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GREAT LAKES WATER QUALITY INITIATIVE
TECHNICAL SUPPORT DOCUMENT FOR
THE PROCEDURE TO DETERMINE BIOACCUMULATION FACTORS

l. INTRODUCTION
A. Purpose and Scope

The purpose of this document is to provide the technical information and rational in
support of the proposed procedures to determine bioaccumulation factors (BAFs).
This document contains six sections: 1. Introduction; 2. BAFs based on the
concentration of the freely dissolved chemical in water; 3. Prediction of
bioconcentration factors (BCFs); 4. Food chain multipliers based on the 1993
Gobas model; 5. BAFs from biota-sediment accumulation factor (BSAF)
measurements; 6. Bioaccumulation Equivalency Factors (BEFs); and 7. Derivation
of BAFs for twenty-two chemicals.

Bioaccumulation factors are needed to determine both human health and wildlife
Tier | water quality criteria and Tier 1l values. Also, they are used to define
Bioaccumulative Chemicals of Concern among the Great Lakes Initiative universe of
pollutants.

Il. BAFs BASED ON THE CONCENTRATIONS OF THE FREELY DISSOLVED
CHEMICALS IN WATER

A. Relationship between BAFs reported on a total and freely dissolved basis

The relationship between a BAF reported on the basis of the total concentration of
the chemical in the water, i.e., freely dissolved plus that sorbed to particulate
organic carbon (POC) and dissolved organic carbon (DOC), to a BAF reported on
the basis of the freely dissolved concentration of the chemical in the water is as
follows:

BAF: = f, ® BAF! (1)

where
BAF; = BAF (L/Kg of lipid) reported on the basis of the lipid-normalized
concentration of chemical in the biota {(Kg/Kg lipid) divided by the
total concentration of the chemical in the water (Kg/L);
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BAF!® = BAF (L/Kg of lipid) reported on the basis of the lipid-normalized
concentration of chemical in the biota (Kg/Kg lipid) divided by the
freely dissolved concentration of the chemical in the water (Kg/L);

fiy = fraction of the total chemical that is freely dissolved in the water.

B. Determination of the fraction of the chemical that is freely dissolved in
water

The fraction of the chemical that is freely dissolved in the water, f,, can be
determined using equation 2 with the K,, for the chemical and the DOC and POC
of the water.

fu = 1/(1 +POCeK,, +DOCeK, /10) (2)
where
POC = concentration of particulate organic carbon, Kg of organic carbon/L
of water;
DOC = concentration of dissolved organic carbon, Kg of organic carbon/L
of water;
K.. = n-octanol/water partition coefficient.

C. Derivation of the equation defining f,

Experimental investigations have shown that hydrophobic organic chemicals exist
in water in three phases, 1) the freely dissoived phase, 2) sorbed to suspended
solids and 3) sorbed to dissolved organic matter (Hassett and Anderson {1979),
Carter and Suffet (1982), Landrum et al. (1984), Gschwend and Wu (1985),
McCarthy and Jimenez (1985), Eadie et al. (1990, 1992)). The total concentration
of the chemical in water is the sum of the concentrations of the sorbed chemical
and the freely dissolved chemical (Gschwend and Wu (1985) and Cook et al.
(1993)):

C.=ClP+POCecC, +DOCeC, (3)
where
cle = concentration of freely dissolved chemical in the water, Kg of
chemical/L of water; ‘
C. = total concentration of the chemical in the water, Kg of
chemical/L of water;
Cooe = concentration of chemical sorbed to the particulate organic

carbon in the water, Kg of chemical/Kg of organic carbon;
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Chpoe = concentration of chemical sorbed to the dissolved organic
carbon in the water, Kg of chemical/Kg of organic carbon;

POC = concentration of particulate organic carbon, Kg of organic
carbon/L of water;

DOC = concentration of dissolved organic carbon, Kg of organic

carbon/L of water.
The above equation can alsc be expressed using partitioning relationships as:

CL=Cl'e (1 +POCeK, + DOCeK,) (4)

where
Kooe = Cooc / Cj," and K, = Cy.. / ij"

Keoe = equilibrium partition coefficient of the chemical between POC and
the freely dissolved phase in the water,

Ky = equilibrium partition coefficient of the chemical between DOC and
the freely dissolved phase in the water.

From equation 4, the fraction of the chemical which is freely dissolved in the water
can be calculated using the following equations:

f, = ClY/Ct (5)
fu = 1/(1 +POCeK,  + DOCeK,) (6)

Experimental investigations by Eadie et al. (1990, 1992), Landrum et al. {1984),
Yin and Hassett (1986, 1989}, Chin and Gschwend (1992), and Herbert et al.
(1993) have shown that K, . is directly proportional to the K, of the chemical and
is less than the K,,,. The K,,. can be estimated using the following equation:

Kdoc = Kow/1o (7)

The above equation is based upon the resulits of Yin and Hassett (1986, 1989),
Chin and Gschwend (1992), and Herbert et al. (1993). These investigations were
done using unbiased methods,such as the dynamic headspace gas-partitioning
(sparging) and the fluorescence methods, for determining the K.

Experimental investigations by Eadie at al. (1990, 1992) and Dean et al. (1993)
have shown that K. is approximately equal to the K, of the chemical. The K,
can be estimated using the following equation:
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Ke = Ko (8)

poc
By substituting equations 7 and 8 into equation 6, the following equation is
obtained:

fo = 1/(1 +POCeK, +DOCeK,/10) (9)
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1. PREDICTION OF BIOCONCENTRATION FACTORS (BCFs)

Numerous investigations have demonstrated a linear relationship between the
logarithm of the bioconcentration factor (BCF) and the logarithm of the
n-octanol/water partition coefficient (K,,) for lipophilic non-polar organic chemicals
for fish and other aquatic organisms. Isnard and Lambert (1988) have listed
various regression equations that illustrate this linear relationship. The underlying
assumption for the linear relationship between the BCF and K,,, is that the
bioconcentration process can be viewed as a partitioning of a chemical between
the lipids of the aquatic organisms and water and that the K, is an useful
surrogate for this partitioning process (Mackay (1982)).

The regression equations demonstrating the linear relationship between the
logarithms of the BCF and K_, have been developed using non-polar organic
chemicals which are slowly, if at all, metabolized by fishes or other aquatic
organisms. For metabolizable chemicals, the regression equations developed
between BCF and K, for non-metabolizable chemicals in most cases predict BCFs
which are larger than the measured BCFs. The losses of the chemicals due to
metabolism are not accounted for in the simple partitioning model (Baron (1990),
de Wolf et al. (1992)).

Mackay (1982) presented a thermodynamic basis for the partitioning process for
bioconcentration and in essence, the BCF on a lipid-normalized basis (and freely
dissolved concentration of the chemical in the water) should be similar if not equal
to the K,,, for non-polar organic chemicals. Unfortunately, almost all of the
reported regression equations have used BCFs reported on a wet weight basis
instead of lipid-normalized. When regression equations are constructed using BCFs
reported on a lipid-normalized basis, regression equations are obtained which have
slopes and intercepts which are not significantly different from one and zero,
respectively. For example, de Wolf et al. {1992) recalculated the linear relationship
reported by Mackay (1982) assuming a 5% lipid content and obtained the
following relationship:

logBCF = 1.00logK,, - 0.08 (1)

For chemicals with large log K,,s, i.e. greater than 6.0, reported BCFs are often
not equal to the K, for non-metabolizable chemicals. As discussed by Gobas et
al. (1989), this non-equality between the BCF and K, is not caused by a
breakdown of the BCF-K,,, relationship but rather is caused by 1) not accounting
for growth dilution which occurred during the BCF determination, 2) using the total
concentration of the chemical in the water instead of the bioavailable (freely
dissolved) concentration of the chemical in calculating the BCF, 3) not ailowing

6
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sufficient time in the exposure to achieve steady-state conditions, and 4) not
correcting for elimination of the chemical into the feces. BCFs for non-
metabolizable chemicals are equal to the K, when the BCFs are reported on lipid-
normalized basis, determined using the freely dissolved concentration of the
chemical in the exposure water, corrected for growth dilution, determined from
steady-state conditions or determined from accurate measurements of the
chemical’s uptake (k,) and elimination (k,) rate constants from and to the water,
respectively, and determined using no solvent carriers in the exposure.

One option for the final GLWAQI, is to estimate predicted BCFs using the following
approximation:

BCF!Y =~ K, (2)

where the BCF!? is the BCF reported on lipid-normalized basis using the freely
dissolved concentration of the chemical in the water. This relationship is
applicable to lipophilic non-polar organic chemicals with log K,,s greater than 3
which are either slowly or not metabolized by aquatic organisms.

Equation 2 implicitly assumes that n-octanol is an appropriate surrogate for lipids in
aquatic organisms. If n-octanol is not an appropriate surrogate for lipids, the slope
and intercept of equation 2 will not be 1.0 and 0.0, respectively. The theoretical
basis presented by Mackay (1982) and the experimental data suggest that n-
octanol is a very reasonable surrogate for lipids.

Equation 2 is also supported and consistent with the food-chain model of Gobas
(1993). For the Gobas model, the BCF{? is equal to K, when the growth rate of
the organisms and metabolism rate of the chemical by the organisms are set equal
to zero. It should be noted that the model does not use the partitioning process
described by Mackay (1982) for bioconcentration. Instead the food-chain model
predicts the k, and k, rate constants for the fishes and the bioconcentration factor
is determined by dividing the uptake rate constant from water (k,) by the
elimination rate constant to water (k,).

The above equation is also supported and consistent with the equilibrium
partitioning theory being developed by EPA for the derivation of sediment quality
criteria (Di Toro et al. 1991). Both the sediment organic carbon-water equilibrium
partition coefficient (zg of chemical/Kg of organic carbon in the sediment)/(ug of
freely dissolved chemical/L of sediment pore water) (K, or K,.) and the lipid/water.
equilibrium partition coefficient (#g of chemical/Kg of lipid)/(zg of freely dissolved
chemical/L of sediment pore water) (K ) have been demonstrated to be
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approximately equal to K, for non-polar organic chemicals in sediments and
benthic organisms, respectively.

References
Baron, M.G. 1990. "Bioconcentration”. Environ. Sci. Technol., 24, 1612-1618.

De Wolf, W., J.H.M. de Bruijn, W. Seinen, and J. L.M. Hermens. 1992. "Influence
of biotransformation on the relationship between bioconcentration factors and
octanol-water partition coefficients”. Environ. Sci. Technol., 26, 1197-1201.

Di Toro, D.M., C.S. Zarba, D.J. Hansen, W.J. Berry, R.C. Swartz, C.E. Cowan,
S.P. Paviou, H.E. Allen, N.A. Thomas, and P.R. Paquin. 1991. "Technical
basis for establishing sediment quality criteria for nonionic organic chemicals
using equilibrium partitioning”. Environ. Toxicol. Chem., 10, 1541-1583.

Gobas, F.A.P.C. 1993. "A model for predicting the bioaccumulation of
hydrophobic organic chemicals in aquatic food-webs: application to Lake
Ontario”. Ecological Modelling, 69, 1-17.

Gobas, F.A.P.C., K.E. Clark, W.Y. Shiu, and D. Mackay. 1989. "Bioconcentration
of polybrominated benzenes and biphenyls and related superhydrophobic
chemicals in fish: role of bioavailability and elimination into feces".
Chemosphere, 8, 231-245.

Isnard, P., and S. Lambert. 1988. "Estimating bioconcentration factors from
octanol-water partition coefficients and aqueous solubility”. Chemosphere, 17,
21-34.

Mackay, D. 1982. "Correlation of bioconcentration factors”. Environ. Sci.
Technol., 16, 274-278.




July 1994
IV. FOOD CHAIN MULTIPLIERS

Food chain muiltipliers (FCMs) for non-polar organic chemicals were determined
using the model of Gobas (1993). This model! includes both benthic and pelagic
food chains thereby incorporating exposures of organisms to chemicals from both
the sediment and the water column. This model does not predict FCMs but rather
it predicts a) the chemical residues in the organisms and b) the freely dissolved
concentration of the chemical in the water column. With this information,
bioaccumulation factors (BAFs) for each species in the food chain can be
predicted. FCMs can then be calculated from the predicted BAFs using the
following equation:

FCM = BAF!¢/K,, (1)

where K, is the n-octanol/water partition coefficient for the chemical and BAF}? is
the BAF reported on a lipid-normalized basis using the freely dissolved
concentration of the chemical in water.

A. Data for the Model

The data of Oliver and Niimi (1988) and Flint (1986) for Lake Ontario were used
for the feeding preferences, weights, and lipid contents for each species in the
food chain (Table 1). The mean water temperature of Lake Ontario was set to 8°C
and the organic carbon content of sediment was set to 2.7% as reported by Oliver
and Niimi (1988) (Table 1). Values for the densities of the lipid and organic carbon
were taken directly from Gobas (1993) (Table 1). The metabolic transformation
rate constant was set equal to zero. The organic carbon content of the water
column was set to 0.0 kg/L (see B. Calculation of the FCMs).

With the values specified in Table 1, the remaining data needed for the model of
Gobas (1993) are the concentrations of the chemical in the sediment and water
column, and the K_, of the chemical. The K,, of the chemical is used as the
independent variable in deriving the FCMs and thus only the two chemical
concentrations need to be defined for the model.

