberg	Fuel Oil		1.0	
witzerland		Gasoline premium regular	0•57 0•54	0.5	
witzerland		Fuel Oil extra light light medium heavy		0.5 2.0 2.0 3.5	
nited Kingdom		Gasoline		1.0	

LIQUID FUELS

	ocation	Fuel Type	Lead Content	Sulfur Content	Foot-
Country	Province or City		(g/l)	(%)	notes
United Kingdom		Fuel Oil light medium heavy extra heavy		3.5 4.0 4.5 5.0	
United States		Gasoline	0.53		12
United States		Gasoline	0.44		20
United States		Gasoline	0.42		17
United States		Gasoline	0.34		21
Yugoslavia	Sarajevo, zone l	Fuel Oil		1.7	
Yugoslavia	Sarajevo, zone 2	Fuel Oil		2.5	
Yugoslavia	Sarajevo	Heating Oil		1.0	
Yugoslavia	Zagreb	Heating Fuel		1.0	

SOLID FUEL

	Location	Fuel Type	Maximum Volatile Matter	Sulfur Content	Foot-
Country	Province or City	-	(%)	(%)	notes
Belgium		All Kinds		1.0	23,24
Canada	Montreal	Bituminous Coal		1.0	
Canada	Montreal	Anthracite		0.7	
France	Paris, zones 1 & 2	All Kinds	15		
Spain	Madrid	All Kinds	15	4.0	
Yugoslavia	Sarajevo	Lignite	18	26 g/10,000kcal	
Yugoslavia	Sarajevo	Brown Coal	18	33 g/10,000kcal	22
Yugoslavia	Zagreb	All Kinds	15	0.7	

FOOTNOTES

- 1. Proposed.
- 2. See Table 9-1
- 3. See Table 9-2
- 4. See Table 9-3
- 5. Only with municipal agreement.
- 6. If security of the fuel is difficult, the maximum hourly fuel consumption shall be under the following value:

= Usual fuel consumption x $\frac{S - content}{S - content}$ rate provided by Government sually

7. This law specifies zones in which special measures can be taken to prevent air pollution. Zone A: Central & Northern Italy - towns with 70,000-300,000 inhabitants. Southern & insular Italy - towns with 300,000-1,000,000 inhabitants, or areas of particular importance or where adverse conditions exist. Zone B: Central & Northern Italy - towns with more than 300,000 inhabitants. Southern & insular Italy - towns with more than 1,000,000 inhabitants, or areas where adverse conditions exist.

8. For zone protection, including Bruxelles, Liège, Anvers, Gant and Carolorège.

9. Maximum ash content 0.01%.

10. Maximum ash content for light fuel oil 0.1%, for heavy fuel oil 0.2%.

11. Effective date Aug. 5, 1973 (for sulfur).

12. Effective date Jan. 1974 (for lead).

FOOTNOTES (continued)

13. In preparation (lead).

- 14. Effective date Jan. 1974 (sulfur).
- 15. West Germany = Federal Republic of Germany.
- 16. Proposed for 1978.
- 17. Effective date Jan. 1976 (lead).
- 18. Effective date Jan. 1978 (sulfur).
- 19. Effective date Jan. 1973 (lead).
- 20. Effective date Jan. 1975 (lead).
- 21. Effective date Jan. 1977 (lead).
- 22. If diameter < 20 mm., volatile matter < 15%.
- 23. For protected areas, which are Bruxelles, Liege, Anvers, Gant and Carolorege.
- 24. For protected areas it is prohibited to burn lignite, peat, agglomerates and all kinds of refuse.

SULFUR CONTENT IN FUEL, CANADA

Table 9-1, New Brunswick

Table 9-2, Ontario

	FUEL	\$ SULFUR (by weight)
OIL	#1	0.5
	#2	0.5
	#4	1.5
	#5	2.0
	#6Ъ	3.75
	#6c	3.75
	COAL	8.0

Schedule

	Column 1	Column 2	Column 3	Column 4
Fuel	Grade or type of Fuel	Maximum Sulphur Content	Maximum Sulphur Content	Maximum Sulphur Content
Oil	1	0.5%	0.5%	0.5%
	2	0.5%	0.5%	0.5%
	4	1.5%	1.5%	1.5%
	5	1.9%	1.75%	1.5%
	6B	2.0%	1.75%	1.5%
	6C	2.0%	1.75%	1.5%
Coal	Bituminous	2.0%	1.75%	1.5%

Table 9-3, Montreal

(b) As of the dates indicated hereunder, the limits for sulphur content in the oils specified are set as follows:

.

Octobe	er 1		
1970	1971	1972	Oil
0.6	0.5	0.4	light oil
1.5	1.25	1.0	intermediate oil
2.5	2.0	1.5	heavy oil

	Location		Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
ll Sources	Australia		0.25 g/m ³	250.0	1,2,3,4,5	
	Australia	New South Wales	0.40 g/m ³	400.0	4,6,8	
	Australia	New South Wales	0.25 g/m ³	250.0	4,7,8	
2	Australia	Queensland	0.20 grains/ft ³	457.6	4,9	
<u> </u>	Australia	Victoria	0.20 grains/ft ³	457.6	4,9	
	Brazil	Santo Andre	mg/m ³	850.0	19	
	Brazil	Sao Coetano de Sul	mg/m ³	850.0	19	
	Canada	Alberta	0.85 lb/Klb efflue	nt	10,11,12	
	Canada	Alberta	0.60 lb/Klb efflue	nt	13,14	
	Canada	Manitoba	0.25 grains/ft3	572.0	15	
	Canada	Manitoba	0.57 g/m ³	570.0	16	
	Czechoslovakia	ı	5.0 kg/hr		20	
	East Germany				139	

		location	Standard		
Source	Country	Province or City	Original Units	mg/m ³	Footnotes
ll Sources					
	West Germany				22
	West Germany		mg/m ³	20.0	23,24,26
	West Germany		mg/m ³	50.0	23,24,26
	Mexico				18
	New Zealand		0.25 g/m ³	250.0	1 ,2,3, 4,5
	Philippines		0.40 grains/ft ³	915.3	17
	Singapore		0.40 g/m ³	400.0	4,9
	Yugoslavia	Sarajevo	mg/m ³	150.0	3
	Yugoslavia	Sarajevo	mg/m ³	300.0	21
	Israel				25

	_ 3	Location	Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
Combustion of Fuels						
All fuels	Australia	New South Wales	0.40 g/m ³	400.0	29,32,34	
All fuels	Australia	New South Wales	0.25 g/m ³	250.0	29,32,35	
All fuels	Canada	Manitoba	0.57 g/m ³	570.0	29 , 53	
All fuels	Canada	Manitoba	0.25 grains/ft ³	572.0	29,52	
All fuels	Great Britain				79	
All fuels 10 ⁶ Kcal/h	Italy		0.25 g/m ³	250.0	100	
All fuels - Until Dec. '74	C ana da	Alberta	0.85 1b/Klb gas		39,40,41	
- After Jan. '75	Canada	Alberta	0.20 lb/Klb gas		39,42,43	
<10 MBTU/hr capacity	Canada	Montreal	0.60 lb/mbtu		51	
>200 MBTU/hr capacity	Canada	Montreal	0.10 lb/mbtu		51	
Home Heating	Spain		1.2 g/1000Kcal			

-

		Location	Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
Smokeless Zone l	France	Paris	0.43 g/m ³	430.0		
Smokeless Zone l	France	Paris	0.60 g/10 ⁶ cal			
Smokeless Zone 2	France	Paris	0.86 g/m ³	860.0		
Smokeless Zone 2	France	Paris	1.20 g/10 ⁶ cal			
Steam Power Plants	United States		0.10 1b/MBTU			
Bark burning						
Kraft pulp mills	Sweden		mg/m ³	250.0	58	
Coal burning	Australia		0.25 g/m ³	250.0	29 ,30,32, 33	
< 20% ash coal	France		0.35 g/m ³			
>20% ash coal	France		0.50 g/m ³	500.0		
Boiler	Japan	Special District	0.20 g/m ³	200.0	69	
Boiler	Japan	Other Districts	0.40 g/m ³	400.0		

	Location		Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
>40 MKcal/hr	Mexico		1.0 kg/MKcal			
<40 Mkcal/hr	Mexico		1.5 kg/MKcal			
<1000 kg/h	Switzerland		mg/m ³	75.0	9 8, 99	
>1000 kg/h	Switzerland		mg/m ³	150.0	98 , 99	
	Switzerland		mg/m^3	100.0	105	
Manually fired	Yugoslavia	Sarajevo	mg/m ³	150.0	29	
Pulverized-coal	Yugoslavia	Sarajevo	mg/m ³	150.0	29	
Stoker fired						
New plants	Yugoslavia	Sarajevo	mg/m ³	300.0	29	
Existing plants	Yugoslavia	Sarajevo	mg/m ³	900.0	29	
Mixed burning	Switzerland		mg/m3	100.0	98	

	Location		Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
0il Burning		·····				
< 300 MW	Denmark		1.5 g/kg oil		111	
>300 MW	Denmark		l.Og/kg oil		111	
>63 MKcal/hr	Mexico		45.0 g/MKcal			
< 63 MKcal/hr	Mexico		80.0 g/MKcal			
< 100 MW	Denmark		2.0 g/Kg oil		111,112	
Oil Burning						
>50 MW	Sweden		1.50 kg/ton oil		66,67	
<50 MW (new)	Sweden		1.50 kg/ton oil		66,67	
<50 MW (existing)	Sweden		2.00 kg/ton oil		66,67	
>300 MW	Sweden		20.0 kg/ton oil		68	

	La	ocation	Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
>1000 kg/hr	Switzerland		mg/m ³	50.0	97	
With programmed soot blowing	Switzerland		mg/m ³	150.0	97	
With hand driven soot blowing	Switzerland		mg/m ³	200.0	97	
<100,000 m ³ /hr gas	West Germany		mg/m ³	100.0	113,135	
$>100,000 \text{ m}^3/\text{hr}$ gas	West Germany		mg/m3	50.0	113,135	
>25,000 Kcal/hr	Yugoslavia	Sarajevo	mg/m ³	300.0	29	
Oil (heavy)						
Boilers						
<40,000 m ³ /hr gas	Japan	Special Districts	0.20 g/m ³	200.0	69	
< 40,000 m ³ /hr has	Japan	Other Districts	0.30 g/m ³	300.0		
> 40,000 m ³ /hr gas	Japan	Special Districts	0.05 g/m ³	50.0	69	

	Lc	ocation	Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
40,000 to 200,000	Japan	Other Districts	0.20 g/m ³	200.0		
>200,000 m ³ /hr g as	Japan	Other Districts	0.10 g/m ³	100.0		
Solid Fuel	Czechoslovakia				101	
	Denmark		mg/m ³	150.0	111	
Boilers						
All	West Germany		mg/m ³	300.0	11 3,11 5	
<500,000 m ³ /hr	West Germany		mg/m ³	150.0	113 , 115	
>500,000 m ³ /hr (brown coal)	West Germ a ny		mg∕m ³	100.0	113	
>500,000 m ³ /hr (anthracite)	West Germany		mg/m ³	150.0	113	
All	West Germany	Northrhine,Westphalia	mg/m ³	150.0	1 08,13 5	
LLA	West Germany	Northrh ine, Westphalia	mg/m3	300.0	109,135	

	:	Location	Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
Wood Burning						
Objective Level A	Canada	British Columbia	0.10 grains/ft ³	229.0	29 , 45	
Objective Level B	Canada.	British Columbia	0.15 grains/ft3	343.3	29,46	
Objective Level C	Canada	British Columbia	0.25 grains/ft ³	572.0	29,47	
ncineration of Refuse						
<300 kg/hr	Australia		0.50 g/m ³	5 00. 0	29,31,32,3	
>300 kg/hr	Australia		0.25 g/m ³	250.0	29,31,32,3	
Old installations	Australia	New South Wales	0.40 g/m ³	400.0	29,32,34	
New installations	Australia	New South Wales	0.25 g/m ³	250.0	29 ,32, 35	
Old installations	Canada	Alberta	0.85 lb/Klb gas		39,40,41	
New installations	Canada	Alberta	0.60 lb/Klb gas		42,43	
<l.5 hr.<="" td="" tons=""><td>West Germany</td><td></td><td>mg/m³</td><td>100.0</td><td>111, 116,</td></l.5>	West Germany		mg/m ³	100.0	111, 116,	

Table 10 (continued).	EMISSION STANDARDS FOR PARTICULATE MATTER IN
	EFFLUENT AIR OR GAS FROM STATIONARY SOURCES,
	OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS
	OF THE UNITED STATES

	La	ocation	Standard		
urce	Country	Province or City	Original Units	mg/m ³	Footnotes
>1.5 tons/hr	West Germany		mg/m ³	100.0	111, 117,135
<20 tons/day	West Germany		mg/m3	200.0	43,56,107
>20 tons/day	West Germany		mg/m ³	150.0	71 , 84
Incineration of liquids	West Germany		mg/m ³	75.0	111, 117,135
<l hr<="" td="" ton=""><td>France</td><td></td><td>1.0 g/m³</td><td>1000.0</td><td>71,72,128</td></l>	France		1.0 g/m ³	1000.0	71,72,128
l to 4 tons/hr	France		0.60 g/m ³	600.0	71,72,128
4 to 7 tons/hr	France		0.25 g/m ³	250.0	71,72,128
>7 tons/hr	France		0.15 g/m ³	150.0	71,72,128
Continuous furnace					
<40,000 m ^{3/hr}	Japan	Other Districts	0.7 g/m ³	700.0	
>40,000 m ³ /hr	Japan	Other Districts	0.2 g/m ³	200.0	
<40,000 m ³ /hr	Japan	Special Districts	0.2 g/m ³	200.0	69
>40,000 m3/hr	Japan	Special Districts	0.1 g/m ³	100.0	69

	I	ocation	Standard			
urce	Country	Province or City	Original Units	mg/m ³	Footnotes	
Others						
<40,000 m ³ /hr	Japan	Other districts	0.70 g/m ³	700.0		
>4 0, 000 m ³ hr	Japan	Other districts	0.40 g/m ³	400.0		
< 300 kg/hr	New Zealand		0.50 g/m ³	500.0	29,31,32,33	
>300 kg/hr	New Zealand		0.25 g/m ³	250.0	29,31,32,33	
>15 tons/hr	Sweden		mg/m ³	180.0	58,62,63	
<15 tons/hr	Sweden		mg/m ³	250.0	58,62,6 3	
<3 tons/hr	Sweden		mg/m3	500.0	58,62,64	
ton capacity	Switzerland		0.20 g/m ³	200.0	71	
l to 5 tons capacity	Switzerland		0.15 g/m ³	150.0	71	
>5 tons capacity	Switzerland		0.10 g/m ³	100.0	71	
Batch Operation	Japan	Special Districts	0.1º0 g/m ³	400.0	65	
Batch Operation	Japan	Other Districts	0.70 g/m ³	700.0		

		Location	Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
Continuous Operation						
<40,000 m ³ /hr gas	Japan	Special Districts	0,20 g/m ³	200.0	69	
(40,000 m ³ /hr gas	Japan	Other Districts	0.70 g/m ³	700.0		
>40,000 m ³ /hr gas	Japan	Special Districts	0.10 g/m ³	100.0	69	
>40,000 m ³ /hr gas	Japan	Other Districts	0.20 g/m ³	200.0		
Municipal Incinerators	Unit e d States		0.08 grains/ft ³	80.0	29	
Sewage Sludge Incinerators	United States		mg/m ³	70.0	58,81	
sphalt Plants						
Portable plants	Canada	Alberta	0.40 lb/Klb gas		42,43	
Portable plants	Canada	Ontario	167.0 lb/min		49	
Stationary plants	Canada	Alberta	0.20 1b/Klb gas		42,43	
Hot mixing plants	France		0.150 g/m ³	150.0	129 , 130	

		Location	Standard	l		
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
Hot mixing plants	France		0.800 [.] g/m ³	800.0	129,131	
	France		2.0 g/m ³	2000.0	129,132	
≥200 tons/hr.	France		0.150 g/m ³	150.0	130 , 133	
<200 tons/hr.	France		0.800 g/m ³	800.0	1 30, 133	
≥150 tons/hr.	France		0.150 g/m ³	150.0	130,134	
<150 tons/hr.	France		0.500 g/m ³	500.0	130 , 134	
>500 m from built-up area (new)	Sweden		mg/m ³	250.0	58 , 60	
>500 m from built-up area (existing)	Sweden		mg/m ³	500.0	58 , 60	
>1 km from a single house	Sweden		mg/m ³	5000.0	58,61	
All Plants	United States		mg/m3	70.0	58 , 61	
Drying Drum	West Germany		mg/m ³	105.0	88,1 26,13	

		Lo	ocation	Standard			
S	ource	Country	Province or City	Original Units	mg/m ³	Footnotes	
-	Asphalt concrete	West Germany		mg/m ³	75.0	88 , 135	
	All plants	West Germany	Northrhine,Westphalia	mg/m ³	150.0	106,107,135	
	All plants	Yugoslavia	Sarajevo	mg/m ³	1000.0	92	
Ca	rbon Black mfgr.						
	Wet gas filter	West Germany (VDI 2580)		mg/m ³	60.0	83,96	
	Wash tower	West Germany (VDI 2580)		mg/m ³	50.0	83,135	
	With thermal afterburner	West Germany (VDI 2580)		mg/m ³	40.0	83,135	
	Thermal burning in boiler	West Germany (VDI 2580)		mg/m ³	50.0	83,135	
Ce	ment Production						
	Clinker coolers	United States		0.10 lb/ton feed			

	L	ocation	Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
Crushing, grinding	West Germany		mg/m ³	150.0	85,135	
	West Germany		mg/m ³	75.0	113,119,135	
	West Germany		mg/m ³	120.0	113,120,135	
	West Germany		mg/m ³	150.0	113,121,135	
Crushing, grinding	Sweden		mg/m ³	250.0	58	
Crushing, grinding - new plants	Great Britain		0.10 grains/ft ³	229.0		
Crushing, grinding - existing plants	Great Britain		0.20 grains/ft 3	457.6		
Dust Handling	Great Britain		0.20 lb/Klb gas	457.6		
Chemical Recovery Ops.	Canada	Alberta	0.20 lb/Klb gas	457.6	42,43	
Coal Processing						
Briquetting plants	West Germany (VDI 2292)		0.15g/m ³	150.0	83,135	

		cation	Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
Preparation plants	West Germany (VDI 2293)		0.15 g/m ³	150.0	83,135	
Coke Crushing and Screening	West Germany (VDI 2100)		0.15 g/m ³	150.0	83,135	
Fluid Catalyst Regeneration	United States		mg/m ³	50.0	58,82	
Electrode Manufacture	West Germ an y		mg/m ³	150.0	113,127,1 3 5	
Furnaces						
Calcination	West Germany		mg/m ³	150.0	113,135	
Calcium Carbide Manufacture	West Germany		mg/m ³	150.0	113,135	
Catalyst Regeneration	Japan	Special Districts	0.40 g/m ³	400.0	69	
Catalyst Regneration	Japan	Other Districts	0.60 g/m ³	600.0	137	
Drying						
Heat treatment						
$>1_{40,000}$ m ³ /hr	Japan	Special Districts	0.10 g/m ³	100.0		

ات 179

		Location	Standar	d _	
Source	Country	Province or City	Original Units	mg/m ³	Footnotes
<40,000 m ³ /Hr	Japan	Special Districts	0.20 g/m ³	200.0	
Heat treatment					
>40,000 m ³ /hr	Japan	Other Districts	0.20 g/m ³	200.0	
<40,000 m ³ /hr	Japan	Other Districts	0.40 g/m ³	400.0	
Others	Japan		Same as Reaction Furn	lace	
Gas Generating	Japan		Same asCatalyst Reger	eration (Fur	naces)
Gas Producing	Japan	Special Districts	0.10 g/m ³	100.0	69 , 139
Gas Producing	Japan	Other Districts	0.20 g/m ³	200.0	139
Glass Melting					
Tank type	Japan	Sa	me as Reaction Furnace	2	
Other types	Japan		0.50 g/m ³	500.0	
Petroleum Heating	Japan	Sa	me as Gas Producing		

	L	ocation	Standard		
Source	Country	Province or City	Original Units	mg/m ⁻³	Footnotes
Reaction Furnace					
<40,000 m ³ /hr gas	Japan	Special Districts	0.20 g/m ³	200.0	69
<40,000 m ³ /hr gas	Japan	Other Districts	0.40 g/m ³	400.0	
>40,000 m ³ /hr gas	Japan	Special Districts	0.10 g/m ³	100.0	69
>40,000 m ³ /hr gas	Japan	Other Districts	0.20 g/m ³	200.0	
Sulfur Combustion- Petroleum Refinery	Japan	Sa	me as Gas Producing		
<u> </u>					
Cement	Canada	Alberta	0.20 lb/Klb gas		42,43
Cement	West Germany		mg/m ³	150.0	95 ,13 5
Cement	France		1.0 g/m ³	1000.0	70 , 128
Cement	Japan	Sa	me as Reaction Furnace		

		cation	Standard			
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
Cement	Spain		0.80 g/m ³	800.0		
Cement	United States		0.30 lb/ton feed			
<1500 tons/day	Great Britain		0.20 grains/ft ³	457.6	78	
1500 to 3000	Great Britain		Sliding scale 0.1-0.2			
>3000 tons/day	Great Britain		0.10 grains/ft ³	229.0	78	
Cement and Lime						
25 tons/hr product	Czechoslovakia		120.0 kg/hr			
50 tons/hr product	Czechoslovakia		160.0 kg/hr			
100 tons/hr product	Czechoslovakia		250.0 kg/hr			
150 tons/hr product	Czechoslovakia		270.0 kg/hr			
New plants	Sweden		mg/m^3	250.0	58,59	
Existing plants	Sweden		mg/m ³	500.0	58	

		Location		Standard	
Source	Country	Province or City	Original Units	mg/m ³	Footnotes
Ceramic					
Continuous	Japan		Same as Drying, H	eat Treatment	t
Other types	Japan	Special Districts	0.30 g/m ³	300.0	69
Other types	Japan	Other Districts	0.60 g/m ³	600.0	
All types	West Germany	7	_{mg/m} 3	150.0	113
Lime	Canada	Alberta	0.20 1b/Klb gas		42,43
Kraft Pulp M	ills Sweden		mg/m ³	250.0	58 , 59
raft Pulp Mills					
Recovery Stack					
Objective le	vel A Canada	British Columbia	5.0 1b/ADT		44,45
Objective le	vel B Canada	British Columbia	10.0 lb/ADT		44, 46
Objective le	vel C Canada	British Columbia	20.0 1b/ADT		44,47

		Location	Standard	2		
Source	Country	Province or City	Original Units	mg/m ³	Footnotes	
Other Sources						
Objective level A	Canada	British Columbia	1.5 16/ADT		44,45,48	
Objective level B	Canada	British Columbia	2.0 1b/ADT		44,46,48	
Objective level C	Canada	British Columbia	3.0 1b/ADT		44,47,48	
Recovery Furnaces- Kraft and Sulfite						
New Plants	Sweden		mg/m ³	250.0	58 , 59	
Existing Plants	Sweden		mg/m ³	500.0	48	
Trisodium Phosphate Mfgr.	Japan		Same as Reaction Fu	irnace		
Metallurgical Processes-General						
Metal Heating	Australia		0.10 g/m ³	100.0	30,31,32, 33,110	
Metal Heating	Australia	Queensland	0.05 grains/ft ³	114.4	30,32,37	
Metal Heating	Australia	Victoria	0.10 grains/ft ³	229.0	30,32	

		Location		Standard		
Sour	*ce	Country	Province or City	Original Units	mg/m ³	Footnotes
	Metal Heating	Japan		Same as Reaction H	Turnace	
_	Metal Heating	New Zealand		0.10 g/m3	100.0	33
л8г	Metal Heating	Singapore		0.20 g/m ³	200.0	30 , 32
	After Jan 1, 1972	Australia	New South Wales	0.20 g/m ³	200.0	30,32,35
	Before Jan 1, 1972	Australia	New South Wales	0.25 g/m ³	250.0	30,32, 36
	Metal Melting	Japan		Same as Reaction H	urnace	
	Metal Smelting	Mexico				93 , 94
	Sintering Plants	Japan	Special Districts	0.20 g/m ³	200.0	69
	<40,000 m ³	Japan	Other Districts	0.40 g/m ³	1+00.0	
	>40,000 m3	Japan	Other Districts	0.30 g/m ³	300.0	

	L	ocation	Standard		
Source	Country	Province or City	Original Units	mg/m ³	Footnotes
etallurgical Processes		<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>		
Ferrous					
Blast Furnace Gas					
Bled	West Germany		mg/m ³	20.0	122,135
Burned	West Germany		mg/m3	50.0	86,1 22,1 3
Converters					
Bessemer	Japan		Same as Sintering	Plants	
Cupolas					
<2 ton capacity	France		2.0 kg/ton iron		128
2-10 ton capacity	France		kg/ton iron		73,128
>10 ton capacity	France		kg/ton iron		74,128
Cupolas	West Germany				87,122,13

	Location		Standard			
rce	Country	Province or City	Original Units	mg/m ³	Footnotes	
Cupolas		* * • • • • • • • • • • • • • • • • • •				
Upper limit	West Germany (VDI 2288)		2 kg/ton iron		83,87,135	
>10 ton/hr capacity	Canada	Alberta	0.20 lb/Klb gas		42,43	
<10 ton/hr capacity	Canada	Ontario	75.0 lb/hr		50	
>10 ton/hr capacity	Canada	Ontario	25.0 lb/hr		50	
New plants	Sweden		kg/ton iron		54	
Existing plants	Sweden		kg/ton iron		55	
Foundry casting, shake- out and cleaning sand						
>2,500 tons grey iron/yr production	Sweden		mg/m ³	150.0	56 , 58	
<2,5000 tons grey iron/yr production	Sweden		mg/m ³	300.0	57 , 58	

		L	ocation	Standard			
urce	2	Country	Province or City	Original Units	mg/m ³	Footnotes	
	Furnaces						
	Blast	Great Britain		0.20 grains/ft ³	457.6		
	Blast	Japan	Special Districts	0.05 g/m ³	50.0	69	
	Blast	Japan	Other Districts	0.10 g/m ³	100.0		
	Blast	Szeden		0.30 kg/ton iron	457.6		
	Electric-in foundries	Canada	Ontario	25.0 1b/hr		50	
	Electric Arc						
	New plants	Sweden		0.30 kg/ton steel			
	Existing plants	Sweden		0.60 kg/ton steel			
	ALI	West Germany		mg/m3	150.0	113,135	
	Ferroalloy						
	>40% other metals	Japan	Special Districts	0.30 g/m ³	300.0	69	
	>40% other metals	Japan	Other Districts	0.60 g/m ³	600.0		

		Lc	ocation	Standard			
Source		Country	Province or City	Original Units	mg/m ³	Footnotes	
	Ferroalloy, continued						
	40% other metals	Japan	Special Districts	0.20 g/m ³	200.0	69	
	<40% other metals	Japan	Other Districts	0.40 g/m ³	400.0		
	All foundries	West Germany		mg/m ³	100.0	113,135	
	Ferrochromium						
	New plants	Sweden		5.0 kg/ton alloy			
	Existing plants	Sweden		10.0 kg/ton alloy			
	Ferromolybdenum	Sweden		3.0 kg/ton alloy			
	Ferrosilicon manganese- (New)	Sweden		0.30 kg/ton alloy			
	Ferrosilicon and Ferrochromium						
	New plants	Sweden		15.0 kg/ton alloy			

		L	Location		Standard	
Source		Country	Province or City	Original Units	mg/m ³	Footnotes
Ferrochromium,	continued					
Existing p	lants S	Sweden		30.0 kg/ton alloy		
Ferroalloy- Electric furns	.ce					
Ferrochrom "carbure"		West Germany (VDI 2576)		mg/m ³	250.0	83,135
Ferrosilio	on					
15,25		West Germany (VDI 2576)		mg/m ³	200.0	83 , 135
75% or		West Germany (VDI 2576)		mg/m ³	300.0	83,135
Ferrotungs		West Germany (VDI 2576)		mg/m ³	150.0	83,135
Silicochro		West Germany (VDI 2576)		mg/m ³	250.0	83,135

Source		Location		Standard		
		Country	Province or City	Original Units	mg/m ³	Footnotes
	Electric furnace, cont.					
	Silicon metal, 97% Si Ferroalloy- Other furnaces	i West Ge rma ny (VDI 2576)		mg/m ³	300.0	83,135
	Ferrochrom " a ffine" "raffination"-with ore	West Ge rma ny (VDI 2576)		mg/m ³	200.0	8 3, 135
	Ferrochrom sura- ffine, silicothermic reaction	West Germany		mg/m ³	150.0	83 , 135
	Iron Smelting- General	France		0.15 g/m ³	150.0	128
	Open Hearth	Japan	Special Districts	0.20 g/m ³	200.0	6 9
	Open Hearth >40,000 m ³ /hr	Japan	Other Districts	0.30 g/m ³	300.0	
	<40,000 m ³ /hr	Japan	Other Districts	0.40 g/m ³	400.0	

		Lc	cation	Standard			
Source		Country	Province or City	Original Units	mg/m ³	Footnotes	
	Open Hearth, cont.						
	New plants	Sweden		0.5 kg/ton steel			
	Existing plants	Sweden		1.0 kg/ton steel			
	Oxygen-steel processes	West Germany		mg/m ³	150.0	88,135	
	Basic oxygen furnace	United States		mg/m [₿]	50.0	58 , 81	
	Kaldo	Sweden		0.15 kg/ton steel			
	LD	Sweden		0.30 kg/ton steel			
	Low-alloy steel	Australia	Queensland	0.20 grains/ft ³		32,38	
	Blowing cycle	France		0.12 g/m3	120.0	1 28, 76	
	Loading ore	France		0.15 g/m ³	150.0	128	
	Loading or pouring metal	France		0.12 g/m ³	120.0	128	

26T

	Lo	Location		Standard	
rce	Country	Province or City	Original Units	mg/m ³	Footnotes
Oxygen-steel processes Cont.					
Refining processes	Great Britain		0.05 grains/ft ³	114.4	
Miscellaneous grit and dust	Great Britain		0.20 $grains/ft^3$	457.6	
Refining Processes-not oxygen	Great Britain		0.20 grains/ft ³	457.6	
Scarfing Operations using oxygen	Great Britain		0.05 grains/ft ³	114.4	
Sintering Plants	France		0.50 g/m ³	500.0	75 , 128
Sintering Plants	Great Britain		0.05 grains/ft ³	114.4	
Sintering Plants Continuous operation	West Germany		mg/m3	150.0	135
Special cases	West Germany		mg/m3	300.0	89 , 135
New plants	Sweden		0.50 kg/ton sinter		

		Lo	ocation	Standard	1	
So	Durce	Country	Province or City	Original Units	mg/m ³	Footnotes
	Sintering Plants, cont.					
-	Existing plants	Sweden		1.0 kg/ton sinter		
	All	Japan	Special Districts	0.2 g/m ³	200.0	69
	>40,000 m ³ /hr	Japan	Other Districts	0.3 g/m ³	300.0	
	<40,000 m ³ hr	Japan	Other Districts	0.4 g/m ³	400.0	
	Steel Manufacturing	Canada	Alberta	0.20 lb/Klb gas		42,43
Met	allurgical Processes					
	Non-ferrous					
	Alloy Production	West Germany		mg∕m3	75.0	113,135
	Aluminum Reduction					
	Alumina calcining	West Germany (VDI 2286)		mg/m^3	100.0	83,135

		L	ocation	Standard			
Source	e	Country	Province or City	Original Units	mg/m ³	Footnotes	
	Aluminum Reduction, cont.						
	Alumina grinding	West Germany (VDI 2286)		_{mg/m³}	150.0	83 , 135	
	Closed furnace	West Germany		12 kg/ton Al		113 , 135	
	Open furnace	West Germany		14 kg/ton Al		113,135	
	Primary reduction	West Germany		mg/m ³	75.01	113 , 135	
	Primary reduction	West Germany (VDI 2286)		0.10 g/m ³	100.0	83,135	
	Secondary recovery						
	Rotary Furnaces	West Germany (VDI 2441)				83,104	
	Other Furnaces	West Germany (VDI 2241)		0.3 g/m ³	300.0	83	
	Smelters	Great Britain		0.05 grains/ft ³	114.4	77	

		Loc	cation	Standard	1	
Source		Country	Province or City	Original Units	mg/m ³	Footnotes
	Brass and Bronze Ingot Production					
70 L	Blast cupola furnaces					
	>250 kg/hr capacity	United States				81
	Electric furnace					
	>1000 kg/hr capacity	United States				81
	Reverberatory Furnaces					
	>1000 kg/hr capacity	United States		mg/m ³	50.0	58,81
	Copper Smelting					
	Primary					
	Refining Furnaces	West Germany (VDI 2101)		0.30 g/m ³	300.0	83,135
	Reverberatory Furn.	West Germany (VDI 2101)		0.30 g/m ³	300.0	83,135

		Lc	ocation	Standard		
Source		Country	Province or City	Original Units	mg/m ³	Footnotes
	Primary, cont.					
ч 201	Shaft Furnaces	West Germany (VDI 2101)		0.30 g/m ³	300.0	83,135
	Secondary					
	Blast Furnaces	West Germany (VDI 2102)		0.30 g/m ³	300.0	83,135
	Converters	West Germany (VDI 2102)		0.30 g/m ³	300.0	83,135
	Refining Furnaces	West Germany (VDI 2102)		30.30 g/m	300.0	83,135
Coppei	r, Lead and Zinc Refining					
B	last Furnaces	Japan		Same as Reaction 1	Furnace	
Co	onverters					
	Bessemer	Japan		Same as Sintering	Plants	

		Lo	ocation	Standar	d	
Sour	rce	Country	Province or City	Original Units	mg/m ³	Footnotes
- <u></u>	Converters, cont.					
L	Other types	Japan		Same as Gas Produ	lcing	
	Drying	Japan		Same as Reaction	Furnace	
	Melting	Japan		Same as Reaction	Furnace	
	Roasting and Sintering	Japan		Same as Sinterine	3 Plants	
	Foundries (non-ferrous)	West Germany		mg/m ³	100.0	113,135
	Hydrometallurgical					
	Colbalt Calcination	West Germany (VDI 2287)		1.0 g/m3	1000.0	83,102,135
	Inhibition Plant	West Germany (VDI 2287)		0.5 g/m ³	500 .0	83,102,135
	Roasting Plant	West Germany (VDI 2287)		0.1 g/m ³	100.0	83,102,135

86T

		L	ocation	Standar		
Source		Country	Province or City	Original Units	mg/m ³	Footnotes
H	ydrometallurgical, cont.					
	Zinc Calcination	West Germany (VDI 2287)				83,102,13
	Zinc with Scrubbing	West Germany (VDI 2287)		3.0 g/m ³	3000.0	83,102,13
	Zinc with hydroelectric dust extraction	West Germany (VDI 2287)		0.5 g/m ³	500.0	83,102,13
L	ead Pigment Manufacture					
	Reverberatory and smelting furnaces	Japan		Same as Reaction 1	Furnace	
L	ead Smelting					
	Reducing Furnaces	West Germany		_{mg/m} 3	400.0	90 , 135

	Lo	cation	Standard			
ource	Country	Province or City	Original Units	mg/m ³	Footnotes	
Lead Smelting, cont.						
Refining Furnaces	West Germany		mg/m ³	400.0	9 0, 135	
Secondary Smelting	Japan		Same as Reaction 1	Turnace		
Blast cupola or reverberatory furn >250 kg	ace United States		mg/m ³	50.0	58,81	
Pot furnace			, 3		0-	
>250 kg	United States		mg/m ³		81	
Slag blowing	West Germany		mg/m ³	100.0	90,135	
Storage Battery mfgr.	Japan		Same As Reaction 3	Furnace		
Zinc Smelting						
Distillation Process	West Germany		mg/m ³	200.0	91 , 135	

	L	ocation	Standa		
Source	Country	Province or City	Original Units	mg/m ³	Footnotes
Zinc Smelting, cont.		·····			
Electrothermal Process	West Germany		mg/m ³	100.0	9 1, 135
Rotary Process	West Germany		mg/m ³	500.0	91 , 135
Stationary Retorts	West Germany		mg/m ³	400.0	91 , 135
Crushing, Screening and Film g Operations	West Germany		mg/m ³	75.0	113,135
Phosphate sintering	West Germany		mg/m ³	75.0	113,135
Recovery Furnaces, for partial recovery of solids	West Germany		mg/m ³	150.0	113,118 , 13
Shredder	West Germany		mg/m ³	150.0	113,135
Wood fiber board Production	West Germany		mg/m ³	50.0	113,123,13
and particle board Wood fiber board Production and particle board	West Germany		mg/m ³	150.0	113,12 ^k ,12 135

