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NOTICES

This document has been reviewed by the Criteria and Standards Division, Office
of Water Regulations and Standards, U.S. Environmental Protection Agency, and
approved for publication.

Mention of trade names or commercial products does not constitute endorsement
or recommendation for use.

This document is available to the public through the National Technical
Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161.
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FOREWORD

Section 304(a)(1l) of the Clean Water Act requires the Administrator of
the Environmental Protection Agency to publish water quality criteria that
accurately reflect the latest scientific knowledge on the kind and extent of
all identifiable effects on health and welfare that might be expected from the
presence of pollutants in any body of water. Pursuant to that end, this
document proposes water quality criteria for the protection of aquatic life.
These criteria do not involve consideration of effects on human health.

This document is a draft, distributed for public review and comment.
After considering all public comments and making any needed changes, EPA will
issue the criteria in final form, at which time they will replace any
previously published EPA aquatic life criteria for the same pollutant.

The term "water quality criteria" is used in two sections of the Clean
Water Act, section 304(a)(l) and section 303(c)(2). 1In section 304, the term
represents a non-regulatory, scientific assessment of effects. Criteria
presented in this document are such scientific assessments. If water quality
criteria associated with specific stream uses are adopted by a State as water
quality standards under section 303, then they become maximum acceptable
pollutant concentrations that can be used to derive enforceable permit limits
for discharges to such waters.

Water quality criteria adopted in State water quality standards could
have the same numerical values as criteria developed under section 304.
However, in many situations States might want to adjust water quality criteria
developed under section 304 to reflect local environmental conditions before
incorporation into water quality standards. Guidance is available from EPA to
assist States in the modification of section 304(a)(1l) criteria, and in the
development of water quality standards. It is not until their adoption as
part of State water quality standards that the criteria become regulatory.

Martha G. Prothro
Director
Office of Water Regulations and Standards
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Introductio

The chemicals commonly known as phthalates are esters of phthalic acid
(1,2-benzenedicarboxylic acid). Phthalates are widely used inm the manufacture
of plastics. Phthalates are interfused with high molecular weight polymers to
increase flexibility, extensibility, and workability of the plastic. It is a
major constituent of polyvinyl chloride (PVC) (Daniel 1978; Graham 1973).
Di-2-ethylhexy! phthalate (DEHP), also known as bis(2-ethylhexyl) phthalate,
is the most produced phthalate (U.S. EPA 1980). The term dioctyl phthalate
(DOP) is sometimes used to refer to di-n-octyl phthalate, but is sometimes
also used to refer to DEHP; the term DEHP only will be used herein.

DEHP is a component of many products found in homes and automobiles as
well as in the medical and packaging industries. Its wide use and
distribution, as well as its high volatility and persistence, lead to its
common occurrence in fish, water, and sediments (Burns et al. 1981; Corcoran
1973; Glass 1975; Hites 1973; Lindsay 1977; Mayer et al. 1972; Morris 1970;
Petersen and Freeman 1982; Ray et al. 1983; Swain 1978; Williams 1973; Zitko
1922.1973). DEHP has been detected in precipitation upon the remote Enewetok
Atoll in the North Pacific Ocean (Atlas and Giam 1981). It occurs in
sediments of Chesapeake Bay in concentration gradients proportional to the
annual production of the compound (Peterson and Freeman 1982).

The reported values of the solubility limit of DEHP range from 50 to
1,300 ug/L; however, some of the best estimates of solubility are
360 pg/L (Biesinger et al., Manuscript) and 400 ug/L (Wolfe et al.

1980). The reported values of the log octanol-water partition coefficient
range from 4.2 to 8.7 (Callahan et al. 1979; Fishbein and Albro 1972; Leyder
and Boulanger 1983; Patty 1967).

Persistence of DEHP has been measured in freshwater hydrosoils (Johnson

and Lulves 1975). Under aerobic conditions, the half-life was 14 days,
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whereas no degradation was observed in 30 days under anaerobic conditions.
Wolfe et al. (1980a) found very little transformation and volatilization of
DEHP in several computer simulated ecosystems.