To determine the relationship between the total concentration of the chemical in
the sediment and the freely dissolved concentration of the chemical in the water
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column, the following sediment-water column chemical concentration quotient
(N,..) was calculated for each chemical reported by Oliver and Niimi (1988):

socC

Myoe = ng of total chemical/Kg of organic carbon (in the sediment)

ng of freely dissolved chemical/L of water (in the water column)
The freely dissolved concentrations of the chemicals in the water column were
calculated from the data of Oliver and Niimi (1988) using the equations of
Gschwend and Wu (1985) and Cook et al. (1993). These equations are:
Freely dissolved fraction = f, = 1/(1 + DOC ® K,,. +-POC @ K__.)

Freely dissolved concentration = C!? = C, @ f,

where

fig = fraction of the chemical which is freely dissolved in the water,

DOC = concentration of dissolved organic carbon,

POC = concentration of particulate organic carbon,

K goc = partition coefficient for the chemical between the DOC and the
freely dissolved phase in the water,

Kooc = partition coefficient for the chemical between the POC phase
and the freely dissolved phase in the water,

C. = total concentration of the chemical in the water, and

cld = freely dissolved concentration of the chemical in the water.

The concentrations in the water reported by Oliver and Niimi (1988) were obtained
by liquid-liquid extraction of aliquots of Lake Ontario water which had passed
through a continuous-flow centrifuge to remove POC. Therefore, the
concentrations in the water reported by Oliver and Niimi (1988) include both the
freely dissolved chemical and the chemical associated with the DOC in the water
sample. The above equations were used to derive the freely dissolved
concentrations of the chemicals in the water by setting the POC = 0.0 mg/L, DOC
= 2 mg/L, and K,,. = K,./10. K,,s used to derive the freely dissolved
concentrations were obtained from Hawker and Connell (1988) for the PCBs, de
Bruijn et al. (1989) for the chlorinated benzenes, p,p-DDT, p,p-DDE, p,p-DDD, a-
HCH, and y-HCH, Pereira et al. (1988) and Chiou (1985) for hexachloro-1,3-
butadiene, McKim et al. (1985) for mirex, and the CLogP program for 2,4,5-
trichlorotoluene, 2,3,6-trichlorotoluene, 2,3,4,5,6-pentachlorotoluene,
octachlorostyrene, and y-chlordane (Leo 1988); for photomirex, its K, was set
equal to the K,,, of mirex. The relationship for determining K,,. from K_,, was
developed from the resuits reported by Yin and Hassett (1986, 1989}, Eadie et al.

10
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(1990, 1992), Landrum et al. (1984), and Herbert et al. (1993) for partitioning to
DOC.

in Figure 1, the ratios of M, to K,, are plotted against the log K,,, for each
chemical reported by Oliver and Niimi (1988). For the pesticides and PCB
congeners, the ratios of the M . to K,, were nearly independent of the K,,, of the
chemicals, i.e., Pearson correlation coefficients (r) of -0.18 and -0.34 were
obtained for the pesticides and PCBs, respectively. For the chlorinated benzenes,
toluenes, and butadienes, the ratios of I, to K, were slightly dependent upon the
K. of the chemicals, i.e., Pearson correlation coefficient of -0.52. The average
(standard deviation & number of values) ratios for the I, to K ,, for pesticides,
PCB congeners, pesticides and PCBs combined, and the group of chemicals
consisting of the chlorinated benzenes, toluenes, and butadienes were 11.8 (8.4 &
9), 25.9 (26.8 & 46), 23.6 (25.3 & 55), and 294 (1188 & 12), respectively.

Based upon the independence of the ratios of I,_. to K,, on K, for the pesticides
and PCBs and the average ratios above, a value of 25 was selected for this ratio.
The resulting relationship between the concentration of the chemical in the
sediment on an organic carbon basis {C,,.) and the freely dissolved concentration
of the chemical in the water column (C'9) is:

Ce = 250K, ®C.’ B (2)
and this relationship is applicable to chemicals with log K,,s from 2 to 10.
B. Calculation of the FCMs

The model of Gobas (1993) (MS-DOS version) was run using the input data listed
in Table 1 and the above relationship between the C,,. and C'? for K, s of 3.5,
3.6, 3.7, 3.8, ..., and 9.0. The freely dissolved concentration of the chemical in
the water was set to 1 ng/L and the concentration of the chemical in the sediment
was calculated using the above sediment-water concentration relationship. To set
the freely dissolved concentration of the chemical to 1 ng/L in the model of Gobas
(1993), the DOC concentration was set equal to 0.0 mg/L.

It also should be noted that the model of Gobas (1993) does not include solubility
controls or limitations, and thus, the concentration of the chemical in the water
used with the model is arbitrary for determining the BAFs, i.e., the ratio of the
concentration of the chemical in the tissue to the concentration of the chemical in
the water column (BAF) obtained using a 1 ng/L concentration of the chemical will
be equal to that obtained using a 150 ug/L concentration of the chemical for a

specified K,,,.

11
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it should be noted that the model of Gobas (1993) takes the inputted total
concentration of the chemical in the water and before doing any predictions,
calculates the freely dissolved concentration of the chemical in the water. The
freely dissolved concentration of the chemical in the water is then used in al/
subsequent calculations by the model. By setting the concentration of the DOC to
0.0 mg/L, the total concentration of the chemical inputted to the model becomes
equal to the freely dissolved concentration of the chemical in the water. This
allowed the fixing of the chemical concentration relationship between sediment and
water phases in the model. BAFs were determined by dividing the chemical
residues predicted by the model of Gobas (1993) by the freely dissolved
concentration of the chemical in the water and therefore, are not influenced by the
concentration of DOC inputted to the model.

Listed in Table 2 are the FCMs calculated with equation 1 for the zooplankton,
forage fish, and piscivorous fish.

C. Evaluation of Food Chain Multipliers

BAFs were predicted for each chemical reported by Oliver and Niimi (1988). BAFs
also were derived from the data of Oliver and Niimi (1988) by dividing the lipid-
normalized concentration of the chemical in the fish by the freely dissolved
concentration of the chemical in the water column. The freely dissolved
concentration of the chemical in the water was determined as described above.
These results are summarized in Tables 3 through 8 and Figures 2 through 7.

Measured chemical residues in fishes assigned to trophic level 3 can be higher than
those in piscivorous fishes (trophic level 4) from the same food chain. Potential
causes of the higher concentrations {on a lipid basis) in the trophic level 3 fish
include a) growth rates which are much slower than the predator fishes, b) slower
rates of metabolism than the predator fishes for the chemicals of interest, and c)
the feeding preferences for the trophic level 3 fish that includes predation on other
fish. In the development of FCMs, the feeding preferences for smelt (see Gobas
1993) consisted of a mixture of trophic level 2 and 3 organisms, i.e., mysids,
Diporeia sp., and sculpin. This mixture of different trophic levels combined with
bioenergetic factors for the smeit caused the predicted concentrations of the
chemicals and subsequently, the derived FCMs, to be slightly larger than those for
the piscivorous fishes (trophic levei 4).

The average differences between the predicted and measured log BAFs were

-0.59, 0.03, -0.15, -0.02, -0.08, and -0.11 for zooplankton, sculpin, ailewives,
small smelt, large smelt, and piscivorous fish, respectively.

12
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Table 1. Environmental parameters and species characteristics used with the
model of Gobas (1993) for deriving the Food Chain Multipliers

Environmental parameters:
Mean water temperature: 8°C
Organic carbon content of the sediment: 2.7%
Organic carbon content of the water column: 0.0 kg/L
Density of lipids: 0.9 kg/L
Density of organic carbon: 0.9 kg/L
Metabolic transformation rate constant: 0.0 day’’

Species characteristics:
Phytoplankton
Lipid content: 0.5%

Zooplankton: Mysids (Mysis relicta)
Lipid content: 5.0%

Diporeia sp.
Lipid content: 3.0%

Sculpin (Cottus cognatus)
Lipid content: 8.0%
Weight: 5.4 g
Diet: 18% zooplankton, 82% Diporeia sp.

Alewives (Alosa pseudoharengus)
Lipid content: 7.0%
Weight: 32 g
Diet: 60% zooplankton, 40% Diporeia sp.

Smelt (Osmerus mordax)
Lipid content: 4.0%
Weight: 16 g
Diet: 54% zooplankton, 21% Diporeia sp., 25% sculpin

Salmonids (Salvelinus namaycush, Oncorhynchus mykiss, Oncorhynchus
velinus namaycush)

Lipid content: 11.0%

Weight: 2410 g

Diet: 10% sculpin, 50% alewives, 40% smelt
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Table 2. Food Chain Multipliers for Zooplankton, Forage Fish and Piscivorous Fish

Trophic Level 4

Trophic Level 3

hic Level 2

Tr

Piscivorous

Zooplankton  Sculpin Alewives Smelt® Fish
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. Table 2. Continued.

Trophic Level 2 Trophic Level 3 Trophic Level 4
Piscivorous
Log Kow Zooplankton  Sculpin Alewives Smelt® Fish

6.7 1.0 17.6 11.5 29.0 26.4
6.8 1.0 17.8 11.6 29.9 26.7
6.9 1.0 17.9 11.6 30.4 26.7
7.0 1.0 17.8 11.5 30.5 26.2
7.1 1.0 17.7 11.3 30.2 25.5
7.2 1.0 17.3 11.1 29.4 24.3
7.3 1.0 16.8 10.8 28.3 22.9
7.4 1.0 16.2 10.4 26.8 21.0
7.5 1.0 15.8 9.9 24.9 19.0
7.6 1.0 14.6 9.4 22.8 16.7
1.7 1.0 13.6 8.7 20.4 14.4
7.8 1.0 12.6 8.1 18.0 12.1
7.9 1.0 11.4 7.4 15.5 9.8
8.0 1.0 10.2 6.6 13.2 7.8
8.1 1.0 9.0 5.9 11.0 6.0
. 8.2 1.0 7.9 5.1 . 9.0 4.5
8.3 1.0 6.8 4.4 7.3 3.3
8.4 1.0 5.8 3.8 5.8 2.4
8.5 1.0 4.9 3.2 4.6 1.7
8.6 1.0 4.1 2.7 3.6 1.1
8.7 1.0 3.4 2.2 2.9 0.8
8.8 1.0 2.8 1.8 2.2 0.5
8.9 1.0 2.3 1.5 1.8 0.3
9.0 1.0 1.8 1.2 1.4 0.2

*  25% of the smelt diet includes sculpin. Therefore, this species is at a trophic
level slightly higher than 3.
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Table 3. Measured and Predicted BAFs for Zooplankton. BAFs are reported on a
lipid weight basis using the freely dissolved concentration of the chemical in water, .
i.e., (ug of chemical/Kg of lipid)/(ug of freely dissolved chemical/L of water).

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF

1 ppDDT 6.91 6.91 7.17
2 ppDDE 6.96 6.96 7.78
3 ppDDD 6.22 6.22 6.38
4 mirex 7.50 7.50 7.58
5 photomirex 7.50 7.50 7.80
6 g-chlordane 5.54 5.54 5.88
7 alpha-BHC 3.78 3.78 4.90
8 gamma-BHC 3.69 3.69 5.08
9 HCBD 4.84 4.84 5.05

10 OCS 7.94 7.94 7.85

1 HCB 5.73 5.73 5.77

12 QcCB 5.18 5.18 6.38

13 1,2,3,5-TeCB 4.66 4.66 5.35

14 1,2,4,5-TeCB 4.60 4.60 5.14

15 1,2,3,4-TeCB 4.64 4.64 5.33

16 1,3,5-TCB 4.19 4.19. 4.71

17 1,2,4-TCB 4.05 4.05 4.90

18 1,2,3-TCB 4.14 4.14 4.07

19 2,4,5-TCT 4.93 4.93

20 2,3,6-TCT 4.93 4.93 5.71

21 PCT 6.36 6.36

31 8 5.07 5.07

32 6 5.06 5.06

33 5 4.97 4.97

34 12 5.22 5.22

35 13 5.29 5.29

36 28+ 31 5.67 5.67 6.48

37 18 5.24 5.24 5.69

38 22 5.58 5.58 6.21

39 26 5.66 5.66

40 16 : 5.16 5.16

41 33 "~ 5.60 5.60 5.79

42 17 5.25 5.25 5.69

43 25 5.67 5.67

44 24 +27 5.40 5.40

45 32 5.44 5.44

46 66 6.20 6.20 7.11

47 70+76 6.17 6.17 7.06

48 56 + 60+ 81 6.19 6.19 7.47

1g



. Table 3. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
49 52 5.84 5.84 6.10
50 47 +48 5.82 5.82 5.97
51 44 5.75 5.75 6.27
52 74 6.20 6.20 7.02
53 49 5.85 5.85 6.34
54 64 5.95 5.95 6.96
55 42 5.76 5.76 7.01
56 53 5.62 5.62
57 40 5.66 5.66
58 41+ 71 5.84 5.84
59 46 5.53 5.53
60 45 5.53 5.53
61 101 6.38 6.38 6.61
62 84 6.04 6.04 7.53
63 118 6.74 6.74 7.37
64 110 6.48 6.48 7.11
65 87+97 6.29 6.29 7.38
. 66 105 6.65 6.65 . 7.36
67 95 6.13 6.13 6.14
68 85 6.30 6.30 7.12
69 92 6.35 6.35
70 82 6.20 6.20 7.50
71 91 6.13 6.13 6.33
72 99 6.39 6.39 6.51
73 153 6.92 6.92 7.50
74 138 6.83 6.83 7.43
75 149 6.67 6.67 7.31
76 146 6.89 6.89 7.93
77 141 6.82 6.82 7.46
78 128 6.74 6.74
79 151 6.64 6.64 6.62
80 132 6.58 6.58 7.08
81 156 7.18 7.18
82 136 6.22 6.22 6.34
83 129 6.73 6.73
84 180 7.36 7.36 7.66
85 187 + 182 7.19 7.19 7.60
86 170+ 190 7.37 7.37 8.20
87 183 7.20 7.20 8.16
. 88 177 7.08 7.08 8.07

89 174 7.11 7.11 7.88
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Table 3. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
90 178 7.14 7.14
91 171 7.11 7.11
92 185 7.11 7.11
93 173 7.02 7.02
94 203+ 196 7.65 7.65 8.26
95 201 7.62 7.62
96 194 7.80 7.80 7.69
97 195 7.56 7.56
98 198 7.62 7.62
99 205 8.00 8.00
100 206 8.09 8.09
101 207 7.74 7.74
102 209 8.18 8.18
Average difference -0.59
Standard deviation 0.40
Number of values 61
. Chemical abbreviations taken from Oliver and Niimi (1988}.

b Predicted BAFs were obtained by taking the product of the FCM and K, for
each chemical. Because the FCM is set to 1.0 for zooplankton, the predicted
log BAF equals log Kow.

