EPA/600/8-90/083¢
JANUARY 1991

THE REGIONAL OXIDANT MODEL (ROM) USER’S GUIDE
PART 3:
THE CORE MODEL

by

J. YOUNG
L. MILICH
D.JORGE

Computer Sciences Corporation
Research Triangle Park, NC 27709

Contract No. 68-01-7365

Technical Monitor

Joan Novak®
Atmospheric Sciences Modeling Division
Atmospheric Research and Exposure Assessment Laboratory
Research Triangle Park, NC 27711

*On assignment from the National Oceanic and Atmospheric
Administration, U.S. Department of Commerce

ATMOSPHERIC RESEARCH AND EXPOSURE ASSESSMENT LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NC 27711

EPA/600/8-90/083¢
JANUARY 1991

THE REGIONAL OXIDANT MODEL (ROM) USER’S GUIDE
PART 3:
THE CORE MODEL

by

J. YOUNG
L. MILICH
D.JORGE

Computer Sciences Corporation
Research Triangle Park, NC 27709

Contract No. 68-01-7365

Technical Monitor

Joan Novak®
Atmospheric Sciences Modeling Division
Atmospheric Research and Exposure Assessment Laboratory
Research Triangle Park, NC 27711

* On assignment from the National Oceanic and Atmospheric
Administration, U.S. Department of Commerce

ATMOSPHERIC RESEARCH AND EXPOSURE ASSESSMENT LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NC 27711

Mention of trade names or commercial products

does not constitute endorsement or recommendation for use.

ii

TABLE OF CONTENTS

Disclaimer

Table of Contents

List of Tables

List of Figures

1 Overview and Structure of the Core Model

1.1 Introduction

1.2 General Model Characteristics
1.2.1 Physical Processes Within Layers 0, 1,2 and 3

1.2.2 ROM Chemistry

1.2.3 System Components

1.2.4 ROM Limitations

1.3 Data and File Requirements

1.4 Model Execution and Storage Requirements for the IBM 3090

1.4.1 Starting the ROM at the Top of an Hour
1.4.2 CPU Use

1.4.3 Storage Requirements
1.4.4 Core Model Input Data: Transfer from the VAX to the IBM

1.5 Software Components of the Core Model
1.5.1 BIGGAM

1.5.2 LILGAM

1.6 Subprograms That Maintain the State Vector and Restart the Model

1.7 Utility Subprograms
1.8 Miscellaneous Subprograms

1.9 Core Model Output Data: Transfer from the IBM to the VAX
1.10 CONC File Quality Control Procedures

2 Core Model Input Files

2.1 The Boundary Conditions (BCON) File
2.1.1 Opening the BCON File

2.1.2 BCON File Records

2.2 The B-Matrix (BMAT) File

2.2.1 Opening the BMAT File
2.2.2 BMAT File Records

2.3 The Backtrack (BTRK) File
2.3.1 Opening the BTRK File

2.3.2 BTRK File Records

2.4 The Initial Conditions (ICON) File

2.4.1 Opening the ICON File
2.4.2 ICON File Records

ii
idi

viii

[« QN R SN P R

11
11
13
13
13
14
14
15
16
19
22
22

RBR

FRALEEERRLRBRYNY

2.5 The New Initial Conditions (NEWICON) File
2.5.1 Opening the NEWICON File

2.5.2 NEWICON File Records

2.6 The Progress (PROG) File

2.6.1 Opening the PROG File

2.6.2 The PROG File Record .

2.7 The State Vector (RESTRT) File

2.7.1 Processing That Takes Place for Normal Model Execution (How the RESTRT File Gets

Written)

2.7.2 Processing That Takes Place for Restarting Model Execution (How the RESTRT File Gets

Read)

2.8 The Stop Check (STOPCK) File

2.8.1 Opening the STOPCK File

2.8.2 The STOPCK File Record

3 The Core Model Concentration (CONC) Output File
3.1 Opening the CONC File

3.2 CONC File Records

3.2.1 CONC File Header Records

3.2.2 CONC File Body Records

APPENDICES

A Jackson Structured Programming (JSP)

A.1 An Introduction to JSP Flow Diagrams

A2 Examples of Program Inversion and the Use of State Vectors

A.2.1 Program Inversion with Respect to Its Input Data Stream

A.2.2 Program Inversion with Respect to Its Output Data Stream
A3 Reference and Bibliography

B Design and Structure Diagrams for the ROM2.1 Data Files in the ROMNET Region

C Design and Structure Diagrams for the Principal ROM2.1 Subroutines

D Sample Compile and Link Stream for the Uniprocessor ROM2.1

E INCLUDE Files

F Core Model Error Checking

Index

iv

61

T&&ED

69

70

BREXR

91
91
92
93
97

A-1
A2
A-4
A-5
A-6
A-6

Index-1

LIST OF TABLES

1 ROM chemical species

2 HEADIN.EXT variables: descriptions and origins

3 BCON record 1 variables

4 BCON record 2 variable

5 BCON record 3 variable

6 BCON records 4 - (4+ICNTBM) variable

7 BCON time-step header record variables
8 BCON data variables

9 B-matrix record 1 variables

10 B-matrix record 2 variable

11 B-matrix record 3 variable

12 B-matrix record 4 variable

13 B-matrix records 5 - 8 variables

14 B-matrix records 9 - (9+ICNTBM-1) variables
15 B-matrix subfile-order record variables

16 B-matrix time-step header record variables

17 B-matrix data variables, part 1
18 B-matrix data variables, Part 2

19 BTRK record 1 variables

20 BTRK records 2 - 5 variables

21 BTRK records 6 - (6+ICNTBT-1) variables

22 BTRK time-step header record variables

23 BTRK data variables

24 ICON record 1 variables

25 ICON record 2 variable

26 ICON record 3 variable

27 ICON records 4 - (4+ICNTIC) variable

28 ICON time-step header record variables
29 ICON data variable

30 NEWICON record 1 variables

31 NEWICON record 2 variable

32 NEWICON record 3 variable

33 NEWICON records 4 - (4+ICNTCN) variable
34 NEWICON time-step header record variables
35 NEWICON data variable

36 PROG record variables

37 RESTRT record 1 variables
38 RESTRT record 2 variables

39 RESTRT records 3 and 4 variable

40 RESTRT record S variable

18
30
31
31
32
32
34
38

2888

41
42

28 &8

52
52

‘53

54
57
58
58
59

AR A

65

67

69
73
74
74
75

41 RESTRT records 6 - (6+ICNTSV) variable
42 RESTRT HEADIN record 1 variables

43 RESTRT HEADIN record 2 variables

44 RESTRT chemistry control variables 1
45 RESTRT chemistry control variables 2

46 BMAT species index variable
47 BCON species index variable

48 ICON species index variable

49 Primary oxidant species flag records variable
50 Special species record variables

51 Diffusivities conversion factor record variables
52 ICON time-step header record variables

53 Text pointer record variables
54 Row counters record variables

55 Model and file time step header records

56 STOPCK record variable

57 CONC record 1 variables

58 CONC record 2 variable
59 CONC record 3 variable

60 CONC records 4 - (4+ICNTCN) variable

61 CONC time-step header record variables

62 CONC data variable

E-1 INCLUDE file DIMENS.EXT

E-2 INCLUDE file REGION.EXT

E-3 INCLUDE file ADVSFL.EXT

E-4 INCLUDE file BCFILEEXT

E-5 INCLUDE file BGBCFL.EXT

E-6 INCLUDE file BGBTFL.EXT

E-7 INCLUDE file BGICCN.EXT

E-8 INCLUDE file BMCOEF.EXT

E-9 INCLUDE file BMFILE.EXT

E-10 INCLUDE file BTFILE.EXT

E-11 INCLUDE file CHEMIN.EXT

E-12 INCLUDE file CHEMSW.EXT

E-13 INCLUDE file CNFILE.EXT

E-14 INCLUDE file CONFAC.EXT

E-15 INCLUDE file ERRG.EXT

E-16 INCLUDE file FLNAMS EXT

E-17 INCLUDE file GTCOEF.EXT

E-18 INCLUDE file HDFMTS.EXT

E-19 INCLUDE file HDSTAV.EXT

E-20 INCLUDE file HEADBC.EXT

76
76
77
78
78
79

&8 83

82
82
83

85
89

E-3

E-7

E-8
E-8
E-8
E-S
E-9
E-10
E-10
E-11
E-12

E-21 INCLUDE file HEADBM.EXT
E-22 INCLUDE file HEADBT.EXT
E-23 INCLUDE file HEADCN.EXT
E-24 INCLUBDE file HEADIC.EXT

E-25 INCLUDE file HEADIN.EXT

E-26 INCLUDE file HSTEPS EXT
E-27 INCLUDE file ICFILE.EXT

E-28 INCLUDE file LGBMFL.EXT
E-29 INCLUDE file LILGSP.EXT

E-30 INCLUDE file LUNITS.EXT

E-31 INCLUDE file LVNAME.EXT
E-32 INCLUDE file NDXPC.EXT

E-33 INCLUDE file NROOTS.EXT

E-34 INCLUDE file RKLEVS.EXT ..

E-35 INCLUDE file ROWSCT.EXT

E-36 INCLUDE file RTCONS.EXT ..

E-37 INCLUDE file RTSHBC.EXT

E-38 INCLUDE file RTSHBM.EXT
E-39 INCLUDE file RTSHBT.EXT

E-40 INCLUDE file RTSHCN.EXT

E-41 INCLUDE file RTSHIC.EXT
E-42 INCLUDE file RUNTMS.EXT
E-43 INCLUDE file SPNAME.EXT

E-44 INCLUDE file STOPFL.EXT

E-45 INCLUDE file SUBID.EXT

E-46 INCLUDE file TEXTPT.EXT

E-47 INCLUDE file TILDE.EXT

E-48 INCLUDE file TSHDBC.EXT
E-49 INCLUDE file TSHDBM.EXT
E-50 INCLUDE file TSHDBT.EXT
E-51 INCLUDE file TSHDCN.EXT
E-52 INCLUDE file TSHDIC.EXT

E-53 INCLUDE file TSHDMD.EXT
E-54 INCLUDE file TSHDSV.EXT
E-55 INCLUDE file TSTEPS.EXT

E-56 INCLUDE file UNITIO.EXT

E-57 INCLUDKE file file ZADVSL.EXT

vii

E-13
E-14
E-15
E-16
E-17
E-18
E-18
E-19
E-20
E-20
E-21
E-21
E-21
E-22
E-22
E-23
E-23
E-24
E-24
E-25
E-25
E-26

E-26
E-27
E-28
E-28
E-29
E-29
E-29
E-30
E-30
E-30
E-31
E-31
E-32
E-32

LIST OF FIGURES

1 NEROS, SEROS, and ROMNET modeling domains : 4
2 The ROM vertical layers and their functional features 5
3 The principal components of the ROM 10
4 Conceptual data-flow diagram of the Core Model 15
5 BIGGAM subprograms 17
6 LILGAM subprograms 20
7 Chemical species mapping from BMAT to the Core Model 39
B-1 The BCON file B-2
B-2 The BMAT file B-5
B-3 The BTRK file B-10
B-4 The ICON file B-13
B-5 The CONC file B-16
C-1 Core Model system specification diagram C-2
C-2 Core Model Jackson Structured Design implementation diagram C3
C-3 RUNMGR C-4
C-4 BIGGAM C-6
C-5 ICPRCS C-7
C-6 RDICON ‘C-8
C-7 BCPRCS ' Cc.9
C-8 RDBCON C-10
C-9 BTPRCS C-11
C-10 RDBTRK C-12
C-11 RDBT C-13
C-12 LILGAM C-14
C-13 BMPRCS C-16
C-14 RDBMAT C-17
C-15 RDMXBM : C-18
C-16 CNPRCS C-19
C-17 WRCONC C-20

C-18 RDCONC C-21

SECTION 1

OVERVIEW AND STRUCTURE OF THE CORE MODEL

1.1 INTRODUCTION

The initial development of a regional (s1000km) air quality simulation model began in the late 1970’
after the realization that photochemical smog often extended beyond individual urban areas to entire
sections of the United States. Interstate transport of ozone (O3) and its precursors was observed during
field programs, especially in the northeast of the country. Since multiday chemical effects and long-range
transport of ozone and its precursors was beyond the scope of the existing urban-scale photochemical
models, the need for an appropriate simulation model to test the effectiveness of particular emission
control strategies on regional and urban airshed ozone concentrations became clear. The Regional Oxi-
dant Model (ROM) has been developed and enhanced over the past eight years by the U.S. Environmen-
tal Protection Agency (EPA) in response 1o this need. The first generation ROM (ROM1.0) became
operational in 1984. The initial model formulation and algorithm testing is documented in a three-part
volume titled A Regional Scale (1000 km) Model of Photochemical Air Pollution: Part 1 - Theoretical For-
mulation; Part 2 - Input Processor Network Design; Part 3 - Tests of Numerical Algorithms.1

ROM1.0 was a test case for future production versions of the model. It contained a very condensed
chemical kinetics mechanism, did not treat natural hydrocarbon emissions, terrain effects, or the vertical
mass flux induced by clouds, and used constant rather than dynamic layer depths. ROM2.0 became
operational in 1987, and included a more sophisticated, contemporary chemical kinetics mechanism
capable of treating both anthropogenic and biogenic precursor species. ROM2.0 also corrected many of
the deficiencies and simplifications of ROM1.0, such as using variable layer thicknesses and properly
treating cloud-induced mass flux and terrain effects. The current version of the ROM, ROM2.1, became
operational in 1989, and was developed chiefly in response to the needs of the EPA’s Regional Ozone
Modeling for Northeast Transport (ROMNET; EPA, 1990) project. ROM2.1 allows relatively simple
changes in the code 10 increase or decrease the modeling domain’s size, and is adaptable to other model-
ing domains in eastern North America. Some other modifications include use of an upgraded chemical

kinetics mechanism, an updated biogenic hydrocarbon processor, and expanded use of meteorology and

1. Lamb, 1983, Lamb, 1984a, and Lamb and Laniak, 1985, respectively.

1

anthropogenic emissions data. All new features and modifications of the ROM2.1 are documented in
Young et al. (1990). The EPA is continuing to upgrade the ROM; version 2.2 will likely become opera-
tional in 1991.

The ROM was primarily developed in a VAX environment. Although software development proceeded
in tandem with hardware development - with migrations of the code to more powerful machines as they
were installed at the EPA - by the time of the ROM2.0 era, roughly 100 VAX CPU hours were required
for each 3-day simulation. The model was therefore migrated to the much more powerful IBM 3090,
resulting in the data transfer issues that are discussed in Sections 1.4.4 and 1.9. Even on the IBM 3090, the
ROM2.0 required 6 to 8 CPU hours for a 3-day simulation, increasing to around 10 CPU hours for the
ROM2.1. The CPU requirements implied that we could not be assured of one ROM2.1 execution per
night, thus prompting attempts at parallelizing and vectorizing the model. Vectorization was not con-
sidered to be an appropriate strategy for reducing elapsed clock time since it decreased run time by only
20 percent. This small reduction is due mainly to (1) the "short" vectors that result from the chemistry
solver code, and (2) the prodigious amount of indirect addressing in the code. However, parallelization
on the six available CPUs in the IBM 3090 resulted in nearly a four-fold reduction in elapsed clock time
for a model execution. The model we run at the EPA is this parallelized variant of ROM2.1; note that we

are documenting the uniprocessor variant in this User’s Guide. We include a sample compile and link
stream for the uniprocessor variant in Appendix D.

This volume of the ROM2.1 User’s Guide is intended for the programmers who will install and execute
the ROM, and provides the information needed to understand the operation of the ROM2.1 Core
Model.2 Companion volumes of the ROM2.1 User’s Guide describe the preprocessing of the raw
meteorology and emissions input data (Part 1), and the operation of thé ROM Processor Network (Part
i). The Processor Network produces the four data files required for Core Model execution: BMAT,
BCON, ICON, and BTRK. Section 1.3 summarizes these files, plus the other four input files and one
output file that must pre-exist, and that the Core Model expects to find. In addition, you will find the
computer storage requirements listed in Section 1.4. We show how we transfer data between the VAX
and IBM, and vice versa, in Sections 1.4.4 and 1.9 respectively. We describe the software structure of the
model in Sections 1.5 to 1.8. Section 2 is an in-depth look at the nine input files, and Section 3 describes
the final product of the ROM - the chemical concentration predictions contained in the CONC file.

Appendix A is a brief tutorial to Jackson Structured Programming and state vectors. We use these con-
cepts in the Core Model code, which consists of 66 subprograms in addition to the main program,
RUNMGR. Of these, 14 are variable-state subroutines, which we call processes to distinguish them from

2. This volume will also be useful to those people who may wish to maintain and enhance the code.

2

procedures. Procedures execute their code from top to bottom whenever they are invoked. Processes
interact with their calling programs in a critical time sequence, hence their implementation as variable-
state subroutines. The processes maintain variable text pointers in their code that are set when the pro-
cess is suspended and control is returned to the calling program. At the next invocation of the process, it
resumes execution of the code from the point at which it was previously suspended.

