U.S. Environmental Protection Agency Air Pollution Training Institute

COURSE SI:422

3rd Edition

AIR POLLUTION CONTROL ORIENTATION COURSE

Unit 1

Air Pollution and Their Sources

Tips for Effective Use of This Material

- 1. Listen to the recorded script while you go through this flipbook. The recorded portion is coordinated with the flipbook. Wait for the tape to finish the details of one point before studying the next point on the page.
- 2. When you hear a "beep" on the tape, direct your attention to the next page in the flipbook.
- 3. Pay attention to both words and pictures—they both convey important information. The flipbook will usually summarize main points or give examples.
- 4. Stop the tape at any point if you wish to spend more time reading a page in the flipbook. Rewind the tape if you wish to review a portion of the script.
- 5. Review the lesson objectives before answering the questions at the end of each lesson. Ask yourself whether you have mastered the information indicated in the objectives.
- 6. Answer the questions. They will help you assess your progress in mastering the course materials.
- 7. Check your answers. The correct responses can be found on the page(s) following the questions.
- 8. If you answer a question incorrectly, review the flipbook material covering the subject matter. Now turn on the tape recorder and begin Lesson I of this unit.

ii

Lesson 1: Air Pollutants Objectives

- 1. Identify the two basic physical forms of air pollution.
- 2. Explain how a secondary pollutant is formed.
- 3. Match the names of the criteria pollutants with their descriptions and their major sources.
- 4. State two differences between hazardous pollutants and criteria pollutants.

Two Basic Physical Forms of Air Pollution

Particles

- small, discrete masses of solid or liquid matter
- examples: dust, smoke, mists, and fly ash

Gases

- widely separated molecules in rapid motion
- lack definite shape and volume
- examples: carbon monoxide, sulfur dioxide, & hydrocarbon vapors

9

- emitted into atmosphere directly from identifiable sources
- found in atmosphere in same chemical form as when emitted from source

 undergo chemical changes in the atmosphere
 as a result of reactions among two or more pollutants

Secondary Pollutants

National Ambient Air Quality Standards (NAAQS)

- Set for criteria pollutants—widespread, common pollutants shown to be harmful to human health and welfare
- Designed to meet two goals
 - protect human health & well-being
 - prevent undesirable effects on the environment

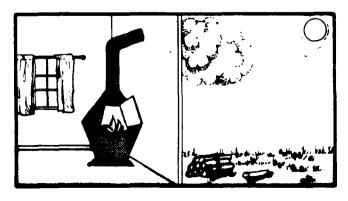
4

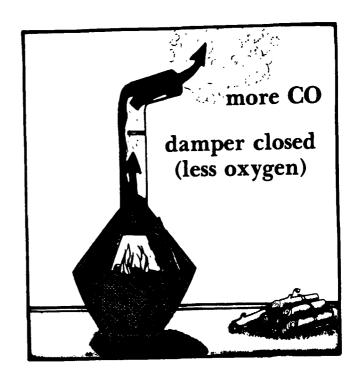
Criteria Pollutants


Pollutant	Symbol	form	type
Carbon monoxide	CO	gaseous	primary
Sulfur oxides	SO_X	gaseous	primary
Nitrogen dioxide	NO_2	gaseous	primary & secondary
Hydrocarbons	HC	gaseous	primary
Ozone	O_3	gaseous	secondary
Particulate matter	TSP	particulate	primary & secondary
Lead	Pb	particulate	primary

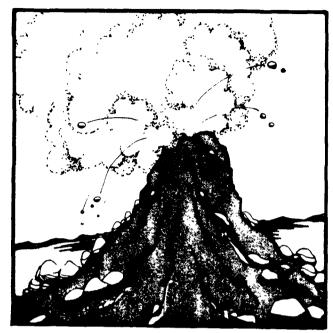
Carbon Monoxide (CO)

- colorless
- odorless
- tasteless

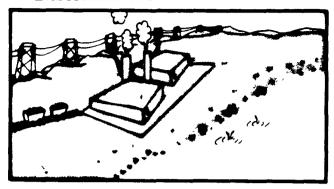

Natural Sources

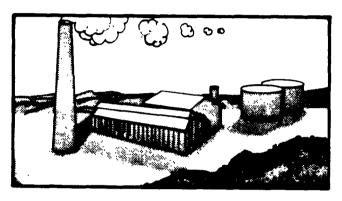


Manmade Sources



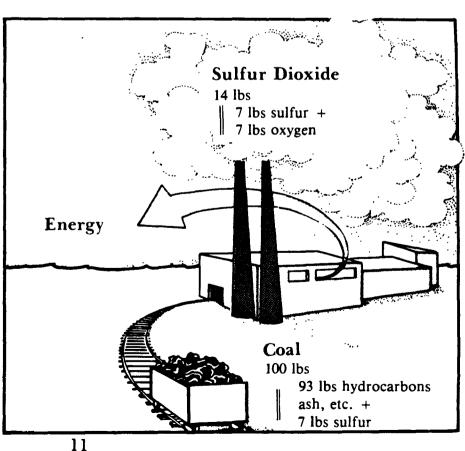
Sulfur Oxides (SO_X)

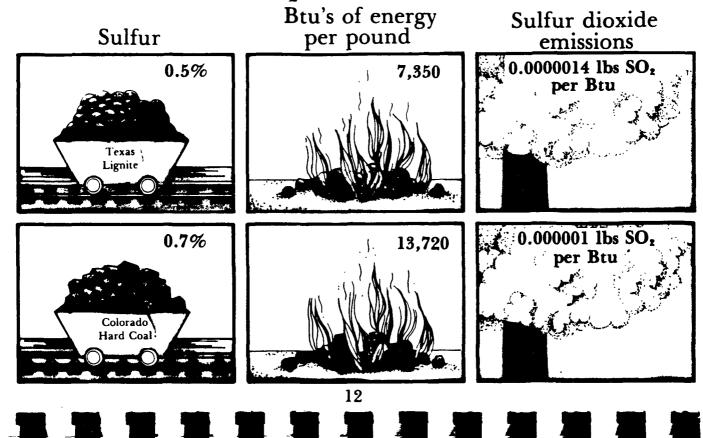

Sulfur Dioxide


- colorless
- formed when sulfur burns

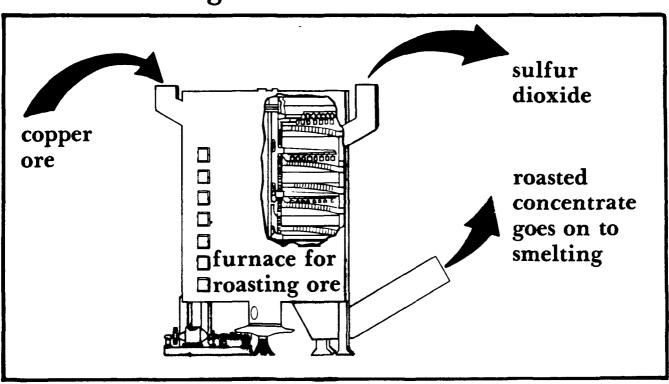
Natural Sources

Manmade Sources




10

Sulfur Dioxide


the "pass through" pollutant

Amount of Energy and Sulfur Dioxide Released per Pound of Fuel

Smelting of Nonferrous Metals

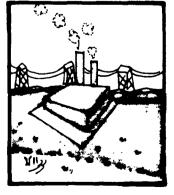
Nitrogen Oxides (NO_X)