- 1. Other than incinerators burning less than 300 kg/hr and furnaces for heating of metals, except cold blast foundry cupolas
- 2. At 12% CO, for boilers burning solid fuel and incinerators
- 3. Intended for application to new plants
- 4. STP at 0° C and 1 atmosphere, dry
- 5. National guidelines for new plants
- 6. In any unscheduled premise and in scheduled premises for which, applications for approval was made before January 1, 1972
 - 7. In scheduled premises for which application for approval was made after January 1, 1972
 - 8. Except for boilers or incinerators and furnaces for heating of metals, other than cold blast foundry cupolas
 - 9. Except metal heating furnaces
 - 10. Adjusted to weight of gaseous process effluent plus 50% allowances for air leakage
 - 11. Not more than 0.4 1b/1000 lb gaseous effluent retained on 325 mesh screen
 - 12. Rescinded December 31, 1974
 - 13. Effective January 1, 1975. Except for combustion of fuels, portable asphalt plants, chemical recovery operations, cement and lime kilns, cupolas and steel manufacture, which see.
 - 14. Not more than 50% of maximum allowable concentration retained on 325 mesh screen
 - 15. At 68 F, 30"Hg

Footnotes

Table 10

EMISSION STANDARDS FOR PARTICULATE MATTER IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

- 16. At 20°C, 760mm Hg
- 17. Also see process weight Table 10-1
- 18. Also see process weight Table 10-2
- 19. At 25°C and 1 atmosphere
- 20. Maximum SiO₂ content; 20% Emission rate above which it is necessary to submit a report to the Government; where the discharge is for less than 1 hour, there is a proportionate reduction in emission permissible without such reporting
- 21. Intended for application to existing plants
- 22. See Figure 10-1
- 23. Proposed Federal Standard, See also Fig. 10-2
- 24. See Table 10-3
- 25. See process weight Table 10-4
- 26. West Germany = Federal Republic of Germany
- 27. See Table 11 (Stack Height Requirements, other than those of Subsidiary Jurisdictions of the United States
- 28. $K = 10^3, M = 10^6$
- 29. At 12% CO2
- 30. Except cold blast foundry cupolas

Footnotes

Table 10

EMISSION STANDARDS FOR PARTICULATE MATTER IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

- 31. Intended for application to new plants
- 32. STP at 0°C and 1 atmosphere, dry
- 33. National Guidelines for new plants
- 34. In an unscheduled premise and in scheduled premises for which application for approval was made before January 1, 1972
- 35. In scheduled premises for which application for approval was made after January 1, 1972
- 36. In scheduled premises for which application for approval was made before January 1, 1972
- 37. Except oxy-fuel low-alloy steelmaking, up to 30 tons per hour, which produces no fume
- 38. Up to 30 tons per hour capacity, which produces no fume
- 39. Adjusted to 50% excess air for products of combustion
- 40. Not more than 0.4 lb/1000 lb gases and effluent retained on 325 mesh screen
- 41. Rescinded December 31, 1974
- 42. Effective January 1, 1975

- 43. Not more than 50% of maximum allowable concentration retained on 325 mesh screen
- 44. ADT Ton of air-dried screened pulp produced
- 45. New or proposed installations Average values for a 24 hour period

46. Level to which existing installation should be upgraded - average values for a 24 hour period

- 47. Existing installations average values for a 24 hour period
- 48. Total excluding wood-burning boilers and recovery stacks monthly monitoring
- 49. Unless lower emission in lb/min is computed from:

50. Collection 97% efficient for plus 254 particles, no water fallout or plume impingement beyond the premises

- 51. On prorata basis between 10 and 200 million BTU/hr capacity
- 52. At 68°F and 30"Hg
- 53. At 20°C and 760 mm Hg
- 54. 0.7 \leq (Annual production in thousands of tons) + 3 \leq 7

56. Greater than 2,500 tons of grey iron per year production

57. Less than 2,500 tons of grey iron per year production

58. Dry gas

Footnotes

Table 10

EMISSION STANDARDS FOR PARTICULATE MATTER IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

- 59. Electrical precipitators at new kilns should have at least two independent sections, the maximum emission with one section out of operation is 500.0 mg/m^3 STP (dry gas)
- 60. Applicable to dryers, conveyors, elevators, etc.
- 61. Accepted only for temporary location
- 62. At 10% CO2
- 63. Space should be left for scrubber
- 64. Velocity of flue gases greater than 8 m/sec at all operating conditions
 - 65. Distance to built-up area at least 1 km. Permitted only if adopted by regional planning authority
 - 66. Flue gas velocity greater than 8/m/sec at minimum load
 - 67. Also a requirement for maximum soot (combustible particulate) emission
 - 68. Separate flues for each boiler with gas velocity greater than 25 m/sec at full load
 - 69. See Table 10-6
 - 70. 0.15 g/m³ excess tolerated for a continuous 48 hours or for a 1.0 g/m³ total of 200 hours/year
 - 71. At 7% CO2
 - 72. Excess tolerated for a continuous 16 hrs or a total of 200 hrs/year
 - 73. (2.3 X (0.15) X (capacity in tons)Kg/ton iron

Footnotes

Table 10 EMISSION STANDARDS FOR PARTICULATE MATTER IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

74.
$$28$$
 [(4) X (capacity in tons)] - 5 Kg/ton iron

- 75. 0.15 g/m³ excess tolerated for a total of 200 hours/year
- 76. No visible color
- 77. Fume emission from use of salt as a flux

79. See Table 10-5

- 80. Total emission not to exceed 50 Kg of dust per hour per stack
- 81. 10% opacity (except for recombined water) permitted for 2 minutes per hour
- 82. 20% opacity (except for uncombined water) permitted for 3 minutes per hour; where auxiliary liquid or solid fuels are burned in a incinerator - waste heat boiler, particulate matter in excess of this standard may be permitted, except that the incremental rate of emission shall no exceed 0.18 g/million calories (0.10 lb/million BTU) of heat input attributable to such fuel
- 83. Verein Deutscher Ingenieure
- 84. Also VDI 2301 (See footnote 83)
- 85. Also VDI 2094 (See footnote 83)
- 86. Also VDI 2099 (See footnote 83)

- 87. See Figure 10-3
- 88. Particles smaller than 10μ . Also VDI 2112 (See footnote 83)
- 89. Where, for instance, raw material is to be used in the form of fine dust and the applicant is able to show that although the present state of technical development doew not permit keeping with the 150 mg/m³ limit, no objectionalbe effects need be feared in the neighborhood. Also VDI 2095 (See footnote 83)
- 90. Also VDI 2285 (See footnote 83)
- 91. Also VDI 2284 (See footnote 83)
- 92. At least 50 m away from nearesthouse. Soot content not to produce stain above Bacharach No. 4
- 93. Smelting furnaces must be equipped with gas cleaning equipment to remove 80% by weight of particulates from exhaust gas
- 94. There is also a process weight table (See Table 10-2)
- 95. See Figure 10-4 (Also VDI 2094 see footnote 83)
- 96. If diameter $\langle 30_{\mu}$ emission may be an additional 10 mg/m³
- 97. Maximum 4 hour during 24 hour Standard is an average
- 98. As wet gas
- 99. > 500 kg/hr, smoke density-monitoring required
- 100. See Figure 10-5

Footnotes

Table 10

- 101. See Table 8-1
- 102. Recovery after chloridizing roasting
- 103. Output over 30 tons/day of zinc
- 104. Total dust emission not to exceed 1% of aluminum production
- 105. Using 2 or more fuels combined
- 106. See also Figure 10-6
- 107. Minimum stack height, 12 m
- 108. For manual fired with capacity over 20,000 kilocalories/hr
- 109. For automatic fired with capacity over 20,00 kilocalories/hr
- 110. Except cold blast foundry cupola
- 111. Proposed standards for new plants
- 112. For existing plants to be met by 1988
- 113. Proposed Federal Standard (status of May 10, 1974)
- 114. Water tube boilers, dry bed, 13% Volume CO2
- 115. Water tube boilers, fluid bed, 14% Volume CO2
- 116. With 16% Volume Op in gas

Footnotes Table 10

EMISSION STANDARDS FOR PARTICULATED MATTER IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

- 117. With 11% Volume O2 in Gas
- 118. With 7% Volume Opin Gas
- 119. For units without electrostatic precipitator
- 120. For sources, which are usually equiped with an electrostatic precipitator for technical reasons
- 121. For sources, which apply electrostatic precipitators, but have a low efficiency because high of electric resistence of particles.
- 210

.

122. Are the same in new proposed regulation

- 123. Transport system and polishing
- 124. Drying
- 125. Other treatment and handling, see Figure 10-7
- 126. At least 4% Volume CO2
- 127. With 8% Volume CO2
- 128. New Services
- 129. Effective January 1, 1974
- 130. For plants 300 m. from dwellings
- 131. For plants 300 m. from dwellings, but 1000 m. from agglomeration

Footnotes Table 10

EMISSION STANDARDS FOR PARTICULATED MATTER IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES.

- 132. For plants 300 m. from dwellings, but 1000 m. from agglamation
- 133. Effective January 1, 1977
- 134. Effective January 1, 1980
- 135. West Germany = Federal Republic of Germany
- 136. Also Drying Furnaces other than heat treatment. Electric Furnaces other than ferroralloy or carbide mfgr.; Glass Melting Tank Furnaces, Inorganic Chemical plant Reaction Furnaces, Cement Kilns, Trisodium Phosphate Mfgr., Blast Furnaces other than cupolas, Metal Heating Furnaces, Copper, Lead and Zinc Refining Blast, Drying and Melting Furnaces, Lead Pigment making Reverboratory and smelting furnaces, and Lead Smelting Furnaces in secondary smelting and storage battery mfgr. plants
- 137. Also continuous ceramic kilns
- 138. Also Petroleum Heating Furnaces, Sulfur Combustion Furnaces in Petroleum Refineries, Converters other than Bessemer, Copper, Lead and Zinc Refining Converters other than Bessemer.
- 139. See Figure 11-1 and Figure 11-2, and Table 11-4

TABLE 10-1

MAXIMUM ALLOWABLE DISCHARGE RATES OF DUST AND FUMES -Philippines (In any one hour from any source whatever)

Process	Max Weight	Process	Max Weight
Disch	ı/hr (lbs.)	Wt/hr (lbs.)	
50	0.24	3400	5.44
100	0.46	3500	5. 52
150	0.66	3600	5.61
200	0.85	3700	5.69
250	1.03	3800	5.77
800	1.20	3900	5. 85
350	1.35	4000	5.93
400	1.50	4100	5.01
450	1.63	4200	6.08
500	1.77	4300	6.15
550	1.89	4100	6.22
600	2.01	4500	6.30
650	2.12	4600	6.37
700	2.24	4700	6.45
750	2.34	4800	6.52
800	2.43	4900	6.60
850	2.53	5000	6.67
900	2.62	5500	7.03
950	2.72	60 00	7.37
100	2.80	6500	7.71
1100	2.92	7000	8.05
1200	3.12	7500	8.39
1300	3.26	8000	8.71
1400	3.40	8500	9.03
1500	3.54	9000	9.36
1600	3.66	9500	9.67
1700	3.79	10000	10.0
1800	8.91	11000	10.63
1900	4.03	12000	11.28
2000	4.14	13000	11.89
2100	4.24	14000	12.50
2200	4.84	15000	1 3.1 3
2 30 0	4.44	16000	13.74
2400	4.55	17000	14.36
2500	4.64	18000	14.97
2600	4.74	19000	15.58
2700	4.84	20000	16.19
2800	4.92	30000	22 .22
2900	5.02	40000	28.3
3000	5.10	50000	84. 8
3100	5.18	60000	40.0
3 2 00	5.27	or	
3300	5.86	more	

TABLE 10-2 MAXIMUM ALLOWABLE DISCHARGE FOR DUSTS -Mexico

For use where applicable

Process weight Maximum emission		ion permitted, Kg/h	permitted, Kg/h Process weight		ion permitted, Kg/h
Ton/h	New industry	Existing industry	Ton/h	New industry	Existing industry
0.025	0.489	0.652	6.0	19.281	25.708
0.050	0.780	1.040	8.0	23.382	31.176
0.100	1.239	1.652	10.0	27.153	36.204
0.220	1.974	2.632	15.0	35.625	47.500
0.300	2.589	3.452	20.0	43.200	57,600
0.400	3.141	4.188	25.0	50,166	66.888
0.500	3 648	4.864	30.0	55.572	74.096
0.750	4.788	6.348	35.0	57.462	76.616
1.000	5.805	7.740	40.0	59.127	78.836
1.250	6.741	8.988	45.0	60.564	80.752
1.500	7.617	10.156	50.0	61.926	82,568
2.000	9.237	12.316	60.0	64.269	85,693
2.500	10.725	14.300	70.0	65,556	87.408
3.000	12.120	16.160	80.0	68.052	90,736
3.500	13.437	17.916	100.0	7L154	94.872
4.000	14.694	19.592	500.0	95.436	127.248
4.500	15.900	21.200	1000.0	107.313	143.064
5.000	17.064	22.752	3000.0	130.080	172.650

٠

Interpolation of	Maximum emission	n permitted, kg/hr
above table Process weight-ton/hr(P)	New industry	Existing industry
<28.5 >28.5	5.805 p ^{0.67} 7 5. 648 p ^{0.11}	7.740 p ^{0.67} 100.846 p ^{0.11}
	-54.42	-72.56

For use where above tables are not applicable

Ges volume at the source m. 3 normal	Concentration new industry mg/m. ³ normat	Concentration existing industry mg/m. normal	Cas volume at the source m. ³ normal	Concentration new industry ng/m. ³ normal	Contentration existing industry mg/m.3 normal
100	849.0	1132.0	2000	324.0	432.0
125	796.0	1060.0	3000	285.0	380.0
150	750.0	1000.0	4000	258.0	344.0
175	714.0	952.0	5000	240.0	320.0
200	684.0	9120	7500	210.0	280.0
300	600.0	800.0	10000	192.0	256.0
400	543.0	724.0	15000	168.0	224.0
500	510.0	680.0	20000	154.2	205.6
750	444.0	592.0	30000	135.0	180.0
1000	405.0	540.0	40000	123.0	164.0
1500	357.0	476.0	50000	114.0	152.0

Table 10-3

WEST GERMAN DUST CLASSIFICATION

Class I Arsenic and its soluble compounds Asbestos Beryllium and its soluble compounds Lead and its soluble compounds Cadmium and its soluble compounds Chromate Chromium Compounds, as far as 6-valent Fluorine compounds, as far as soluble Cobalt Copper fume Metallic Nickel and its inorganic compounds Phosphoruspentoxide Mercury compounds (except cinnabar) Selenium and its soluble compounds Tellurium and its soluble compounds Thallium and its compounds Uranium and its compounds Vanadium and its compounds

Table 10-3 (cont'd)

WEST GERMAN DUST CLASSIFICATION

Class II

Antimony and its soluble compounds Barium compounds, as far as soluble Boron compounds, as far as soluble Calcium cyanide/Calcium cyanimid Calcium hydroxide Calcium oxide/Hydrated lime, Caustic lime Calcium fluoride Iodine and its compounds Quartz dust with particle size $<5 \ \mu m$ Soot Silver compounds, easily soluble, such as Silver nitrate Dusts of organic compounds such as z.B. Anthrazan, aromatische Amine, 1,4-Benzochinone, Naphthalin Dusts of tropic woods (lumber) Strontium and its compounds Tar and Tar pitch dusts Zinc and its compounds

Compounds classified as soluble are those substances which in the respiratory and digestive tracts, on the surface of the skin or the absorbing organs of plants are sufficiently soluble to exert their damaging effect.

TABLE 10-4

ISRAELI EMISSION STANDARDS FOR SUSPENDED PARTICULATE MATTER

- 1. P = Process Weight Rate (Kg./hr)
- 2. E = Emission Rate (Kg./hr)
- 3. The emission-rate is determined on the basis of the process-weight according to 3 different formulas, as follows:

b)	if P is less than 5,000 Kg./hr for 5,000 < P < 27,000 Kg./hr	E = 0.0290 E = 0.0124	P0.70
c)	for 27,000 < P < 500,000 Kg./hr	E = 3.07	P0.16

P	Ε	
(Kg./hr.)	(Kg./hr.)	Calculation Formula
50	0.30	
100	0.46	
200	0.70	for $P < 5,000$
300	0.89	$E = 0.0290 P^{0.60}$
500	1.21	
1,000	1.83	
1,500	2.33	
2,000	2.77	
3,000	3.54	
5,000	4.81	
8,000 12,000 15,000 18,000 22,000 27,000	6.69 8.89 10.40 11.80 13.58 15.68	for 5,000 < P < 27,000 E = 0.0124 p0.70
35,000 45,000	16.38 17.04	for 27,000 < P
60,000	17.84	$E = 3.07 P^{0.16}$
90,000	19.04	
150,000	20.66	
250,000	22.43	
500,000	25.05	

TABLE 10-5 MAXINUM ALLOWABLE DISCHARGE RATE OF DISCHARGE OF GRIT AND DUST FROM FURNACES, OTHER THAN INCINERATORS -Great Britain(a)

Schedule 1 - Furnaces rated by heat output (Boiler furnaces, or indirect heating appliance for gas or liquid which also falls within definition of Schedule 2 furnaces)

Maximum Continuous Rating in pounds of steam per hour (from and at 100°C. (212°F.)) or in	Maximum permittee and dust in po		to them)		
thousands of British thermal units per hour (1)	Furnaces burning solid matter (b) (2)	Furnaces burning liquid matter (3)	Heat input in millions of British thermal units per hour	Maximum permit grit and dust in p	
825 1,000 2,000	1·10 1·33 2·67	0·25 0·28 0·56	(1)	Furnaces burning solid matter (b) (2)	Furnaces burnin liquid matter (3)
3,000 4,000 5,000 7,500 10,000 15,000 20,000 25,000 30,000 40,000 50,000	4.00 5.33 6.67 8.50 10.00 13.33 16.67 20.0 23.4 30 37	0-84 1.12 1.4 2.1 2.8 4.2 5.6 7.0 8.4 11.2 12.5	1-25 2-5 5-0 7-5 10 15 20 25 30 35	1.1 2.1 4.3 6.8 7.6 9.7 11.9 14.1 16.3 18.4	0-28 0-55 1-1 1-7 2-2 3-3 4-4 5-5 6-6 7-7
100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 475,000	66 94 122 149 172 195 217 239 250	12 24 29 36 41 45 50 54-5 57	40 45 50 100 200 300 400 500 575	20.6 22.8 25 45 90 132 175 218 250	4·4 5·5 6·6 7·7 8·8 9·8 10·9 16 26 35 44 54 57

(a) Applicable to new furnaces November 1, 1971 and to existing furnaces January 1, 1978

(b) Not over 20% of dust >76µ diameter, except that 33% >76µ allowed in Schedule 1 furnaces with maximum continuous rating <16,800 lbs steam/hr, or, <16.8MBTU/hr, and in Schedule 2 furnaces with heat input < 25MBTU/hr

217

Schedule 2 - Furnaces rated by heat input (Indirect heating appliance, or where material being heated is in contact with combustion gases but does not contribute grit or dust

Furnaces burning

TABLE 10-6 SPECIAL DISTRICTS AND THEIR K-VALUES, JAPAN

(Effective on Jan. 1, 1973)

	l	2.92 (0.005)	Tokyo A, Osaka A, Y oko hama, Kawasaki, Kobe, Amagasaki etc., Yokkaichi etc., Nagoya etc.
Special Emission Standards	2	3.50 (0.006)	Chiba etc., Kawaguchi etc., Yokosuka, Fuji Himeji, etc., Kurashiki A, Northern Kyushu
	3	5.26 (0.009)	Kyoto etc., Wakayama etc., Ube, Onoda, Omuta, Karita

(Effective on Jan. 5, 1972)

Notes: 1. The figures in parentheses below K value indicate maximum ground concentration.

See also Table 11 "Stack Height Requirements"

USSP.	West Germany (VDI 2095	West Germany	Sweden	Japan	Italy	Israel	Iraq	Indía	Great Britain	France	East Germany	Czecho- slovakla	5raz 1 -	Brazil	lie] gi um	Austra- lia	Country
								Kampur				i	Guana- bara, Sao Paulo	S.André, Sao Ber- nardc de			State
	so ₂	SO2, part.	SO2		part.		Soot	Soot		part., S O2	SU ₂ ,part., gašeous sub	all sub- stances	30 ₂	so ₂	. ^{SO} 2		Pollutant
×		×	×	×		×				×	м	×					Emission rate (weight/time)
																	Production rate (weight/weight)
			~ *		×					×				<u></u>			Emission conc. (mg/m ³ ,ppm)
		· · · · ·	×		×					×							Power input (BTU or equiv.)
			<u>-</u>										<u> </u>	×			Fuel consumption (vol./time)
×		×	×							×							Effluent volume v (vol./time)
			•. <u>.</u>	ж													Effluent veloc.
м			×	×						<u> </u>	×						Effluent volume (vol./time) Effluent veloc. (m/sec) Plume rise (m) Tcmp. difference (effluent-ambient,°) Air Quality Standard (ng/m ³ ,ppm) Existing Air Quality (mg/m ³ ,ppu)
×				×						×		·					Temp. difference (effluent-ambient,°)
×		×	×			×				×	×	ж					Air Quality Standard (ng/m ³ ,ppm)
											×						Existing Air Quality (mg/m ³ ,ppu)
			м			×							*	×			Building height (m)
				×						×	×		•·····				Stack height adj. (m)
							×	×									Height above floor (m)
	·····	×												~~~~			Diameter of stack (m)
×																	Regional meteor. cond.
14	Ц	13	12	11	01	9	<u>с</u> л	7	સ્ય	σ	4,5	ω.	N		15	15	Footnotes

Table 11. STACK HEIGHT REQUIREMENS, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

5тд

Table 11 (continued). STACK HEIGHT REQUIREMENTS, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

FOOTNOTES

- 1. See Table 11-1 and Table 11-2. Stack has to be more than 5 m. higher than surrounding buildings (50 m. radius).
- 2. Stack has to be 5 m. higher than existing buildings in the neighborhood (circle of 50 m. radius).
- 3. See Table 11-3 and Eq. 1.
- 4. See Table 11-4 and Table 11-5 and Fig. 11-1 and Fig. 11-2 (Particulates).
- 5. See Table 11-6 for Calculation of $\triangle H$.
- 6. For SO₂ see Table 11-7 and Eq. 2. For suspended particulates see Eq. 3. Adjustments for natural or artificial obstacles higher than 10 m. (for suspended particulates), 2 m. (for SO₂) and closer than 10 hp are required.
- 7. No smoke shall be emitted from a furnace at lower altitude than 100 ft. from firing floor.
- 8. Minimum stack height for brick kiln 140-150 ft.
- 9. Basis for stack height is 40% of concentration of established air quality standards. Minimum stack height 2¹/₂ times the height of surrounding buildings, and at least 2 m. taller than the highest building in the neighborhood.
- 10. See Eq. 4 and Fig. 11-3.
- 11. See Eq. 5.
- 12. See Eq. 6, Fig. 11-9, Fig. 11-10, Fig. 11-11, and Fig. 11-12.

Table 11 (continued). STACK HEIGHT REQUIREMENTS, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

FOOTNOTES (continued)

- 13. Minimum stack height 2 m. over roofcrest (~30° slope). Upper limit 300 m. See Fig. 11-4, but only
 a) For gaseous pollutants.
 - a) For gascous porrubants.
 - b) If pollutants are inert.
 - c) If emissions are, considering quantity and temperature, constant.
 - d) Flat terrain.
 - e) If no structure, natural or artificial, disturbs.

Details are published in VDI 2289.

14. See Eq. 7, Eq. 8; and Table 11-11, Fig. 11-13, and Fig. 11-14.

- 15. See Table 11-13.
- 16. Same as Great Britain.
- 17. See Table 11-14.
- 18. See Table 11-15, Table 11-16, Table 11-17, Table 11-18, and Table 11-19; Fig. 11-5 and Fig. 11-6.

CzechoslovakiaEq. 1
$$e_p = \frac{1}{12}c \cdot k_{max} H^3$$
FranceEq. 2 (SO2) $h_p = \sqrt{\frac{3^{40}q_1}{C_{M_1}}} \sqrt[3]{\frac{1}{RAT}}$ FranceEq. 3 (susp. part.) $h_p = \sqrt{\frac{680}{C_{M_2}}} \sqrt[3]{\frac{n}{RAT}}$ ItalyEq. 4 (susp. part.) $q_2 = 0.25 (1 + A_1)$ JapanEq. 5 (SO2) $q = K \cdot 10^{-3} He^2$ SwedenEq. 6 (SO2) $H = H_{ref} + \Delta H$ USSREq. 7 $H = \sqrt{\frac{A_2^M SO2^F}{MFC}} \sqrt[3]{\frac{N}{V\Delta T}}$ Eq. 8 $f = \frac{10^3 v_{OD}^2 p}{H^2 \Delta T}$

Table 11 (continued). STACK HEIGHT REQUIREMENTS. OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

NOMENCLATURE

- A₁ : Constant derived in Fig. 11-3 by given stack height and thermal capacity.
- A2 : a) For Central Asia, Kazakhstan, the Lower Volga region, Caucasus, Siberia, and Far East. 200. b) For the north and northwest of the European territory of the USSR, Middle Volga Region, Urals, and Ukraine, 160.
 - c) For the Central part of the European territory of the USSR, 120.
- C_{M_2} : Difference between 0.25 mg/m³ (SO₂) and air quality. If there are no data:
- a) 0.01 mg/m³ in zones little polluted.
 b) 0.11 mg/m³ in medium industrial areas with medium population density.
 c) 0.16 mg/m³ in urban or industrial areas.
- C_{M2}: Difference between 0.15 mg/m³ and existing air quality. If no measurements exist:
 a) 0.05 mg/m³ for low polluted zones.
 b) 0.09 mg/m³ for medium industrialized and medium populated areas.

 - c) 0.11 mg/m³ for urban and heavily industrialized areas.
 - : Diameter of the stack. D
 - : Allowable emission rate kg/hr. en
 - F : Coefficient allowing for the influence of the velocity of deposition: a) $S0_2 = 1$. b) Susp. part. = 2.

: Should satisfy the inequality f < 6 (f in m/sec² deg). f

- He : Stack height (effective) (m), see Table 11-9.
- h_=H: Stack height (physical) (m).

Table 11 (continued). STACK HEIGHT REQUIREMENTS, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

NOMENCLATURE (continued)

Href: Determined in Fig. 11-8 and Table 11-10, where Z is the distribution factor.

- ▲H : Height adjustment, see Table 11-10.
- K : Constant varying with locality, see Table 11-8.
- Kmax: Maximum allowable ambient air concentration.
- M : Total emission (g/sec).
- MPC : Maximum permissible concentration.
- N=n : Number of chimneys, situated less than 2 chimney heights from each other.
- q_1 : Theoretic SO₂ emission rate from Table 11-7. q (Japan) in m³/hr.
- q₂: Emission rate (kg/hr) calculated for the particular installation.
- q_c : Allowable emission rate gr/m³, constant $\frac{10^{0}m}{hr}$.
- R : Effluent volume rate (m^3/hr) .
- ΔT : Temperature difference (^OC) between stack gas and ambient air.
- V : Total volume discharged into the atmosphere.
- Wo : Exit velocity from stack.

TABLE 11-1. STACK HEIGHT REQUIREMENT BASED ON FUEL CONSUMPTION, SAO BERNARDO AND SANTO ANDRÉ

Regulating the height of the stacks relating to the quantity of fuel, the SO_2 emission and other hazard to the public health.

Fuel	Height
ton per hour	(m)
0 - 5	30
5 - 15	45
15 - 50	60
50 - 100	80
100 - 🛩	100

TABLE 11-2. STACK HEIGHT REQUIREMENT BASED ON SO₂ EMISSIONS SAO BERNARDO, SANTO ANDRÉ

so ₂	Height
ton per hour	(m)
0 - 0,1	30
0,1 - 0,3	40
0,3 - 0,6	60
0,6 - 1,0	80
1,0 - ∞	100

Prohibiting emissions with more than 2000 ppm for SO_2 and 850 mg/m³ for solid particules (259C and 1 atm) by source of emission.

TABLE 11-3. STACK HEIGHT REQUIREMENT BASED ON EMISSIONS AND SPECIFIC POLLUTANTS FOR FUEL BURNING, CZECHOSLOVAKIA

	P0	ermissible emissi	emission in kg/hour				
Stack height ^a	From combu	stion of fuel	Multiplier for K _{max} for other harmful				
(meters)	Fly ash	SO2	substances ^{6,c}				
7	2.5	2	4				
8	3	2.3	4.6				
10	4	3.2	6.4				
12	5	4.2	8.4				
14	7	5.3	10.6				
16	9	6.8	13.6				
18	11.4	8.4	16.8				
20	14	10	20.0				
25	21	13.5	27.0				
30	31	22.5	45.0				
35	42	32.5	65.0				
40	55	46	92.0				
45	70	60	120.0				
50	84	82.5	165.0				
55	110	100	200				
60	130	122	245.0				
65	160	145	290.0				
70	192	170	340.0				
75	225	195	390.0				
80	260	227	455				
85	290	257	514				
90	325	295	590				
95	360	335	670				
100	400	375	750				
110	490	900	930				
120	580	1425	1130				
130	675	1950	1340				
140	785	2475	1560				
150	900	3000	1790				
160	1010	3555	2060				
170	1130	4110	2320				
180	1270	4665	2600				
190	1400	5220	2890				
200	1550	5779	3200				
22 0	1820	6355	3840				
24 0	2110	6930	45 00				
260	2400	7510	5160				
280	2 700	8085	5820				
300	3000	8665	6500				

Permissible emission in kg/hour

Effective	Allowable SO ₂ e background leve	mission (kg/hr) 1 concentration	when the given exists	s,b
stack ht,	0.4 mg/m ³	0.3 mg/m ^{3_}	0.2 mg/m ³	Other pollutant
10	4.26	3.20	2.13	10.65
15	9.59	7.19	4.79	23.96
20	17.04	12.78	8.52	42.60
25	26.63	19.97	13.31	66.56
30	38.34	28.76	19.17	<u>95</u> .85
35	52.19	39.14	26.09	130.46
40	68.16	51.12	34.08	170.40
45	86.27	64.70	43.13	215.66
50	106.50	79.88	53.25	266.25
60	153.36	115.02	76.68	383.40
-70	208.74	156.56	104.37	521.85
80	272.64	204.13	136.32	681.60
90	345.06	258.80	172.53	862.65
100	420,00	319.50	213.00	1,065.00
120	613.44	460.08	306.72	1,533.60
140	834.96	626.22	417.48	2,087.40
160	1,090.56	817.92	545.28	2,726.40
180	1,380.24	1,035.18	690.12	3,450.60
200	1,704.00	1,278.00	852.00	4,260.00
220	2,061.84	1,546.38	1,030.92	5,154.60
240	2,453.76	1,840.32	1,226.88	6,134.40
260	2,879.76	2,159.82	1,439.88	7,199.40
280	3,339.84	2,504.88	1,669.92	8,349.60
300	3,834.00	2,875.50	1,917.00	9,585.00

TABLE 11-4. ALLOWABLE EMISSIONS BASED ON STACK HEICHT POLLUTANT AND AIR QUALITY, EAST GERMANY

^aSee also Figure 11-1, 11-2

^bAllowable emission in kg/hr = S (Ambient air quality standard (MIK_k^{-}) , in mg/m³ listed in Table II for "East Germany" for 30-minute averaging time); e.g. for acetaldehyde - MIK_k - 0.03 mg/m³. Therefore the permissible emission of acetaldehyde from a 100-m stack is 1,065.0 X 0.03 = 31.95 kg/hr.

TABLE 11-5. DEFINITION OF SUSPENDED PARTICULATE MATTER AND SETTLEABLE PARTICULATE MATTER, EAST GERMANY

Dust classification	Fraction	Total
suspended particulates	d ≤ 10µum	C _s
setteable particulates { fine dust	10∠d ≤ 63µm	C _F } ⊂
coarse dust	d > 63jum	$\left. \begin{array}{c} c_{F} \\ c_{G} \end{array} \right\} \left. \begin{array}{c} c_{S} \end{array} \right\}$

 $C_s + C_F + C_G = 1$

Suspended particulates

$$e_{zN} = e_{zs} \cdot \frac{1}{c_s}$$
 [kg/hr]

- ${\bf e}_{{\bf Z} N} \qquad \text{acceptable total dust emission}$
- C_s suspended particulate portion
- ezs acceptable suspended particulate emission value out of Table VII

Setteable particulates

$$e_{zN} = e_{zS} \cdot \frac{1}{C_S}$$
 [kg/hr]

e_{zS} acceptable setteable particulate emission value out of Table VIII for each value of C_f, and has to be multiplied by q

TABLE 11-5 CONT. DEFINITION OF SUSPENDED PARTICULATE MATTER AND SETTLEABLE PARTICULATE MATTER, EAST GERMANY

$$C_{f} = \frac{C_{F}}{C_{F} + C_{G}}$$

(ratio of fine dust in setteable particulates)

	đ
Background level 1	0.8
Background level 2	0.6
Background level 3	0.4

lt volume	Exit	ve]	Locit	y ₅ (m/	sec)				10					20		
[Nm ³ /h] 10 ³	Exit (gas 20	temp 60	eratu 120	re (° 180	с) 240	20	60	120	180	240	20	60	120	180	240
1	△ H [m]	_						-		_	_		ι	1	1	1
.2		_	-	-	-	-	- 1			1	1	1	t	1	1	1
3			~		1	1	-	1	1	1	1	1	L	1	1	1
4				1	1	1	1	2	1	1	1	1	1	1	ı	2
5		-	+	1	1	1	1	1	1	1	L	1	1	2	2	2
5		~	1	1	1	1	1	1	I	1	2	1	2	2	2	2
7		-	1	1	r	1	1	٦	1	2	2	1	2	2	2	3
ម		-	1	1	1	2	1	1	1	2	2	L	2	2	2	3
Э		-	1	1	1	2	1	L	2	2	2	2	2	2	3	3
10			1	1	2	2	.1	ı	2	2	2	2	2	2	3	3
20		1	1	2	3	3	2	2	3	3	4	2	3	4	4	5
30		1	2	3	4	5	2	3	4	5	5	3	4	5	6،	7
40		l	2	č	5	6	2	3	5	6	7	4	5	6	7	8
59		1	3	4	6	7	3	4	6	7	8	4	Б	7	8	10
60		1	3	5	7	8	2	5	6	-8	• 9	5	6	8	9	11
70		2	3	6	7	9	3	5	7	9	10	5	7	9	1 D	12
80		2	4	6	8	10	4	6	8	10	11	5	8	10	11	13
\$0		2	4		9	11	4	6	e 	10	12	6	8	11	13	14
109		2	5	7	10	12	4	7	9	11	13	6	9	11	14	15
200		3	7	12	17	21	6	10	15	19	26	9	14	18	22	25
300		5	10	17	23	29	8	14	20	25	31	11	18	25	23	34
400		6	12	21	29	37	9	17	24	32	38	13	21	27	34	41
500		7	14	25	35	-\$-4	11	19	29	37	46	15	24	32	40	48
600		8	16	29	40	50	12	22	32	42	52	18	27	36	46	55
700		8	19	31	46	57	13	24	36	48	60	18	20	40	50	62
800		9	21	36	50	65	14	27	40	20	55	19	32	44	55	67
900		10	23	40	55	70	15	29	44	~S	70	21	34	48	60	74
1 000		11	24	43	60	77	16	30	47	00	70	22	36	50	65	$\overline{78}$

TABLE 11-6. STACK HEIGHT ADJUSTMENT, EAST GERMANY

TABLE 11-7. CALCULATION OF H_S BASED ON HEAT INPUT AND EXIT GAS VELOCITY, FRANCE

 10^{6} th = 500 MW 1th = 1000 kcal = 3968.3 BTU

power input in th/hr	exit velocity (m/sec)	5	3	4	5	6	7
more than	less than		}				
60	150	1,2	1.2	1.2	1.2	1.2	1.2
150	500	2	1.2	1,2	1.2	1.2	1,2
500	1000	3	2	2	2	2	2
1000	2000	4	3	2	2	2	2
2000	3000	5	4	3	2	5	2
3000	5000	6	5	4	3	2	2
5000	8000	7	6	5	4	3	2
3000		8	7	6	5	4	3

1°) Sulfur content of fuel \leq 0.1 g/thermie

Exit velocity at least 2 m/sec.

