DRAFT

ATMOSPHERIC CADMIUM: POPULATION EXPOSURE ANALYSIS

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711

ATMOSPHERIC CADMIUM: POPULATION EXPOSURE ANALYSIS

by

R. Coleman, J. Lent, E. Burns and P. Siebert Energy and Environmental Analysis, Inc. 1111 North 19th Street 6th Floor Arlington, Virginia 22209

Contract No. 68-02-2836

EPA Project Officer: Richard Johnson

Environmental Protection Agency Pollutant Strategies Branch Research Triangle Park, North Carolina 27711

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711

March 17, 1978

Environmental Taxtaction Agency Regions (10.00) 2000 to 10.000 (10.00) Chicago, Marina (10.00) This report was furnished to the Environmental Protection Agency by Energy and Environmental Analysis, Inc., Arlington, Virginia in partial fulfillment of Contract No. 68-02-2836 Tasks 3 and 6. The contents of the report are reproduced herein as received from the contractor. The opinions, findings, and conclusions expressed are those of the authors and not necessarily those of the Environmental Protection Agency.

TABLE OF CONTENTS

	TITLE	PAGE
ACKNOWLE	EDGEMENTS	. ii
EXECUTIV	/E SUMMARY	. 1
SECTION	I: INTRODUCTION	. 8
SECTION	II: CADMIUM IN THE ENVIRONMENT	. 10
A. B.	Introduction Physical and Chemical Characteristics of Cadmium	
С.	Multi-Media Nature of Cadmium Exposures	
SECTION	III: METHODOLOGY	. 17
A. B. C. D.	Introduction	. 17 . 18 . 19
SECTION	IV: IRON AND STEEL MILLS	. 25
A. B. C. D.	Introduction	. 27
SECTION	V: MUNICIPAL INCINERATORS	. 35
A. B. C. D.	Introduction	. 36
SECTION	VI: PRIMARY NON-FERROUS SMELTERS	. 43
A. B. C. D.	Introduction	. 44

TABLE OF CONTENTS (Continued)

TITLE		PAGE
SECTION VII: SECO	NDARY SMELTERS	. 49
B. GeographiC. Estimated	ion c Distribution of Sources Ambient Levels n Exposed	. 51 . 51
APPENDICES:		
APPENDIX A:	POPULATION EXPOSURE METHODOLOGY	. 58
APPENDIX B:	B-1: IRON AND STEEL MILLS	. 64
	B-2: POPULATION EXPOSED TO ATMOSPHERI CADMIUM FROM IRON AND STEEL MILLS:	
APPENDIX C:	C-1: MUNICIPAL INCINERATORS	. 76
	C-2: POPULATION EXPOSED TO ATMOSPHERI CADMIUM FROM MUNICIPAL INCINERATORS	_
APPENDIX D:	PRIMARY SMELTERS	. 86
APPENDIX E:	SECONDARY SMELTERS	. 87
REFERENCES		. 88

LIST OF TABLES

Table	mau 3 -	D
Number	Title	Page
1	Study Results	3
2	Population Exposed to Greater than 0.1 ${\rm gn/m^3}$ of Cadmium	5
3	Comparison of Cadmium Exposures Among Sources	6
II-1	Physical Properties of Cadmium	11
II-2	Cadmium Content of Selected Adult Foods	15
11-3	Media Contributions to Normal Retention of Cadmium	16
IV-1	Cadmium Emission Factors for Iron and Steel Manufacturing	26
IV-2	Assumed Stack Characteristics for Iron and Steel Mills	29
IV-3	Measured Cadmium Levels in Cities Containing Iron and Steel Mills	31
IV-4	Estimate of Population Exposed to Concentrations ≥ 0.1 ng/m ³ from Iron and Steel Mills	32
IV-5	Estimate of Cumulative Population Exposed to Specified Cadmium Concentrations from Iron and Steel Mills	33
V-1	Cadmium Emission Factors	35
V-2	Assumed Stack Parameters for Municipal Incinerators	37
V-3	Estimate of Population Exposed to Cadmium Concentrations ≥0.1 gn/m ³ from Municipal Incinerators	39
V-4	Estimate of Cumulative Population Exposed to Specified Cadmium Concentrations from Municipal Incinerators	41

LIST OF TABLES CONTINUED

Table		
Number	Title	Page
VI-1	Emission Factors for Primary Smelters	45
VI-2	Primary Smelters	46
VI-3	Measured Cadmium Levels Near Primary Smelters	48
VI-4	Estimate of Population Exposed to Cadmium Concentrations from Primary Smelters	50
VII-1	Emission Factors for Secondary Smelters	52
VII-2	Location of Secondary Zinc and Copper Smelters	53
VII-3	Assumed Stack Conditions for Secondary Smelters	54
VII-4	Estimate of Population Exposed to Specified Levels from Secondary Smelters	56

LIST OF FIGURES

Figure Number	Title	Page
1	Regional Breakdown	7
III-1	Population of Charlottesville, Virginia	21
III-2	Population of Washington, D.C.	22

ACKNOWLEDGEMENTS

Preparation of this report by Energy and Environmental Analysis Inc., was carried out under the overall direction of Mr. Robert Coleman. Special assistance was received from Messrs. James Lent, Paul Siebert, Craig Miller, and Ms. Elizabeth Burns of EEA.

EEA gratefully acknowledges the assistance, helpful suggestions and review of the EPA Task Officer Mr. Richard Johnson.

The conclusions presented in the study are, of course, solely the responsibility of Energy and Environmental Analysis, Inc.

EXECUTIVE SUMMARY

This report is one of a series of reports which will be used by EPA in responding to the Congressional mandate under the Clean Air Act Amendments of 1977 to determine whether atmospheric emissions of cadmium post any threat to public health. This report identified the population exposed to specified cadmium levels from selected point sources. A companion report had identified the specific sources of interest.

Although cadmium is a true multi-media pollutant this report focuses only on ambient air concentrations of cadmium. Even though significant exposures of cadmium are caused by all media and atmospheric emissions may contribute to other media through various deposition mechanisms these are not considered here. This report focuses on the exposure caused by specific stationary sources. The sources considered are iron and steel mills, municipal incincerators, primary smelters (zinc, copper, lead, cadmium), and secondary smelters (copper and zinc).

Methodology

The basic methodology used in this report involved the following procedures:

 Determination of the size and location of each source within each source category. In this regard, size data were obtained from trade directories, etc., and locations from United States Geologic Survey (USGS)

- Determination of annual concentration caused by each source within each source category. For this purpose, annual concentration of cadmium caused by each were developed and were determined using general diffusion models and model plants.
- Determination of population exposed by each source. Estimates of annual concentrations due to each source and 1970 Census data were combined to give an estimate of the population exposed by each source.

As would be expected in any analysis of this type, many assumptions were made based on limited data. Analysis was carried out on a very detailed level and errors are possible stemming from: source size and location, the actual emissions of cadmium from each source, the type and efficiency of control technologies employed at each source, and the general nature of the dispersion modelling. In all cases, the best data available were used. The estimates of population exposure should be considered to provide a reasonable accurate estimate of the number of exposed individuals.

Results

Table 1 shows a summary of the results of this analysis. This table shows the population exposed to concentration greater the $0.1~\rm ng/m^3$, the the average level to which this population is exposed and the total exposure (expressed as nanagrams-person-year) caused by each source type. As shown in Table 1, municipal

^{*} This is approximately the current level of detectability for cadmium.

TABLE 1 STUDY RESULTS

Exposure (10 6 ng-person-year)	15.1	0	350.8	4.5	6.0	6.2	2.5	36.2
Average Exposure (ng/m ³)	1.54	0.47	7.16	10 ^a /	10 ^a /	10 ^a /	10 ^a /	1.9
Population Exposed (10 ³ people)	9,891	37	49,026	399	80	620	245	19,896
Source	Secondary Copper	Secondary Zinc	Municipal Incinerators	Primary Zinc	Primary Lead	Primary Copper	Primary Cadmium	Iron and Steel

Assumed concentration; see text section VI

incinerators are the chief contribution to the population exposed; have the highest annual average; and cause the greatest exposure. The chief source of cadmium in incinerators is the combustion of plastics containing cadmium stabilizers and the combusion of materials with cadmium containing paint.

Iron and steel production is the second most significant source in each catagory. Cadmium emissions from this source result from the processing of steels coated with zinc or cadmium.

Table 2 shows the population exposed to cadmium levels greater than $0.1~\text{ng/m}^3$ by region. The regional breakdown shown on Table 2 is based on EPA regions shows in Figure 1.

It is evident from the data on Table 2 that municipal incinerators in the Northeast and Midwest expose the largest number of people and also cause high average exposures. Iron and steel mills rank second in exposure. None of the other sources appear to expose a large number of people.

Table 3 shows a regional breakdown of the exposure (expressed in nanograms per person-year) due to each source type. Again, municipal incinerators dominate the list, with iron and steel mills ranking second. Also, as before, the Northeastern and Midwest areas show the highest levels.

TABLE 2

POPULATION EXPOSED TO GREATER THAN 0.1 ng/m^3 OF CADMIUM (10 3 People)

REGION

SOURCE TYPE	нI	71	ოI	41	ស	७।	7	ω Ι	ωl	10	TOTAL
Secondary Copper	·. 0	1434	0	0	1889	1043	313	195	1610	3400	9891
Secondary Zinc	0	0	0	0	18	19	0	o .	0	0	37
Municipal Incin- erators	6570	15163	8742	2995	12501	1121	1760	173	0	0	49026
Primary Zinc	0	o	258	0	100	0	0	.	0	41	399
Primary Lead	0	0	0	0	0	0	.35	28	0	17	80
Primary Copper	0	0	Ο.	19	2.6	16	0	92	29	461	620
Primary Cadmium	0	0	100	0	87	41	0	0	0	17	245
Iron and Steel	93	1649	4543	1611	8710	1575	108	0	774	833	19896

REGIONAL BREAKDOWN

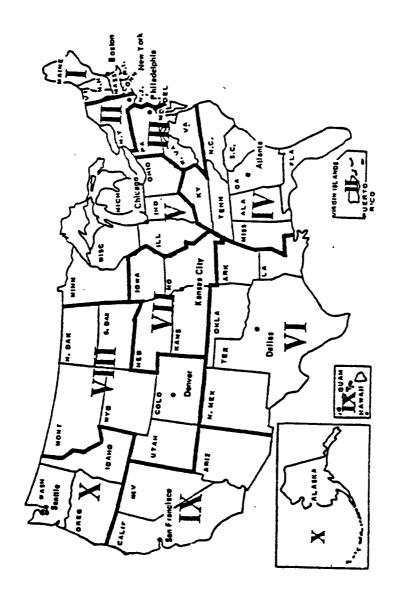


TABLE 3

COMPARISON OF CADMIUM EXPOSURES AMONG SOURCES (10 6 Nanograms-Person-Year) $^{2/}$

TOTAL	15.1	0			6.0				
10	0	0	0	0.1	0.2	4.6	0.2	9.0	5.7
٥l	4.9	0			0				
ωl	0.3	0	9.0	Ħ.	0.3	6.0	0	0.3	2.5
7	0.8	0	ນ • ໝ	0	0.4	0	0	0.1	7.1
91	2.5	0	11.6	0.7	0	0.2	0.4	2.3	17.7
ហ	3.6	0	67.4	0	0	0	6.0	13.1	85.0
41	0	0	11.8	0	0	0.2	0	4.5	16.5
ml	0	0	40.1	3.6	0	0	1.0	11.3	56.5
71	2.9	0	40.3 172.6	0	0	0	0	2.3	177.8
ΗΙ	0	0	40.3	0	0	0	0	0	40.3
Source Type	Secondary Copper	Secondary Zinc	Municipal Inciner- ators	Primary Zinc	Primary Lead	Primary Copper	Primary Cadmium	Iron and Steel	${ t TOTAL}^{1/}$

May not sum due to independent rounding.

Computed by multiplying the population exposed to each source by the concentrations resulting from that source.

SECTION I

INTRODUCTION

This report is one in a series of reports which will assist EPA in responding to the Congressional mandate in Section 122 of the Clean Air Act Amendments of 1977. Under this Section of the act, EPA is required to review the current data on the health and welfare effects of cadmium (as well as other substances) and determine "whether or not emissions of...cadmium...into the ambient air will cause, or contribute to, air pollution which may reasonably be anticipate to endanger public health."

This report addresses one area of information needed to make this determination—the estimation of the population exposed to atmospheric levels of cadmium from "significant cadmium sources" (those source types for which individual plants can produce an ambient concentration of 0.1 ng/m³ on an annual basis.) This report draws no conclusions as to the health consequences of atmospheric cadmium levels, nor does it provide a total estimate of the population exposed to specified cadmium levels. Rather, the purpose of the report is to provide a relative ranking of sources by magnitude of population exposed and to present this information in such a way that EPA can make estimates of the health implications of the reported exposures.

The report is organized into several sections summarized below:

 SECTION II provides an overview of the physical and chemical properties of cadmium as well as the routes through which human exposures to cadmium could occur.

- SECTION III provides an overview of the methodology used in the report.
- SECTIONS IV through VII provide estimates of the population exposed to cadmium emissions from selected sources. The sources considered are:

The background data for this report is based primarily on information presented in a companion report which focused on:

- the development of cadmium emission factors;
- the estimation of total atmospheric emissions of cadmium from all sources; and
- the screening of sources to determine if individual sources within a source category can cause measurable ambient levels of cadmium (based on the annual average).

Many of the assumptions and information used in this report are documented in the companion report.

SECTION II

CADMIUM IN THE ENVIRONMENT

A. Introduction

This section discusses the physical and chemical properties of cadmium and the multi-media nature of cadmium exposures. Although this report focuses only on atmospheric exposures to cadmium, it is important to keep in mind that there are many other types of human exposure to cadmium including food, water, and tobacco smoke.