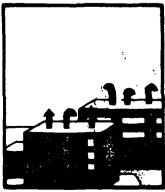
- several gases
- composed of nitrogen and oxygen
- nitrogen dioxide (NO₂) is of greatest concern—relatively more harmful than other criteria pollutants
- nitric oxide (NO) is relatively less harmful—most commonly emitted of all NOx

14

Natural Sources





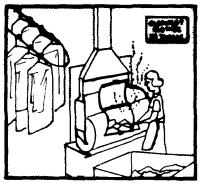


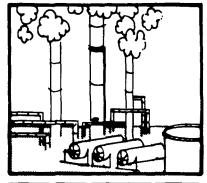
Manmade Sources

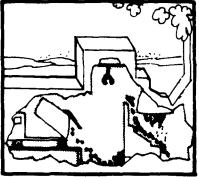
The main source of nitrogen oxides is the combustion of fossil fuels.

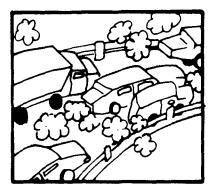
- Nitrogen in the fuel is oxidized to form nitric oxide and small amounts of nitrogen dioxide.
- Nitrogen in the air within the combustion chamber is also converted to nitrogen oxides, mostly nitric oxide.
- Oxidation of nitrogen from air in chamber is much slower than oxidation of nitrogen in fuel.
- Nitric oxides emitted to the air are converted to nitrogen dioxide by photochemical reactions promoted by sunlight.

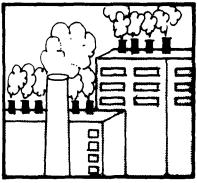
16

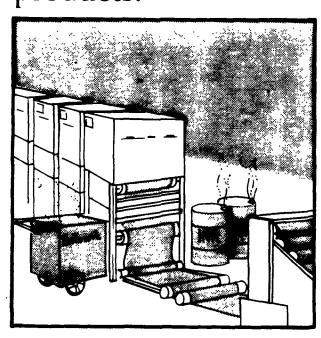



Hydrocarbons (HC)


- HCs are composed of only hydrogen and carbon.
- VOC Volatile Organic Compounds include most volatile hydrocarbons.
- VOCs are composed of hydrogen and carbon; they may also contain elements such as oxygen, nitrogen, sulfur, chlorine, and fluorine.
- VOCs are defined to include only those compounds which take part in atmospheric photochemical processes.


Manmade Sources





18

VOCs are used as solvents in many products.

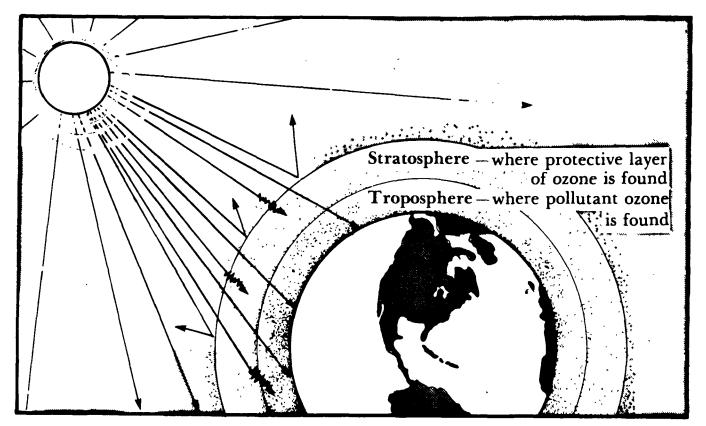
Combustion Factors Affecting VOC Emissions

- time in combustion chamber
- fuel and air mix
- turbulence in chamber
- temperature and pressure
- design of chamber

20

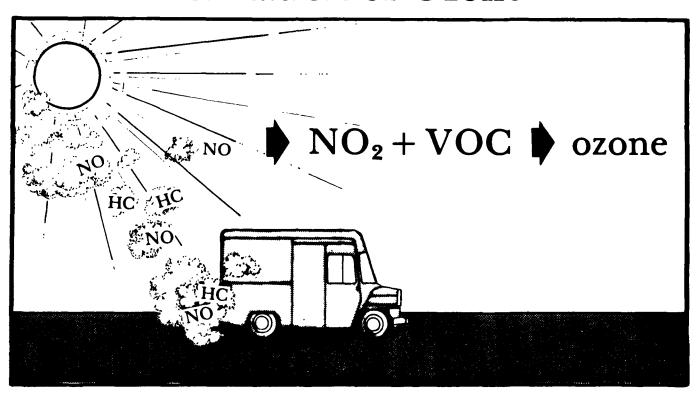
VOCs are controlled through the NAAQS because they take part in the photochemical production of ozone and other photochemical oxidants.

VOC Interaction with NO_X in Presence of Sunlight Forming Ozone and Other Smog

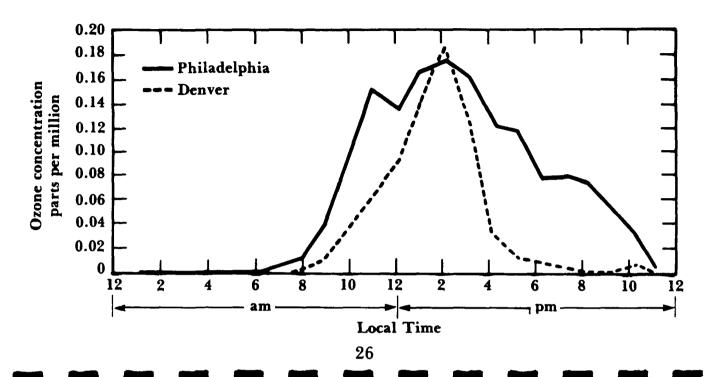


22

Ozone (O_3)


gaseous

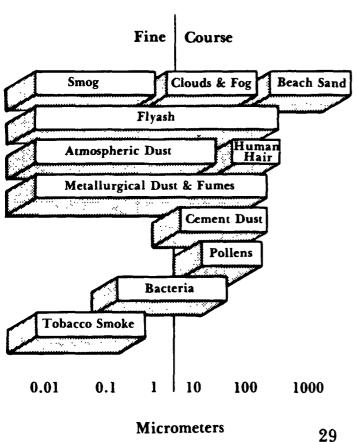
- secondary pollutant
- formed in our atmosphere
- the main constituent of photochemical smog