Appendix B contains design and structure diagrams for the ROM2.1 data files in the ROMNET region.
Appendix C contains design and structure diagrams for the principal ROM2.1 subroutines. Appendix E
contains descriptions of all the common blocks in all the INCLUDE files, including DIMENS.EXT and
REGION.EXT, which are the common blocks that set the domain- and model-specific variables, and are
shown in Tables E-1 and E-2 respectively. Appendix F is an in-depth guide to the Core Model’s error-
checking procedures.

1.2 GENERAL MODEL CHARACTERISTICS

The ROM was designed to simulate most of the important chemical and physical processes that are
responsible for the photochemical production of ozone over a domain of 1000 km and for multiple 3-day
episodes up to approximately 15 days in duration. These processes include (1) horizontal transport, (2)
atmospheric chemistry and subgrid-scale chemical processes, (3) nighttime wind shear and turbulence
associated with the low-level nocturnal jet, (4) the effects of cumulus clouds on vertical mass transport
and photochemical reaction rates, (5) mesoscale vertical motions induced by terrain and the large-scale
flow, (6) terrain effects on advection, diffusion, and deposilion, (7) emissions of natural and anthropo-
genic ozone precursors, and (8) dry deposition. The processes are mathematically simulated in a three-
dimensional Eulerian model with 31/, vertical layers, including the boundary layer and the capping
inversion or cloud layer.3 Horizontal grid resolution is 1/4° longitude by 1/¢° of latitude, or about
18.5 km x 18.5 km. Current model domains include the northeastern United States and the southeastern
U.S./Gulf Coast area (Figure 1). For each of these domains, the model uses Eastern Standard Time
(EST) in all its calculations.

3. Layer 0, the "half” layer, has a layer thickness that is always 139 of the thickness of layer 1; the thicknesses of layers 1, 2, and 3 vary.

3

Figure1. NEROS, SEROS, and ROMNET modeling domains for the ROM; dots represent grid cell
. corners.

1.2.1 Physical Processes within Layers 0,1, 2 and 3

The meteorological data are used to objectively model regional winds and diffusion. The top three
model layers are prognostic (predictive) and are free to locally expand and contract in response to
changes in the physical processes occurring within them. During an entire simulation period, hori-
zontal advection and diffusion and gas-phase chemistry are modeled in the upper three layers. The
bottom layer, layer 0, is a shallow diagnostic surface layer designed to approximate the subgrid-scale
effects on chemical reaction rates from a spatially heterogeneous emissions distribution. ROM pre-
dictions from layer 1 are used as surrogates for surface concentrations. The time scale of output
concentrations is 30 minutes, although typically 1- and 8-hour daytime averages are used for the
analysis of air quality by the public policy sector. Figure 2 shows the ROM layers during the day and
at night, and describes some of their features.

inversion Layer Functions
Cloud layer
- downward transport of stratospheric ozone
- upward transport by cumulus clouds
- gas-phase photochemistry
- long-range transport by the free atmosphere

Mixed layer
- gas-phase photochemistry
- turbulence and wind shear effects on
transport and diffusion
- deposition on mountainous terrain

- subgrid-scale effects on reaction rates;
:gaﬂon of fresh and aged poilutants

vmahonsnmeanooneemratuons
duetolne. point, and area sources
Oid cloud layer
- downward transport of stratospheric ozone
AR WS - dark gas-phase chemistry
A e Oid cloud layer Ot mixed layer
- transport of aged gas-phase reactants
and products

- dark gas-phase chemistry
Radiation inversion/nocturnal jet layer
- mmﬂ of aged s)ollutams and reactants

- tnnapoﬂ of nighttime emissions from
tall stacks and warm cities
- deposition on mountainous terrain
- downward transport during jet breakdowns
nigmtlmo shallow mixad layer over.

Sufaee layer
- caims in rural areas

- ground deposition
- reservoir of nighttime emissions of
small, low-evel sources

Layer 3 T ..
e e YL e w N'IGHT . ,‘.".:',i: A,

% .:\' e

Figure 2. The ROM vertical layers and their functional features.

Layers 1 and 2 model the depth of the well-mixed layer during the day. Some special features of layer
1 include the modeling of (1) the substantial wind shear that can exist in the lowest few hundred
meters above ground in local areas where strong winds exist and the surface heat flux is weak, (2) the
thermal internal boundary layer that often exists over large lakes or near sea coasts, and (3) deposi-
tion onto terrain features that protrude above the layer. At night, layer 2 represents what remains of
the daytime mixed layer. As stable layers form near the ground and suppress turbulent vertical
mixing, a nocturnal jet forms above the stable layer and can transport aged pollutant products and
reactants considerable distances. At night, emissions from tall stacks and warm cities are injected
directly into layers 1 and 2. Surface emissions are specified as a mass flux through the bottom of
layer 1.

During the day, the top model layer, layer 3, represents the synoptic-scale subsidence inversion char-
acteristic of high ozone-concentration periods; the base of layer 3 is typically 1 to 2 km above the
ground. Relatively clean tropospheric air is assumed to exist above layer 3 at all times. If cumulus

clouds are present, an upward flux of ozone and precursor species is injected into the layer by penet-

rative convection. At night, ozone and the remnants of other photochemical reaction products may
remain in this layer and be transported long distances downwind. These processes are modeled in
layer 3.

When cumulus clouds are present in a layer 3 cell, the upward vertical mass flux from the surface is
partially diverted from injection into layer 1 to injection directly into the cumulus cloud of layer 3. In
the atmosphere, strong thermal vertical updrafts, primarily originating near the surface in the lowest
portion of the mixed layer, feed growing fair weather cumulus clouds with vertical air currents that
extend in one steady upward motion from the ground to well above the top of the mixed layer. These
types of clouds are termed fair weather cumulus since atmospheric conditions are such that they do
not grow to the extent that precipitation forms. The dynamic effects of this transport process and
daytime cloud evolution can have significant effects on the chemical fate of pollutants. For example,
fresh emissions from the surface layer can be injected into a warm thermal and rise, essentially
unmixed, to the top of the mixing layer where they enter the base of a growing cumulus cloud. Within
the cloud, the chemical processes of ambient pollutant species are suddenly altered by the presence of
liquid water and the attendant attenuation of sunlight. The presence of fair weather cumulus clouds
implies that the atmosphere above the earth’s boundary layer is too stably stratified for thermals to
penetrate higher. In this case, the air comprising the tops of these clouds returns to the mixed layer
and is heated on its descent since it is being compressed by increasing atmospheric pressures. Ulti-
rﬁately, the air again arrives at the surface level where new emissions can be injected into it and
ground deposition may occur, and the process may begin again. The time required for one éomplete
cycle is typically 30 to 50 minutes with perhaps one-tenth of the time spent in the cloud stage.

Within the ROM system, a submodel parameterizes the above cloud flux process and its impact on
mass fluxes among all the model’s layers. In the current implementation of the chemical kinetics,
liquid-phase chemistry is not modeled, and thus part of the effects from the cloud flux processes are
not accounted for in the simulations. Future versions of the chemical kinetics may include liquid-
phase reactions. The magnitude of the mass flux proceeding directly from the surface layer to the
cloud layer is modeled as being proportional to the observed amount of cumulus cloud coverage and
inversely proportional to the observed depth of the clouds.

Horizontal transport within the ROM system is governed by hourly wind fields that are interpolated
from periodic wind observations made from upper-air soundings and surface measurements. During
the nighttime simulation period, the lowest few hundred meters of the atmosphere above the ground
may become stable as a radiation inversion forms. Wind speeds increase just above the top of this
layer, forming the nocturnal jet. This jet is capable of carrying ozone, other reaction products, and

emissions injected aloft considerable distances downwind. This phenomenon is potentially signifi-
cant in modeling regional-scale air quality and is implicitly treated by the model, where the definition
of layer 1 attempts to account for it.

Because standard weather observations do not have the spatial or temporal resolution necessary to
determine with confidence the wind fields in layer 1, a submodel within the ROM system was devel-
oped to simulate the nighttime flow regime in layer 1 only. This prognostic flow submodel is acti-
vated only when a surface inversion is present over most of the model domain. At all other times, the
flow in layer 1 is determined from interpolation of observed winds. The nighttime flow regime within
layer 1 is influenced by buoyancy, terrain, warm cities, pressure-gradient forcing, and frictional forces,
all of which are accounted for in the model’s flow formulation. Solution of the wind submodel equa-
tions produces estimates of the wind components as well as the depth of the inversion layer for all grid
cells in layer 1.

1.2.2 ROM Chemistry

The chemical kinetic mechanism embedded in the current version of the ROM is the Carbon Bond IV
(CB-1V) set of reactions (Gery et al., 1989). This mechanism simulates the significant reaction path-
ways responsible for gas-phase production and destruction of the constituents of photochemical smog
on regional scales. The mechanism consists of 82 reactions encompassing 35 individual species; these
species are listed in Table 1. The ROM’s chemical solution scheme makes no a priori assumptions
concerning local steady states. Therefore, all species are advected, diffused, and chemically reacted in
the model simulations.

. The CB-IV contains a standard set of reactions for atmospheric inorgénic chemical species, including
O3, NO, NOy, CO, and other intermediate and radical species. Organic chemistry is partitioned
along reactivity lines based on the carbon structures of the organic molecules. Nine individual cate-
gories of organics are represented to account for the chemistry of the hundreds of organic molecules
existing in the ambient atmosphere: ETH, an explicit representation of ethene; FORM, an explicit
representation of formaldehyde; OLE, a double-bonded lumped structure including two carbons
(e.g., olefins); PAR, a single-bond, single-carbon structure (i.e., paraffins); ALD2, the oxygenated
two-carbon structure of the higher aldehydes; TOL, the aromatic structure of molecules with only one
functional group (€.g., toluene); XYL, the structure of molecules with multifunctional aromatic rings
(e.g., xylene); ISOP, the five-carbon isoprene molecule; and NONR, a single-carbon organic structure
not significantly participating in the reaction sequence. We include MTHL (methanoi) in the mech-
anism for future-year scenarios that require emission control strategies for methanol-powered

vehicles.

TABLE 1. ROM CHEMICAL SPECIES =

bol Description Symbol Description
P

ALD2 High MW aldehydes O1D OID atom

C203 Peroxyacetyl radical 03 Ozone

CO Carbon monoxide OH Hydroxyl radical

CRES ° Cresol and high MW phenols OLE Olefinic carbon bond

CRO Methylphenoxy radical OPEN High MW aromatic oxidation
ETH Ethene ring fragment

FORM Formaldehyde PAN Peroxyacetyl nitrate

H202 Hydrogen peroxide PAR Paraffinic carbon bond
HNO2 Nitrous acid PNA Peroxynitric acid

HNO3 Nitric acid ROR Secondary organic oxy radical
HO2 Hydroperoxy radical TO2 Toluene-hydroxyl radical adduct
IsOp Isoprene structures TOL Toluene

MGLY Methyiglyoxal X02 NO to NO; reaction

N20O5 Dinitrogen pentoxide XO2N NO 1o nitrate (NOj3) reaction
NO Nitric oxide XYL Xylene

NO2 Nitrogen dioxide MTHL Methanol

NO3 Nitrogen trioxide NONR Nonreactive hydrocarbons

o O3P atom TRAC Tracer species

4 MW = molecular weight

Three classes of biogenic hydrocarbons are included in a separate natural area source emissions
inventory used by the ROM: (1) isoprene, a molecule principally emitted by deciduoﬁs trees, is
treated by the ISOP species in CB-IV; (2) monoterpenes, a class of natural hydrocarbons emitted
principally by coniferous trees, is not treated explicitly in CB-IV. The surrogate monoterpene mole-
cule, a-pinene, which consists of 10 carbons, is apportioned to the existing CB-IV categories as 0.5
OLE, 1.5 ALD?2, and 6 PAR; (3) unidentified hydrocarbons (gas chromatography analysis did not
identify specific hydrocarbon edmpounds) are tentatively treated as 50% terpenes, 45% PAR, and 5%
NONR (Pierce er al., 1990). These unidentified compounds can comprise as much as 40% of the
biogenic hydrocarbons. '

1.2.3 System Components

The raw input data to the ROM (refer to Section 1.3) are manipulated by a hierarchical network of
processors that range in function from simple reformatting of emissions data to generating the com-
plex wind fields that drive the atmospheric transport algorithm in the Core Model. These processors
are interconnected by their requirements for and production of data. The ultimate product of the
processor network is a collection of data files that can be categorized into two types: processor files
(PF) and model files (MF). Processor files contain partially processed data required as input to
higher level processors. Model files contain the parameter fields that are transformed into the vari-

ables required by the model algorithms; however, they also provide input to a number of higher level
processors. The output of the processors are the four Core Model input data files. The Core Model
is described in detail starting with Section 1.5. Figure 3 shows the principal components of the model, K
starting with the raw input data and ending with the CONC file. '

The processors are organized into nine distinct hierarchical stages, numbered O - 8. Stage 0 proces-
sors produce output files such as the gridded land use data. Stage 1 processors interface directly with
the preprocessed input data sets, which have, at this juncture, undergone extensive quality control.
Subsequent stages transform the input data into the gridded fields of temporally and spatially varying
parameter values needed by the highest stages of the processing network. Processors at any stage can
interface directly with the B-Matrix compiler, described below, by production of model input files
(MF). This multistage organization is important to the network because it clearly delineates the
sequence of program execution. Processors at the same stage may execute simultaneously. A pro-
cessor at any given stage, however, must wait until all processors from lower stages along its input
data paths have been completed. Formal definition of all data/processor relationships and
automation of processor executions are essential to ensure consistency and validity of model input
files.

The program that serves as the interface between the model input files and the algorithms describing
the governing processes is called the B-Matrix Compiler (BMC) because it functions similarly to a
computer language compiler that transforms high-level language commands into a machine or
algorithm-specific representation. The BMC mathematically combines physical parameters such as
layer thicknesses, air densities, etc., into the complex coefficients required for solution of the gov-
erning equations. These coefficients can no longer be equated with physical quantities; they are
purely mathematical entities related specifically to the form of the finite difference algorithms used by
the ROM.

The core of the ROM system is a set of algorithms that solves the coupled set of finite difference
equations describing the governing processes in each layer of the model. These governing equations
are expressed in a form that allows the chemical kinetics, advection, and vertical flux 10 be treated
independently. The chemistry module exchanges information with algorithms of the governing
equations via two vectors: (1) a vector that contains the net production rate of each species, and (2) a
vector that contains the net destruction rate. Such design simplifications enhance the flexibility of the
model and are not limited to the interchanges of the chemical mechanism; they apply to all theoreti-

cal formulations of the physical and meteorological processes (i.c., to all the processors).

SITId AYVITIXOY

R /i

SKHLIHOOTY
MILANI TVYIINIHD
aNVv

XN14 TVIILHIA

[%d

NOILVHLNIINOD

S3103ds

G3101a3ud
WHL1WO0OTY

LYOJSNVHL

IVANOZIHOH

‘INOY a1 Jo syuauoduro) -z 'z ainbiy

i A0vdLiovd

- XId1LVN-4

= s,084

T s,01

TAAONW Td0I

isvaviva
I AN/4d

asn aNv1

AJOMLIN

HOSSIV0Ud

AHdVHO0dOL

b

Vivad TIdOW 1d0I

SHY0SS3I00UdIHd

l

SNOISSIN3

0070403 LIN

Do OOE

V1IVA LNdNI MV

10

1.2.4 ROM Limitations

There are several limitations inherent in the model. Among the most important of these are: (1) the
model is designed to represent only ozone-season (April - October) meteorological conditions; (2)
the ROM does not take into account any aqueous-phase chemistry; (3) cumulus cloud processes are
such that when a cloud is created in a grid cell, it remains there for a full hour (i.e. cloud physics are
not considered), and the cloud is not advected; (4) the ROM actually consists of three two-
dimensional models that are linked,4 and, as such, cannot be expected to model regions that contain
high, complex, mountainous terrain such as the Rocky Mountains or Sierra Nevada; (5) the ROM,
with its current 18.5 km x 18.5 km grid resolution, is not designed to provide detailed information at
local scales that are significantly influenced by local source distributions; and (8) the ROM is cur-
rently configured to run only on domains in eastern North America on the scale of 1000 km. This
regional scale is germane since long-range transport of ozone precursors will have a significant effect

on local ozone concentrations.

We advise users of ROM to interpret its results in terms of analysis of different emission control
strategies on ozone concentration, rather than assuming the results to be an accurate snapshot of a

specific pollution event.