2•) Sulfur content of fuel > 0.1 g/thermie, but < 1 g/thermie

power input in th/hr	exit velocity (m/s	ec) 2	3	4	5	ó	7	B
more than	less than							
60	150	2	1,2	1.2	1.2	1,2	1,2	1,2
150	500	, 3	2	2	2	2	2	2
5°0	1000	4	3	2	2	2	2	2
1000	2000	5	4	3	2	2	2	2
2010	3000	6	5	4	3	2	2	2
3000	5000	7	6	5	4	3	2	2
5000	8000	8	7	6	5	4	3	2
8000		1	8	7	6	5	4	3

Exit velocity must be ≥ 2 m/sec, if the heat input ≤ 8000 thermies/hr; and > 3 m/sec, if the heat input > 8000 thermies/hr.

TABLE 11-7 (CONTINUED). CALCULATION OF H_S BASED ON HEAT INPUT AND EXIT GAS VELOCITY, FRANCE

 10^{6} th = 500 MW lth = 1000 kcal = 3968.3 BTU

3.) Sulfur content of fuel > 1 g/thermie, but < 2 g/thermie

power input in th/hr	exit velocity (m/sec)	5	6	7	8	9	10
more than 1000 2000 3000 5000 8000	less than 1000 2000 3000 5000 8000	4 5 6 7 8	3 4 5 6 7 8	2 3 4 5 6 7	2 2 3 4 5 6	2 2 3 4 5	2 2 2 2 3 4

Exit velocity must be > 5 m/sec, if heat input \leq 8000 thermies/hr; and > 6 m/sec, if heat input > 8000 thermies/hr.

4•) <u>Sulfur content of fuel > 2 g/thermie</u>.

power input in th/hr	exit velocity (m/sec)	7	8	9	10	11
more than	less than			*	********	
2000 3000 5000 8000	2000 3000 5000 8000	5 6 7 8 -	4 5 6 7 8	3 4 5 6 7	2 3 4 5 6	2 2 3 4 5

Exit velocity must be \geq 7 m/sec, if heat input is \leq 8000 thermies/hr; and > 8 m/sec, if heat input is > 8000 thermies/hr.

TABLE 11-8. K-VALUES FOR STACK HEIGHT AND EMISSION, JAPAN

	Special S	standard	General Standard		
Previous K value	2.29	5.26	6.42	22.2	
Maximum densities at ground level (ppm)	0.005	0.009	0.011	0.038	
New K values	1.17	2.34	3.50	1.75	
Maximum densities at ground level (ppm)	0.002	0.004	0.006	0.030	

Table 1: Relationship between K Values and Maximum Densities at Ground Level

233

Table 2: General Standards

K Values	Areas
3.5	Tokyo, Yokohama • Kawasaki, Nagoya, Yokkaichi, etc. (6 areas)
4.67	Chiba · Ichihara, Kurashiki · Mizushima, Kitakyushu, etc. (7 areas)
6.42	Sapporo, Muroran, Kashima, etc. (16 areas)
8.76	Tomakomai, Niigata, Shimonoseki, etc. (19 areas)
11.7	Okayama, Hiroshima, Fukuoka, etc. (16 areas)
14.6	Asahikawa, Kushiro, Shizuoka, Nagasaki, Sasebo, Kagoshima, etc. (35 areas)
17.5	Other areas

Special Standards

The number of districts where the special standards, applying to newly built facilities, are enforced was increased from 18 to 28, with the standard K values strengthened from 2.92-5.26 to 1.17-2.34 at the same time. This means that when a thermal power station with 200-meter-high smokestack for 600,000 kilowatts is built in Tokyo where the K value of 1.17 applies, the sulfur content in fuel oil to be burned there will have to be held down below 0.2 percent.

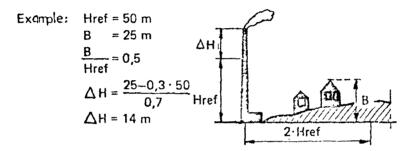
TABLE 11-9. CALCULATION OF CORRECTED HEIGHT OF DISCHARGE, JAPAN

He = Ho + 0.65 (Hm + Ht)
Hm =
$$\frac{0.795 \quad \sqrt{Q \cdot V}}{1 + \frac{2.58}{V}}$$

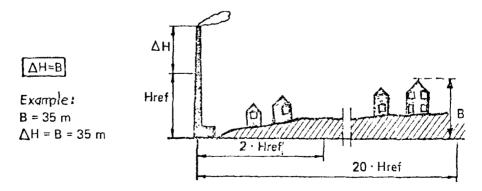
Ht = 2.01 x 10⁻³ · Q · (T - 288) · (2.30 log J + $\frac{1}{J}$ - 1)
J = $\frac{1}{\sqrt{Q \cdot V}}$ (1460 - 296 x $\frac{V}{T - 288}$) + 1

In these equations, He, Ho, Q, V and T denote the following values respectively.

- ... Corrected height of discharge outlet (Unit: meter) He
- ... Actual height of discharge outlet (Unit: meter) Ho
- ... Rate of effluent gas at 15°C (Unit: m³/sec) Q
- ... Emission rate of effluent gas (Unit: m/sec.) V
- т ... Temperature of effluent gas (Unit: Absolute temperature)


TABLE 11-10. CHIMNEY HEIGHT ADJUSTMENT, SWEDEN

Chimney_height adjustment H


The chimney height adjustment Δ H has to be calculated according to item 6.1 as well as according to item 6.2. The greatest of the two values arrived at applies.

Determination of \triangle H with reference to existing buildings within a distance of 2 H_{ref} from the chimney.

$if \frac{B}{Href} < 0.3$	then AH=0m
if $\frac{B}{Href}$ is between 0.3 – 1.0	then $\Delta H = \frac{B-0.3 \cdot Href}{0.7}$ m
if $\frac{B}{Href} > 1,0$	then AH=Bm

Determination of Δ H with reference to existing buildings situated in an area 2 between two circles; the outer having a radius of 20 H_{ref}, the inner having a radius of 2 H_{ref} and with the chimney as center of both circles.

Chimney height H

The chimney height is determined by the formula $H = Href + \Delta H$

TABLE 11-11. EXAMPLE OF STACK HEIGHT CALCULATION USSR

	Calculation of Stack Height of Si	ntering Plant	
1	Background concentration of sulfur dioxid	ng/m ³	0
	$-C_{b,SO_2}$ Background concentration of dust $-C_{b,d}$	mg/m^3	Ō
2	Coefficient dependent on the thermal stratification of the atmosphere - A	sec ^{2/3} x deg 1/3	160
3	$FM_{SO_2} > FM_d$ 1 x 1960 > 2 x 60	g/sec	196 0 1 20
4	The stack height is therefore determined from the emission of sulfur dioxide Difference between the temperature of the gas-air mixture discharged and that of the surrounding air $-\Delta T$ $\Delta T = T_g - T_a = 150 - 30$ First approximation for minimum stack	deg	120
	First approximation for minimum stack height (for m = 1) - H $H = \sqrt{\frac{AM_{SO_4}F_{III}}{MPC}} \sqrt[3]{\frac{N}{V \Delta T}} =$		
	$= \sqrt{\frac{160 \times 1960 \times 1 \times 1}{0.5}} \sqrt[3]{\frac{1}{300 \times 120}}$	TI.	138
6	First approximation for the parameter f $f = 10^3 \frac{w_0^2 D}{H^2 \Delta T} = \frac{10^3 \times 11^2 \times 6}{138^2 \times 120}$	m/sec ² deg	0,32

TABLE 11-11 (CONTINUED). EXAMPLE OF STACK HEIGHT CALCULATION USSR

No.	Name, Designation, Formula and Calculation	Units	Value
7	First approximation for the coefficient allowing for the conditions of exit of the gas-air mixture from the stack - m		1,05
8	Preliminary value of the stack height - H $H = \sqrt{\frac{AM_{SO_2}Fm}{MPC}}\sqrt[3]{\frac{N}{V\Delta T}} =$		
	$= \sqrt{\frac{160 \times 1960 \times 1 \times 1}{0,5}} \sqrt[3]{\frac{1}{300 \times 120}}$	m	138
9	Next largest size of the height of stand- ard stacks - H Parameter f	m	150
10	$f = 10^3 \frac{w_0^2 D}{H^2 \Delta T} = \frac{10^3 \mathrm{x} 11^2 \mathrm{x} 6}{150^2 \mathrm{x} 120} .$	m/sec ² deg	0,27
11	 (f≤6, which makes it possible to use the present Instructions) Dimensionless coefficient allowing for the conditions of exit of the gas-air mixture from the stack - m Maximum concentration of sulfur dioxide 		1,05
12	near the underlying surface - c_{mSO_2} $c_{m SO_2} = \frac{AM_{SO_2}Fm}{H^2} \sqrt[3]{\frac{N}{V\Delta T}} = \frac{160 \times 1960 \times 1 \times 1.05}{150^2} \sqrt[3]{\frac{1}{300 \times 120}}$	mg/m ³	0 , 44
13	Maximum concentration of dust near the underlying surface - c _{m d}		
	$c_{m,d} = \frac{AM_d F_m}{H^2} \sqrt[3]{\frac{N}{V\Delta T}} = \frac{160 \times 60 \times 2 \times 1.05}{150^2} \sqrt[3]{\frac{1}{300 \times 120}}$	ng/m ³	0,03
14	Distance at which the maximum concentra- tion of noxious emissions is reached - x _m		
	$x_{\rm m} = 20H = 20_{\rm X} 150$	m	3000

TABLE 11-12.	STACK	HEIGHT	REQUI	REMENTS	FOR LARGE
		STEAM 1	POWER	PLANTS,	USSR

	Chimney height (meters) ^b				
Fuel consumption (metric tons/hour)	High ash coal (over 5%/1000 cal/kg)	Low ash coal (less than 5%/1000 cal/kg)			
0-5	30 (45°)	3 0 (4 5 ^c)			
5-15	45	30 (45°)			
15-50	60	45			
50~100	80	60			
100-200	100	80			
200-300	120	100			
over 30 0	150	120			

^a From Kettner (9c). ^b May use lower stack height when SO₂ removal equipment is used or liquid fuel burned.

^e When houses 15 meters high are within 200 meters of plant.

Table 11-13 Stack Height Requirements for Plants Emitting SO2, Belgium

	Imposed minimum height (meters)				
Degree of dilution of component sulfur gases	For gases or fumes whose temperature is over 150 °C	For gases or fumes whose temperature is under 150 °C			
1/12,000	7	10			
1/10,000	10	15			
1/7,500	14	23			
1/5,000	20	35			
1/3,000	30	50			
1/2,000	40	65			
1/1,000	60	100			

^a These requirements apply only to factories roasting or reducing lead or zinc minerals or metals containing lead or zinc.

"Règlement Général pour la Protection du Travail," Chapter II, Mesures spéciales applicables à certaines industries. Sect. I, Ind. des Métaux, A. Art. 364-373.

Table 11-14 Stack Height Requirements for SO₂ Emissions from Sinter Plants (VDI 2095)

1SO ₂ Emission (kg/hour)	100	500	1000	1500
Minimum stack height (meters)	45	75	90	Special agreement

Table 11-15

Basic Chimney Heights for Miscellaneous Warm Emission of SO₂^a (For Use Above Range of "Memorandum on Chimney Height"^b), Great Britain

Rate of emission: (tons of SO ₂ per day)	3.6	7.5	13	21	30	40
Basic chimney height, feet	100	150	200	250	300	340

^a To allow for interfering nearby tall buildings the following correction has to be applied.

H = 0.625A + 0.935B

where H = Final chimney height, feet, A = Basic chimney height, feet, B = Building height, feet.

Table 11-16 Basic Chimney Heights for Sulfur-Burning Sulfuric Acid Contact Plants, Great Britain

Production		Basic Chimne	ey Height, Fe	eta
Fons H ₂ SO4 per day	v = 20	v = 30	v == 40	v = 5(
1000	104	101		96
200	142	138	135	132
300	175	167	163	159
400	203	197	192	188
500	226	218	214	210
600	248	241	285	230
700	267	260	253	247
800	286	278	271	266
900	304	294	287	280
1000	319	310	303	296
1100	334	325	317	310
1200	349	340	332	325
1300	363	353	344	337
1400	377	367	358	351
1500	391	381	372	364
1600	405	394	385	376
1700	417	406	397	388
1800	429	418	409	399
1900	441	429	420	409
2000	452	439	430	419

^a These are based on a calculated 3 minute mean ground level concentration of SO₂ of 20 pphm (parts per 100 million) v = velocity of efflux of gases in feet per second.

v = velocity of efflux of gases in feet per second. ^b Note that the minimum height of chimney for a contact sulfuric acid plant is 120 feet

Table 11-17 Basic Chimney Heights for Nitric Acid Production Plants, Great Britain^a

Gas volume at STP (ft ³ /min)	Gas volume at STP (ft ³ /min)	Effective height (feet)	Plume rise (feet)	Basic chimney height (feet)
175	14,000	205	27	180
3 50	28,000	287	39	250
53 0	42,000	353	47	300
700	56,000	412	55	350
106 0	84,000	468	68	400

^a Basis: 1. Efflux velocity 80 ft/sec. 2. Emission has no thermal buoyancy. 3. Maximum g.l.c. for a 3-minute mean is 0.16 ppm NO₂. 4. Concentration of NO₂ is 2.3 grains/ft³ (2.0 grains SO₃). 5. No allowance made for other sources of emission interfering. 6. Wind speed taken as 20 ft/sec.

	Chimney height (feet) ^a					
Clinker throughput (tons/hour)	Wet process	Semidry process	Dry process			
30 and less	200	200	200			
60	280	260	240			
90	340	310	280			
120	390	350	310			
240	500	460	415			
360	550	500	450			

^a Interpolation between 30 and 360 tons/hour on smooth curves through points in table. Such curves are Fig. 1 of the "notes" referred to in the text.

Table 11-19 Basic Chimney Heights for Copper Works, Great Britain^a

Rate of melting ^o (tons/24 hours)	25	50	100	150	200	250	300
Basic chimney height (feet)	72	102	144	177	204	228	250

^a The process to which these are applicable is the recovery of copper and its alloys from scrap fabricated metal, swarf, or residues. It assumes that satisfactory steps have been taken to prevent emissions of dark smoke and that the chimneys are solely to secure satisfactory dispersion of adventitious zinc oxide fume arising during melting and pouring of the copper alloys. Where there is blowing of the molten metal deliberately to remove zinc the standards for general fume emissions are expected to be attempted.

⁶ Rate of melting is the aggregate capacity of all furnaces on the works site calculated to a 24-hour day except on a large works where groups of furnaces are so widely separated as to be able to be considered as occupying different sites

Locat	ion			Not to be exceed	
Country	City and Province	Category	Ringelmann < No.	more than (min./hr)	Foot- notes
Australia		All stationary fuel- burning sources, shipping	1	_	1,2,7
		diesel locomotives, air- craft, motor vehicles (diesel or petroleum).	1	-	2,7
	New South Wales	Any source in a scheduled premise	1	-	9,8
	New South Wales	Fuel burning except ceramic kilns	3	-	4,5,10,6
	New South Wales	Ceramic Kilns for dark/ or brown face bricks	4	-	11,3
	New South Wales	All other ceramic kilns	3	10	4,11
	Queens 1and	Industrial plant or fuel burning, except ceramic kilns, vehicles and vessels	2	5	
	Queens1 and	Ceramic Kilns	2	5	
	Queens land	Ceramic Kilns	3		33
	Queensland	Vessels (continuous emission)	2	5	

Locat	ion			Not to exceed	
Country	City or Province	Category	Ringelmann < No.	more than (min/hr)	Foot- notes
	Queensland	Vessels (aggregate emission)	4	6	
	South Australia	Fuel burning except ceramic kilns and vessels	2	-	14
	South Australia	Ceramic Kilns	2	5	13
	South Australia	Vessels (main fuel burning equipment)	2	6	13
	South Australia	Vessels or auxiliary fuel burning equipment	2	3	13
	Victoria	Fuel burning except ceramic kilns	-	-	15
	Victoria	Ceramic Kilns	4	-	15,3 0
	Western Australia	Fuel burning except vessels	2	4	16
	Western Australia	Vessels not underway	2	10	
	Western Australia	Vessels underway	2	20	
Brazil	Sao Paulo State		2	6	21
	Ganabara State		2	6	21

Locat				Not to be exceeded	
Country	City or Province	Category	Ringelman < No.	more than (min/hr)	Foot- notes
			·		
	Sao Bernardo do (Сапро	2	15	34
	Santo André				
	Sao Coetano do Su	11			
Canada	Alberta	Urban area under 50,000	3	10	4
	Alberta	Urban area of over 50,000	2	10	18,19
	Alberta	Rural area	3	30	4,21
	British Columbia	Wood waste burners	2	-	22
	British Columbia	Wood waste burners	3	-	23
	Manitoba		2	8	23
	Ontario		2	(4 min/30 min)	24
	Quebec, Montreal		1		
	New Brunswick		2	(4 min/30 min)	24
	Newfoundland		2	8	24
olombia	-		3		35

Location		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		Not to be exceeded	
	City and		Ringelmann	more than	Foot-
Country	Province	Category	< No.	(min/hr)	notes
France	-				
Great Britain	-		2		
Guam			4	3	
Hong Kong	-	All furnaces or ovens	2		27
India	Kampur				29
Ireland	-	Chimney with two furnaces "" three furnace "" four furnace	es 2	16 min/8 hr 22 min/8 hr 27 min/hr	
Ireland	-	Private dwelling home	4 2	4 consec. min 8/8 hr	
			4	2/30 min	
Italy	-	Smoke stack height up to 50 in.	3	5	
		Smoke stack height over 50 in.	4		
Italy	-		2	5	
Italy	-		3		
Malta	-		4	4	
Mexico	-	Incinerators	2	3	

Location				Not to be exceeded	
Count ry	City or Province	Category	Ringelman < No.	more than (min/hr)	Foot- notes
Mexico		Other existing	2	5	
Mexico		Others new	2	3	28
Mexico		Vehicles gasoline	-	10 sec.	
Mexico		Vehicles diesel	2	15 sec.	28
Mexico		Locomotives diesel	3	30 sec/30 min	
New Zealand	-	Clean air zones	1	-	
New Zealand	-	Other zones	2	4	
Philip pines		-	3	2	
Singapore		-	2	5	17
Spain	Madrid	-	2	-	
West Germany		Solid fuel	1		26
West Germany		Mfgr. electrodes Non-ferrous alloy Aluminum reduction Incineration of liquids	1		36

Location				Not to be exceeded	· · · · · · · · · · · · · · · · · · ·
Country	City or Province	Category	Ringelmann < No.	more than (min/hr)	Foot- notes
West Germany	Northrhine- Westphalia	All fuels	2		99-19-20-20-20-20-20-20-20-20-20-20-20-20-20-
Yugoslavia	Sarajevo	Manually fired > 25,000 kcal/hr	2	-	25
Yugoslavia	Serbia	Stationary Sources	3	4	
Yugoslavia	Serbia	Train & ships	3	3	
Yugoslavia	Zagreb	Solid Fuel	2		
U.S.A.		Fossil fuel fired Generato	r 20%	2	
U.S.A.		Fossil fuel fired Generato	r 40%	-	
U.S.A.		Portland Cement Plants	10%	-	
U.S.S.		Petroleum Refineries	30%	3	
U.S.A.		Secondary Lead Smelter	20%	-	
U.S.A.		Sewage Treatment	20%	-	

- 2 Intended for application to new plants.
- 3 Formed by dry press brick machines.
- 4 At no time more than Ringelmann No. 3.
- 5 20 minutes per 24 hours of Ringelmann No.< 3 allowed for lighting-up.
- 6 10 minutes per 8 hours for boilers burning up to 1 ton/hr. of fuel; 20 minutes per 8 hours for 1 to 5 tons/hr; 30 minutes/8 hours for over 5 tons/hr, or over Ringelmann No. 2 for soot blowing.
- 7 National Guidelines for new plants.
- δ For which application for approval was made after Jan. 1, 1972.
- 9 10 minutes not darker than Ringelmann No. 3 allowed for lighting-up or soot blowing.
- 10 In all unscheduled premises, and in scheduled premises, except ceramic kilns, for which application for approval was made before Jan. 1, 1972.
- 11 For which application for approval was made before Jan. 1, 1972.
- 12 For lighting-up, Ringelmann2 No. 2 for 30 mins/24 hr, and 2 No. 4 for 2 mins/30 mins.
- 13 At no time more than Ringelmann No.3.
- 14 See Table 12-1, Dark Smoke < Ringelmann 3, but > Ringelmann 2; Black Smoke > 3.
- 15 See Table 12-2.

^{1 - #3} Ringelmann acceptable for lighting-up or soot-blowing.

- 16 10 mins/8 hrs of Ringelmann No. 2 allowed.
- 17 Not more than three times per day.
- 18 At no time more than Ringlemann No. 2.
- 19 When starting-up, cleaning or banking fires or soot blowing, 20 minutes per hour of Ringelmann No 2; 3 minutes per hour of Ringelmann No. 3 but no Ringelmann No. 4 is allowed.
- 20 When starting-up, cleaning or banking fires or soot blowing, 20 minutes per hour of Ringelmann No. 3 but no Ringelmann No. 4 is allowed.
- 21 No Ringelmann No. 4 allowed.
- 22 Objective level B maximum value 10% of time at Ringelmann No. 3 allowed.
- 23 Objective level C maximum value 15% of time at Ringelmann No. 4 allowed.
- 24 Three minutes of Ringelman No. 3 per 15 minutes allowed for starting new fire.
- 25 If exceeded, measurement of particulate content of flue gases can be required.
- 26 Also during soot blowing.
- 27 Not to exceed 6 mins/4 hrs or 3 minutes continuously at any one time.
- 28 Start-up.
- 29 See Table 12-3.
- 30 Not to be exceeded more than 30 mins/complete cycle.
- 31 No dark smoke for more than 4 consecutive minutes.

- 32 No black smoke for more than 2 units in any 30 minutes.
- 33 Only if reducing atmosphere is required for production.
- 34 Or 30 minutes in one day.
- 35 Except for 15 minutes in 24 hours.
- 36 Proposed Federal Standard (status Oct. 1973).

Ringelmann No.	Opacity (%)
0	0
1	20
2	40
3	60
4	80
5	100

Table 12-1 Queensland, Australia

Plant Served by Chimne	Minutes in Aggregate of Dark Smoke Within Any Period of Eight Hours				
				Without soot- blowing	With soot- blowing
One boiler, furnace or incinerator	••		••	10	14
Two boilers, furnaces or incinerators	••	••	••	18	25
Three boilers, furnaces or incinerators	••	••	••	24	34
Four or more boilers, furnaces or incin	erato	rs	••	29	41

TABLE OF PRESCRIBED PERIODS OF DARK SMOKE

Table 12-2 Victoria, Australia

			Minutes in the Aggregate	of Dark or Dense Smoke.
			Column 1.	Column 2,
Nature of Plant Serve	d by Chim	incy.	During the Hour following the Commencement of re-kindling of the Fire in any Fireplace connected to the chimacy, when such Fire has not previously on that day been re-kindled so as to emit dark or dense smoke in excess of the times set out in Column 2.	During any Hour other than the Hour Referred to in Column 1.
One boiler only			10	2
Two boilers only	••		10	3
Three boilers only	••	••	10	4
Any other plant	••		15	6

TABLE 12

Table 12-3 (India)

RINGELMAN		BOSCH
Nº 1 =	20% DENS.	- até 2,7 micro-amperes
" 2 =	40% DENS.	- até 4,8
" 3 =	60% DENS.	- até 6,5 "
" 4 =	80% DENS.	- até 8,2 "
^v 5 =	100% DENS.	- até 10,0 "

Location					
Country	City or Provinc e	Source	Bacharach Shade <	Other Units	Footnotes
Australia	-	Any boiler or furnace burning oil or gas	3	-	1,2,3
Australia	New South Wales	Any boiler or furnace burning oil or gas	3	-	
France	-	Space heating Smokeless Zones 1 & 2	6	-	
France	Paris	Zone 1 and 2, heating	6	-	
Italy		Thermal Installations	8		
Philippines	-	~	3	0.92 g/m ³	
Spain	Madrid	Home heating	6	-	
Sweden	-	New gas turbines- operating more than 500 hr/year	3	-	4
Sweden	-	New gas turbines- operating more than 500 hr/year	5	-	4
Sweden	-	0il burners greater than 50 MW	3	1.0Kg/ton oil	5
Sweden	-	New oil burners less th 50 MW	nan 3	1.0Kg/ton oil	6

TABLE 13.EMISSION STANDARDS FOR SOOT IN EFFLUENT AIR OR GAS FROM
STATIONARY SOURCES OTHER THAN THOSE FROM SUBSIDIARY
JURISDICTION OF THE UNITED STATES

Location				Other	
Country	City or Province	Source	Bacharach Shade <	Units	Footnotes
Sweden	_	Existing oil burners less than 50 MW	3	1.5 Kg/ton oil	6
Switzerland	-	Space heating <200 kg/h	n r 2	-	10
Switzerland	-	New heating <200 kg/hr	1	-	10
Switzerland	Zurich	Home heatings	3	-	11
West Germany	-	Oil heatings using EL & L oil	2	-	13
West Germany	-	0il heatings using M & S	3	-	13
West Germany	Northrhine Westphalia	<10,000 kcal/hr space oil heating	4	-	12
West Cermany	Northrhine Westphalia	0il heatings 14,000-8000,000 kcal/hi	3 r	-	
Yugoslavia	Sarajevo	Solid fuel burning <25,000 kcal/hr	200*	-	
Yugoslavia	Sarajevo	Solid fuel burning <25,000 kcal/hr	60*	-	7

TABLE 13 (CONTINUED). EMISSION STANDARDS FOR SOOT IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES OTHER THAN THOSE FROM SUBSIDIARY JURISDICTION OF THE UNITED STATES

* Modified BB (Bacharach-Braun) Scale

Locatio	on				
Country	City or Province	Source	Bacharach Shade <u><</u>	Other Units	Footnotes
Yugoslavia	Sarajevo	Liquid fuel burning <10,000 kcal/hr	4	-	
Yugoslavia	Sarajevo	Liquid fuel burning -10,000 to 650,000 kcal/hr	3	-	8
Yugoslavia	Sarajevo	Light oil burning >650,000 kcal/hr	2	-	8
Yugoslavia	Sarajevo	Heavy oils >650,000 kcal/hr	3	-	8
Yugoslavia	Saraje v o	Medium or heavy oil ->650,000 kcal/hr	4	-	8
Yugoslavia	Saraje v o	Asphalt Production	4	-	9
Yugoslavia	Zagreb	Liquid fuel burning	3	-	

TABLE 13 (CONTINUED). EMISSION STANDARDS FOR SOOT IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES OTHER THAN THOSE FROM SUBSIDIARY JURISDICTION OF THE UNITED STATES

TABLE 13 (CONTINUED). EMISSION STANDARDS FOR SOOT IN EFFLUENT AIR OR GAS FROM STATIONARY SOURCES OTHER THAN THOSE FROM SUBSIDIARY JURISDICTION OF THE UNITED STATES

- 1. Other than for lighting-up or soot blowing.
- 2. Intended for application to new plants.
- 3. National Guidelines for new plants.
- 4. Maximum values during steady state operation. Operating time is median for 5 year period.
- 5. Flue gas velocity greater than 8 m/sec. at minimum load.
- 6. Same as 5 if residual oil is burned with burners capacity at least 0.5 MW each.
- 7. 100 units on BB scale permitted for 1 hour per each 10 hours.
- 8. Other than for first 15 minutes of start-up. When changing load, Bacharach number can be exceeded by 1 unit.
- 9. Also solid particulate matter limit of 1000 mg/m^3 (See Table 10).
- 10. Other space heating standards in Table 10 in mg/m^3 .
- 11. Home heating furnaces are periodically controlled by city officials.
- 12. Filter paper has to be oil free after measurement.
- 13. EL = extra light, L = light, M = medium, S = heavy

TABLE 14 PROTECTION ZONE STANDARDS OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

Country	Zones	Criteria	Footnotes
Belgium	l special zone	SO ₂ annual mean > 150 ug/m ³	
East Germany	5 special cases	actual A.Q. A.Q. standard	4
Fed. Rep. Germany Northrhine-Westphalia	7 classes	type of industry	5
France	2 special zones	#l= whole city #2= central part	l
Iraq	circular zonc	distance from brick kiln - residential area (710 km)	
Israel	6 groups	type of industry	6
Poland	5 classes	type industry pollutant local, climate, topography applied technology	7
USSR	to be calculated	distance to residential area, wind frequency, minimal distance; 100 m	2,3
Yugoslavia Sarajevo Zagreb	3 zones	SO ₂ levels	

Footnotes Table 14 PROTECTION ZONE STANDARDS OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

- 1. Special zones can be established in all urban areas, where limit for 150 ug/m^3 is exceeded. At the moment only in Paris, See also Table 14-1
- 2. Industry classes, see Table 14-2 and Table 14-3
- 3. See Figure 14-1
- 4. See Table 14-14
- 5. See Table 14-5
- 6. See Table 14-6
- 7. See Table 14-7

TABLE 14-1 REQUIREMENTS IN PROTECTION ZONES IN PARIS

Prohibited are	Heavy oil Solid fuel	> 2% S > 15% S; volatile mat	ter
	Visible emissions Particulate matter Particulate matter	>6 Bacharach >0.6 g/thermies >1.2 g/th	Zone 1 Zone 2
	Fuel oil other than domestic for installa- tion	100 th/hr 350 th/hr	Zone 1 Zone 2
	SO2 ambient as conc.	0.750 mg/m3,not mo	re than 8 days/yr
	Susp. particulates	0.350 mg/m ³ (24 hr)

.

TABLE 14-2 HEALTH PROTECTION ZONES FOR INDUSTRIAL UNDERTAKINGS AND OTHER SOURCES OF ENVIRONMENTAL POLLUTION, USSR

INDUSTRIAL UNDERTAKINGS

Industrial undertakings shall, in accordance with their capacity and type of production, have the following health protection zones.

The chemical industry

Class I: Health protection zone 1000 m wide

- 1. Production of nitrogen compounds (ammonia, nitric acid, and fertilizers).
- 2. Production of intermediate products of the aniline dye industry in the benzene and ether series (aniline derivatives, nitrobenzene, alkyl amines, phenol, etc.) where total output is over 1000 tons per year.
- 3. Production of intermediate products in the naphthalene and anthracene series (1-naphthalenol, anthraquinone, phthalic anhydride, etc.) in amounts exceeding 2000 tons per year.
- 4. Production of iron (III) bromide.
- 5. Production of paper pulp and hemi-cellulose by the sulfite, bisulfite, and monosulfite processes involving the combustion of sulfur or sulfurcontaining materials; also production of paper pulp by the sulfate process.
- 6. Production of illuminating gas, water gas, or producer gas in amounts exceeding 50 000 m³ per hour.
- 7. Plants for the underground gasification of coal.
- 8. Production of caustic soda and chlorine by electrolysis.
- 9. Production of rare metals by the chlorination process (titanomagnetite, etc.).
- 10. Production of artificial viscose fibre and cellophane.

TABLE 14-2, CONT. HEALTH PROTECTION ZONES FOR INDUSTRIAL UNDERTAKINGS AND OTHER SOURCES OF ENVIRONMENTAL POLLUTION, USSR

- 11. Production of concentrated mineral fertilizers.
- 12. Production of organic solvents and oils (benzene, toluene, xylene, naphthalenol, phenol, creosol, anthracene, phenanthrene, acridine, carbazole).
- 13. Production of arsenic and its inorganic compounds.
- 14. Production of petroleum gas in amounts exceeding 5000 m³ per hour.
- 15. Oil refineries.¹
- 16. Production of picric acid.
- 17. Production of hydrofluoric acid, calcium fluoride, hydrogen fluoride, and other fluorides.
- 18. Coal processing plants.
- 19. Plants for the chemical processing of peat.
- 20. Plants processing fuel shales.
- 21. Production of mercury.
- 22. Production of carbon black.
- 23. Production of sulfuric acid, fuming sulfuric acid, and sulfur dioxide.
- 24. Production of carbon disulfide.
- 25. Production of hydrochloric acid.
- 26. Production of superphosphate.
- 27. Production of phosphorus (yellow or red) and organophosphorus compounds (parathion, malathion, etc.).
- 28. Production of chlorinated and hydrochlorinated hydrocarbons.
- 29. Production of calcium carbide, acetylene from calcium carbide, and acetylene derivates.
- 30. Production of dimethyl terephthalate.
- 31. Production of caprolactam.
- 32. Production of cellulose nitrate fibre.
- 33. Synthesis of ethanol by the sulfuric acid process or by direct hydration, in plants with departments for concentrating sulfuric acid or carrying out desulfurization.
- 34. Production of artificial rubber.
- 35. Production of blowing agents for the rubber industry.
- 36. Production of amines (methylamine, dimethylamine, diethylamine, triethylamine, etc.).
- 37. Production of cyanides (calcium, sodium, copper, etc.), dicyanamide, calcium cyanamide).
- Production of aminoheptanoic aminoundecanoic, aminononanoic, thiopentanoic, and isophthalic acids.
- 39. Production of sodium nitrite, hydrazine sulfate, hydrazine hydrate, ammonium sulfate, thionyl chloride, and ammonium carbonate
- 40. Production of acetylene from hydrocarbon gases.
- 41. Production of dimethyl formamide.
- 42. Production of ethyl fluid.
- 43. Production of catalysts.

¹ Where oil with a sulfur content (by weight) of less than 0.5% is being refined, the health-protection zone is 500 m wide.

- 44. Production of products and intermediate products used in the synthesis of polymers.
- 45. Production of organosulfur dyes (sulfur black, etc.).
- 46. Production of hydrocyanic acid and its derivatives (acrylates, diisocyanates, etc.).
- 47. Production of beryllium.
- 48. Production of synthetic pharmaceuticals.
- 49. Synthesis of fatty acids and production of higher fatty alcohols by direct oxidation.
- 50. Mercaptan production and central plants for odorizing gas with mercaptans including facilities for odorant storage.
- 51. Potassium works.

Class II: Health protection zone 500 m wide

- 1. Production of urea and thiourea.
- 2. Natural-gas processing plants.
- 3. Production of niobium.
- 4. Production of tantalum.
- 5. Production of producer gas from coal and peat at a rate of 25 000-50 000 m⁸ per hour.
- 6. Production and processing of natural tars and their residues (pitch, etc.).
- 7. Production of soda ash by the Solvay process in amounts exceeding 400 000 tons per year.
- 8. Synthesis of ethanol by the sulfuric acid process or by the direct hydration process in plants lacking a department for concentrating sulfuric acid or, in the case of the second process, a desulfurization installation.
- 9. Production of ammonium, potassium, sodium, and calcium nitrates.
- 10. Production of organic chemical reagents.
- 11. Production of plastics from cellulose esters.
- 12. Production of corundum.
- 13. Production of barium chloride with the use of hydrogen sulfide.
- 14. Industrial hydrogenation of fats (non-electrical process using hydrogen).
- 15. Production of synthetic fibres (e.g., acetate, polycaprolactam, polyesters, polyvinyl chloride, and polyamides).
- 16. Production of ultramarine.
- 17. Production of chromium trioxide and chromates.
- 18. Production of artificial leather with the use of volatile organic solvents.
- 19. Production of esters.
- 20. Production of the products of organic synthesis (ethanol, ethyl ether, etc.) and petroleum gases at a rate of over 5000 m³ per hour.
- 21. Production of intermediate products of the aniline dye industry in the benzene and ether series (aniline derivatives, nitrobenzene, alkyl amines, phenol, etc.) where total output is under 1000 tons per year.
- 22. Production of intermediate products in the naphthalene and anthracene series (1-naphthalenol, anthraquinone, phthalic anhydride, etc.) for a total output of up to 2000 tons per year.
- 23. Production of vat dyes from all types of azotols and azoamines.

TABLE 14-2, CONT. HEALTH PROTECTION ZONES FOR INDUSTRIAL UNDERTAKINGS AND OTHER SOURCES OF ENVIRONMENTAL POLLUTION, USSR

- 24. Experimental plants in the aniline dye industry with a total capacity of 2000 tons per year and an output of under 1000 tons per year.
- 25. Plants for the production of asbestos goods.
- 26. Production of acetic acid.
- 27. Production of polyethylene and polypropylene from petroleum byproduct gas.
- 28. Production of food and fodder yeasts and furfural by hydrolysis of wood pulp and agricultural wastes.
- 29. Production from petroleum by-product gases of ethylene and propylene copolymers and higher polyolefin polymers.
- 30. Production of tar, liquid and volatile distillates of wood pulp, methanol, acetic acid, turpentine, acetone, and creosote.
- 31. Production of nicotine.
- 32. Production of phenolic, polyester, epoxy, and other synthetic resins in amounts exceeding 300 tons per year.
- 33. Production of synthetic camphor by the isomerization process.
- 34. Production of melamine and cyanuric acid.
- 35. Production of polycarbonates.