¢ Measured BAFs were determined by dividing the chemical residues on a lipid
weight basis in the organisms (#g of chemical/Kg of lipid} by the freely
dissolved concentration of the chemical in water (#g of freely dissolved
chemical/L of water).
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. Table 4. Measured and Predicted BAFs for Sculpin. BAFs are reported on a lipid
weight basis using the freely dissolved concentration of the chemical in water, i.e.,
(ug of chemical/Kg of lipid)/(ug of freely dissolved chemical/L of water).

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
1 ppDDT 6.91 8.16 7.70
2 ppDDE 6.96 8.21 7.95
3 ppDDD 6.22 7.38 6.93
4 mirex 7.50 8.70 8.23
5 photomirex 7.50 8.70 8.15
6 g-chiordane 5.54 6.39 7.07
7 alpha-BHC 3.78 3.86 4.69
8 gamma-BHC 3.69 3.73 5.05
9 HCBD 4.84 5.25 5.55
10 0Cs 7.94 9.00 8.89
11 HCB 5.73 6.69 6.54
12 QcsB 5.18 5.85 5.67
13 1,2,3,5-TeCB 4.66 5.02 ’
14 1,2,4,5-TeCB 4.60 4.92
15 1,2,3,4-TeCB 4.64 4.96 4.91
® 16 1,3,5-TCB 4.19 4.34 .
17 1,2,4-TCB 4.05 4.20 4.57
18 1,2,3-TCB 4.14 4.29
19 2,4,5-TCT 4.93 5.41
20 2,3,6-TCT 4.93 5.41
21 PCT 6.36 7.57 6.41
31 8 5.07 5.67
32 6 5.06 5.66
33 5 4.97 5.51
34 12 5.22 5.89
35 13 5.29 6.02
36 28 + 31 5.67 6.63 6.37
37 18 5.24 5.91 5.97
38 22 5.58 6.49
39 26 5.66 6.62
40 16 ' 5.16 5.83
41 33 - 5.60 6.51
42 17 5.25 5.98
43 25 5.67 6.63
44 24 +27 5.40 6.19
45 32 5.44 6.23
46 66 6.20 7.36 7.45
@ 47  70+76 6.17 7.33 7.06
48

56 + 60+ 81 6.19 7.35 7.48
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Table 4. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
49 52 5.84 6.86 6.80
50 47 +48 5.82 6.84 6.15
51 44 5.75 6.77 6.65
52 74 6.20 7.36 7.30
53 49 5.85 6.91 6.77
54 64 5.95 7.05 7.16
55 42 5.76 6.78 7.07
56 53 5.62 6.53
57 40 5.66 6.62
58 41+ 71 5.84 6.86
59 46 5.53 6.38
60 45 5.53 6.38
61 101 6.38 7.59 7.30
62 84 6.04 7.14 8.05
63 118 6.74 7.99 7.86
64 110 6.48 7.71 7.44
65 87+97 6.29 7.48 7.54
66 105 6.65 7.90 - 7.82
67 95 6.13 7.26 6.98
68 85 6.30 7.49 7.50
69 92 6.35 7.56 7.70
70 82 6.20 7.36 7.60
71 91 6.13 7.26 6.44
72 99 6.39 7.60
73 153 6.92 8.17 8.05
74 138 6.83 8.08 8.06
75 149 6.67 7.92 7.28
76 146 6.89 8.14 8.49
77 141 6.82 8.07 8.11
78 128 6.74 7.99
79 151 6.64 7.88 - 8.34
80 132 6.58 7.82 7.41
81 156 7.18 8.42
82 136 6.22 7.38 7.13
83 129 6.73 7.98 '
84 180 7.36 8.57 8.45
85 187+ 182 7.19 8.43 8.07
86 170+ 190 7.37 8.58 9.15
87 183 7.20 8.44 8.81
88 177 7.08 8.33 8.63

89 174 7.11 8.36 8.24
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. Table 4. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
90 178 7.14 8.39
91 171 7.11 8.36
92 185 7.11 8.36
93 173 7.02 8.27
94 203+ 196 7.65 8.78 9.14
95 201 7.62 8.78
96 194 7.80 8.90 8.52
97 195 7.56 8.72
98 198 7.62 8.78
99 205 8.00 9.01
100 206 8.09 9.04
101 207 7.74 8.87
102 209 8.18 9.08
Average difference 0.03
Standard deviation 0.43
. Number of values 54
. Chemical abbreviations taken from Oliver and Niimi (1988).

b Predicted BAFs were obtained by taking the product of the FCM and K, for
each chemical.

© Measured BAFs were determined by dividing the chemical residues on a lipid
weight basis in the organisms (zg of chemical/Kg of lipid) by the freely
dissolved concentration of the chemical in water (ug of freely dissolved
chemical/L of water).



Table 5. Measured and Predicted BAFs for Alewives. BAFs are reported on a lipid
weight basis using the freely dissolved concentration of the chemical in water, i.e., .
(uvg of chemical/Kg of lipid)/(ug of freely dissolved chemical/L of water).

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF

1 ppDDT 6.91 7.97 7.84
2 ppDDE 6.96 8.02 7.98
3 ppDDD 6.22 7.22 6.82
4 mirex 7.50 8.50 8.18
5 photomirex 7.50 8.50 8.09
6 g-chlordane 5.54 6.28 6.63
7 alpha-BHC 3.78 3.82 4.82
8 gamma-BHC 3.69 3.73 5.00
9 HCBD 4.84 5.20

10 0CSs 7.94 8.81 8.89

11 HCB 5.73 6.57 6.32

12 QcCB 5.18 5.76 -

13 1,2,3,5-TeCB 4.66 4.96

14 1,2,4,5-TeCB 4.60 4.86

15 1,2,3,4-TeCB 4.64 4.90

16 1,3,5-TCB 4.19 4.30 .

17 1,2,4-TCB 4.05 4.16

18 1,2,3-TCB 4.14 4.25

19 2,4,5-TCT 4.93 5.34

20 2,3,6-TCT 4.93 5.34

21 PCT 6.36 7.39 6.53

31 8 5.07 5.59

32 6 5.06 5.58

33 5 4.97 5.43

34 12 5.22 5.80

35 13 5.29 5.92

36 28+ 31 5.67 6.51 6.68

37 18 5.24 5.82 6.39

38 22 5.58 6.37

39 26 5.66 6.50

40 16 5.16 5.74

41 33 5.60 6.39

42 17 5.25 5.88

43 25 5.67 6.51

44 24+ 27 5.40 6.09

45 32 5.44 6.13

46 66 6.20 7.20 7.57

47 70+76 6.17 7.17 7.31

48 56+60+81 6.19 7.19 7.79

24



. Table 5. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
49 52 5.84 6.72 6.84
50 47+48 5.82 6.70 6.85
51 44 5.75 6.63 6.86
52 74 6.20 7.20 7.35
53 49 5.85 6.76 6.98
54 64 5.95 6.90 7.30
55 42 5.76 6.64 7.38
56 53 5.62 6.41
57 40 5.66 6.50
58 41 +71 5.84 6.72
59 46 5.53 6.27
60 45 5.53 6.27
61 101 6.38 7.41 7.25
62 84 6.04 6.99 7.90
63 118 : 6.74 7.80 7.71
64 110 6.48 7.53 7.51
65 87+97 6.29 7.31 7.89
¢ 66 105 6.65 7.71 . 7.72
67 95 6.13 7.10 7.14
68 85 6.30 7.32 7.67
69 92 6.35 7.38 7.93
70 82 6.20 7.20 7.86
71 91 6.13 7.10 6.74
72 99 6.39 7.42 . 7.37
73 153 6.92 7.98 7.82
74 138 6.83 7.89 7.89
75 149 6.67 7.73 7.75
76 146 6.89 7.95 8.30
77 141 6.82 7.88 7.96
78 128 6.74 7.80
79 151 6.64 7.69 8.17
80 132 6.58 7.63 7.45
81 156 - 7.18 8.23
82 136 6.22 7.22 7.25
83 129 6.73 7.79
84 180 7.36 8.38 8.15
85 187 +182 7.19 8.24 7.99
86 170+190 7.37 8.39 8.84
87 183 7.20 8.25 8.46
@ 88 177 7.08 8.13 8.54

89 174 7.11 8.16 8.51
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Tabie 5. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
90 178 7.14 8.19
91 171 7.11 8.16
92 185 7.11 8.16
93 173 7.02 8.08
94 203 +196 7.65 8.59 8.82
95 201 7.62 . 8.59
96 194 7.80 8.71 8.22
97 195 7.56 8.53
a8 198 7.62 8.59
99 205 8.00 8.82
100 206 8.09 8.86
101 207 7.74 8.68
102 209 8.18 8.89
Average difference -0.15
Standard deviation 0.40
Number of values 51
e Chemical abbreviations taken from Oliver and Niimi (1988).

b Predicted BAFs were obtained by taking the product of the FCM and K, for
each chemical.

¢ Measured BAFs were determined by dividing the chemical residues on a lipid
weight basis in the organisms (g of chemical/Kg of lipid) by the freely
dissolved concentration of the chemical in water (vg of freely dissolved
chemical/L of water).
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Table 6. Measured and Predicted BAFs for Small Smelt. BAFs are reported on a
. lipid weight basis using the freely dissolved concentration of the chemical in water,
i.e., (ug of chemical/Kg of lipid)/(ug of freely dissolved chemical/L of water).

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
1 ppDDT 6.91 7.97 7.65
2 ppDDE 6.96 8.02 8.22
3 ppDDD 6.22 7.22 6.83
4 mirex 7.50 8.50 8.19
5 photomirex 7.50 8.50 8.21
6 g-chlordane 5.54 6.28 6.39
7 alpha-BHC 3.78 3.82 4.56
8 gamma-BHC 3.69 3.73 4.77
9 HCBD 4.84 5.20
10 OCs 7.94 8.81 8.73
11 HCB 5.73 6.57 6.15
12 QCB 5.18 5.76
13 1,2,3,5-TeCB 4.66 4.96
14 1,2,4,5-TeCB 4.60 4.86
15 1,2,3,4-TeCB 4.64 4.90
. 16 1,3,5-TCB 4.19 4.30 .
17 1,2,4-TCB 4.05 4.16
18 1,2,3-TCB 4.14 4.25
19 2,45-TCT 4.93 5.34
20 2,3,6-TCT 4.93 5.34
21 PCT 6.36 7.39
31 8 5.07 5.59
32 6 5.06 5.58
33 5 4.97 5.43
34 12 5.22 5.80
35 13 5.29 5.92
36 28 + 31 5.67 6.51 6.57
37 18 5.24 5.82
38 22 5.58 6.37
39 26 5.66 6.50
40 16 : 5.16 5.74
41 33 5.60 6.39
42 17 5.25 5.88
43 25 5.67 6.51
44 24 +27 5.40 6.09
45 32 5.44 6.13
46 66 6.20 7.20 7.46
@ 47 70+76 6.17 7.17 7.32