1.3 DATA AND FILE REQUIREMENTS

The ROM system requires five types of "raw" data inputs: air quality, meteorology, emissions, land use,
and topography. Air quality data required by the ROM include initial conditions (IC) and boundary
conditions (BC). The model is initialized with clean tropospheric conditions for all species several (usu-
ally 2-4) days before the start of an episode. The initial condition field has essentially been transported
out of the model domain in advance of the portion of the episode of greatest interest. Upwind lateral
boundary conditions for ozone are updated every 12 hours based on measurements. Other species con-
centrations at the boundaries, as well as all species at the top of the modeling domain, are set to tropo-
spheric clean-air concentrations. |

Meteorological data are assimilated by the first stage of preprocessors. These data contain regular hourly
observations from U.S. National Weather Service surface stations (and from similar stations in Canada as
necessary), including wind speed and direction, air temperature and dew point, atmospheric pressure, and
cloud amounts and heights. Twice-daily sounding data from the upper-air observation network are also
included in the meteorological database. Upper-air meteorological parameters include atmospheric

4. The three models represent layer 3, layer 2, and a combined layer 1 and 0.

11

pressure, wind speed and direction, and air temperature and dew point. Finally, both buoy and Coastal
Marine Automated Station data are used; parameters typically reported are wind speed and direction, and
air and sea temperatures.

Emissions data for the primary species are input to the ROM system as well. Most recently these data
have been provided from the NAPAP 1985 emissions inventory with 20-km spatial resolution (Saeger et
al., 1989). Species included are CO, NO, NO,, and nine hydrocarbon reactivity categories. Natural
hydrocarbons are also input, including isoprene explicitly, monoterpenes divided among the existing
reactivity classes, and unidentified hydrocarbons.

The Core Model requires eight input files and one output file to exist in order to run; these files are
summarized below. Each of the six principal input files starts with a text file header that describes the
file’s contents, followed by a data body. The data body consists of a sequence of time step headers, each
followed by a body of data records relative to that time step. While these files all contain data, note that
the auxiliary input files PROG and STOPCK do not.

Principal files

« BCON - The boundary conditions file contains the concentrations for each of the 35 chemical
species in a one-cell deep border within the modeling domain. Concentrations are given for
each model layer and for each model time step. We show the file’s structure diagram in
Appendix B, Figure B-1.

« BMAT - The B-matrix file contains (1) the vertical flux parameters that are required to solve
the B-matrix differential equation, and (2) the emission source terms, and (3) the gridded
meteorology parameters in the three model layers for each model time step (1800 s) necessary
to make adjustments in chemistry rate constants. We show the file’s structure diagram in
Appendix B, Figure B-2.

« BTRK - The Backtrack file contains the gridded locations (in grid cell coordinates) of the
previous position of a parcel of air that will arrive at a grid cell node at the current time step.
These data are used by the model to compute the horizontal transport. We show the file’s
structure diagram in Appendix B, Figure B-3.

» ICON - The initial conditions file contains the gridded concentrations for the 35 chemical
species in each model layer for the initial model time step. This file is used only at the start of
an episode time-contiguous run, i.c., at the start of scenario 1. It is supplanted by the NEW-
ICON file at the start of each subsequent scenario within the episode.5 We show the file’s
structure diagram in Appendix B, Figure B-4. C

S. The relationship between scenarios and episodes is that each scenario is 72 hours long, and an ozone episode consists of one or more
contiguous scenarios.

12

+ NEWICON - The model writes this file at the completion of the last time step of a scenario. It
is used as the ICON file for the continuation of the episode computation, and is a copy of the
CONC file from the last time step of the scenario. NEWICON supplants the ICON file for the
continuation of the episode computation. The CONC file itself could be used to continue the
episode, but the NEWICON file is much smaller; thus, continuing runs do not require retain-
ing access to the large CONC files.

« RESTRT - This file constitutes a state vector file, and is used only to restart a model run in the
event of program termination before the end of a scenario. RESTRT contains the data that
correctly reposition the input files and set the text pointers in the code; this ensures the proper
state of the model when you resume a run from the start of any scenario time step prior to the
termination step.

Auxiliary files

- PROG - This file is a one line text file that the model writes at the completion of each time
step. Its purpose is to allow you to view the progress of the model; you can "type” out this file
during the model run and see the number of the last completed time step.

« STOPCK - The purpose of this file is to allow you to terminate a model run at the end of a
currently-executing time step. It consists of one line of text enclosed in single quotes, which, if
anything other than *STOP”’, permits the model run to continue.

" Output file

« CONC - The model writes the predicted concentrations that result from its execution to the
CONC file. The data consist of the gridded concentrations of the 35 chemical species within
each of the model layers for each time step (30 minutes) of the model run. We show the file’s
structure diagram in Appendix B, Figure B-5.

1.4 MODEL EXECUTION AND STORAGE REQUIREMENTS FOR THE IBM 3090

1.4.1 Starting the ROM at the Top of an Hour

If you want to run consecutive scenarios, the Core Model must be started at the top of an hour, not at
the half-hour. We begin all our model runs at noon EST.

1.4.2 CPU Use

Currently, we are running the ROM Core Model on the EPA’s IBM® 3090 computer.6 Running the
ROM requires significant CPU resources; a typical 3-day simulation (72 hours, 144 model time steps)
requires about 9.5 hours of CPU time on the IBM 3090. Approximately 10 percent of this CPU time

6. IBM is a registered trademark of the International Business Machines Corporation.

13

is used in the calculation of advection; the other 90 percent is used for the gas-phase chemistry cal-
culations. With the parallel processing capability of the IBM 3090, elapsed clock time is approxi-
mately one-quarter of the CPU time.

1.4.3 Storage Requirements

A list of storage requirements for the Core Model follows (1 track = 47,476 bytes):

+ 21 tracks of code (approximately 12000 lines of code)
e 24 tracks of libraries

« 1track of compile/link JCL.

+ 1track of JCL to submit the run

+ 47 tracks of the log file

1.4.4_Core Model Input Data: Transfer from the VAX to the IBM

The following procedure is specific to our installation, and may not pertain to you. The Core Model
input data sets are transferred from the VAX to the IBM using the DECnet/SNA Data- Transfer
Facility™ (DTF).? For prowssofs that generate Core Model input data sets,8 you will select a flag in
the control cards file that determines whether to write the data in VAX binary or IBM binary format.
We select the IBM format, and invoke the DTF to directly write the ICON, BCON, BTRK, and
BMAT files to the IBM’s disks. For further information on transferring data, we refer you to the
DECnet/SNA VMS Data Transfer Facility User’s Guide.? The subroutine that translates data to
IBM-readable format is briefly described below.

SUBROUTINE TRNSLT

This subroutine translates VAX format and writes an IBM-format file on VAX Direct Access Storage
Drive (DASD) so that it may subsequently be copied to IBM DASD via the DEC/DTF (Data Transfer
Facility). The translation is necessary because DTF supports only a one-to-one transfer of the data,
which do not map to identical representation of numbers on the two architectures. If the file to be
transferred is ASCII in its entirety, a call to this routine is unnecessary, and the DTF facility can be
used directly. If, however, the file is a combination of ASCII and REAL*4 or INTEGER*4 data, a

7. DECnet is a trademark of Digital Equipment Corporation, Nashua, NH 03061.
8. P02G, P22G, P38G, and P40G.
9. Order number AA-JM75B-TE; Digital Equipment Corporation, P.O. Box CS2008, Nashua, NH 03061.

14

call to this routine is necessary. This routine does not support any other VAX data structures.
TRNSLT translates VAX F_floating format words to IBM floating point, and ASCII format to
EBCDIC format.

1.5 SOFTWARE COMPONENTS OF THE CORE MODEL

Figure 4 shows a conceptual data-flow diagram of the Core Model; its design reflects our desire to keep
the model as simple as possible so that we can readily maintain and upgrade it. The design is based on the
concept of modularity with respect to the flow of data, and follows the ideas of Jackson (see Appendix A).
The system specification diagram that illustrates the main data flows is shown in Appendix C, Figure C-1.
Most of the subroutines in the Core Model were written as though they were stand-alone programs that
read and write intermediate files during the computation. Following Jackson, these subroutines were
then "inverted,” and the intermediate files eliminated. An illustration of our implementation of this
Jackson Structured Design for the Core Model can be found in Appendix C, Figure C-2.

Maintain model Management of Write next scenario’'s

state vector model run and initial conditions file
restart capahility

(RUNMGR)

R

time step *

l

solve horizontal transport
(BIGGAM)

|

domain row *

|

. x
domain column

|

vertical flux time step *

1

model layer *

}

chemistry time step *

!

solve chemistry

7

solve vertical flux
(LILGAM)

Figure 4. Conceptual data-flow diagram of the Core Model. Asterisks indicate iterative loops.

15

The Core Model consists of three principal components: RUNMGR, BIGGAM, and LILGAM. The main
program is RUNMGR (Run Manager); its purpose is to: (1) initiate the run, (2) restart the run if required,
(3) maintain the state vector file (RESTRT), (4) write the progress file (PROG), and (5) examine the stop
check file (STOPCK). Once the required input files are properly opened, RUNMGR invokes BIGGAM,
starting the actual computation process. BIGGAM in turn invokes LILGAM. Because of the large time-
scale differences between the transport processes and the chemical processes in the regional-scale oxidant
modeling problem, we can write the diffusion equation as two processes 1o solve for a transport
component ' decoupled from the chemistry. Then, with the solution for T in hand, we can determine the
chemistry component . We show the structure diagram for RUNMGR in Appendix C, Figure C-3.

1.5.1 BIGGAM

BIGGAM solves for the horizontal advection of the chemical species concentrations. The transport is
computed by (1) interpolating the concentration values at backtrack locations,1? and (2) solving the
transport using a quasi-Lagrangian advection scheme that involves determining a Green'’s function
for the T’ diffusion equation at spatially-interpolated upwind points. We use a biquintic surface fit for
the spatial interpolation. For a one-cell deep perimeter within the modeling domain boundaries,
BCON file concentrations supplant the interpolated concentrations if inflow conditions exist at that
border of the domain. Once BIGGAM has computed an advection solution component, it invokes
LILGAM to compute the chemistry component and finalize the current time step concentration pre-
dictions. We show the structure diagram for BIGGAM in Appendix C, Figure C-4.

The subprograms specifically associated with BIGGAM are shown in Figure 5, and then are briefly
described below.

INIRUN reads the run stream’s control parameter cards and sets up the model run conditions. INIRUN
loads the common blocks in the include file HEADIN.EXT and performs the following operations:

+ Sets the vertical flux time step (300 s) and the chemistry solver parameters, and echoes
these data to the run log.

+ Sets the number (3) and names (O3, NO, NOy) of the primary oxidant species in the ROM,
and reports these data to the run log,

» Obtains the indices of the primary oxidant species using the wutility function INDEX1, and
reports these data to the run log.

» Sets and echoes the upper and lower chemistry time step limits.

» Sets the advection time step variable used in LILGAM equal to the corresponding variable
in HEADIN.EXT.

10. A backtrack location is the prior position of a parce] of air that will arrive at a grid cell node at the current time step, where each time
step is 1800 s. :

16

BIGGAM

INIRUN
* ICPRCS
~] *RDICON
OPICON
POICON
ORSPIC
* BCPRCS
* RDBCON
OPBCON
POBCON
ORSPBC
* BTPRCS
| * RDBTRK
OPBTRK
POBTRK
* RDBT
* LILGAM * RDBT

Figure S. BIGGAM subprograms. An asterisk implies that the subprogram can be called more
than one time.

« Calls ADATE to obtain and report the execution creation date and time to the run log.

 Initializes all the file date and time information to correspond to the model time initial-
ization. These data are used to maintain all the process subroutine’s internal clocks.

The variables in the common blocks contained in HEADIN.EXT are used throughout the model
to:

+ Set upper limits for processing loops,

« verify file headers on the input files, and

« provide data to be written to the CONC file header.

For a complete description of these variables and their origin, see Table 2.

ICPRCS is the process interface between BIGGAM and the time step initial conditions data, restruc-
tured for the model data processing; its structure diagram is shown in Appendix C, Figure C-5.

RDICON is the process interface between ICPRCS and the initial conditions data in the ICON or the
NEWICON file; its structure diagram is shown in Appendix C, Figure C-6.

OPICON opens the ICON or the NEWICON file, reads and checks the file’s header information, then

writes a summary to the run log.

17

TABLE 2. HEADIN.EXT VARIABLES: DESCRIPTIONS AND ORIGINS

Name Description Origin
DATE/TIME INFORMATION

CDATIN Creation date of simulation (YYMMDD) Argument returned from call to DATTIM
CTIMIN Creation time of simulation (HHMMSS) Argument returned from call to DATTIM
SDATIN Julian start date for model scenario (YYDDD) Read in from run stream

STHRIN Start hour (00 - 23) for model scenario Read in from run stream

TSTPIN Time step size (s) for model scenario Set in assignment statement equal to 1800
FRSTIN First time step (s) past start time of model scenario Argument returned from call to CLOCK1

GRID DEFINITION INFORMATION

GRDNIN Grid definition name Read in from run stream

SWLNIN Longitude (degrees) of southwest corner of grid Argument returned from call to CELLM
SWLTIN Latitude (degrees) of southwest corner of grid Argument returned from call to CELLM
NELNIN Longitude (degrees) of northeast comer of grid Argument returned from call to CELLM
NELTIN Latitude (degrees) of northeast corner of grid Argument returned from call to CELLM
DLONIN Longitudinal grid cell increment (degrees) Argument returned from call to CELLM
DLATIN Latitudinal grid cell increment (degrees) Argument returned from call to CELLM
NCOLIN Number of columns in domain grid Argument returned from call to CELLM
NROWIN Number of rows in domain grid Argument returned from call to CELLM

MODEL LAYERS INFORMATION
Set in assignment statement, equal to NLEVS (DIMENS param-

NLEVIN Number of model layers eter)
LVNMIN(l) Name of model layer! Set in assignment statement, equal to LVNAME (BLKMOD
data)

MODEL SPECIES INFORMATION

Set in assignment statement, equal to NSPECS (DIMENS
NSPCIN Number of chemical species in modei parameter)

SPNMIN(k) Name of species k Set in assignment statement, equal to SPNAME (BLKMOD
data)
CONC FILE HEADER DESCRIPTIVE TEXT
ICNTIN Numbser of text records Computed during the operation that reads in the text records
TEXTIN(n) Descriptive text record n Read in from run steam

POICON positions the ICON or the NEWICON file to the start of the model execution scenario.

ORSPIC generates the expansion list (look-up table) of species names for which the ICON file has
values. These values are mapped to the full Core Model list of species. For ROM2.1, the ICON file
contains the same species list as the Core Model, and thus the mapping table is one-to-one.

BCPRCS is the process interface between BIGGAM and the boundary conditions data, restructured for
the model data processing; its structure diagram is shown in Appendix C, Figure C-7.

RDBCON is the process interface between BCPRCS and the boundary conditions data in the BCON file;
its structure diagram is shown in Appendix C, Figure C-8.

OPBCON opens the BCON file, reads and checks the file’s header information, then writes a summary
to the run log.

18

POBCON positions the BCON file to the start of the model execution scenario.

ORSPBC generates the expansion list (look-up table) of species names for which the BCON file has
values. These values are mapped to the full Core Model list of species. For ROM2.1, the BCON file
contains the same species list as the Core Model, and thus the mapping table is one-to-one.

BTPRCS is the process interface between BIGGAM and the backtrack data in the BTRK file, reorga-
nized for BIGGAM data processing; its structure diagram is shown in Appendix C, Figure C-9.

RDBTRK is the process interface between BTPRCS and the data in the BTRK file; its structure diagram
is shown in Appendix C, Figure C-10.

OPBTRK opens the BTRK file, reads and checks the file’s header information, then writes a summary
to the run log.

POBTRK positions the BTRK file to the start of an execution scenario.

RDBT performs the FORTRAN open and the file and data read operations on the BTRK file; its
structure diagram is shown in Appendix C, Figure C-11. '

1.5.2 LILGAM

LILGAM computes the remaining components of the species concentrations: those due to vertical
fluxes across the model layer surfaces, ;, and those due to the chemical reactions between the pol-
lutant species, y°. The value of the concentration recorded at the end of each 1800-sec advection
time step is the product

C=r-Y.Y

« Every 300 s within the advection time step, the interlayer vertical fluxes are modeled using
a fourth-order Runge-Kutta integration of the system of differential.equations that
describes them. The integration step size is determined by finding the largest negative
cigenvalue of the third-order matrix of coefficients (B-matrix) that quantifies the inter-
layer fluxes. The reciprocal of this eigenvalue is proportional to the smallest time scale in
the system describing the vertical exchange between the model’s three layers.

« Within each 300 s y time step, the chemistry component y* is computed using a small time
step that varies between 10's and 60 s. The differential equations that describe the chemi-
cal reactions are solved iteratively, and model the equilibration process of a reactive mix-
ture of gaseous pollutant species. Essentially, the time step is controlled by the stiffness of
the system of differential equations, which in turn is a function mainly of local primary
emissions and sunlight amount. The relative stiffness of the system is determined by com-
paring (at the end of each chemistry time step) the fractional difference in the nitric oxide

19

(NO) species from the previous step and adjusting the time step downward if the
difference exceeds a preset value. NO is used as the standard since it is both one of the
primary oxidant species and is involved in the fastest reactions in the system.

We show the structure diagram for LILGAM in Appendix C, Figure C-12. The subprograms specifi-
cally associated with LILGAM are shown in Figure 6, and then briefly described.