B. Physical and Chemical Characteristics of Cadmium

Cadmium is a relatively rare element in the earth's crust. It occurs at a concentration of 0.1 to 0.5 ppm. It is of low abundance, ranking between mercury and silver, and thus, not in sufficient quantities to be mined as an ore. Table II-1 shows the physical properties of cadmium. Cadmium is always associated with zinc and is usally present as sulfide. 3/

The most important characteristic of cadmium, from an air pollution viewpoint, it its high volatility. This is evidenced by its low melting (312°C) and boiling (765°C) points. Thus, any high temperature process, such as metallurgical processes (e.g., steel-making, sintering) or incineration, are likely to release whatever cadmium is present in the feed.

TABLE II-1
PHYSICAL PROPERTIES OF CADMIUM a,b/

Atomic Number	48
Atomic Weight	112.41
Color	silver-white
Crystal Structure	hexagonal pyramids
Hardness	2.0 Mohs
Ductility	Considerable
Density	
20°C (68°F) (solid)	8.65 g/cc
330°C (626°F) (liquid)	8.01 g/cc
Melting point	321°C (609.8°F)
Boiling point	767°C (1412.6°F)
Specific heat	
25 ^O C (77 ^O F)(solid)	0.055 g-cal/g
Electrochemical equivalent	
Cd ⁺⁺ ion	0.582 mg/coulomb
Electrode potential	
Cd ⁺⁺ ion	-0.40 volt ^{a/}

a/ From Reference 4

 $^{^{\}mathrm{b/}}$ National Bureau of Standards nomenclature, $^{\mathrm{H}}_{2}$.

Vaporized cadmium metal is quite reactive and should react very quickly to form an oxide, sulfate, or other compound. In these forms, cadmium is quite stable and of very low solubility in water.

Cadmium metal is very ductile, easily soldered, can be readily electroplated, and maintains a lustrous finish in air. 4/ These properties lead to the use of cadmium as a protective coating on iron and steel products.

C. Multi-Media Nature of Cadmium Exposures

While this report is focused on atmospheric emissions of cadmium, it is important to recognize the overall cycle of cadmium in the environment. Measurable levels of cadmium occur in all phases of environmental concern (air, water, food, solid waste), and in almost all areas. One author 5/ refers to cadmium as the "dissipated element." EPA in 1975 estimated that about 1,800 Mg/year of cadmium was lost to the environment. Of this, about 18 percent was in atmospheric emissions, 75 percent in solid waste, and the remainder in water-borne emissions.

Measurable cadmium levels have been found in air, water, soil, and food. Atmospheric concentrations generally have been measured in the center of urban areas and generally range from ten ng/m³ down to below the detectable limit. Typical urban concentrations are in the range of three ng/m³. Due to the low solubility of cadmium compounds, levels of cadmium in water supplies are generally low. Main sources of cadmium are discharges from mining operations, leaching from soil disposal of wastes, and fall-out from atmospheric emissions.

Cadmium in food results from a wide variety of sources. Listed in order of importance from a recent Battelle Report, 7/ they are:

- Direct contact by plants or uptake from soils by plant roots.
 - a. Naturally as a normal constituent of soils, particularly of marine origin.
 - b. As an impurity (cadmium oxide) in phosphate-treated soils, especially in those treated with "superphosphate."
 - c. By fertilization with sludge containing cadmium.
 - d. By desposition of cadmium-containing pesticides or as a contaminant of zinc-containing pesticides.
 - e. From run-off of mine tailings or from electroplating washing process.
- 2. Accumulation in animal tissues due to:
 - a. Feeding on crops which have absorbed cadmium (the organs of such animals may have very high cadmium concentrations).
 - b. Treatment with cadmium-containing helminth killers used especially in swine.

- Concentrations of cadmium by molluscs, crustaceans and most other aquatic organisms from ambient waters.
- 4. Use of zinc-galvanized containers, cans, cooking implements or vessels, or utensils used in food preparation, particularly grinders, pressing machines, or galvanized netting used to dry fish and gelatin.
- 5. Absorption of cadmium contained in wrapping and packaging materials such as paper, plastic bags, and tin cans.
- Use of cadmium-contaminated water in cooking or processing operations.

Table II-2 lists the average cadmium concentration of selected adult foods.

Cigarette smoking also provides a large contribution to total cadmium exposure. The estimated intake from two packs per day ranges from four to six micrograms. This can amount to about 20 times the exposure due to atmospheric levels in large urban areas.

Even for smokers, food provides the greatest overall exposure to cadmium, and based on a 6.4 percent retention rate, the greatest daily input (except for three packs-per-day-smokers). Table II-3 summarizes the sources of cadmium exposure.

TABLE II-2

CADMIUM CONTENT OF SELECTED ADULT FOODS a/

Commodity	No. of Samples	Average ppm	Standard Deviation, ppm
Carrots, roots fresh	69	0.051	0.077
Lettuce, raw crisp head	69	0.062	0.124
Potatoes, raw white	71	0.057	0.139
Butter	71	0.032	0.071
Margarine	71	0.027	0.048
Eggs, whole fresh	71	0.067	0.072
Chicken fryer, raw whole or whole cut up	71	0.039	0.088
Bacon, cured raw, sliced	71	0.040	0.160
Frankfurters	69	0.042	0.111
Liver, raw beef	71	0.183	0.228
Hamburger, raw ground beef	71	0.075	0.122
Roast, chick beef	71	0.035	0.034
Wheat flour, white	71	0.064	0.150
Sugar refined, beet or cane	71	0.100	0.709
Bread, white	70	0.036	0.063
Orange juice, canned frozen concentrate	71	0.029	0.095
Green beans, canned	71	0.018	0.072
Beans, canned with pork and tomato sauce	71	0.009	0.000
Peas, canned	71	0.042	0.113
Tomatoes, canned	71	0.042	0.113
Diluted fruit drinks, canned	71	0.017	0.052
Peaches, canned	71	0.036	0.061
Pineapple, canned	71	0.059	0.153
Applesauce, canned	71	0.020	0.027

a/ Source: Reference 8

TABLE II-3

MEDIA CONTRIBUTIONS TO NORMAL RETENTION

OF CADMIUM^{a/}

Medium	Exposure Level	Daily Retention (µg)
Ambient air Water	0.03 µg/m ³ 1 ppb	0.15 0.09
Cigaretts: Packs/Day	ug/dayb/	
1/2	1.1	0.70 ^{c/} 1.41 ^{c/}
1	2.2	
2	4.4	2.82 ^{c/}
3	6.6	4.22 ^{c/}
Food	50 _u g/day	3.0

a/ Source: Reference 8.

b/ Based on 0.11 μg per cigarette.

C/ Assumes a 6.4 percent retention rate.

SECTION III

METHODOLOGY

A. Introduction

This section describes the general methodology used in determining the population exposed to specified levels of cadmium. In simplest terms, the methodology can be view as having four components:

- Selection and location of significant sources of cadmium and estimation of emissions from those sources;
- Determination of ambient concentrations of cadmium caused by these sources;
- Development of a population data base; and
- Integration of estimated cadmium concentrations with the estimates of population residing in that area.

B. Source Selection and Location

Based on the results of the companion study, noted previously, which screened all potential cadmium sources on the basis of measurable contribution to annual average ambient levels levels of cadmium, * four source categories were selected for exposure analysis:

^{*} Cadmium annual averages as low as 0.1 ng/m³ are assumed measurable.

- (1) Iron and Steel Mills
- (2) Municipal Incinerators
- (3) Primary Smelters (copper, lead, zinc, and cadmium)
- (4) Secondary Smelters (copper and zinc

Information on the precise nature and capacity of each source in the above categories was obtained from various trade directories and other data sources which are of recent vintage (generally 1976 or 1977). The sections of this report which deal with individual emission sources list the specific references used.

Most of these references also provided street addresses and zip codes for individual plants. From USGS maps, street were identified within the zip code and in this way, relatively precise locations for each source were obtained.

This method of locating sources is relatively accurate, generally to within one to two km. This is a satisfactory level of accuracy given the accuracy of other data items. (The sections dealing with the individual source types include the location and size of each source).

In estimating emissions from each source, "best judgement" emission factors which were developed in the companion report to this study were used. Variability of emission factors for individual sources and among source types can be quite large. Emissions were computed assuming that facilities are operated at their nominal capacity.

C. Determination of Annual Concentrations

Annual concentrations for each type of plant were computed by using an EPA diffusion model, CRSTER. 9/ The annual concentration

of model plant types were then determined. These model plants were designed in such a way as to represent the probable ranges of typical industrial facilities. The factors which were varied to define the model plants were: stack height, flow rate and temperature. Surface meteorological data from Dallas/Fort Worth and upper air data from Oklahoma City were used in the analysis. These sets of data ever used because the meteorology is understood to be fairly typical of many areas in the country in terms of wind speed and stability classes. If a detailed analysis of any of the sources identified here were conducted in the future, more site-specific meteorological data would be sesirable.

Detailed descriptions of the particular assumptions used in the analysis of each source type are discussed in the following sections.

D. Population Data

The population data were obtained from the 1970 Master Enumeration District List (MED List) 10/ obtained from the Bureau of the Census. This list provides the population and geographic location of each enumeration district in rural areas and of each block group within urban areas. An enumeration district contains approximately 800 people and is no larger than the area one enumerator could reasonably be expected to cover. A block group consists of continguous city blocks with a total population of about 1,000. In a central business district, the block groups are further subdivided into individual blocks. The geographic locator for each of these three census divisions is the latitude and longitude coordinate of the centroid of the division.

The population data associated with these centroids were transferred to a grid which spans the contiguous United States. Each grid cell was 1/30 of a degree longitude by 1/30 of a degree latitude. Thus, this resulted in the average grid cell being

approximately ten square kilometers. With this grid cell size, reasonably adequate definition was developed. Figure II-1 illustrates an example of a medium size town and its environs. For this example, the population of the city itself shows up in six different grid cells. The city's suburbs show up in several In the rural areas of the map, the population additional cells. of individual enumeration districts appear as a single grid cell entry. In rural areas the grids which show zero population do not necessarily have no population but rather these areas are part of an enumeration district and all population in each enumeration is shown at the centroid of each enumeration district. Figure II-2 illustrates an example of a large metropolitan area. As one moves from the central city area westward towards the suburbs, a very definite population gradient can be observed. Grid cells within the city which contain large areas of public land appear as lower density grid cells.

The actual transfer to the grid was made as follows: the population of every enumeration district and of every block group whose centroid was located in a given two-minute-by-two-minute grid cell was summed to give the population of the grid cell. The information for each of 26 areas or maps which described the county was stoled in a matrix. After all 26 maps were constructed, a count was made of the number of people loated by this method. The toal of 201,744,383 accounts for 99.5 percent of the 1970 population of the contiguous United States.

E. Population Exposed

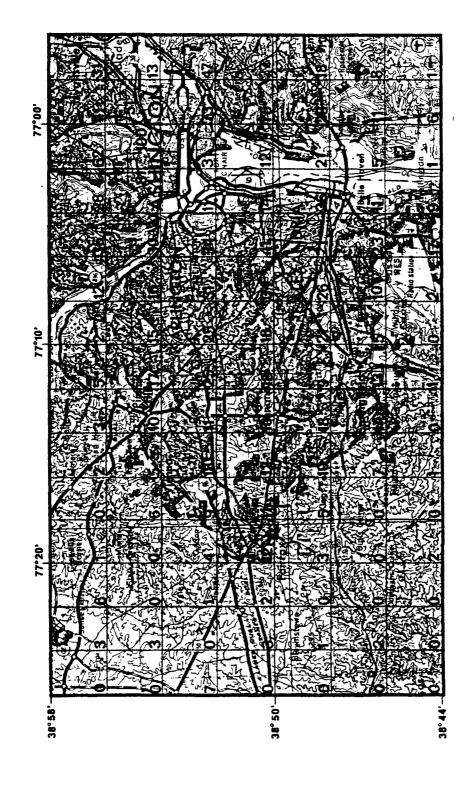

The purpose of the model developed in this chapter is to integrate the data on source location, and resulting ambient concentrations caused by the source, with the population data described above thus determining the number of people exposed

FIGURE 1
POPULATION OF CHARLOTTESVILLE, VIRGINIA

X 100'S OF PEOPLE

FIGURE 2 POPULATION OF WASHINGTON D.C.

X1000'S OF PEOPLE

to specified levels of cadmium. The methodology used is described in detail in Appendix A. As described in this Appendix, two independent procedures were used to estimate population exposed. In brief terms, the two procedures are:

1. Total Exposure

This procedure involves locating a source by latitude and longitude and, through emissions and diffusion modelling, determining the radius at which specified concentrations occur. Once the radius is determined, the population in population grids completely contained in the radius were determined. After this, the population in each partially covered grid is determined based on the percent of the grid circumscribed by the radius.

This procedure is carried out on a source-by-source basis. If people are exposed to more than one source, they would be counted twice. The primary use for this result is in determining the total exposure (nanograms-person-year) caused by specific source types. This type of estimate is suitable for use in a linear health risk model (i.e., such models which treat two people exposed to one ng/m^3 as equivalent to the risk of health effects as one person exposed to two ng/m^3).

2. Population Exposed.

In addition to estimating total exposure, the model was applied to estimate the population exposed to specified levels of atmospheric cadmium. As in the case of the exposure modelling, the population estimate was developed from a source-by-source analysis. However, in this procedure, the result is the population exposed to a given concentration from at least one source.

This form of the model provides an estimate of the population exposed to specified concentrations. The purpose of this form of the model is to estimate the gradient in exposure levels caused by source catagories. However, the estimates do not take into account that a person can be exposed to more than one source and that the actual level of exposure is the sume of the concentrations produced by the sources. As such, the estimates of population, to some degree, may underestimate the population exposed to high concentrations.

SECTION IV

IRON AND STEEL MILLS

`A. Introduction

The estimation of population exposure to atmospheric cadmium emitted from the production of iron and steel is discussed in this section.

The primary sources of cadmium emissions from iron and steel manufacturing are the use of scrap containing cadmium in steel-making furnaces and, to a much lesser degree, the cadmium in the coal used to make coke. Table IV-1 lists the emission factors used in analysis.