Class III: Health protection zone 300 m wide

- 1. Production of bitumen and other products from the distillation residues of coal-tar, crude oil, pine tar (asphalt, polyasphalt, etc.).
- 2. Production of soda ash by the Solvay process in amounts under 400 000 tons per year.
- 3. Production of caustic soda by the Löwig and soda-lime processes.
- 4. Production of mineral salts, with the exception of the salts of arsenic, phosphorus, chromium, lead, and mercury.
- 5. Production of petroleum gas at a rate of 1000-5000 m³ per hour and of producer gas at a rate of 5000-25 000 m³ per hour.
- 6. Production of plastics.
- 7. Production of phenolic moulding materials and of moulded or rolled goods from paper and textiles impregnated with phenolic resins, in amounts exceeding 100 tons per year.
- 8. Production of artificial mineral dyes.
- 9. Rubber-reclaiming plants.
- 10. Production of tyres, industrial rubber goods, ebonite and bonded footwear, and the rubber stock used in their manufacture.
- 11. Chemical processing of rare metal ores for the extraction of salts of antimony, bismuth, lithium, etc.
- 12. Production of fertilizer mixtures.
- 13. Production of carbon goods for the electrical industry.
- 14. Vulcanization of rubber goods using carbon disulfide.
- 15. Production of acetaldehyde by the vapour-phase process without the use of metallic mercury.
- 16. Production and bulk storage of ammonia water.
- 17. Production of polystyrene and copolymers of styrene.
- 18. Production or organosilicon varnishes, liquids, and resins.

- 19. Plant for distributing gas to the mains network, including installations for odorizing the gas with mercaptans.
- 20. Production of sebacic acid.
- 21. Production of vinyl acetate, polyvinyl acetate, polyvinyl alcohol, polyvinyl emulsions, and acetals.
- 22. Production of polyfluorethylene resins.
- 23. Production of plasticizers.
- 24. Production of food and fodder yeasts by the hydrolysis of wood pulp and agricultural wastes (sunflower husks, maize stalks, straw, etc.).
- 25. Production of iso-octyl alcohol, butyric anhydride, butyric acid, foam plastic, vinyltoluene, polyvinyltoluene, polyurethane for casting, poly-formaldehyde, reclaimed organic acids (acetic, butyric, etc.), formal-dehyde, urotropin, penta-erythritol, methylpyrrolidone, polyvinylpyrro-lidone, and of derivatives of petroleum gas, where production is less than 5000 m³ per hour.
- 26. Production of lacquer, spirit varnishes, printer's varnish, varnishes for the rubber industry, insulating varnishes, etc.
- 27. Production of drying oils.
- 28. Production of phenolic, polyester, polyamide, epoxy, and other synthetic resins in amounts of up to 300 tons per year.
- 29. Production of metal carbonyls.
- 30. Production of methionine.
- 31. Production of antibiotics by biological methods.

- 1. Production of paper from prepared cellulose and rags.
- 2. Production of casein plastic and other protein plastics (amino plastics, etc.).
- 3. Production of glycerol.
- 4. Production of enamels from condensation resins.
- 5. Soap production.
- 6. Processing of animal organs.
- 7. Production of producer gas from coal and peat in amounts of up to 5000 m³ per hour.
- 8. Chemical processing of rare metal ores to extract the salts of molybdenum, tungsten and cobalt.
- 9. Production of phenolic moulding materials and of moulded or rolled goods from paper or textiles impregnated with phenolic resins, where production does not exceed 100 tons per year.
- 10. Industrial hydrogenation of fats (using hydrogen produced electrolytically).
- 11. Salt making (evaporation and rolling).
- 12. Production of potassium salts for pharmaceutical purposes.
- 13. Production of rubberized footwear without the use of organic solvents and of rubber stock without the use of carbon black.
- 14. Production of liquid fertilizers.
- 15. Production of vanillin and saccharin.

- 16. Production of petroleum gas at a rate of up to 1000 m³ per hour.
- 17. Production of moulding materials (phenol-formaldehyde, urea-formaldehyde, melamine-formaldehyde, organosilicon, etc.).
- 18. Production of artificial leather from polyvinyl and other resins without the use of organic solvents.
- 19. Production of polyvinyl plasticizers, vinyl plastics, plastic separators for polyurethane foam, aerated plastics, glass-fibre-reinforced plastics and expanded polystyrene.
- 20. Production of alkaloids and galenicals.
- 21. Production of natural mineral dyes (chalk, ochre, Prussian red, etc.).
- Production of perfumes.
 Production of tanning extracts.
- 24. Production of goods from synthetic resins, polymers, and plastics by various methods (moulding, extrusion, injection moulding, vacuumforming, etc.).
- 25. Production of synthetic detergent powders.

Class V: Health protection zone 50 m wide

- 1. Production of inorganic reagents in plants without a chlorine shop.
- 2. Vulcanization of rubber without the use of carbon disulfide.
- 3. Production of carbon dioxide and "dry ice".
- 4. Production of artificial pearls.
- 5. Production of goods from plastics and synthetic resins (mechanical operations only).
- 6. Production of photochemicals (photographic plates, cine-film, and photographic paper).
- 7. Production of fertilizers using carbon dioxide.
- 8. Depots for cleaning, washing, and steaming-out tanks used for the transport of crude oil and petroleum products.
- 9. Production of various types of paper and cardboard from imported semiprocessed materials; production of wood pulp and hemi-cellulose with the use of soda or monosulfite in plants where prepared monosulfite is used, spent lyes and other compounds are not burnt, and liquid sulfur dioxide is not used.
- 10. Production of printing inks.
- 11. Compounding of pharmaceutical preparations.
- 12. Production of condensed and liquified products from the separation of air.

The metallurgical, machine-tool, and metal-working industries

- 1. Plant for secondary processing of non-ferrous metals (copper, lead, zinc) at a rate of over 3000 tons per year.
- 2, Coking.

- 3. Iron-smelting where the total volume of the blast furnaces is voer 1500 m^3 .
- 4. Plants carrying out all processes of iron and steel production, with an output of over a million tons of iron and steel per year.
- 5. Steel-smelting by the open hearth and converter techniques in works equipped to process wastes (milling of Thomas slag, etc.), where output of the basic product exceeds one million tons per year.
- 6. Smelting of non-ferrous metals (including lead, tin, copper, and nickel) direct from ores and concentrates.
- 7. Production of aluminium by electrolysis of fused aluminium salts (alumina).
- 8. Smelting of special types of pig iron; production of ferroalloys.
- 9. Plants for the sintering of ferrous and non-ferrous metal ores and pyrites cinders.
- 10. Production of alumina.
- 11. Production of cast-iron sections in amounts exceeding 100 000 tons per year.

Class II: Health protection zone 500 m wide

- 1. Magnesium production by any technique except the chloride process.
- 2. Production of non-ferrous metals in amounts exceeding 2000 tons per year.
- 3. Plants for secondary processing of non-ferrous metals (copper, lead, zinc, etc.) in amounts from 2000 to 3000 tons per year.
- 4. Iron-smelting, where the total volume of the blast furnaces is between 500 and 1500 m³.
- 5. Plants carrying out all processes of iron and steel production, with an output of up to one million tons per year of iron and steel.
- Steel-smelting by the open hearth, converter, and electrosmelting techniques in works equipped to process wastes (milling of Thomas slag, etc.), where output of the basic product is less than one million tons per year.
- Production of lead accumulators.
 Milling of Thomas slag.
- 9. Production of antimony by pyrometallurgical methods.
- Production of cast-iron sections in amounts from 20 000 to 100 000 tons per year.
- 11. Production of zinc, copper, nickel, and cobalt by electrolysis of their aqueous solutions.

- 1. Concentration of metals without hot processing.
- 2. Production of lead-covered or rubber-insulated cable.
- 3. Production of cast-iron sections in amounts from 10 000 to 20 000 tors per year.
- 4. Plants for secondary processing of non-ferrous metals (copper, lead, zinc, etc.) in amounts up to 1000 tons per year.

- 5. Production of non-ferrous metals in amounts from 100 to 2000 tons per year.
- 6. Production of mercury and apparatus containing mercury (mercury rectifiers, thermometers, valves, etc.).
- 7. Iron-smelting, where the total volume of the blast furnaces is less than 500 m^3 .
- 8. Casting of non-ferrous metal sections under pressure with an output of 10 000 tons of castings per year (9500 tons of aluminium pressure castings and 500 tons of zinc castings).
- 9. Production of metal electrodes with the use of manganese.

Class IV: Health protection zone 100 m wide

- 1. Manufacture of electrical engineering machines and apparatus (dynamos, condensers, transformers, projectors, etc.), where foundries and similar installations are small.
- 2. Production of bare cable.
- 3. Manufacture of boilers.
- 4. Production of metallic electrodes.
- 5. Metal-working factories for cast-iron, steel (in amounts up to 10 000 tons per year), and non-ferrous (in amounts up to 100 tons per year) castings.
- 6. Production of antimony by electrolysis.
- 7. Type foundries where lead may be emitted into the air.

Class V: Health protection zone 50 m wide

- 1. Metal-working industries using heat treatment, but with no foundries.
- 2. Production of alkali accumulators.
- 3. Type foundries.
- 4. Production of instruments for the electrical engineering industry (lamps, headlights, etc.) in factories without foundries and not using mercury.
- 5. Production of hard alloys and refractory metals in plants containing no departments for chemical ore processing.
- 6. Printing works.

Mining of ore minerals and non-metallic minerals

Class I: Health protection zone 1000 m wide

- 1. Plant for the extraction of crude oil, where 0.5-1 ton of hydrogen sulfide is discharged per day and the oil has a high proportion of volatile hydrocarbons.
- 2. Mining of lead ores, mercury, arsenic, and manganese.
- 3. Plants for the extraction of natural gas.

Class II: Health protection zone 500 m wide

1. Plants for the extraction of phosphorite, apatite, or pyrites without chemical processing.

- 2. Plants for the extraction of fuel shales.
- 3. Mining of hard coal, brown coal, and other coals.
- 4. Open-cast mining of iron and complex metallic ores (with the exception of lead ores, mercury, arsenic, and manganese), and the quarrying of rock of grades VIII-XI.

Class III: Health protection zone 300 m wide

- 1. Plants for the extraction of crude oil, where the amount of hydrogen sulfide discharged is less than 0.5 tons per day and the volatile hydrocarbon content of the oil is low.
- 2. Quarrying of rock of grades VI-VII: dolonuites, magnesites, asbestos, tars and asphalts.
- 3. Open-cast mining of metalloid compounds.
- 4. Production of briquettes from powdered peat and coal.
- 5. Hydraulic mines and wet-dressing plant.

Class IV: Health protection zone 100 m wide

- 1. Mining of rock salt.
- 2. Peat-cutting.
- 3. Mining of metal and metalloid ores in pits, except for lead ores, mercury, arsenic, and manganese.

The building industry

Class I: Health protection zone 1000 m wide

- 1. Production of Portland, Portland-slag, and other cements in amounts exceeding 150 000 tons per year.
- 2. Kilning of magnesite, dolomite, and fire-clay in shaft or rotary kilns.

Class II: Health protection zone 500 m wide

- 1. Production of gypsum (alabaster).
- 2. Production of asbestos.
- 3. Production of lime in factories with shaft or rotary kilns.
- 4. Production of Portland, Portland-slag, and other cements in amounts up to 150 000 tons per year.
- 5. Production of asphalt concrete in mobile plants.

- 1. Production of artificial fillers (clay and other fillers).
- 2. Production of glass wool and slag wool.
- 3. Production of local cements (calcined-clay cement, Roman cement, slag-gypsum cement, etc.) in amounts up to 5000 tons per year.
- 4. Production of tar paper and rubberoid roof-sheeting material.
- 5. Production of asphalt concrete in permanent plants.

Class IV: Health protection zone 100 m wide

- 1. Production of artificial stone and concrete articles.
- 2. Hoists for lifting cement and other dust-producing building materials.
- 3. Production of building materials from heat-and-power station wastes.
- Production of articles from asbestos cement.
 Production of polymerized building materials.
- 6. Production of porcelain ware and earthenware.
- 7. Production of red brick and silica brick.
- 8. Production of ceramic and refractory ware.
- 9. Production of stoneware.
- 10. Glass manufacture.

Class V: Health protection zone 50 m wide

- 1. Quarrying of rock without blasting and plants for working natural stone.
- 2. Production of plaster goods.
- 3. Production of reedboard, strawboard, etc.
- 4. Pottery production.

The wood industry

Class I: Health protection zone 1000 m wide

1. Chemical processing of wood and the production of charcoal.

Class II: Health protection zone 500 m wide

1. Production of charcoal by the retort process

Class III: Health protection zone 300 m wide

- 1. Plants for impregnating wood in order to preserve it.
- 2. Production of articles from wood fibre using artificial resins as binders (chipboard, fibreboard).

Class IV: Health protection zone 100 m wide

- 1. Production of wood fibre.
- 2. Saw mills and factories producing plywood and wood parts for buildings of standard design.
- 3. Shipyards for the construction of wooden craft.
- 4. Production of wallpaper.
- 5. Production of vitamin-enriched pine-needle flour, chlorophyll-carotene pastes and pine extracts.

- 1. Wood-working, manufacture of furniture, parquet, and boxes.
- 2. Plants for the protective treatment of wood by impregnation with aqueous solutions (other than arsenic salts).
- 3 Production of articles from wood fibre (chipboard, fibreboard, cementfibrolite board, etc.).

- 4. Production of barrels using prepared staves.
- 5. Production of bast matting.
- 6. Boatyards for the construction of launches and small craft.

The textile industry and light industry

Class I: Health protection zone 1000 m wide

1. Plants for the primary processing of cotton which have departments for treating seed with organomercury coumpounds.

Class II: Health protection zone 500 m wide

- 1. Plants for the chemical treatment and processing of textiles with carbon disulfide.
- 2. Production of artificial leather, sheeting, oilcloth, and plastic for shoe soles where volatile organic solvents are used at the rate of up to 2 tons per day.

Class III: Health protection zone 300 m wide

- 1. Plants for continuous impregnation of textiles and paper with oil-varnish, oil asphaltum, bakelites, and other varnishes, where the rate of production of impregnated material exceeds 300 tons per year.
- 2. Plants for the primary processing of vegetable fibres (flax, hemp, cotton, etc.).
- 3. Plants for the treatment and processing of textiles without the use of carbon disulfide (leatherette, leather substitute, etc.).
- 4. Bleaching, dyeing, and finishing plants.
- 5. Production of polyvinylchloride sheeting reinforced on one side, blended polymer sheeting, rubber for shoe soles, and reclaimed rubber, where solvents are used at the rate of one ton per day.

- 1. Plants for the continuous impregnation of textiles and paper with oilvarnish, oil-asphaltum, bakelite, and other varnishes, where the rate of production of impregnated material is less than 300 tons per year.
- 2. Manufacture of cottonin.
- 3. Silk filatures.
- 4. Manufacture of mixture fabrics.
- 5. Manufacture of hemp cordage, rope, and twine.
- 6. Manufacture of yarn and textiles from wool, cotton, and linen in mills with dyeing and bleaching departments.
- 7. Production of fancy leather board with polymer finishes, where organic solvents are used at a rate of up to 0.5 tons per day, and rubber for shoe soles without the use of volatile organic solvents.

Class V: Health protection zone 50 m wide

- 1. Manufacture of cotton, linen, and woollen yarns and textiles in mills without dying and bleaching departments.
- 2. Manufacture of knitwear and lace.
- 3. Silk weaving.
- 4. Clothing factories.
- 5. Manufacture of carpets and artificial astrakhan.
- 6. Production of insole board from leather and leather-cellulose fibre without the use of solvents.
- 7. Footwear manufacture.

Processing of animal products

Class I: Health protection zone 1000 m wide

- 1. Factories manufacturing glue from hide remnants, bone refuse, and other animal wastes and residues.
- 2. Production of industrial gelatin from bone refuse, scrapings, hide remnants, and other animal wastes and residues in plants where such material is stored under cover or in the open air.
- 3. Salvaging plants for processing animal or fish wastes and residues into fats, animal feed, fertilizers, etc.

Class II: Health protection zone 500 m wide

- 1. Plants for roasting and grinding bones.
- 2. Fat rendering plants producing industrial fats and greases in amounts exceeding 30 tons per year.

Class III: Health protection zone 300 m wide

- 1. Plants for preparing belts for dyeing (sheepskin, tanned skeepskin, furs) and the production of suede, morocco leather, kid. etc., with facilities for processing wastes.
- 2. Plants for processing raw cattle hides; raw-hide dressing and tanning with facilities for processing wastes.
- 3. Production of industrial fats and greases in amounts up to 30 tons per year.
- 4. Wool-washing plants.
- 5. Storehouses for wet-salted and unprocessed hides (storage capacity for over 200 hides).

- 1. Production of skeletons and visual teaching aids from animal carcasses.
- 2. Feed concentrate plants using animal and food wastes.
- 3. Felt manufacture.
- 4. Production of high grade gelatin from fresh bones kept for as short a time as possible under refrigeration in special stores.

- 5. Plants for processing hair, bristle, down, feathers, horns, and hooves.
- 6. Production of gut and catgut.

Class V: Health protection zone 50 m wide

- 1. Manufacture of patent leather.
- 2. Manufacture of leather goods.
- 3. Manufacture of brushes from bristle and hair.
- 4. Depots for the temporary storage of wet-salted hides (up to 200), where no processing is carried out.
- 5. Felting shops.

Food processing and the production of flavourings

Class II: Health protection zone 500 m wide

- 1. Stockyards to hold over 1000 head of livestock after shipment.
- 2. Abattoirs for cattle and sheep, meat-packing plants, and meat-packing houses, with stockyards for holding animals before slaughter that, at maximum capacity, represent three days' supply of meat.
- 3. Plants for melting down blubber from marine animals.
- 4. Plants for washing intestines.
- 5. Disinfection and cleansing stations for washing down trucks in which livestock have been shipped.

Class III: Health protection zone 300 m wide

- 1. Beet-sugar refineries.
- 2. Factories producing feed antibiotics.
- 3. Fisheries.
- 4. Stockyards holding up to 1000 head of livestock after shipment.
- 5. Plants for the production of enzymes by the surface culture technique.
- 6. Slaughterhouses for small animals and poultry.

- 1. Flour mills, hulling mills, grain shellers, and feed concentrate mills.
- 2. Grain elevators.
- 3. Coffee-roasting plants.
- 4. Cheese-making factories.
- 5. Production of oleomargarine and margarine.
- 6. Meat-curing plants.
- 7. Production of alcohol for the food industry.
- 8. Fish canneries and fish filleting plants with departments for processing wastes; fish-packing plants.
- 9. Plants for the production of enzymes by submerged fermentation.
- 10. Beet-sugar refineries without facilities for storing beet pulp.
- 11. Cornflour and corn syrup factories.
- 12. Production of albumin.
- 13. Vegetable processing (drying, salting, or pickling) plants.

- 14. Production of dextrin, glucose, and molasses,
- 15. Starch production.

Class V: Health protection zone 50 m wide

- 1. Confectionery factories.
- 2. Production of table vinegar.
- 3. Tobacco-curing plants and cigarette factories.
- 4. Tea-blending plants.
- 5. Distilleries.
- 6. Oil mills (vegetable oils).
- 7. Canneries.
- 8. Vegetable storehouses.
- 9. Sugar refineries.
- 10. Brandy distilleries.
- 11. Breweries (without malthouses).
- 12. Pasta factories.
- 13. Milk and dairy product factories.
- 14. Sausage factories with an output of over 3 tons per shift.
- 15. Factory-type bakeries.
- 16. Factories preparing foodstuffs,
- 17. Refrigerating plants with a capacity of over 600 tons.

- Reingerating plants with a capacity of over 600 tons.
 Plants for the initial stages of wine-making.
 Wine-making establishments.
 Production of grape juice.
 Production of fruit and vegetable juices and non-alcoholic beverages.
- 22. Plants for the production of commercial malt and yeast.
- 23. Fish-curing plants.

Heat-and-power stations and boiler installations

Health protection zones for heat-and-power stations and boiler installations shall be determined in accordance with the dispersion in the air of the harmful substances contained in the wastes discharged, as calculated on the basis of the official publications on standards.

Sanitary engineering installations and municipal undertakings

The width of health protection zones for sanitary engineering installations and municipal undertakings shall be established on the basis of the sanitary classification and production capacity of such installations and undertakings.

- 1. Controlled unimproved tips for liquid and solid domestic wastes of organic origin.
- 2. Fields where septic-tank contents are ploughed in or spread.

Class II: Health protection zone 500 m wide

- 1. Burial-places for cattle.
- 2. Salvaging plants for the disposal of animal carcasses and condemned meat.
- 3. Principal centres for salvage and incineration of refuse.
- 4. Improved tips for solid wastes.
- 5. Centralized composting areas for solid wastes and refuse from population centres.

Class III: Health protection zone 300 m wide

- 1. Cemeteries.
- 2. District centres for salvage and incineration of refuse.
- 3. Principal collection centres for utilizable wastes.
- 4. Cattle burial-places with carcass destruction chambers.
- 5. Outfall works.
- 6. Greenhouses and hothouses making use of refuse.
- 7. Composting of refuse containing neither manure nor fecal matter.

Class IV: Health protection zone 100 m wide

- 1. District collection centres for utilizable wastes.
- 2. Depots for vehicles used for refuse collection in towns.
- Places for the temporary storage of scrap material without processing.
 Servicing stations for heavy goods vehicles and for buses belonging to the
 - urban transport system.

Class V: Health protection zone 50 m wide

1. Servicing stations for motor vehicles (cars, except for privately owned cars, and buses outside the urban transport network).

Health protection zones for sewage treatment installations

	Width of zone (in metres) for installation with treatment capacity of						
Types of installation		day)	<u>,</u>				
	< 200	200- 5000	5000- 50 000	50 000- 280 000			
Installations for mechanical and biological ment of sewage with sludge beds for d							
sludge, and installations with sludge		200	400	500			
alone	150 treat-	200	400	500			
alone Installations for mechanical and biological	150 treat-	200 150	400 300	500 400			
alone Installations for mechanical and biological ment of sewage and thermomechanica cessing of sludge in closed premises	150 treat- li pro-						
alone Installations for mechanical and biological ment of sewage and thermomechanica	150 treat- 11 pro- 100	150	300	400			

Notes

Health protection zones for sewage treatment installations with a capacity exceeding 280 000 m³/day and for installations not using approved sewage-treatment and sludge-processing

techniques shall be established by joint decision of the Central Sanitary and Epidemiological Board of the Ministry of Health of the USSR and the State Committee for Construction of the USSR.

Filter beds with an area of up to 0.5 ha and installations for mechanical and biological treat-ment of sewage with a capacity of up to 50 m³/day shall have a health protection zone 100 m wide. Municipal sewage farms with an area of up to 1 ha shall have a health protection zone 50 m wide.

Underground filter beds with a capacity of 15 m³/day shall have a health protection zone 15 m wide.

Where dwelling houses are located downwind of the treatment installations, the health protection zones may be enlarged, but to no more than twice the width indicated in the table. They may be reduced in the case of a favourable wind distribution.

The width of the health protection zones for sewage pumping stations shall be : (a) 20 m for a treatment capacity of 50 000 m²/day; (b) 30 m for a treatment capacity exceeding 50 000 m²/day. Pumping stations with a capacity of up to 200 m²/day are permitted a health protection zone 15 m wide.

The widths for health protection zones indicated in the table also apply to food production plants.

Health protection zones for agricultural undertakings and agricultural premises

Types of undertaking or premises	Width of health protection zone (metres)
Farms :	
stud farms and rabbit farms	100
cattle farms (all types), sheep farms, and fur farms	300
poultry farms	300
pig farms	500
Poultry factories	1000
Vetinerary surgeries	200
Hothouses and greenhouses :	
heated biologically (using manure)	100
heated biologically (using refuse)	300
using electrical, steam, or water heating systems	no standard
Premises for preparing feed :	
without the use of food wastes	no standard
with the use of food wastes	100
Undertakings and premises for the initial treatment and pro-	
cessing of milk, fruit, or vegetables	no standard
Garages and yards for the repair, servicing, and parking of cars	
and agricultural machinery, with a capacity of over 200 ma-	
chine units	100
Storehouses for fruit, vegetables, potatoes, grain, other agricul-	
tural produce, and other stores	50
Buildings for housing animals and poultry kept for private use	
in residential areas	50
Storehouses :	
for mineral fertilizers	200
for mineral fertilizers and up to 20 tons of pesticides	200
for pesticides :	
up to 20 tons	200
20-50 "	300
50-100 "	400
100-200 "	500
300-500 "	700
over 500 "	1000

Warehouses

Health protection zones for warehouses shall be established in accordance with the existing design standards for the various types of warehouses as approved or accepted by the State Committee for Construction of the USSR.

TABLE 14-3

WIDTH OF SANITARY PROTECTION ZONE (IN METERS) REQUIRED FOR COAL-FIRED POWER PLANTS BURNING OVER 3 METRIC TONS OF FUEL PER HOUR (U.S.S.R.)

Fuel	Fuel	75% Concertoir enreichey			90% Collection efficiency							
ash con- tent %	con- sump- ction ^o	8- 12.5	12.5 25.0	25.0 50.0	50.0 100.0	100.0 200.0	3 12.5	12.5 25.0	25.0 50.0	50.0 100.0	100.0 200.0	200.0 300.0
Up to	10	100	100	300	500	500	100	100	100	300	500	500
10-15	i	100	300	500	500	500	100	100	300	300	500	500
15-20)	100	300	500	500	1000-	100	100	300	300	500	1000
20 -25	i	100	300	500	1000	1000	100	100	300	300	500	1000
25-30)	100	300	500	1000	1000	100	300	300	500	1000	1000
80-45	i	300	500	1000	1000		100	300	300	500	1000	1000

^a From Kettner (9t).

* Range in metric tons per hour.

^e Special requirements.

TABLE 14-4 AREA CLASSIFICATION -Democratic Republic of Germany

R- { <u>Actual Air Quality</u> {Air Quality Standard}	Class Number	Class Description	Ambient SO ₂ Concentration level - mg/m ³	Q- Actual Ambient Conc. Multiplying Factor for Settleable Dust Computation
<u><</u> 0.5	1	Slightly polluted	0.4	0.8
>0.5 - <u><</u> 1.0	2	Polluted	0.3	0.6
>1.0 - <u><</u> 1.5	3	Over polluted	0.2	0.4
>1.5 - <u><</u> 2.5	4	Considerably over polluted	-	-
>2.5	5	Heavily over polluted	_	-

Table 14-5 TEMPORARY LIST OF PROTECTION DISTANCES BETWEEN EMITTING INDUSTRIES AND RESIDENTIAL AREAS, WEST GERMANY - NORTHRHINE-WESTPHALIA

2000 m	Power plants Nonferrous smelters and recasting works Large chemical works including petrochemical Rayon staple and rayon manufacturing Bituminous road building material plants Shredders Rendering plants
1500 m	Blast furnaces and steel mills
1200 m	Petroleum refineries
1000 m	Hammer mills Steel construction using rivets and container manufacturing Incinerators
800 m	Animal feed-lots Iron, steel, and annealing foundries Machinery and automobile manufacturing Animal shelters
500 m	Quarrying and processing of stone, slate and other minerals Cement kilns Lime, gypsum, and chalk industries Plants for production of mineral insulation and filters as from slag production Rolling mills Forges and pressing works Steel construction without rivetting Varnish and lacquer industries, Glass manufacture Paper manufacturing without cellulose production Leather manufacturing Weaving mills (relative to threading, processing and sewing) Starch and fodder industries Packing plants, Forwarding companies and warehouses
300 m	Manufacture of bricks and other ceramic products Manufacture of artistic stone products Mortar and concrete shipping facilities Roofing-paper industries Production of rubber products Woodworking industries Spinning and yarn mills (including rending and processing)

TABLE 14-5 BUFFER ZONE STANDARDS, ISRAEL Group 1 2 3 h 5

- · · ·		2	3	4	5	5	
Distance	0	50	150	500	1000	2000	

Classification of Trades, Industries and Occupations into Sanitary Protection Zones

			1		
l.	Abattoir; (up to 300 heads/day)	3	21.	Animal pens; (300-3000 heads)	5
2.	Abattoir, poultry; (incl. clean-		22.	Animal pens; (up to 300 heads)	4
	ing & dressing of poultry and of by-products)	4	23.	Animal food and feed milling; manuf.	3
	Abattoirs, regional; slaughter, preparation and preservation of meat	4	24.	Animal & fish waste processing plants; (not incl. manuf. of feather-meal, fish-meal and	
4.	Accumulators; manuf.	4		cod liver Oil)	5
5.	Acetylene, synthetic; manuf.	4	25.	Asbestos products; manuf	4
6.	Air conditioners & air coolers; manuf.	2	26.	Asbestos & asphalt construction products; manuf.	1 4
7.	Airport; domestic	6	27.	Asphalt; manuf.	4
8.	Airport; international	6	28.	Automobile; manuf. & assembly	4
9.	Alfalfa mixed feed; manuf.	3	29.	Automobile, motorcycle &	
10.	Alkoloid; manuf.	3		scooter spare parts; manuf.	2
11.	Alloy, ferrous; manuf.	4	30.	Aviation industry (incl. engine overhaul & testing)	6
12.	Alloy, hard & heat resistant metal; manuf. by methods other then chemical treatment of ores	3	31.	^B ag, briefcase, suitcase & case; manuf. (over 20 wrkrs.)	2
13.	Aluminum; manuf. (electrolysis)	6	32.	Bag, briefcase, suitcase & case; manuf. (5-20 wrkrs.)	1b
14.	Aluminum, extruded shape; manuf.	3	33	Bag, briefcase, suitcase &	τU
15.	Aluminum-Pipes; manuf.	3	1.	case; manuf. (up to 5 wrkrs.)	la
16.	Armonia; manuf.	5	34.	Balances & balance spare	
17.	Ammunition; manuf.	6		parts; manuf.	2
18.	Armunition & explosives; manuf. & reprocessing	6	35.	Bathing suit; manuf. (over 20 wrkrs.)	2
19.	Ammunition & explosives;	_	36.	" " (upto 20 wrkrs.)	1b
	storage (national scale)	6		Battery; manuf.	4
20.	Ammunition & explosives; storage (district scale)	5	38. 280	Battery, reconditioning	3

.

- 39. Beef & poultry products; packing
- 40. Beer Brewing and Malt; manuf. (incl. beer, malt-beer & malt concentrates)
- 41. Bagel & pretzel bakery
- 42. Belts, brassiers & corsets; manuf. (over 5 wrkrs)
- 43. " (up to 5 wrkrs.)
- 44. Bicycle, baby carriages, cars
 & other motor vehicles, n.m.e.;
 repair, (incl. car washing &
 glazing)(over 20 wrkrs.)
- 45. " (up to 20 wrkrs.)
- 46. Binderies (over 5 wrkrs.)
- 47. " (up to 5 wrkrs.)
- 48. Biscuit, cookies & waffles; manuf. (incl. chocolate-coated waffles & salted bakery goods)
- 49. Bitumen & similar products (manuf. from coal-tar, naphta and pine-oil)
- 50. Bolt, nut & screw; manuf. (over 20 wrkrs)
- 51. " (up to 20 wrkrs.)
- 52. Boneblack & bonemeal; manuf
- 53. Bread bakeries
- 54. Bromine and bromine compounds; manuf.
- 55. Brooms & brushes; manuf. (incl. hair processing)
- 56. Cake confectionery (pastry);
 manuf.
- 57. Calcium-carbide; manuf.
- 58. Camphor, synthetic; manuf. (by isomerisation)
- 59. Candle; manuf.
- 60. Carbon-black; manuf.