24

Formation of Ozone

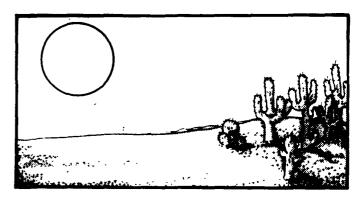
Variations in Ozone Concentration over 24 hours


Factors Affecting Ozone Concentration

- primary pollutant concentration (HC, NO_x)
- reaction time
- reaction ratios
- intensity of sunlight
- temperature
- wind speed
- wind direction
- rainfall
- occasionally special weather conditions draw ozone-rich air from the upper atmosphere down to the earth along leading edges of cold fronts

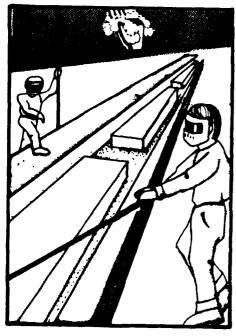
Suspended Particulate Matter

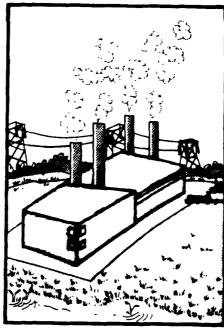
- measured as Total Suspended Particulates (TSP)
- mostly primary pollutants, but includes some secondary pollutants
- very small pieces of liquid or solid matter



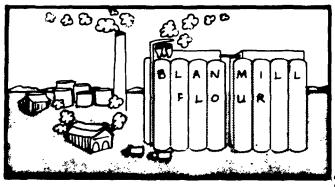
Sizes of Typical
Airborne
Particles
Compared to
Common
Materials

Natural Sources

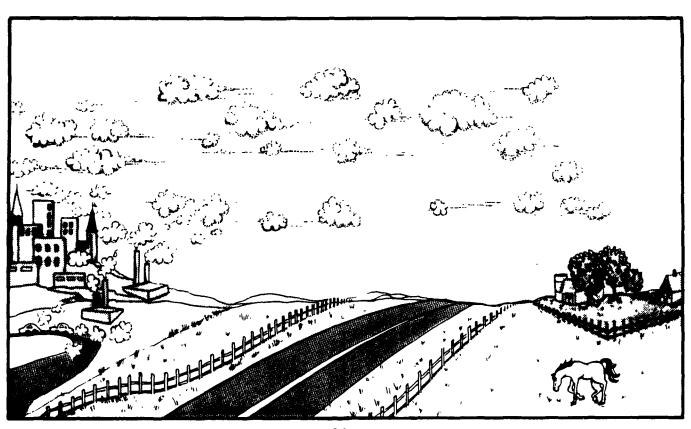


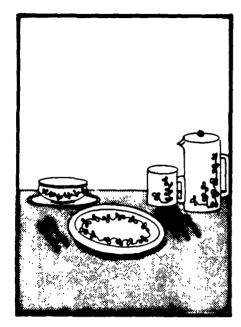


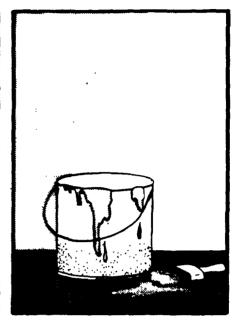
Manmade Sources



Agricultural Processes Contributing to TSP

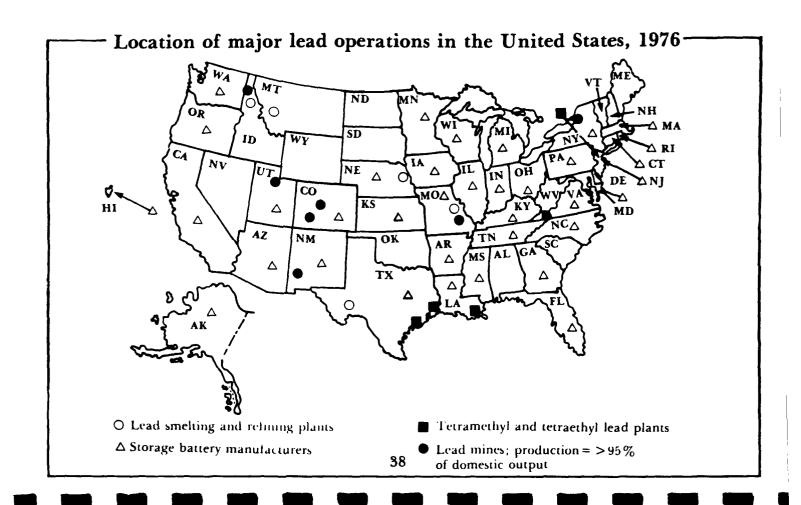


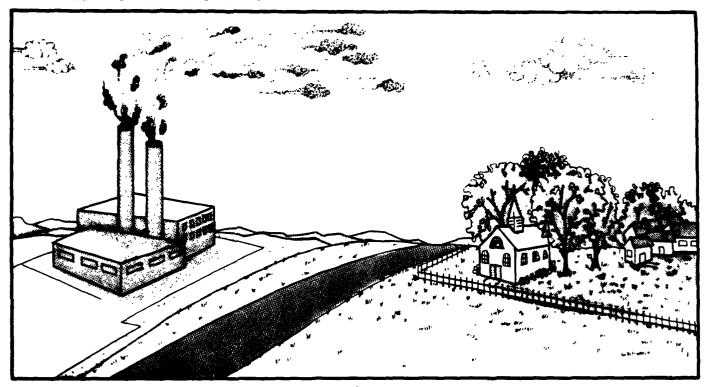

In addition to the pollution problems caused by the suspended particles themselves, these particles combine with other pollutants to form secondary—and sometimes more harmful—pollutants.