A comprehension of the "Guidelines for Deriving Numerical National Water
Quality Criteria for the Protection of Aquatic Organisms and Their Uses”
(Stephan et al. 1985), hereinafter referred to as the Guidelines, and the
response to public comment (U.S. EPA 1985a) is necessary to understand the
following text, tables, and calculations. Results of such intermediate
calculations as recalculated LC50s and Species Mean Acute Values are given to
four significant figures to prevent roundoff error in subsequent calculations,
not to reflect the precision of the value. The criteria presented herein
supersede previous national aquatic life water quality criteria for DEHP (U.S.
EPA 1976,1980) because these new criteria were derived using improved
procedures and additional information. The latest comprehensive literature

search for information for this document was conducted in February, 1986; some

more recent information was included.

Acute Toxicity to Aquatic Animals

Some data that are available on the acute toxicity of DEHP are useable
according to the Guidelines in the derivation of Final Acute Values (FAV) for
DEHP (Table 1). In only four of twenty-one acute tests with freshwater animal
species was enough toxicity observed to permit calculation of an acute value.
In a 48-hr exposure of Daphnia magna the acute value was 11,000 ug/L
(LeBlanc 1980). Adams and Heidolph (1985) obtained a 48-hr EC50 of
2,000 pg/L with the same species. Cary et al. (Manuscript) reported LC50s
of 240,000 ug/L for an amphipod and 2,100 ug/L for larvae of a midge.

In the other seventeen freshwater tests with five invertebrate species and
five fish species little or no toxicity was observed at the highest tested
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concentrations, which ranged from 89 to 1,500,000 pg/L. In addition, DEHP
was not lethal to the nonresident amphipod, Gammarus pulex, at concentrations
up to 400 pg/L (Stephenson 1983).

The acute toxicity of DEHP has been determined with three species of
saltwater animals (Table 1). No effects were detected at 300,000 ug/L with
the harpacticoid copepod, Nitocra spinipes (Linden et al. 1979) nor at
550,000 ug/L with the sheepshead minnow, Cyprinodon variegatus (Heitmuller
et al. 1981). DEHP concentrations as high as 450 ug/L were not lethal to
larvae of the grass shrimp, Palaemonetes pugio (Laughlin et al. 1978).

Because so few quantitative Species Mean Acute Values are available for
freshwater and saltwater species, the procedure described in the Guidelines
cannot be used to calculate Final Acute Values. However, the data strongly
suggest that acute toxicity does not occur at concentrations below the water
solubility of DEHP (400 ug/L). The only uncertainties in this assessment
are the two species, Hydra oligactis and Lumbriculus variegatus, for which the
highest concentration tested was 89 ug/L. However, thére is no reason to
believe that these two species would have been affected by concentrations up
to 400 ug/L. The Criterion Maximum Concentration for both fresh and salt
water is set at 400 ug/L, although it is possible that even higher
concentrations of DEHP woéuld be acutely toxic to few, if any, species of

freshwater or saltwater fish or invertebrates.

Chronic Toxicity to Aquatic Animalg

Several tests have been conducted that are useable according to the
Guidelines concerning the chronic toxicity of DEHP (Table 2). Four life-cycle

tests have been conducted with the cladoceran, Daphnia magna. In the first

test, all tested concentrations, including the lowest of 3 ug/L, inhibited



reproduction by at least 60% (Mayer and Sanders 1973; Sanders et al. 1973). A

comparable acute test was not conducted. Brown and Thompson (1982) found that

concentrations up to 107 ug/L did not reduce survival or reproduction of D. .
magna. Adams and Heidolph (1985) reported that 1,300 ug/L significantly

reduced survival and reproduction, whereas 640 ug/L did not. The chronic

value was 912.1 ug/L. Because these authors did not conduct an acute test

in the dilution water in which their chronic test was conducted, their -
acute-chronic ratio of 2.20 cannot be used. In the fourth test (Knowles et
al. 1987), survival and reproduction were significantly reduced at

811 ug/L, but not at 158 ug/L. The chronic value was 358.0 ug/L.