LILGAM
s BMPRCS
* RDBMAT
OPBMAT
ROMXBM
—_] + RDHDBM
DUMPHD
POMXBM
]# RDMXBM
———l * RDHDBM
DUMPHD
* RDMXBM
I' RDHDBM
DUMPHD
ORSPBM
* CNPRCS
* WRCONC
| OPWRCN
* RTPHO
* RTSET
* HSTEP
* PQCOEF
* RATED
L 3 PQ'
* GTILDE

Figure 6. LILGAM subprograms. An asterisk implies that the subprogram can be called more
than one time.

BMPRCS is the process interface between LILGAM and the BMAT file data, reorganized for the
LIL.GAM data processing; its structure diagram is shown in Appendix C, Figure C-13.

RDBMAT is the process interface between BMPRCS and the data on the BMAT file; its structure dia-
gram is shown in Appendix C, Figure C-14.

OPBMAT opens the BMAT file, reads and checks the file’s header information, then writes a éummary
to the run log.

RDMXBM performs the FORTRAN open and the file and data read operations on the (possibly mul-
tiple) BMAT file; its structure diagram is shown in Appendix C, Figure C-15.

RDHDBM reads the BMAT file header on each of the BMATs subfiles and echoes the information to
the run log.

20

DUMPHD is a subroutine invoked by RDMXBM to dump the BMAT file header information to the run
log if multiple BMAT files are not correctly ordered.

POMXBM positions the (possibly multiple) BMAT file to the start of the execution scenario.

ORSPBM generates the expansion list (look-up table) of species names for which the BMAT file has
values. These values are mapped to the full Core Model list of species.

CNPRCS is the process interface between LILGAM and the predicted concentration data, reorganized
for writing to the CONC file; its structure diagram is shown in Appendix C, Figure C-16.

WRCONC is the process interface between CNPRCS and the concentrations data in the CONC file; its
structure diagram is shown in Appendix C, Figure C-17.

OPWRCN opens the CONC file, writes the file’s header information on the file, and echoes this data to
the run log.

RTPHO determines the layer average photolytic rate constants, adjusted for variations in solar radi-
ation due to cloud cover and solar angle.

RTSET adjusts the values of rate constants for the nonphotolytic reactions for temperature, air den-
sity, and water vapor concentration.

HSTEP determines the integration step size used in GTILDE.

PQCOEF calculates the part of the normalized reaction coefficients that do not depend on the current
chemistry component of the concentration, y . '

RATED completes the chemistry time step calculation of the reaction coefficients using the current
value of vy~

PQ1 calculates the production and decay terms of the chemistry differential equation system for each
chemistry time step. LILGAM then uses these terms in a predictor/corrector fashion to update y* for
the chemistry time step.

GTILDE calculates the interlayer flux concentration component, vy, for each of layer 1, layer 2, and

layer 3.

21

1.6 SUBPROGRAMS THAT MAINTAIN THE STATE VECTOR AND RESTART THE MODEL

The subprograms specifically associated with maintaining the state vector file and with model run restarts
are listed below, then briefly described.

RDCONC
OPCONC
POCONC
WRSTAV
RDSTAV
OPSTAV
POSTAV

RDCONC is the process interface that is called for a RESTART run; it reads the CONC file data for the
time step that precedes the first step of the restarted run, and its structure diagram is shown in Appendix
C, Figure C-18.

OPCONC opens the CONC file for a RESTART run, reads and checks the file’s header information, then
writes a summary to the run log.

POCONC positions the CONC file, for a RESTART run, to the requested starting time.
WRSTAV opens and writes the state vector data to the RESTRT file.

RDSTAV reads the data on the RESTRT file for a RESTART run, for the time step that precedes the first
step of the restarted run.

OPSTAV opens the RESTRT file for a RESTART run.

POSTAV positions the RESTRT file for a RESTART run to the requested starting time.

1.7 UTILITY SUBPROGRAMS

ADATE
ASORT
CELLM
CLOCK1
CLOCK2
DATTIM
FSKIP1
INDEX1
10CL
JFILE2
JFILES
JFILEé
JULIAN
JUNIT
RDCHAR

RDFILE
WRCHAR
WRFILE

ADATE returns the current formatted date and time from the computer operating system by calling the
FORTRAN library subroutines IDATE and TIME.

ASORT sorts an array of character names into alphabetical order.

CELLM returns the Northeast and Southwest corner latitudes and longitudes of one of three regions
(NEROS1, SEROS1, or ROMNET?1). It also returns the number of columns and rows in the grid domain
and the grid cell latitude and longitude increments.

CLOCKI1 returns the time elapsed from the scenario start, and the current time step number.
CLOCK2 returns the current date and time, and the time elapsed from the scenario start.

DATTIM returns a formatted current date and time using subroutine ADATE.

FSKIP1 positions formatted or unformatted sequential files.

INDEX1 is a function subprogram that returns the position of a character name in a list of names.

IOCL is a function subprogram that returns a clause field in an I/O status word. In the Core Model, this
field is reported to the run log in case of an I/O error to assist you in determining the cause of the error.

JFILE2 is a function subprogram that opens a sequential file and returns the FORTRAN unit number to
which it is attached.

JFILES is a function subprogram that opens a sequential file with fixed length records and returns the
FORTRAN unit number to which it is attached.

JFILES is a function subprogram that opens a sequential file with FORTRAN carriage control and vari-
able record type to enable the DEC Data Transfer Facility (DTF) to pass binary VAX records to the IBM.
JFILE6 returns the FORTRAN unit number to which the file is attached. This subprogram is specific to
our installation, and may not pertain to you.

JULIAN is a function subprogram that returns a given calendar year, month and day as the Julian date
YYDDD.

JUNIT is a function subprogram that keeps track of the FORTRAN I/O units already assigned in the
model and returns the next available unit number.

RDCHAR performs an unformatted read into a character buffer whose length is a passed argument.

RDFILE performs an unformatted read into a numeric buffer whose length is a passed argument.

WRCHAR performs an unformatted write from a character buffer of arbitrary length.

WRFILE performs an unformatted write from a numeric buffer of arbitrary length.

1.8 MISCELLANEOUS SUBPROGRAMS

BLKMOD
NEWICS
PRGSMY
TIMER
CPUTIM

BLKMOD contains the FORTRAN BLOCK DATA initializations for:

the standard read and write J/O units,
the process subroutine text pointers,

the global formats that are used to echo file header information to the run log when the files
have been successfully opened,

the internal (logical) names for all the model files,

the 35 chemical species names used in ROM2.1,

the 3 model layer names,

the STOPCK file’s flag initial value,

the concentration species values used to represent zero in the model, i.e., 10-16 ppm.
the values for the basic rate constants,

the 11 photolytic rate constant levels used by RTPHO to determine the integral average photo-
Iytic rate constants,

the arrays of clear sky photolytic rate constants tabulated for the five CBM4.2 photolytic reac-
tions, the solar zenith angle, and the 11 photolytic rate constant levels.

NEWICS writes a copy of the CONC file’s concentration data to the NEWICON file at the end of a model
execution scenario.

PRGSMY records summary information of all the subprograms used to create the executable image of the
model on the run log.

TIMER determines elapsed CPU and elapsed clock time using subroutine CPUTIM.

CPUTIM retrieves from a VAX system the CPU time elapsed since its initial call during a program execu-

tion.

24

1.9 CORE MODEL OUTPUT DATA: TRANSFER FROM THE IBM TO THE VAX

The following procedure is specific to our installation, and may not pertain to you. After the model run
completes, we translate the CONC file to VAX binary format and send the file to the VAX through the
DTF. The program that does the translation is CNTRAN.FOR, which also verifies that all the time steps for
a run are present and backs up the untranslated file on the IBM. The data are translated to ASCII and
VAX floating point format. We show the JCL for this program below.

//XHSTB7SA JOB (NERIRSMRP,B132,,,,,,,58), "HALLYBURTON' ,MSGCLASS=P, 00010099
// NOTIFY=XHS, TIME=(50,), PRTY=2 00031099
J*AFTER XHSRB7SA 00040099
/*JOBPARM LINES=999 00050099
/*ROUTE PRINT RMY378 00060099
//PROCLIB DD DSN=XHSNER1.ROMNET1.PROCLIB,DISP=SHR

/7*

//* This procedure will translate, verify, and backup

//* & ROMNET production conc file. The translated file will have the
//* same name as the original + .TRANS, the tape backup file will be
//: named ADRNER1.CONC. filnam.

1/

//: If this is NOT what you want...do NOT use this procedure

//

/7*

//TVBGCN EXEC TVBGCN,REGION=0K,COND=(0,NE),
//TOPNAM="'ADRNER1.NOBKUP,CONC. ', FILNAM="FV187SA"*

*
//tttt**tttitt*#it'tt'f“'i“.m"'t.*tmﬁ.ttt*tttti't*ﬁiﬁ*t

// EXEC SAS,GREGION=6000K,O0PTIONS=MACRO,COND=(0,NE), PRINT="*!
//SAS.WORK DD SPACE=(CYL,(300,20)),voL=(,,,15)

//IN DD DSN=*_.TVBGCN.CTRN1.CONDISK,DISP=SHR

//0UT - DD DSN=*.TVBGCN.CNBCK.OUT,DISP=(OLD,KEEP,DELETE)
//SAS.SYSIN DD DSN=XHSNER1.ROMNET1.PROCLIB(RAGTAGCN),DISP=SHR
//

1.10 CONC FILE QUALITY CONTROL PROCEDURES

Our simplest procedures for CONC file quality control are as follows; note that we do not include on the
distribution tape the programs that accomplish these steps.

« Extract the hour-averaged ozone and tracer species for all three layers.

+ Produce a "CONC" file where each cell’s value is the 24-hour (or 12-hour period for the first
and last days of an episode, since each episode begins and ends at 12:00 EST) maximum value;
€.g., a 15-day scenario will contain values for 14 x 24 h and 2 x 12 h per cell.

+ Using an NCAR! graphics package, we contour-plot layer 1.

« The quality control decision criteria are as follows:

For ozone -

smooth, continuous data (expected since ozone is a secondary compound);
the existence of urban plumes;

11. National Center for Atmospheric Research, Boulder, CO.

O3 > background in rural areas during episodic conditions;

boundary conditions have not significantly impacted the domain;

high-end magnitudes are not significantly > 200 - 300 ppb

- if the run is a base case, check against observed data

- if the run is a control strategy, check for ozone response in the expected direction.
For tracer species!2 -

the existence of urban plumes. Note that tracer concentrations should be virtually

identical between runs with different emission control strategies but with the same

meteorology.

12. We perform quality control analyses on the tracer species plots only if the ozone plots indicate that a problem may exist.

26

SECTION 2

CORE MODEL INPUT FILES

The Core Model expects eight files to be provided as input, four of which are produced by the processor net-
work. These four input files are BMAT (Section 2.2), BTRK (Section 2.3), BCON (Section 2.1) and ICON
(Section 2.4). The other four files are NEWICON (Section 2.5), the new initial conditions file that links one
three-day scenario model run with the next; PROG (Section 2.6), the progress file that enables you to monitor
the model execution; STOPCK (Section 2.8), the stop check file that lets you shut down the model during
execution; and RESTRT (Section 2.7), the file that allows you to restart the model run.

We need to draw your attention to two points that apply to the following documentation. First, during the
historical course of ROM development the terms "levels” and "layers” were used interchangeably and entirely
synonymously. For example, one variable is referenced as NLEVS, but we use the term "layers” in this docu-
ment. Second, we focus on the necessary information contained in the code; extraneous text is replaced by
ellipsis marks (. . .).

We refer you to Tables E-1 and E-2 for the full list of values of the model- and region-specific parameters that
are contained in DIMENS.EXT and REGION.EXT.

2.1 THE BOUNDARY CONDITIONS (BCON) FILE

The boundary conditions file (BCON) contains chemical concentrations for each of the species required
by the Core Model. Concentration data are provided in each model layer for a perimeter that is one-cell
deep within the modeling domain.

The boundary conditions are used by subroutine BIGGAM during calculation of the advection component
of the current time step’s concentration field. If the calculation is for a grid cell near the modeling
domain’s boundary, values from .the BCON file are substituted for the previous time step’s concentrations
at the border cells where inflow exists.

Array dimensions are set by parameter statements contained in the INCLUDE files REGION EXT and
DIMENS.EXT as follows:

INTEGER*4 NROWS, NCOLS

PARAMETER (..., NROWS = 52, NCOLS = 64)

INTEGER*4 NLEVS, NSPECS
PARAMETER (NLEVS = 3, NSPECS = 35, ...)

27

2.1.1 Opening the BCON File

At the start of the model scenario, BIGGAM calls BCPRCS. BCPRCS calls RDBCON, which opens the
BCON file by calling OPBCON, and which optionally positions the file to the starting time for the
model execution by calling POBCON. OPBCON reads the BCON file header records.

The code segments and the FORMAT statements that demonstrate the steps to open the BCON file
are listed below. FLNMBC contains the internal (logical) names for BCON that point to the actual
file names in the execution run stream. FLNMBC is set in the block data module BLKMOD. JUNIT
is a function subprogram that returns the next available FORTRAN I/O unit number.

INTEGER*4 , ..., UNITBC, ...
CHARACTER*12 , ..., FLNMBC, ...

SUBROUTINE OPBCON

INTEGER*4 10ST, ..., JFILE2

LOGICAL®*4 RECFMY, RDONLY
c

PARAMETER (RECFMT = .FALSE., RDONLY = .TRUE.)
C
C open BCON file

UNITBC = JFILE2 (FLNMBC, RECFMT, ROOMLY)
c .

FUNCTION JFILEZ2 (FNAME, RECFMT, RDONLY)
CHARACTER*12 FNAME, FORM, UNFORM, FORMAT
INTEGER*4 IDEV, 10SY, JFILEZ2, ..., JUNIT, ...
LOGICAL*4 RECFMT, RDONLY
DATA FORM / 'FORMATTED ' /
DATA UNFORM / 'UNFORMATTED ' /
IDEV = JUNIT()
If (RECFMT) THEN

FORMAT = FORM

ELSE
FORMAT = UNFORM

END IF
IF (RDONLY) THEN

OPEN (UNIT = IDEV,
& 10STAT = I0ST,
1 FILE = FNAME,
& STATUS = 'OLD',
n ACCESS = *SEQUENTIAL®,
& FORM = FORMAT,
& READONLY)

ELSE

END IF

JFILEZ = IDEV

RETURN
END

2.1.2 BCON File Records

The structure of the BCON file conforms to the requirements for all ROM Core Model files, and
therefore contains a standard file header. In addition, the file consists of a data body organized by
time steps, each section of which is headed by a time step header record. Descriptions of the records
containing this information are given below, and Appendix B contains a structure diagram for the
BCON file.

2.1.2.1 BCON File Header Records--

The first four records contain the BCON file header that consists of the variables in the
INCLUDE file HEADBC.EXT:

[HEADBC.EXT
[+

BCON file header block
c

CHARACTER*80 TEXTBC

CHARACTER*8 GRDNBC

CHARACTER*4 SPNMBC, LVNMBC

REAL*4 SWLNBC, SWLTBC, NELNBC, NELTBC, DLONBC, DLATBC
INTEGER*4 CDATBC, CTIMBC, SDATBC, STHRBC, TSTPBC, FRSTBC,
& NCOLBC, NROWBC, NLEVBC, NSPCBC, ICNTBC

c
COMMON /CHARBC/ GRDNBC, SPNMBC(NSPECS), LVNMBC(NLEVS), TEXTBC(20)
COMMON /HEADBC/ CDATBC, CTIMBC, SDATBC, STHRBC, TSTPBC, FRSTBC,
& SWLNBC, SWLTBC, NELNBC, NELTBC, DLONBC, DLATBC,
] & NCOLBC, NROWBC, NLEVBC, NSPCBC, ICNTBC

2.1.2.1.1 Record 1-- The first record contains character strings of alphanumeric data that
describe the file’s contents. The data are first read (unformatted) by subroutine RDCHAR into
the buffer SEG1BF. The data are then read (formatted) into the variables contained in the
common blocks in the INCLUDE file HEADBCEXT. The code segments and FORMAT
statements for these steps are shown below, and the variables of record 1 are shown in Table
3.