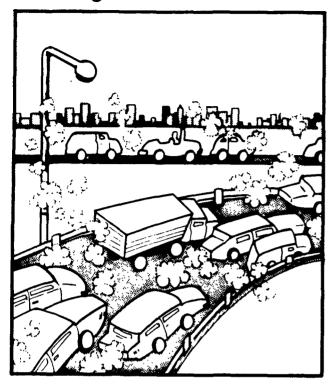

Lead (Pb)

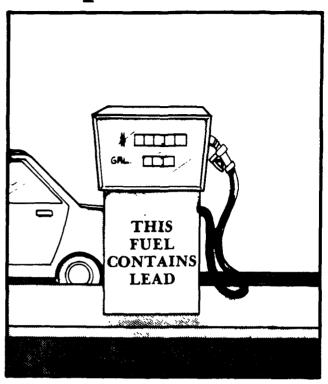
- grey metal
- fairly abundant
- derived from ore-bearing minerals
- can be easily formed, molded, and worked
- withstands weathering and chemical erosion

Because of its physical properties, lead has been used for...



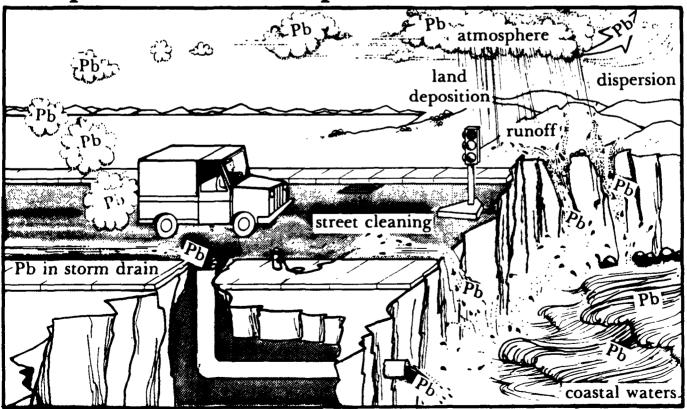

36


- Most of the lead used in U.S. is mined in Missouri.
- Lead consumption in U.S. in 1976 was about 1,350,000 metric tons.
- Each year about 600,000 metric tons of lead are used in storage batteries.
- About 200,000 metric tons of lead are used in the manufacture of gasoline additives.



Distribution of Lead Emissions

Major Source of Atmospheric Lead



40

Deposition of Atmospheric Lead Pollution

Hazardous Pollutants

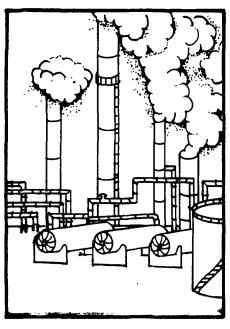
- Pollutants that may cause or contribute to an increase in mortality or an increase in serious irreversible or incapacitating reversible illness
- Usually cause only localized problems
- Controlled with emissions standards rather than by limitations on the concentrations allowable in the ambient air

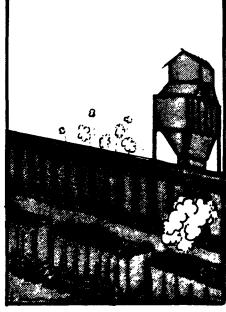
Hazardous Pollutants

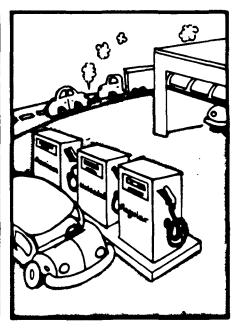
Asbestos Beryllium

Benzene Mercury

Vinyl Chloride Arsenic


Sources of Asbestos


- mining, milling, and spraying of asbestos
- manufacturing of asbestos-cement products, paper, plastics, gaskets, packings, roofing felts, and insulation


44

Sources of Benzene

Sources of Beryllium

- beryllium extraction plants
- machine shops working with berylliumcontaining metals
- foundries handling beryllium or berylliumcontaining alloys
- ceramic plants using beryllium
- rocket propellants containing beryllium
- incinerators burning waste that contains beryllium

Sources of Mercury

- mercury-ore processing plants
- mercury battery manufacturing plants
- plants which dispose of sewage treatment plant sludge by drying or burning

Sources of Vinyl Chloride

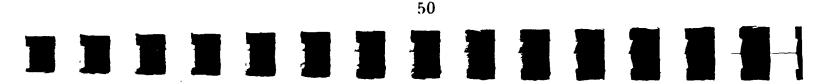
- Production of polyvinyl chloride
- General public exposure may result from use in
 - aerosol containers
 - food wrapping and containers
 - plumbing pipes
 - other plastic products

48

Other Pollutants Under Study for Possible Designation as Hazardous Air Pollutants

Manganese
Cadmium
Nickel
Polycyclic organic
matter (coke
oven emissions)
Ethylene dichloride

Formaldehyde
Vinylidene
chloride
Epichlorohydrin
Ethylene
oxide
Acrylonitrile


Lesson I Questions

1. What are the two basic physical forms of air pollution?

Match the criteria pollutant listed below with its appropriate description on the following page.

- 2. carbon monoxide
- 3. sulfur dioxide
- 4. nitrogen dioxide
- 5. hydrocarbons

- 6. ozone
- 7. suspended particulate matter
- 8. lead

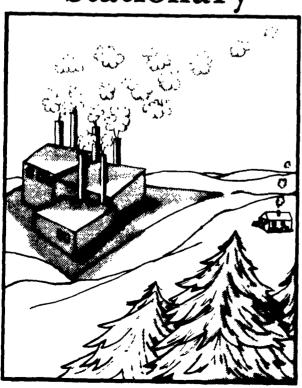
- a. colorless gas—one major source is fossil-fuel combustion—"pass-through" pollutant
- b. widely spaced organic molecules in rapid motion and without shape
- c. grey metal—one major source is combustion of gasoline
- d. very small pieces of liquid or solid matter
- e. colorless, odorless, and tasteless gas—one major source is the automobile engine
- f. secondary pollutant—forms when hydrocarbons and nitrogen oxides react in the presence of sunlight
- g. results from the oxidation of nitric oxide in the air and is considered to be more hazardous than NO

Answers are on the next page.

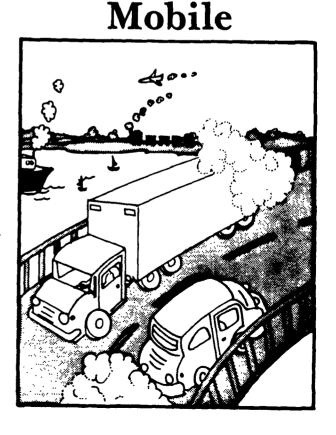
Lesson I Answers

- 1. gaseous and particulate
- 2. e
- 3. a
- 4. g
- 5. b
- 6. f
- 7. d
- 8. c

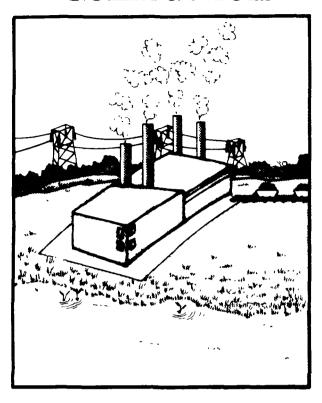
After checking your responses, please turn on the tape recorder.