	61.	Carbon-disulfide; manuf.	5
la	62.	Carbon-monoxide (liquified),	-
		and Dry-Ice (solid carbon-	_
3		dioxide); manuf.	5
lb	63.	Cardboard; mamuf. (over 10,000 ton/yr.)	5
	64.	" (up to 10,000 ton/yr)	4
lb	65.	Cardboard, wavy; manuf.	3
la	66.	Cardboard & paper box; manuf. (over 20 wrkrs.)	2
	67.	" (5-20 wrkrs.)	lb
2	68.	" (up to 5 Wrkrs.)	la
1b	69.	Cardboard & paper products,	
lb		n.m.e; manuf. (incl. plates, goblets, cardboard & paper	
la		cups, card indexes, envelopes,	
		classifiers, cardboard & paper files, paper bags, cardboard	
2		egg packings, etc.) (over 20	
-		wrkrs.)	2
	_		_
	70.	" (5-20 wrkrs.)	lb
4	71.	" (up to 5 wrkrs.)	lb la
	71.	" (up to 5 wrkrs.) Carpentry, for house building;	
3	71.	" (up to 5 wrkrs.) Carpentry, for house building; manuf. (incl. manuf. of shutter-boxes, lattices, doors	la ,
3 2	71.	" (up to 5 wrkrs.) Carpentry, for house building; manuf. (incl. manuf. of shutter-boxes, lattices, doors windows, parts for shacks, etc.	la .)
3 2 5	71.	" (up to 5 wrkrs.) Carpentry, for house building; manuf. (incl. manuf. of shutter-boxes, lattices, doors windows, parts for shacks, etc. (over 5 wrkrs.)	la ,
3 2 5	71. 72. 73.	<pre>" (up to 5 wrkrs.) Carpentry, for house building; manuf. (incl. manuf. of shutter-boxes, lattices, doors windows, parts for shacks, etc. (over 5 wrkrs.) " (up to 5 wrkrs.) Carpentry; n.f.i. (incl. carpentries not specializing</pre>	la .) 2
3 2 5 2 5	71. 72. 73.	<pre>" (up to 5 wrkrs.) Carpentry, for house building; manuf. (incl. manuf. of shutter-boxes, lattices, doors windows, parts for shacks, etc. (over 5 wrkrs.) " (up to 5 wrkrs.) Carpentry; n.f.i. (incl. carpentries not specializing in a particular line of prod-</pre>	la) 2 lb
3 2 5 2	71. 72. 73.	<pre>" (up to 5 wrkrs.) Carpentry, for house building; manuf. (incl. manuf. of shutter-boxes, lattices, doors windows, parts for shacks, etc. (over 5 wrkrs.) " (up to 5 wrkrs.) Carpentry; n.f.i. (incl. carpentries not specializing</pre>	la .) 2
3 2 5 2 5 1b	71. 72. 73. 74. 75.	<pre>" (up to 5 wrkrs.) Carpentry, for house building; manuf. (incl. manuf. of shutter-boxes, lattices, doors windows, parts for shacks, etc. (over 5 wrkrs.) " (up to 5 wrkrs.) Carpentry; n.f.i. (incl. carpentries not specializing in a particular line of prod- ucts)(over 5 wrkrs.)</pre>	la .) 2 lb
3 2 5 2 5 1b	71. 72. 73. 74. 75. 76.	<pre>" (up to 5 wrkrs.) Carpentry, for house building; manuf. (incl. manuf. of shutter-boxes, lattices, doors windows, parts for shacks, etc. (over 5 wrkrs.) " (up to 5 wrkrs.) Carpentry; n.f.i. (incl. carpentries not specializing in a particular line of prod- ucts)(over 5 wrkrs.) " (up to 5 wrkrs.)</pre>	la .) 2 lb 2 lb
3 2 5 2 5 1b	71. 72. 73. 74. 75. 76. 77.	<pre>" (up to 5 wrkrs.) Carpentry, for house building; manuf. (incl. manuf. of shutter-boxes, lattices, doors windows, parts for shacks, etc. (over 5 wrkrs.) " (up to 5 wrkrs.) Carpentry; n.f.i. (incl. carpentries not specializing in a particular line of prod- ucts)(over 5 wrkrs.) " (up to 5 wrkrs.) Carriages, baby; manuf. Cattle sheds and pens Ceramics, artistic; manuf.</pre>	la) 2 lb 2 lb 2
3 2 5 2 1 b 1 a 5 4	71. 72. 73. 74. 75. 76. 77.	<pre>" (up to 5 wrkrs.) Carpentry, for house building; manuf. (incl. manuf. of shutter-boxes, lattices, doors windows, parts for shacks, etc. (over 5 wrkrs.) " (up to 5 wrkrs.) Carpentry; n.f.i. (incl. carpentries not specializing in a particular line of prod- ucts)(over 5 wrkrs.) " (up to 5 wrkrs.) Carriages, baby; manuf. Cattle sheds and pens</pre>	la) 2 lb 2 lb 3
3 2 5 2 5 1b 1a 5 4 2	71. 72. 73. 74. 75. 76. 77. 78.	<pre>" (up to 5 wrkrs.) Carpentry, for house building; manuf. (incl. manuf. of shutter-boxes, lattices, doors windows, parts for shacks, etc. (over 5 wrkrs.) " (up to 5 wrkrs.) Carpentry; n.f.i. (incl. carpentries not specializing in a particular line of prod- ucts)(over 5 wrkrs.) " (up to 5 wrkrs.) Carriages, baby; manuf. Cattle sheds and pens Ceramics, artistic; manuf. (over 20 wrkrs.)</pre>	la) 2 lb 2 lb 3 2

81.	Ceramics, household utensils; manuf.	2	100.	· • · · ·	lb
82.	Ceramic Products; manuf. (for electrical use)	3	101.	Clothing, upper, children; manuf. (except leather & knitting)	la
83.	Cereals, (other than wheat); grinding & crushing, (incl. grinding & crushing of rice, corn, etc.)	2			2
84.	Chandeliers & lamps; manuf. (incl. lampshades & table-		103. 104.	Clothing, upper, knitted;	1b 2
	lamps)	2	105.		- 1b
-	Chemical combines	6	_	Clothing, upper, men; manuf.	
86.	Chicken Breeding; (over 1000 chickens in non-agricultural	-		(except leather & knitting)	la
87.	communities) Chlorine; liquified, storage in containers of one ton or more.	3 6	107.	Clothing, upper, mixed (except leather & knitting); manuf. (incl. upper clothing for mer, women & children, as well as working garments)	la
88.	Chlorine; manuf	5	108.	Clothing, upper, n.m.e;	
89.	Chlorophenols (and derivatives of similar toxicity) manuf.	6	2001	manuf. (incl. plants for sewing robes, shirts &	
90.	Chocolate & sweets; manuf. (incl. cocoa spread, cocoa-		109.	pajamas)(over 20 wrkrs.) '" (5-20 wrkrs.) :	2 1b
	butter, chocolate powder & various sweets, such as candy,		110.	" (up to 5 wrkrs.)	la
91.	marmalade, nouget, etc.) Cigarette; manuf.	2	111.	Clothing, upper, women; manuf. (except leather & knitting)	la
92.	Clay products for construction;		112	Coal tar & resins; manuf.	1a 5
	manuf. (incl. clay bricks, tiles, hangers, etc.)	2		Cod liver oil & fish meal;)
93.	Clothing, n.f.i.; manuf.	2 1b	11).	manuf.	6
	Clothing products, n.m.e.;		114.	Coffee, instant; manuf.	4
	manuf. (incl. handkerchieves, veils, ties, lace-ribbons, etc.		115.	Coffee, roasting; grinding & packaging plant	2
95.	(over 20 wrkrs.) " (5-20 wrkrs.)	2 lb		Coffee, roasting; grinding & packaging (within a shop)	la
96.	" (up to 5 wrkrs.)	la	117.	Cold storage depot	2
97.	Clothing, underwear, knitted; manuf. (over 5 wrkrs.)	2	118.	Colours, organic (sulfur basis); manuf.	5
98.	" (up to 5 wrkrs.)	lb	119.	Combustible-gas tanks	
99.	Clothing, underwear, n.m.e. (except knitted); manuf.	1-		(compressed gas volume of 10,000 tons or more)	6
	(over 5 wrkrs.)	la	282 `		

ב	120.	Combustible liquids; storage (over 20,000 liter)	4	138.	Diamond, cut wrkrs.)
נ	121.	Combustible liquified-gases; stor. (over 5,000 kg.)	5	139.	" (up to Diamond, n.m
]	122.	Compressors, refrigeration, pneumatic & hydraulic equip- ment; manuf. (incl. manuf. of	2	140.	(incl. diamo diamonds for (over 5 wrkr
		air & gas compressors, refrig- eration compressors, fire		141.	" (up to
		extinguishers, etc., manuf. & repair of spare parts for	~	142.	Diamond, pol wrkrs.)
-	107	this equipment)		143.	" (up to
		Concrete-asphalt; manuf.	4	144.	Die; manuf. forms)(over
		Concrete-blocks; manuf.	2	240	
		Concrete pipes; manuf.	3	145.	(up oc
1	126.	Concrete products, n.m.e.; manuf. (incl. pavement stones, concrete window sills, pedes- tals, garbage boxes, tiles,etc)	2	146.	Drug; manuf. erinary drug mins & mater dentistry)
]	127.	Cooling installations & com-		147.	Dry cleaning
		mercial refrigerators; manuf. (incl. equipment for refrig- eration installations & repair		148.	Edible-Oil; refining
		of spare parts & accesories)	2	149.	Electric bro
]	128.	Cosmetics; manuf.	3	150.	Electric cat
נ	129.	Cotton-Ginning; (incl. separ- ation of fibers from grains & cleaning of fibers)	4		manuf. (incl & wires coat telephone ca
-	130	Cotton spinning and weaving	4	151.	Electric hou
		mill Cotton-wool, industrial (for	2		repair (incl vision, tape tric boilers
-	L)L •	upholstery, processing of sea weed); cleaning and processing	2		Electric hou & machines,
-	132.	Cotton-wool, medicinal & textile bandage; manuf.	lb		(incl. mixed ines, refrig conditioners
-	133.	Cutlery; manuf.	3	153.	Electric ins
-	134.	Cutting-equipment; manuf. (drills, knives, etc.)	3		lighting equ manuf. (incl
:	135.	Cynamide; manuf.	5		heating bod: electric boa
-	136.	Dental & medical laboratory equipment; manuf. (over 20 wrkrs.)	2		panels, electric bos panels, electros, heating fur
:	137.	" (up to 20 wrkrs.)	lb	ļ	2
				283	

	138.	Diamond, cutting; (over 5 wrkrs.)	lb
	139.	" (up to 5 wrkrs.)	la
	140.	Diamond, n.m.e.; manuf. (incl. diamond powder & diamonds for industry) (over 5 wrkrs.)	1 b
	141.	" (up to 5 wrkrs.)	la
	142.	Diamond, polishing: (over 5 wrkrs.)	1Ъ
	143.	" (up to 5 wrkrs.)	la
	144.	Die; manuf. (incl. metal- forms)(over 20 wrkrs.)	3
	145.	" (up to 20 wrkrs.)	2
	146.	erinary drugs, incl. vita- mins & materials used in	-
-		dentistry)	3
		Dry cleaning laundry	2
	148.	Edible-Oil; manuf. and refining	3
	149.	Electric broilers; manuf.	2
	150.	Electric cable and wire; manuf. (incl. isolated cables & wires coated by plastic & telephone cables)	3
	151.	Electric household appliance; repair (incl. radio, tele- vision, tape recorders, elec- tric boilers, etc.)	2
c c	152.	Electric household appliances & machines, n.m.e.; repair (incl. mixers, washing mach- ines, refrigerators, air conditioners)	2
	153.	Electric installation & lighting equipment, n.m.e.; manuf. (incl. lighting & heating bodies, voltmeters, electric boards, control panels, electric meters, reflectors, industrial heating furnaces, etc.)	2
C	283		
	, <u> </u>		

I

	Electrode; manuf. Electronic instruments for control, science & medicine; manuf. (incl. electronic control systems & repair of instruments used for control &		177.	Fish processing; (incl. smoking, freezing, prepar- ation of fish-salads, pres- erving fish and additives)	3
			178.	Flameable & hazardous materials; stor.	3
	in science, medicine & industry)	2	179.	Fluorine compounds; manuf.	5
156.	Elevators & escalators; manuf.	2	180.	Food additives; manuf. (incl.	
_,	(incl. spare parts)	2		synthetic sweeteners, vanillin, etc.)	2
157.	Embroidery work, buttonhole making & plisse; (over 20 wrkrs.)	2	181.	Food packing n.m.e.; (incl. coffee substitutes, imitation vinegar, table salt packing,	
158.	" (5-20 wrkrs.)	lb		roasted & peeled food seeds	_
159.	" (up to 5 wrkrs.)	la		& puffed cereals)	la
160.	Fat, cooking; manuf.	3	182.	Food product, n.m.e.; manuf. of spices, baking powders,	
161.	Fat and lard; manuf.	3		ice cream powder, custard	
162.	Feather cleaning and processing manuf.	3; 3		powder, jello, yeast, aro- matic essences; incl. coffee sustitutes & iritated vinegar) 2
163.	Feather-meal; manuf.	6	183.	Footwear, rubber; manuf.	
164.	Ferromanganese; manuf.	5	_	(incl. sheets for soles, soles	
165.	Ferrous metals; manuf. (over 2,000 ton/yr)	4	184.	& other parts) Foundry, ferrous metals;	3
166.	" (up to 2,000 ton/yr.)	3	1.05	(over 20,000 ton/yr.)	4
167.	Fertilizers, carbonaceous;	4	1	" (up to 20,000 ton/yr.) Fruits and vegetables; drying	3
168.	manuf. Fertilizers, liquid; manuf.	4	}	Fruit & vegetable; freezing	3
	Fertilizers, mineral; manuf.	Ŧ	1	Fruit & vegetable preserves;)
109.	of concentrates	5	100.	manuf. (incl. juice canning	
170.	Fertilizers, nitrogenous; manuf. & stor. (over 250 ton)	5		& bottling, canned sauce & soup concentrates, deserts & jams, concentrated juice &	
171.	Fertilizers, synthetic; formulations	3	189-	syrup, vegetable pickling) Fuel stor; big scale,(tanks	3
172.	Fibre, synthetic; manuf. from acetate & ammonia	4		of 30,000-100,000 m ²) Fuel Stor; medium scale,	5
173.	Fibre, synthetic; manuf. from viscose rayon	5		(tanks of 10,000-30,000 m ³) Fuel stor; small scale	4
174.	Fibre, synthetic; raw material for manuf.	4		(tanks up to 10,000 m ²)	3
175.	Firecrackers; manuf.	4	1792.	Furs; processing	4
	Fish-processing; (incl. fish-drying)	4	284		

			1		
193.	<pre>Furniture; coating (incl. poly- ester coating & painting) (over 5 wrkrs.)</pre>	2	205.	Glass, hollow & hollow glass products; manuf. (incl. neon tubes, light bulbs, bottles,	_
194.	" (up to 5 wrkrs.)	lb		, , ,	2
195.	Furniture, metal; manuf.	2	206.	Glass, n.m.e.; Manuf. (incl.	2
196.	Garage, motor vehicle;		0.017	v 5	۷
	(over 20 wrkrs.)	2	207.	Glass wool, rock-wool & other insulating materials; manuf.	3
197.	" (up to 20 wrkrs.)	lb	208.	Glue; manuf. from gelatine,	-
198.	Gas, compressed; manuf. (con- tained in standard balloons, incl. ccmpressed hydrogen &			bones, fats, skin or other animal waste	5
	oxygen & acetylene having a pressure of less than 1.5 atmospheres)	3	209.	Glue; manuf. (incl. P;V,I,- glue, Urea-glue, formaldehyde, melamine-glue; not including bones-glue & gelatin-glue)	3
199.	Gas, natural; wells	5	210.	Glycerine; manuf.	3
200.	Gas stoves & ranges; manuf.	3		Goldsmitting; (incl. holy-	/
201.	Gasoline service stations; (types 6 and 7):			vessels manuf. by goldsmit- ting)(over 5 wrkrs.)	1b
	type 6-fuel supply only for all	1	212.	" (up to 5 wrkrs.)	la
	motor vehicles; & kerosene for household use	-	213.	Gravel and tar mix; manuf.	4
	<u>type 7</u> -same as type 6 but in		214.	Grindstone; manuf.	3
	addition also services & lub- rication to all types of veh- icles, & a buffet or restaurant	3	215.	Hardened vegetable oil; (using hydrogen, not manuf. by electrolysis)	3
202.	Gasoline service stations;	1	216.	Hat; manuf. (over 20 wrkrs.)	2
202.	(types 3,4, and 5):		217.	" (5-20 wrkrs.)	1b
	type 3-sale of gasoline, engine oil. mixed fuel for engines &		218.	" (up to 5 wrkrs.)	la
	kersene for household use		219.	Honey-products; manuf.	la
	<u>type 4-</u> as type 3 & in addition diesel oil for tax1 cabs <u>type 5</u> -as type 4 & in addition installations for lubrication, car washing, tire repair &		220.	Household utensils, plastic; manuf. (incl. boxes, buckets, screws, covers, combs & other injection & press products)	2
203.	buffet Gasoline service stations; (types 1 and 2): <u>type 1</u> -sale of gasoline & engine oil only	2 ne	221.	Household utensils & electric cooking appliances; manuf. (incl. grillers, toasters, electric spoons, pots, plates, etc.)	2
	type 2-as type 1 & in addition		222.	Hydrochloric acid; manuf.	5
204.	mixed fuel for engines Gelatine, technical; manuf.	1 b	223.	Hydrocyanic acid; stor. & use (over 5,000 kg.)	5
	from animal wastes	5	1	_	
			285		

			ł		
224.	" (500-5,000 kg.)	4	247.	Kennels, commercial; (big,	7
225.	Hydrofluoric acid; manuf.	5			3
226.	Hydrofluoric acid; stor. (over 15 ton)	6	248.	Kerosene ovens & heating appliances; manuf. (incl. kerosene & oil burners,	
227.	Ice; manuf.	2		fireside ovens, etc.)	3
228.	Ice box, household; manuf.	2	249.	Kitchenware, aluminum; manuf.	3
229.	Icecream; manuf. (incl. ice cream bars)	la	1	Kitchenware, stainless; manuf.	3
230.	Incinerators; (non-regional, for solid waste)	3	251.	Kitchenware & heating appar- atus, n.m.e.; manuf. (incl.	3
231.	Insulation paints & varnish;		050	copper and enamel)	-
	manuf. (up to 500 ton/yr incl. automobile paints)	3	272.	Laboratories; (bacteriological chemical(over 5 wrkrs.),& metallurgical)	3
	Iron ore; mining, using explosives	5	253.	Lacquer & oily paints used for isolation; incl. manuf.	-
233.	Iron ore; smelting (blast furnace-over 50,000 ton/yr)	5		of automobile paints (over 500 tons/yr.)	4
234.	" (blast furnace-up to 50,000 ton/yr.)	4	254.	Laundry, machines & spare parts for household mach-	
235.	Iron, wrought; manuf. (over			ines & laundries; manuf.	2
076	20,000 ton/yr.)	4	255.	Lead pipes; manuf.	3
236.	" (up to 20,000 ton/yr.)	3	256.	Leather processing; lining	
257.	Iron or Steel, castings; (over 75,000 ton/yr.)	4	057	leather	4
238.			257.	Leather processing; lower leather	4
23 9 .	Iron or steel; extrusion & smelting (over 50,000 tons/yr.)	4	258.	Leather processing; upper leather	4
240.	" (up to 50,000 ton/yr.)	3	259.	Leather processing; mixed	
241.	Iron, pig & steel; manuf. (up to 75,000 ton/yr.)	4		sorts (incl. upper & lower leather & lining)	4
242.	Ironwork (for buildings) &			Leather processing; n.f.i.	4
	locks; manuf. (incl. keys, hinges, latches, etc.) (over 20 wrkrs.)	3		Leather processing; for clothing	4
243.		2	262.	Leather products, n.m.e.; manuf. (incl. leather belts	
	Irrigation fittings; manuf. (incl. sprinklers)	3		& technical products) (over 20 wrkrs.)	2
2/5	Itong blocks & silicate)	263.	" (5-20 wrkrs.)	1b
∠५७∙	bricks; manuf.	3	264.	" (up to 5 wrkrs.)	la
246.	Jute, śack; cleaning	2	265.	Leather & leather substitutes, products; repair (over 20	,
			285	(wrkrs.)	2

- 266. " (5-20 wrkrs.)
- 267. " (up to 5 wrkrs.)
- 268. Lens, optical; manuf. & grinding (over 20 wrkrs.)

1

- 269. " (5-20 wrkrs.)
- 270. " (up to 5 wrkrs.)
- 271. Light bulbs; manuf. (incl. incandescent, whitened, neon, & low voltage bulbs)
- 272. Lime; manuf.
- 273. Lithography & Zincography
- 274. Locksmith, mechanical
- 275. Lubrication oil; mixing & refining
- 276. Lumber mill & formica; manuf. (incl. sawing & cutting of logs & wood plates & planning of wood plates)
- 277. Machinery, agricultural; manuf. (incl. manuf. of agricultural tractors, ploughs, milking machines, etc. & manuf. & repair of spare parts & accessories for these machines)
- 278. Machinery, chemical & food industries; manuf. (incl. repair, installation & manuf. of accessories & spare parts) 2
- 279. Machinery, construction & earth works; manuf. (incl. repair, installation & manuf. of accessories & spare parts) 2
- 280. Machinery, construction & industrial, n.m.e.; manuf. (incl. installation & repair of machines for textile, tannery, mines, etc., & manuf. & repair of accessories & spare parts)
- 281, Machinery, metal processing; manuf. (incl. repair, installation & manuf. of accessories & spare parts)

lb la	282.	Machinery, service, n.m.e.; manuf. (incl. calculating machines, typewriters, espr- esso & softdrink machines,	
2 lb la	283.	<pre>etc.,incl. manuf. of spare- parts for these machines) Machinery, wood-working; manuf. (incl. repair, insta-</pre>	2
0		llation & manuf. of access- ories & spare parts)	2
2	284.	Magnesium; casting	6
4	285.	Malachite; mining	5
2	286.	Manure; drying and handling	3
2	287.	Manure & refuse; stor. & proc	• 4
3	288.	Marble; proc.	2
	289.	Margarine & oil products; manuf. (incl. milk-margarine, peanut-butter, mayonaise, techina, humus-salad, etc.)	2
2	290.	Matches; manuf.	4
f.	291.	Matzo; manuf. (incl. matzo- -meal & crackers)	2
2	292.	Meat & poultry products, n.m.e.; manuf. (incl. pres- erves & animal food)	2
2	293.	Metal barrels recondit- ioning plant	3
2	294.	Metal coatings, n.m.e.; (incl. coating by enamel, plastic, etc.) (over 5 wrkrs.)	3
	295.	" (up to 5 wrkrs.)	2
2		Metal-enrichment; (without heat-treatment)	4
	297.	Metal, galvanızing; (over 5 wrkrs.)	3
	298.	" (up to 5 wrkrs.)	2
2	299.	Metal-ore; mining (lead, Arsenic, Manganese, Copper)	Ļ
3 2		Metal products for building, n.m.e.; manuf. (incl manuf. of steam boilers, gas conta- iners, fuel containers,	
	287		

301.	<pre>windows, doors, lintels, etc) (over 20 wrkrs.) " (up to 20 wrkrs.)</pre>	3 2	317.	Mineral non-metal products, n.m.e.; manuf. (incl. manuf. of emery cloth, glass-paper, gypsum, gypsum plates &	
302.	Metal_product_painting;	_		dividers, etc.)	2
303.	over 5 wrkrs.) " (up to 5 wrkrs.)	3	318.	Mineral oil; machinery & stor. depot	3
304.	Metal products, n.m.e.; manuf. (incl. buckles, soda-water siphons, shaving machines,		319.	Mineral salts; manuf. (excluding arsenites, fluo- rides & chromates)	4
	<pre>bicycles bells, weights, etc.) (over 20 wrkrs.)</pre>	3	320.	Mirror; manuf	2
305.		2	321.	Motor electric; manuf.	2
-	Metal sheet packaging & barrels manuf. (incl. metal sheet	3;	322.	Motorcycles & scooters; manuf. & assembly	3
	boilers, bread boxes, tin cans, containers, etc.)	3	323.	Motorcycles & scooters; repair (over 20 wrkrs.)	2
307.	Metal sheet tube; manuf.	3	324.	" (Up to 20 wrkrs.)	lb
308.	Metal sheet and pressed metal products, n.m.e.; manuf. (incl.	•	325.	Motorcycles, tricycles & spare parts; manuf,	2
	tin pails, milk jars, garbage handles, washing plates, metal sheet pipes, graters, etc.)	3	326.	Notor vehicle, electric workshop;(incl. battery- charging) (over 20 wrkrs.)	2
309.	Metal wire nails & pegs, manuf.	.3	327.	" (up to 20 wrkrs.)	lb
310.	Metal wire nets; manuf.	3		Motor vehicle; painting	
311.	Metal wire, n.m.e.; manuf.			(over 20 wrkrs.)	2
	(incl. wire household articles wire fan shields, needles, pins		329.	" (up to 20 wrkrs.)	lb
312.	hooks, chains, wire, etc.) Metal & non metallic ore;	3	330.	Motor vehicle; upholstery (over 20 wrkrs.)	2
-	mining (surface-mining method)	4	331.	" (up to 20 wrkrs.)	lb
313.	Metallurgical combines	6	332.	Musical instruments; manuf.	• •
314.	Methanol; manuf.	4	777	and repair	16
315.	Milk; stor. of more than one ton	٨	1	Nicotine; manuf.	4
716		4	ł	Nitric acid; manuf.	5
510.	Milk products; manuf. (not incl. ice cream; incl. plants processing milk into various			Non-ferrous metal; casting (over 2,000 ton/yr)	4
	products; incl. pasteurization		336.	" (up to 2,000 ton/yr)	3
	& sterilization of milk, cheese manuf., sour cream manuf., button milk products frequing		337.	Nonferrous-metal; extrusion & smelting (over 2,000 ton/yr)4
	<pre>butter, milk-products freezing, etc.)</pre>	2	338.	" (up to 2,000 ton/yr)	3
				Nonferrous-metal; manuf. & reprocessing	4
			288		

		:	1		
340.	Non-ferrous metal pipe; manuf.	3	358.	Paper, writing; manuf.	
341.	Non-metallic mineral mining;			(blocks, copybooks, note- books, etc.) (over 20	
	(incl. peat, gypsum, asbestos, sulfur, bitumen-asphalt,			workers)	2
	Kaolinite, pure sand & clay)	4	359.	" (5-20 wrkrs.)	lb
342.	Noodles & dough products, n.m.e	e.;	360.	" (up to 5 wrkrs.)	la
	manuf. (incl. marcaroni, sya- ghetti, noodles & other dough products)	2		Parking lots for cars & heavy mechanical equipment	3
343.	Nuclear reactors	6	362.	Paving stones, panels, etc.; manuf. (incl. mosaic casting)	2
344.	Nylon; manuf.	5	363.	Pearl, synthetic; manuf.	2
345.	Office & school equipment,n.m.e manuf. (incl. chalk, rubber blocks for mimeographing, office trays, draftsman &		364.	Pen (ball pens & fountain pens manuf. (incl. refills for ball pens)	5); 2
	engineering instruments, etc.)	2		Pencils & crayons; manuf.	2
346.	Optical & photographic instr- uments; manuf. & repair (incl.	1	366.	Pesticides; synthetis & formulation	6
	cameras, telescopes, micro- scopes, etc.) (over 20 wrkrs.)	lb		Pesticide, agricultural; manuf, (incl. formulation	
347.	" (up to 20 wrkrs.)	la		plants for insecticides & poisons used in agriculture)	3
	Oriental bread (pitah) bakery	lb		Petroleum, crude; prodwells	-
549.	Orthopaedic instruments; manuf. (over 5 workers)	lb		Petroleum, crude (having	-
350.	Orthopaedic instruments; nanuf			low volitiles-content).prod.	4
	(up to 5 wrkrs.)	la	370.	Petroleum processing (crude with sulfur content of 0.5%	
351.	Oxidation-ponds (up to 5,000 m ² /d)	4		or less & low volatile content)	5
352.	Paint, varnish & lacquer; manuf. (incl. mineral paint & chromium & lead-based paints))3	371.	Petroleum refinning (crude with sulfur content over 0.5%)	6
353.	Paper; manuf. (incl. packing- paper, chrome-paper, news- print, oily-paper, etc.) (over 10,000 ton/yr)	5	372.	Petroleum, refining; manuf. of by products (incl. L,P,G, manuf.)	6
354.	" (up to 10,000 ton/yr)	4	373.	Phosgene; manuf. & stor.	<i>,</i>
	Paper; manuf. (carbon, mimeo-		274	(over 500 kg.)	6 5
	graphing, photographic, &	0	374.	" (up to 500 kg.)	5
356	sunprint-paper) Paper; manuf. (from rags &	2		Phosphates; mining	5
	waste-paper)	2		Photochemical products; manuf. (for photographic use)	3
357.	Paper, waste; stor.	3	377.	Photographic film; manuf.	2
			289		

			}		
378.	Picric acid; manuf.	5		china, etc.)(over 5 wrkrs.)	2
379.	Picric acid; stor. (150 to 1500 kg)	5	395.	" (up to 5 wrkrs.)	1b
	Pig breeding Pipes, steel & iron; manuf. (incl. seamless & protective coating pipes).	6	396.	Plumbing fixtures; manuf. (incl. swimming pool acces- sories, faucets, bathroom- batteries, sinks, valves, sluices, etc.)	3
382.	Plastic bottles, containers &		397.	Plywood & by-products; manuuf.	4
	other blowing and spraying products; manuf.	2	3 98.	Polish & other wax products; manuf. (incl. cleansing products.)	2
<u> 383</u> .	Plastic material; manuf. (incl. carbolite, cellulose, bakelite.		399.	Polyacrylonitryle; manuf.	4
	formalin, phenol-formaldehyde		ł	Portland cement; manuf.	6
	castings powder, polyester, polyethylene, polyvinyl-acetate	э,	401.	Potash; mining	4
384.	polyvinylchloride, etc.) Plastic materials; manuf.	4	402.	Potassium salts (chloride, sulfate & carbonate); manuf.	4
385.	(from cellulose-esters) Plastic materials (polyure-	5	403.	Power Plants (not incl. Diese generators & gas turbines)	L 6
386.	thanes); manuf. Plastic materials (protein- origin); manuf.	4 4	404.	Precast products, concrete; (incl. electric poles & pre- fabricated parts for build-	
387.	Plastic napkins (laced); manuf			ings)	3
700	& printing (over 5 wrkrs.) " (up to 5 wrkrs.)	2	1	Precision instruments; manuf. (over 20 wrkrs,)	2
388. 380	(up 00) (11100)	lb	406.	" (up to 20 wrkrs.)	- 1b
JU 3 •	Plastic plates & pipe; manuf. (incl. coatings, belts, profiles & pipes)	2	407.	Printing-Paint; manuf. (incl. manuf. of printing-paints,	
390.	Plastic products, reinforced; manuf. (incl. batts, protective			ink & india ink, lacquer & oils for painting)	3
301	helmets, wavy plates, etc.) Plastic products, n.m.e.; manu:	2 f	408.	Printing press (incl. relief & offset)	2
<i>,</i>	(incl. disposable packings, plastic insulators, vacuum -	- •	409.	Publishing; books (incl. atlases)	la
_	method manufactured plastic products & plastic bags)	2	410.	Publishing; newspapers & journals	la.
	Plastic record disks; manuf.	2	411.	Pumps & pumping equipment;	
393.	Plastic sleeves & their prod- ucts; manuf. (incl. plastic bags & products & curtains)	2	412.	manuf. Quarries; (lime, marble,	2
394.	Plate glass products; manuf. (not incl. flat mirrors; incl. glass for cupboards, tables, windows, flat glass aquarium,		413.	gravel, mosaics) Quarries; (send dunes, sukri- sand & sea coast sand)	4

414.	Radio, phonograph, television & taperecorder; manuf. (incl.		43
	spare parts)	2	43
415.	Railroad-equipment; manuf. & repair	4	
416.	Raincoat; manuf. (over 20 wrkrs.)	2	43
417.	" (up to 20 wrkrs.)	lb	
418.	Razor blade; manuf. (over 20 wrkrs.)	3	
419.	" (up to 20 wrkrs.)	2	43
420.	Ready-mixed concrete; manuf.	3	
421.	Records; manuf.	2	44
422.	Recreation areas;(Fields for circus, fairs and amusement)	3	44
423.	Refractory ceramics; manuf. (incl. refractory-blocks &		44 44
	fire-refractory bricks)	3	44
424.	Resins; mnauf. (over 300 ton/yr)	5	44
425.	" (up to 300 ton/yr)	4	44
426.	Rope & thread; maunf. (from synthetic materials)	3	44
427.	Rubber; manuf.	4	44
428.	Rubber, synthetic; manuf.	5	44
429.	Rubber, synthetic; manuf. from acetylene	6	44
430.	Rubber, substitute; ranuf.	4	44
431.	Rubber, vulcanization; (using hydrogen suffide)	2	45
432.	Rubber, vulcanization; (without using hydrogen Sulfide)	t 3	+ /
433.	Rubber-goods; manuf. (incl. manuf. of gaskets, bottles & containers, rubber gloves, air pillows, sport equipment, foam rubber toys, etc.)	3	45
434.	Rubber & caotchouc reprocessing	-	
	Rugs, floor; mauf. (by weaving, crocheting or tufting)		45

1			
	436.	Salt, evaporating; (not refining)	4
2	437.	Sanitary ceramic ware; manuf.	
4		<pre>(incl. closet stools, sinks, & ceramic armature acces- sories)</pre>	2
2	438.		,
lb		(incl. dried meat, meat spread, sausgae, meat & veg- etable preserves, processed	
3		intestines, etc.)	2
2	439.	Seals; maunf. (incl. eng-	
3		raving of rubber & steel seals)	2
2	440.	Sewage treatment; (plants without secondary treatment;	
3		oxidation ponds excluded)_	6
ł	441.	" (plants over 50,000 m^3/d))5
3	442.	" (plants up to 50,000 m ² /d)	4
5	443.	" (plants up to 100 m^2/d)	3
4	444.	" (oxidation ponds over 5,000 m ² /d)	5
3	445.	Sewing; bed linen, curtains, canopies (over 5 wrkrs.)	lb
4	446.	" (up to 5 wrkrs.)	la
5	447.	Sewing; blanket & pillows (over 5 wrkrs.)	lb
6	448.	" (up to 5 wrkrs.)	la
4	449.	Sewing machine & its accessories; mnauf.	2
2 1t 3	450.	Ship & boat building yards; (construction & repair of ships, boats & other marine vessels)	4
	451.	Shipyards (except boat building)	6
n 3 1g4	452.	Shoe, mixed sorts; manuf. (incl. manuf. of leather boots, sandals, slippers,	
		etc.)(over 20 wrkrs.)	2
g)lb	453.	" (5-20 wrkrs.)	1b

454.	" (up to 5 wrkrs.)	la	475.	Soft drinks; menuf. (incl.	
455.	Shoe, orthopaedic; manuf: (incl. parts for orthopaedic			plants manuf. sparkling drinks & soda water & pla-	
	shoes)(over 20 wrkrs.)	2		nts diluting syrups & marketing it in bottles)	2
456.	" (5-20 wrkrs.)	lb	476.	Solid waste disposal; closed	
457.	" (up to 5 wrkrs.)	la		compostation plants	4
458.	Shoe, parts, leather & subst- itutes; Manuf. (incl. : sewing of shoe parts) (over			Solid waste disposal; comp- osting (windrows method)	6
	20 wrkrs.)	2	478.	Solid waste disposal; mechanical processing	5
459.	" (5-20 wrkrs.)	lb	479.	Solid waste disposal;	-
460.	Shoe, parts, leather & subst-		_	municipal incinerator	6
	itutes; manuf. (incl. sewing of shoe parts) (up to 5 wrkrs.)la	480.	Solid waste disposal? sanitary earthfill projects	4
461.	Shoes & leather products; repair	la	481.	Soup; manuf. (incl. soup	
462.	Shutters; manuf. (incl. inst-	1		powders, soup cubes & soup essence)	2
	allation of shutters) (over 20 wrkrs.)	3	482.	Spectacle frames & parts; manuf. (over 20 wrkrs.)	2
	" (up to 20 wrkrs.)	2	483.	" (5-20 wrkrs.)	1b
A64.	Silversmithing; (incl. holy				
4040		1	482.	" (up to 5 wrkrs.)	la
4040	vessels manuf. by silver- smithing)(over 5 wrkrs.)	lb		Spirit, wine; manuf. (incl.	
	vessels manuf. by silver-	lb la	483.	Spirit, wine; manuf. (incl. grape-juice and vinegar)	3
465.	vessels manuf. by silver- smithing)(over 5 wrkrs.)		483. 484.	Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf.	
465. 466,	<pre>vessels manuf. by silver- smithing)(over 5 wrkrs.) " (up to 5 wrkrs.)</pre>	la	483. 484.	Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf. Starch, glucose, cornflour	3
465. 466. 467.	<pre>vessels manuf. by silver- smithing)(over 5 wrkrs.) " (up to 5 wrkrs.) Slag; manuf. (Thomas method)</pre>	la 4	483. 484. 485.	Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf. Starch, glucose, cornflour & potatoflour; manuf. Steam boilers; (big size,	3 3
465. 466. 467. 468.	<pre>vessels manuf. by silver- smithing)(over 5 wrkrs.) " (up to 5 wrkrs.) Slag; manuf. (Thomas method) Slaked lime; manuf. Smelters, nonferrous; (from</pre>	la 4 2 5	483. 484. 485.	Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf. Starch, glucose, cornflour [*] & potatoflour; manuf.	3 3
465. 466. 467. 468.	<pre>vessels manuf. by silver- smithing)(over 5 wrkrs.) " (up to 5 wrkrs.) Slag; manuf. (Thomas method) Slaked lime; manuf. Smelters, nonferrous; (from metal ores or concentrates) Smelters, nonferrous, secondar,</pre>	la 4 2 5 y;	483. 484. 485.	Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf. Starch, glucose, cornflour [•] & potatoflour; manuf. Steam boilers; (big size, factories having boilers with steam output over 15,000 kg/hr) " (average size, 2,000	3 3 4 3
465. 466. 467. 468. 469. 470.	<pre>vessels manuf. by silver- smithing)(over 5 wrkrs.) " (up to 5 wrkrs.) Slag; manuf. (Thomas method) Slaked lime; manuf. Smelters, nonferrous; (from metal ores or concentrates) Smelters, nonferrous, secondar, (over 3,000 ton/yr) " (up to 3,000 ton/yr) Soap & synthetic cleansing</pre>	la 4 2 5 y; 5 4	483. 484. 485. 486.	Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf. Starch, glucose, cornflour & potatoflour; manuf. Steam boilers; (big size, factories having boilers with steam output over 15,000 kg/hr) " (average size, 2,000 -15,000 kg/hr)	3 3 4
465. 466. 467. 468. 469. 470.	<pre>vessels manuf. by silver- smithing)(over 5 wrkrs.) " (up to 5 wrkrs.) Slag; manuf. (Thomas method) Slaked lime; manuf. Smelters, nonferrous; (from metal ores or concentrates) Smelters, nonferrous, secondar, (over 3,000 ton/yr) " (up to 3,000 ton/yr) Soap & synthetic cleansing materials; manuf. (incl. plant for manuf. of various types</pre>	la 4 2 5 y; 5 4	483. 484. 485. 486. 4 9 7. 488.	<pre>Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf. Starch, glucose, cornflour & potatoflour; manuf. Steam boilers; (big size, factories having boilers with steam output over 15,000 kg/hr) " (average size, 2,000 -15,000 kg/hr) " (small size, up to 2,000 kg/hr)</pre>	3 3 4 3
465. 466. 467. 468. 469. 470. 471.	<pre>vessels manuf. by silver- smithing)(over 5 wrkrs.) " (up to 5 wrkrs.) Slag; manuf. (Thomas method) Slaked lime; manuf. Smelters, nonferrous; (from metal ores or concentrates) Smelters, nonferrous, secondar, (over 3,000 ton/yr) " (up to 3,000 ton/yr) Soap & synthetic cleansing materials; manuf. (incl. plant for manuf. of various types of soap & synthetic cleansing materials)</pre>	la 4 2 5 y; 5 4 s	483. 484. 485. 486. 4 9 7. 488.	<pre>Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf. Starch, glucose, cornflour & potatoflour; manuf. Steam boilers; (big size, factories having boilers with steam output over 15,000 kg/hr) " (average size, 2,000 -15,000 kg/hr) " (small size, up to</pre>	3 3 4 3 2
465. 466. 467. 468. 469. 470. 471.	<pre>vessels manuf. by silver- smithing)(over 5 wrkrs.) " (up to 5 wrkrs.) Slag; manuf. (Thomas method) Slaked lime; manuf. Smelters, nonferrous; (from metal ores or concentrates) Smelters, nonferrous, secondar (over 3,000 ton/yr) " (up to 3,000 ton/yr) Soap & synthetic cleansing materials; manuf. (incl. plant for manuf. of various types of soap & synthetic cleansing</pre>	la 4 2 5 y; 5 4 s	483. 484. 485. 486. 487. 488. 489.	<pre>Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf. Starch, glucose, cornflour & potatoflour; manuf. Steam boilers; (big size, factories having boilers with steam output over 15,000 kg/hr) " (average size, 2,000 -15,000 kg/hr) " (small size, up to 2,000 kg/hr) Steel; manuf. (in elect-</pre>	3 3 4 3 2 1b
465. 466. 467. 468. 469. 470. 471.	<pre>vessels manuf. by silver- smithing)(over 5 wrkrs.) " (up to 5 wrkrs.) Slag; manuf. (Thomas method) Slaked lime; manuf. Smelters, nonferrous; (from metal ores or concentrates) Smelters, nonferrous, secondar (over 3,000 ton/yr) " (up to 3,000 ton/yr) Soap & synthetic cleansing materials; manuf. (incl. plant for manuf. of various types of soap & synthetic cleansing materials) Sodium carbonate; manuf. (over</pre>	la 4 2 5 y; 5 4 s 3	483. 484. 485. 486. 487. 488. 489. 490.	<pre>Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf. Starch, glucose, cornflour & potatoflour; manuf. Steam boilers; (big size, factories having boilers with steam output over 15,000 kg/hr) " (average size, 2,000 -15,000 kg/hr) " (small size, up to 2,000 kg/hr) Steel; manuf. (in elect- rical furnace) Steel cables; manuf.</pre>	3 4 3 2 1b 3 3
 465. 466. 467. 468. 469. 470. 471. 472. 473. 	<pre>vessels manuf. by silver- smithing)(over 5 wrkrs.) " (up to 5 wrkrs.) Slag; manuf. (Thomas method) Slaked lime; manuf. Smelters, nonferrous; (from metal ores or concentrates) Smelters, nonferrous, secondar, (over 3,000 ton/yr) " (up to 3,000 ton/yr) Soap & synthetic cleansing materials; manuf. (incl. plant for manuf. of various types of soap & synthetic cleansing materials) Sodium carbonate; manuf. (over 400,000 ton/yr.)</pre>	la 4 2 5 y; 5 4 s 3 4 3	483. 484. 485. 486. 487. 488. 489. 490.	<pre>Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf. Starch, glucose, cornflour & potatoflour; manuf. Steam boilers; (big size, factories having boilers with steam output over 15,000 kg/hr) " (average size, 2,000 -15,000 kg/hr) " (small size, up to 2,000 kg/hr) Steel; manuf. (in elect- rical furnace) Steel cables; manuf. Steel wool; manuf. (over 20 wrkrs.)</pre>	3 3 4 3 2 1b 3 3 3
 465. 466. 467. 468. 469. 470. 471. 472. 473. 	<pre>vessels manuf. by silver- smithing)(over 5 wrkrs.) " (up to 5 wrkrs.) Slag; manuf. (Thomas method) Slaked lime; manuf. Smelters, nonferrous; (from metal ores or concentrates) Smelters, nonferrous, secondar (over 3,000 ton/yr) " (up to 3,000 ton/yr) Soap & synthetic cleansing materials; manuf. (incl. plant for manuf. of various types of soap & synthetic cleansing materials) Sodium carbonate; manuf. (over 400,000 ton/yr.) " (up to 400,000 ton/yr)</pre>	la 4 2 5 y; 5 4 s 3 4 3 c) 5	 483. 484. 485. 486. 487. 488. 489. 490. 491. 	<pre>Spirit, wine; manuf. (incl. grape-juice and vinegar) Springs; manuf. Starch, glucose, cornflour & potatoflour; manuf. Steam boilers; (big size, factories having boilers with steam output over 15,000 kg/hr) " (average size, 2,000 -15,000 kg/hr) " (small size, up to 2,000 kg/hr) Steel; manuf. (in elect- rical furnace) Steel cables; manuf.</pre>	3 4 3 2 1b 3 3