One of the source types listed in Table IV-1 (sinter plants) does not involve the use of cadmium scrap directly. Sincere plants agglomerate fine iron-containing material (iron ore, flue dust, etc.) into a material suitable for use in the blast furnace. Due to decreases in the amount of natural iron charged to blast furnaces and increasingly stringent air pollution control requirements on steel-making furnaces, more and more of the feed to sinter plants is fine dust collected from steel-making furnaces. 11/

This resultant change in feed to sinter plants leads to the charging of relatively large amounts of cadmium to the sinter plant. Therefore, even with relatively high levels of air pollution control (90 percent), significant amounts of cadmium can be released. The companion volume of this report discusses the emissions of cadmium from iron and steel production in considerable detail.

TABLE IV-1

CADMIUM EMISSION FACTORS FOR IRON AND STEEL MANUFACTURING A/

Best Judgement	1.1x10 ⁻³	1.1×10 ⁻⁴	1.2x10 ⁻⁵	3.4×10-4
Maximum	1.3×10 ⁻³	3,34x10-4	2.8x10 ⁻⁵	5x10 ⁻⁴
Minimum	1.1x10 ⁻³	2,97×10 ⁻⁵	3.5×10 ⁻⁶	2.7x10 ⁻⁴
Best Judgement	2.32×10 ⁻³	5.78×10 ⁻³	4.1x10 ⁻⁵	3.4x10 ⁻³
Maximum	3×10 ⁻³	6.48×10 ⁻³	t	5x10 ⁻³
Minimum	1.6x10 ⁻³	4.08×10 ⁻³ .	1	2.7x10 ⁻³
	Sinter	Open Hearth Furnace	Basic Oxygen Furnace	Electric Arc Furnace
	Maximum Judgement Minimum Maximum	Minimum Maximum Judgement Minimum Maximum 1.6x10 ⁻³ 3x10 ⁻³ 2.32x10 ⁻³ 1.1x10 ⁻³ 1.3x10 ⁻³	Best Minimum Maximum Judgement Minimum Maximum Judgement 1.6x10 ⁻³ 3x10 ⁻³ 2.32x10 ⁻³ 1.1x10 ⁻³ 1.3x10 ⁻³ 1.3x10 ⁻³ 2.97x10 ⁻⁵ 3,34x10 ⁻⁴	Minimum Maximum Judgement Minimum Maximum 1.6x10 ⁻³ 3x10 ⁻³ 2.32x10 ⁻³ 1.1x10 ⁻³ 1.3x10 ⁻³ 4.08x10 ⁻³ 6.48x10 ⁻³ 5.78x10 ⁻³ 2,97x10 ⁻⁵ 3,34x10 ⁻⁴ - 4.1x10 ⁻⁵ 3.5x10 ⁻⁶ 2.8x10 ⁻⁵ 1

Expressed as pounds cadmium per ton of product produced, from Reference 12.

B. Geographic Distribution of Sources

The location of iron and steel-producing facilities in the United States is show in Appendix B. The primary source of capacity estimaded in this table comes from the American Iron and Steel Institute's <u>Iron and Steel Works Directory of the United States and Canada.</u>

Locations of these facilities were determined from the <u>Dun and Bradstreet Metal-Working Directory</u>

14/ and USGS maps.

Appendix B also shows the estimated cadmium emission rates from each facility. These estimates were derived by multiplying the emission factors from Table IV-1 by the production for each facility type, assuming that all plants operate at the hours of operation defined by the Department of Commerce as full operation. It must be emphasized that these emission factors are average emissions based on national average uses of cadmium scrap or on a limited number of stack tests. As such, it is likely that some over-estimates of emissions result from some sources and underestimated emissions from others. However, on the average, these emission estimates probably provide an adequate basis for the purpose of this analysis.

C. Estimated Ambient Levels

Estimates of annual concentrations of cadmium from iron and steel manufacturing are complicated by the large size of integrated mills and their wide variation in size. Large integrated mills can cover hundreds of acres and may have many stacks. Mini-mills, or scrap reprocessing facilities with a low number of small electric arc furnaces, may cover only a few acres and have few stacks. Due to a lack of information on the physical size of all the facilities, it was assumed that all stacks were located together. In addition, conservative (i.e., conditions not conducive to good dispersion) assumptions were

made concerning stack characteristics. All stacks were assumed to have the characteristics as shown on Table IV-2. The flowrate assumed for the iron and steel stacks is an average figure for all types of units. The net effect of these assumptions is to overestimate the air quality impact of the facilities to some unknown degree.

Based on the stack conditions shown in Table IV-2 and the results of a CRSTER model run (with Dallas/Fort Worth meteorology) for a few selected distances from the source, a regression equation was developed which estimates the concentration resulting from a 1.0 g/sec emission rate at any distance. From iron and steel plants, the equation developed was:

$$LnY = 1.71 (lnX) - 2.35 (1/X) + 3.19$$
 (1)

where: Y is the concentration (ng/m³) caused by an emission rate of 1.0 g/sec of cadmium and X is the distance from the source to the receptor point (Km). This equation has a coefficient of determination of greater than 0.99 as a predictor of ambient concentrations computed by CRSTER run.

The emission rate for each plant was multiplied by the computed concentration ratio to provide and estimate of concentration at any distance. Modelling results were not carried out beyond 20 km due to the questionable validity of this type of dispersion modelling beyond these distances.

Current monitoring programs are not designed to measure maximum impacts of point sources such as iron and steel mills. However, some indication of the plausibility of both the modelling techniques and the emission estimates can be made by comparing measured levels in areas with major iron and steel facilities with the concentrations predicted by the modelling technique.

TABLE IV-2

ASSUMED STACK CHARACTERISTICS FOR IRON AND STEEL MILLS

Stack Height 100 feet

Temperature 250°F

Diameter 8 feet

Flow 125,000 cfm

Ambient cadmium levels can vary greatly from year to year the little data available shown (Table IV-3) that annual average levels from five to 10 ng/m³ are not uncommon. Of course, in these cities, the observed levels cannot be attributable solely to iron and steel mills since other sources are quite likely present. Estimated annual cadmium levels from iron and steel mills developed in this study using the technique described above are also five to ten ng/m³. This suggests that, although very conservative assumptions were used, the estimated concentrations from iron and steel mills are reasonable. However, the actual degree of precision of these predicted levels cannot be determined reasonably.

D. Population Exposed

Table IV-4 shows an estimate of the population exposed to cadmium concentrations greater than 0.1 ng/m³ and the estimated average concentration to which each of the exposed populations is subjected. The regional breakdown shown on Table IV-5 is based on EPA regions as shown on Figure IV-1. As discussed in SectionIII, these estimates were obtained by super-imposing the modelled ambient concentrations caused by emissions from iron and steel mills on the distribution of population.

As would be expected, both the largest number of people exposed and the highest average exposures are in EPA Regions III, IV, and V. This is due to the large concentration of integrated steel mills in the Pittsburgh, Birmingham, and Gary areas, respectively.

Table IV-5 shows a breakdown of population by exposure level. As described in the methodology section, care must be used in interpreting the results of this table due to the potential for exposure caused by several sources. As explained in the methodology section and Appendix A, the results on Table IV-5 should

TABLE IV-3

MEASURED CADMIUM LEVELS IN CITIES

CONTAINING IRON AND STEEL MILLS a/

City	Annual Average (ng/m ³)	Year b/
East Chicago, IN	4.6	1974
Ashland, KY	6	1974
Youngstown, OH	5.6	1970
Cleveland, OH	8.8	1970
Allentown, PA	13.4	1974
Bethlehem, PA	6.8	1973

Source: Reference 16.

Data reported for the latest year measurements are available.

TABLE IV-4

ESTIMATE OF POPULATION EXPOSED

TO CONCENTRATIONS > 0.1 ng/m³

FROM IRON AND STEEL MILLS

Region	Average Exposure (ng/m ³)	Population (10 ³ people)
1	0.4	93
2	1.4	1,649
3	2.7	4,543
4	2.8	1,611
5	1.5	8,710
6	1.5	1,575
7	1.2	108
8	-	-
9	1.2	778
10	0.7	833
TOTAL	1.8	19,900

TABLE IV-5

ESTIMATE OF CUMULATIVE POPULATION EXPOSED TO SPECIFIED

CADMIUM CONCENTRATIONS FROM IRON AND STEEL MILLS

(10³ people)

Region		Annual Concent	tration (ng/m ³	3)
	<u>>10</u>	>5	<u>> 1</u>	> 0.1
1	0	0	0	93
2	0	49	470	1,649
3	52	137	1,965	4,543
4	177	341	578	1,610
5	143	339	1,852	8,710
6	0	29	521	1,575
7	0	0	23	108
8	0	24	176	224
9	0	15	161	774
10	0	0	33	833

be interpreted as the population exposed to a concentration greated than or equal to that specified from at least one source. As such, the total population estimated is accurate, but the distribution has some bias towards the lower concentration levels.

Appendix B shows the population exposed to individual sources.

SECTION V

MUNICIPAL INCINERATORS

A. Introduction

This section estimates the population exposed to cadmium emitted from municipal incinerators.

Cadmium emissions from incinerators originate from the combustion of cadmium-containing waste materials. These waste materials are plastics which contain cadmium as a stablizer, cadmium-plated materials, nickel cadmium batteries, and materials painted with cadmium-based pigments.

Cadmium is released from incinerators due to its low boiling point (765°C) and the considerable higher $(>1,400^{\circ}\text{ C})$ temperatures characteristic of incinerator combustion. The estimated cadmium emission factors for incinerators are shown in Table V-1.

TABLE V-1

CADMIUM EMISSION FACTORS 17/

Emission Factor (lbs/ton of refuse)

	Controlled
Best Judgement	1.2x10 ⁻²
Maximum	1.0×10^{-1}
Minimum	6.0×10^{-4}

A large amount of variability among incinerators in emissions can be expected because of variations in input feed rate, feed composition, combustion temperature (and other operating conditions), and control equipment efficiency. This variability cannot be taken into account in this type of analysis.

B. Geographic Distribution of Sources

Appendix C lists the locations and capacities of municipal incinerators analyzed in this study. The primary source of this capacity data is <u>Incinerator and Solid Waste Technology</u>. ^{18/} The facilities were located by street address through a telephone survey of each town and city. Street addresses were translated into latitude and longitude coordinates from detailed USGS maps (seven and a half minute quadrangles) for integration with the population data.

Appendix C also shows the estimated cadmium emissions from each incinerator. The emissions shown are simply the product of the "best judgement" emission factors and daily capacity figures. As previously mentioned, wide variation in these estimates can be expected due to variation in cadmium feed and control efficiency.

C. Estimated Ambient Levels

Estimates of ambient levels due to cadmium emissions from incinerators were based on the results of CRSTER runs using Dallas/Fort Worth meteorology. Four combinations of stack height and flow rate were used to represent the range of current proactice. Table V-2 shows the stack parameters used in this analysis. The data in Table V-2 are based on engineering judgement; it is recognized that considerable divergence from these assumptions may be possible.

As in the case of the iron and steel analysis, the equations relating ambient concentrations to distance are based on the CRSTER runs. These equations extend the CRSTER results to cover

TABLE V-2

ASSUMED STACK PARAMETERS

FOR MUNICIPAL INCINERATORS

Incinerator Size (tons/day)	Stack Height (ft.)	Temperature (OF)	Diameter (ft)	Flow (acfm)
>1,000	125	250	12	210,000
300-1,000	125	250	5	50,000
150-300	50	250	3	25,000
220 300	30		-	20, 000
<150	50	250	2	5,000

all distances of interest. The equations developed are shown below:

• For capacities of 1,000 tons/day
$$LnY = -1.58 (lnX) - 3.05 (l/X) + 2.78$$
(1)

• For capacities between 300 and 1,000 tons/day
$$LnY = -1.75 (lnX) - 2.07 (l/X) + 3.26$$
 (2)

• For capacities between 150 and 300 tons/day
$$LnY = -1.60 (lnX) - 0.57 (l/X) + 3.16$$
(3)

• For capacities less than 150 tons/day
$$LnY = -1.53 (lnX) - 0.05 (l/X) + 3.04$$
(4)

where: Y is the concentration (ng/m^3) caused by an emission of 1.0 g/sec of cadmium and X is the distance to the receptor point (km).

These equations all had a coefficient of determination greater than 0.99.

Concentrations caused by each plant were computed by multiplying the plant emission rate in grams/second by the concentration resulting from a l gram/second emission rate. As with the iron and steel mills, modelling results were not carried out beyond 20 km.

Very high cadmium concentrations were computed from some incinerators using this techniques. The relatively low stack heights, typical of many urban incinerators, lead to low plume rise and very high ($> 100~\text{ng/m}^3$) localized concentrations. These high concentrations occur very near (< 1.5~km) the source but drop off quickly so that within 5 km of the source they are down to less than 1 ng/m^3 . Most incinerators are located in urban areas where there are multiple smaller sources of cadmium probably

distributed in a non uniform spatial pattern. Existing monitoring programs, therefore, do not provide an adequate basis to judge, even qualitatively, the precision of these modelling results.

D. Population Exposed

Table V-3 shows the estimate of the population exposed to cadmium concentrations greater than $0.1~\text{ng/m}^3$ originating from incincerators and the average concentration to which each person is exposed. The regional breakdown shown on Table V-3 based on EPA regions.

The greatest number of people exposed and the highest average concentration are in EPA Region II, which includes New York and Pennsylvania. Each state has a large number of incinerators located in high density urban areas (New York City and Philadelphia). Region V has the second highest number of people exposed. In this region, the average concentration is much lower than in Region II. This is due primarily to the more dispersed nature of a smaller number of incinerators located in high density areas (Chicago). The opposite situation occurs in Region VI where a relatively small number of people (one million) are exposed, but the average concentration is high.

Table V-4 shows a breakdown of population exposure by level. As described in the methodology section, care must be used in interpreting these data. As the average exposure level decreases the population exposed increased very quickly, as does the degree of multiple counting. This happens because the concentrations decrease from their maximum rather slowly and concentrations above the 0.1 ng/m³ can occur at distances out to 20 km and beyond.