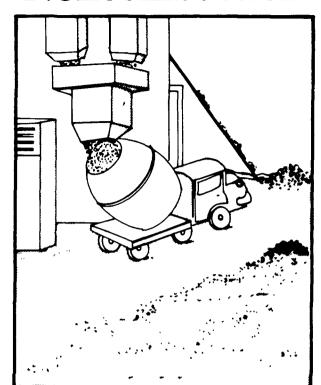

Lesson II: Pollutant Sources Objectives

- 1. List and describe five mutually exclusive air pollutant source categories.
- 2. Identify an example of a source in each of the five major source categories.
- 3. Given examples of sources, distinguish between point sources and area sources.
- 4. State a major manmade source for each criteria pollutant.


Source classifications may be based upon

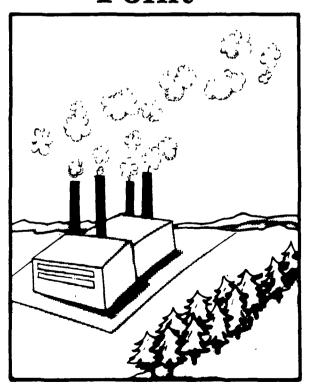
- whether the source is
 - stationary or mobile
 - combustion or noncombustion
 - area or point
- the way that the source generates emissions.


Stationary


or

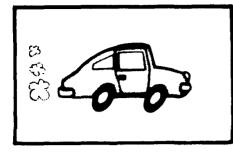
Combustion


Noncombustion

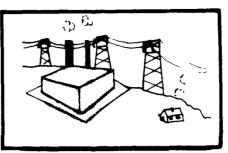

or

56

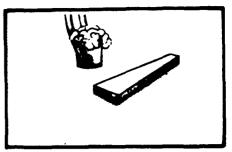
Area

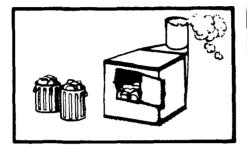


Point



or

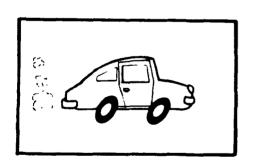

Emission Generation Categories


Transportation

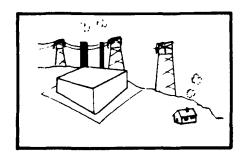
Stationary source fuel combustion

Industrial processes

Solid waste disposal



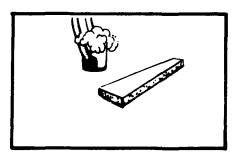
Miscellaneous



Transportation Sources

Most emissions produced in the combustion process that powers their motion. Evaporation of gasoline is also an important source of volatile organic emissions.

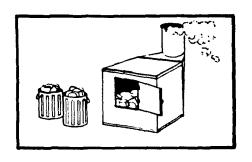
- biggest mobile emission producers are the gasoline- and dieselfueled internal combustion engines used in motor vehicles
- other sources include planes, ships, trains, lawnmowers, farm tractors, and construction machinery


Stationary Combustion Sources

Produce energy but no other products. Emissions result from fuel combustion.

- fixed energy generating sources ranging in size from home heating furnaces to major power plants.
- sources include commercial, institutional, industrial, and steam-electric power plants.
- fuels used include coal, oil, natural gas, and wood. Other fuels such as liquified natural gas, propane, process gas, etc. may also be used.

60

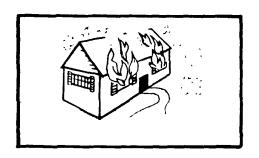


Industrial Processes

Emit pollutants in the course of manufacturing products

- major sources include chemical processing, food and agricultural industries, metallurgical and mineral product factories, petroleum refining, petrochemical plants, petroleum storage, and wood processing industries
- smaller (area) sources include painting, dry-cleaning, and degreasing operations

Solid Waste Disposal



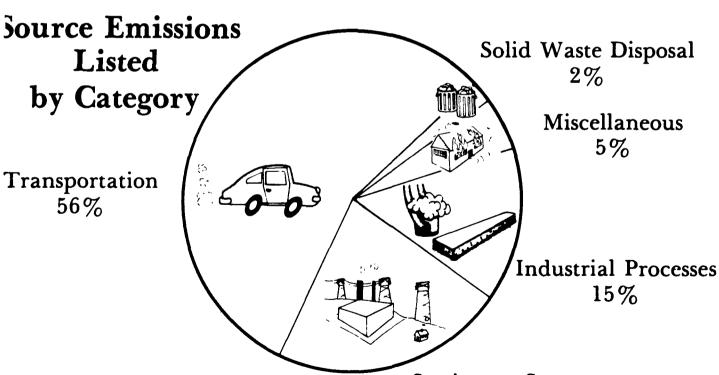
Facilities that dispose of unwanted products and by-products. Emissions result from the disposal process, usually burning.

 Most important emission sources in this category are refuse incineration and open burning.

Disposal operations range in size from small-scale burning of home trash to large central municipal incinerators.

Miscellaneous

Types of sources that do not fit into the other four categories


- the distribution of these sources is scattered and variable
- sources include house fires, forest fires, agricultural burning, asphalt road paving, and coal mining

Pollutants and Sources

	Transportation	Stationary source fuel combustion	Industrial processes	Solid waste disposal	Miscellaneous
со	gasoline powered motor vehicles	improperly adjusted boilers	process losses when CO waste gas burning not practical	on-site incinerators	forest burn off house fires coal-refuse fires
TSP	gasoline vehicles tire wear aircraft diesel vehicles ship boiler emissions	power plants space heating commercial boilers	handling, processing and storing of rock, sand, and gravel metallurgical processes cement plants	incinerators	forest burn off house fires agricultural burning fugnive dust
HC	gasoline powered motor vehicles gasoline distribution and marketing	fossil fuel burning for power plants, space heating, and com- mercial boilers	petroleum refineries chemical mfg degreasing	organic chemical waste disposal	oil and gas production dry cleaning
NOX	gasoline powered motor vehicles diesel powered vehicles	fossil fuel burning for power plants, space heating, and commercial boilers	explosives mfg rocket fuel mfg nitric acid mfg	incineration of plastics and other high tem perature disposal of chemical wastes	grass fires forest burn off
so _x	fuel additives gasoline and diesel powered vehicles	power plants space heating commercial boilers	petroleum refineries smelters sulfuric acid plants coke ovens pulp and paper mills	high temperature disposal of chemical wastes incinerators	burning of coal refuse piles
Lead	leaded fuels used in motor vehicles	burning of waste oils containing lead	smelters battery mfg gasoline additive mfg lead reclaiming operation lead glass mfg	incineration of old battery cases incineration of wood products with painted surfaces	weathering of painted surfaces