495.	Stockings; knitting (incl.		514.	" (up to 20 wrkrs.)	1b
	knitting of panty hose) (over 5 wrkrs.)	2	515.	Textile; knitting (over 5 wrkrs.)	2
496.	" (up to 5 wrkrs.)	lb	516.	y wrkrs.) " (up to 5 wrkrs.)	2 1b
497.	Stone; quarrying, crushing & grinding (without explosives)	1		Textile; printing	3
498.	Sugar; manuf.	4	518.	Textile; weaving from	
	Sulfur (organic) compounds;			multifilamentious thread; synthetic, natural & art-	
	manuf.	6		ificial (rayon, artificial silk,etc) (over 5 wrkrs.)	2
-	Sulfur- chlorides; manuf.	5	519.		1b
50I.	Sulfuric acid & sulfur oxides; manuf.	5		Textile, weaving; (other	
502.	Sun heated boiler; maruf.	3		types, incl. manuf. of textile from cotton & flax	
503.	Superphosphate; manuf. (in plants using or manuf. sul-			in plants equipped with bleaching and dyeing	
50.	furic acid or fluorides)	5		accessories)	2
	Superphosphate-minerals; manuf. Tanneries; (in "new" indust-	• >	521	.Textiles & threads; dyeing, bleaching, finishing &	
505.	rial areas)	6		impregnating (waste-water output over 20 m ² /d)	4
506.	Tannin; extraction	4	522.	" (waste water output up	,
507.	Tea, packing; (incl. instant tea packing, tea roasting &			to 20 M^{2}/d)	3
	tea extract manuf.)	2	52 3 .	Thread; manuf. from syn- thetic fibre, n.m.e.	
508.	Teeth, artificial; manuf & repair (over 5 wrkrs).	lb		(over 5 wrkrs.)	2
509.	" (up to 5 wrkrs.)	la	524.		1.b
510.	Telecommunication equipment & spare parts; manuf. (incl. re-		525.	Thread, synthetic; manuf. (incl. ^B anlon & Stretch) (over 5 wrkrs.)	2
	pair, installation & manuf. of		526.		2 1b
	telecommunication equipment, manuf. of crystals, telephone-		527.	Tile, wall, menuf.	2
5 37	exchanges, telephone sets)	2	528.	Tinsmitting & radiator	
511.	Textile combines; (waste water output over 100 M^3/d)	4		repair; (automobiles, motorcycles & scooters)	0
512.	" (waste_water output up to 100 m ³ /d)	3	529.	(over 5 wrkrs.) " (up to 5 wrkrs.)	2 1b
513.	Textile; finished product	-		Tire; rebuilding	2
	sewing, n.m.e. (incl tents, satchels, parachutes, sleeping		1	Tires and tubes; manuf.	4
	bags, umbrellas, parasols, sun		532.	Tire & tube: repair	
	shades, cloth covers for cars, napkins, tablecloths, etc.)			(over 2) wrkrs.)	2
	(over 20 wrkrs.)	2	293		

			1		
533.	" (up to 20 wrkrs.)	lb	554.	" (up to 20 wrkrs.)	ļb
534.	Tobacco products, n.m.e.; manuf. (incl. manuf. of cigars, snuff, chewing & pipe tobacco, processing & fermenting, orie-	,		Weaving; fabric for uphol- stery, decoration & curtains (incl. wall carpets) Weaving; textile (using	lb
	ntal tobacco, manuf. of tobac- co for marghile, etc.)	2		combed or corded wool, or	1b
535.	Tombstone; chiseling	2	557.	Weaving; textile (using	
536.	Tools, various; manuf. (ham- mers, tongs, etc.)	3		cotton thread & cotton thread mixed with synthetic fibres)	1b
537.	Toys; manuf. (except wood, rubber & plastic toys) (over 5 wrkrs.)	lb	558.	Weaving; textiles n.m.e., (incl. jute & flax fabrics,	
538.	" (up to 5 wrkrs.)	la			1b
539.	Tractor; repair (over 20 wrkrs)2	559.	Weaving products; straw , & raffia, etcmanuf.(incl.	
540.	" (up to 20 wrkrs.)	lb		manuf. of straw hats, plai-	
541.	Transformers & rectifiers; many	2 .		ted trays, basketwork, etc.) (over 5 wrkrs)	1 b
542.	Transformers & rectifiers; 🔒		560.	" (up to 5 wrkrs.)	la
	repair (incl. winding of mot- ors & transformers)	2	561.	Wheat flour; manuf.	2
513	Transport equipment (inside	۲	562.	Wood for wholesaling; stor.	3
J4J•	plant); manuf.	2	563	areas Wood panels, conpressed &	2
544.	Transport equipment, n.m.e.; manuf.	2	. (00	laminated; (incl. isolation and overlaying plates made	
545.	Trucks & trailers, bodies; manuf. (over 5 wrkrs.)	2	564.	of word chips) Wood preserving; (by injectin	4 1g
546.	" (up to 5 wrkrs.)	lb		preservation solutions, with- out using arsenic salts)	3
547.	Upholsterers workshop &	-	565.	Nood turning; (over 5 wrkrs)	2
- 10	mattress; manuf.	2	1		_ 1Ъ
	Vaccine; Manuf	3	Į	Wood & cork products, n.m.e.;	
549.	Various industries. n.m.e.? (incl. manuf of umbrella parts parts for fans, wigs. decor- ations, stuffed animal skins, etc.) (over 5 wrkrs.)	11		manuf. incl. laundry clamps, ico oreer sticks, ladders, ironing boards, wooden pro- files, wooden toys, etc.)	
550.	" (up to 5 wrand, ;	<u>1</u> 22	565.	、 、	2 1b
551.	Watch; manuf. & installation (incl. electric clocks)	12	1	dood crates & other packings; (incl. repair & manuf. of	
552.	Watches & goldsmithing; repair	. 1		wooden crates, barrels,	
55 3.	Water meter; manuf. lover 20 wrkrs.)	, , , , , , , , , , , , , , , , , , ,		containers & planes) (over 5 wrkrs.)	2
		į	- 74		

570.	" (up to 5 wrkrs.)	lb
571.	Wooden furniture, finished; manuf. & repair (incl. manuf. coating & painting of finished wooden furniture and finished furniture made of wood & metal)(over 5 wrkrs.)	1 2
572.	" (up to 5 wrkrs.)	lb
573.	Wooden furniture-frames; manuf. (over 5 wrkrs.)	2
574.	" (up to 5 wrkrs.)	lb
575.	Wool spinning; combed wool & combed wool mixed with synthetic thread.	2

Table 14-7. WIDTH OF PROTECTION ZONES AND SPECIFICATION OF INDUSTRIAL PLANTS ACCORDING TO CLASSES IN POLAND

Class A - 1000 m. Class B - 500 m. Class C - 300 m. Class D - 100 m. Class E - 50 m.

CHEMICAL PRODUCTION

Class A: Width of protection zone 1000 m.

- 1. Production of artificial fertilizers in the form of nitrates.
- 2. Production of nitric acid and other acids during the production of which the nitrogen oxides are formed.
- 3. Production of prefabricates in aniline dye industry of ether and benzene series; industrial plant of production capacity above 1000 tons per year.
- 4. Production of prefabricates of naphtalene and anthracene series; industrial plant of production capacity above 2000 tons per year.
- 5. Production of cellulose and semicellulose using the sulfite or disulfite method, and applying the solutions obtained by combustion of sulfur or other materials containing sulfur.
- 6. Production of gas for lighting purposes, water gas and producer gas in the amount above 50000 Nm³ per hour.
- 7. Production of sodium hydroxide (caustic soda) using the electrolytic method.
- 8. Production of carbide.
- 9. Production of artificial fibres by the viscose and the viscose foil method.

- 10. The chemical processing of tar.
- 11. Production of arsenic and its inorganic compounds.
- 12. Production of light paraffin hydrocarbons in the amount above 5000 m^3 per hour.
- 13. Refinery processing crude oil containing sulfur in amount above 0.5% (by weight).
- 14. Production of pieric acid.
- 15. Production of hydrofluoric acid, cryolite and fluorine salts.
- 16. Chemical processing of bituminous coal (coke plants, gas generating plants).
- 17. Chemical processing of coal cleaning residuals.
- 18. Production of soot.
- 19. Production of sulfuric acid, oleum and sulfur oxides.
- 20. Production of carbon disulfide.
- 21. Production of hydrochloric acid.
- 22. Production of superphosphate together with sulfuric acid.
- 23. Production of phosphorus (yellow and red).
- 24. Production of chlorine.
- 25. Production of hydrocarbon chlorine derivatives.
- 26. Production of aminoethane acid.

Table 14-7 (continued). WIDTH OF PROTECTION ZONES AND SPECIFICATION OF INDUSTRIAL PLANTS ACCORDING TO CLASSES IN POLAND

- 27. Production of acetic aldehyde from acetylene with the use of metallic mercury.
- 28. Production of methyltetraphtalen.
- 29. Production of abrasives.
- 30. Production of organic sulfur dyes.
- 31. Production of hydrocyanic acid and its compounds.
- 32. Production of barite.
- 33. Production of mercury.
- 34. Production of pesticides for the protection of plants.
- 35. Underground coal gasification.
- 36. Production of chloroprene caoutchouc, with simultaneous production of chlorine.
- 37. Production of sodium nitrite, hydrazine sulfate, ammonium sulfate and ammonium carbonate.
- 38. Production of dimethylformamide.
- 39. Production of reagents for the synthesis of polyamide compounds and polymers and organic synthesis.
- 40. Chemical processing of peat.

Table 14-/ (continued). WIDTH OF PROTECTION ZONES AND SPECIFICATION OF INDUSTRIAL PLANTS ACCORDING TO CLASSES IN POLAND

Class B: Width of protection zone 500 m.

- 41. Production of ammonium and the derivatives of nitrogen compounds, without the production of nitric acid.
- 42. Production of synthetic camphor applying the isomerization process.
- 43. Production of producer gas from coal, peat in an amount equal to 25000 to 50000 Nm³ per hour.
- 44. Production of tar.
- 45. Production of calcinated sodium carbonate with the application of ammonium method in the amount above 400,000 tons per year.
- 46. Production of organic reagents.
- 47. Production of plastics from cellulose esters.
- 48. Production of superphosphate, without departments for sulfuric acid production and processing of fluorine compounds into fluorine salts.
- 49. Production of hardened fats (with the help of hydrogen obtained by non-electrolytic method).
- 50. Processing of crude oil containing less than 0.5% of sulfur (by weight).
- 51. Production of chromic acid and chromium salt anhydrides.
- 52. Production of artificial leather with the application of volatile organic solvents.
- 53. Production of complex esters.

- 54. Production of prefabricates in aniline dye industry of benzene series; industrial plant of general production capacity below 1000 tons per year.
- 55. Production of prefabricates of naphtalene and anthracene series; with general production capacity to 2000 tons per year.
- 56. Production of sulfur dyes, production capacity to 4000 tons per year.
- 57. Production of azo and azoamino dyes.
- 58. Production of materials from asbestos.
- 59. Production of acetylene from natural gas and other hydrocarbons.
- 60. Production of acetic acid.
- 61. Production of silicon-organic lacquers.
- 62. Production of synthetic caoutchouc, except the production described in Class A, item 36.
- 63. Production of synthetic ethylene alcohol applying sulfuric acid, but without its production.
- 64. Production of ultramarine.
- 65. Production of ammonium, sodium, potassium, and calcium saltpetre.
- 66. Production of rare metals by using the chlorination method.
- 67. Production of barium chloride, using hydrogen sulfide.
- 68. Production of fodder yeast and furfural from wooden materials and agriculture solid waste by applying the hydrolysis method.

- 69. Production of derivatives of dry coal distillation
- 70. Production of synthetic fat acids.
- 71. Production of nicotine.
- 72. Production of phenol-aldehydes resins and other artificial resins in amount above 300 tons per year.
- 73. Production of synthetic fibres: acetic, polyamides, and polyesters.

Class C: Width of protection zone 300 m.

- 74. Production of after-distillation residues such as coal tar, crude oil and wood tar.
- 75. Production of calcinated soda applying the ammonia method in an amount below 400,000 tons per year.
- 76. Production of sodium hydroxide applying the nonelectrolytical method.
- 77. Production of inorganic salts, with the exception of phosphoric, arsenic and chromic salts.
- 78. Production of light paraffin hydrocarbons in an amount from 1000 to 5000 Nm³ per hour and the production of producer gas to 25,000 Nm³ per hour.
- 79. Production of pressed materials from paper and textiles saturated with phenol-aldehyde resins in the amount above 100 tons per year.
- 80. Production of artificial mineral dyes.
- 81. Regeneration of rubber and caoutchouc.

- 82. Production of rubber, rubber materials, ebonite and rubber footwear.
- 83. Production of artificial caoutchouc from ethyl alcohol applying the Lebiediev method.
- 84. Production of different fertilizer mixtures.
- 85. Production of carbon articles for electrochemical industry (electrodes, etc.).
- 86. Vulcanization of rubber with the use of carbon disulfide.
- 87. Production of acetic aldehyde applying the parafaze method, without the metallic mercury.
- 88. Production and storage of ammoniacal water.
- 89. Production of styrene and its isomers.
- 90. Production of alumino-organic sealing-waxes, resins and their solutions.
- 91. Transformation of thermoplastic materials.
- 92. Production of varnishes.
- 93. Production of paper from cellulose and waste-paper.
- 94. Production of fat and alcohol sealing-waxes.
- 95. Chlorine stores.
- Class D: Width of protection zone 100 m.
 - 96. Production of plastics on the protein bases (aminoplastics, etc.).
 - 97. Production of producer gas from coal and peat in the amount up to 5000 m^3 per hour.
 - 98. Production of glycerine from glycerine waters.
 - 99. Manufacturing of pencils.

- 100. Production of organic reagents.
- 101. Production of pressed materials from paper and text1l e saturated with phenol-aldehyde resins in an amount to 100 tons per year.
- 102. Production of hardened fats with the help of hydrogen obtained by the electrolytic method.
- 103. Salt-words and salt-mills.
- 104. Production of pharmaceutical potassium salts (chlorine, sulfate, carbonate).
- 105. Production of saccharine and vanilla.
- 106. Production of light paraffin hydrocarbons in an amount up to 1000 Nm³ per hour.
- 107. Production of tannery extracts.
- 108. Manufacturing of matches.
- 109. Production of natural mineral dyes (chalks, minium, etc.).
- 110. Production of perfumes.
- 111. Production of alkolaids.
- 112. Rubber vulcanization plants not applying carbon disulfide
- 113. Production of articles from synthetic resins and plastics applying different methods (pressing, punching, casting under pressure, vacuum die casting, etc.).
- 114. Production of additives for polychlorovinyl, polyurethane, polystyrene and other thermoplastic materials.

- 115. Manufacturing of scap.
- 116. Production of organic and inorganic reagents, without chlorine production.
- 117. Production of the artificial mother of pearl.
- 118. Cistern cleaning and washing plant.

Class E: Width of protection zone 50 m.

- 119. Production of carbon dioxide so called "dry ice."
- 120. Production of articles from plastics (mechanical working).
- 121. Production of compressed hydrogen and oxygen.
- 122. Production of photographic materials (films, light-sensitive paper).
- 123. Production of different types of paper and cardboard from the semiprefabricates, production of wood pulp applying water or sulfite, without burning of the waste products containing sulfur and without application of the liquid sulfur dioxide.

Metal lurgical Plants, Machinery Construction Plants and Metal Treatment Plants

Class A: Width of protection zone 1000 m.

- 124. Production of magnesium applying the chlorination method.
- 125. Secondary processing of non-ferrous metals in an amount above 3000 tons per year.

- 126. Melting of pig-iron in blast-furnaces of total capacity above 1500 m³.
- 127. Melting of non-ferrous metals directly from ores and concentrates.
- 128. Coke plants (coke production).
- 129. Production of aluminium applying the method of melted salt electrolysis.
- 130. Aglomerration of iron and non-ferrous metal ores and pyrites.
- 131. Production of steel in an amount above 1,000,000 tons per year.
 - 132. Hot rolling mills.
 - 133. Production of ferroalloys.

Class B: Width of protection zone 500 m.

- 134. Production of magnesium applying all methods except chlorine method.
- 135. Melting of pig-iron in blast-furnaces of total capacity up to 1500 m³.
- 136. Production of ground thomasyne.
- 137. Production of formed iron casts in an amount above 20,000 tons per year.
- 138. Production of antimony applying the metallurgical method.
- 139. Production of zinc, nickel, copper and cobalt applying the method of water solution electrolysis.

- 140. Heavy forges.
- 141. Production of steel applying the open-hearth method and convertor method in an amount equal to 1,000,000 tons per year.
- 142. Production of lead batteries.

Class C: Width of protection zone 300 m.

. 306

- 143. Secondary processing of non-ferrous metals in an amount to 3000 tons per year.
- 144. Production of formed iron casts in an amount from 10,000 to 20,000 tons per year.
- 145. Production of non-ferrous metals in an amount from 100 to 2000 tons per year.
- 146. Production of cables in rubber or lead insulation.
- 147. Production of articles containing mercury (mercury rectifiers, lamps, thermometers).

Class D: Width of protection zone 100 m.

- 148. Production of noninsulated cables.
- 149. Production of machinery and the equipment for electrotechnical industry (generators, motors, transformers, etc. with the presence of casting and heat treatment departments).

- 150. Working of metals with pig-iron and steel casting up to 10,000 tons per year and with non-ferrous metal casting up to 100 tons per year.
- 151. Mechanical work shops.

Class E: Width of protection zone 50 m.

- 152. Working of metals together with thermal treatment without casting.
- 153. Production of equipment for electrotechnical industry without casting (electrical lamps, torches, etc.).
- 154. Production of hard metal alloys, without departments for ore chemical treatment.

Mining of Ores and Other Fossils

- Class A: Width of protection zone 1000 m.
 - 155. Mining of crude oil with the sulfur content above 0.5% (by weight).
 - 156. Mining of lead, arsenic and manganese ores.
 - 157. Strip mining of sulfur ores.
- Class B: Width of protection zone 500 m.
 - 158. Mining of combustible slates.

- 159. Strip mines of brown coal.
- 160. Mining of phosphorytes and pyrites without chemical treatment.

Class C: Width of protection zone 300 m.

- 161. Mining the crude oil with a content of sulfur below 0.5% (by weight).
- 162. Strip mining of dolomites, asbestos and asphalts.
- 163. Strip mining of metal ores with the exception of lead, arsenic and manganese ores.
- 164. Production of briquettes from coal dust and peat.
- 165. Production of asphalt-concrete.
- 166. Bituminous coal mines.
- Class D: Width of protection zone 100 m.
 - 167. Pit mining of metal ores with the exception of lead, arsenic and manganese ores.
 - 168. Strip mining of peat.
 - 169. Salt (for domestic use) mines.

Class E: Width of protection zone 50 m.

170. Mining of gravel, without use of the explosives.

Production of Building Materials

Class A: Width of protection zone 1000 m.

- 171. Production of portland and slag cement in the amount above 150,000 tons per year.
- 172. Production of lime, dolomite and chamotte by calcination in rotary and other furnaces.

Class B: Width of protection zone 500 m.

173. Production of portland and slag cement in the amount to 150,000 tons per year.

Class C: Width of protection zone 300 m.

- 174. Production of glass cotton-wool and slag-wool.
- 175. Crushing of light and hard rocks.
- 176. Production of cardboards.

Class D: Width of protection zone 100 m.

- 177. Manufacturing of asbestos-cement products.
- 178. Manufacturing of artificial stones and concrete products.
- 179. Production of mixed binders in local conditions and lime-sand bricks.
- 180. Manufacturing of clinker, ceramic products and other fire resistant products.
- 181. Production of glass.
- 182. Production of building materials from heat-power generation plant solid wastes.
- 183. Cement and other dust materials elevators as well as the supply plants.
- 184. Manufacturing of porcelain and faience products.
- 185. Stone casting (molton basalt).
- 186. Mining of stones (without using the explosives) and the plants for processing natural stones.

Class E: Width of protection zone 50 m.

- 187. Manufacturing of gypsum products.
- 188. Manufacturing of products from cane, hay and parings with gypsum or cement mortar.
- 189. Manufacturing of clay products.

Processing of Wood

Class A: Width of protection zone 1000 m.

- 190. Production of charcoal by the non-retort method.
- 191. Production of ply-wood and cardboard.

311

Class C: Width of protection zone 300 m.

- 192. Saturation of wood (impregnation and conservation).
- 193. Production of charcoal by the retort-method.

Class D: Width of protection zone 100 m.

- 194. Production of wood wool.
- 195. Production of plank, veneer and other typical building elements.
- 196. Wooden ship construction.
- 197. Production of farm carts.

Class E: Width of protection zone 50 m.

- 198. Manufacturing products from wood wool.
- 199. Production of wicker-works from rush-mat and wooden textiles.
- 200. Joiner-carpenter production.
- 201. Manufacturing copper products from ready staves.
- 202. Conservation of wood by coating with salt watery solutions (with the exception of arsenic salts).

Textile Production

Class B: Width of protection zone 500 m.

203. Impregnation of textiles using chemical compounds containing carbon disulfide or hydrogen sulfide.

Class C: Width of protection zone 300 m.

- 204. Preliminary processing of bast fiber (linen, hemp, etc.).
- 205. Saturation of textiles and paper with different varnishes in continuous way for the electrical-engineering industry, with the production magnitude above 300 tons per year of saturated material.

- 206. Saturation and processing of textⁱles using the chemical solutions with the exception of carbon disulfide; if varnish is prepared at the plant, it should be included to an adequate class of chemical production.
- 207. Plants manufacturing asbestos.

Class D: Width of protection zone 100 m.

- 208. Unreeling the cocoons.
- 209. Production of ropes and cords.
- 210. Production of cotton, linen, wool yarn and textiles together with bleaching and dyeing.

Class E: Width of protection zone 50 m.

- 211. Manufacturing the knit-wear products and lace.
- 212. Porduction of cotton, linen, wool yarn and textiles without bleaching.
- 213. Production of carpets and artificial furs.

Processing of the Animal Products

Class A: Width of protection zone 1000 m.

- 214. Production of technical gelatine from rotten bones, waste skin and other animal wastes, with storing them in stores and in the open air.
- 215. Production of glue from skin waste, bones and other animal wastes.
- 216. Utilization of carrion, rotten fish and fish and animal wastes.

Class B: Width of protection zone 500 m.

- 217. Melting of technical tallow in the amount above 30 tons per year.
- 218. Tanning the hide of big animals.

Class C: Width of protection zone 300 m.

- 219. Processing of animal furs together with dyeing (furs, sheepskin fur, production of suede and chamois).
- 220. Processing of bristle and wool.
- 221. Melting of technical tallow in the amount below 30 tons per year.

- 222. Stores of preserved (salted) but not processed animal skins in the amount above 200 pieces.
- 223. Production of animal nourishment from waste foodstuffs.

Class D: Width of protection zone 100 m.

- 224. Production of felt.
- 225. Production of gelatine from fresh or shortly stored in refrigerators raw materials or cleaned bones, specially prepared for this production.
- 226. Production of skeletons and other anatomical exhibits from animals, birds, etc. for use as school aids.
- 227. Processing of bristle, down, feathers, horns and hoofs.
- 228. Production of strings and catgut from bowels.

Class E: Width of protection zone 50 m.

- 229. Production of footwear.
- 230. Production of varnished leather.
- 231. Manufacturing articles from processed bones.

- 232. Production of brushes from bristle.
- 233. Stores of preserved skin (salted) containing to 20 pieces for temporary storing (without processing).

Production of Foodstuffs

Class B: Width of protection zone 500 m.

234. Melting of fats from fish and other sea animals.

- 235. Processing of bowels, if this process takes place outside of the slaughter-house.
- 236. Stands for washing and cleaning trucks used for cattle transport.
- 237. Animal slaughter-houses processing above 8000 tons per year.

Class C: Width of protection zone 300 m.

- 238. Production of sugar.
- 239. Animal slaughter-houses processing below 8000 tons per year.

Class D: Width of protection zone 100 m.

- 240. Production of albumines.
- 241. Production of ethylene alcohol.
- 242. Slaughter of small animals and poultry up to 1000 per day.
- 243. Production of fodder.
- 244. Processing of meat. Slaughter-houses.
- 245. Extracting vegetable oils.
- 246. Coffee roasting
- 247. Production of margarine and other edible oils (fats).
- 248. Processing of vegetables (drying, salting, pickling).
- 249. Production of glucose and dextrine.
- 250. Fish processing.
- 251. Production of canned fish and filets.
- 252. Production of starch.
- 253. Manufacturing of tobacco articles.

Class E: Width of protection zone 50 m.

- 254. Production of pork-meat articles above 3 tons per day.
- 255. Fish smoking.
- 256. Production of beer, leaven and wines.
- 257. Refining of sugar.
- 258. Refrigerators of capacity above 600 tons.
 - 259. Canning of fruits and vegetables.
 - 260. Stores for keeping fruits and vegetables.
 - 261. Production of macaroni (noodles).
 - 262. Production of sweets above 20,000 tons per year.
 - 263. Production of pastries.
 - 264. Manufacturing of patties.
 - 265. Production of vinegar.
 - 266. Dairy plants.
 - 267. Production of flour and grits.

Municipal Sanitary Plants

Class A: Width of protection zone 1000 m.

268. Open garbage dumps.

269. Solid wastes dumps.

Class B: Width of protection zone 500 m.

270. Irrigation and filtration fields with the amount of wastes above 5000 m^3 per day.

- 271. Utilization plants.
- 272. Garbage compost grounds.
- 273. Biothermic garbage chambers.
- 274. Waste purification plants with the output above $50,000 \text{ m}^3$ per day.

Class C: Width of protection zone 300 m.

- 275. Irrigation and filtration fields with the amount of wastes below 5000 m^3 per day.
- 276. Carrion burning grounds.
- 277. Purification of wastes in the amount from 100 to 50,000 m^3 per day.

Class D: Width of protection zone 100 m.

- 278. Waste purification plants with the efficiency up to 100 m^3 per day.
- 279. Town district boiler houses.

Class E: Width of protection zone 50 m.

280. Town cleaning equipment depots.

POLLUTANT	TYPE CAR	LOCATION COUNTRY	CITY OR PROVINCE	STANDARD	EFFECTIVE DATE OR MODEL YEAR	FOOT- NOTES
Carbon Monoxide	All passenger cars	Austr a lia		4.5 vol. %		1
Carbon monoxide	Light duty and heavy commercial > 140 in3	Canada	Ontario	1.5 vol. %	1969 models	
Carbon Monoxide	100-140 in3	Canada	Ontario	2.3 vol. %	1969 models	
Carbon Monoxide	50-100 in ³	Canada	Ontario	2.3 vol. %	1969 models	
Carbon Monoxide	All passenger cars	European Economic Community and ECH		4.5 vol. %	June 1970	l
Carbon Monoxide	All passenger c ars	Japan		4.5 vol. %		
Carbon Mono x ide	Heavy duty cars	Japan		1.6 vol. %		
Carbon Monoxide	All passenger cars	Spain	Madrid	8.0 vol. %		2
Carbon Monoxide	All passenger cars	Spain	Madrid	3.0 vol. %		3
Carbon Monoxide	All passenger cars	Sweden		4.5 vol. %	1970 models and earlier	
Carbon Monoxide	All passenger cars	Canada		25.0 g/mi	1975	

TABLE 15

EMISSION STANDARDS FROM MOBILE SOURCES, OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

POLLUTANT	TYPE CAR	LOCATION COUNTRY	CITY OR PROVINCE	STANDARD	EFFECTIVE DATE OR MODEL YEAR	FOOT- NOTES
Carbon Monoxide	All passenger cars	Canada		3.4 g/mi	1976	
Carbon Monoxide	Passenger cars, gaso- line & LPG powered)	Japan		2.7 g/km	1975	8
Carbon Monoxide	Passenger cars (gas- oline & LPG powered)	Japan		85 g/test	1975	Э
Carbon Monoxide	Passenger car gaso- line powered < 2.5 tor	a s S weden		45 g/km	1971-75 models	14
Carbon Monoxide	Passenger car gaso- line powered < 2.5 ton	as Sweden		24.2 g/km	1976 models and later	10
Carbon Monoxide	Gasoline powered light duty veh.	U.S.A.		87 g/mi	1968 and older	15
Carbon Monoxide	Gasoline powered light duty veh.	U.S.A.		34 g/mi	1970/71	15
Carbon Monoxide	Gasoline powered light duty veh.	U.S.A.		39 g/mi	197 ¹ model	10
Carbon Monoxide	Gasoline powered light duty veh.	U.S.A.		3.4 g/mi	1975 model	10,12

POLLUTANT	TYPE CAR	LOCATION COUNTRY	CITY OR PROVINCE	STANDARD	EFFECTIVE DATE OR MODEL YEAR	FOOT- NOTES
Carbon Monoxide	Gascline powered light duty veh.	U.S.A.		3.4 mi/g	1976	10
Carbon Monoxide	Light duty bus or truck (gasoline or LPG powered)	Japan		17.0 g/km	1975	8
Carbon Monoxide	Light duty bus or truck (gasoline or LPG powered)	Japan		130.0 g/test	1975	9
Carbon Monoxide	Light duty bus or truck (2 cycle eng.)	Japan		17.0 g/km	1975	8
Carbon Monoxide	Light duty bus or truck (2 cycle eng.)	Japan		130.0 g/test	1975	9
Carbon Monoxide	Gasolim powered heavy duty meh.	U.S.A.		40.0 g/Brake HP-hr	1974	
Carson Monoxide	Diesel light duty vehicl <u>e</u> .	U.S.A.		3.4 g/mi	1975	
Dire malarie	Diesel light duty vehiclè:	U.S.A.		3.4 g/mi	1976	

POLLUTANT	TYPE CAR	LOCATION COUNTRY	CITY OR PROVINCE	STANDARD	EFFECTIVE DATE OR MODEL YEAR	FOOT- NOTES
Carbon Monoxide	Diesel light duty truck	U.S.A.		20 g/mi	1975	**************************************
Carbon Monoxide	Diesel powered heavy duty truck	U.S.A.		40 g/Brake HP-hr	1974	
Hydroca rbons	Passenger cars	Australia		3.4 g/mi	1973	
Hydrocarbons	Passenger cars	Canada		3.4 c/mi	1973	<u>l</u> ı
Hydrocarbons	Passenger cars	Canada		0.41 g/mi	1976	5
Hydrocarbons	Light duty >140in3	Canada	Ontario	275 ppm	1969 models and older	
Hydrocarbons	Light duty 100 - 1 ^h O in ³	Canada	Ontario	350 ppm	1969 models and older	
Hydrocarbons	Light duty 50 - 110 in ³	Canada	Ontario	410 ppm	1969 models and older	
Hydrocarbons	Passenger cars	European Economic Community	2		June 1970	4

POLLUTANT	TYPE CAR	LOCATION COUNTRY	CITY OR PROVINCE	STANDARD	EFFECTIVE DATE OR MODEL YEAR	FOOT- NOTES
Hydrocarbons	Passenger cars (gasoline or LPG powered) also 2 cycle engine	Јаџан		0.39 g/km	1975	8
llydrocacbons	Passenger cars (gas- oline or LPG powered) also 2 cycle eng.	Japan		9.5 g/test	1975	9
Hydrocarbons	Passenger cars (gas- oline powered) < 2.5 tons	Sweden		2.2 g/km	1971-75	14
Hydrocarbor.s	Passenger cars (gas- oline powered)<2.5 tons	Sweden		2.1 g/km	1976 and later	10
Hydrocarbons	Gasoline powered light duty vch.	U.S.A.		3.4 g/mi	1971	
Hydrocarbons	Gasoline powered light duty veh.	U.S.A.		0.41 g/mi	1)/5	12
iydrocarbons	Gasoline powered light duty veh.	U.S.A.		0.41 g/mi	1976	

POLLUTANT	TYPE CAR	LOCATION	CITY OR PROVINCE	STANDARD	EFFECTIVE DATE OR MODEL YEAR	FOOT- NOTES
Hydrocarbons	Light duty bus or truck (gasoline or LPG powered)	Japan		2.7 g/km	1975	8
llydrocarbon s	Light duty bus or truck (gasoline or LPG powered)	Japan		17 g/test	1975	9
Hydrocarbon s	Light duty bus or truck (gasoline or LPG powered)	Japan		15 /km	1975	8
lytrocarbons	Light daty has or arack (? cycle eng)	Japan Japan		130 g/km	1975	9
Hydrocarbons (+ NO _X)	Heavy duty truck (Gasoline powered)	U.S.A.		16 g/Brake HP-hr	1974	
Hydrocarbons	Diesel light duty veh.	U.S.A.		0.41 g/mi	1975	
Hydrocarbon s	Diesel light duty veh.	U.S.A.		0.41 g/mi	1976	
Hydrocarbons	Diesel light duty veh.	U.S.A.		2.0 g/mi	1975	

POLLUTANT	TYPE CAR	LOCATION COUNTRY	CITY OR PROVINCE	STANDARD	EFFECTIVE DATE OR MODEL YEAR	FCOT- NOTES
Hydrocarbons (+ NO _X)	Diesel powered heavy duty truck	U.S. A.	<u></u>	lCg/Brake HP-hr	1974	ni talan kata yang kata kata kata kata kata kata kata kat
Hydroc ar bons (evapor a tive loss)	Gasoline powered light duty veh.	U.S.A.		2.0 g/test	197 ¹	
Hydrocarbons (evaporative loss)	Gasoline powered light duty veh.	U.S.A.		2.0 g/test	1975	
Hydrocarbons (evaporative loss)	Gasoline powere d light duty truck	U.S.A.		2.0 g/test	1975/76	
Nitrogen oxides	All passenger cars	Canada		3.0 g/mi	1973	
Nitrogen Oxides	All passenger cars	Canada		0.4 g/mi	1976	
Nitr ogen Oxi des	Passenger cars (gasoline or LPG Powered)	Japan		1.6 g/mi	1975	8
Nitrogen Oxides	Passenger cars (gas- oline or LPG powered)	Japan		ll g/test	1975	9
Nitrogen Oxides	Passenger cars (2 cycle engine)	Japan		0.5 g/mi	1975	8

		LOCATION				
POLLUTANT	TYPE CAR	COUNTRY	CITY OR PROVINCE	STANDARD	EFFECTIVE DATE OR MODEL YEAR	FOOT- NOTES
Nitrogen Oxides	Passenger cars (2 cycle eng.)	Japan		4.0 g/test	1975	9
Nitrogen Oxides	Gasoline powered light duty veh.	U.S.A.		3.0 g/mi	1974	
Nitrogen Oxides	Gasoline powered light duty veh.	U.S.A.		3.l g/mi	1975	
Nitrogen Oxides	Gasoline powered light duty veh.	U.S.A.		0.14 g/mi	1976	13
Nitrogen Oxide s	Light duty bus or truck (gasoline or LPG powered)	Japan		2.3 g/km	1975	8
Nitrogen Oxides	Light duty bus or truck (gasoline or LPG powered)	Japan		20 g/test	1975	9
Nitrogen Oxides	Light duty bus or truck (2 cycle eng.)	Japan		0.5 g/km	1975	8

POLLUTANT	TYPE CAR	LOCATION COUNTRY	CITY OR PROVINCE	STANDARD	EFFECTIVE DATE OR MODEL YEAR	FOOT- NOTES
Nitrogen Oxides	Light duty bus or truck (2 cycle eng)	Japan		4.0 g/test	1975	9
Nitrogen Oxide s	Diesel light duty veh.	U.S.A.		3.l g/mi	1975	
Nitrogen Oxide s	Diesel light duty veh.	U.S.A.		0. ^h g/mi	1970	
Nitrogen Oxides	Diesel light duty veh.	U.S.A.		3.l g/mi	1975	
Smoke	All cars	Brazil		2 dingelmann		
Smoke	Trucks	Canada	Ontario	2 Ringeltann		ć
Smoke	Trucks	Canada	Ontario	l Ringelmann		7
Smoke		Finland		3.5 Besch units		lo
Smoke		Finland		4.5 Bosch units		
Smoke	Gasoline powered	France		40.0 Hartridge		
Smoke	Buses and trucks <€ tons	France		15.0 Eastridge		

POLLUTANT	TYPE CAR	LOCATION COUNTRY	CITY OR PROVINCE	STANDARD	EFFECTIVE DATE OR MODEL YEAR	FOOT- NOTES
Smoke	Trucks (-19 tons	France		50.0 Hartridge		
Suoke	Trucks >1) tons	Francé		0.0 Hartridge		
S.noke		Japan		50.0 Hartridge		18
Suoke	Gasoline powered	Mexico		dingelmann		19
Smoke	Diesel powered	Mexico		3 Ringelmann		
Smoke		Horway		,0.0 hartridge		
Smoke		Philippines		2 Ringelmann		
Snoke		Spain	Macrid	.b.0 Partridge		
Smoke	Dies el engines (buses) 30 passenger)	Sweden		2.5 Bosch or 30.0 Hartridge		
Smoke	Diesel engines (all others)	Sweden		3.5 Bosch or 45.0 Hartridge		
Sinoke	Diesel engirines	Switzerland				20
Suoke	Passenger cars	Yugoslavia	Sarajevo	5.0 Bosch units		

.