Region		Average Exposure (ng/m ³)	Population (10 ³ people)
1		6.1	6,571
2		11.4	15,163
3		4.6	8,742
4		4.0	2,995
5		5.4	12,501
6		10.4	1,122
7		3.3	1,760
8		3.4	173
9		-	-
10		-	-
נ	COTAL	7.2	49,026

TABLE V-4

ESTIMATE OF CUMULATIVE POPULATION EXPOSED TO SPECIFIED CADMIUM CONCENTRATIONS FROM MUNICIPAL INCINERATORS

(10 3 people)

Region		Annual Conc	entration (ng/	(m ³)
	>10	> 5	<u>>1</u>	> 0.1
1	409	1,209	4,762	6,570
2	336	3,319	11,697	15,163
3	369	1,390	5,363	8,742
4	31	390	2,315	2,995
5	458	2,252	8,182	12,501
6	59	310	906	1,122
7	0	133	1,022	1,760
8	3	36	128	173
9	0	0	0	0
10	0	0	0	0

At these distances, the areas of influence of many incinerators will overlap due to their proximity to each other in urban locations, and thus, include large proportions of densely populated urban areas.

Appendix C lists the population exposed to each municipal incinerator.

SECTION VI

PRIMARY NON-FERROUS SMELTERS

A. Introduction

Cadmium is found in significant quantities combined with zinc and to a much lesser degree, with lead and copper. The source of cadmium emissions from all smelters is basically the same. During high temperature pyrometallurgical processing cadmium, which has a lower boiling point than other metals, is vaporized and released. The differences in cadmium emissions among the primary smelters are briefly discussed below.

The amount of cadmium released into the atmosphere varies for different zinc production processes. The pyrometallurgical process used at older plants (of which only three are still in existence) first roasts the ore at temperatures between 900 and $1,000^{\circ}$ C to drive off SO_2 and produce a concentrate. Following this operation, the ore is sintered to provide a product which is easier to handle and retort. The final step is the reduction of zinc oxide to zinc in a retort.

Both the roasting and sintering steps appear to have the highest potential for cadmium emissions. One recent report, ^{19/} however, indicates that due to an excess of oxygen, close temperature control (900-1,000°C), and the high efficency of existing air pollution control, little cadmium is emitted from the roaster. This hypothesis is supportable. ^{a/}

In all existing zinc smelter, the SO₂-rich offgas from the roaster goes to a sulfuric acid plant. Since cadmium oxide is soluble in sulfuric acid, the recovered acid should show high cadmium levels if large amounts of cadmium are leaving the roaster. Cadmium levels reported in the recovered acid are quite low. 19/

Sintering operations appear, therefore, to be the primary cadmium emission point.

Since electrolytic operations use concentrate directly from the roasting operation and do not subject the concentrate to elevated temperatures, there appears little potential for cadmium emissions. Thus, cadmium emissions from this process are assumed to be zero for this analysis.

Cadmium emissions from lead and copper smelting result from similar high temperature such as sintering operations. Cadmium is present in most lead ores and some copper ores, and is released during high temperature processing.

Table VI-1 shows the estimated emission factors for primary smelters which are considered to be upper bound estimates. This is especially true for primary zinc smelting where the data are based only on one plant which was operating relatively inefficiently (i.e., with high zinc losses).

B. Geographic Distribution of Sources

Table VI-2 shows the location of the primary smelters reviewed in this analysis. General location and capacity data were obtained from various EPA and industry reports; 20,21/ and specific locations were determined from USGS maps.

C. Estimated Ambient Levels

The annual levels of cadmium due to smelters were not estimated for two reasons. First, the estimates of emissions from any particular source due both to stack and operating characteristics are more variable than for any other source. Second, the terrain around many smelters is extremely rough; thus, generalized source modelling results under these circumstances are difficult to interpret.

TABLE VI-1 EMISSION FACTORS FOR PRIMARY SMELTERS (Pounds of Cadmium/Ton of Product)

Smelter Type	Minimum	Maximum	Best Judgement
Zinc	1.43	2.96	2.50
Lead _.	5.20×10 ⁻²	2.60x10 ⁻¹	1.10x10 ⁻¹ a/
Copper	7.00x10 ⁻²	2.90x10 ⁻¹	1.50x10 ⁻¹ b/
Cadmium	25.00	30.50	28.00

Controlled level may be as low as 5.20×10^{-3} lbs/ton of product. b/

Controlled level may be as low as 7.00×10^{-3} lbs/ton of product.

TABLE VI-2

PRIMARY SMELTERS

CAPACITY (tons/yr)	250,000	125,000	118,000	25,000	185,889	235,500	246,945	97,761		100,000	180,000	100,000	177,000	127,000	70,000
LONGITUDE (W)	80 18,	116 ⁰ 06'	750 37'	95 ⁰ 58¹	900221	111 ⁰ 55'	1160 061	900 41.	(122 ⁰ 26'	110 ⁰ 48'	106 ⁰ 35'	1090 22'	109 ⁰ 33'	112 ⁰ 38'
LATITUDE (N)	400 41.	47° 33'	40° 48'	36 ⁰ 45¹	MO 38 ⁰ 15'	46° 35	470 331	370 36'	,	47° 14'	330 01'	31 ⁰ 55'	330 051	310 21'	320 021
LOCATION	Monaca, PA	Kellogg, ID	Palmerton, PA	Bartlesville,	OK Herculaneum, M	E. Helena, MT	Kellogg, ID	Glover, MO		Tacoma, WA	Hayden, AZ	El Paso, TX	Morenci, AZ	Douglas, AZ	Ajo, AZ
PLANT	St. Joseph	Bunker Hill Co.	New Jersey Zinc	National Zinc	St. Joseph	Asarco	Bunker Hill	Asarco		Asarco	Asarco	Asarco	Phelps - Dodge	Phelps - Dodge	Phelps - Dodge
TVPE	Primary Zinc	Smelters			Primary	Lead Smelters			Primary	Copper Smelters		-			

TABLE VI-2

..

PRIMARY SMELTERS

(Continued)

			,		(אני/פמס+) אחדטמממה
	PLANT	LOCATION	LATITUDE (N)	LONGITUDE (W)	CAPACITI (LOIIS/Y1)
	Kennecott	Hayden, AZ	330 01'	110 ⁰ 48'	80,000
	Kennecott	Garfield, UT	40° 43'	1120 10'	280,000
	Kennecott	Hurley, NM	320 41'	1080 07'	80,000
	Anaconda	Anaconda, MT	460 07'	112 ⁰ 56'	180,000
	White Pine	White Pine, MI	I 46 ⁰ '45'	89 ⁰ 34 '	000'06
	Cities Services	Copperhill, TN	N 35 ^o 00'	840 21'	000'06
				(
Primary Cadmium	St.Joseph Lead	Monaca, PA	40° 41'	800 181	250,000
Smelters	Bunker Hill Co.	Kellogg, ID	47° 33'	116 ⁰ 06'	125,000
	New Jersey Zinc	Palmerton, PA	400 481	750 37'	118,000
	Asarco	Chorpus Christi, TX	270 55'	970 45'	108,000
	National Zinc Co.	Bartlesville,	36 ⁰ 45'	95 ⁰ 58¹	55,000

TABLE VI-3

MEASURED CADMIUM LEVELS NEAR PRIMARY SMELTERS^{a/}

City	<u>State</u>	Concentration (ng/m ³)	Year ^{b/}
Helena	Montana	15	1971
El Paso	Texas	24	1974
Kellogg	Idaho	247	1975
Jefferson County	Missouri	111	1975

a/
SOURCE: Reference 22.

b/ Last year for which data is available.

Monitoring data can be used to give a rough approximation of the ambient levels which occur around smelters. Table VI-3 lists observed atmospheric cadmium levels in areas near smelters. It is obvious that very high cadmium levels are not uncommon around smelters. As before, it is difficult to attribute all the measured cadmium to the smelters. However, due to the lack of population and industry around most smelters, it is very likely that most of the measured concentrations are due to smelter emissions.

To approximate the population exposed to cadmium emissions from smelters, the population living within 20 km of the smelter was assumed to be exposed to cadmium levels greater than 0.1 ng/m^3 .

D. Population Exposed

Table VI-4 shows the estimated population exposed to cadmium emissions from primary smelters. It is obvious that in comparison to the preceding sources, fewer people are exposed to emissions from primary smelters. The distribution of population is very biased. Two regions (and two plants) account for the majority of the population exposed.

The low number of people exposed by smelters is due to the very low population density around the smelters. It appears, therefore, that while primary smelters are a large source of cadmium emissions to the atmosphere, they do not (with the exception of two plants) expose large numbers of people to these emissions. However, the exposure levels can be quite high as is evident from Table VI-3.

TABLE VI-4
ESTIMATE OF POPULATION EXPOSED TO CADMIUM
CONCENTRATIONS FROM PRIMARY SMELTERS

(10³ people)

Region	Primary Zinc	Primary <u>Lead</u>	Primary Copper	Primary Cadmium
1	-	-	-	-
2	-	-	-	-
3	258	-	-	100
4	_	-	19	
5	100	_	3	86
6	_	-	16	41
7	_	35	-	-
8	_	28	92	-
9	_	-	29	-
10	41	17	461	17
TOTAL	399	80	620	245

SECTION VII

SECONDARY SMELTERS

A. Introduction

The recycling of zinc and copper can potentially lead to emissions fo cadmium due to the cadmium contained in metals. The high temperatures involved with the melting of the scrap will release most of the cadmium. The cadmium associated with the metal will be vaporized and potentially release into the atmosphere.

Table VII-1 shows the assumed emission factors for secondary smelting. The high degree of control shown is based on the assumption that fabric filters are used for control.

B. Geographic Distribution of Sources

Table VII-2 shows the geographic distribution of secondary copper and zinc smelters in the United States. Location data were determined from various trade directories. 15,16/ Latitude and longitude coordinates were obtained from detailed USGS maps.

Information on the size of each smelter was not available. Accordingly, the assumption was made that all smelters were of "average" size. One reference 23/ does indicate a relatively small size range for these types of smelters. Therefore, the assumption may be reasonable.

C. Estimated Ambient Levels

Estimates of ambient cadmium levels resulting from emissions of secondary smelters were based on CRSTER runs using Dallas/

TABLE VII-1

EMISSION FACTORS FOR SECONDARY SMELTERS

(Pounds of Cadmium/Ton of Product)

	UNCONTE		CONTROLLED a/		
Smelter Type	Minimum	Maximum	Best Judgement	Best Judgement	
Zinc	8.0x10 ⁻³	1.4x10 ⁻²	1.0x10 ⁻²	5.0×10 ⁻⁴	
Copper	2.6	4.0	3.0	3.0×10^{-1}	

a/ Fabric filter assumed.

TABLE VII-2

LOCATION OF SECONDARY ZINC AND COPPER SMELTERS

	TYPOOT	DOCALLON OF DECONDANT BINC AND COFFEN DIMERIES	AND COLFEEN DE	
	Plant	Location	Latitude (N)	Longitude (W)
Secondary Zinc Smelters	Asarco, Fed- erated Metals Division	Sand Springs, OK	36 ⁰ 08'	96 ⁰ 07
	American Zinc Co. of Illinois	Hillsborough, IL	39 ⁰ 09 •	89 ⁰ 29 •
	Asarco	Long Beach, CA	340051	1180121
Secondary	Asarco	Perth Amboy, NJ	40031	74015
Copper	Asarco	Whiting, IN	41040	870291
מוופדרפד	Asarco	Houston, TX	29045	95 ⁰ 12
	Asarco	Long Beach, CA	34005'	118 ⁰ 12'
	Asarco	San Francisco, CA	37045	122 ⁰ 22'
	Kennecott	Magna, UT	40042	112006
	Kennecott	Hurley, NM	32041:	10801

Fort Worth meteorology. Different stack conditions were assumed for copper and zinc smelters. Table VII-3 shows the assumed stack conditions.

As in the case of other industries, a regression equation was developed based on the CRSTER runs. The equations developed are shown below:

• For secondary copper smelters--

$$LnY = -1.57 (LnX) - 0.35 (1/X) + 3.12$$

• For secondary zinc smelters--

$$LnY - -1.75 (lnX) - 2.07 (l/X) + 3.26$$

where: X is the concentration (ng/m^3) caused by an emission rate of one g/sec of cadmium, X is the distance to the receptor point (Km).

Concentrations caused by each plant were computed by multiplying the plant emission rate in grams/second, by the concentration resulting from one g/sec emission rate. As with other industries, no modelling was carried out beyond 20 Km.

D. Population Exposed

Table VII-4 shows the estimated cumulative population exposed to specified cadmium concentrations and the average concentration each person is exposed to. Though there are only very few secondary copper smelters, the population exposed is high. This is due to the urban location of the smelters and the high (even when controlled) emission factor.

TABLE VII-3

ASSUMED STACK CONDITIONS FOR

SECONDARY SMELTERS

STACK PARAMETER		SMELTER TYPE
	Zinc	Copper
Height (ft)	120	50
Temperature (^O F)	250	250
Flow (ACFM)	40,000	10,000
Diameter (ft)	4	2

TABLE VII-4

ESTIMATE OF POPULATION EXPOSED TO SPECIFIED

LEVELS FROM SECONDARY SMELTERS (10³ People)

	Concentration (ng/m ³)				
Smelter	>10	<u>> 5</u>	<u>≥1</u>	>0.1	Average Exposure
Secondary Copper	296	798	5710	9891	2.3
Secondary Zinc	0	0	. 0	37	0.47

Secondary zinc smelting appears to be an insignificant source of atmospheric cadmium with few people exposed and very low emissions. However, it must be pointed out that it was not possible to take into account the difference in plant sizes. It is not clear how this would affect the results.