48 56+ 60+81 6.19 7.19 7.73

27



Table 6. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
49 52 5.84 6.72 6.54
50 47 +48 5.82 6.70 6.73
51 44 5.75 6.63 6.40
52 74 6.20 7.20 7.31
53 49 5.85 6.76 6.46
54 64 5.95 6.90 7.14
55 42 5.76 6.64 7.18
56 53 5.62 6.41
57 40 5.66 6.50
58 41+ 5.84 6.72
59 46 5.53 6.27
60 45 5.53 6.27
61 101 6.38 7.41 7.05
62 84 6.04 6.99 7.90
63 118 6.74 7.80 7.76
64 110 6.48 7.53 7.41
65 87+97 6.29 7.31 7.79
66 105 6.65 7.71. 7.71
67 95 6.13 7.10 6.83
68 85 6.30 7.32 7.41
69 92 6.35 7.38 7.17
70 82 6.20 7.20 7.77
71 91 6.13 7.10 6.40
72 99 6.39 7.42 6.43
73 153 6.92 7.98 7.93
74 138 6.83 7.89 7.87
75 149 6.67 7.73 7.63
76 146 6.89 7.95 8.30
77 141 6.82 7.88 7.84
78 128 6.74 7.80
79 151 6.64 7.69 7.74
80 132 6.58 7.63 7.06
81 156 7.18 8.23
82 136 6.22 7.22
83 129 6.73 7.79
84 180 7.36 8.38 8.18
8b6 187 +182 7.19 8.24 8.01
86 170+190 7.37 8.39 8.86
87 183 7.20 8.25 8.59
88 177 7.08 8.13 8.54

89 174 7.11 8.16 8.31
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. Table 6. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
90 178 7.14 8.19
91 171 7.11 8.16
92 185 7.11 8.16
93 173 7.02 8.08
94 203 +196 7.65 8.59 8.79
95 201 7.62 8.59
96 194 7.80 8.71 8.24
97 195 7.56 8.53
98 198 7.62 8.59
99 205 8.00 8.82
100 206 8.09 8.86
101 207 7.74 8.68
102 209 8.18 8.89
Average difference -0.02
Standard deviation 0.40
. Number of values 48
Chemical abbreviations taken from Oliver and Niimi {(1988).
b FCMs for alewives were used for the small smelt. Predicted BAFs were
obtained by taking the product of the FCM and K, for each chemical.
¢ Measured BAFs were determined by dividing the chemical residues on a lipid

weight basis in the organisms (ug of chemical/Kg of lipid) by the freely
dissolved concentration of the chemical in water (ug of freely dissolved
chemical/L of water).
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Table 7. Measured and Predicted BAFs for Large Smelt. BAFs are reported on a
lipid weight basis using the freely dissolved concentration of the chemical in water,
i.e., (ug of chemical/Kg of lipid)/{ug of freely dissolved chemical/L of water).

Predicted® Measured®
Chemical® Log Kow Log BAF Log BAF

1 ppDDT 6.91 8.39 8.15
2 ppDDE 6.96 8.44 8.38
3 ppDDD 6.22 7.51 6.88
4 mirex 7.50 8.90 8.50
5 photomirex 7.50 8.90 8.43
6 g-chlordane 5.54 6.30 6.45
7 alpha-BHC 3.78 3.82 4.71
8 gamma-BHC 3.69 3.73 4.82
9 HCBD 4.84 5.10

10 0Cs 7.94 9.13 8.97

11 HCB 5.73 6.66 6.41

12 QCB 5.18 5.70 5.88

13 1,2,3,5-TeCB 4.66 4.86

14 1,2,4,5-TeCB 4.60 4.78

15 1,2,3,4-TeCB 4.64 4.82

16 1.3,5-TCB 4.19 4.27 .

17 1,2,4-TCB 4.05 4.13

18 1,2,3-TCB 4.14 4.22

19 2,4,5-TCT 4.93 5.25

20 2,3,6-TCT 4.93 5.25

21 PCT 6.36 7.74

31 8 5.07 5.52

32 6 5.06 5.51

33 5 4.97 5.35

34 12 5.22 5.74

35 13 5.29 5.88

36 28+ 31 5.67 6.60 6.92

37 18 5.24 5.76

38 22 5.58 6.43

39 26 5.66 6.59

40 16 5.16 5.68

41 33 5.60 6.45

42 17 5.25 5.84

43 25 5.67 6.60

44 24 +27 5.40 6.07

45 32 5.44 6.11

46 66 6.20 7.49 7.88

47 70+76 6.17 7.46 7.71

48 56+60+81 6.19 7.48 8.12
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. Table 7. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
49 52 5.84 6.86 6.91
50 47 +48 5.82 6.84 7.22
51 a4 5.75 6.77 6.92
52 74 6.20 7.49 7.66
53 49 5.85 6.94 7.03
54 64 5.95 7.11 7.54
55 42 5.76 6.78 7.63
56 53 5.62 6.47
57 40 5.66 6.59
58 41+ 71 5.84 6.86
59 46 5.53 6.29
60 45 5.53 6.29 :
61 101 6.38 7.76 7.35
62 84 6.04 7.20 8.29
63 118 6.74 8.20 8.13
64 110 6.48 7.89 7.81
65 87+97 6.29 7.63 8.06
o 66 105 6.65 8.11. 8.11
67 95 6.13 7.36 7.17
68 85 6.30 7.64 7.85
69 92 6.35 7.73 7.80
70 82 6.20 7.49 8.14
71 91 6.13 7.36 6.90
72 a9 6.39 7.77 7.40
73 153 6.92 8.40 8.24
74 138 6.83 8.31 8.22
75 149 6.67 8.13 7.99
76 146 6.89 8.37 8.66
77 141 6.82 8.30 8.17
78 128 6.74 8.20
79 . 151 6.64 8.08 8.28
80 132 6.58 8.02 7.67
81 156 7.18 8.65
82 136 6.22 7.51
83 129 6.73 8.19
84 180 7.36 8.79 8.45
85 187+182 7.19 8.66 8.34
86 170+190 7.37 8.80 9.02
87 183 7.20 8.67 8.85
. 88 177 7.08 8.56 8.78

89 174 7.11 8.59 8.71
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Table 7. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
90 178 7.14 8.62
91 171 7.1 8.59
92 185 7.11 8.59
93 173 7.02 8.50
94 203 +196 7.65 8.96 9.13
95 201 7.62 8.98
96 194 7.80 9.06 8.50
97 195 7.56 8.92
98 198 7.62 8.98
99 205 8.00 9.12
100 206 8.09 9.13
101 207 7.74 98.05
102 209 8.18 9.13
Average difference -0.08
Standard deviation 0.40
Number of values 49
Chemical abbreviations taken from Oliver and Niimi (1988). .

b Predicted BAFs were obtained by taking the product of the FCM and K, for
each chemical.

¢ Measured BAFs were determined by dividing the chemical residues on a lipid
weight basis in the organisms (ug of chemical/Kg of lipid) by the freely
dissolved concentration of the chemical in water (¢g of freely dissolved
chemical/L of water).
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Table 8. Measured and Predicted BAFs for Piscivorous Fish. BAFs are reported on
a lipid weight basis using the freely dissolved concentration of the chemical in
water, i.e., (ug of chemical/Kg of lipid)/(ug of freely dissolved chemical/L of water).

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF

1 ppDDT 6.91 8.34 8.00
2 ppDDE 6.96 8.38 8.46
3 ppDDD 6.22 7.52 7.03
4 mirex 7.50 8.78 8.59
5 photomirex 7.50 8.78 8.563
6 g-chlordane 5.54 6.39 6.74
7 alpha-BHC 3.78 3.78 4.69
8 gamma-BHC 3.69 3.69 4.93
9 HCBD 4.84 5.12

10 OCs 7.94 8.93 9.20

11 HCB 5.73 6.74 6.41

12 QcsB 5.18 5.77 5.81

13 1,2,3,5-TeCB 4.66 4.86

14 1,2,4,5-TeCB 4.60 4.78

15 1,2,3,4-TeCB 4.64 4.82 5.07

16 1,3,5-TCB 4.19 4.23.

17 1,2,4-TCB 4.05 4.09

18 1,2,3-TCB 4.14 4.18

19 2,4,5-TCT 4.93 5.27

20 2,3,6-TCT 4.93 5.27

21 PCT 6.36 7.73

31 8 5.07 5.58

32 6 5.06 5.57

33 5 4.97 5.38

34 12 5.22 5.81

35 13 5.29 5.96

36 28 + 31 5.67 6.68 6.89

37 18 5.24 5.83 5.75

38 22 5.58 6.51 6.39

39 26 5.66 6.67

40 16 : 5.16 5.75 5.92

41 33 5.60 6.53 5.32

42 17 5.25 5.92 5.52

43 25 5.67 6.68

44 24+ 27 5.40 6.16

45 32 5.44 6.20 6.76

46 66 6.20 7.50 7.79

47 70+76 6.17 7.47 7.56

48 56+ 60+81 6.19 7.49 7.96
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Table 8. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
49 52 5.84 6.92 7.01
50 47 +48 5.82 6.90 7.18
51 44 5.75 6.83 6.96
52 74 6.20 7.50 7.66
53 49 5.85 7.00 7.13
54 64 5.95 7.15 7.51
55 42 5.76 6.84 7.49
56 53 5.62 6.55 6.51
57 40 5.66 6.67 6.55
58 41+ 71 5.84 6.92
59 46 5.563 6.38
60 45 5.53 6.38
61 101 6.38 7.75 7.45
62 84 6.04 7.24 8.28
63 118 6.74 8.16 8.15
64 110 6.48 7.87 - 7.79
65 87+97 6.29 7.63 8.08
66 105 6.65 8.07 . 8.13
67 95 6.13 7.38 7.25
68 85 6.30 7.64 7.89
69 92 6.35 7.72 - 8.11
70 82 6.20 7.50 8.13
71 91 6.13 7.38 6.92
72 99 6.39 7.76 7.39
73 153 6.92 8.35 8.32
74 138 6.83 + 8.26 8.30
75 149 6.67 8.09 7.99
76 146 6.89 8.32 8.73
77 141 6.82 8.25 8.32
78 128 6.74 8.16
79 151 6.64 8.05 8.51
80 132 6.58 7.99 7.56
81 156 7.18 8.57
82 136 6.22 7.52 7.37
83 129 6.73 8.15
84 180 7.36 8.68 8.58
85 187+182 7.19 8.58 8.43
86 170+190 7.37 8.69 9.20
87 183 7.20 8.59 9.03
88 177 7.08 8.49 9.01

89 174 7.1 8.52 8.74
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. Table 8. Continued.

Predicted® Measured®

Chemical® Log Kow Log BAF Log BAF
90 178 7.14 8.55
91 171 7.11 8.52
92 185 7.11 8.52
93 173 7.02 8.44
94 203+196 7.65 8.81 9.26
95 201 7.62 8.84
96 194 7.80 8.88 8.56
97 195 7.56 8.78
98 198 7.62 8.84
99 205 8.00 8.89
100 206 8.09 8.87
101 207 ‘ 7.74 8.90
102 209 8.18 8.83
Average difference -0.11
Standard deviation 0.40
. Number of values 59
* Chemical abbreviations taken from Oliver and Niimi (1988).

b Predicted BAFs were obtained by taking the product of the FCM and K, for
each chemical.

¢ Measured BAFs were determined by dividing the chemical residues on a lipid
weight basis in the organisms (ug of chemical/Kg of lipid) by the freely
dissolved concentration of the chemical in water (ug of freely dissolved
chemical/L of water).
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V. PREDICTION OF BIOACCUMULATION FACTORS (BAFs) FROM BIOTA-
SEDIMENT ACCUMULATION FACTOR (BSAF) MEASUREMENTS

Biota-sediment accumuiation factors may be used for measuring and predicting
bioaccumulation directly from concentrations of chemicals in surface sediment.
They may also be used to estimate BAF!®s (Cook et al., 1993; 1994). Since
BSAFs are based on field data and incorporate effects of metabolism,
biomagnification, growth, etc., BAF}% estimated from BSAFs will incorporate the
net effect of all these factors. The BSAF approach is particularly beneficial for
developing water quality criteria for chemicals such as polychiorinated dibenzo-p-
dioxins, dibenzofurans and certain biphenyl congeners which are difficuit to
measure in water and have reduced bioaccumulation potential due to metabolism.
The calculation of BAF!%s from BSAFs also provides a method for validation of all
measured or predicted BAF}s for nonpolar organic chemicals.

A. Biota-sediment Accumulation Factors (BSAFs)

BSAFs are measured by relating lipid-normalized concentrations of chemicals in an
organism to organic carbon-normalized concentrations of the chemicals in surface
sediment samples associated with the average exposure environment of the
organism. The BSAF equation is:

Cl
BSAF =
CSOC
where
C, = lipid-normalized concentration of the chemical in tissues of the
biota (vg/g lipid).
C.oc = organic carbon-normalized concentration of the chemical in the

surface sediment (ug/g sediment organic carbon).
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Since BSAFs are rarely measured for ecosystems which are at equilibrium, the
BSAF inherently includes a measure of the disequilibrium of the ecosystem. This
disequilibrium can be assessed for chemicals with log K., > 3 with the following
relationship (equation 2):

fd
cf k, K,
BSAF = ——Y =p, -—L =D, -2 (2)
cP.x K
§ SOC soc¢
where
cl¢ = concentration of freely dissolved chemical (associated with
water) in the tissues of biota (ug/g wet tissue).
cH = concentration of freely dissolved chemical (associated with pore
water) in the sediment (zg/g sediment organic carbon).
K, = lipid-water equilibrium partition coefficient = C,/C/.
Keoc = the sediment organic carbon-water equilibrium partition
coefficient = C,_/Cl.
Dee = the disequilibrium (fugacity) ratio between biota and sediment

(CL/CE).