		JURISDICTIONS	OF THE UNITED) STATES		
POLLUTANT	TYPE CAR	LOCATION COUNTRY	CITY OR PROVINCE	STANDARD	EFFECTIVE DATE OR MODEL YEAR	FOOT- NOTES
Smoke	Passenger cars >250 cm ³	Yugoslavia	Sarajevo	5.0 Bosch Units		21
Smoke	Passenger cars > 800 cm ³	Yugoslavia	Sarajevo	5.0 Bosch Units		22
Smoke	Heavy duty trucks	U.S.A.		20% opacity		6
Smoke	Heavy duty trucks	U.S.A.		15% opacity		7
Smoke	Heavy duty truck s	U.S.A.		50% opacity		23

- 1. Australia, Austria, Belgium, Czechoslovakia, Denmark, Finland, France, Great Britain, Hungary, Italy Luxembourg, Netherlands, Switzerland, Yugoslavia, See Table 15-1 and Figure 15-1
- 2. Idle
- 3. Course
- 4. See Table 15-1 and Figure 15-1
- 5. Proposed
- 6. During acceleration
 - 7. During lugging
 - 8. 10-mode test, see Figure 15-3
 - 9. 11-mode test, see Figure 15-4
- 10. U.S. 1973 regulation and test method
- 11. Complete ECE cycle, see Figure 15-1
- 12. Interim standard for granted extension: CO 15 g/mi, HC 1.5 g/mi
- 13. Interim standard for granted extension: 2.0 g/mi
- 14. EEC test Cycle Figure 15-1
- 15. U.S. FTP Cycle

- 16. Annual inspection
- 17. Street control
- 18. A full load
- 19. Less than 10 seconds warm up allowed
- 20. See Table 15-5

3. 333

- 21. Has to be checked once a year
 - 22. May be exceeded for first 5 minutes
 - 23. To be met in all stages

TABLE 15-1 EMISSION LIMITS OF THE EUROPEAN ECONOMIC COMMUNITY FOR TYPE APPROVAL

Reference (rw) kilogram	-	Mass of carbon monoxide grammes per test	Mass of hydrocarbons grammes per test
up to	750	100	8.0
750 to	850	109	8.4
850 to	1020	117	9.4
1250 to	1470	152	10.1
1470 to	1700	169	10.8
1700 to	1930	186	11.4
1930 to	2150	203	12.1
over	2150	220	12.8

TABLE 15-2 EMISSION LIMITS OF THE EUROPEAN ECONOMIC COMMUNITY FOR PRODUCTION SPOT TESTING

Reference weight (rw) kilogrammes		Mass of carbon monoxide grammes per test	Mass of hydrocarbons grammes per test	
		L ₁	L ₂	
up to	750	120	10.4	
7 50 to	850	131	10.9	
850 to	10 20	140	11.3	
1020 to	1250	161	12.2	
1250 to	1470	182	13.1	
1470 to	1700	203	14.0	
1700 to	1930	223	[.] 14 . 8	
1930 to	2150	244	15.7	
over	2150	264	16.6	

	Emission Limits - Grams/Mile						
USA (Federal)	1971	1972+	1973	1974	1975	1976	
Exhaust HC	2.2	3.4	3.4	3.4	0.41	0.41	
Exhaust CO	23.0	39.0	39.0	39.0	3.4	3.4	
Exhaust NO x	-	-	3.0	3.0	3.0	0.4	
Particulates	N.R	N.R	N.R	N.R	0.1	0.1	
Test Method	FTP	cvs/c	cvs/c	cvs/c	CVS/CH	cvs/c	

+) The change in numerical value of the limit reflects changes in test and analytical procedures and one more severe than 1971 limits.

 *) No test procedure established - limit represents 90% solution from 1970 particulate emissions.

TABLE 15-4 EMISSION LIMITS OF JAPAN

Applicable Motor Vehicle	Test procedure	Emission standards (Exhaust Emissions)			
••	-	CO	HC	NOx	
Gasoline- or LPG-fueled passenger car with a capacity of 10 persons or less	10-Mode 11-Mode	2.7 g/km 85 g/test	0.39 g/km 9.5 g/test	1.6 g/km 11 g/test	
2 cycle engine	10-Mode 11-Mode	2.7 g/km 85 g/test	0.39 g/km 9.5 g/test	0.5 g/km 4.0 g/test	
Gasoline- or LPG-fueled light duty bus (11 persons or more) and truck of 2,500 kg GVW or less	10-Mode 11-Mode	17 g/km 130 g/test	2.7 g/km 17 g/test	2.3 g/km 20 g/test	
2 cycle engine	10-Mode 11-Mode	17 g/km 130 g/test	15 g/km 70 g/test	0.5 g/km 4.0 g/test	

TABLE 15-5 SMOKE STANDARDS FOR DIESEL VEHICLES, SWITZERLAND

A) Full load method

Cylinder displacement	Bosch shade number
to 31	6,0
between 3 and 5 1	5,5
between 4 and 8 1	5,0
over 81	4,5

B) Acceleration method

Cylin	nder displacement	Bacharach - units
t o	31	6,5
between	3 and 51	6,0
between	5 ^{and} 81	5,5
over	81	5,0

TABLE 10	
RECOMMENDED MEASUREMENT METHODS	OTHER THAN THOSE
FROM SUBSIDIARY JURISDICTIONS OF	THE UNITED STATES

POLLUTANT	COUNTRY	PRINCIPAL METHOD	SPECIFIC METHOD	LOWEST DETECTABLE CONCENTRATION (PPm)	FOOT- NOTES
Ammonia	Czechoslovakia	Colorimetric	Nessler reagent	2.5	
Ammonia	Rumania	Colorimetric	Nessler reagent		
Ammonia	West Germany (VDI 2461)	Colorimetric	Indophenol		
Ammonia	West Germany (VDI 2461)	Colorimetric	Nessler reagent		7
S Arsenic	Czechoslovakia	Colorimetric	Hydrochloric acid		
Arsenic	USSR	Colorimetric	Reagent paper		
Arsenic	Australia N.S. Wales	Colorimetric	Sodium hydroxide		2
Arsenic	Great Britain	Colorimetric	Sodium hydroxide		2
Carbon Monoxide	Argentina	NDI	Modific. Jacobs	0.1	8
Carbon Monoxide	Canada	NDI		0.1	8
Carbon Monoxide	Czechoslovakia	Volumetric	Iodine pentoxide	0.1	
Carbon Monoxide	Italy	NDI		0.1	8
Carbon Monoxide	Japan	NDI		0.1	8
Carbon Monoxide	USA	NDI		0.1	8

POLLUTANT	COUNTRY	PRINCIPAL METHOD	SPECIFIC METHOD	LOWEST DETECTABLE CONCENTRATION (ppm)	FOOT- NOTES
Carbon Monoxide	USSR	Colorimetric	Si-Molybdenum acid		ī
Carbon Monoxide	West Germany	NDI			6,7 ,8
Carbon Monoxide	West Germany	Titrimetric	Potassium iodine		6,7
Chlorine	Canada, Saskatchewan		O-tolidine		
Chlorine	Czecho s lovaki a	Colorimetric	Methyl orange		
Chlorine	West Germany (VDI 2458 Bl.l)	Colorimetric	Methyl orange		7
Chlorine	Italy	Colorimetric	Nessler tubes		
Chlorine	Rumania	Colorimetric	Methyl orange		
Chlorine	USSR	Colorimetric			
Chlorine	Australia, N.S. Wales	Colorimetric	Comparison with standard colors		2
Chlorine	Great Britain	Colorimetric	Comparison with standard colors		2
Dustfall	West Germany (VDI 2119 B1.4)	Collection plate		0.02 g/m ² /day	7

TABLE 16 RECOMMENDED MEASUREMENT METHODS OTHER THAN THOSE 1 FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES

	TABLE	16		
RECOMMENDED	MEASUREMENT MET	THODS OTH	ER THAN	THOSE
FROM SUBSIDL	ARY JURISDICTION	NS OF THE	UNITED	STATES 1

	POLLUTANT	COUNTRY	PRINCIPAL METHOD	SPECIFIC METHOD	LOWEST DETECTABLE CONCENTRATION (ppm)	FOOT- NOTES
	Dustfall	West Germany (VDI 2119 B1.3)	Jar	Hibernia	0.0133	7
	Dustfall	West Germany (VDI 2119 Bl.3)	Jar	Loebner-liesengang	C.0091	7
	Dustfall	West Germany (VDI 2119 Bl.3)	Jar	Bergerhoff	0.035	7
339	Fluorine	Czecho slo vaki a	Titrimetric	Thorium nitrate		
	Fluorine	West Germany (VDI 2452)	Colorimetric	Sodium hydroxide		7
	Fluorine	Italy	Colorimetric	Silver sulfate		
	Fluorine	Rumania	Colorimetric	Zinc		
	Fluorine	USSR	Colorimetric			
	Fluorine	Australia N.S. Wales		Calcium hydroxide		2
	Fluorine	Great Britain	Colorimetric			2
	Hydrocarbons	Italy	FID		0.1	8
	Hydrocarbons	USA	FID		0.1	3
	Hydrocarbons	West Germany	NIR		0.02	7, '

POLLUTANT	COUNTRY	PRINCIPAL METHOD	SPECIFIC METHOD	LOWEST DETECTABLE CONCENTRATION (ppm)	FOOT- NOTES
Hydrocarbons	West Germany (VDI 3481)	FID		0.1	7,9
Hydrogen sulfide(H ₂ S)	Canada, Saskatchewan	Colorimetric	Methylene blue		
Hydrogen sulfide(H ₂ S)	Czechoslovakia	Colorimetric	Methylene blue		
Hydrogen sulfide(H ₂ S)	Italy	Colorimetric	Methylene blue		
Hydrogen sulfide(H ₂ S)	Italy	Conductimetric	Acetic ac id		
Hydrogen sulfide(H ₂ S)	Rumania	Colorimetric	Dimethyl-p-phenylene diamine		
Hydrogen sulfide(H_2S)	USSR	Colorimetric			
Hydrogen sulfide(H ₂ S)	Australia, N.S. Wales	Densitometric	Lead acetate paper		2
Hydrogen sulfide(H ₂ S)	Great Britain	Densitometric	Lead acetate paper		2
Nydrochloride (NCL)	Italy	Colorimetric	Mercury-thiocynate		
Hydrochloride (HCl)	USSR	Colorimetric			
Hydrochloride (HCl)	Australia N.S. Wales	Colorimetric			5
Lead	Australia, N.S. Wales	At. abs. spectrophotor	metric Nitric acid		

	TABLE 10	6		
RECOMMENDED	MEASUREMENT MET	THODS OTH	ER THAN	THOSE
FROM SUBSIDI	ARY JURISDICTION	NS OF THE	UNITED	$STATES^{\perp}$

	TABLE 16		
RECOMMENDED MEAS	SUREMENT METHODS	OTHER THAN THOSE	٦
FROM SUBSIDIARY J	JURISDICTIONS O	F THE UNITED STATES	-

POLLUTANT	COUNTRY	PRINCIPAL METHOD	SPECIFIC METHOD	LOWEST DETECTABLE CONCENTRATION (ppm)	FOOT- NOTES
Lead	Czechoslovakia	Polarographic	Alkali hydroxide and cyanic	le	
Lead	Great Britain	At. Abs. spectrophoto- metric	Nitric acid		10
Lead	Jtaly	Colorimetric	NaOH (for 21+ hr. average)		
Lead	Italy	Colorimetric	Naphthyl ethylene-diamine (for 30 min average)		
Lead	Rumania	Colorimetric	Diphenyl thiocarbazone		
Lead	USSR	Colorimetric	HN03/H202		
Lead	Australia, N.S. Wales	At. abs. spectrophoto- metric	Nitric acid		2, 0
Lead	Great Britain	At. abs. spectrophoto- metric	Nitric acid		2,10
Mercury	Australia, N.S. Wales	Titrimetric	Carbon tetrachloride		
Mercury	Great Britain	Vapor-photoelectric			
Mercury	Great Britain	Titrimetric	Nitric acid, Sulfuric acid		
Nitrogen oxides	Argentina			0.005	

POLLUTANT	COUNTRY	PRINCIPAL METHOD	SPECIFIC METHOD	LOWEST DETECTABLE CONCENTRATION (ppm)	FOOT- NOTES
Nitrogen oxides	Australia, N.S. Wales	Colorimetric	Griess-Saltzman	0.005	
Nitrogen oxides	Australia N.S. Wales	Colorimetric (NO)	Potassium permanganate		
Nitrogen oxides	Canada	Chemiluminiscence		0.005	
Nitrogen oxides	Canada Saskatchwan		Jacobs-Hochheiser		
Nitrogen oxides	Czechoslovakia	Colorimetric	Sulfanilic acid		
Nitrogen oxides	Czechoslovakia	Colorimetric	N-1 naphthyl-ethylene diamine		
Nitrogen oxides	West Germany	Titrimetric	Acidimetric		
Nitrogen oxides	West Germany (VDI 2453, Bl. 3&4)	Colorimetric (NO ₂)	Sulfanylamid		7
Nitrogen oxides	West Germany (VDI 2453, Bl.l)	Colorimetric (NO _X)	Saltzman		7
Nitrogen oxides	West Germany (VDI 2453, Bl.2)	Colorimetric (NO)	Manganese oxide		7

TABLE 16 RECOMMENDED MEASUREMENT METHODS OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES¹

POLLUTANT	COUNTRY	PRINCIPAL METHOD	SPECIFIC METHOD	LOWEST DETECTABLE CONCENTRATION (ppm)	FOOT- NOTES
Nitrogen oxides	Great Britain	Colorimetric (NO ₂)	Sulfanilic acid		
Nitrogen oxides	Great Britain	Colorimetric	Potassium permanganate		
Nitrogen oxides	Italy	Colorimetric	NaOH (for the 24 hr average)	
Nitrogen oxides	Italy	Colorimetric	Naphthyl-ethylene diamine(for the 30 min avera	age)	
Nitrogen oxides	Japan	Colorimetric	Saltzman		
Nitrogen oxides	Rumania	Colorimetric	Naphthyl-ethylene di a mine		
Nitrogen oxides	USSR	Colorimetric			
Nitrogen oxide s	USSR	Indicator tubes	Benzidin-B-naphthol		
Nitrogen oxides	USA	Colorimetric	Phenol disulfonic acid	0.04 g/m ³	2
Nitrogen oxide s	West Germany (VDI 2450 Bl.1)	Colorimetric	Phenol disulfonic acid	0.04 g/m ³	2
Nitrogen oxide s	West Germany (VDI 2456 E1.2)	Titrimetric	Hydrogen peroxide		2
Oxidants	Argentina	Colorimetric	Neutral pot assium io dine	0.01	

TABLE 16 RECOMMENDED MEASUREMENT METHODS OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES¹

TABLE 16				
RECOMMENDED M	EASUREMENT METHOD	5 OTHER THAN	THOSE	
FROM SUBSIDIAR	Y JURISDICTIONS O	F THE UNITED	STATES 1	

POLLUTANT	COUNTRY	PRINCIPAL METHOD	SPECIFIC METHOD	LOWES & DETECTABLE CONCENTRATION (ppm)	FOOT- NOTES
Oxidants	Canada	Chemiluminescence		0.0005	
Oxidants	Japan	Colorimetric			
Oxidants	USA	Chemiluminescence		0.0005	
Oxidants	USSR	Chemiluminescence		0.0005	
Phenol	Czechoslovakia	Colorimetric	F-nitroaniline		
¥ Phenol	Rumania	Colorimetric	P-nitroaniline		
Sulfur dioxide	Argentina	Colorimetric	West-Gaeke	0.01	
Sulfur dioxide	Australia, N.S. Wales	Titrimetric	Sodium thiosulfate	0.01	
Sulfur dioxide	Canada	Colorimetric	West-Gaeke	0.01	
Sulfur dioxide	Canada, Saskatchewan	Colorimetric	West-Gaeke	0.01	
Sulfur dioxide	Czechoslovakia	Colorimetric	Fuchsin-formaldehyde	0.008	
Sulfur dioxide	Great Britain	Titrimetric	Sodium-thiosulfate	0.01	
Sulfur dioxide	Great Britain	Adsorption	Lead dioxide	0.2	
Sulfur dioxide	West Germany	Titrimetric	Hydrogen peroxide	0.01	,

	TABLE	16		
RECOMMENDED	MEASUREMENT M	AETHODS OT	HER THAN	THOSE
FROM SUBSIDI	ARY JURISDICTI	CONS OF TH	E UNITED	STATES

POLLUTANT	COUNTRY	PRINCIPAL METHOD	SPECIFIC METHOD	LOWEST DETECTABLE CONCENTRATION (ppin)	FOOT- NOTES
Sulfur dioxide	West Germany (VDI 24 51)	Colorimetric	Iodine thiosulfate	0.002	، و ^ر ،
Sulfur dioxide	Belgium	Titrimetric	Hydrogen peroxide	0.01	
Sulfur dioxide	Italy	Colorimetric	WesGaele	0.01	
Sulfur dioxide	Japan	Conductimetric	Hydrogen peroxide	0.01	
Sulfur dioxide	Rumania	Colorimetric	West-Gaeke	0.01	
Sulfur dioxide	Rumania	Turbidimetric	Barium sulfate	2 ug/3 ml solution	
Sulfur dioxide	Sweden	Colorimetric	West-Gaeke	0.01	
Sulfur dioxide	Sweden	Flame photometric		0.005	
Sulfur dioxide	USA	Colorimetric	West-Gaeke	0.01	
Sulfur dioxide	Australia, N.S. Wales	Titrimetric	Sodium sulphate		5
Sulfur dioxide	Sweden	Colorimetric	Thorin		2
Sulfur dioxide	USA	Pltrimetric	Thorin		2
Sulfur dioxide	West Germany (VDI 2462 Bl.4)	Photometric Infraced		0.1 g/m ³	ł

	TABLE 10		
RECOMMENDED	MEASUREMENT METHODS (OTHER THAN	THOSE
FROM SUBSIDL	ARY JURISDICTIONS OF 7	THE UNITED	$STATES^{\perp}$

	POLLUTANT	COUNTRY	PRINCIPAL METHOD	SPECIFIC METHOD	LOWEST DETECTABLE CONCENTRATION (pp.1)	FOOT- NOTES
	Sulfur dioxide	West Germany (7DI 2462 B1.3)	Abs./gravimetric	Hydrogen peroxide	0.04 g/m3	2
	Sulfur dioxide	West Germany (VDI 2462 Bl.2)	Titrimetric	Hydrogen peroxide	0.03 g/m ³	2
	Sulfur dioxide	West Germany (VDI 2462 Bl.1)	Titrimetric	Iodine thiosulfate	0.06 g/m ³	2
J40	Suspended particulates	Argentina	High volume			
	Suspended particulates	Canada	High volume			
	Sespended particulates	Czechoslovakia	Membrane filter			
	Suspended particulates	Great Britain	Membrane filter			
	Suspended particulates	Italy	High volume			
	Suspended particulates	Japan	High volume			
	Suspended particulates	Japan	Light scattering			
	Suspended particulates	Rumania	Memb. filter			
	Suspended particulates	Sweden	Memb. filter			
	Suspended particulates	U SA	High volume			

TABLE 16		
RECOMMENDED MEASUREMENT METHODS	OTHER THAN THOSE	٦
FROM SUBSIDIARY JURISDICTIONS OF	THE UNITED STATES	3 1

POLLUTANT	COUNTRY	PRINCIPAL METHOD	SPECIFIC METHOD	LOWEST DETECTABLE CONCEMPRATION (ppm)	FOOT- NOTES
Suspended particulates	West Germany	High volume			
Suspended particulates	Australia N.S. Wales	Alundum or fiberglass fil	ter		2,3
Suspended particulates	Great Britain (BS 3405)	5 different methods			2,4
Suspended particulates	Sweden	≯ilter			2,5
$\overset{\omega}{\overleftarrow{\gamma}}$ Suspended particulates	West Germany (VDI 2006)	Filter			2, . , ;

FOOTNOTES TABLE 16 RECOMMENDED MEASUREMENT METHODS OTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES1

- 1. All methods, if not otherwise stated, are for measuring ambient air concentrations
- 2. Method for emission measurement
- 3. Sample has to be taken 2 D (feet) from next bend, D = Diameter
- 4. Cyclone sonde, BCURA (British Coal Utilities Research Association)(see Fig. 16-1); filters; CEGB (Central Electricity Generating Board); ICI (Imperial Chemical Industries Ltd.); NCB (National Coal Board); exterior filter; BISRA (British Iron and Steel Research Assoc.)
- 5. See Fig. 16-2, Fig 16-3 and Table 16-3

6.

348

Pollutant	Guideline	Date
Suspended Particulates	VDI 2463 B1.1	January 1974
Chlorine	VDI 2458 Bl.1	December 1973
Carbon Monoxide	VDI 2455 Bl.1	August 1970
Sulfur Dioxide	VDI 2451 B1.1 bis 4	August 1968
Hydrogen Sulfide	VDI 2454 Bl.1 bis 3	February 1974
Nitrogen Monoxide	VDI 2453 Bl.1	November 1972
Nitrogen Dioxide	VDI 2453 Bl.2 bis 4	January 1974

^{7.} See also Table 16-1

TABLE 10 RECOMMENDED MEASUREMENT METHODS WTHER THAN THOSE FROM SUBSIDIARY JURISDICTIONS OF THE UNITED STATES FOOTNOTES

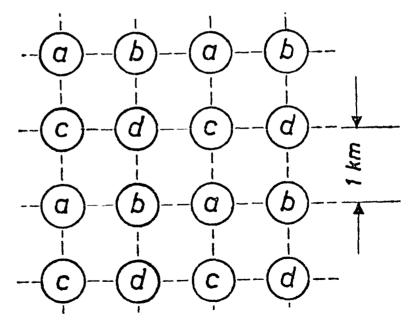
- 6. NDI = Nondispersive infrared
- 9. FID = Flame ionization detector
- 10. At. abs. = Atomic absorption

TABLE 16-1 REQUIREMENTS FOR SAMPLING LOCATION AND SITE DENSITY, WEST GERMANY *

		Stack Height	Area
a)	Minimal Investigated Area Source in middle of Square	up to 100 m	4 km X 4 km
	Source in middle of square	100 to 200 m	8 km X 8 km
		200 m	L = 8 + 0.08 (H-200)

H= Stack Height (m), L=side length of square (km)

Dustfall $(g/m^2d) =$ <u>amount of dust</u>


measuring area (m²) X time of sampling (days)

Sample sites

a) First day

b) Dustfall measurements

- b) Second day
- c) Third lay
- d) Fourth day

* Only applicable for Stationary Sources for which licensing is required and if estimation indicates that 50% air quality standard concentration is not exceeded

TABLE 16-2 BASIS FOR AN AIR QUALITY INVENTORY, EAST GERMANY

$$I_{D} = \frac{c + t S_{0}}{\sqrt{2z}}$$

$$I_{K} = \bar{c} + t S_{0}$$

$$S_{0} = \sqrt{\frac{(c_{1} - \bar{c})^{2}}{1 - z - 0.5}}$$

351

- c_i : Single values
- c : Arithmetic mean
- ID : Air Quality for long term load
- \mathbf{I}_{k} . Air Quality for short term load
- ${\bf S}_{O}$: Distribution parameter of single values c; greater than the mean \bar{c}
- t : Statistical factor, for 90% probability t = 1,3
- z : Number of single values $c_i \cdot \bar{c}$

See also table 11-4, Area Classification

TABLE 16-3 STACK SAMPLING REQUIREMENT, SWEDEN

The required number of measuring points at circular as well as rectangular measuring planes can be established from the following diagram. Number of measuring points in measuring plane D=inner diam i mm ł 1 at circular measuring '3⁰⁰⁰ 1 1 planes ļ I I 0 25 □ D=0.5(L+B)mm ŧ at rectangular measuring 1 planes 2000 ۱ l L=inner length in mm 200 B=inner width in mm 0 1 23 D = 300020 Ī □ M,=disturbance-free 4 ł straight before measuring plane D = 2.000 ; \square M₂=disturbance-free D = 180015 straight after measuring D = 1600plane D = 1400D = 1 200 🗌 At circular measuring D = 1000plane the number of D = 900 measuring points should be 10-800 D = divisible by 4. The measuring 700 points can then be D = symetrically distributed D = 600 l along two diameters which D = 500 l intersect at 90 degrees. 1 1 400 D = 5 D = 300 I I I At short straights the 1 ł number of measuring points J. 1 Ł is read for both M_1 and M_2 the highest figure being ŧ 1 1 chosen. 0 5¹D 4 D 25D $M_1 = 6 \cdot D$ 3·D ł 0,5 D 0,9·D 0,6·D $M_2 = D$ 0,8·D 0,7·D

TABLE 16-3, CONT. STACK SAMPLING REQUIREMENT, SWEDEN

Number of measuring points along a diam.	The number of measuring points along a chimney diam.							
	2	4	6	8	10	12	14	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	85% 15%	93% 75 25 7%	96% 85 70 30 15 4%	97% 90 81 68 32 19 10 3%	97% 92 85 77 66 34 23 15 8 3%	98% 93 88 82 75 64 36 25 18 12 7 2%	98% 94 90 85 80 73 63 37 27 20 15 10 6 2%	

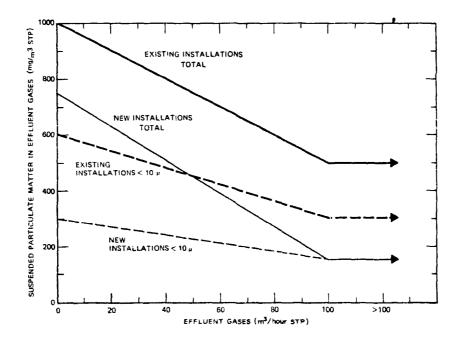
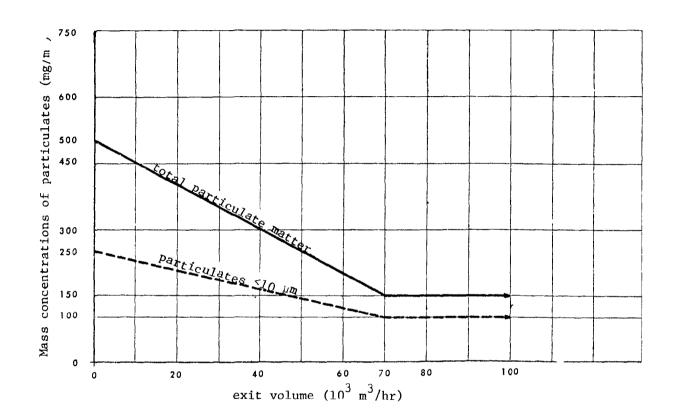



FIGURE 10-1 Emission Standard for Solid Particulate Matter -Federal Republic of Cermany

L

FIGURE 10-2 TOTAL DUST AND FINE DUST EMISSION STANDARDS, CENERAL, WEST GERMANY

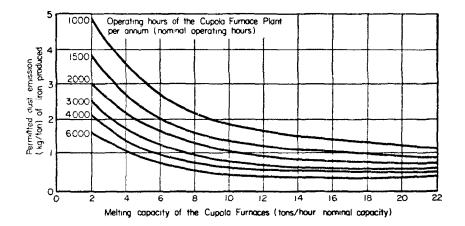
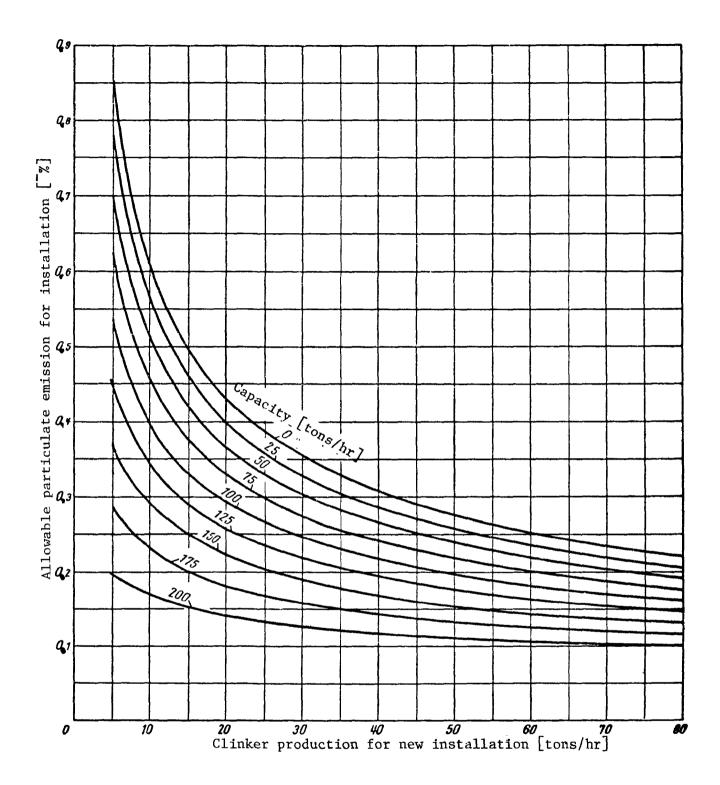
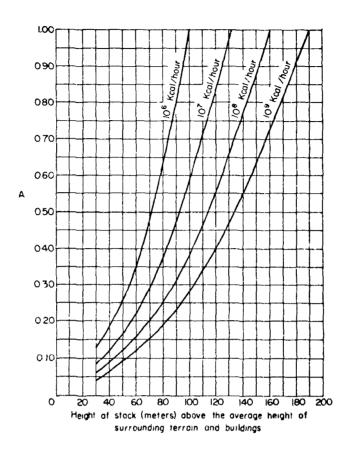
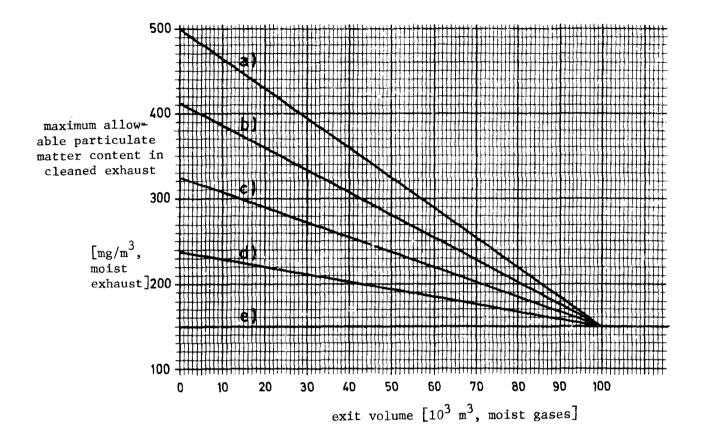
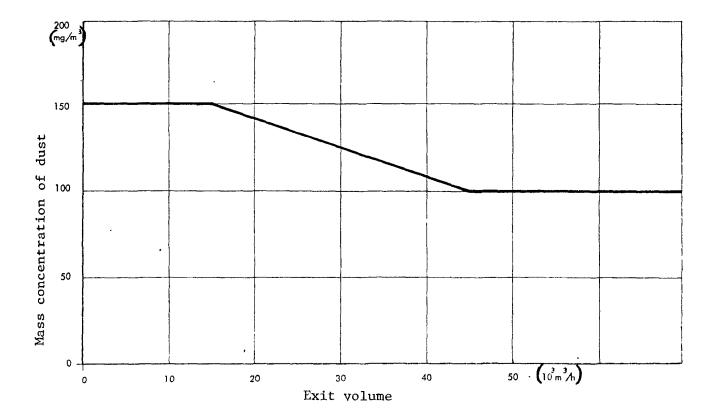
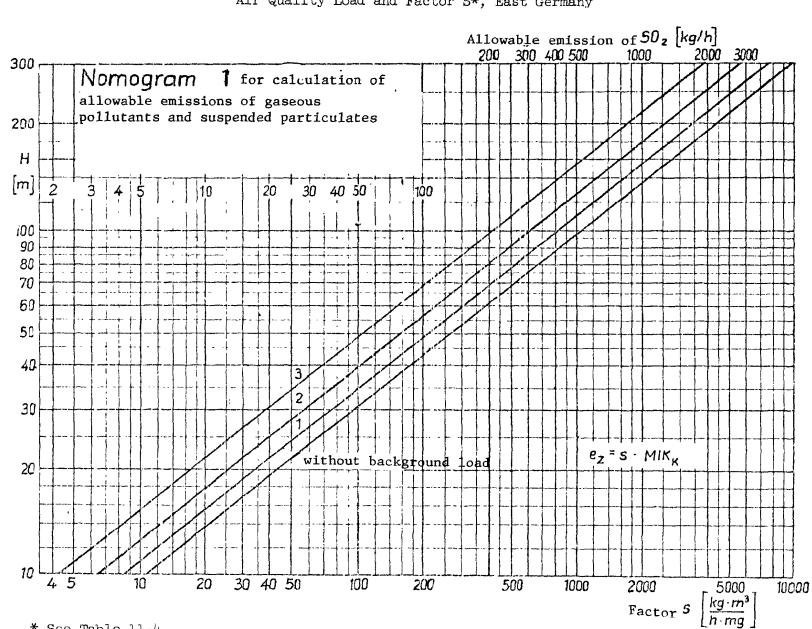


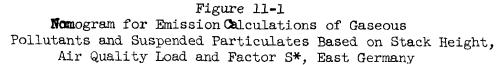
FIGURE 10-3 - Emission Standard for New Cupolas -Federal Republic of Germany (also VDI 2288)