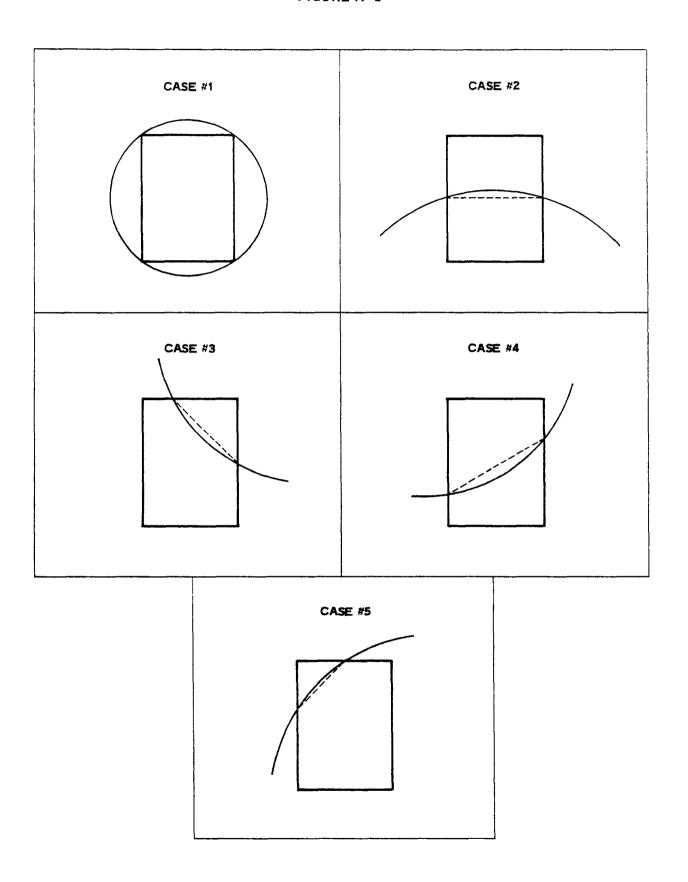
Appendix E shows the estimated population exposed to each secondary smelter.

APPENDIX A

POPULATION EXPOSURE METHODOLOGY

The population exposure model is used to calculate the number of people who live within a fixed distance of a specific set of latitude and longitude. The imputs to the model are the location of the center point and the radius under consideration. The data base for the model is the set of population maps that were constructed from the Medalist data. The center point corresponds to the smoke stack of a point source polluter. The radius corresponds to the maximum distance from the stack that a specific concentration of a pollutant could be found. The estimate of the radius is determined by the predominant methodology (in the Dallas Fort Worth data set). The circle drawn around the point is therefore an overestimate since this, in effect, assumes every direction from the source is downwind.

Given the imputs, the first step is to identify the map on which the source is located. This is accomplished by comparing the latitude and longitude of the source to the set of map boundaries. Next, the latitude and longitude of the source are converted to the appropriate map grid point using the same method that was used to locate the population data on the maps. This, however, may not fully access the data on the population affected by the source. If the source is located near a map boundary, the affected population may be located on up to three additional maps. If a source is located within 20 kilometers of another map, that map may also be accessed.


After loading the appropriate map file from computer tape into core and reading the necessary information onto the map grid, the next step is to construct a coordinate system centered at the same location since all grids are not the same size. The grid points at which the source has been located becomes the origin. The value which is calculated is based on the latitude of the source. The distance between any point and the origin or source is therefore easily calculated by triangulation from the coordinates of that point with the origin.

Each grid cell within 20 kilometers of the source is systematically examined. First, the corners of the cell are located on the coordinate system. With this information, the total amount of area inside the cell and included within the selected radius from the source is calculated. The symmetry of the analysis allows the computer program to actually look only at the grid blocks that lie in or border the first quadrant. The values for each of the blocks outside the first quadrant can be inferred from the results of the first quadrant.

There are five distinct cases encountered when one attempts to calculate the area of a grid block which is included within a circle of given radius (see Figure A-1):

• The first case encountered is the area of the grid cell that has the source located at its center and is larger than the circle enclosed by the selected radius. Here, a simple approximation is made. The area included is taken to be the area of the circle of the given radius divided by the area of the grid cell to obtain the fraction of the cell included in the circle. Once the area of the circle exceeds the area of the grid block, it is assumed that the entire areas of the grid cell is included within the radius.

FIGURE A-1

- The second case involves grid cells located along either the x-axis or the y-axis. Here, the area included is taken to be the arc of the rectangle defined by the interesection of the radius and the block boundaries included, plus the area of the remaining arc defined by the radius. Special cases occur when the radius intersects the edges of the grid cells which are perpendicular to the axis. The general form of the solution remains the same.
- Case three occurs where only one of the vertices of the cell is included; the area included is the sum of the area of the enclosed triangle and the area of the enclosed arc.
- Case four occurs when two vertices are included or all are included. In this case, the area covered equals the sume of the area of the trapezoid and the area of the enclosed arc.
- Case five occurs when three vertices are included. The area of the cell included equals the area of the cell minus the area of the excluded triangle plus the area of the included arc.

Once the area of the grid cell which is included in the exposed area has been calculated, it is divided by the area of the grid cell yielding the percentage of the area included. In order to calculate the number of people who live within the included area, it is assumed that the population is uniformly distributed throughout the grid cell. Therefore, the population affected is the product of the percentage of the area included times the population of the grid cell. By summing up the population included in all the cells, the total number of people who live within a given radius of a source can be estimated.

By choosing several radii for each source, the number of people who reside between a given pair of radii can be calculated by a simple subtraction. Since each radius corresponds to a specific pollution level, this type of calculation yields an estimate of the number of people who are exposed to various concentration levels for a single source.

By summing up the effects of several sources, either by source type or location, one can gain insight into which type of source appears to effect the largest number of people. ever, the total number of people exposed may be misleading. In areas where there are many point sources located close together, much multiple-counting will occur. (For example, a person exposed to a given ambient concentration produced separately by three sources will counted three times). fore, this approach does not give an accurate estimate of population exposed to specific levels from sources. However, the model does give an accurate respresentation of total exposure (expressed as concentration per person-year) for use in linear health models (i.e., those in which one person exposed to two ng/m³ is treated the same as two people each exposed to one ng/ m^3).

To obtain an estimate of the population exposed to various concentrations, a slightly different approach is used. The major difference is that once people are determined to lie within any radius of any plant, they are subtracted from the map. In other words, no single person is ever counted by more than one source. In addition, the model is not run source-by-source as before, but pollution level-by-pollution level. By choosing several pollution levels and starting with the level that yields the smallest radius and working out the actual number of people who are exposed to at least one source at each, a pollution level can be estimated.

This model also has its limitations. Individual source totals are meaningless since the sources which are run first will tend to count more people simply because there are more people initially on the map. There is also no way to arrive at the total pollutant concentration times person estimate because no account is made of cumulative effects.

APPENDIX B-1

LOCATION AND CAPACITY (THOUBAND TONS/YEAR)

					T	TYPE OF OPERATION	N.		EMISSION RATES
CITY	LATITUDE (N)	LONGITUDE (W)	TOTAL	BLAST	SINTER	ELECTRIC ARC	BASIC	OPEN	g GM/SEC
ALABAMA 1. Birmingham 2. Fairfield 3. Gadsden	33 ⁰ 32' 33 ⁰ 29' 34 ⁰ 01'	86 ⁰ 50' 86 ⁰ 52' 86 ⁰ 02'	1,250,897 5,908,881 1,816,446	1,250,564 5,897,738 1,812,580	7,783	333 036	3,360 2,520		2.13×10 ⁻³ 1.63×10 ⁻¹ 1.35×10 ⁻²
ARKANSAS 4. Newport	35 ⁰ 36'	91015'	140			140			9.4x10 ⁻⁴
S. Carson 6. Emeryville 7. Fontana 8. Union City	330481 370501 340061 370361	118 ⁰ 17' 122 ⁰ 17' 117 ⁰ 26' 122 ⁰ 01'	123 126 4,678,242 630	4,675,042	1,240	123 126 70		1,890	7.54x10 ⁻⁴ 7.54x10 ⁻⁴ 2.89x10 ⁻² 1.32x10 ⁻³
COLORADO 9. Pueblo	380161	104 ⁰ 37'	3,042,042	3,038,420	896	672	1,982		2.55×10 ⁻²
CONNECTICUT 10. Bridgeport	410101	73010'	84			84			5.66×10 ⁻⁴
FLORIDA 11. Jacksonville 12. Indiantown 13. Tampa	e 30°20' 27°51' 27°57'	81°41' 80°28' 82°26'	210 182 238			210 182 238			$\begin{array}{c} 1.32 \times 10^{-3} \\ 1.13 \times 10^{-3} \\ 1.5 \times 10 \end{array}$
GEORGIA 14. Cartersville 34 ⁰ 09' 15. Atlanta 33 ⁴ 6'	e 34 ⁰ 09¹ 33 ⁰ 46¹	84°47' 84°25'	280 476			280 4 76			1.69×10 ⁻³ 3.02×10 ⁻³

APPENDIX B-1 (Continued)

LOCATION AND CAPACITY (THOUSAND TONS/YEAR)

EMISSION RATES	Q GM/SEC	8.11×10 ⁻³ 3.02×10	1.32×10 ⁻³ 2.16×10 ⁻² 2.07×10 ⁻³ 1.88×10 ⁻⁴	1.81×10 ⁻³	6.06×10 ⁻³ 9,43×10 ⁻¹ 1.2×10 ⁻³ 6.22×10 ⁻⁴ 7.54×10	2.83×10 ⁻³ 9.2×10 ⁻²	9.05×10 ⁻⁴ 3.77×10 ⁻⁴ 8.31×10 ⁻³ 7.5×10
EM	OPEN HEARTH				36	3,087	
7	BASIC		3,948	3,024	7,812	3,696	4,032
TYPE OF OPERATION	BLECTRIC	481	204 336 39 2,940		675 151 980 117	448	56 1,120
Ţ	SINTER	1,260	888	840	5,311	4,122	1,120
	BLAST FURNACE		691,067	2,828,391	11,566,510 5,944,219 15,079,325	10,228,288	3,299,925 2,597,980
	TOTAL	1,260	204 696,003 39 2,940	2,832,255	17,519,213 151 15,098,769 980 117	448	3,303,957 2,574,140 1,120
	LONGITUDE (W)	90 ⁰ 10' 87 ⁰ 25'	87°37' 90°08' 88°00' 87°45' 89°41	82 ⁰ 381	87 ⁰ 28° 85 ⁰ 10° 87 ⁰ 19° 86 ⁰ 08° 85 ⁰ 21°	76 ⁰ 33' 76 ⁰ 28'	83 ⁰ 11' 83 ⁰ 08' 83 ⁰ 11' 83 ⁰ 2'
	LATITUDE (N)	38 ⁰ 53' 41 ⁰ 45'	41°30° y 38°42° 41°40° e 42°02° 41°47°	38 ⁰ 27'	0 41038 41038 41004 4035 4035 39055	39 ⁰ 17' 39 ⁰ 13'	40 ⁰ 21 42 ⁰ 27 42 ⁰ 08 42 ⁰ 31
	CITY	ILLINOIS 16. Alton 17. Chicago	18. Chicago Heights 19. Granite City 20. Lemont 21. Morton Grove 22. Sterling	KENTUCKY 23. Ashland	INDIANA 24. East Chicago 25. Fort Wayne 26. Gary 27. Kokomo 28. New Castle	MARYLAND 29. Baltimore 30. Sparrow's Point	MICHIGAN 31. Dearborn 32. Ferndale 33. Trenton Warren

APPENDIX B-1 (Continued)
LOCATION AND CAPACITY (THOUSAND TONS/YEAR)

					TY	TYPE OF OPERATION	N	<u>Θ</u>	EMISSION RATES
CITY	LATITUDE (N)	LONGITUDE (W)	TOTAL	BLAST	SINTER	ELECTRIC	BASIC	OPEN	Q GM/SEC
NEBRASKA 34. Norfolk	42°01'	97 ⁰ 25'	224			224			1.5×10 ⁻³
NEW JERSEY 35. Roebling 36. Sayreville	40 ⁰ 07' 40 ² 7'	74 ⁰ 46° 74 ⁰ 21°	417 364			417 364			2.64×10 ⁻³ 2.26×10
NEW YORK 37. Auburn 38. Buffalo 39. Dunkirk 40. Lackawanna 41. Lockport 42. Syracuse	42°56°42°56°42°29°42°49°43°10°4	76034' 78052' 79019' 78049' 76041'	168 2,916,391 319 7,241,389 201	2,914,711		168 319 1,641 201	1,680		1.13×10 ⁻³ 3.77×10-4 2.07×10-3 3.57×10-4 7.54×10-3
NORTH CAROLINA 43. Charlotte	1A 35°14'	80°52°	154			154			9.43×10 ⁻⁴
0HIO 44. Campbell 45. Canton 46. Cleveland	41°04° 40°45° 41°28°	80 ⁰ 36' 810 ² 1' 810 ⁴ 0'	3,522,732 421,834 6,477,830	3,519,366 418,880 1,762,576	720	2,954	3,696	2,646	2.04x10 ⁻² 1.88x10 ⁻² 1.60x10 ⁻²
47. Lorain 48. Mansfield 49. Middletown	41°26' 40°46' 39°30'	82 ⁰ 08' 82 ⁰ 31' 84 ⁰ 24'	4,576,200 6,187,557 3,893,817	4,709,166 4,572,260 6,186,997 1,299,760	160	560	3,780	4,177	4.17×10 ⁻³ 3.58×10 ⁻³ 2.74×10
50. Portsmouth	38044'	82 ⁰ 59'	1,262,260	2,585,660 1,261,260				1,008	2.07×10^{-3}

APPENDIX .B-1 (Continued)
LOCATION AND CAPACITY (THOUSAND TONS/YEAR)