Measured BSAFs may range widely for different chemicals depending on K,, K,,..
and the actual ratio of C!? to C!¢. At equilibrium, which rarely exists between
sediment and pelagic organisms such as fish, the BSAF would be expected to
equal the ratio of K,/K,,. which is thought to range from 1-4. When chemical
equilibrium between sediment and biota does not exist, the BSAF will equal the
disequilibrium (fugacity) ratio between biota and sediment {D,, = C!¢/C! times the
ratio of the equilibrium partition coefficients (approximately 2).

The deviation of D,, from the equilibrium value of 1.0 is determined by the net
effect of all factors which contribute to the disequilibrium between sediment and
aquatic organisms. D,, > 1 can occur due to biomagnification or when surface
sediment has not reached steady-state with water. D,, < 1 can occur as a result
of kinetic limitations for chemical transfer from sediment to water or water to food
chain, and biological processes, such as growth or biotransformation of the
chemical in the animal and its food chain. BSAFs are most useful when measured
under steady-state conditions or pseudo-steady-state conditions in which chemical
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concentrations in water are linked to slowly changing concentrations in sediment.
BSAFs measured for systems with new chemical loadings or rapid increases in
loading may be unreliable due to underestimation of steady-state C,s.

B. Relationship of BAFs to BSAFs

Differences between BSAFs for different organic chemicals are good measures of
the relative bioaccumulation potentials of the chemicals. When calculated from a
common organism/sediment sample set, chemical-specific differences in BSAFs
reflect primarily the net effect of biomagnification, metabolism, and bioenergetic
and bioavailability factors on each chemical’s D,,. Ratios of BSAFs of PCDDs and
PCDFs to a BSAF for TCDD (bioaccumulation equivalency factors, BEFs) have been
proposed in the GLWQI for evaluation of TCDD toxic equivalency associated with
complex mixtures of these chemicals (see 58 FR 20802). The same approach is
applicable to calculation of BAFs for other organic chemicals. The approach
requires data for a steady-state or near steady-state condition between sediment
and water for both a reference chemical {r) with a measured BAF}® and other

chemicals (n=i) for which BAF}’s are to be determined. BAF}® for a chemical "i" is
defined as:
d (C):
(BAF[), = —*L @)
(o)
w7
where
Cld = concentration of freely dissolved chemical in water (ug/uL
water).

Substitution of C, from equation 1 into C, of equation 3 for the chemical i gives:

(Csoc)i
()

(BAF[), = (BSAF), - (@)
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In order to avoid confusion with the equilibrium partition coefficients K,,., K .. or

poc

Kqcr the chemical concentration quotient between sediment organic carbon and a
freely dissolved state in overlying water is symbolized by M, _:
(Coocdi
(Hso )i = = (5)
fd
(Cw )i
Thus the ratio of BAF} for chemical i and a reference chemical r is:
(BAFF).  (BSAF),(O. )
¢ Ji _ i\soc/i (6)

(BAF™) ~ (BSAF),(IL,),

If both chemicals have similar fugacity ratios between water and sediment, as is
the case for many chemicals in the open waters of the Great Lakes:

(Hsoc)i = (Kow) i
(Hsoc)r (Kow)r

(7)

therefore:
_ (BSAP)(K,,),
" (BSAF),(X,,),

The assumption of equal or similar fugacity ratios between water and sediment for
each chemical is equivalent to assuming that for all chemicals used in BAF}¢
calculations: (1) the concentration ratios between sediment and suspended solids
in the water and (2) the degree of equilibrium between suspended solids and C'¢
are the same. Thus, errors could be introduced by inclusion of chemicals with non-
steady-state external loading rates or chemicals with strongly reduced C!? due to
rapid volatilization from the water. Note that BAF}%s calculated from BSAFs will
incorporate any errors associated with measurement of the BAF}° for the reference
chemical and the K, s for both the reference and unknown chemicals. Such errors
can be minimized by comparing results from several reference chemicals and
assuring consistent use of C!? values which are adjusted for dissolved organic

(8)

(BAF), = (BAFP)
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carbon binding effects on the fraction of each chemical that is freely dissolved (f)
in unfiltered, filtered or centrifuged water samples. BAF,s based on total chemical
concentration in water (BAF}) can be calculated on the basis of f,, for the dissolved
and particulate organic carbon concentrations in the water (POC and DOC):

t _ Jd
BAF, = BAF{ ‘fy | (9)
where:
fu - ! - L (10)
# 1+ DOCK,, +POCK, 1 +DOCK,]0 +POCK,,

Further information on calculation of concentrations of freely dissolved chemicals
in water may be found in section Il of this document titled "BAFs Based on
Concentrations of the Freely Dissolved Chemical in Water".

C. Calculation of BAF}‘s from Lake Ontario Data

Two data sets are available to EPA for calculating BAF° from BSAFs for fish in
Lake Ontario. The Oliver and Niimi (1988) data set, which has been used
extensively for construction of food chain models of bioaccumulation and
calculation of food chain multipliers, biomagnification factors and BAF}®s from
chemical concentrations determined in organisms and water, also contains surface
sediment data which allows calculation of lakewide average BSAFs. The second
data set is provided by an extensive sampling of fish and sediments in 1987 for
EPA’s Lake Ontario TCDD Bioaccumulation Study (U.S. EPA, 1990) for the
purpose of determining BSAFs. These samples were later analyzed for PCDD,
PCDF, PCB congeners and some organochliorine pesticides at ERL-Duluth.
Although these data should be submitted for publication within this year, they are
needed here to provide a unique data set for checking BAF}% calculated from
Oliver and Niimi data from samples collected between 1981-1984 and calculating
BAF{% for organic chemicals not measured by Oliver and Niimi.

BAF}%s for saimonids were calculated for this demonstration of the BSAF ratio
method using PCB congeners 52, 105 and 118 and DDT as reference chemicals.
Several reference chemicals were used in order to examine the variability
introduced by choice of reference chemical. The water analyses of Oliver and
Niimi (1988) were adjusted for an estimated 2 mg/L residual.dissolved organic
carbon concentration in the centrifuged water (assumed no residual POC) and an
estimated K,,. = K_,/10 in order to calculate C}? from f,; (equation 10). Log K,.s
for PCBs are those reported by Hawker and Connell (1988). Log K,,s for PCDDs
and PCDFs are those estimated by Burkhard and Kuehl (1986} except for the
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penta, hexa, and hepta chlorinated dibenzofurans which were estimated on the
basis of assumed similarity to the trends reported for the PCDDs by Burkhard and
Kuehl (1986). Log K, s for other chemicals are either as cited in the Appendix B
of this document or noted in Table 1. Table 1 contains the measured and
predicted log BAF}?s from the two data sets.

D. Validity of BAF}’s Calculated from BSAFs

Figures 1, 2 and 3 show the relationship of log BAF% to log K,,s for (1) Oliver
and Niimi (1988) BAF|%s determined from measured concentrations of freely
dissolved chemicals in Lake Ontario water in 1984; (2) BAF}s calculated from
BSAFs derived from Oliver and Niimi data; and (3) BAF}% calculated from EPA
BSAFs for lake trout in Lake Ontario in 1987 (Cook et al., 1994). The diagonal
lines represent a 1:1 ratio of log BAF to log K_,. The PCB congener BAF}% in all
three sets of data appear quite similar. The EPA BAF}% predictions (figure 3)
include a number of chemicals not in the Oliver and Niimi data set. These are the
PCDDs, PCDFs, chiordanes, nonachlors and dieldrin. Only the dieldrin BAF!? has
been measured elsewhere. The BAF}%s for five of six chlordanes and nonachlors
are much greater than those for PCBs with the same estimated log K,,. Therefore,
the log K,,, values choosen here for the chlordanes and nonachlors may be
significantly underestimated. The bioaccumulative PCDDs and PCDFs (2,3,7,8-
chlorinated), as expected due to metabolism in fish, have BAFi%s 10-1000 fold less
than PCBs with similar K_.s. Thus, the BSAF method for measuring BAF}’s
appears to work well for Lake Ontario.

Accuracy of the BSAF method can be best judged on the basis of comparison of
the BAF}% calculated from BSAFs to measured BAF}%. Figure 4 illustrates the
agreement between log BAF}ds calculated from the Oliver and Niimi water data and
those calculated from the sediment data. The BAF}% for chlorinated benzenes and
toluenes may tend to be underestimated with BSAFs because the water-sediment
fugacity gradient is altered in comparison to PCBs in response to rapid volatilization
losses from water. Use of EPA BSAFs measured from a different set of fish and
sediment samples collected several years after the Oliver and Niimi samples gives
BAF|‘s that correlate equally well with the BAF}%s calculated from Oliver and Niimi
data (figure 5).

All of the above correlations were based on the BSAF method using the Oliver and
Niimi measured Lake Ontario salmonid BAF? for PCB congener 52 as the
reference. Very similar correlations result for comparisons of data in Table 1 for
PCB congeners 105, 118 or DDT as reference chemicals. The BSAF method is
strengthened through use of several reference chemicals with a range of K_,.s and
greatest likelihood for accuracy in measurements of concentrations in water. The
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two data sets and four reference chemicals resulted in either four or eight
determinations of BAF}® for each chemical listed in Table 1. Mean log BAF!%s
(geometric means of BAF}%s) for the 4-8 determinations from Lake Ontario data are
reported in Table 2. The BAF!? for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at
7.85 x 10° compares well to 3.03 x 10°® estimated by a different method for TCDD
log K., = 7 by Cook et al. {1993). The small difference in the two estimates may
be attributabie to an underestimate of the sediment-disequilibrium between
sediment and water by Cook et al. (1993) that resulted in an overestimate of C!°.

The greatest test for robustness of the BSAF method for predicting BAF}% that are
applicable throughout the Great Lakes would be a comparison of two totally
independent data sets based on different ecosytems and conditions. Such a
comparison can be made for bioaccumulation of PCBs in Lake Ontario fish and
Green Bay fish. The EPA Green Bay/Fox River Mass Balance Study invoived
extensive sampling of water, sediment and fish in 1989. Green Bay is a shallower,
smaller, and more eutrophic body of water than Lake Ontario. Measurement of
bioaccumulation in Green Bay is complicated by the movement and interaction of
biota through gradients of decreasing PCBs, nutrients and suspended organic
carbon which extend from the Fox River to the outer bay and Lake Michigan. Table
1 contains brown trout BAF}% calculated from PCB BSAFs measured in the mid-
bay region using PCB congeners 52 and 118 as reference chemicais. The
reference chemical BAF}’s were determined with water and brown trout data from
the same region. Concentrations of freely dissolved PCBs were calcuiated, as for
Lake Ontario, on the basis of dissolved organic carbon in the water samples and an
assumed K . = K,,/10. Despite the complex exposures of Green Bay fish, figures
6 and 7 illustrate log BAF!? - log K,,, relationships found in Green Bay which are
similar to those from the Oliver and Niimi and EPA Lake Ontario data sets. The
correlations between the PCB BAF!% for Green Bay brown trout and BAF}% based
on Oliver-Niimi salmonid and water measurements and EPA lake trout BSAFs are
shown in figures 8-11 for reference chemicals PCB 52 and PCB 118, respectively.
Good agreement exists between Green Bay brown trout predictions and Lake
Ontario measured and BSAF-predicted BAF{°s for both reference chemicals.

The means of log BAF}’s calculated for each chemical from two sets of BSAFs and
four reference chemicals for 124 chemicals measured in Lake Ontario trout (Table
2) are plotted against log K, in figure 12. Only 59 of these chemicals have
measured BAF}%. Correlations between the mean Lake Ontario trout and Green
Bay brown trout BAF!%s (figures 13 and 14) indicate that the Green Bay brown
trout estimates are slightly larger. This may be a sample set artifact associated
with the complex Green Bay fish-water-sediment relationships in Green Bay rather
than an actual site/species/food chain-specific difference in bioaccumulation. The
Lake Ontario and Green Bay PCB congener 198 BAF}’ are noticeably different in
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figures 13 and 14 (greatest log BAF}® based on Lake Ontatio BSAFs) and cause
most of the slight deviation of the slope of the linear regession lines from 1.0. The
agreement of the Green Bay and Lake Ontario results demonstrates the general
applicability of BAF}%s calculated from BSAFs in predicting bioaccumulation in
Great Lakes fish from estimated C!ds.

E. How to Apply the BSAF Method for Predicting BAF!’s

If high quality data are not available for calculating BAF}% for organic chemicals
that are expected to bioaccumulate, the mean BAF!% reported in Table 2 may be
used. To apply the method for additional chemicals, site-specific determinations,
or biota from different trophic levels than salmonids, the following steps and data
requirements must be completed:

1. Reliable BAF}‘s which have been measured for several reference chemicals
in biota in the ecosystem must be chosen. The water sample analyses should
approximate the average exposure of the organism and its food chain over a time
period that is most appropriate for the chemical, organism and ecosystem. Each
C!? used to calculate a BAF} should be based on a consistent adjustment of the
concentration of total chemical in water for DOC and POC using equation 10. It is
preferable to choose at least some reference chemicals on the basis of log K,,, and
chemical class similarity with the test chemicals.

2. Measured (slow-stir method or equivalent preferred) or estimated Log K,,,
values are chosen for each chemical.

3. Obtain chemical residue and % lipid data for representative samples of the
tissues of the organisms. Migration patterns, food chain movement and
hydrodynamic factors should be considered. For highly bioaccumuiative chemicals
variation of chemical residues in adult fish in the open waters of the Great Lakes
within an annual cycle is usually slight.