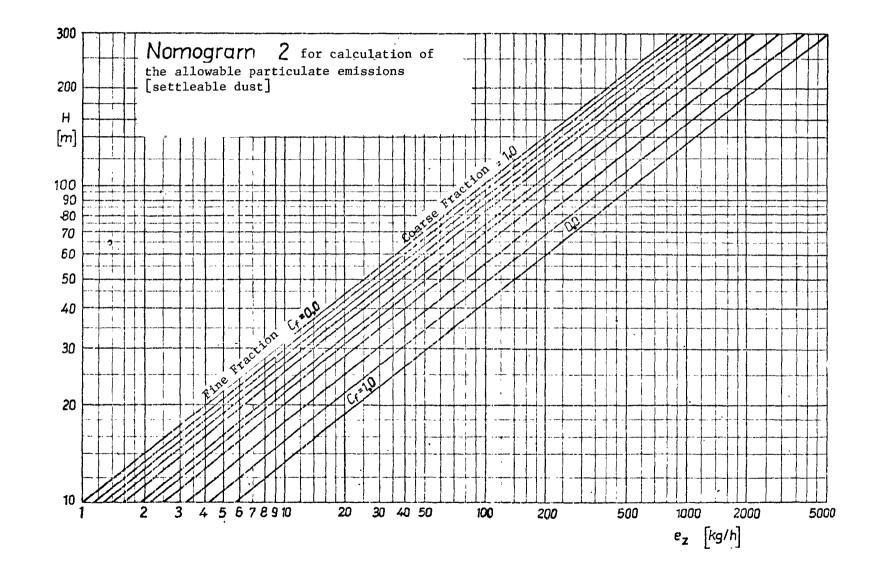

FIGURE 10-4 Emission Standard for Cement Kilns -Federal Republic of Germany (also VDI 2094)


FEGURE 10-5 - Determination of Factor A in Fly Ash Emission Limit Computation (a) -Italy


(a) Concentration in flue gas $(g/m^3) = 0.25$ (1+A)


FIGURE 10-6 - Asphalt Plant Emissions Northrhine-Westphalia

Particulate matter load in the uncleaned exhaust Line a): more than 120 g dust/m³ moist exhaust Line b): more than 90 g to 120 g/m³ moist exhaust Line c): more than 60 g to 90 g/m³ moist exhaust Line d): more than 30 g to 60 g/m³ moist exhaust Line e): up to 30 g/m³ moist exhaust FIGURE 10-7 TOTAL PARTICULATED EMISSIONS FOR FIBER AND PARTICLE BOARD PRODUCTION UNITS, WEST GERMANY



361

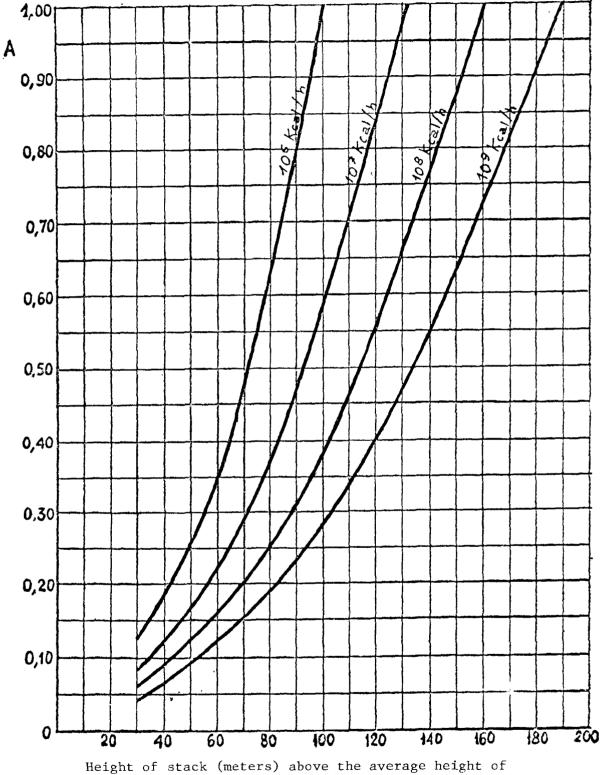
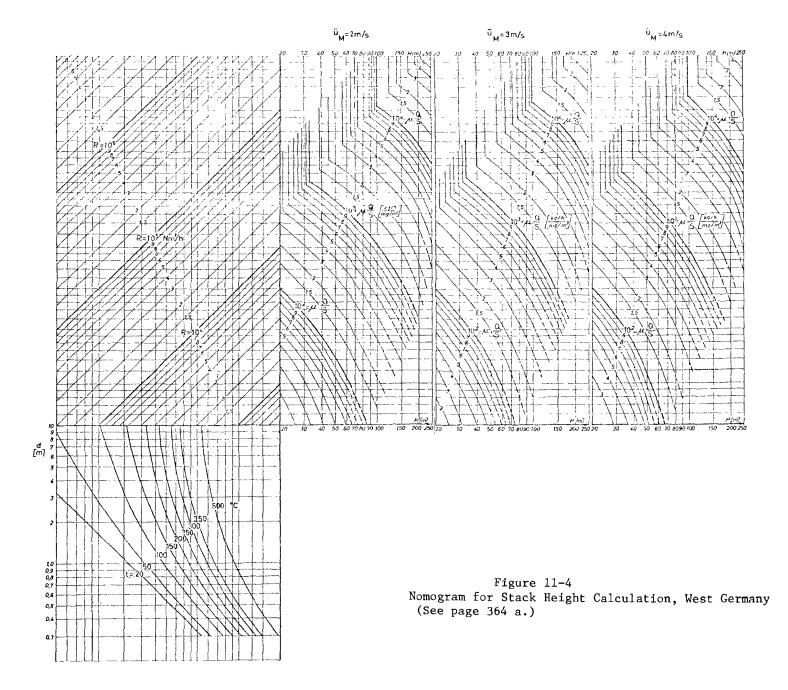

* See Table 11-4

Figure 11-2 Nomogram for Emission Calculations of Settleable Particulate Matter Based on Stack Height, Particulate Matter Franchise and Air Quality Load, East Germany



362

Figure 11-3 Stack Height Requirement Based on Factor 1 and Heat Input, Italy

surrounding terrain and buildings

-364-

The regulations of the Federal German Republic incorporate the procedure for determining stack height of Kommission Reinhaltung der Luft — specification VDI-2289, which utilizes a nomogram. This nonogram is used as follows:

1. Draw a horizontal line in the lower left diagram at the diameter in meters of the inside exit diameter (d) of the stack.

2 From the point of intersection of this line with the curve of appropriate stack exit gas temperature (t), in °C, draw a vertical line into the upper left diagram

3 From the point of intersection of this line with the appropriate diagonal value of total stack effluent gas quantity (R), in cubic meters per hour STP, draw a horizontal line through the three remaining diagrams to the right

4. From each of the three points of intersection of this line with the curves (one in each diagram) of the appropriate value of $(\mu(Q/s))$ draw a vertical line downward to the bottom of the chart. The value of μ is given by the inset table for various values of averaging time (τ) . Q is kilograms per hour of emission of the specific pollutant for which s is the maximum increase in ground level concentration over background concentration, in milligrams per cubic meter, which may be contributed by the stack in question

5 The three points of intersection are at values of stack height (H) above ground for three different conditions of average wind velocity, u_M , in meters per second about 20 meters above ground, namely 2, 3, and 4 m/sec, respectively.

Precautions and limitations on the use of this nomogram are included in the regulation and specification referred to.

τ μ		τ	μ	τ	μ	
3 mmutes	1.45	20 nonaues	1.04	4 hours	0.75	
4 minutes	1.38	25 minutes	1.02	5 hours	0.72	
5 minutes	1 81	30 minutes	1.00	6 hours	0.70	
6 minutes	I 26	45 minutes	0.60	12 hours	0.62	
8 minutes	1-10	1 hour	0.93	1 day	0.56	
10 minute	1 14	1.5 hours	0.88	2 days	0.51	
12 mmutes	1 11	2 hours	0.85	3 days	0.50	
15 minutes	1.08	3 hears	0.79	4 days	049	

TABLE OF τ vs. μ

Figure 11-4 (continued). Nomogram for Stack Height Calculation, West Germany.

Figure 11-5 Heights of Single Chimneys for Cement Works, Great Britain

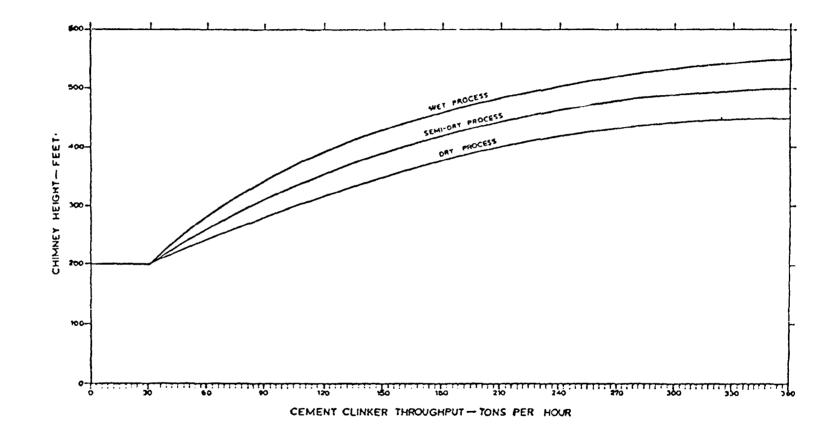
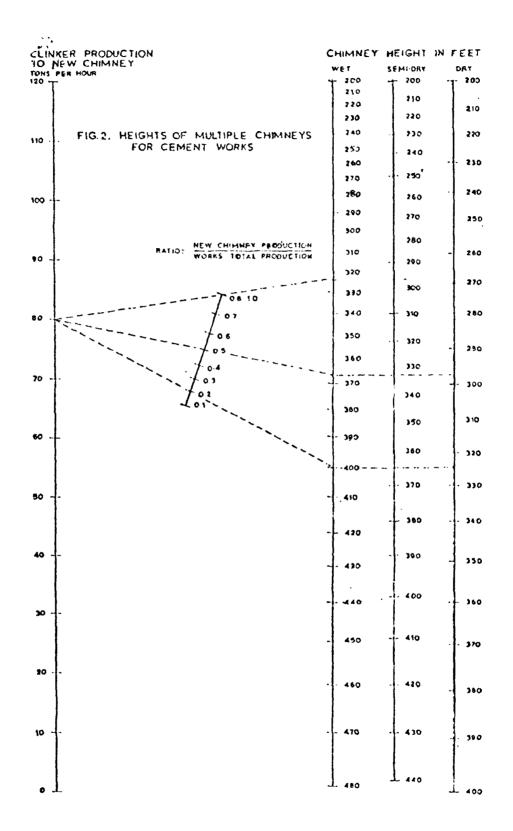
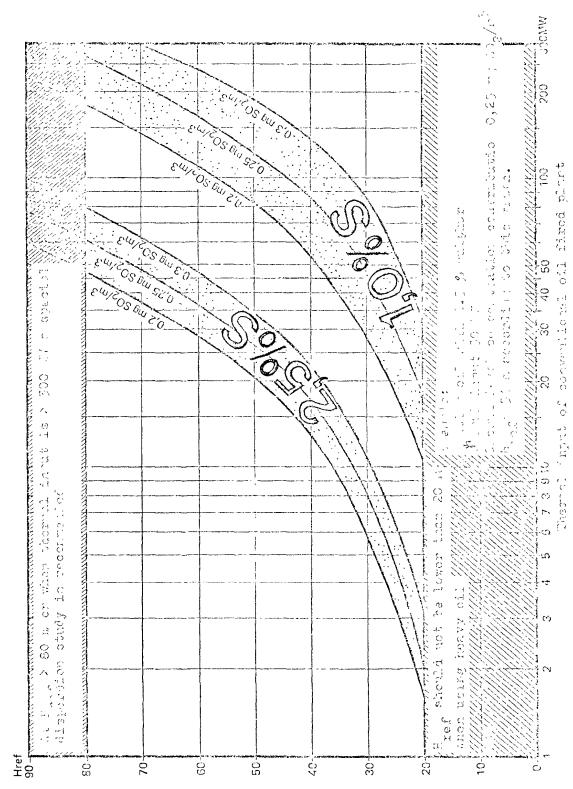
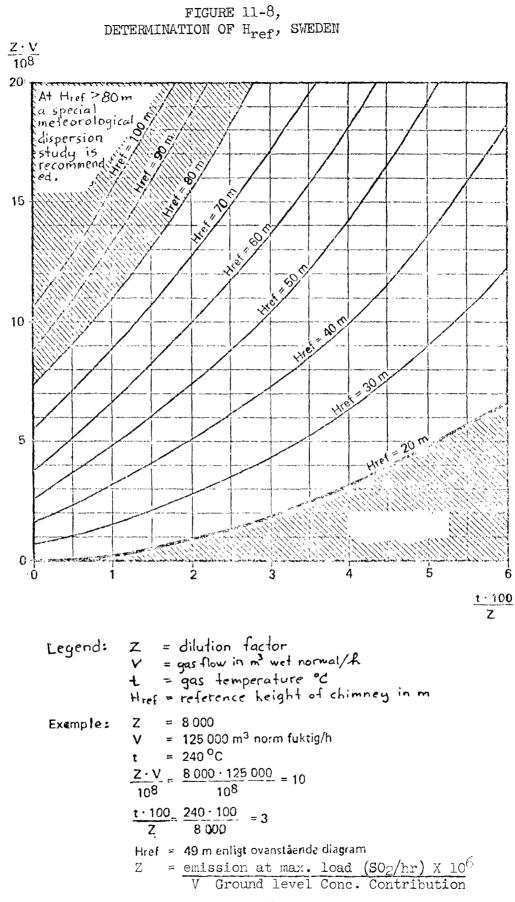
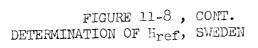
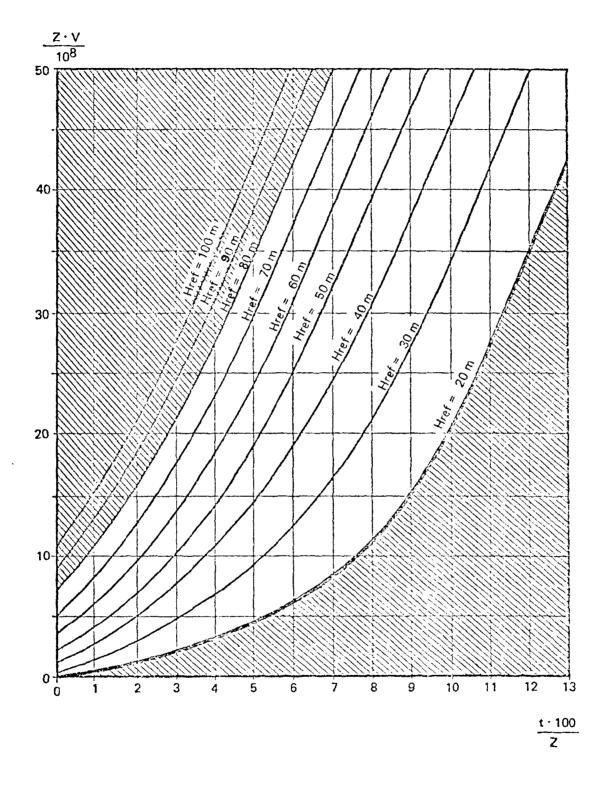


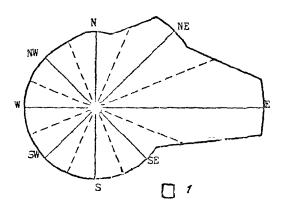
Figure 11-6 Height Requirement for Cement Works (Multiple Chimneys), Great Britain


Figure ll-7 Determination of $\mathrm{H}_{\mathrm{ref}}$ at Conventional Heavy Oil Fired Plants, Sweden

L

Calculation of Sanitary Protective Zone Measured from an Operating Petroleum Refinery, USSR


1. Minimum dimension of the sanitary-protective zone (according to "Sanitary Norms for Planning Industrial Enterprises" $l_0=1000$ m.

2. Distance L_{0} up to which sulfur dioxide concentrations exceeding the MPC are observed, 5000 m.

3. The mean annual frequency of wind of different directions (according to the climatic handbook) p and length of sanitary-protective zone l are given in the table:

	N	NE	E	SE	S	SW	W	NW
$l = \begin{cases} p & 0/0 \\ l & kid \\ l = \begin{cases} L_0 & \frac{p}{p_0} & \text{for } p > p_0 \\ L_0 & \text{for } p < p_0 \end{cases}$	8	7	5	11	14	19	29	7
	5	5	5	5	5,5	7,5	11,5	5

4. Below shows the boundaries of the sanitary-protective zone.

Example of calculation of boundaries of sanitary protective zone of petroleum refinery

FIGURE 15-1 TEST CYCLE, EUROPEAN ECONOMIC COMMUNITY

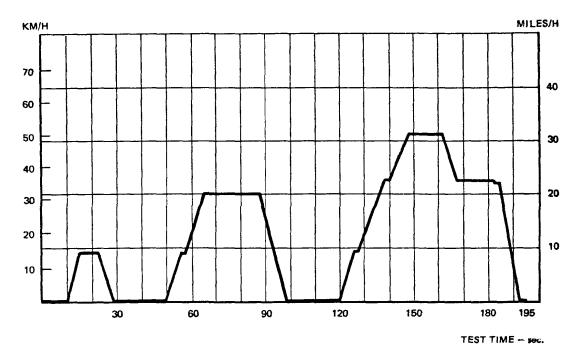


FIGURE 15-2 TEST CYCLE, U.S. FEDERAL

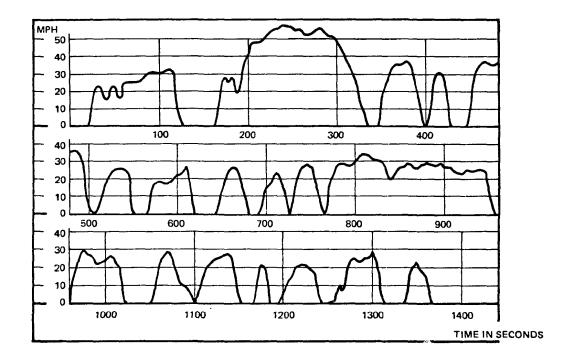


FIGURE 15-3 TEST CYCLE, 10-MODE, JAPAN

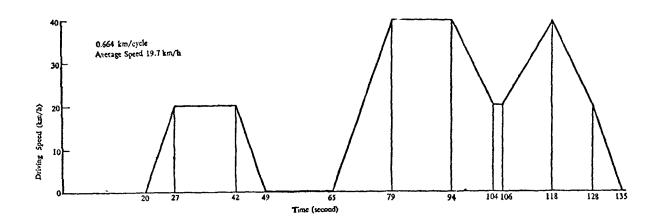


FIGURE 15-4 TEST CYCLE, 11-MODE, JAPAN

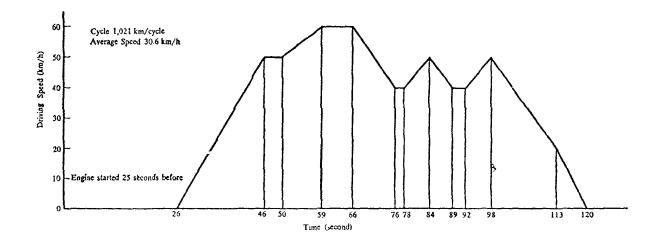
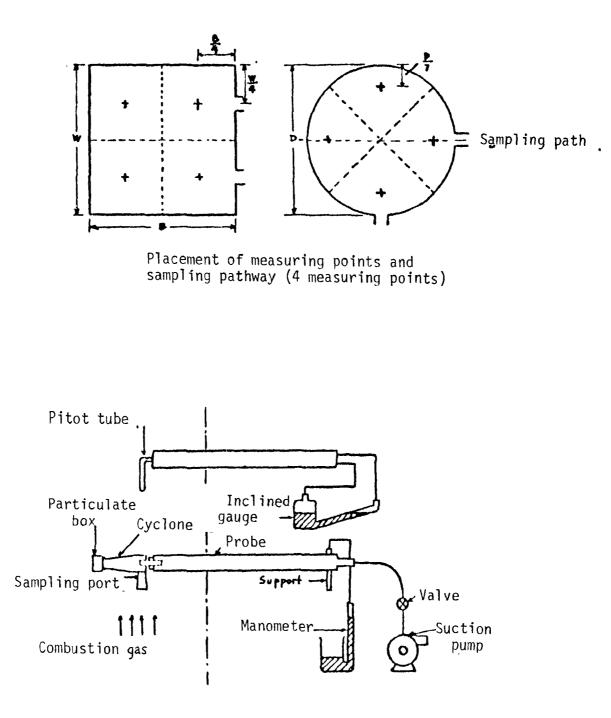



FIGURE 16-1 Cyclone Probe of the British Coal Utilities Research Assoc. (BCURA)

Ł

Diagram of the cyclone probe, BCURA

FIGURE 16-2 STACK SAMPLING REQUIREMENTS, SWEDEN

- 1. Measurement platform approx.1x1.5m, to be built in case of access difficulties. Stairs or fixed ladder shall lead to the platform.
- 2. Space should be provided for table. chair and measurement equipment as close to the measurement platform as possible.
- 3. Measuring points should be equipped with necessary safety devices.
- 4. The measuring point should be properly lighted and ventilated.
- 5. Terminals for electricity and water should be available at the measuring point.
- 6. When measuring outdoors it must be possible to provide rain and wind shelters.
- 7. The required number of holes in the measuring plane is evident from section 3.3.

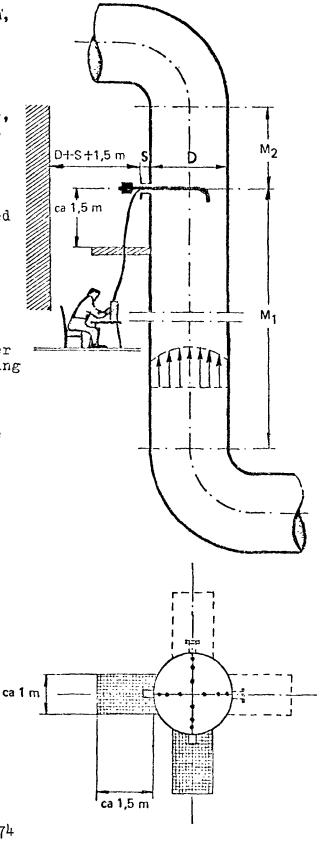
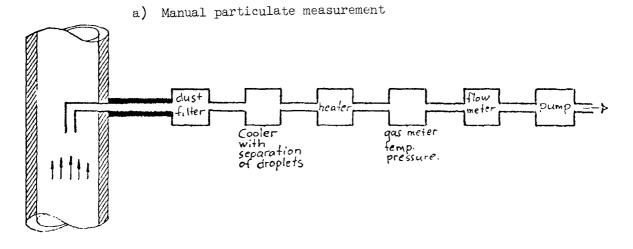
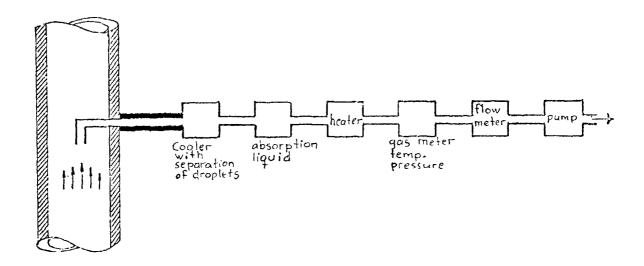




FIGURE 16-3 STACK SAMPLING LINE, SWEDEN

b)Manual gas measurement

SECTION VI

APPENDIX C: List of Information Sources

C. List of Information Sources

Argentina

Disposiciones Regales para Todas las Fuentes Capaces de Producir Contaminacion Atmorferica en Jurisdiccion Federaly en Provincias que Adhieran a las Mismas, Ley No. 20.284 Boletin del dia del ministerio de bienestas social, May 9,1973

Australia

 Australian Design Rule No. 20 for Vehicle Engine Emission Control, effective after January 1, 1972, Department of Transportation, Melbourne, 1971
 Australian Design Rule No. 27 for Vehicle Engine Emission Control, effective after January 1, 1974, Department of Transportation, Melbourne, 1971
 National Emission Standards for Air Pollutants, National Health and Medical Research Council, Nov. 1972

New South Wales

Clean Air Act 1961, last amendments, June 1972

Queensland

Clean Air Act Regulation 1952; Brisbane March 1962

South Australia

Regulation under Health Act, 1935-1968; At the Executive Council Office, at Adelaide, November 1969

Victoria

Clean Air Act Regualtions 1965; Executive Council Chamber, Melbourne, May 19.5

Western Australia

Clean Air Act Regulations 1964; Commissioner Public Health Department, Perth, April 1967

Belgium

- Arrêté royal du 26 juillet 1971 relatif à la creation de zones de protection speciale contre la pollution atmosphérique, modifié pas l'arrêté royal du 3 juillet, 1972
- Arrêté royal du 19 juillet 1971 relatif a l'aquéation par type des véhicules automobiles equipes de moteurs à allumage commandé en ce qui concerne les emissions de gas pollants par le moteur

Troisième projet d'arrêté royale modifiant l'arrêté du 26 juillet 1971 relatif a la création de cones de protection speciale contre la pollution atmosphérique

Brazil

Resolucao No. 425-70, de 17 de marco de 1970. Adota a Escale Ringelmann

List of Information Sources

Brazil continued

Estado da Guanabara
Decreto No. (/9 de 30 de janeiro de 1957. Regulamento do Contiôle da Poluicao Atmosferica
Decreto "E" No. 4.813, de 1 de janeiro de 1971. Aprova o Regulamento do Lipeza Urbana, complemnto do Decreto "E" No. 3.8000, de 20 de abril de 1970
Lei No. 1.574 de 11 de decembro de 19 (
Estado de Sao Paulo
Decreto No. 32.231, de 13 de maio de 1958. Regulamenta a lei No. 3.798, de 5 de fevereiro de 1957

Decreto Estadual No. 2.918 de 9 de abril 1918; Capibula VII Das Fabricas e oficinaos en geral sua Fiscalização

Bulgaria

Decree No. 257 of 1906, State Inspectorate, International Digest of Health Legislation

Canada

National Air Quality Objectives Proposed Environment Canada, Oct. 1971 Clean Air Act, 1971 Motor Vehicle Safety Act, 1969-70

Alberta

Clean Air Regula tions 10/1973, Alberta Environment

British Columbia

Pollution Control Objectives for the Forest Products Industry of British Columbia, Dept. of Lands, Forest, and Water Resources, Victoria, British Columbia, 1971

Manitoba

Manitoba Regulation 18/60, Schedule "A" Ambient Air Criteria, Schedule "C", Atmospheric Emission Criteria, March 1972

New Brunswick

Air Quality Regulations, April 1973, New Brunswick Department of Fisheries and Environment, Fredericton

New Foundland

Proposed Regulation for the Control and Prevention of Air Pollution to be made under the Department of Provincial Affairs and Environment Act, 1973

Ontario

Regulations 12-14, Motor Vehicle Emissions, 1970 Regulations 15, Air Pollution, 1970 List of Information Sources

Prince Edward Island Environmental Control Act, Chapter 33, April, 1971

Quebec

Montreal Urban Community, By-law 9, Council of the Montreal Urban Community, March 1970

Saskatchewan

Regulations 323/69 under Air Pollution Control Act, 1969

Czechoslovakia

Symon, K., Establishment of National Ambient Air Quality Standards in Czechoslovakia, Interregional Symposium on the Use of Air Quality Criteria in National Air Pollution Control Programs, Geneva, 1973
Sammlung der Gesetzgebungen der Tschechoslovakischen Sozialistischen Republik (Collection of Laws of the Czechoslovakian Socialistic Republic), National Assembly, April 1967

Working Instructions for the Determination of Pollutants in the Free Atmosphere, (Unified Analytical Methods), Ministry of Health, Hygienic Regulations, Vol. 31, 1909

Denmark

Law no. 135 of 20 april 1972, Law to Limit sulfur content in fuel oil
Environmental Protection in Denmark, What happens in 1973, English Version, The Ministry of Environmental Protection, Jan. 1973
Luftlorunrening, Movedluftudvalgets ne de gorelse for luft forunening oq Foruneningr radet, Publikation Nr. 8, June 1971

East Germany

Fuenfte Durchfuehrungsverordnung zum Landes Kulturgesetz, Reinhaltung der Luft, Januar, 1973, Gesetzblatt, Berlin, April 24, 1973

Finland

Circular letter No. 1550/1973, Air Quality Standards, National Board of Health, Helsinki

France

La legislation Francaise relative à la Prevention de la Pollution Atmospherique par les Sources Fixes, CITEPA, Etudes Documentaires, No. 41 (CI779), 1974
Instructions pour la Construction de Cheminées des Installations de Combustion, Circulaire aux Préfets du 24 Novembre, 1970

<u>Great</u> Britain

Clean Air Acts, 1956 and 1968 Alkali etc. Works Regulation Act, 1906 Clean Air Regulation (Emissions of Grit and Dust From Furnaces), 1971

Greece

Revised Standards of Chapter 51 by A. C. Stern in "Air Pollution Vol. III", Second Edition, Ed. A.C. Stern, Academic Press, 1968

Hong Kong

Clean Air, Chapter 311 of Revised Edition, 1964

Hungary

Annex of the Act of the Defense of Clean Air of Public State Government, Hungarian People Republic, 1973

India

Air Pollution Control Act, 1971 National Committee on Air Pollution Control, Report, Submitted to the Ministry of Health and Family Planning, Feb. 1972

Iraq

Requirements to be met in Respect of Brick Kilns, Baghdad Directorate of Health, Sanitary Engineering Unit, 1968

Ireland

Control of Atmospheric Pollution Regulation, Dublin, 1970 Alkali and Worker Regulation Act, 1906

Israel

A Summary of Israeli Air Pollution Legislation, Standard, Criteria and Guides, as of November 1973, A. Donagi, Research Institute for Environmental Health Nuisance, Tel Aviv University, Dec. 1973

Italy

Regloamento per l'esecuzione della legge 13 luglio 1966, n. 615, recante provvedimenti, limitatamente al settore degli impianti termici Gazzetta Ufficiale della Repubblica Italiana, Roma 9, gennaio, 1968

Japan

Basic Law for Environmental Pollution Control, Air Pollution Control Laws, No. 132, August 3, 1967, IERE Council, Japan, 1970
Air Pollution Control Law, Air Quality Bureau, Tokyo, 1972
Enforcement Ordinances of Air Pollution, Control Law, Air Quality Bureau, Tokyo, 1972

List of Information Sources

Japan, continued

Notification No. 25 of Environmental Agency, May 8, 1973 Notification No. 35 of Environmental Agency, partly revised, May 16, 1973 Report of the Expert Committee on Air Quality Standard for Sulfur Oxides, March 31, 1973

Malta

Act No. 18 of 1967, Clean Air Act

Mexico

Mexican Anti-Pollution, Law and Regulations, April 1, 1972, Commerce Cleaning House, Inc.

Netherlands

Volksgezondheid Verlagen en mededelingen No. 22, 1971, Ministerie van Volksgezondheid en Milieuhygiene

Air Pollution Law of 1970, Minister of Public Health and Environment

New Zealand

Clean Air Act, 1972, Ministry of Health, Wellington

Norway

Regulation on Mobile Source Emissions, Circular letters, August 1964, October 1964, and May 1965, Statens Vegvesan, Oslo

Philippines

Rules and Regulations, Chapter III. Air Follution Control, National Water and Air Pollution Control Cormission, 1967

Poland

Legislature and Organization of the Atmospheric Air Pollution Control in Poland, Ochran Powistrza, Vol. 4/18, 1970
State Register of the Polish People Republic, October 8, 1960, Concerning the Permissable Concentrations of Substances in the Atmospheric Air Minister's Council, Disposition Concerning the Protection Zones Established for Atmospheric Air Protection Agaist Pollution, March 1967
Minister's Council, Disposition Concerning Changes of the Pollutant Permissable Concentration Levels in the Atmospheric Air, May 1972

Rumania

Air Quality Criteria, Ministry of Health, 1972

Singapore

Clean Air Regulations, 1972, Government Gazette, January 1972

Spain

Supplemental Report on Air Pollution Control Activities in Foreign Countries Second Year of Profile Study, June 1973, NTIS PB - 223-718 Auexo II, Ministerio de la Bobernacion Comision Central de Saueamiento, Madrid, 19 Ley 38/1972 de proteccion del ambiente atmosferico

Madrid

Ordenanza regulatora de la actuacion municipal para combatir en Madrid la contaminacion atmosferica, 1968

Sweden

Some regulations and basis guiding principles applicated by the Air Protection Division, EPB, Statens Naturwardsverk, Solna, Nov 1972
Swedish Air Quality Managemnt Standards, Swedish Environmental Protection Board, Air Quality Division, Dec. 1973

Switzerland

Richtlinie ueber die Auswurfbegrenzung fuer Anlagen zum Verbrennen von Muell, Feb. 1972
Richtlinie ueber die Auswurfbegrenzung bei Haus-und Industriefeuerungen, Feb. 1972
Verordnung ueber Bau und Ausruestung der Strassenfahrzeuge, Aug, 1969
Richtlinie zur Beurteilung von SO₂ - Immissionen, Eidg, Kommission fuer Lufthygiene, April 1965

Union of Soviet Socialist Republic Control of Air Pollution in the USSR; N.F. Izmerov, World Health Organization, Geneva, Public Health Paper J4, 1973

West Germany (Federal Republic of Germany)

Technische Anleitung zur Reinhaltung der Luft, Sept. 1964, Bundesministerium des Innern, Bonn Technische Anleitung zur Reinhaltung der Luft, 1974, Draft (status Oct. 1973)

Bundesministerium des Innern, Bonn, (meanwhile adopted, Aug. 28, 1974)

Northrhine-Westphalia

Reinhaltung der Luft in Nordrhein-Westfalen, Bericht qum Kongress Reinhaltung der Luft Duesseldorf, 13.-17. Oktober 1969

Yugoslavia

Regulation on technical measures and conditions for aeration of residential buildings, Sluzbeni list No. 35, Aug. 1970

Zagreb

Decision on measures for protecting the air from pollution by combustion products, Sluzbeni glasnik grada Zagreba No. 16, Nov. 1971

Sarajevo

Decision on the protection of air in the city of Sarajevo from pollution, Sluzbene novine grada Sarajeva No. 7, Aug. 1972

Serbia

Law on Protection of Air from Pollution, Sluzbein glasnik Socijalisticke Republike Srbije No. 8, March 1973

Ť.

TECHNICAL REPORT DATA				
(Please read Instructions on the reverse before completing)				
1. REPORT NO. EPA-650/4-75-001-a	2.		3. RECIPIENT'S ACC	CESSIONNO.
A. TITLE AND SUBTITLE The World's Air Quality Management Standards. Volume			5. REPORT DATE October 1974	
The Air Quality Management Standards of the World, Including United States Federal Standards			6. PERFORMING OF	GANIZATION CODE
7. AUTHOR(S)			8. PERFORMING ORGANIZATION REPORT NO.	
9. PERFORMING ORGANIZATION NAME AND ADDRESS			10. PROGRAMELEN 1 AA001	MENT NO.
University of North Carolina School of Public Health			11. CONTRACT/GRANT NO.	
Dept. of Environmental Sciences and Engineering Chapel Hill, N. C. 27514			68-02-0556	
12. SPONSORING AGENCY NAME AND ADDRESS			13. TYPE OF REPORT AND PERIOD COVERED	
Environmental Protection Ag Office of Research and Deve National Environmental Rese Research Triangle Park, N.		Fina] 14. sponsoring agency code		
15. SUPPLEMENTARY NOTES Volume I of 2 Volumes				
<pre>standards of the world, including the United States. The kinds of standards in- cluded are those for: air quality, concentration at point of impingement at ground level, deposited particulate matter, emergency procedure concentrations, emissions, fluorides in forage, fuel, measurement method, protection zone, soiling index, stack height and sulfation. It excludes air quality management regulations that do not have numerical limits; and, conversely, numerical limits that do not directly relate to air quality management. In the former category are open burning and fugitive dust regulations, that, almost without exception, do not include numerical limits. In the latter category are numerical design standards for fuel burning equipment which relate only indirectly to air quality management. The standards are presented in tabular form, supported, where necessary, with figures.</pre>				
17. KEY WORDS AND DOCUMENT ANALYSIS				
a DESCRIPTORS		b.IDENTIFIERS/OPE	N ENDED TERMS	c. COSATI Field/Group
Law		Standards Air pollution		05D
Unlimited		19. SECURITY CLAS		21 NO OF PAGES
		20. SECURITY CLAS Unclassified	S (This page)	22 PRICE
EPA Form 2220-1 (9-73) 383				