The early report that DEHP causes chronic toxicity to D. magna at
concentrations of 3 ug/L appears to be in error because three other tests
found that concentrations above 100 ug/L did not affect survival or
reproduction.

Streufert and Sanders (1977) and Streufert et al. (1980) exposed midge

larvae to DEHP for 35 days until emergence and then observed the animals until ‘
eggs were produced and hatched. The highest concentration tested
(360 ug/L) increased emergence by 1%, reduced the total number of eggs by
15%, and reduced hatchability by 2%. At 200 ug/L, emergence was increased
by 5%, the total number of eggs was increased by 56%, and hatchability was
decreased by 3%. Since the authors found none of these effects to be
significant, the chronic value was > 360 ug/L, and an acute-chronic ratio
cannot be calculated.
Three eafly life-stage tests have been conducted on DEHP with fish.

Mehrle and Mayer (19768) exposed rainbow trout, Salmo gairdneri, embryos and

fry for 100 days. No significant effects occurred in the embryos or in fry

older than 24 days. However, fry between hatching and 24 days of age had a



significant increase in mortality at a DEHP concentration of 14 ug/L. The
calculated chronic value was 8.368 ug/L. However, Spehar (1986) exposed
rainbow trout embryos and fry to DEHP for 90 days. The average test
concentrations ranged from 49 to 502 pg/L and no significant effects were
observed on embryo hatchability, larval or early juvenile survival or growth.

The very low values for both D. magna and rainbow trout were obtained in
the same laboratory at about the same time. Subsequently, much higher values
have been obtained in this and three other laboratories with these two
species.

In a 32-day early-life stage test with the fathead minnow, Pimephales
promelas, survival was reduced 1% by 23,800 ug/L and was reduced 32% by
42,400 ug/L (Horne et al. 1983). The mean weight of the fish in the
control treatment at the end of the test was rather low, but the data indicate
that the weight was higher Fhan controls at 23,800 ug/L, but was reduced
16% by 42,400 ug/L. Higher concentrations of DEHP caused even greater
.reductions in survival and weight. fhe chronic value was 31,770 ug/L, and
the acute-chronic ratio was greater than 34.82.

No acceptable chronic tests have been conducted on DEHP with a saltwater
species.

Useful chronic values are available for four freshwater species and no
saltwater species. The chronic value for Daphnia magna is in the range of
358.0 to 912.1 ug/L and the midge chronic value was greater than
360 ug/L. The chronic values for the fathead minnow and rainbow trout are
much higher, 31,770 and greater than 502 ug/L, respectively. The only
information available concerning the acute-chronic ratio for DEHP is greater
than 34.82 for the fathead minnow. Acute-chronic ratios are not very useful,

because DEHP is not acutely toxic enough to allow determination of a



quantitative Final Acute Value. Since DEHP does not ionize in water, it

is assumed that it is equally toxic to freshwatér and saltwater species.
Because the lowest tested reliable chronic value is 358 ug/L and it is with
a sensitive species, the freshwater and saltwater Final Chronic Values are

identical and set at 358.0 ug/L.

Toxicity to Aguatic Plants

Richter (1982) exposed a green alga, Selenastrum capricornutum, for five
days to concentrations up to 410 ug/L, which was assumed to be the
solubility limit of DEHP in the dilution water. The highest test concentra-
tion did not cause 'a 50% reduction in growth (Table 3). Davis (1981) .
conducted seven static tests with the duckweed, Lemna gibba, to study the
effect of DEHP on frond production. The EC50s ranged from 408,000 to -
7,492,000 ug/L, and the mean ECS50 was 2,060,000 ug/L. A test with the

saltwater diatom, Gymnodinium breve, resulted in a 96~hr EC50 of

31,000,000 ug/L (Nilson et al. 1978).
A Final Plant Value, as defined in the Guidelines, cannot be obtained
because no test in which the concentrations of DEHP were measured resulted in

- an adverse effect.