EMISSION RATES	Q GM/SEC	1.13×10^{-3} 0 0 1.13×10^{-3} 0.00×10^{-3} 0.00×10^{-2}	2.6×10 ⁻³	3.96×10 ⁻⁴ 1.07×10 ⁻² 4.18×10 ⁻⁴ 8.30×10 ⁻⁴ 1.5×10 ⁻² 1.0×10 ⁻² 7.0×10 ⁻³ 3.32×10	4.3×10 ⁻² 7.73×10 ⁻³ 1.69×10 ⁻³ 1.13×10 ² 2.3×10 ⁻⁴ 1.88×10 ⁻³ 6.03×10 ⁻³ 8.0×10 ⁻² 1.16×10 ⁻⁴ 5.66×10 ⁻⁴ 5.66×10 ⁻⁴ 5.66×10 ⁻⁴
EMIS	OPEN	2,021			3,780 1,134 246 315
z	BASIC	4,620		1,738 4,536 3,696 3,696	3,360
TYPE OF OPERATION	ELECTRIC	1,260	420	1,680 238 224 1,554 966 518	1,120 252 100 42 1,245
TYP	SINTER	1,260		1,892	1,400 1,000 298 525
	BLAGT	1,670,900		4,805,570 4,650,661 5,030,820 1,053,364 4,548,246 762,230	5,289,770 4,148,467 2,699,258 1,631,014 1,987,331
	TOTAL	4,620 1,670,900 1,260 3,483,508	420	4,807,308 1,680 4,657,327 5,034,516 1,554 1,554 4,552,908	5,296,070 3,696 252 4,150,702 2,699,556 1,991,216 1,991,216 98
	LONGITUDE (W)	80 ³ 7 1 83 ³ 1 1 80 ⁴ 9 1 80 ⁴ 1 1	,90 ₀ 96	80 0 14 1 75 0 21 1 75 0 21 1 7 9 0 5 2 1 7 9 0 5 2 1 7 9 0 5 3 1 7 9 0 5 0 7 1 9 0 0 0 5 1 8 0 0 0 0 5 1 8 0 0 0 0 5 1 8 0 0 0 0 5 1 8 0 0 0 0 5 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	74 052 1 79 054 1 80 012 1 78 055 1 79 051 1 80 051 1 79 051 1 79 051 1
	LATITUDE (N)	(d) 40021; 41038; 41014; 41007;	36 ⁰ 08	40°36' 40°45' 40°45' 40°21' 40°21' 40°51' 40°22' 42°06'	41010 40024 40015 40019 40019 40019 40019 41005 41005 41005
	CITY	OHIO (Continued) 51. Steubinville 52. Toledo 53. Warren 54. Youngstown	OKLAHOMA 55. Sand Springs	56. Alquippa 57. Beaver Falls 58. Bethlehem 59. Braddock 60. Bridgeville 61. Butler 62. Clairton 63. Duquesne 64. Erie	

APPENDIX B-1 (Continued)
LOCATION AND CAPACITY (THOUSAND TONS/YEAR)

EMISSION RATES

					T.	TYPE OF OPERATION	Z	=	EMISSION RATES
CITY	LATITUDE (W)	LONGITUDE (W)	TOTAL	BLAST	SINTER	ELECTRIC ARC	BASIC	OPEN	Q GM/SEC
PENNSYLVANIA (Continued)	(Continued)								
7	40027	79057	3,593,721	3,589,740		966	840	2,142	$\frac{1.1 \times 10^{-2}}{1.1 \times 10^{-3}}$
	41018	80031 80031	1,647,576	1,643,180		616	3,780		4.77x10_3 4.77x10
80. Steelton 81. Washington	40°13'	76.49 80°14'	1,316			1,316 168			1.13×10^{-3}
SOUTH CAROLINA			-						r
82. Darlington 83. Georgetown	34°17' 33°22'	79°52' 79°17'	268			268 630			1.69×10^{-3} 3.97×10^{-3}
TENNESSEE		,							r
84. Harrisman	35 ⁰ 56'	840331	210			210			1.32×10 ⁻³
TEXAS		1							C -
85. Baytown	290431	94058	2,352			2,352 210			1.5×10^{-2} 1.32×10^{-3}
	29047	95018	1,004,199	1,001,000	248	2,951			2.4×10^{-2}
88. Jewett 80 Lone Star	31°21' 32°55'	96.08	224 1.011.773	1,010,869	253	224 336		315	$\frac{1.5 \times .0}{8.05 \times 10^{-3}}$
	32029	94044	140	•	; i	140			9.43×10^{-4}
91. Pampa	35 32'	100 57	61			61			3.77×10 7
UTAH									r
92. Geneva	40012'	111037	411,199	407,829	850			2,520	2.3×10 ⁻²
VIRGINIA 93. Chesapeake	36043	, 21 ₀ 92	112			112			7.54×10-4

APPENDIX B-1 (Continued)
LOCATION AND CAPACITY (THOUSAND TONS/YEAR)

EMISSION RATES	EN Q RTH GM/SEC	$\frac{1.13 \times 10^{-3}}{5.6 \times 10}$	4.29×10 ⁻²
	OPEN		
ON	BASIC		6,552
TYPE OF OPERATION	ELECTRIC	196 896	
H	SINTER		2,050
	BLAST		6,397,183
	TOTAL	196 896	6,405,785
	LONGITUDE (W)	122 ⁰ 13' 122 ⁰ 19'	800351
	LATITUDE (N)	47 ⁰ 23; 47 ⁰ 34;	40°24°
	CITY	WASHINGTON 94. Kent 95. Seattle	WEST VIRGINIA 96. Weirton

APPENDIX B-2

IRON AND STEEL

Thousands of People Exposed to Concentration Range $(n\alpha/m^3)$

			Rar	Range (ng/m ²)	<u> </u>	
State	Source	2	5-10	1-5	. 1-1	Total
ALABAMA	* * * m (VEM)	1850 082	0 171 0	0 8 4 0 8 0	53 53 63 € 63 ₹	26.2 3.4 3.0 3.0 3.0
ARKANSAS	4	٥	٥	⋄	IJ	n
CALIFORNIA	5 4 × 0	0000	0 0 8 0	4 00%0	9 T S 9 T S 8 D P S 9 P S	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
COLORADO	÷	٥	1.5.	• e • e	19	011
CONNECTICUT	10.	0	٥	0	9	3

APPENDIX B-2 (Continued)

IRON AND STEEL Thousands of People Exposed to Concentration Range (ng/m^3)

State	Source	∑10 	5-10	1-5	.1-1	Total
FLORIDA	* * * = (* M) = = = =	000	000	000		13 1.1
GEORGIA	* * * D = =	00	00	>0	4.5	1.3
ILLINOIS	14 14 14 14 14 14 14 14 14 14 14 14 14 1	000000	0009000	50000m	\$3808 15 1	500 30 50 300 - 0 300 - 0
KENTUCKY	e e	٥	٥	6 D	· ; - 1	

APPENDIX B-2 (Continued)

IRON AND STEEL
Thousands of People Exposed to Concentration

			Ran	Range (ng/m³)	•	
State	Source	>10	5-10	1-5	1-1	TOTAL
INDIANA	ଧ୍ୟ 4 ଅ	00	• •	4 [/ 0	986	
	26.	140	800	306 900	(2) (2) (1)	* 00 00 00
	, to	> 0	> 0	ò	, <u>, </u>	} _
					:	į
MARYLAND	30.	00	00	೦೦	23 S C C C	.5 % .5 % .3
MICHIGAN	# N	00	00	00	700	\
	33.	0	0	₩.	- · ·	3
NEBRASKA	м •	0	0	17 20	-4 -3 -3 -4	· :
NEW JERSEY	35.	0	0	0	20 	22
NEW YORK	36.	00	0	3 3	4 55 5 4 	

APPENDIX B-2 (Continued)

IRON AND STEEL Thousands of People Exposed to Concentration Range (${\rm ng/m}^3$)

State	Source	>10	5-10	11.55	.1-1	Total
NEW YORK (cont'd)	ы ы 4 4 80 9 9 с • • • •	0000	0000	4 0000	9 9 9 9 3 0 5 5	3 75 3
NORTH CAROLINA	- 4- 4 - 60 to - • •	000	00	00	2 T T C C C C C C C C C C C C C C C C C	1
ОНІО	44.	⋄	•	٥	78	78
	4 4 4 4 4 10 10 11 10 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	2	2111 396 396 4 4 4 1112	1 2005 1 2005 1 3005 1 3005 1 3005	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ОКLАНОМА	0 0 0 0 0 4 0 0 • • • •	0000	. 4 > ○ ○ ○ (4	0 4 8 8 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
PENNSYLVANIA	56.	>	•	>	ភ	ij

APPENDIX B-2 (Continued)

IRON AND STEEL

Thousands of People Exposed to Concentration Range (ng/m^3)

State	Source	>10	5-10	1-5	. 1-1	Total
PENNSYLVANIA (cont'd)	NUN 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	00700000000000000000000000000000000000	0460 04700 0	4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6	144 1 1 4 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1
SOUTH CAROLINA	3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00	၁	33	865 865	\$ 5.00 3.00 3.00
TENNESSEE	884. 94.	00	00	00	९ ∖ ल च	eg und und

APPENDIX B-2 (Continued)

Thousands of People Exposed to Concentration Range (ng/m^3) IRON AND STEEL

State	Source	>10	5-10	1-5	.1-1	Total
TEXAS	8. •	٥	>	Э	 	 -:
	88.7 88.8 8.9 9.0	00000	30 4 30	4 4 3 80 0 0 H	4.5 805.7 1.7 1.7	0
ОТАН	· · · · · · · · · · · · · · · · · · ·	00	.00	00	X 9). 3
VIRGINIA	93.	٥	∺	ó	ež.	req s di s di
WASHINGTON	ራ •	•	0	٥	<u>:</u>	э
WEST VIRGINIA	% % • % • *	o o	00	ر د د	36. 20.5	
	٠٢٠	ř9	29	න න	, C.	

APPENDIX C-1

cude Capacity Q (tons/day) (gms/sec)	190 1.30×10·2 190 1.30×10·2 28' 128 8.80×10·3 37' 500 1.46×10 29' 124 8.50×10 120 1.24 8.50×10 32' 395 0.70×10·3 31' 263 1.80×10·3 8' 293 2.00×10·3 1' 293 2.00×10·3	64 4 10 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	39' 1201 3.20'10'39' 3.20'10' 3.4' 3.4' 3.50'10' 3.4' 3.50'10' 3.50'
Latitude Longitude (N)	41 20 41 44 41 45 41 44 41 47 41 18 41 12 41 12 41 12 41 47 72 73 73 73 74 74 74 74 74 74 74 74 74 74 74 74 74 7	6 6' 80 5 51' 80 6 8' 80 5 44' 80	41 53' 87 41 49' 87 41 37' 87
State	1 Ansonia 2 Bridgeport 3 Darien 4 East Hartford 5 Hartford 6 New Canaan 7 New Haven 8 New London 9 Stamford 10 Stamford 11 Stratford 12 Waterbury 13 West Hartford	FLORIDA 14 Broward County 15 Dade County 16 Fort Lauderdale (Broward C.) 17 Miami (Dade C.) 18 Tampa ILLINOIS	19 Chigaco 20 Chigaco 21 Chicago (S. Doty)

APPENDIX C-1 (Continued)