4. Obtain chemical concentrations and % organic carbon data for surface
sediment samples. Sediment sampling sites should be selected to allow prediction
of ratios of freely dissolved chemical concentrations in the overiying water of the
ecosystem region of interest. A 1 cm layer of surface sediment is ideal but 3 cm
samples will work if sedimentation rates are large and periodic scouring events are
not likely. Although desirable, sediment samples do not have to represent the
average surface sediment condition in the area of the ecosystem affecting the
exposure of the organisms for which bioaccumulation is to measured. Since this is
a ratio method, the concentrations of each chemical in sediment need only be ,
predictive of the ratios of concentrations of the chemicals in the ecosystem water.
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5. With the data from steps 3 and 4, calculate BSAFs for chemicals of interest
and reference chemicals (equation 1).

6. With BSAFs and K__s for each chemical, plus BAF}s for reference
chemicals, calculate BAF!s using equation 8.

7. Use the BAF}% to predict chemical residues in fish and other biota or to
establish unsafe concentrations of chemicals in water only on the basis of chemical
concentration expressions for water and organisms that are consistent with the
BAF}? definition and measurement.

F. Summary

BAF}ds calculated from two different BSAF data sets for Lake Ontario salmonids
are similar and agree well with measured BAF}’s of Oliver and Niimi (1988). The
BSAF method allows calculation of BAF}%s for chemicals which have not been
measured in Great Lakes water but are detectable in fish tissues and sediments.
BAF!s can also be calculated for other fish species and biota at lower trophic
levels in the food web. BAF! calculated for PCBs in Green Bay brown trout agree
well with the Lake Ontario salmonid/lake trout values despite differences in
ecosystem, food chain and exposure conditions. Mean log BAF!%s (geometric
mean of BAF}ds) from 4-8 determinations from Lake Ontario data are summarized
in Table 2.
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Table 2. Mean BAFYs from Lake Ontario BSAFs for Salmonids - page 1

Chemical log Ko Number Mean Mean
BAFs log BAF} BAF¢

dieldrin 5.40 4 7.33 2.12e+07
ddt 6.91 8 8.13 1.34e+08
dde 6.96 8 8.80 6.30e+08
ddd 6.22 4 6.74 5.53e+06
mirex 7.50 8 8.72 5.29¢+08
photomirex 6.76 4 8.57 3.71e+08
g-chlordane 5.54 4 6.96 9.07¢+06
t-chlordane 5.54 4 6.95 8.81e+06
c-chlordane 5.54 4 7.32 2.10e+07
t-nonachlor 5.66 4 7.79 6.10e+07
c-nonachlor 5.66 4 6.47 2.96e+06
alpha-hch 3.78 4 5.24 1.74e+05
gamma-hch 3.69 4 4.60 3.96e+04
hebd 4.84

ocs 7.94 4 9.00 1.01e+09
hcb 5.73 4 5.77 5.90e+05
pcb 5.18 4 4.82 6.63e+04
1235tcb 4.66

1245tcb 4.60

1234tcb 4.64 4 3.85 7.10e+03
135tch 4.19

124tcb 4.05

123tcb 4.14

245tct 4.93

236tct 4.93

pct 6.36

PCBs

5 4.97

6 5.06 "4 5.72 5.25e+05
8 5.07

12 5.22 4 5.97 9.28e+05
13 5.29

16 5.16

17 5.25 8 5.92 8.31e+05
18 5.24 8 5.54 3.45¢+05
22 5.58 8 6.04 1.10e+06
25 5.67 8 6.21 1.63¢+06
26 5.66 8 6.69 4.86e+06
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Table 2. Mean BAFjs from Lake Ontario BSAFs for Salmonids - page 2

Chemical log K., Number Mean Mean
BAFs log BAF} BAF{
PCBs
32 5.44 4 5.78 5.97e+05
33 5.60 8 6.12 1.31e+06
40 5.66 8 5.88 7.61e+05
42 5.76 4 6.55 3.54e+06
44 5.75 8 6.48 3.02e+06
45 5.53 4 5.98 9.47e+-05
46 5.53 8 5.65 4.44¢+05
49 5.85 4 6.76 5.77e+06
52 5.84 8 6.63 4.28e+06
53 5.62 4 6.96 9.04e+06
63 6.17 4 7.19 1.54e+07
64 5.95 4 6.89 7.67e+06
66 6.20 4 7.20 1.59e+07
74 6.20 8 7.45 2.81e+07
77 6.36 4 6.93 8.44e+06
81 6.36 4 7.29 1.95¢+07
82 6.20 8 7.11 1.29¢+07
83 6.26 4 7.49 3.08e+07
84 6.04 4 7.59 3.92e+07
85 6.30 8 7.52 3.34e+07
87 6.29 4 7.53 3.3%9e+07
91 6.13 8 7.17 1.48e+07
92 6.35 4 7.58 3.77e+07
95 6.13 4 7.35 2.23e+07
97 6.29 4 6.84 6.94e+06
99 6.39 8 7.48 3.05e+07
100 6.23 4 7.58 3.84e+07
101 6.38 8 7.68 4.73e+07
105 6.65 8 8.28 1.90e+08
110 6.48 8 7.62 4.13e+07
118 6.74 8 8.25 1.78e+08
119 : 6.58 4 8.27 1.85¢+08
126 6.89 4 8.50 3.17e+08
128 6.74 8 8.33 2.13e+08
129 6.73 8 7.97 9.25e+07
130 6.80 4 8.24 1.72e+08
132 6.58 4 7.59 3.90e+07
136 6.22 4 8.33 2.12e+08
138 6.83 4 8.53 3.39¢+08
141 6.82 8 8.25 1.77e+08
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Table 2. Mean BAFjs from Lake Ontario BSAFs for Salmonids - page 3

65

Chemical log K. Number Mean Mean
BAFs log BAF} BAF}{

PCBs
146 6.89 8 8.28 1.91e+08
149 6.67 8 7.93 8.43e+07
151 6.64 8 8.10 1.26e+08
153 6.92 8 8.46 2.89%¢+08
156 7.18 4 8.85 7.08e+08
158 7.02 4 8.31 2.02e+08
167 7.27 4 8.21 1.63e+08
171 7.11 4 8.61- 4.12¢+08
172 7.33 4 8.57 3.6%e+08
174 7.11 8 8.34 2.19¢+08
177 7.08 8 8.58 3.82e+08
178 7.14 8 8.77 5.94e+08
180 7.36 8 8.99 9.83e+08
183 7.20 8 8.88 7.53e+08
185 7.11 8 8.47 2.93e+08
189 7.71 4 8.67 4.63e+08
194 7.80 8 9.18 1.50e+09
195 7.56 4 8.91 8.13e+08
197 7.30 4 8.45 2.79¢+08
198 7.62 4 9.54 3.47e+09
201 7.62 8 8.83 6.71e+08
205 8.00 8 8.69 4.92¢+08
206 8.09 8 8.78 6.02e+08
207 7.74 8 8.71 5.16e+08
209 8.18 8 8.07 1.18e+08
24+27 5.40 8 5.72 5.21e-07
28+31 5.67 8 6.25 1.80e+06
37+42 5.80 4 6.70 4.97e+06
47+48 5.82 8 6.85 7.14e+06
41+64+71 5.87 4 6.64 4.33e+06
56+60 6.11 4 6.71 5.07e+06
70+76 . 6.17 8 7.23 1.71e+07
66+95 . 6.17 4 7.00 9.96e+06
56+60+81 6.19 4 7.01 1.01e+07
84+92 6.20 4 7.39 2.46e+07
87+97 6.29 4 7.75 5.64e+07
137+176 6.80 4 1.97 9.30e+07
138+163 6.91 4 8.36 2.30e+08
156+171+202 7.18 4 8.38 2.40e+08
182+187 7.19 4 8.84 6.85e+08



Table 2. Mean BAFjs from Lake Ontario BSAFs for Salmonids - page 4

Chemical log K, Number Mean Mean .
BAFs log BAF} BAF}
PCBs

157+200 7.23 4 8.53 3.37e+08
170+190 7.37 8 8.92 8.31e+08
195+208 7.64 4 8.60 3.99e+08
196+203 7.65 8 8.86 7.22e+08

PCDDs
2378-TCDD 7.02 4 6.89 7.85e+06
12378-PeCDD 7.50 4 7.34 2.17e+07
123478-HxCDD 7.80 4 7.16 1.44e+07
123678-HxCDD 7.80 4 6.77 5.85e+06
123789-HxCDD 7.80 4 6.81 6.49¢+06
1234678-HpCDD  '8.20 4 6.80 6.24e+06
OCDD 8.60 4 6.57 3.74e+06

PCDFs
2378-TCDF 5.80 4 5.58 3.77e+05
12378-PeCDF 6.50 4 3.72 5.22e+05
23478-PeCDF 7.00 4 7.08 1.21e+07
123478-HxCDF 7.50 4 6.26 1.81e+06
123678-HxCDF 7.50 4 6.65 4.42e+06
123789-HxCDF 7.50 4 7.17 1.49¢+07
234678-HxCDF 7.50 4 7.21 . 1.61e+07
1234678-HpCDF  8.00 4 5.92 8.26e+05
1234789-HpCDF  8.00 4 7.47 2.92e+07
OCDF 8.80 4 6.90 7.94e+06
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July 1994
VI. BIOACCUMULATION EQUIVALENCY FACTORS (BEFs)

The use of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity equivalency factors
(TEFs) for assessing the total TCDD toxicity risk from complex mixtures of
polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in aquatic
environments is complicated by the wide range of bioaccumulation potentials
associated with these chemicals. Human and wildlife exposures are related to
residues of each chemical in fish and other aquatic organisms ingested as food.
Each congener’s TCDD equivalent risk is proportional to the product of the
congener’s TEF times the concentration of the chemical in the food. The sum of
all the products provides a TCDD equivalence concentration (TEC) for the food
exposure. When it is necessary to relate water or effluent concentrations of
PCDDs and PCDFs to risk estimates for food exposure, the TEC equals the sum of
the products of the water concentration, bioaccumulation factor (BAF) and TEF for
each congener present. Note that the BAFs and water concentrations have to be
based either on freely dissolved chemical (C!°) or on total chemical (C!} in water
(i.e., consistent definition).

TEC = ¥, ((CL), (BAFY), (TEF)] = ¥, [(C*,(BAF™),(TER)]

BAFs for PCDDs and PCDFs have not been measured due to the very small water
concentrations present in contaminated ecosystems. Concentrations of these
chemicals can be measured in surface sediments to provide a measure of the
relative amounts of each chemical present in association with organic carbon of
the ecosystem. Furthermore, the relative activities of each chemical and TCDD
should be similar for both sediment organic carbon and organic carbon suspended
in water. The fugacity gradients of each chemical between sediment and water
may or may not be similar, depending on differences in chemical loading to the
water which are not near steady-state with surface sediment. The biota-sediment
accumulation factor (BSAF) is a direct measure of each chemical’s distribution
between sediment organic carbon and lipid of associated aquatic organisms. When
PCDDs and PCDFs have similar sources and distribution patterns between water
and sediment, the BSAFs at a site will provide good measures of the
bioaccumulation potentials relative to TCDD or any other chemical for which a BAF
has been estimated (Cook et al., 1994). Systems with steady-state distributions
of the chemicals between sediment and water are most appropriate for these
measurements of relative bioaccumulation potential.
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A. Definitions/Symbols

The following bioaccumulation terms and symbols are used to derive and apply
TCDD bioaccumulation equivalency factors (BEFs). "C" is used for concentration
and "f" for fraction. Subscripts are used to indicate the mass basis for "C" or "f"
(w = water, £ = lipid in tissue, t = whole tissue wet weight, s = dry sediment,
soc = sediment organic carbon, and ssoc = suspended solids organic carbon);
superscripts are used to indicate the water phase of the chemical (fd = freely
dissolved, b = bound to organic carbon in water, and t = total chemical = fd +b;
and subscripts following parentheses indicate the chemical (tcdd = 2,3,7,8-TCDD
and i = the ith chemical).

bioaccumulation factors

BAF, = C/C,,  BAF, = CJ|C, = f,*BAF, (2)
BAFP = cJc®,  BAFF - cJC¥ - f+BAFF (3)
BAF, = CC,,  BAF] = C/C, = f,+BAF, (4)
iota-sedimen mulation f r
C
BSAF = C,[C,, = —t= (5)
C.*
rgani rbon - water itionin
fraction dissolved f, = (1+DOC+K, /10 + POC+K, )" (6)

fraction bound to oc in water f, = 1-f,
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TCDD bigaccumulation equivalency factor
(BSAF ), (BAF)),
(BSAF )uss  (BAF)pu

(7)

(BEF )i =

B. Calculation of BAFs and TEC from BEFs

The ratio (equation 7) between each PCDD and PCDF congener’s BSAF to that of
TCDD wiill be called the TCDD bioaccumulation equivalency factor (BEF). Because
BAFs based on freely dissolved chemical in water (BAF") are directly proportional
to K,,, which varies among PCDDs and PCDFs, the BEF describes only the BAF
relative to TCDD on the basis of organic carbon bound chemical concentration in
water (BAF®). This assumes that the relative amounts of each PCDD and PCDF
congener in the organic carbon of surface sediments are the same as in suspended
organic carbon. The relationship between particulate organic carbon (POC},
dissolved organic carbon (DOC), K,, and f is presented in equation 6. the
importance of each chemical’s K,,, should be evident. The BEF can be used to
calculate (BAF}). and (BAF}Y).. (BAF!)s estimated from BEFs, under the condition of
similar sediment/water fugacity ratios for each chemical, may be used to predict
bioaccumulation by pelagic fish from estimated C!’ regardiess of site-specific
differences in chemical distribution between sediment and water.