64

Stationary Source Fuel Combustion 22%

Lesson II Questions

- 1. List five mutually exclusive air pollutant source categories.
- 2. Fill in the blank. ______sources are small multiple sources that together can adversely affect air quality in an area.
- 3. For each source listed below, name the source category (from question 1) to which it belongs.
 - a. power plant

- d. fugitive dust
- b. municipal incinerator
- e. chemical processing plant

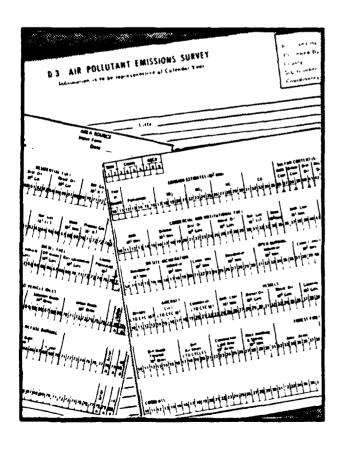
c. automobile

Answers are on the next page.

66

Lesson II Answers

- 1. transportation stationary source fuel combustion industrial processes solid waste disposal miscellaneous
- 2. area
- 3. a. stationary source fuel combustion
 - b. solid waste disposal
 - c. transportation
 - d. miscellaneous
 - e. industrial process


After checking your responses, please turn on the tape recorder.

Lesson III: Source Emissions Objectives

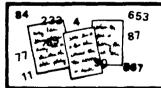
- 1. Identify uses of emission inventory data.
- 2. Describe the steps followed in conducting a source emission inventory.
- 3. Explain what an emission factor represents.
- 4. Briefly describe the way in which emission rates are estimated.
- 5. Explain the function of the National Emissions Data System.
- 6. Indicate whether, since 1970, there has generally been a rise or fall in emission levels of the seven criteria pollutants.

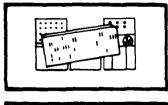
68

Emission Inventory

A study of the pollutant emissions in a given area

Emission inventories are designed to


- locate air pollution sources
- define type and size of sources
- define type and amount of emissions from each source
- determine pollutant emission frequency and duration
- determine the relative contributions to air pollution problems of classes of sources and individual sources


70

Basic Elements of Source Emission Inventory

- planning
- data collection
- data analysis
- reporting data —
 including submission
 of data to the
 federal government

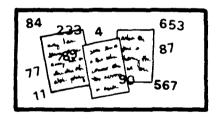
Planning

Defines purpose and scope of inventory

- determine how the data will be used
- determine geographical area to be inventoried
- specify data collection methods
- consider legal authority to acquire data
- assess resources available to carry out the inventory

72

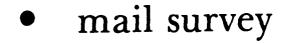
Uses of an Emission Inventory


To determine

- types of pollutants emitted from specific sources
- magnitude or amount of emissions from those sources
- emissions distribution in time and space
- emission rates under specific plant operating conditions
- relation of ambient air pollutant concentration to specific sources

Emission inventory data can be used in combination with other data to

- select locations for air monitoring sites
- set baselines for emissions trends analysis
- establish and re-evaluate emission standards and regulations
- assess the effect of emissions on air quality


Data Collection

Follows plan of action set in planning stage

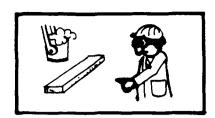
- classification of emissions
- classification and location of pollutant sources
- determination of quality and quantity of materials handled, processed, or burned in each source

Inventory Data Collection Methods

• plant inspection

• field survey

 data from publications


76

Mail Survey

- most common technique
- most economical technique

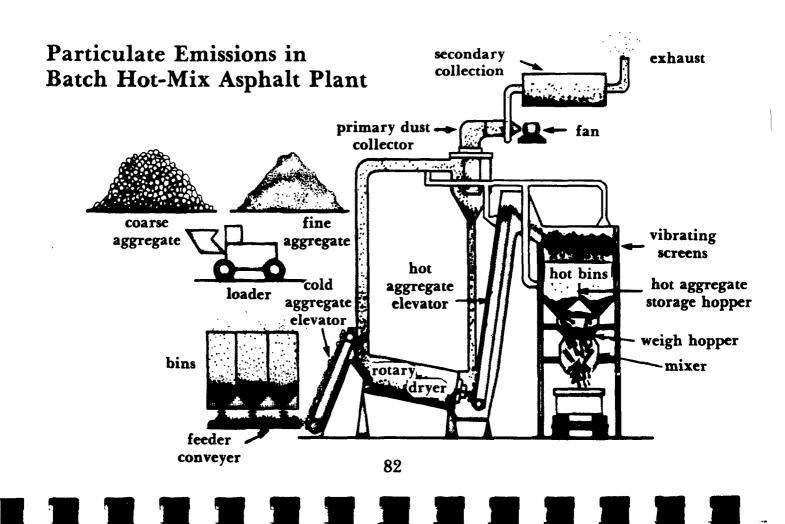
Plant Inspection


- examination of various processes
- interviews with plant personnel
- sometimes source testing
- more time consuming than mail surveys
- usually used only at important point sources
- most accurate method of data collection

Field Survey

- similar to plant inspection
- used mainly to gather data about small area sources

Data from Publications


- data often found in industrial and governmental files, periodicals, etc.
- these publications often contain process, activity level, and control device descriptions
- do not provide raw emissions data, but rely upon estimates of emissions from published data on related sources
- usually a last resort method

Kinds of Information Collected

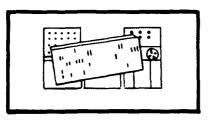
- General source information—location, ownership, nature of business
- Process information—type of equipment, type of reactions
- Activity levels—amount of fuel and materials (input), amount of production (output)
- Control device information—types of devices
- Information needed to estimate emissions—temperature, tank conditions, hours of operation, seasonal variation, etc.

Printing

Material Being Coated:

County Permit Number	Printing Process	Type of Ink	Amount (Gal/Yr)	Type and % Major Solvents In Ink		Type and Amounts of Solvents Added (Gal/Yr)		Normal Operating Hr Day Week		
Example Example P99999	Flexographic	Alcohol Solvent Based	2000	Isopropanol Methanol Ethanol	70 15 15	МЕК	100	8	5	50

Dry Cleaning


Material Being Cleaned.