SUBROUTINE OPBCON

CHARACTER*(8 * 13 + 4 * 5) SEGIBF
g read 1st segment

CALL RDCHAR (UNITBC, SEG1BF, 10ST)
c

SUBROUTINE RDCHAR (IUNIT, CHBUFF, 10ST)
INTEGER*4 IUNIT, 10ST

CHARACTER*(*) CHBUFF

READ(IUNIT, IOSTAT = 10ST) CHBUFF

29

RETURN

END
c
READ(SEG1BF, 1001, IOSTAT = I0ST)
& CDATBC, CTIMBC, SDATBC, STHRBC, TSTPBC, FRSTBC,
& GRDNBC,
& SWLNBC, SWLTBC, NELNBC, NELTBC,
& DLONBC, DLATBC,
& NCOLBC, NROWBC, NLEVBC, NSPCBC, ICNTBC
1001 FORMAT(618.8, A8, 4F8.3, 2F8.5, 514.4)
TABLE 3. BCON RECORD 1 VARIABLES
Var Var Data
No. Name Unit Type Description
1 CDATBC Integer*4 File creation date as MMDDYY
2 CTIMBC EST Integer*4 File creation time as HHMMSS
3 SDATBC Integer*4 Julian start date of scenario as YYDDD
4 STHRBC EST Integer*4 Start hour of scenario (00 to 23)
5 TSTPBC Integer*4 Time step size for simulation
6 FRSTBC Integer*4 Time to first step
7 GRDNBC Char*8 Grid definition name
8 SWLNBC °W Real*4 Longitude of southwest corner of grid
9 SWLTBC °N Real*4 Latitude of southwest corner of grid
10 NELNBC "W Real*4 Longitude of northeast corner of grid
11 NELTBC °N Real*4 Latitude of northeast corner of grid
12 DLONBC °W Real*4 Grid cell longitudinal increment
13 DLATBC °N Real*4 Grid cell latitudinal increment
14 NCOLBC Integer*4 Number of columns in grid
15 NROWBC Integer*4 Number of rows in grid
Integer*4 Number of levels
Integer*4 Number of model species
16 NLEVBC Integer*4 Number of levels in the simulation
17 NSPCBC . Integer*4 Number of species in the BCON file
18 ICNTBC Integer*4 Number of text records
—

2.1.2.1.2 Record 2-- This record contains the list of species names for which the Core Model
computes concentration outputs. The data are first read by subsoutine RDCHAR into the
buffer SPNMBF. The data are then copied into the SPNMBC array contained in a common
block in the INCLUDE file HEADBCEXT. These steps are listed below, and the variable of

record 2 is shown in Table 4.

C read the species names record

SUBROUTINE OPBCON

CHARACTER*(4 * NSPECS) SPNMBF
INTEGER*4 ..., ISPC

CALL RDCHAR (UNITBC, SPNMBF, 10ST)
READ(SPNMBF, 1003, IOSTAT = JOST) (SPNMBCCISPC), ISPC = 1, NSPCBC)
1003 FORMAT(6(10(A4))/)

30

TABLE 4. BCON RECORD 2 VARIABLE

Var Var Data
No. Name Unit Type Description
1 SPNMBC; Char*4 Name of chemical species k 1

t Alist of chemical species names can be found in Table 1.

2.1.2.1.3 Record 3-- This record contains the list of Core Model layer names. The data are
first read by subroutine RDCHAR into the buffer LVNMBF. The data are then copied into the
LVNMBC array contained in a common block in the INCLUDE file HEADBCEXT. These
steps are listed below, and the variable of record 3 is shown in Table 5.

SUBROUTINE OPBCON

CHARACTER*(4 * NLEVS) LEVNBF

INTEGER*6 , ..., ILEV

C read level names record
CALL RDCHAR (UNITBC, LEVNBF, IOST)

READ(LEVNBF, 1005, IOSTAT = IOST) (LVNMBC(CILEV), ILEV = 1, NLEVBC)
1005 FORMAT(2(10(A4))/)

TABLE 5. BCON RECORD 3 VARIABLE

Var Var Data
No. Name Unit Type Description
1 LVNMBC, Char*4 Name of layer L

2.1.2.1.4 Records 4 - (4 + ICNTBC)-- These records contain descriptive text that was
entered when the file was created by processor P22G. Each record consists of one 80-char-
acter string. The data are read by subroutine RDCHAR into the buffer TEXTBF, which is then
copied into the TEXTBC array contained in a common block in the INCLUDE file

HEADBC.EXT. These steps are listed below, and the variable of the records is shown in Table
6.

SUBROUTINE OPBCON
CHARACTER*80 TEXTBF
INTEGER* , ..., ITXT

C read file text group
DO 101 ITXT = 1, ICNTBC
CALL RDCHAR (UNITBC, TEXTBF, 10ST)
TEXTBC(ITXT) = TEXTBF

101 CONTINUE

31

TABLE 6. BCON RECORDS 4 - (4+ICNTBC) VARIABLE

Var Var Data
No. Name Unit Type Description
1 TEXTBGC, Char*80 Text string of » lines

2.1.2.2 BCON File Body Records--

After the BCON file has been opened and the file header read, BIGGAM obtains the BCON data
by calling BCPRCS at the start of each model time step. BCPRCS in turn invokes RDBCON, which

reads (1) the BCON file’s time step headers, and (2) each boundary’s data by calling subroutine
RDFILE.

2.1.2.2.1 Time Step Header Record-- There is one time step header record for each scenario
time step increment on the BCON file. Subroutine RDFILE is called to read four words of

data into the RTSHBC common block. These steps are listed below, and the record’s vari-
ables are shown in Table 7.

REAL*4 DATBC, TIMBC, ELPBC, STPBC
COMMON /RTSHBC/ DATBC, TIMBC, ELPBC, STPBC

SUBROUTINE RDBCON .
INTEGER*4 10ST, WOTSH, ...
PARAMETER (NWDTSH = 4, ...)

C read BCON T.S.H.

CALL RDFILE (UNITBC, NWDTSH, DATBC, 10ST)
c

SUBROUTINE RDFILECIUNIT, NWORDS, BUFFER, 10ST)
IMPLICIT NONE

INTEGER*4 IUNIT, NWORDS, BUFFER, 10ST
DIMENSION BUFFER(NWORDS)

READ(IUN1T, 10STAT=10ST) BUFFER

RETURN

END

TABLE 7. BCON TIME STEP HEADER RECORD VARIABLES

E———————

Var . Var Data

No. Name Unit Type Description

1 DATBC Real*4 Current time step Julian date as YYDDD
2 TIMBC EST Real*4 Current time step time as HHMMSS

3 ELPBC s Real*4 Elapsed time since scenario start

4 STPBC Real*4 Current time step number on BCON file

32

2.1.2.2.2 Data Records-- These records are read for each time step, and contain the boundary
values for species concentrations (by layer) for all modeling domain border cells. Note that
the northern and southern boundaries have data referenced by columns, while the western
and eastern boundaries have data referenced by rows. The code for these steps is listed below,
and the data variables are shown in Table 8.

REAL*4 NORTH, WEST, EAST, SOUTH

c
COMMON /BCFILE/ WEST(NROWS, NLEVS, NSPECS),
& EAST(NROWS, NLEVS, NSPECS),
& NORTH(NCOLS, NLEVS, NSPECS),
& SOUTH(NCOLS, NLEVS, NSPECS)
c

SUBROUTINE RDBCON
INTEGER*4 , ..., NWOTSH, ROWWRD, COLWRD, ...

C define record sizes
PARAMETER (NWDTSH
& COLWRD

4,
NLEVS * NCOLS,

& ROWWRD = NLEVS * NROWS)
c
C read Western boundary conditions e« s « » . Species*
C

DO 201 ISPC = 1, NSPECS

CALL RDFILE (UNITBC, ROWWRD, WEST(1,1,ISPC), IOST)
201 CONTINUE
c

C read Eastern boundary conditions species*
c
DO 301 ISPC = 1, NSPECS
CALL RDFILE (UNITBC, ROWWRD, EAST(1,1,ISPC), 10ST)
301 CONTINUE
c
C read Northern boundary conditions species*
c
DO 401 ISPC = 1, NSPECS
CALL ROFILE (UNITBC, COLWRD, NORTH(1,1,ISPC), 10ST)
401 CONTINUE
c

C read Southern boundary conditions Species*
c
DO 501 ISPC = 1, NSPECS

CALL RDFILE (UNITBC, COLWRD, SOUTH(1,1,ISPC), IOSY)
501 CONTINUE

SUBROUTINE RDFILE(IUNIT, NWORDS, BUFFER, 10ST)
IMPLICIT NONE

INTEGER*4 IUNIT, NWORDS, BUFFER, 10ST
DIMENSION BUFFER(NWORDS)

READCIUNIT, JOSTAT=]10ST) BUFFER

RETURN

END

33

TABLE 8. BCON DATA VARIABLES

Var Var Data
No. Name Unit Type Description
Chemical species concentrations for layer
L and species k at the:
1 WEST;, & ppm Real*4 western boundary for row j
2 EAST;/ « ppm Real*4 eastern boundary for row j
3 NORTH;, « ppm Real*4 northern boundary for column i
4 SOUTH; .« ppm Real*4 southern boundary for column i

2.2 THE B-MATRIX (BMAT) FILE

The B-matrix file contains the following data elements that are required by the Core Model for each grid

cell, chemical species, and time step:

+ the interlayer mass-flux coefficients (the B-matrix coefficients) for the parameterization of the
vertical fluxes across the surfaces of the three model layers,

« the parameterizations for the emissions sources, and

- the meteorology data to make local adjustments to the Carbon Bond 4.2 (CBM4.2) chemical
mechanism state constants for air temperature, atmospheric density, water vapor concentra-

tion, and altitude.

The B-matrix file requires a large amount of disk space and may have been written to several smaller

subfiles on different disk packs (since each pack may not individually have had sufficient space to contain

the entire file). These subfiles would then be assigned separate logxml names in the job’s run stream

(refer to Processor P40G in Part 2 of the ROM User’s Guide).

The B-matrix data are used by subroutine LILGAM for the determination of the vertical flux component
and chemical reaction component in the calculation of the predicted concentration field for the next time

step.

Array dimensions are set by parameter statements contained in the INCLUDE files REGION.EXT and

DIMENS.EXT as follows:

INTEGER*4 NROWS, NCOLS
PARAMETER (..., NROWS = 52, NCOLS = 64)

INTEGER*4 NLEVS, NSPECS, ..., NPOXSP

PARAMETER (NLEVS = 3, NSPECS = 35, ..., NPOXSP = 3)

2.2.1 Opening the BMAT File

At the start of the model scenario, LILGAM calls BMPRCS. BMPRCS calls RDBMAT, which opens the
BMAT file by calling OPBMAT, and which optionally positions the file to the starting time for the
model execution by calling POBMAT. RDBMAT reads the BMAT file header records by calling
RDMXBM.

The code segments and the FORMAT statements that demonstrate the steps to open the BMAT file
are listed below. FLNMBM contains the internal (logical) names for BMAT that point to the actual
file names in the execution run stream. FLNMBM is set in the block data module BLKMOD. JUNIT
is a function subprogram that returns the next available FORTRAN I/O unit number.

INTEGER*4 ..., UNITBN, ...

INTEGER*4 NUMBMF
PARAMETER (NUMBMF = 6)

CHARACTER*12 ..., FLNMBM(NUMBMF), ...

SUBROUTINE RDMXBM (, ,)
INTEGER*4 ..., ISUB, ...
LOGICAL*4 RECFMT, RDONLY

PARAMETER (RECFMT = .FALSE., RDONLY = .TRUE.,

& RECLEN = NVRBM1 * NCOLS)
c
C open 1st subfile

UNITBM = JFILES (FLNMBM(ISUB), RECFMT, RDONLY, RECLEN)
c

FUNCTION JFILEG6 (FNAME, RECFMT, RDONLY, RECLEN)
CHARACTER®*12 FNAME, FORM, UNFORM, FORMAT
INTEGER*4 RECLEN, IDEV, 10ST, JFILE6, JUNIT
LOGICAL*4 RECFMT, RDONLY
DATA FORM / 'FORMATTED ' /
DATA UNFORM / ‘UNFORMATTED ' /
IDEV = JUNIT()
1F (RECFMT) THEN

FORMAT = FORM

ELSE
FORMAT = UNFORM

END IF

IF (RDONLY) THEN
OPEN (URIT = IDEV,
& 10STAT = 10ST,
& FILE = FNAME,
& STATUS = oD,
& ACCESS = 'SEQUENTIAL',
& FORM = FORMAT,
& CARRIAGECONTROL = 'FORTRAN',
& RECORDTYPE = 'VARIABLE',
& RECL = RECLEN,
& READONLY)
ELSE

35

END IF
JFILE6 = IDEV

RETURN
END

2.2.2 BMAT File Records

The structure of the B-matrix file conforms to the requirements for all ROM Core Model files, and
therefore contains a standard file header. In addition, the file consists of a data body organized by
time steps, each section of which is headed by a time step header record. Descriptions of the records

containing this information are given below. Appendix B contains a structure diagram for the BMAT
file.

2.2.2.1 BMAT File Header Records--

The first seven records contain the BMAT file header that comprise the variables in the
INCLUDE file HEADBM.EXT:

HEADBM.EXT (ROM2.1 - Carbon Bond 4.2 Chemistry)
BMATRIX file header block

o000

CHARACTER*80 TEXTEM

CHARACTER*12 MFNMBM

CHARACTER*S GRDNBM

CHARACTER*4 SPNMBM, LVNMBM

REAL*4 SWLNBM, SWLTBM, NELTBM, NELNBM, DLONBM, DLATBM

INTEGER*4 ISUBFL, NSUBFL, FRSTSF, LSSTSF,
CDATBM, CTIMBM, CDMFBM, CTMFBM, UDMFBM, UTMFBM,
SDATBM, STHRBM, TSTPBM, FRSTBM, BMSPRD, BMINDX,
NCOLBM, NROWBM, NLEVBM, NSPCBM, NMIFBM, ICNTBM,
NMFBM, NVRBM1, NVRBMZ

o RO go N

PARAMETER (NMFBM = 4, NVRBM1 = 18 + 3 * NLEVS + 6 * NPOXSP,
& NVRBM2 = 6)

NMFBM number of MIF files used in generating BMATRIX file
NVRBM! number of part 1 BMATRIX variables,
specifically; B12, B13, B21, B23, B32, B33,
B11S, B11sS, B31S, B31SS, QO3FAC, SSONO,
TTRETA, PPS12, 220, 221, 222, 223;
RRHO(NLEVS)'s, TTEMP(NLEVS)'s, WWVC(NLEVS)'s;
and G1S, G1SS, G1FAC, G3S, G3SS, G3FAC, each
dimensioned by NPOXSP
NVRBMZ2 number of species-array BMATRIX variables, (part 2)
specifically; 811, B22, B31, G1, G2, G3

OO0 OON000n

COMMON /CHARBM/ GRDNBM, SPNMBM(NSPECS), LVNMBM(NLEVS), TEXTBM(20),
& MFNMBM(NMFBM)

COMMON /HEADBM/ CDATBM, CTIMBM, SDATBM, STHRBM, TSTPBM, FRSTBM,
SWLNBM, SWLTBM, NELNBM, NELTBM, DLONBM, DLATBM,
NCOLBM, NROWBM, NLEVBM, NSPCBM, NMIFBM, ICNTBM,
COMFBM(NMFBM), CTMFBM(NMFBM), UDMFBM(NMFBN),

o Q0 Ro

36

& UTMFBM(NMFBM), BMINDX(NSPECS),
& ISUBFL, NSUBFL, FRSTSF, LSSTSF
COMMON /BMSPRD/ BMSPRD

2.2.2.1.1 Record 1-- The first record contains character strings of alphanumeric data that .

describe the file’s contents. The data are first read (unformatted) into a character buffer that
is then read (formatted) into the variables contained in the common blocks in the INCLUDE
file HEADBM.EXT. These steps are shown below, and the variables of record 1 are shown in
Table 9.

INTEGER*4 ..., UNITBM, ...

INTEGER*4 NUMBMF
PARAMETER (NUMBMF = 6)

CHARACTER*12 ..., FLNMBM(NUMBMF), ...
SUBROUTINE RDMXBM ¢ , ,)

INTEGER*4 ..., JFILES, ISUB, ...
LOGICAL*4 RECFMT, RDONLY

PARAMETER (RECFMT = .FALSE., RDONLY = .TRUE.,
& RECLEN = NVRBM1 * NCOLS)

open ist subfile
UNITBM = JFILE6 (FLNMBM(ISUB), RECFMT, RDONLY, RECLEN)

a0 o0

read subfile headers
CALL RDHDBM (ISUB)

SUBROUTINE RDHDBM (1SUB)

INTEGER*4 10ST, , , BFLONE, ...
PARAMETER (BFLONE = 13 * B + 6 * 4, ...)
CHARACTER* (BFLONE) RECONE

read 1st segment record

READ(UNITBM, IOSTAT = 10ST) RECONE
convert charscter to mixed character & numeric and load HEADBM

a0 aoo

READ(RECONE, 1001, IOSTAT = IOST)
1 CDATBM, CTIMBM, SDATBM, STHRBM, TSTPBM, FRSTBM,
& GRONBM, SWLNBM, SWLTBM, NELNBM, NELTBM, DLONBM,
& DLATBM, NCOLBM, NROWBM, NLEVBM, NSPCBM, NMIFBM,
& I1CNTBN

1001 FORMAT(618.8, AB, 4F8.3, 2F8.5, 614.4)

37

TABLE 9. B-MATRIX RECORD 1 VARIABLES

—

Var Var Data
No. Name Unit Type Description
1 CDATBM Integer*4 File creation date as MMDDYY
2 CTIMBM EST Integer*4 File creation time as HHMMSS
3 SDATBM Integer*4 Julian start date of scenario as YYDDD
4 STHRBM EST Integer*4 Start hour of scenario (00 to 23)
5 TSTPBM s Integer*4 Time step size for simulation
6 FRSTBM s Integer*4 Time to first step
7 GRDNBM Char*8 Grid definition name
8 SWLNBM °W Real*4 Longitude of southwest corner of grid
9 SWLTBM °N Real*4 Latitude of southwest corner of grid
10 NELNBM °W Real*4 Longitude of northeast corner of grid

11 NELTBM °N Real*4 Latitude of northeast corner of grid
12 DLONBM °W Real*4 Grid cell longitudinal increment
13 DLATBM °N Real*4 Grid cell latitudinal increment

14 NCOLBM Integer*4 Number of columns in grid

15 NROWBM Integer*4 Number of rows in grid

16 NLEVBM Integer*4 Number of levels

17 NSPCBM Integer*4 Number of model species

18 NMIFBM Integer*4 Number of model input files used to generate
the B-matrix file

19 ICNTBM Integer*4 Number of text records

2.2.2.1.2 Record 2-- This record contains the list of species names for which the Core Model
computes concentration outputs. The data are read directly into the SPNMBM array
contained in a common block in the INCLUDE file HEADBM.EXT. These steps are listed
below, and the variable of record 2 is shown in Table 10.