BAF, = BAF\lf, (8)
b t
(BEF)' - (BAP;! )i = (BAFI‘)E (fb)xcdd (9)
(BAF))yag  (BAF )y (f);
SO,
(BAF,), = (BEP), (BAF) .yt (), (10)

AN
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and,

(BAF{ ), _ (BEF ) (BAF)pus () Uiduas (1)
(fﬂ)i (fﬂ)i (fb)w

(BAF{‘). =

because (f,)(fg)icaa/ (fra)ilfolicaa = (Kow)i/ (Kow)ecaa *

(BAFF), = (BEF), (BAF, )yss (Ko, (12)

A TCDD TEC can be calculated on the basis of wet tissue residue (TEC,) or lipid
normalized residue (TEC,); water concentration of total chemical (TEC") or freely
dissolved chemical (TEC"). When bioaccumulation is to be predicted on the basis
of freely dissolved chemical (C'?), the relative differences in BAF"s for PCDD and
PCDF congeners will be less than for their BAF's. This is because f, s for the
higher chlorinated, more hydrophobic congeners are less than f,, for TCDD. Since
the TEC is based on tissue concentration, TEC! = TEC! and TEC! = TEC!®. Thus
if (BAF}),.4q is the reference bioaccumulation factor:

15, - 3. [(Cﬁ“)i (BEF), (BAF®), (K,,); (TEF), 1)
(Kow)xdd

TEC, = ¥, (cf); (BEF), (BAFY),. (K,.); (TEF), (a)
(Kow)tcdd

TEC, = TEC, * f, (15)

C. Great Lakes BEFs

Lake Ontario sediment and fish residue data (Lodge et al., 1994} provide a basis
for calculation of BEFs. However, very few PCDDs and PCDFs measured as
sediment contaminants are detectable in fish tissue. The table below provides
estimated BEFs calculated from lake-wide average concentrations of toxicologically
important PCDDs and PCDFs in surface sediment and lake trout samples collected
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in 1987 for the EPA Region Il Lake Ontario TCDD Bioaccumulation Study. Lake
Ontario conditions in 1987 involve sediment as the principal source of these
chemicals to the water and food chain. The BSAFs if measured under conditions
of steady-state between external chemical loading, water, food chain and surface
sediment would be somewhat larger but BEFs should be similar. Lake Ontario
sediment cores also demonstrate that all PCDD and PCDF congener concentrations
have similar temporal trends during the past four decades and all have water

- column concentrations that are strongly controlied by sediment resuspension due
to large declines in loading from sources external to the lake. Limited comparison
to BEFs calculated from data obtained for other ecosystems confirms these
bioaccumulation potential differences and suggests that this BEF set would be
predictive of bioaccumulation differences for PCDDs and PCDFs for fish in
ecosystems outside the Great Lakes. Similar results are likely for other persistent
bioaccumulative organic chemicals such as PCBs and chlorinated pesticides.
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Table 1. TCDD Bioaccumulation equivalency factors (BEFs) derived for
toxicologically important PCDDs and PCDFs from lakewide averages of
concentrations in Lake Ontario lake trout and surface sediment in depositional

areas.
[ —

Congener log K,.* BSAF TCDD BEF
2,3,7,8-TCDD 7.02 0.059 1.0
1,2,3,7,8-PeCDD 7.50 0.054 0.92
1,2,3,4,7,8-HxCDD 7.80 0.018 0.3
1,2,3,6,7,8-HxCDD 7.80 0.0073 0.12
1,2,3,7,8,9-HxCDD 7.80 0.0081 0.14
1,2,3,4,6,7,8- 8.20 0.0031 0.051
HpCDD
OCDD 8.60 0.00074 0.0013
2,3,7,8-TCDF 5.80 0.047 0.80
1,2,3,7,8-PeCDF 6.5° 0.013 0.22
2,3,4,7,8-PeCDF 7.0° 0.095 1.6
1,2,3,4,7,8-PeCDF 7.5° 0.0045 0.076
1,2,3,6,7,8-HxCDF 7.5° 0.011 0.19
2,3,4,6,7,8-HxCDF 7.5° 0.040 0.67
1,2,3,7,8,9-HxCDF 7.5° 0.037 0.63
1,2,3,4,6,7,8- 8.0° 0.00065 0.011
HpCDF
1,2,3,4,7.8,9- 8.0° 0.023 0.39
HpCDF
OCDF 8.80 0.001 0.016

* Burkhard and Kuehl, 1987.

® Estimated based on degree of chiorination and Burkhard and Kuehl, 1987.
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D. Example of TEC Calculation Using the BEF Method

Projected PCDD and PCDF loadings to a Great Lake result in estimated water
concentrations (C!) of 0.0001, 0.0008, 0.0002, 0.0008 and 0.02 pg/ml for
2,3,7,8-TCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDD, 2,3,4,7,8-PeCDF and
1,2,3,4,6,7,8-HpCDD, respectively. The concentration of POC is 0.2 mg/L, DOC
is 2.0 mg/L, so the C!% for each congener are 0.00002, 0.0006, 0.000015,
0.00016, and 0.0003 pg/L, respectively. The BAF}¢ for TCDD is estimated to be
7.85x10°® and TEFs are 1.0, 0.1, 0.5 0.5 and 0.01 for each congener,
respectively. At 9% lipid (f,=0.09), the 2,3,7,8-TCDD BAF%,, = 7.07x10°. The
toxicity equivalency concentration (TEC) for fish with with f,=0.09 is
approximately:

TEC 4o, = (7.07x10°)[{0.00002)(1.0}{10.5x10%)(1.0)/10.5x10° +
(0.0006)(0.8)(0.63x10°)(0.1)/10.5x10° +
(0.000015)(0.92)(31.6x10°){0.5)/10.5x10° +
(0.00016)(1.6)(10x10°%){0.5)/10.5x10°® +
(0.0003){0.05)(158x10°)(0.01)/10.5x10°] = 14.4 + 20.4 + 1.6 + 0.86 + 1.6
= 38.8 pg TCDD eq./g wet fish.

In this hypothetical example 2,3,7,8-TCDD contributes 37% of the TEC.
Without use of the BEF approach (all BAF'S;,s = 7.07x10°), the TEC is calculated
tobe 14.4 + 42,4 + 0.5 + 5.7 + 21.2 = 84.2 pg TCDD eq./g wet fish with
TCDD contributing only 17%. The overestimation of bioaccumulation for TCDF,
PeCDF and HpCDD leads to a greater TEC estimate. Since there appears to be a
correlation between TEFs and BEFs (i.e. the more toxic congeners are the most
bioaccumulative, primarily due to slower rates of biotransformation), additional
data suitable for validating the BSAFs used to calcuiate the BEFs are needed.
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Vil. DERIVATION OF BAFs FOR TWENTY TWO CHEMICALS

Literature searches were conducted for data concerning K, laboratory-measured
BCFs, and field-measured BAFs for the chemicals. Additional information was
obtained from Burkhard (1994) and Cook (1994).

Kow

For most chemicals, the values that were found for K,,, were interpreted as
described in Appendix A, but for a few chemicals the values used by Burkhard
(1994) and Cook (1994) were used to allow comparison of results that were
calculated based on the same value for K,. The derivation of the best value of
Kow for each chemical is described in Appendix B.

ECM .
Values for the Food Chain Multipliers (FCMs) were obtained by rounding the best
value for log K., to one decimal digit and then using the FCM given by Burkhard

(1994) for trophic level 4.

BCF
Baseline BAFs were calculated from total BCFs given by Stephan (1993) using the
following equation (see Appendix C):

r -
Baseline BAF = [FCMI]I L ][BCFT !

(fi) () :

where
BCF; = a total BCF, i.e., a measured BCF that is based on the tota!

concentration of the chemical in the water and has not been lipid-

normalized.
feu = the fraction of the chemical in the water that is freely dissolved.
- 1
1+ (DOC) (Kow) + (POC)(Kyy)
10
f, = the fraction of the biota (with which the BCF was determined) that is
lipid.

Because POC and DOC were not measured in the bioconcentration tests, plausible
worst-case concentrations were assumed. The concentrations of POC and DOC
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were assumed to be 1 mg/L (0.000001 Kg/L) and 10 mg/L (0.00001 Kg/L),
respectively. When these values are used, f, can be calculated as:

1
1 + 2(K,,)(10°¢)

f!d -

BSAF
Calculations based on BSAFs directly result in baseline BAFs; the values used were
calculated by Cook (1994).

Field-measured BAFs

Most of the field-measured BAFs were calculated from the data of Oliver and Niimi
(1988) by Burkhard (1994); these calculations directly result in a baseline BAF.
When possible for other chemicals, baseline BAFs were calculated from field-
measured total BAFs given by Stephan (1993) using the following equation (see
Appendix C):

14
Baseline BAF =[—_1 (BAfT - 1

(fy) (f,) :

where
BAF; = a total BAF, i.e., a measured BAF that is based on the total

concentration of the chemical in water and has not been lipid-

normalized.
fia = the fraction of the chemical in the water that is freely dissolved.
- 1
1 + (DOC1)O(KOW) + (POC)H{Kyy)
f, = the fraction of the biota (with which the BAF was determined) that is
lipid.

The concentrations of POC and DOC were assumed to be 0.000000075 Kg/L and
0.000002 Kg/L, respectively, for Lake Ontario, based on data presented by Eadie
et al. (1990). Concentrations of POC and DOC in Lake Siskiwit were assumed to
be similar to those in Lake Superior, which were assumed to be 0.00000004 Kg/L
and 0.000002 Kg/L, respectively, based on data presented by Eadie et al. (1990).

The order of preference of the resulting baseline BAFs, from most preferred to least
preferred, is:

1. A measured BAF that was calculated from field data.

2. A predicted BAF that was obtained using BSAFs.
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3. A predicted BAF that was obtained by multiplying a measured BCF by a FCM.
4. A predicted BAF that was obtained by multiplying a predicted BCF by a FCM,
where Ko is used as the predicted BCF.

For some chemicals, Burkhard (1994) calculated field-measured baseline BAFs for
trophic level 3 (T. L. 3}, but could not calculate field-measured baseline BAFs for
trophic level 4 (T. L. 4) because the necessary data were not reported by Oliver
and Niimi (1988). For these chemicals a value for the baseline BAF for trophic
level 4 can be calculated as:

(Baseline BAF for T. L. 3)(FCM for T. L. 4)

Baselii AF for T. L. 4 =
aseline BAF for (FCM for T. L. 3)

If more than one equally preferred value is available for a baseline BAF using the
same method, the geometric mean of the values is the preferred value. The
available baseline BAFs are given in Table 1.

After sufficient baseline BAFs were calculated for a chemical, the preferred
baseline BAF was used to calculate a desired human health or wildlife BAF)S,

using the equation (see Appendix C):

BAF/%, = 1 + (f,)(baseline BAF)

where / = f, x 100 and values of 0.05 and 0.079 were used for-f, for human
health and wildlife, respectively.

To calculate a plausible worst-case value for BAF',, for each chemical, the Koy

of the chemical was used with estimated concentrations of POC and DOC in Lake
Superior (0.00000004 Kg/L and 0.000002 Kg/L, respectively, based on data
presented by Eadie et al. 1990) to calculate f,,, which was then used in the
following equation:

BAF{x, = (BAF[3,)(fy)

BAF/ 4, .
is the BAF that is appropriate for derivation of the criterion.
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For mercury, the derivation of values for BAF/y, for trophic levels 3 and 4 for

human health and wildlife is described in Appendix D.

The resulting values of BAF/%,and BAF},are given in Table 2.
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Appendix A. Derivation of the Value of Log K, for an Organic Chemical

A valid Ky can be experimentally determined only for an individual chemical; it is
not possible to experimentally determine a valid Ky, for a substance that is a
mixture, such as toxaphene, PCBs, and chlordane. A value for K., can be
assigned to a mixture either by assigning the value for a major component or by
assigning an average of the values for several major components. The arithmetic
average of values of log K,,, can be used, or the geometric mean of vaiues of K,
can be used.

Values were used only if they were obtained from the original authors or from a
critical review that supplied sufficient information. A Med-Chem Star value was
only of concern if the original reference for the value had not been obtained.

Because of potential interference due to radioactivity associated with impurities,
values that were determined by measuring radioactivity in water and/or octanol
were considered less reliable and were moved down one step in the priority below
values that were determined using the same technique but were quantified using
other methods.

The shake-flask technique has been reported to be acceptable only for chemicals
whose Kyys are less than 4 (Karickhoff et al. 1979; Konemann et al. 1979;
Braumann and Grimme 1981; Harnisch et al. 1983; Brooke et al. 1990). Brooke et
al. (1986) compared techniques and decided that the shake-flask technique is
acceptable for chemicals whose Kys are less than 5, whereas Chessells et al.
(1991) stated that this technique is acceptable for values of log K,y up to about
5.5.