Bioaccumulation

Uptake of DEHP directly from water has been studied with a variety of
freshwater species. Results of exposures that lasted for at least 28 days and
results of tests in which the concentrations in tissue were shown to have
reached steady-state are presented in Table 4; other results are presented in
Table 5. All exposures were conducted with radiolabeled DEHP and the results

are based on measurements of 14C in water and in tissue.




Mayer (1978) determined the percentage composition of DEHP and its
metabolites in fathead minnows after 56 days of-exposure to several
concentrations. DEHP ranged from 33 to 79% and was inversely related to the
concentration in water. The principal metabolite was 2-ethylhexyl phthalate.
Tests with invertebrates resulted in bioconcentration factors (BCFs) ranging

from 14 for an isopod, Asellus brevicaudus, to 3,600 for an amphipod, Gammarus

pseudolimnaeus. Fish bioconcentrated 14c_)abeled DEHP from 114 to 1,380
times. Fathead minnows showed a wide range of BCFs with a consistent inverse
relationship between concentration in water and BCF (Mayer 1976; Mehrle and
Mayer 1976). -

BCFs for the soft tissues of M. edulis exposed to 4.1 and 42.1 ug/L for

28 days in salt water were 2,366 and 2,827, respectively (Brown and Thompson
1982). -
No U.S. FDA action level or other maximum acceptable concentration in
tissue, as defined in the Guidelines, is available for DEHP, and, therefore no

Final Residue Value can be calculated.

Other Data

Additional data concerning the lethal and sublethal effects of DEHP on
aquatic species are presented in Table 5. A green alga showed a reduction of
chlorophyll fluorescence after a two-hour exposure to 410 pg/L. Cary et
al. (Manuscript) reported that 207,000 pg/L did not reduce survival of
brook trout exposed for 144 hr. Exposure of the same species to 3,000 ug/L
for eight months had no effect on survival, growth rate, or spawning success.
Cary et al. (Manuscript) also exposed bluegills to high concentrations of
DEHP. A 9-day exposure to 1,175,000 ug/L killed less than 50% of the

fish. Exposure of bluegills for 90 days to 2,040 ug/L caused no adverse



effects on survival, growth, or spawning success. In the tests conducted by
Cary et al. (Manuscript), no effects on brook t;out or bluegills were observed
even though the fish were exposed to concentrations of Triton X-100 that were
to 5 to 8% of the concentrations of DEHP. Mehrle and Mayer (1976) observed no
effect on survival or growth of fathead minnows during exposure to 62 ug/L

for 56 days.

Collagen synthesis was reduced in the vertebrae of brook trout exposed to
3.7 ug/L for 150 days (Mayer et al. 1977). They found the same effect in
rainbow trout exposed for 90 days to 14 ug/L and fathead minnows exposed
for 127 days to 11 ug/L. The heart-beat rate of goldfish was reduced when
the fish were exposed to 200,000 ug/L for 10 minutes (Pfuderer and Francis
1975; Pfuderer et al. 1975). Geyer et al. (1981,1984) reported a 24-hour BCF
of 5,400 for a green alga (Table 5). Cladocerans exposed for 7 days had BCFS
of 1,040 (Sanders et al. 1973) and 420 (Mayer and Sanders 1973). Mayflies had
BCFs of 460 and 575 in 7-day tests (Table 5).