SUBROUTINE RDHDBM (ISUB)

INTEGER*4 ..., ISPC, ...
C read species names record

C
READ(UNITBM, IOSTAT = 1OST) (SPNMBM(ISPC), ISPC = 1, NSPCBM)

TABLE 10. B-MATRIX RECORD 2 VARIABLE

Var Var Data
No. Name Unit Type Description
1 SPNMBM; Char*4 Name of chemical species & 1

t Alist of chemical species names can be found in Tabie 1.

2.2.2.1.3 Record 3-- This record contains the expansion list (look-up table) for the 26 species
names for which the BMAT file has concentration values. (Refer to Processor P23G in Part
2 of the ROM User’s Guide for an explanation of the need for an expansion list.) These
species names are mapped to the full Core Model list of species names. Mapping is necessary
because the Core Model requires concentration values for species that have neither mea-
sured nor computed data, such as the free radicals. The expansion list tells the Core Model
how to assign concentration values for the full 35 species of the chemistry mechanism from
the 26 species concentrations in the BMAT file. The mapping from BMAT to the Core
Model is shown in Figure 7. The READ and FORMAT statements for this record are listed
below, and its variable is shown in Table 11.

BMAT MODEL
ALD2 ALD2
€203 c203
o N —
CRO CRES
ETH —\ N CRO
FORM ~——\ -\, £TH
H202 NEN FORM
HNOZ NI H202
HNO3 NEAN HNO2
HO2 NEREAN HNO3
iSOP _- HO2

MGLY _‘ 1SoP
NO \ MGLY
NO2 “ N205
0 N NO

03 N NO2

OH \\ NO3
. TS\ on
\

/l’

PAR 03
ROR \\ OH
ToC < 0N OLE
XrL \ OPEN
MTHL \ PAN
NONR PAR
TRAC AN PNA

\ ROR
T02
ToC

X0z

XO2N
XYL

MTHL
NONR
TRAC

Figure 7. Chemical species mapping from BMAT to the Core Model. Species names are
defined in Section 1.2.2.

SUBROUTINE RDHDBM (ISUB)
INTEGER*4 ..., BFLNDX, ...
PARAMETER (..., BFLNDX = NSPECS * 4, ...)
CHARACTER*(BFLNDX) RECNDX
read the index group record

READCUNITBM, JOSTAT = IOST) RECNDX

o o0

39

C convert character to numeric and Load HEADBM
c

READ(RECNDX, 1003, IOSTAT = IOST) (BMINDX(ISPC), ISPC = 1, NSPCBM)
1003 FORMAT(<NSPCBM>14)

TABLE 11, B-MATRIX RECORD 3 VARIABLE

Var Var Data
No. Name Unit Type Description
1 BMINDX,, Integer*4 Mapping array of the 26 species names whose
values exist on the reduced B-matrix set, with
indices for expansion to the full model set
= —

2.2.2.1.4 Record 4-- This record contains the list of Core Model layer names. The READ
and FORMALT statements for this record are listed below, and its variable is shown in Table
12.

SUBROUTINE RDHDBM (1SUB)
INTEGER* ..., LEV, ...

c
C read the level names record
¢t
READCUNITBM, 10STAT = IOST) (LVNMBM(LEV), LEV = 1, NLEVBM)
TABLE 12. B-MATRIX RECORD 4 VARIABLE
Var Var Data“
No. Name Unit Type Description
1 LVNMBM, .~ Char*4 Name of layer L

2.2.2.1.5 Records S - 8-- These records contain the list of logical names of the model input
files (MF) that are used to generate the B-matrix data. (The logical names can change from
run to run.) The data are read (unformatted) into the RECMIF buffer and then read
(formatted) into the HEADBM.EXT variables as listed below. The variables are shown in Table
13.

SUBROUTINE RDHDBM (1SUB)
INTEGER*4 ..., BFLMIF, , , IMIF, ...

PARAMETER (..., BFLIMIF = 12+ 4 * 8, ...)
CHARACTER*(BFLMIF) RECMIF
c
C read the MIF data records
c
DO 101 IMIF = 1, NMIFBM
READ(UNITBM, I10STAT = 10ST) RECMIF

&

READCRECMIF, 1007, 10STAT = 10ST)
MFNMBMCIMIF), CDMFBMCIMIF), CTMFBM(IMIF),

& UDMFBM(IMIF), UTMFBM(IMIF)

1007 FORMAT(A12, 418.8)
101 CONTINUE
TABLE 13. B-MATRIX RECORDS 5 - 8 VARIABLES
Var Var Data
No. Name Unit Type Description
1 MFNMBM, Char*12 File name of MIF filen
2 CDMEFBM, Integer*4 Creation date of MIF file n
3 CTMFBM, EST Integer*4 Creation time of MIF file n
4 UDMFBM, Integer*4 Last update date of MIF file n
5 UTMFBM, EST Integer*4 Last update time of MIF file n

2.2.2.1.6 Records 9 - (28 maximum)-- These records contain descriptive text that was
entered when the file was created by processor P40G. Each record consists of one 80-char-
acter string. The READ and FORMAT statements for these records are listed below, and
their variable is shown in Table 14.

SUBROUTINE RDHDBM (ISUB)
INTEGER*4 ..., BFLTXT, , , ITXT, ...

PARAMETER (..., BFLTXT = 80, ...)
CHARACTER*(BFLTXT) RECTXT

c
C read header text records
t

DO 201 ITXT = 1, ICNTBM

READCUNITBM, IOSTAT = IOST) RECTXT
c

READ(RECTXT, 1009, IOSTAT = IOST) TEXTBM(ITXT)
1009 FORMAT(ABO)
c
201 CONTINUE

TABLE 14. B-MATRIX RECORDS 9 - (9+ICNTBM-1) VARIABLES
Var Var Data '
- No. Name Unit Type Description
1 TEXTBM, Char*80 Text string of lines

2.2.2.1.7 Subfile-Order Record-- The purpose of this record is 10 ensure the correct ordering
of input data when the Core Model reads several B-matrix subfiles. The READ and
FORMAT statements for this record are listed below, and its variables are shown in Table 15.

41

SUBROUTINE RDHDBM (1SUB)
INTEGER*4 ..., BFLFLC, , , ISUB

[
PARAMETER (..., BFLFLC =4 * 4)
CHARACTER*(BFLFLC) FLCREC
[
C read subfile header record
[+
READ(UNITBM, IOSTAT = 10ST) FLCREC
c

C convert character to numeric and load HEADBM

c

READ(FLCREC, 1013, IOSTAT = [OST) ISUBFL, NSUBFL, FRSTSF, LSSTSF

1013 FORMAT(414)

TABLE 15. B-MATRIX SUBFILE-ORDER RECORD VARIABLES

Var Var Data
No. Name Unit Type Description
1 ISUBFL Integer*4 Ordinal for this subfile
2 NSUBFL Integer*4 Total number of subfiles for this B-matrix file
3 FRSTSF Integer*4 First time step count for this subfile
4 LSSTSF Integer*4 Last time step count for this subfile

2.2.2.2 BMAT File Body Records--

After the BMAT file has been opened and the file header read, LILGAM calls BMPRCS row by row
to obtain the BMAT data. BMPRCS in turn invokes RDBMAT, which reads (1) the BMAT file’s
time step headers, and (2) each row of data by calling RDMXBM.

2.2.2.2.1 Time Step Header Record-- There is one time step header record written for each
time step increment on the B-matrix file. The following code reads the time step data on the
BMAT file into the time step header common block, RTSHBM, by referencing the first vari-
able of the common block and specifying the number of the block’s words to be read. These
steps, and the FORMAT statements for reading this record, are listed below; the record’s

variables are shown in Table 16.

REAL*4 DATBM, TIMBM, ELPBM, STPBM

COMMON / RTSHBM / DATBM, TIMBM, ELPBM, STPBM

SUBROUTINE RDBMAT (10ST)

INTEGER*4 NWDTSH, ..., 10ST
PARAMETER (NWDTSH = 4 ...,)
c
C read BMAT T.S.H.
CALL RDMXBM (NWDTSH, DATBM, IOST)
c

SUBROUTINE RDMXBM (NWORDS, BUFF, 10ST)
REAL*4 BUFF
INTEGER*4 NWORDS, 10ST, ...

42

C read record
c
READ (UNITBM, IOSTAT = I0ST) BUFF

TABLE 16. B-MATRIX TIME STEP HEADER RECORD VARIABLES

Var Var Data

No. Name Unit Type Description

1 DATBM Integer*4 Current time step Julian date as YYDDD
2 TIMBM EST Integer*4 Current time step time as HHMMSS

3 ELPBM] Integer*4 Elapsed time since scenario start

4 STPBM Integer*4 Current time step number on B-matrix file

2.2.2.2.2 Data Records-- There are two groups of data records for each B-matrix time step
increment. The first group (BMAT Part 1 variables, Table 17) contains one record of
variables for each model domain row. These variables consist of:

« interlayer flux parameters independent of the model chemical species (B12, B13,
B21, B23, B32, B33, B11S, B11SS, B31S, B31SS,QO3FAC, SSONO);

+ ambient conditions data for the chemical rate constants adjustments (TTHETA,
PPSI2, Z70, ZZ1, Z72, 773, RRHO, TTEMP, WWVC); and

+ volume flux emissions source parameters for the two primary oxidant species
emissions, NO and NO; (G1S, G1SS, G1FAC, G3S, G3SS, G3FAC).

The second group (BMAT Part 2 variables, Table 18) contains a data record for each model
domain row for each chemical species in the B-matrix reduced set. This set is expanded to the
full model set by means of the look-up table BMINDX that is read from the file header (see
Section 2.2.2.1.3). These variables consist of:

« interlayer flux parameters and volume flux emissions source parameters that are
dependent on the model chemical species (B11, B22, B31, G1, G2, G3).

The following parameters from INCLUDE file HEADBM.EXT are used for dimensioning the

common blocks and controlling the read operations:

NVRBM1 = 18 + 3xNLEVS + 6xNPOXSP, where NLEVS = 3 and NPOXSP = 3, the
number of primary oxidant species (NO, NO3, and O3);

NVRBM1 is the number of Part 1 B-matrix variables, specifically: B12, B13, B21, B23, B32,
B33, B11S, B11SS, B31S, B31SS, QO3FAC, SSONO, TTHETA, PPSI2, ZZ0,
Z71, 7272, 7Z73; RRHO(NLEVS)’s, TTEMP(NLEVS)’s, WWVC(NLEVS)'s;
and G18, G1SS, G1IFAC, G3S, G3SS, G3FAC, each dimensioned by NPOXSP;

NVRBM2 =¢6;

43

NVRBM2 is the number of species-array B-matrix variables (Part 2), specifically: B11, B22,
B31, G1, G2, G3.

The first group (Part 1) is read into the common block BMFILE by referencing the first
variable of the common block and specifying the number of the block’s words to be loaded.
Subsequently, the second group (Part 2) is read into the last variable in BMFILE through-an
iteration of all the species on the BMAT file, again by specifying the number of the variables
words to be read. These steps are listed below.

COMMON /BMFILE/
XB12(NCOLS), XB13(NCOLS),
XB21(NCOLS), XB23(NCOLS),
XB32(NCOLS), XB33(NCOLS),
XB11S(NCOLS), XB11SS(NCOLS),
XB31S(NCOLS), XB31SS(NCOLS),
XQO3FC(NCOLS), XSSONOCNCOLS),
XG1S(NCOLS, NPOXSP), XG1SS(NCOLS, NPOXSP),
XGIFACCNCOLS, NPOXSP),
XG3S(NCOLS, NPOXSP), XG3SS(NCOLS, NPOXSP),
XG3FAC(NCOLS, NPOXSP),
XRHOCNCOLS, NLEVS), XTEMP(NCOLS, NLEVS),
XWVC(NCOLS, NLEVS),
XTHETACNCOLS), XPSI2(NCOLS),
XZO(NCOLS), XZ1(NCOLS), XZ2(NCOLS), XZ3(NCOLS),
AAT(NCOLS, 6, NSPECS)

R0 0 o Qe Ro Ro Po RO Qo RO RO £O Qo RO Ro

SUBROUTINE RDBMAT (10ST)

INTEGER®4 ..., NWDBM1, NWOBM2, I1SPC, 10ST

PARAMETER (..., NWDBM1 = NVRBM1 * NCOLS, NWDBM2 = NVRBM2 * NCOLS)
c

C read BMAT part 1
CALL RDMXBM (NWOBM1, XB12, 10ST)

C read BMAT part 2 (reduced species list)

DO 301 ISPC = 1, BMSPRD

CALL RDMXBM (NWDBMZ2, AA1(1,1,ISPC), 10ST)
301 CONTINUE

Subroutine BMPRCS moves the BMFILE data into another common block, LGBMFL. The
calculations using these data are made in subroutine LILGAM, which references LGBMFL:

COMMON /LGBMFL/
B12(NCOLS), B13(NCOLS),
B21(NCOLS), B23(NCOLS),
B32(NCOLS), B33(NCOLS),
B11(NCOLS, NSPECS), B22(NCOLS, NSPECS), B31(NCOLS, NSPECS),
GI1(NCOLS, NSPECS), G2(NCOLS, NSPECS), G3(NCOLS, NSPECS),
B11S(NCOLS), B11SS(NCOLS),
B31S(NCOLS), ~ B31SS(NCOLS),
QO3FAC(NCOLS), SSONO(NCOLS),
G1S(NCOLS, NPOXSP), G1SS(NCOLS, NPOXSP),
G1FAC(NCOLS, NPOXSP),
G3S(NCOLS, NPOXSP), G3SS(NCOLS, NPOXSP),
G3FAC(NCOLS, NPOXSP),
RHO(NCOLS, WLEVS), TEMP(NCOLS, NLEVS), WVC(NCOLS, NLEVS),
THETA(NCOLS), PSI2(NCOLS),
ZLEVCNCOLS, NLEVS + 1)

Qo Qo RO 29 fe fo RO 20 0 N fO 20 RS fo RO

SUBROUTINE BMPRCS

C transfer BM data into model ordered arrays and
C produce LILGAM BMAT record

4

DO 301 ISPC = 1, NSPCIN
INDEX = NXSPBM(ISPC)
DO 301 ICOL = 1, NCOLIN

B11(ICOL, ISPC) = AA1(ICOL, 1, INDEX)
B22(1COL, ISPC) = AAICICOL, 2, INDEX)
831(¢1COL, ISPC) = AA1(ICOL, 3, INDEX)
G1C(IcoL, ISPC) = AAT(ICOL, 4, INDEX)
G2(ICOL, ISPC) = AA1CICOL, 5, INDEX)
G3CICOL, ISPC) = AATCICOL, 6, INDEX)

301 CONTINUE

c

C move LILGAM data from BM file organized by col & lev
DO 401 ILEV = 1, NLEVIN
DO 401 1COL = 1, NCOLIN
RHOCICOL, ILEV) = XRHO(ICOL, ILEV)
TEMP(ICOL, ILEV) = XTEMP(ICOL, ILEV)
WVC(ICOL, ILEV) = XWVC(ICOL, ILEV)

401 CONTINUE

C

C move LILGAM data from BM file organized by col & primary ox. spec.
DO 501 ISPC = 1, NPOXSP
DO 501 ICOL = 1, NCOLS
G1SCICcOL, ISPC) XG1S(IcoL, ISPC)
G1SS(ICOL, ISPC) XG1SSCICOL, ISPC)
G1FAC(ICOL, ISPC) = XGIFAC(ICOL, ISPC)
G3S¢ICOL, ISPC) XG3s(lcoL, ISPC)
G3ss(1COL, ISPC) XG3SS¢IcoL, ISPC)
G3FAC(ICOL, ISPC) = XG3FACCICOL, ISPC)