Values of Ky, were given priority based on the technique used as follows:

Kow < 4: Priority Technigue

1 Slow-stir

1 Generator-column

1 Shake-flask

2 Med-Chem Star value

3 Reverse-phase liquid chromatography on C18 with
extrapolation to zero percent solvent _

4 Reverse-phase liquid chromatography on C18 without
extrapolation to zero percent solvent

5 Predicted by the Med-Chem program
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Kow > 4:  Priority Technique
1 Slow-stir
1 Generator-column
2 Reverse-phase liquid chromatography on C18 with

extrapolation to zero percent solvent

Reverse-phase liquid chromatography on C18 without
extrapolation to zero percent solvent

Shake-flask

Med-Chem Star value

Predicted by the Med-Chem program

oo b W

Values that seemed to be different from the rest were considered outliers and were
not used.

For each chemical the available value of Log K,y with the highest priority was
considered the best value, except that if more than one such value was available,
the arithmetic mean of those values was used as the best value.
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Appendix B. Derivation of Values of Log K, for Twenty-two Chemicals

The priorities of the methods for determining log Ko are presented in Appendix A.

BENZENE

The values that have the highest priorities are:
2.11 Shake-flask Karickhoff et al. 1979
2.13 Generator-column Miller et al. 1985
2.19 Slow-stir de Bruijn et al. 1989
The mean is 2.14 and is the best value.

CHLORDANE

The value that has the highest priority is:

6.00 RPLC Veith et al. 1979
The value of 5.54 was used because it was used by Burkhard (1994) and Cook
(1994).

CHLOROBENZENE

The values that have the highest priorities are:

2.90 Slow-stir Brooke et al. 1990
2.78 Slow-stir Brooke et al. 1990
2.98 Generator-column Miller et al. 1985
2.80 Shake-flask Voice et al. 1983
2.90 Slow-stir de Bruijn et al. 1989

. The mean is 2.87 and is the best value.

CYANIDE

A vaiue of log K,y was not used for cyanide.
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DDT
The values that have the highest priorities are:
6.20 Slow-stir Brooke et al. 1986
6.31 Slow-stir Brooke et al. 1990
6.91 Slow-stir Brooke et al. 1990
6.38 Slow-stir Stancil 1994
6.91 Slow-stir de Bruijn et al. 1989

The value of 6.91 was used because it was used by Burkhard {1994) and Cook
(1994).

DEHP
The values that have the highest priorities are:
7.14 Slow-stir Brooke et al. 1990
7.45 Slow-stir Brooke et al. 1990
7.45 Slow-stir de Bruijn et al. 1989

The mean is 7.35 and is the best value.

DIELDRIN
The values that have the highest priorities are:
4.54 Slow-stir Brooke et al. 1986
5.34 Slow-stir Stancil 1994
5.40 Slow-stir de Bruijn et al. 1989

The value of 5.4 was used because it was used by Burkhard (1994) and Cook
(1994).

2.4-DIMETHYLPHENOL
The value that has the highest priority is:

2.42 Shake-flask Banerjee et al. 1980
This is the best value.
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2.4-DINITROPHENOL

The value that has the highest priority is:
1.50 Consensus Klein et al. 1988
This is the best value.

HEPTACHLOR
The values that have the highest priorities are:
5.27 RPLC McDuffie 1981
5.44 RPLC Veith et al. 1979

The mean is 5.36 and is the best value.

HEXACHLOROBENZENE

The values that have the highest priorities are:
5.47 Generator-column Miller et al. 1985
5.73 Slow-stir de Bruijn et al. 1989
The value of 5.73 was used because it was used by Burkhard (1994) and Cook

(1994). ‘

HEXACHLORQETHANE

The values that have the highest priorities are:

4.04 RPLC McDuffie 1981
4.05 RPLC Veith et al. 1980
4.14 Shake-flask Chiou 1985
3.93 Shake-flask Veith et al. 1980

These values are close to 4, and the range of the four values is small. The mean
of the four values is 4.04 and is the best value.
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LINDANE
The values that have the highest priorities are:
3.69 Slow-stir de Bruijn et al. 1989
3.32 Shake-flask Platford 1981

The value of 3.69 was used because it was used by Burkhard (1994) and Cook
(1994).

MERCURY

A value for log Ky was not used for mercury.

METHYLENE CHLORIDE

The value that has the highest priority is:
1.25 Calculated Med-Chem
This is the best value.

PCBs

Based on data reported by Schuiz et al. (1989), congeners 8, 18, 28, 31, 52,
95, 101, 118, 149, and 153 were selected as being the most prevalent.
Burkhard (1994) calculated field-measured BAFs for nine of these, but field data
were not available for congener 8. The arithmetic average of the values of log
Kow given by Burkhard (1994) for the nine congeners is 6.14 and is the best
value.

PENTACHLOROPHENOL

The values that have the highest priorities are:
5.08 RPLC Miyake and Terada 1982
5.01 RPLC Veith et al. 1979

The mean of these is 5.04 and is the best value.
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2.3,7.8-TCDD
The value that has the highest priority is:
7.02 RPLC Burkhard and Kuehl 1986

This is the best value.

TOLUENE

The values that have the highest priorities are:
2.65 Generator-column Miller et al. 1985

2.79 Slow-stir de Bruijn et al. 1989
2.63 Slow-stir Brooke et al. 1990
2.79 Slow-stir Brooke et al. 1990

The mean of these is 2.72 and is the best value.

TOXAPHENE

The value that has the highest priority is:
4.33 Calculated Med-Chem
This is the best value.

1,2,4-TRICHLOROBENZENE

The values that have the highest priorities are:
3.98 Generator-column Miller et al. 1985

4.05 Slow-stir de Bruijn et al. 1989
3.93 Shake-flask Konemann et al. 1979
4.02 Shake-flask Chiou et al. 1982

These values are close to 4 and the range of the four values is small. The mean
of the four values is 4.00 and is the best value.
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TRICHLORQETHYLENE

The values that have the highest priority are:

2.42 Shake-flask Banerjee et al. 1980
2.53 Generator-column Miller et al. 1985
3.14 Shake-flask Harnisch et al. 1983

The last value is considered an outlier. The mean of the other two is 2.48 and
is the best value.
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Appendix C. Derivation of BAFs for Organic Chemicals

PREDICTING BCFs FOR LOW K,, CHEMICALS

The procedures discussed above for estimating bioaccumulation factors were
developed for highly lipophilic organic chemicals for which accumulation is closely
associated with the lipid of an organism. In order to extend these methods to less
lipophilic chemicals, it is necessary to accommodate cases in which accumuilation
is not dominated by partitioning into lipid. Because weakly lipophilic chemicals are
not significantly accumulated via food, bioaccumulation factors are equai to
bioconcentration factors. Thus, this discussion can be restricted to the question
of predicting steady-state bioconcentration factors based on K,,, or extrapolations
from other organisms.

An organic chemical accumulated by an organism associates with various
components of the organism; some chemical in the organism is dissolved in its
water; some is partitioned into membranes, fat deposits, and other lipid material;
and some may be bound to various nonlipid organic material. An organic chemical
with Kow = 1 will distribute among water and different organic phases with similar .
concentrations, so that a steady-state bioconcentration factor will be
approximately 1 in the absence of metabolism and significant growth dilution.
More hydrophilic chemicals will also have bioconcentration factors of the order of
one because water is the predominant component in an organism. More lipophilic
chemicals will have larger bioconcentration factors because there would be an
increased concentration in the organic components relative to water.
Bioconcentration factors should therefore be described in terms of two
components: an aqueous portion that is approximately 1 and an organic portion
which is the product of the amount of organic components and the affinity of the
chemical for organic matter relative to water. Lipid will be the most important
organic component unless there are important specific binding reactions or very
low lipid content. An approximate general equation for bioconcentration factors is
therefore:

BCF=1+1f1"-A

where 1 represents the contribution of the organisms aqueous phase to the BCF
and f,- A represents the contribution of the organic components, the fraction lipid
f, being the quantity of the dominant organic component and A being a measure of
the affinity of the chemical for lipid relative to water.
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Prediction of BCF from K,w

A predicted equilibrium BCF that is applicable to weakly lipaophilic hydrophobic
chemicals as well as strongly lipophilic chemicals can therefore be based on the
two-term equation:

BCF =1 + £, Kou

where the octanol:water partition coefficient K, is the prediction for the affinity of
the chemical to the lipid. For the methods for highly lipophilic chemicals discussed
above, the aqueous term in this equation ("1") can be ignored because it is so
much smaller than the organic term, but for weakly lipophilic chemicals it cannot
be ignored. This equation omits the finer details of chemical distribution within an
organism, but it provides a useful approximation than can be applied to a range of
chemicals. Because exposure via fish consumption contributes little to the overall
risk from weakly lipophilic chemicals, the errors in this approximation are of little
real consequence for these chemicals.

Extrapolation of BCF among organism
For highly lipophilic chemicals the aqueous portion of accumulation is usually

negligible. Therefore, for these chemicals lipid-normalization of a bioconcentration
factor provide an estimate for the affinity of the chemical for the lipid fraction:

A BCF for organism "2" can then be estimated by multiplying this lipid affinity by
its lipid content and then adding 1:

BCF, =~ 1 + f,, A
Again, this treatment is approximate and ignores various aspects of accumulation,

but for weakly lipophilic chemicals approximate values should suffice because
exposure via fish consumption is an unimportant source of risk.
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Appendix D. Derivation of Values for BAF for Mercury

The following rationale is a revision of that used in the derivation of the GLI BAF

for mercury dated 3-3-93.

a. In the Gobas model, which is used in the derivation of BAFs and FCMs for
organic chemicals, only bioconcentration applies to trophic levels 1 and 2,
whereas biomagnification occurs between trophic levels 2 and 3 and
between trophic ievels 3 and 4. Watras and Bloom (1992) found that
with mercury, biomagnification occurred between trophic levels 1 and 2
and between trophic levels 2 and 3. Watras and Bloom {1992) only
studied trophic levels 1, 2, and 3, but a substantial amount of data from
other investigators shows a consistent predator-prey factor between
fishes. Thus the model used here will provide for bioconcentration at
trophic level 1, and biomagnification at trophic levels 2, 3, and 4.

b. The BCFs for inorganic mercury and methylmercury will remain at 2,998
and 52,175, respectively.
c. Based on the data of Gill and Bruland (1990}, it will be assumed that, on

the average, 17 percent of the total mercury in the Great Lakes is
methylmercury and that 83 percent is inorganic mercury. Thus the
weighted average BCF is: (0.17)(52,175) + (.83)(2,998) = 11,358.
Based on data for phytoplankton, Watras and Bloom (1992) obtained a
BCF of about 25,000 for total mercury at a pH of 6.1.

d. The data of Watras and Bloom (1992) show an increase of about a factor
of 2 from trophic level 1 to trophic level 2, and an increase of about a
factor of 1.26 from trophic level 2 to trophic level 3.

e. A variety of studies have found predator-prey factor increases in total
mercury in fish from 1.2 to 15, with a mean of about 5.

f. Use of these factors results in:

(11,358)(2.00}) = 22,716
(22,716)(1.26) = 28,622
(28,622)(5.00) = 143,110

g. Bloom (1992) concluded that "for all species studied, virtually all {>95%)
of the mercury present is as CH;Hg and that past reports of substantially
lower CH,Hg fractions may have been biased by analytical and
homogeneity variability”. Therefore, it will be assumed that 97.5 percent
of the mercury in fish in the Great Lakes is methylmercury:

(28,622)(0.975) = 27,906
(143,110){0.975) = 139,532
h. It appears that BCFs and BAFs based on whoie body and edibie portion shouid
be similar for mercury. Thus for a specific trophic level, the human health and
wildlife BAFs will be the same.
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i. This derivation indicates that for total mercury in the water column the values
of BAF«for human health and wildlife should be:

Trophic level BAF
3 27,900
4 140,000

The difference between trophic levels 3 and 4 is important.

A. Comparison of field-measured BAFs for mercury with the BAFs derived above
must properly identify the trophic level of the aquatic biota used in the
determination of the field-measured BAF. If field-measured BAFs are compared
to the BAF derived for trophic level 4, the field-measured BAFs must have been
determined with aquatic biota that are in trophic level 4. Many of the field-
measured BAFs for mercury have been determined with aquatic biota that is in
trophic level 3. It might also be necessary to account for a different percent
methylmercury in the water column. In addition, the age of the fish is
probably important because the concentration of mercury in fish seems to
increase consistently with age without showing signs of leveling off.

B. If the aquatic biota consumed by humans and wildlife is incorrectly assigned to
too high a trophic level on the average, the resulting criteria will be
unnecessarily low, but not because the derived BAFs for mercury are too high.
For example, if all the consumed food is assumed to be trophic level 4, the
BAF used to derive the criterion will be 139,532. If, however, the consumed
food is actually a 1:1 combination of trophic levels 3 and 4, the BAF used to
derive the criterion will be 62,400.

C. Identification of the trophic level of some species of fish must take into
account the age and/or size of the specific organisms of concern. Some
species of fish are in trophic level 3 when they are young, but are in trophic
level 4 when they are older. The trophic level might also vary from one body
of water to another, depending on the food chain. With both humans and
wildlife, knowing the species consumed is not necessarily sufficient to allow an
accurate identification of the trophic level of the consumed food.
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