The fate and effects of !#C-labeled DEHP were studied in a saltwater
microcosm during 30-day experiments in the winter and summer (Perez et al.
1983). Ammonia flux from the benthic subsystem was reduced during the summer
at a average temperature of 18°C in microcosms in which the DEHP
concentration averaged 15.5 pug/L. A similar effect was not observed at
58.9 ug/L in the winter at an average temperature of 1°C. Average

concentrations of DEHP in the molluscs, Pitar morrhuana and Mulinia lateralus,

from the sediment compartment were 1,767 times the concentration in the
overlying water and BCFs for the zooplankter Acartia sp. averaged 2,659 (Perez
et al. 1983). Values for these three species differed little between tests
run in the winter and summer. In contrast, BCFs for two infaunal polychaetes,

Nucula annulata and Nepthys incisa, averaged 89.2 and 1,420 in the winter and

summer experiments, respectively.




A steady-state BCF of 637 was predicted from uptake and depuration
kinetics of DEHP in sheepshead minnows, Czprinoaon variegatus (Karara and
Hayton 1984). [In contrast, DEHP was not detected at 2 mg/kg in the tissues of
post-larval grass shrimp exposed for 25 to 28 days to mean meagured

concentrations of 62 to 450 ug/L (Laughlin et al. 1978).

Unused Data

Some data concerning the effects of DEHP on aquatic organisms and their
uges were not used because the tests were conducted with species that are not
resident in North America (e.g., Stephenson 1983). Results (e.g., Sugawara
1974) of tests conducted with brine shrimp, Artemia sp., were not used because
these species are from a unique saltwater environment. Biddinger and Gloss
(1984), Davies and Dobbs (1984), Environment Canada (1983), Johnson et al. =
(1977), Neely (1979), Peakall (1975), Thomas and Northrup (1982), Thomas and
Thomas (1984), Thomas et al. 1978; and Veith et al. (1979) compiled data from
other sources.

Results were not used when the test procedures or results were not
adequately described (Group 1986; Parker 1984; Streufert and Sanders 1977).
Tests conducted without controls were not used (Heitmuller et al. 1981).

Data were not used when DEHP was a component of an effluent or sediment
(Horning et al. 1984; Larsson and Thuren 1987; Pickering 1983; Woin and
Larsson 1987). The concentration of dissolved oxygen was too low in the test
chambers in a test conducted by Silvo (1974). Studies were not used when the
test chemic;l was reported as dioctylphthalate (Birge et al. 1978,1979; Black
and Birge 1980; McCarthy et al. 1985; McCarthy and Whitmore 1985). Results of
tests (e.g., Cary, Manuscript; Dumpert and Zietz 1984; Zitko 1972), in which

the concentration of surfactant or organic solvent was too high were not used.



Reports of the concentrations of DEHP in wild aquatic organisms (DeVault
1985: Glass 1975; Kaiser 1977; Lindsay 1977; Mu}ray et al. 1981; Musial et al.
1981; Ray and Giam 1984; Ray et al. 1983; Swain 1978; Williams 1973; Zitko
1973) were not used to calculate BCFs if the number of measurements of DEHP in
water was too low or if the range of the concentration in water was too high.
Studies of the metabolism of DEHP in aquatic organisms were not used
(Henderson and Sargent 1983; Lech and Melancon 1980; Melancon and Lech
1976,1977,1979; Melancon et al. 1977; Stalling et al. 1973). Results of
laboratory bioconcentration tests were noé used when the test was not
flow-through or renewal (e.g., Karara et al. 1984; Wofford et al. 1981). BCFs
obtained from microcosm or model ecosystem studies were not used when the‘
concentration of DEHP in water decreased with time (Metcalf 1975; Metcalf et

al. 1973; Sodergren 1982). -

Summary

Data on the acute toxicity of DEHP are available for twelve species of
freshwater animals. The lowest reported acute value of 2,100 ug/L was
obtained with a midge. Higher concentrations were not acutely toxic to most
species, but the high tested concentration was only 89 ug/L in tests with
two species. Chronic toxicity tests have been conducted with four species of
freshwater animals, and conflicting results have been obtained with two of the
species. The chronic value for Daphnia magna is in the range of 358.0 to
912.1 ug/L and the midge chronic value is greater than 360 ug/L. The
chronic values for the rainbow trout and fathead minnow seem to be higher.