County Permit Number	Amount of Clothes Cleaned (Tons/Yr)	Type of Cleaning	Type(s) of Cleaning Solvents	Amount (Gal/Yr)		Norm Operati Day	
Example P99999	2000	Hot	Perchloroethylene	2000	8	5	50

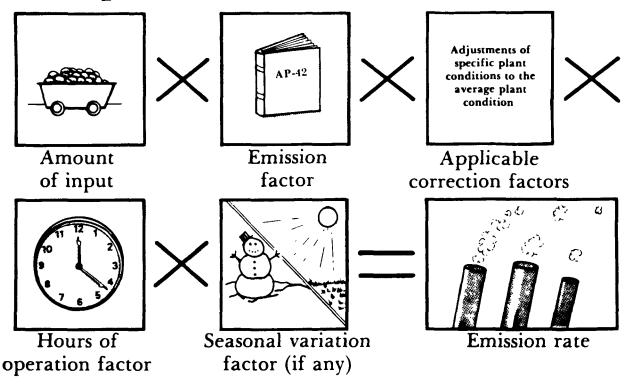
84

Control and Stack Information

				Stack Data					
County Permit Number	Type of Control Eqmt.	Control Eqmt. Effic. (%)	Instal- lation Date	Height (ft)	Inside Dia. (ft)	Temp.	Velocity (ft/sec)	Flow Rate (ft ³ /min)	
Example P99999	After- burner	95	1969	20	1 5	600	20	2100	

Data Analysis

Calculate emission rate for each pollutant by


- using specific emission data for sources, when available
- locating emission factor in AP-42
- calculating emission rate, using data from inventory and emission factor

86

Emission Rate

the weight of a pollutant emitted per unit of time

Example Calculation of Emission Rate

88

Emission Factor

an estimate of the rate at which a pollutant is released into the atmosphere as a result of some activity

Determination of Emission Factors

Measured weight of pollutant emitted (e.g., kg of sulfur emitted)

Unit level of activity (e.g., metric tons of coal burned)

Emission factors for major pollutants found in AP-42, Compilation of Air Pollution Emission Factors

Emission Factors for Bituminous Coal Combustion Without Control Equipment

	Partic	ulates	Sul o xi	fur des	Car mone	bon oxide	Orga	nics	Nitr oxi	ogen des	Alde	hydes
Furnace size, 10 ⁶ Btu/hr heat input	lb/ton coal burned	kg/mt coal burned	lb/ton coal burned	kg/m: coal burned	lb/ton coal burned	kg/mt coal burned	lb/ton coal burned	kg/mt coal burned	lb/con coal burned	kg/mt coal burned	lb/ton coal burned	kg/mt coal burned
Greater than 100												
Pulverized	1	[l		Į.
General	16A	8A	385	198	1	0.5	0.3	0.15	18	9	0.005	0.0025
Wet bottom	13A	6 5A	385	198	1	0.5	0.3	0.15	30	15	0.005	0.0025
Dry bottom	17A	8.5A	38 S	198	1	0.5	0.8	0.15	18	9	0.005	0.0025
Cyclone	2A	1A	385	198	1	0.5	0.3	0.15	55	27.5	0.005	0.0025
10 το 100	1					ļ		}		İ		l
Spreader stoker	13A	6.5A	385	198	2	,	1	0.5	15	7.5	0.005	0.0025
Less than 10	1	i			1	ł				ł	ŀ	
Underfeed stoker	2A	1A	38 S	195	10	5	3	1.5	6	3	0.005	0 0025
Hand-fired units	20	10	385	198	90	45	20	10	3	1.5	0.005	0.002

S = weight percent of sulfur in coal

A = weight percent of ash in coal

Reporting Data

Data gathered by State control agencies is:

- used by the agencies for various purposes
- reported to EPA's National Emissions Data System (NEDS).

92

National Emissions Data System (NEDS)

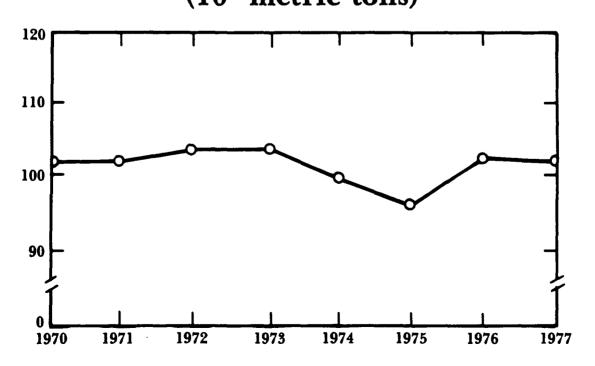
- computerized data system developed for storage & retrieval of source and emissions data
- used to generate national emissions reports, fuel summary listings, and other data reports

Emission inventories are designed to

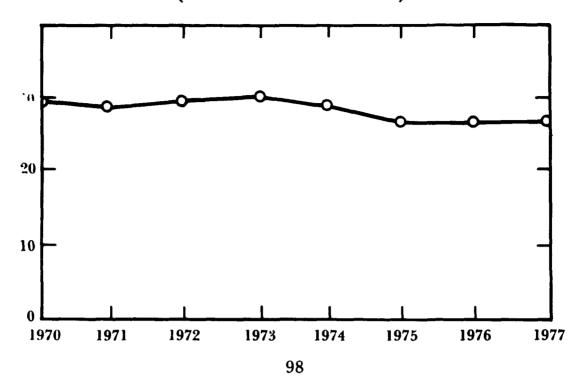
- locate air pollution sources
- define type and size of sources
- define type and amount of emissions from each source
- determine pollutant emission frequency and duration
- determine the relative contributions to air pollution problems of classes of sources and individual sources

94

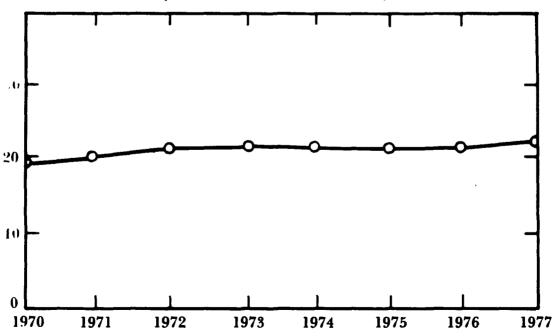
Hydrocarbon Emissions Baton Rouge Analysis Area