501 CONTINUE

C

C move remaining LILGAM data from BM file organized by col
DO 601 ICOL = 1, NCOLIN

B12(1COL) = XB12(ICOL)
B13(ICOL) = XB13(ICOL)
B21(ICOL) = XB21(ICOL)
B23(1COL) = XB23(1COL)
B32(1COL) = XB32(1COL)
B33(1COL) = XB33(1COL)
B1SCICOL) = XB11SCICOL)
B11SSCICOL) = XB11SS(ICOL)
B31S(ICOL) = XB31S(ICOL)
B31SS(ICOL) = XB31SSCICOL) -
QO3FACCICOL) = XQOBFC(ICOL)
SSONO(ICOL) = XSSONO(ICOL)
THETACICOL) = XTHETACICOL)
PSI2(ICOL) = XPSI2(ICOL)

ZLEV(ICOL, 1) = XZ0(1COL)

ZLEV(ICOL, 2) = X21(ICOL)

ZLEV(ICOL, 3) = XZ2(1COL)

ZLEV(ICOL, &) = XZ3(ICOL)
601 CONTINUE

45

TABLE 17. B-MATRIX DATA VARIABLES, PART 1

Var Var Data
No. Name Unit Type Description
B-matrix coefficient in column i for:
1 Bl s-1 Real*4 layer-1/surface-2 flux
2 B13; s-1 Real*4 layer-1/surface-3 flux
3 B2l s Real*4 layer-2/surface-1 flux
4 B23; s-1 Real*4 layer-2/surface-3 flux
S B3 s-1 Real*4 layer-3/surface-2 flux
6 B33 sl Real*4 layer-3/surface-3 flux
B-matrix coefficient for subgrid scale adjust-
ment in column i for:
7 Bi11S; st Real*4 layer-1/surface-1 flux
8 BI1I1SS; s-1 Real*4 alternate layer-1/surface-1 flux
.9 B31S; sl Real*4 layer-3/surface-1 flux
‘10 B31SS; s-1 Real*4 alternate layer-3/surface-1 flux
Run time subgrid-scale adjustment parame-
ters in column i:
11 QO3FAC; ms‘! Real*4 ozone factor
12 SSONO; ppm-m-s-! Real*4 NO surface emissions source strength
13 G1S;¢ ppm-s-1 Real*4 emissions source term in layer 1 for pri-
mary oxidant species k
14 G1SS;y ppm-s-1 Real*4 alternate emissions source term in layer 1
for primary oxidant species k
15 GIFACG;, s Real*4 emissions source factor in layer 1 for pri-
mary oxidant species k
16 G3S;y ppms-! Real*4 emissions source term in layer 3 for pri-
mary oxidant species k
17 G3SS;y ppm-s-1 Real*4 alternate emissions source term in layer 3
for primary oxidant species k
18 G3FAC;y s1 Real*4 emissions source factor in layer 3 for pri-

mary oxidant species k

continued

TABLE 17 (concluded)

Var Var Data
No. Name Unit Type Description
Rate constants density correction factor in
column i for:
19 RHO;,; molppm:m-3 Real*4 layer1
20 RHO;; molppm-m-3 Real*4 layer2
21 RHO;3 molppm:m-3 Real*4 layer3
Absolute temperature for rate constants
adjustment in column i for:
22 TEMP;,; K Real*4 layer1
23 TEMP;,; K Real*4 layer2
24 TEMP;3 K Real*4 layer3
Water vapor concentration for rate con-
stants adjustment in column i for:
25 WVGy, ppm Real*4 layer1
26 WVC;,; ppm Real*4 layer2
27 WVGC3 ppm Real*4 layer 3
28 THETA; deg Real*4 Solar zenith angle for photolytic rate con-
stants adjustment in column i
29 PSI2; Real*4 Cloud cover correction factor for photolytic
rate constants adjustment in column i
Heights above sea level in column i (used for
rate constant adjustments):
30 ZLEV,p m Real*4 layer0
31 ZLEV,, m Real*4 layer1
32 ZLEV;; m Real*4 layer2
33 ZLEV;3 m Real*4 layer3

47

TABLE 18. B-MATRIX DATA VARIABLES, PART 2

Var Var Data
No. Name Unit Type Description
B-matrix coefficient in column i for
species k for:
34 Bilx s1 Real*4 layer-1/surface-1 flux
35 B22;s s1 Real*4 layer-2/surface-2 flux
36 B31;4 s-1 Real*4 layer-3/surface-1 flux
Emissions source term in column i for
species k for:
37 Glix ppmsl Real*4 layer 1
38 G2 ppmsl Real*4 layer 2
39 G3ix ppms-l Real*4 layer 3

I

2.3 THE BACKTRACK (BTRK) FILE

The Backtrack file (BTRK) contains the gridded backtrack locations and the horizontal diffusivities data
for each grid cell, model layer, and time step required by the Core Model. A backtrack location is the
position in grid cell coordinates of the fluid particle that will arrive at a grid cell corner during the next
30-minute advection time step. The backtrack locations and diffusivities are used by subroutine BIGGAM)

in the calculation of the advection component of the current time step’s concentration field.

Array dimensions are set by parameter statements contained in the INCLUDE files REGION.EXT and
DIMENS.EXT as follows:

INTEGER*4 ..., NCOLS

PARAMETER (..., NCOLS = 64)

INTEGER*4 NLEVS, ...
PARAMETER (NLEVS = 3, ...)

2.3.1 Opening the BTRK File

At the start of the model scenario, BIGGAM calls BTPRCS. BTPRCS calls RDBTRK, which opens the
BTRK file by calling OPBTRK, and which optionally positions the file to the starting time for the
model execution by calling POBTRK. RDBTRK reads the BTRK file header records by calling RDBT.

The code segments and the FORMAT statements that demonstrate the steps to open the BTRK file
are listed below. FLNMBT contains the internal (logical) names for BTRK that point to the actual
file names in the execution run stream. FLNMBT is set in the block data module BLKMOD.
NVARBT is the number of layer-dependent BTRK variables (4). JUNIT is a function subprogram
that returns the next available FORTRAN I/O unit number.

INTEGER*4 ..., UNITBT, ...
CHARACTER*12 ..., FLNMBT, ...

SUBROUTINE RDBT (...)
LOGICAL*4 RECFMT, RDONLY
INTEGER®4 ..., JFILE6, RECLEN
PARAMETER (...,

& RECLEN = NVARBT * NCOLS * NLEVS,
& ‘RECFMT = _FALSE., RDONLY = .TRUE.)
C open file
UNITBT = JFILE6 (FLNMBT, RECFMT, RDONLY, RECLEN)
C
FUNCTION JFILE6 (FNAME, RECFMT, RDONLY, RECLEN)
CHARACTER*12 FNAME, FORM, UNFORM, FORMAT
INTEGER*4 RECLEN, IDEV, 10ST, JFILES, JUNIT
LOGICAL*4 RECFMT, RDONLY
DATA FORM / 'FORMATTED ' /
DATA UNFORM / 'UNFORMATTED * /
IDEV = JUNIT()
IF (RECFMT) THEN
FORMAT = FORM
ELSE
FORMAT = UNFORM
END IF
IF (RDONLY) THEN
OPEN (UNIT =]DEV,
& J0STAT = JOST,
& FILE = FNAME,
& STATUS = 'oLp!,
& ACCESS = 'SEQUENTIAL',
2 FORM = FORMAT,
& CARRIAGECONTROL = 'FORTRAN',
& RECORDTYPE = 'VARIABLE',
& RECL = RECLEN,
& READONLY)
ELSE
END IF
C

JFILE6 = IDEV

RETURN
END

2.3.2 BTRK File Records

The structure of the Backtrack file conforms to the requirements for all ROM Core Model files, and
therefore contains a standard file header. In addition, the file consists of a data body organized by

49

time steps, each section of which is headed by a time step header record. Descriptions of the records
containing this information are given below. Appendix B contains a structure diagram for the BTRK
file.

2.3.2.1 BTRK File Header Records--

The first three records contain the BTRK file header that comprises of the variables in the
INCLUDE file HEADBT.EXT:

HEADBT .EXT
BCKTRAK file header block

aOOn

CHARACTER*80 TEXTBT
CHARACTER*12 MFNMBT
CHARACTER*8 GRDNBT
REAL*4 SWLNBT, SWLTBT, NELTBT, NELNBT, DLONBT, DLATBT
INTEGER*4 CDATBT, CTIMBT, COMFBT, CTMFBT, UDMFBT, UTMFBT,
& SDATBT, STHRBT, TSTPBT, FRSTBT,
& NCOLBT, NROWBT, NMIFBT, ICNTBT,
& NMFBT, NVARBT

(2]

PARAMETER (NMFBT = 6, NVARBT = 4)

NMFBT number of MIF files used in generating BCKTRAK file
NVARBT number of LEVEL-DEPENDENT BCKTRAK variables,
specifically; W's, W's, KKHU's, KKHV's

s NeNeNeXe]

COMMON /CHARBT/ GRONBTY, TEXTBT(20), MFNMBT(NMFBT)

[g]

COMMON /HEADBT/ CDATBT, CYIMBT, SDATBY, STHRBT, TSTPBT, FRSTBT,
SWLNBT, SWLTBT, NELNBT, NELTBT, DLONBT, DLATST,
NCOLBT, NROWBT, ICNTBT,
NMIEBT,
COMFBT(NMFBT), CTMFBT(NMFBT), UDMFBT(NMFBT),
UTMFBT(NMFBT)

fRo Qo R0 Ro o

2.3.2.1.1 Record 1-- The first record contains character strings of alphanumeric data that
describe the file’s contents. The data are first read (unformatted) into a character buffer that
is then converted into the record variables by a formatted internal read statement. The
RDBT code segments and FORMAT statemerits for these steps are shown below, and the
_variables of record 1 are shown in Table 19. »

SUBROUTINE RDBT (. . .)
PARAMETER (BFLONE = 13 * 8 + 4 * 4, ...
CHARACTER*(BFLONE) RECONE

c
C read header record
c

READ(UNITBT, IOSTAT = 10ST) RECONE

o

C convert character to mixed character & numeric

Cc
READ(RECONE, 1001, IOSTAT = 10ST)
& CDATBT, CTIMBT, SDATBT, STHRBT, TSTPBT, FRSTBT,
& GRDNBT, SWLNBT, SWLTBT, NELNBT, NELTBT, DLONBT,
& DLATBT, NCOLBT, NROWBT, NMIFBT, ICNTBT

1001 FORMAT(618.8, A8, 4F8.3, 2FB.5, 414.4)

50

TABLE 19. BTRK RECORD 1 VARIABLES

Var Var Data

No. Name Unit Type Description

1 CDATBT Integer*4 File creation date as MMDDYY

2 CTIMBT EST Integer*4 File creation time as HHMMSS

3 SDATBT Integer*4 Julian start date of scenario as YYDDD
4 STHRBT EST Integer*4 Start hour of scenario (00 to 23)

5 TSTPBT s Integer*4 Time step size for simulation

6 FRSTBT s Integer*4 Time to first step

7 GRDNBT Char*8 Grid definition name

8 SWLNBT °W Real*4 Longitude of southwest corner of grid
9 SWLTBT °N Real*4 Latitude of southwest corner of grid

10 NELNBT °W Real*4 Longitude of northeast corner of grid

11 NELTBT °N Real*4 Latitude of northeast corner of grid

12 DLONBT °W Real*4 Grid cell longitudinal increment

13 DLATBT °N Real*4 Grid cell latitudinal increment

14 NCOLBT Integer*4 Number of columns in grid

15 NROWBT Integer*4 Number of rows in grid

16 NMIFBT Integer*4 Number of model input files used to generate
the BTRK file

17 ICNTBT Integer*4 Number of text records

2.3.2.1.2 Records 2 - 5-- These records contain the list of model input file logical names used
to generate the BTRK file data; the list records are processed in the same way as record 1.
The variables of these records are shown in Table 20.

SUBROUTINE RDBT (. . .)
PARAMETER (..., BFLMIF = 12 + 4 * 8, ...
CHARACTER*(BFLMIF) RECMIF

[

C read the MIF data records

c
DO 101 IMIF = 1, NMIFBT
READ(UNITBT, IOSTAT = IOST) RECMIF
READ(RECMIF, 1005, IOSTAT = 10ST)
& MFNMBT(INIF), COMFBT(IMIF), CTMFBT(IMIF),
& UDMFBT(IMIF), UTMFBT(IMIF)

1005 FORMAT(A12, 418.8)

101 CONTINUE

51

TABLE 20. BTRK RECORDS 2 - 5§ VARIABLES

Var Var Data
No. Name Unit Type Description
1 MFNMBT, Char*12 File name of MIF file n
2 CDMFBT, Integer*4 Creation date of MIF file n
3 CIMFBT, EST Integer*4 Creation time of MIF file n
4 UDMFBT, Integer*4 Last update date of MIF file n
5 UTMFBT, EST Integer*4 Last update time of MIF file n

2.3.2.1.3 Records 6 - (25 maximum)-- These records contain descriptive text that was
entered when the file was created by processor P38G. Each record consists of one 80-char-
acter string. The READ and FORMAT statements in subroutine RDBT for these records are
listed below, and their variable is shown in Table 21.

SUBROUTINE RDBT (. . .)
CHARACTER*80 RECTXY
c
C read header text records
[+
. DO 201 ITXY = 1, ICNTBT
READ (UNITBT, JOSTAT = 10ST) RECTXT
READ(RECTXT, 1007, IOSTAT = [0ST) TEXTBT(ITXT)
1007 FORMAT(A80)
201 CONTINUE

TABLE 21. BTRK RECORDS 6 - (6+ICNTBT-1) VARIABLES

Var Var Data
No. Name Unit Type Description
1 TEXTBT, Char*80 Text string of n lines
e — —

2.3.2.2 BTRK File Body Records--

After the BTRK file has been opened and the file header read, BIGGAM obtains the BTRK data by
calling BTPRCS at the start of each model time step. BTPRCS in turn invokes RDBTRK, which reads
(1) the BTRK file’s time step headers, and (2) each row of data by calling RDBT.

2.3.2.2.1 Time Step Header Record-- There is one time step header record written for each
time step increment on the BTRK file. The time step header data are contained in the com-
mon block RTSHBT. RDBT reads the data from the BTRK file by specifying the number of
the block’s words to be read (NWORDS) obtained from its argument list. The data are put
into the output buffer DATA, which is then passed back through RDBT’s argument list to

52

RDBTRK. The common block RTSHBT is thereby loaded since the first variable in its address
space was referenced in the call to RDBT and the address space is exactly NWORDS long.
The RDBTRK and RDBT code segments and the FORMAT statements that demonstrate the
processing steps for this record are listed below, and its variables are shown in Table 22.

SUBROUTINE RDBTRK (10ST)
INTEGER*4 IWOLN1, ...
PARAMETER (IWOLN1 = 4, ...

REAL*4 DATBT, TIMBT, ELPBT, STPBT
COMMON / RTSHBT / DATBT, TIMBT, ELPBT, STPBT

C read BTRK T.S.K.
CALL RDBT (IWDLN1, DATBT, IOST)
c
SUBROUTINE RDBT (NWORDS, DATA, I0ST)
INTEGER*4 NWORDS, 10ST, ...
REAL*4 DATA
DIMENSION DATA(NWORDS)
READ (UNITBT, I0OSTAT = 10ST) DATA

TABLE 22. BTRK TIME STEP HEADER RECORD VARIABLES

Var Var Data

No. Name Unit Type Description

1 DATBT Integer*4 Current time step Julian date as YYDDD
2 TIMBT EST Integer*4 Current time step time as HHMMSS

3 ELPBT s Integer*4 Elapsed time since scenario start

4 STPBT Integer*4 Current time step number on BTRK file

2.3.2.2.2 Data Records-- The data records are obtained from the BTRK file in the same
manner as the time step header records. RDBT reads a block of data IWDLN2 long from the
file into a buffer of the same length. Since the argument list refers to the address location of
the first variable in the data common block BTFILE, IWDLN2 words of file data are
automatically loaded into the common block’s address space. The RDBTRK and RDBT code
segments and the FORMAT statements that demonstrate the processing steps for this record
‘are listed below, and its variables are shown in Table 23.
C NVARBT = 4 is the number of level-dependent BCKTRAK variables,
specifically: XRU, XRV, XRKU, XRKV.
REAL*4 XRU, XRV, XRKU, XRKV
COMMON /BTFILE/ XRU(NCOLS, NLEVS), XRV(NCOLS, NLEVS),
& XRKU(NCOLS, NLEVS), XRKV(NCOLS,NLEVS)

SUBROUTINE RDBTRK (10ST)

INTEGER*4 ..., IWDLNZ, ...

PARAMETER (..., IWDLN2 = (NLEVS * NVARBT) * NCOLS)

C read BTRK
CALL RDBT (IWDLN2, XRU, IOST)

53

SUBROUTINE RDBT (NWORDS, DATA, I0ST)
INTEGER*4 NWORDS, 10ST, ...