t Chicago 41 39' 87 28' 454 3.10X10- isville 38 12' 85 47' 996 6.80X10- cveport 32 19' 94 17' 190 1.30X10- Orleans 30 0' 90 3' 395 2.70X10- Orleans 30 0' 90 3' 395 2.70X10- Orleans 30 0' 90 3' 395 2.70X10- Crieans 30 0' 90 3' 395 2.70X10- Crieans 30 0' 90 3' 395 2.70X10- Crieans 30 18' 76 31' 805 2.70X10- SETTS 39 18' 76 31' 805 0.100X10- Intree 42 23' 71 10' 600 4.100X10- A2 13' 71 1' 600 4.100X10- A2 18' 71 1' 600 4.100X10- A2 18' 71 1' 600 4.100X10- A2 30' 71 1' 600 4.100X10- A2 30' 71 1' 600 4.100X10- A2 31' 70 51' 77 5.70X10 Balehead 42 31' 70 51' 39 5.70X10 Crieans 42 30' 70 51' 77 5.00X10 Crieans 42 30' 70 51' 77 600 4.100X10- A2 31' 70 53' 139 9.10X10- Crieans 42 31' 70 53' 395 0.10X10- Crieans 42 27' 71 11' 307 0.10X10- Crieans 42 30' 71 11' 307 0.10X10- Crieans 42 30' 71 11' 30	38 12' 85 47' 996 32 19' 94 17' 190 29 58' 90 5' 395 30 2' 90 3' 395 30 0' 90 3' 395 30 0' 90 3' 395 30 18' 76 31' 805 42 13' 71 10' 600 42 19' 71 11' 600 42 19' 71 11' 600 42 19' 71 11' 600 42 19' 71 11' 600 42 19' 71 11' 377 42 37' 70 53' 139 42 37' 70 53' 139 42 21' 70 53' 143 42 21' 71 11' 307 42 22' 71 11' 307 42 23' 71 11' 307 42 21' 71 11' 307 42 21' 71 11' 307 42 21' 71 11' 307 42 21' 71 11' 307	State	Latitude (N)	Longitude (W)	Capacity (tons/day)	(gms/sec)
Le 38 12' 85 47' 996 rt 32 19' 94 17' 190 ans ans 30 2' 90 3' 395 ans 30 0' 90 3' 395 ans 30 0' 90 3' 395 ans 30 0' 90 3' 395 ans 30 18' 76 31' 805 e 42 23' 71 10' 146 e 72 13' 71 1' 600 and 42 37' 71 24' 395 ad 42 37' 71 24' 395 ad 42 37' 71 21' 395 ad 42 37' 71 11' 30' ad 42 37' 71 11' 30' er 42 37' 71 11' 30' ad 42 37' 71 11' 30' er 42 37' 71 11' 71' 71' er 42 37' 71 11' 71' 71' 71' er 42 37' 71 11' 71' 71' 71' 71' 71' 71' 71' 71	Le 38 12' 85 47' 996 Tr 29 58' 90 3' 395 ans 30 2' 90 3' 395 ans 30 0' 90 3' 395 ans 30 0' 90 3' 395 ans 30 0' 90 3' 395 ans 30 18' 76 31' 805 e 42 13' 71 10' 146 42 13' 71 1' 600 42 19' 71 1' 600 42 19' 71 1' 600 42 19' 71 1' 397 42 37' 71 1' 307 42 30' 71 1' 307 42 31' 70 53' 139 er 42 13' 70 53' 139 42 21' 71 1' 307 42 21' 71 1' 307 42 21' 71 1' 307 42 21' 71 1' 307 42 21' 71 1' 307 42 31' 77 71 06' 143				454	3.10X10~2
Le 38 12' 85 47' 996 Tr ans ans ans 29 58' 90 5' 190 ans ans 30 2' 90 3' 395 ans 30 0' 90 1' 395 ans 30 0' 90 3' 395 ans 30 18' 76 31' 805 e 42 13' 71 10' 234 42 13' 71 11' 600 and 42 37' 71 11' 75 42 30' 71 11' 397 h 42 31' 70 53' 139 ad 42 32' 71 11' 397 er 42 13' 70 53' 139 h 42 37' 71 11' 307 er 42 21' 71 11' 307	Tr. 32 19' 94 17' 190 ans ans 30 2' 90 3' 3955 ans 30 0' 90 1' 3955 ans 30 0' 90 3' 3955 ans 29 56' 90 1' 3955 ans 39 18' 76 31' 805 e 39 18' 76 31' 805 e 42 13' 77 110' 120' ad 42 37' 71 1' 600 42 19' 71 1' 600 42 19' 71 1' 600 42 19' 71 1' 139 42 31' 77 71 06' 143 er 42 31' 77 71 06' 143					
e	e	isville	₩ 13		966	6.80X10·2
ans	ans ans 32 19' 94 17' 190 ans ans 30 2' 90 3' 395 ans 30 0' 90 3' 395 and 42 23' 71 10' 146 42 13' 77 121' 307 and 42 21' 70 51' 13' 42 21' 70 51' 13' 42 21' 70 51' 13' 42 21' 70 51' 13' 42 21' 71 11' 307 er 42 21' 77 11' 307	۷۱				
ans ans 29 58' 90 5' 190 ans ans ans ans 30 2' 90 3' 395 ans ans ans 20 2' 90 3' 395 ans ans ans 30 0' 90 1' 395 ans ans ans 20 56' 90 1' 395 ans ans 20 56' 90 1' 395 ans and 42 23' 71 10' 234 and 42 19' 71 1' 600 and 42 30' 70 51' 355 and 42 21' 70 53' 120' and 42 21' 71 11' 307 and 42 27' 71 11' 307 and 42 37' 71 11' 307 a	ans ans 29 58' 90 5' 190 ans ans ans ans 30 2' 90 3' 395 ans ans ans 30 0' 90 1' 395 ans ans ans 29 56' 90 1' 395 ans ans 29 56' 90 1' 395 ans and 42 13' 77 11' 307 and 42 21' 70 51' 17' 307 er 42 13' 77 11' 307 143	eveport			190	1.30%10 2
ans	Orleans	Orleans			150	1.30,10
ans ans 29 56' 90 1' 395 ans ans ans 30 0' 90 3' 439 ans ans 27 56' 90 3' 395 ans ans 27 56' 90 3' 459 ans ans 27 18' 76 31' 805 ans an 42 13' 71 1' 600 and 42 30' 71 11' 600 and 42 30' 70 51' 77 1201 and 42 30' 70 51' 139 ad 42 27' 70 53' 139 and 42 27' 70 53' 130 and 42 27' 70 53' 295 and 42 27' 70 53' 295	Orleans 29 56' 90 1' 395 Orleans 30 0' 90 3' 439 Orleans				395	2.70X10-2
ans ans 30 0' 90 3' 439 ans ans ans ans ans ans 30 0' 90 3' 439 ans ans 29.56' .90-6' 395 .955 .966 .90-6' 395 .955 .966 .90-6' 395 .956 .90-6' 395 .956 .90-6' 395 .956 .956 .956 .956 .956 .966 .956 .95	Orleans 30 0' 90 3' 439 Orleans 30 0' 90 3' 439 timore 39 18' 76 31' 805 SETTS mont 42 23' 71 10' 146 okline 42 13' 71 1' 600 okline 42 19' 71 1' 600 okline 42 19' 71 1' 70 234 mingham 42 37' 71 21' 75 blehead 42 31' 70 51' 77 42 31' 70 53' 139 chester 42 30' 71 1' 307 dus 42 31' 70 53' 1201 dus 42 31' 70 53' 139 chester 42 13' 70 51' 1' 307 dus 42 13' 70 57' 293 ingus 42 31' 77 71 06' 143				395	2.70810 2
e 39 18 76 31 805 e 42 23 71 10 146 e 42 13 71 0 234 e 42 13 71 1 600 e 42 19 71 1 600 am 42 37 71 1 7 139 ad 42 30 70 51 1 397 42 30 70 51 1 307 er 42 30 70 51 1 307 er 42 30 71 1 307 er 42 27 71 11 307 er 42 27 70 51 1 307 er 42 27 71 11 307	timore 39 18' 76 31' 805 SETTS mont 42 23' 71 10' 146 mont 42 13' 71 1' 600 okline 42 19' 71 1' 600 okline 42 19' 71 1' 600 okline 42 19' 71 1' 600 mingham 42 19' 71 1' 77 42 19' 71 1' 77 42 19' 71 1' 77 42 19' 71 1' 77 do 600 do 1000 en 42 31' 77 11' 307 chester 42 31' 77 71 11' 307 chester 42 31' 77 71 06' 143				439	3.00X10-2
e 42 23' 76 31' 805 e 42 13' 71 10' 146 42 13' 71 10' 234 e 42 13' 71 1' 600 am 42 19' 71 1' 600 am 42 19' 71 1' 600 42 19' 71 1' 70 175 ad 42 30' 70 51' 77 42 30' 70 51' 77 42 30' 70 51' 77 42 27' 71 11' 307 er 42 27' 71 11' 307	e 42 23' 71 10' 146 42 13' 71 10' 234 600 62 600 62 13' 71 1' 600 600 62 19' 71 1' 600 600 62 19' 71 11' 600 600 62 19' 71 11' 600 600 62' 600		29	1	26°C	2,70%10
e 42 23' 71 10' 234 42 600 6e 67 71 1' 600 6e 67 71 1' 600 6e 67 71 1' 600 600 6er 67 71 1' 600 600 6er 67 71 1' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 21' 71 201 600 600 600 600 600 600 600 600 600 6	e 42 13' 71 10' 234 42 13' 71 0' 234 42 19' 71 1' 600 er 42 19' 71 1' 600 am 42 37' 71 21' 79' 42 30' 70 51' 77 42 30' 70 51' 139 42 27' 71 1' 307 er 42 13' 77 71 06' 143	timore	18	19	805	
cee	tee 42 13' 71 10' 146 234 50 234 50 600 175 600 175 71 11' 600 175 11' 600 175 11' 600 175 11' 600 175 11' 600 175 11' 600 175 12' 77 175 12' 77 175 12' 77 175 12' 77 175 12' 77 175 11' 77 175 12' 77 176 12' 77 177 11' 30' 170 11'	SETTS				
cee 42 13' 71 0' 234 50	ree 42 13' 71 0' 234 500 500 51 17' 600 51 17' 600 51 17' 600 51 11' 600 51 11' 600 51 11' 77 175 52 30' 70 51' 77 52 31' 70 53' 1201 52 31' 70 53' 1201 52 31' 70 53' 1201 52 57' 70 57' 29'3 51 11' 307 52 57' 70 57' 29'3 51 11' 307 52 71 11' 307 52 71 11' 307 52 71 11' 307 53 71 11' 307 54 21' 71 11' 307 55 7' 71 11' 307 56 7' 71 11' 307 57 7 1 11' 307 58 7 7 1 11' 307 59 7 7 11' 307 51 11' 307	mont			146	I.00X10-2
5n 42 5' 71 1' 600 4.10×10·10·10·10·10·10·10·10·10·10·10·10·10·1	5n 42 57 17 175 1.30×10 ine 42 19 71 7 175 1.30×10 iver 41 40 71 11 606 4.10×10 jham 42 37 74 49 5.40×10 nead 42 37 7 5.40×10 nead 42 31 70 51 7 5.40×10 nead 42 31 70 51 120 8.20×10 nm 42 31 71 11 30 2.40×10 nm 42 21 71 11 30 2.40×10 ster 42 13 7 7 143 9.80×10	intree			234	1.60%10~2
ine iver iver iver iver iver iver iver ive	ine iver 42 19' 71 7' 500 1.30X10 iver 42 18' 71 21' 500 3.40X10 42 30' 70 51' 77 5.40X10 42 30' 70 53' 139 9.50X10 42 30' 71 1' 30' 8.20X10 42 27' 71 11' 30' 8.20X10 42 27' 71 11' 30' 8.20X10 42 13' 77 71 06' 143 9.80X10-	ckton			909	7 -01X01 +
iver the first term of the fir	iver 41 40' 71 11' 606 4.10x10 49B 5.40x10 42 18' 71 21' 355 2.70x10 70 51' 77 5.40x10 70 51' 77 5.40x10 70 51' 77 5.40x10 70 53' 139 9.50x10 71 11' 307 2.10x10 2.10x10 71 11' 307 2.00x10 71 11' 307 307 300x10 71 11' 307 307 300x10 71 11' 307 307 300x10 71 11' 300x10 7	okline			175	L SONTO ST
sham 42 37 71 24 498 5.40×10 nead 42 37 71 21 395 2.70×10 nead 42 30 70 51 79 5.40×10 42 31 70 53 139 9.50×10 own 42 21 71 11 307 2.10×10 ster 42 27 71 11 307 0.80×10 ster 42 13 70 57 293 2.00×10	Jham 42 37 71 24 498 5.40×10 nead 42 30 70 51 79 2.70×10 nead 42 30 70 51 79 5.40×10 42 31 70 53 139 9.50×10 own 42 21 71 11 307 2.10×10 ster 42 27 71 11 307 0.80×10 ster 42 13 77 71 06 143 9.80×10	1 River			909	* 01/01 **
nead 42 37 71 21 395 2.70%10 42 30 70 51 77 5.40%10 42 31 70 53 139 9.50%10 50 53 1201 8.20%10 50 51 1 1 1 50 51 1 1 1 1 50 52 20 2 2 0.80%10 51 51 2 2 0.80%10 51 52 2 2 0.00%10	nead 42 37' 71 21' 395 2.700010 42 30' 70 51' 77 5.400010 70 51' 70 53' 139 9.500010 52 31' 71 11' 307 2.100010 54 27' 71 11' 307 0.800010 54 27' 70 57' 2.000010 54 31' 77 71 06' 143 9.80x10-	mingham			498	0. 0.1.X04.0
nead 42 30' 70 51' 77 5.40430 42 31' 70 53' 139 9.50430 xun 42 30' 71 11' 307 2.10430 xter 42 27' 71 8' 95 0.80430 xter 42 13' 70 57' 293 2.00410	nead 42 30' 70 53' 139 9.50×10 42 31' 70 53' 139 9.50×10 5wn 42 21' 71 11' 307 2.10×10 5ter 42 27' 71 8' 27' 0.80×10 5th 42 13' 77 71 06' 143 9.80×10	ell			0.62	2.70%10 2
42 31 70 53 139 9.50×10 42 39 71 1 1201 8.20×10 5ter 42 27 71 11 307 2.10×10 5ter 42 13 70 57 293 2.00×10	42 31 70 53 139 9.50x10 5 20 71 1 1201 8.20x10 3 21 71 11 307 2.10x10 42 27 71 8 95 0.80x10 42 13 77 71 06 143 9.80x10	blehead			7.5	2 0 FX c t + 12
vm 42 30 71 1 1201 8.20X10 ster 42 27 71 11 307 2.10X10 ster 42 27 71 8 95 0.80X10 th 42 13 70 57 293 2.00X10	vwn 42 21 71 11 307 2.10×10- ster 42 27 71 8 95 0.80×10- th 42 13' 70 57 293 2.00×10- th 42 31' 77 71 06' 143 9.80×10-	em			139	
own 42 21' 71 11' 307 2.10%10- ster 42 27' 71 8' 95 (0.80%10)- ster 42 13' 70 57' 29% 2.00%10	own 42 21' 71 11' 307 2.10X10- 5 cter 42 27' 71 8' 95' 0.80X10 42 13' 77 71 06' 143 9.80X10-	ຣກຽ			1201	
ster 42 27 71 8' 95 00.80.30 ch	ster 42.27' 71.8' 95' 0.80.10 th 42.13' 70.57' 293 2.00×10 42.31' 77 71.06' 143 9.80×10-	ertown		; - ;	307	
zh 42 131 . 70 571 293 2100×10	th 42 13' 70 57' 29'3 2,00\text{10} 42 31' 77 71 06' 143 9.80\text{x10}	chester		\(\tau \)	- 56	
	42 31' 77 71 06' 143 9.80x10-	month		70	5.6.2	

APPENDIX C-1 (Continued)

State	Latitude (N)	Longitude (W)	Capacity (tons/day)	Q (gms/sec)
MICHIGAN				
46 Central Wayne County 47 Detroit (Southfield)	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		061 061	0.01K00.0 1.00K10.1
48 Grosse Point 49 S.E. Oakland County			909	A.LOXIO.
MISSOURI				
50 St. Louis (North)	38 40	~-:	382	2.70×10-2
Louis	្តល្អ ន	90 127	8.45 1	2 25X10-2
NEW HAMPSHIRE				
52 Manchester	13 0	71.18	88	0.80X10:3
NEW JERSEY				
	, to 15°	74 437	£200	1,00,10.2
54 Red Bank	40 207	74 57	46	0.012000
NEW YORK		,		
55 Babylon	40 41.		395	2.70310-3
56 Beacon	41.29	73 58	66	6.80XJ0
	42 54	78 537	009	4.10%10
	40 57		190	7.0XX02.1
			161	. 01X0I.
			175	1.20X10
			009	4.10X10-2
			747	5.10X10~2
			200	2 -01X00 · C
		73	293	0.000000
		, 8/		