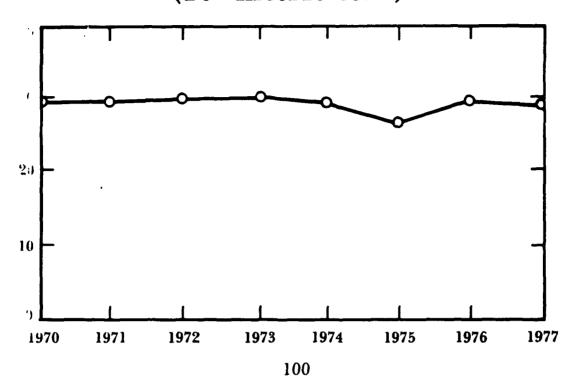

	1975 Emissions (tons/yr)					
Source	Total Hydrocarbons	Nonmethane Hydrocarbons				
BASF Industries	590	572				
Chemical Co.	1,389	1,362				
CF Industries	1,873	1,848				
Evan Hall Sugar Coop.	1	0				
Chemicals, Inc.	2	0				
Monochem	472	455				

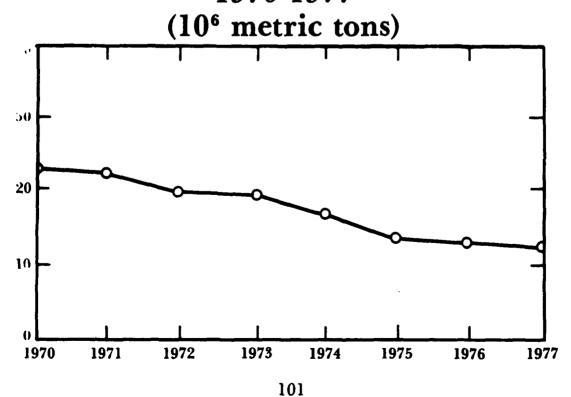
1977 Emissions (million metric tons)

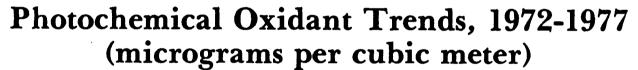

	TSP	CO	SO_X	NO_X	HC
Transportation	1.1	85.7	.8	9.2	11.5
Stationary	4.8	1.2	22.4	13.0	1.5
Sources					
Industrial	5.4	8.3	4.2	.7	10.1
Processes					
Solid Waste	.4	2.6			
Miscellaneous	.7	4.9			
Total	12.2	102.7	27.4	23.1	28.3

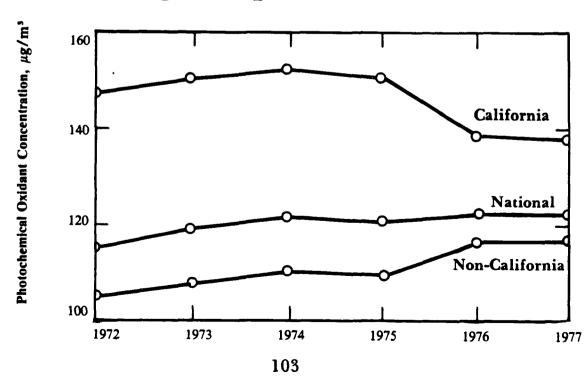
96


Carbon Monoxide Emissions, 1970-1977 (106 metric tons)


Sulfur Oxides Emissions, 1970-1977 (106 metric tons)


Nitrogen Oxides Emissions, 1970-1977 (106 metric tons)


Hydrocarbon Emissions, 1970-1977 (106 metric tons)



Total Suspended Particulate Emissions 1970-1977

Ambient Lead Concentrations, 1970-1974 (urban air monitoring stations) quarterly geometric mean in μg/m³

Lesson III Questions

- 1. Which of the following are potential uses for emission inventory data?
 - a. determine types of pollutants emitted from specific sources
 - b. determine the magnitude or amount of emissions from a source
 - c. determine emission distribution in time and space
 - d. determine pollutant concentration under specific plant operating conditions
 - e. determine the relation of pollutant concentration to particular sources
 - f. all of the above

104

- 2. List in order the four basic steps in a source emission inventory.
- 3. Explain what an emission factor represents.
- 4. Fill in the blank: Data gathered by air pollution control agencies is reported to the
- 5. Choose the correct term: Since 1970 there has generally been a ______in emissions of suspended particulate matter. (rise/fall)

Answers are on the next page.

Lesson III

Answers

- 1. f. all of the above
- 2. planning data collection data analysis reporting data
- 3. An emission factor is an estimate of the rate at which a pollutant is released into the atmosphere as a result of some activity. It is used when calculating emission rate.
- 4. National Emissions Data System
- 5. fall

After checking your responses, review any material that you are not sure of and then take the Unit Test which begins on the next page.

106

Unit Test

- 1. What are the two basic physical forms of air pollution?
- 2. Which of the following is not a criteria pollutant?
 - a. sulfur dioxide
 - b. asbestos
 - c. lead
 - d. ozone

- e. suspended particulate matter
- f. hydrocarbons
- g. nitrogen dioxide
- h. carbon monoxide
- 3. True or false? Hazardous pollutants, unlike criteria pollutants, are controlled with emissions standards rather than by ambient air quality standards which limit the concentration of a pollutant allowable in the ambient air.
- 4. The most widely used system of classifying pollution sources divides them into five mutually exclusive categories based on the way that the emissions are generated in the source. These include which of the following?
 - a. solid waste disposal
 - b. industrial processes
 - c. transportation
 - d. aerospace operations

- e. stationary source fuel combustion
- f. smelting processes
- g. liquid waste disposal
- h. miscellaneous sources

- 5. Is a large petroleum refinery with great quantities of pollutant emissions and many exhaust stacks an area source or a point source?
- 6. An emission inventory is designed to do which of the following?
 - a. locate air pollution sources
 - b. define the types of sources
 - c. define the sizes of sources
 - d. determine pollutant emission frequency and duration
- e. determine the relative contribution to air pollution problems of classes of sources and individual sources
- f. all of the above
- g. only a, b, and c above
- h. only a, d, and e above
- 7. Name the four basic elements of a source emission inventory.
- 8. What does an emission factor represent?
- 9. True or false? The emission rate for a pollutant is the weight of the pollutant emitted per unit of time. It is calculated by multiplying an activity unit by the emission factor, by applicable correction factors, by a factor for hours of operation, and perhaps by a correction factor for seasonal variation.
- 10. Give a brief description of NEDS.

108

Unit Test Answers

- 1. particulate gaseous
- 2. b. asbestos
- 3. True
- 4. a, b, c, e, and h
- 5. point source
- 6. f. all of the above
- 7. planning data collection data analysis reporting the data
- 8. An emission factor is an estimate of the rate at which a pollutant is released into the atmosphere as a result of some activity.
- 9. True
- 10. NEDS stands for the National Emissions Data System, which is a computerized data system developed for storage and retrieval of source and emissions data. It is used to generate national emissions reports, fuel summary listings, and other data reports.