The green alga, Selenastrum capricornutum, was not affected by
410 ug/L. The EC50s determined with duckweed ranged from 408,000 to

7,492,000 ug/L. Bioaccumulation has been determined with a variety of
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freshwater species using 14c_1abeled DEHP. Invertebrate studies resulted in
BCFs ranging from 14 for an isopod to 3,600 for an amphipod. Fish
bioconcentrated DEHP from 114 to 1,380 times. Fathead minnows showed a wide

range of BCFs with a inverse relationship between concentration in water and

BCF.
The only data available on the acute toxicity of DEHP to saltwater animals

shows that it was not acutely lethal to the harpacticoid copepod, Nitocra

spinipes, at 300,000 ug/L nor to larval grass shrimp, Palaemonetes pugio,

at 450 ug/L. Survival and development of P. pugio were not affected after

25 to 28 days in DEHP concentrations < 450 pg/L. Ammonia flux from

sediments in microcosms was reduced after 30 days at 15.5 ug/L in the

summer but not at 58.9 ug/L in the winter. BCFs averaged 89.2 in the

winter and 1,420 in the summer for the polychaetes Nucula annulata and Nepthys

incisa, 2,659 for the zooplankter Acartia sp., and for molluscs averaged 2,496

for Mytilus edulis, 881 for Pitar morrhuana and 2,560 for Mulinia lateralus.

For the fish, Cyprinodon variegatus, the predicted BCF was 637.

National Criteria

The procedures described in the "Guidelines for Deriving Numerical
National Water Quality Criteria for the Protection of Aquatic Organisms and
Their Uses” indicate that, except possibly where a locally important species
is very sensitive, freshwater and saltwater aquatic organisms and their uses
should not be affected unacceptably if the four-day average concentration of
di-2-ethylhexyl phthalate does not exceed 360 ug/L more than once every
three years on the average and if the one-hour average concentration does not

exceed 400 pg/L more than once every three years on the average.
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Implementation
As discussed in the Water Quality Standards Regulation (U.S. EPA 1983a)

and the Foreword to this document, a water quality criterion for aquatic life
has regulatory impact only after it has been adopted in a state water quality
standard. Such a standard specifies a criterion for a pollutant that is
consistent with a particular designated use. With the concurrence of the U.S.
EPA, states designate one or more uses for each body of water or segment
thereof and adopt criteria that are consistent with the use(s) (U.S. EPA
1983b,1987). In each standard a state may adopt the national criterion, if
one exists, or, if adequately jusiified. a gsite-specific criterion.

Site-specific criteria may include not only site-specific criterion
concentrations (U.S. EPA 1983b), but also site-specific, and possibly
pollutant-specific, durations of averaging periods and frequencies of allowed
excursions (U.S. EPA 1985b). The averaging periods of "on; hour” and "four
days"” were selected by the U.S. EPA on the basis of data concerning how
rapidly some aquatic species react to increases in the concentrations of some
aquatic pollutants, and "three years" is the Agency’'s best ;cientific judgment
of the average amount of time aquatic ecosystems should be provided between
excursions (Stephan et al. 1985; U.S. EPA 1985b). However, various species
and ecosystems react and recover at greatly differing rates. Therefore, if
adequate justification is provided, site-specific and/or pollutant-specific
concentrations, durations, and frequencies may be higher or lower than those
given in national water quality criteria for aquatic life.

Use of criteria, which have been adopted in state water quality standards,
for developing water quality-based permit timits and for designing waste

treatment facilities requires selection of an appropriate wasteload allocation

model. Although dynamic models are preferred for the application of these

12




criteria (U.S. EPA 1985b), limited data or other considerations might require
the use of a steady-state model (U.S. EPA 1986). Guidance on mixing zones and

the design of monitoring programs is also available (U.S. EPA 1985b,1987).
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