APPENDIX G-1 (Continued)

(gms/sec)	1.10×10-2 1.30×10-2 1.30×10-2 2.70×10-2 4.10×10-2 3.40×10-2 1.00×10-2 1.70×10-2 1.30×10-2	6.80×10 ·2 6.80×10 ·2 6.80×10 ·2 6.80×10 ·2 6.80×10 ·2	1.30%10%2 2.00%10%2 2.00%10%2 1.00%10 2 1.50%10 2
Capacity (tons/day)	161 190 190 395 498 1946	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	190 146 293 116 498
Longitude (W)	78 49 73 446 73 374 73 377 73 417 73 48 73 48 74 48	74	81 0 84 18 81 46 81 45 84 12 84 24 84 24 8
Latitude (N)	44444444440000000000000000000000000000	40 37 40 43 40 40 40 36	41 36' 39 33' 41 28' 40 2' 41 25' 39 16'
State (NEW YORK)	65 Lackawanna 66 Lawrence 67 Long Beach 68 Mount Vernon 69 New Rochelle 70 North Hempstead 71 Oyster Bay 72 Rye 73 Scarsdale 74 Tonawanda 75 Valley Stream	NEW YORK CITY 76 New York City 77 New York City 78 New York City 79 New York City 80 New York City	81 Euclid 82 Franklin 83 Lakewood 84 Miami County 85 Parma 86 Sharonville

APPENDIX G-1 (Continued)

(gms/sec)	4.10×10·2 4.10×10·2 1.00×10·2 1.30×10·2 3.40×10·2 3.40×10·2 3.40×10·2	2.40X10-2		0.00X10 0.00X1	2,30X10-2 5,10X10-3 1,60X10-3 1,00X10-2 2,30X10-7
Capacity (tons/day)	600 600 146 190 791 498 498	351	439	0.850 0.850 0.870 0.870	337 234 146
Longitude (W)	75 14 75 11 80 13 78 37 75 23 75 23	101 527	111 58	77 6' 76 25' 76 20'	88 34' 87 52' 87 44' 88 13'
Latitude (N)	39 56 39 58 40 35 39 51 39 54	35 11	41.147	38 50° 37 58° 36 53° 36 50°	44 43 23 43 44 45 44 50 60 60 60 60 60 60 60 60 60 60 60 60 60
State	PENNSYLVANIA 87 Philadelphia 88 Philadelphia 89 Ambridge 90 Bradford 91 Delaware County 92 Delaware County 93 Delaware County 94 Shippensburg	TEXAS 95 Amarillo	UTAH 96 Ogden	VIRGINIA 97 Alexandria 98 Newport News 99 Norfolk 100 Portsmouth	WISCONSIN 101 Oshkosh 102 Port Washington 103 Sheboygan 104 Sturgeon Bay 105 Waukesha

APPENDIX C-2

State	Source	>10	5-10	1-5	.1-1	Total
CONNECTICUT	4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 3040403400400	на ию учницны очищее ночорох	(1) 1) 1) 1) 1) 1) 1) 1)		
FLORIDA	11 11 11 11 12 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	00440	0 9 N 0 8 7 8 C 1 N M	# 9 8 9 19 1 3 4 19 5 4 1 4 4 5 4	7 : 1 ⁷ 5 7 : 3 -	
ILLINOIS	: • • • • • • • • • • • • • • • • • • •	000 000 64	X	350 7 11 2 2 2 7 12 1 2 1 7 1 1 1 1		- 3

APPENDIX C-# (Continued)

Concentration	
ţ	
Exposed	٣
People	
of	
Thousands	

			Range	(ng/m ³)		
State	Source 23.	210	43	1-5 302	1-1	Total
KENTUCKY	c1 4	0	168	5.6B	:	:
LOUISIANA		030040	> % 0 8 3 8 N 4 % 1 3	& > 400 & 9000 4 4 3000 4 4 300 4		
MARYLAND	* # %	40	.7.€ T	\$204	,	
MASSACHUSETTS	2242242444 244247240444	తా కథు ≚బడుప్ప∨ధబ్బేస్ఎట	88. 5.65 5	. O HS D & D & D & O K B 9 6 1 1 3		

APPENDIX C-2 (Continued)

MINICIPAL INCINERATORS

		Thousands	of People Range	People Exposed to Range (ng/m^3)) Concentration	ation
State MASSACHUSETTS (cont'd)	Source 44.	01 4	23 10	1-5 125		Total
MICHIGAN	4 4 4 4 8 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	781 389 301 872	- 3 	
MISSOURI	50.	00		0.4.7 0.0.6	3 5 1 5 2 3	1,700 <u>1</u>
NEW HAMPSHIRE	55 •	≓	n	07		2
NEW JERSEY	ນ . 4	7.0	23 0	12 전 12 전 13 전	3.7	3.7
NEW YORK	0.000000000000000000000000000000000000	00440%	다 구 4 8 8 8 오디 소 4 57 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00		

APPENDIX C-2 (Continued)

MINICIPAL INCINERATORS

Thousands of People Exposed to Concentration

State	Source	×10	5-10	1-5	1-1	Total
NEW YORK (cont'd)	61.		0.7	727		1540
	62.	80	146	13/8		eg soute fig.
	63.	0	<i>ት</i> ፈ	124	7.179	:: 30
	64.	0		-65 -	- °	<i>۵۰۷</i> ,
	65.	7.4	67	150	1.1.	32.5
	66.	1.4	J.	360	1 170	\$000°
	67.	1.9	1.4	134	7.3.	(0.6)
	•89	M	44	1575		यन् ।
	. 69	0	105	098	01-7.	Sec. 15. 8
	70.	34	50 A	1204	. 1 4: 1.	***
	/1.	4	7.	210		6.76
	72.	-1	9	80	1.4.7	387
	/3.	2.1	<u>5-</u>	Ço. ∏o ¢	1 / 1 / 2	
	74.	1.9	47	288		1,0%
	75.	0	c	-:	-	*
	76.	>	551	4045		T, , E,
	.//	0	806	6/61		. TENS
	78.	0	55.9	630 L		1000
	79.	0	827	4030		7.750
	80.	0	1014	6832	1 , 9 ,	1 E 0 0 3
OHIO	+ # ©	٥	٥	n	j.	_^
	82.	*7	១	40	: 0 =	<u>.</u>
	83.	0	77	531		0.70
	84.	0	N	7.7	1.1.1.1	
	3 1 1	₹	38	458	5	** · · · ·
	86.	Ûŧ	;i	0; 2-	÷	-

APPENDIX C-2 (Continued)

MINICIPAL INCINERATORS

Thousands of People Exposed to Concentration Range (ng/m^3)

State	Source	>10	5-10	1-5	.1-1	Total
PENNSYLVANIA	87. 88. 89.	6 12 4 53 2 4	0 k 0 k 0 4 a u	1580 1809 58 16	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 CVL 2 V C 2 V C 2 V C 3 V C
				460 400	7. 2 0 T	7004 2004 2004
	• • • • • • • • • • • • • • • • • • •	0		746	161	18 TH 18
	, 0, 4			i)].g	, o
TEXAS	95.	0	30	Te	ud Ng	
ОТАН	• 96	દય	36	92		C4 > -
VTRGINIA	97.	0	83	360	70.00 T	
	• 8 <i>6</i>	٥ ،	O §	× ×		
	100.	00	* 39 9 *9) (4) (4) (8	: P > 5	oro
WISHOODIN	101	0	4	4 8		.o.
WID CONDIN	102.	.	(4 -	м 1 Б.	5	\$ (5) D
	103.			0 L7	; ;	: S
	.001	10	्म (च	7	*. *. **	
			85			

PRIMARY SMELTERS

Type Zinc b/	Plant	Location	Latitude (N)	Longitude (W)	Capacity (tons/yr)	>10	$\frac{5-10}{}$	1-5	.1-1	Total
	St. Joseph New Jersey Zinc National Zinc	Monaca, PA Palmerton, PA Bartlesville, OK	40° 41' 40° 48' 36° 45'	80° 18° 75° 37° 95° 58°	250,000 118,000 55,000	258 100 40	000	000	000	258 100 40
Lead	St. Joseph Asarco Bunker Hill Asarco	Herculaneum, MO E. Helena, MT Kellogg, ID Glover, MO	38° 15° 46° 35° 47° 33° 37° 36°	90° 58' 111° 55' 116° 06' 90° 41'	55,000 235,500 246,945 97,761	25 28 17 10	0000	0000	0000	25 28 17 10
Copper				(,	í	
	Asarco Asarco a/ Asarco a/ Asarco belps - Dodge Phelps - Dodge Rennecott Kennecott Kennecott Kennecott Kennecott Kennecott Kennecott Kennecott Citles Services	Tacoma, WA Hayden, AZ EI Paso, TX Morenci, AZ Douglas, AZ Ajo, AZ Hayden, AZ Garfield, UT Hurley, NM Anaconda, MT White Pine, MI	470 141 330 011 330 011 330 051 330 051 330 051 460 431 350 041	122 2 26 110 48 110 48 110 49 1110 49 1110 110 110 110 110 110 110 110 110 1	100,000 1180,000 1177,000 127,000 70,000 80,000 80,000 180,000 90,000	461 186 18 14 17 75 16 16	0000000000	0000000000		180 180 8 14 14 0 6 775 75 16 16
Cadmium	St. Joseph Lead Bunker Hill Co. New Jersey Zinc Asarco b/ National Zinc Co.	Monaca, PA Kellog, ID Palmerton, PA Corpus Christi, TX Bartlesville, OK	40° 41' 47° 33' 40° 48' 27° 55' 36° 45'	80° 18' 116° 06' 75° 37' 97° 45'	250,000 125,000 118,000 108,000 55,000	86 17 100 32 40	0000 0	0000 0	0000 0	86 17 100 32 40

Asarco plant in El Paso, Texas has combined production capacity for lead and copper of 100,000 tons/year. Asarco plant in Corpus Christi, Texas has combined production capacity for zinc and cadmium of 108,000 tons/year. The plant uses the electrolytic zinc process and therefore, emits a negligible amount of cadmium. /q a/

APPENDIX E

SECONDARY SMELTERS

Copper								
Plant	Location	Latitude (N)	Longitude (W)	×10	5-10	1-5	1.1.	Total
Asarco Asarco Asarco Asarco CAsarco Kennecott Kennecott Chemicals, Metals Division	Perth Amboy, NJ Whiting, IN Houston, TX Long Beach, CA San Francisco, CA Magna, UT Hurley, NM East Alton, IL	40031 41040 29045 34005 37045 40042 38041	74°15' 87°29' 95°12' 118°12' 122°22' 112°06' 108°07'	38 20 21 107 76 5 1	42 35 38 183 171 2 0	609 862 579 1838 866 7	743 969 386 1279 493 124 177	1432 1886 1024 3407 1606 193 14
Zinc								
Plant	Location	Latitude (N)	Longi tude (W)	10	5-10	1-5	. 1-1	Total
Asarco, Fed- erated Metals Division	Sand Springs, OK	36 ⁰ 08¹	, LO _O 96	0	0	0	м	м
American Zinc Co. of Illinois	Hillsborough, IL	39 ⁰ 09 '	89 ⁰ 29'	0	0	0	т	m
Asarco	Long Beach, CA	34005"	118 ⁰ 12'	0	0	0	40	40

REFERENCES

- Energy and Environmental Analysis, Inc., "Sources of Atmospheric Cadmium," Draft Report to EPA Under Contract No. 68-02-2836, February 1978.
- Fulkerson, William, et al., Cadmium, The Dissipated Element, BRNL-NSF-EP-21, January 1973, p. 63.
- 3/ Ibid.
- 4/ Fulkerson, op. cit., p. 174.
- 5/ Fulkerson, op. cit., p. 6.
- Sargent, Donald, et al., <u>Technical and Microeconomic Analysis</u> of <u>Cadmium and Its Compounds</u>, <u>EPA 560/3-75-005</u>, June 1975.
- Battelle Columbus Laboratories, <u>Determination and Evaluation</u>
 Environmental Levels of Cadmium, <u>EPA #68-01-1983</u>, July 13,
 1977.
- Deane, Gordon L., Lynn, David A., and Suprenant, Norman F., Cadmium: Control Strategy Analysis, EPA #68-02-1337, GCA, Bedford, Massachusetts, p. 150.
- Lee, Russell, et al., Single Source (CRSTER) Model, EPA 450/2-77-013, Research Triangle Park, North Carolina, July 1977.
- U.S. Department of Commerce, <u>Master Enumeration District List</u>, Bureau of Census, Technical Documentation, October 1970.
- Energy and Environmental Analysis, Inc., "Economic Impact of New Source Performance Standards on Sinter Plants," Draft Report to EPA submitted April 29, 1977.
- 12/ Energy and Environmental Analysis, Inc., op. cit., Reference #1.
- American Iron and Steel Institute, Directory of Iron and Steel Works of the United States and Canada, Washington, D.C., July 1977.
- 14/ Dun and Bradstreet, Metalworking Directory, 1976, New York.
- 15/ U.S. Bureau of Census, "Survey of Plant Capacity, 1975," unpublished data, Washington, D.C., April 1977.

- 16/ Battelle Columbus Laboratories, op. cit., Reference #7.
- 17/ EEA, op. cit., Reference #1.
- Fenton, R., "Present Status of Municipal Incinerators,"

 Incinerators and Solid Waste Technology, J. W. Stephenson,

 et al., Ed., ASME, New York, New York, 1975.
- 19/ Sargent, Donald, et al., op. cit., Reference #6.
- 20/ International Directory of Mining and Mineral Journal, McGraw-Hill, New York, New York, 1976.
- 21/ Marketing Economics Key Plants, 1975-76, New York.
- 22/ Battelle Columbus Laboratories, op. cit., Reference #7.
- 23/ Deane, Gordon L., op. cit., Reference #8.

Smoth of the Country of the Country Country of the Country of the