REAL*4 DATA

DIMENSION DATA(NWORDS)

READ (UNITBT, IOSTAT = lOST) DATA

TABLE 23. BTRK DATA VARIABLES

Var Var Data
No. Name Unit Type Description
Backtrack locations:
1 XRU;1 t Real*4 Longitudinal component, column i, layer L
2 XRV;L H Real*4 Latitudinal component, column i, layer L
Horizontal diffusivities:
3 XRKU;; rads’l Real*4 Longitudinal component, column i, layer L
4 XRKV;; radzs! Real*4 Latitudinal component, column i, layer L

t+ Backtrack location units are fractional column numbers.
$ Backtrack location units are fractional row numbers.

2.4 THE INITIAL CONDITIONS (ICON) FILE

The initial conditions file (ICON) contains initial condition concentrations of all the model CBM 4.2
chemical species for every grid cell and each model layer in the model domain. These data are meant to’
simulate the relatively clean background conditions that would prevail prior to the onset of an elevated
oxidant pollution episode. The Core Model uses these concentrations to start a multi-day simulation (an
episode). Thus, the ICON file is used only once for each episode modeled. The ICON file is not restricted
- 1o contain data for only one time step, although in practice only one time step is read. In fact, a full
.concemration file (the output from the model execution) can be used as an ICON file.

The initial concentrations are used by BIGGAM only at the very first time step of the episode, during cal-
culation of the advection component of the next time step’s concentration field. For all subsequent epi-
sode time step calculations, BIGGAM uses the predicted concentrations calculated for the previous time
step. '

During data processing, array dimensions are set by parameter statements contained in the INCLUDE
files REGION.EXT and DIMENS.EXT as follows:

INTEGER*4 NROWS, NCOLS

PARAMETER (..., NROWS = 52, NCOLS = 64)

INTEGER*4 NLEVS, NSPECS, ..., NPOXSP
PARAMETER (NLEVS = 3, NSPECS = 35, ..., NPOXSP = 3)

54

2.4.1 Opening the ICON File

At the start of the model scenario, BIGGAM calls ICPRCS. ICPRCS calls RDICON, which opens the
ICON file by calling OPICON, and which optionally positions the file to the starting time for the model
execution by calling POICON. RDICON calls RDFILE to read the ICON file header records. The code
segments and the FORMAT statements that demonstrate the steps to open the ICON file are listed
below. Note that all ICON file records have a fixed length equal to NLEVS x NCOLS.

INTEGER*4 ..., UNITIC, ...
CHARACTER*12 ..., FLNMIC, ...

SUBROUTINE OPICON

INTEGER*4 IWDLTH, ..., JFILES

LOGICAL*4 RECFMT, RDONLY

PARAMETER (IWDLTH = NCOLS * NLEVS,

& RECFMT = _FALSE., RDONLY = .TRUE.)
C
C open ICON file

UNITIC = JFILES (FLNMIC, RECFMT, RDONLY, IWDLTH)
C

FUNCTION JFILES (FNAME, RECFMT, RDONLY, RECLEN)
CHARACTER*12 FNAME, FORM, UNFORM, FORMAT
INTEGER*4 RECLEN, IDEV, 10ST, JFILES, JUNIT, ...
LOGICAL*4 RECFMT, RDONLY
DATA FORM / 'FORMATTED ' /
DATA UNFORM / 'UNFORMATTED ' /
IDEV = JUNIT()
IF (RECFMT) THEN

FORMAT = FORM

ELSE
FORMAT = UNFORM

END IF

IF (RDONLY) THEN

OPEN (UNIT = IDEV,
3 10STAT = 108T,
& FILE = FNAME,
& STATUS = '0LD!,
& ACCESS = 'SEQUENTIAL',
& FORM = FORMAT,
& RECORDTYPE = 'FIXED’,
& RECL = RECLEN,
& READONLY)

ELSE

END IF

JFILES = IDEV

55

RETURN
END

2.4.2 ICON File Records

The structure of the ICON file conforms to the requirements for all ROM Core Model files, and
therefore contains a standard file header. In addition, the file consists of a data body organized by
time steps, each section of which is headed by a time step header record (even though there may be
only one time step on the file). Descriptions of the records containing this information are given
below, and Appendix B contains a structure diagram for the ICON file.

2.4.2.1 ICON File Header Records--

The first four records contain the ICON file header that comprises the variables in the
INCLUDE file HEADIC.EXT:

HEADIC.EXT
ICON file header block

OoOO0O0O0

CHARACTER*BO TEXTIC -
CHARACTER*8 GRDNIC

CHARACTER*4 SPNMIC, LVNMIC

REAL*4 SWLNIC, SWLTIC, NELNIC, NELTIC, DLONIC, DLATIC

INTEGER*4 CDATIC, CTIMIC, SDATIC, STHRIC, TSTPIC, FRSTIC,

& NCOLIC, NROWIC, NLEVIC, NSPCIC, ICNTIC, IDUM

COMMON /CHARIC/ GRDNIC, SPNMIC(NSPECS), LVNMIC(NLEVS), TEXTIC(20)
COMMON /HEADIC/ CDATIC, CTIMIC, SDATIC, STHRIC, TSTPIC, FRSTIC,
SWLNIC, SWLTIC, NELNIC, NELTIC, DLONIC, DLATIC,
NCOLIC, NROWIC, NLEVIC, NSPCIC, ICNTIC,
IDUM(8)

Ro RO Ro

2.4.2.1.1 Record 1-- The first record contains character strings of alphanumeric data that
describe the file’s contents. The data are first read (unformatted) by subroutine RDCHAR into
the buffer SEG1BF. The data are then read (formatted) into the variables contained in the
“common blocks in the INCLUDE file HEADICEXT. The code segments and FORMAT

statements for these steps are shown below, and the variables of record 1 are shown in Table
24.

SUBROUTINE OP1CON

CHARACTER*(8 * 21 + &4 * 5) SEGIBF
C
C read 1st segment

CALL RDCHAR (UNITIC, SEGIBF, 10ST)
c

SUBROUTINE RDCHAR (IUNIT, CHBUFF, 10ST)
INTEGER®*4 IUNIT, 10ST

CHARACTER*(*) CHBUFF

READCIUNIT, IOSTAT = 10ST) CHBUFF

56

RETURN
END

READ(SEG1BF, 1001, IOSTAT = IOST)

GRDNIC,

R0 Qo R0 RO o RO RO

ICNTIC

SWLNIC, SWLTIC, NELNIC, NELTIC,
- DLONIC, DLATIC,

NCOLIC, NROWIC, NLEVIC, NSPCIC,
CIDUMCITXT), ITXT = 1, 8),

CDATIC, CTIMIC, SDATIC, STHRIC, TSTPIC, FRSTIC,

1001 FORMAT(618.8, A8, 4FB.3, 2F8.5, 414.4, 818, 14.4)

TABLE 24. ICON RECORD 1 VARIABLES

Var Var Data

No. Name Unit Type Description

1 CDATIC Integer*4 File creation date as MMDDYY

2 CTIMIC EST Integer*4 File creation time as HHMMSS

3 SDATIC Integer*4 Julian start date of scenario as YYDDD

4 STHRIC EST Integer*4 Start hour of scenario (00 to 23)

S TSTPIC Integer*4 Time step size for simulation

6 FRSTIC Integer*4 Time to first step

7 GRDNIC Char*8 Grid definition name

8 SWLNIC °W Real*4 Longitude of southwest corner of grid

9 SWLTIC °N Real*4 Latitude of southwest corner of grid
10 NELNIC °W Real*4 Longitude of northeast corner of grid
11 NELTIC °N Real*4 Latitude of northeast corner of grid
12 DLONIC *W Real*4 Grid cell longitudinal increment
13 DLATIC °N Real*4 Grid cell latitudinal increment
14 NCOLIC Integer*4 Number of columns in grid
15 NROWIC Integer*4 Number of rows in grid
16 NLEVIC Integer*4 Number of levels in the simulation
17 NSPCIC Integer*4 Number of species in the ICON file
18 IDUM Integer*4 Padding to fill buffer
19 ICNTIC Integer*4 Number of text records

2.4.2.1.2 Record 2-- This record contains the list of species names for which the Core Model
computes concentration outputs. The data are first read by subroutine RDCHAR into the
buffer SPNMBF. The data are then copied into the SPNMIC array contained in a common
block in the INCLUDE file HEADICEXT. These steps are listed below, and the variable of
record 2 is shown in Table 25.

SUBROUTINE OPICON

———

CHARACTER*(4 * NSPECS) SPNMBF

INTEGER*4 ..., ISPC, ...

57

C read the species names record

CALL RDCHAR (UNITIC, SPNMBF, 10ST)

READ(SPNMBF, 1003, IOSTAT =]0OST) (SPNMIC(ISPC), ISPC = 1, NSPCIC)
1003 FORMAY(<NSPECS>(A4))

TABLE 25. ICON RECORD 2 VARIABLE

Var - Var Data

No. Name Unit Type Description
1 SPNMIC, Char*4 Name of chemical species k 1

t Alist of chemical species names can be found in Table 1.

2.4.2.1.3 Record 3-- This record contains the list of Core Model layer names. The data are
first read by subroutine RDCHAR into the buffer LVNMBEF. The data are then copied into the
LVNMIC array contained in a common block in the INCLUDE file HEADICEXT. These
steps are listed below, and the variable of record 3 is shown in Table 26.

SUBROUTINE OPICON

CHARACTER*(4 * NLEVS) LEVNBF

INTEGER*4 , ..., ILEV
C read the level names record

CALL RDCHAR (UNITIC, LEVNBF, 10ST)

READ(LEVNBF, 1005, IOSTAT = 10ST) (LVNMIC(ILEV), ILEV = 1, NLEVIC)
1005 FORMAT(<NLEVS>(A4))

TABLE 26. ICON RECORD 3 VARIABLE

Var Var Data
No. Name Unit Type Description
1 LVNMIC,;, Char*4 Name of layer L

24.2.1.4 Records 4 i (4 + ICNTIC)-- These records contain descriptive text that was entered
when the file was created by processor P02G. Each record consists of one 80-character string.
The data are read by subroutine RDCHAR into the buffer TEXTBF, which is then copied into
the TEXTIC array contained in a common block in the INCLUDE file HEADIC.EXT. These
steps are listed below, and the variable of the records is shown in Table 27.

SUBROUTINE OPICON
CHARACTER*S80 TEXTBF
INTEGER* ..., ITXT, ...

C read file text group
DO 101 ITXT = 1, ICNTIC
CALL RDCHAR (UNITIC, TEXTBF, 10ST)
TEXTICCITXT) = TEXTBF

101 CONTINUE

58

TABLE 27. ICON RECORDS 4 - (4+ICNTIC) VARIABLE

Var Var Data

No. Name Unit Type Description
1 TEXTIC, Char*80 Text string of n lines

st
—

2.4.2.2 ICON File Body Records--

After the ICON file has been opened and the file header read, BIGGAM obtains the ICON data by

calling ICPRCS before the start of the scenario time step iteration. ICPRCS, in turn, calls RDICON
for each row’s data.

2.4.2.2.1 Time Step Header Record-- There is one time step header record for each scenario
time step increment on the ICON file. Usually there is only one time step on this file, but this
is not an absolute restriction. Subroutine RDFILE is called to read four words of data into the
RTSHIC common block by referencing the first variable of the common block and specifying
the number of the block’s words to be read. These steps are listed below, and the record’s
variables are shown in Table 28.

REAL*4 DATIC, TIMIC, ELPIC, STPIC, ...

COMMON /RTSKIC/ DATIC, TIMIC, ELPIC, STPIC, ...

SUBROUTINE OPICON

INTEGER*4 10ST, NWDTSK, ..

PARAMETER (NWOTSH = 4, ...)

C read ICON T.S.H. .
CALL RDFILE (UNITIC, NWDTSH, DATIC, 10ST)

c

SUBROUTINE RDFILECIUNIT, NWORDS, BUFFER, 10ST)

IMPLICIT NONE

INTEGER*4 IUNIT, NWORDS, BUFFER, 10ST

DIMENSION BUFFER(NWORDS)

READCIUNIT, IOSTAT=I0ST) BUFFER

RETURN

END

TABLE 28. ICON TIME STEP HEADER RECORD VARIABLES

Var Var Data .
No. Name Unit Type Description .
1 DATIC Real*4 Current time step Julian date as YYDDD
2 TIMIC EST Real*4 Current time step time as HHMMSS
3 ELPIC s Real*4 Elapsed time since scenario start
4 STPIC Real*4 Step number

59

2.4.2.2.2 Data Records-- These records contain the chemical species concentrations iterated
over rows. The values are read into the common block ICFILE by referencing the first
address of the common block for each species and specifying the number of the block’s words
to be read. The code for these steps is listed below, and the data variables are shown in Table
29.

REAL*4 1CFILE

COMMON /ICFILE/ ICFILE(NCOLS, NLEVS, NSPECS)

SUBROUTINE RDICON
INTEGER*4 [OST, ..., NWOSIC, IROW, ISPC
PARAMETER (..., NWDSIC = NCOLS * NLEVS)

IROW = 1
201 CONTINUE

IF CIROW .GT. NROWIC) GO TO 301
c
C read ICON row

DO 211 ISPC = 1, NSPECS

CALL RDFILE (UNITIC, NWDSIC, ICFILECY,1,ISPC), 10ST)
21 CONT INUE
C

TIROW = IROW + 1

GO TO 201

c
301 CONTINUE

TABLE 29. ICON DATA VARIABLE

Var Var Data
No. Name Unit Type Description
1 ICFILE; [& ppm Real*4 Initial chemical species concentrations in

column i and layer L for species k

2.5 THE NEW INITIAL CONDITIONS (NEWICON) FILE

The new initial conditions file NEWICON) contains the predicted concentrations for the last time step
of a scenario, obtained from an execution of the Core Model. NEWICON is a copy of the CONC file data
for each of the 35 chemical species, each grid cell, and each of the model’s 3 layers.

When the model starts the execution of the next scenario in a contiguous sequence of scenarios, the

NEWICON file is used in place of the ICON file to provide initial chemical species concentrations for the
first time step.

It is possible to use the CONC file generated from the preceeding scenario for initial concentration data,
but since these files are large, data management becomes a serious problem for running a series of appli-

cations. The NEWICON file, containing only one time step of a CONC file, provides a solution by being
much smaller than a CONC file.

During data processing, array dimensions are set by parameter statements contained in the INCLUDE
files REGION.EXT and DIMENS.EXT as follows:

INTEGER*4 NROWS, NCOLS

PARAMETER (..., NROWS = 52, NCOLS = 64)

INTEGER*4 NLEVS, NSPECS, ..., NPOXSP
PARAMETER (NLEVS = 3, NSPECS = 35, ..., NPOXSP = 3)

2.5.1 Opening the NEWICON File

The NEWICON file is opened at the completion of a model scenario. The main program, RUNMGR,
calls subroutine NEWICS, which writes the NEWICON file header and data. The structure of NEW-
ICON is identical to that of the ICON file. The code segments and the FORMAT statements that
demonstrate the steps to open the NEWICON file are listed below. Note that all NEWICON file
records have a fixed length equal to NLEVS x NCOLS.

INTEGER*4 ..., UNITNI, ...
CHARACTER*12 ..., FLNMNI, ...

SUBROUTINE NEWICS

INTEGER*4 IWDLTH, ..., JFILES, ...

LOGICAL*4 RECFMT, RDONLY

PARAMETER (IWDLTH = NLEVS * NCOLS,

& RECFMT = _FALSE., RDONLY = .FALSE.)
C
C open NEWICON file, unformatted, read/write access

UNITNI = JFILES (FLNMNI, RECFMT, RDONLY, IWOLTH)

FUNCTION JFILES (FNAME, RECFMT, RDONLY, RECLEN)
CHARACTER*12 FNAME, FORM, UNFORM, FORMAT
INTEGER*4 RECLEN, IDEV, 10ST, JFILES, JUNIT, ...
LOGICAL*4 RECFMT, RDONLY
DATA FORM / 'FORMATTED ' /
DATA UNFORM / 'UNFORMATTED * /
IDEV = JUNIT()
IF (RECFMT) THEN

FORMAT = FORM

.

ELSE
FORMAT = UNFORM

END IF
IF (RDONLY) THEN

61

ELSE

OPEN (UNIT = IDEV,

& I0STAT = 10ST,

& FILE = FNAME,

& STATUS = 'UNKNOWN',

& ACCESS = 'SEQUENTIAL',
& FORM = FORMAT)

END IF

JFILES = IDEV

RETURN
END

2.5.2 NEWICON File Records

The structure of the NEWICON file conforms to the requirements for all ROM Core Model files,
and therefore contains a standard file header. In addition, the file consists of a data body organized by
time steps, each section of which is headed by a time step header record; note that the NEWICON file

contains only one time step. Descriptions of the records containing this information are given below.
2.5.2.1 NEWICON File Header Records--

The first four records contain the NEWICON file header. The data that are written to the
NEWICON file header originate from (1) header information contained in the newly generated
CONC file, and (2) either the ICON or the NEWICON file used to start the scenario. In addi-
tion, (3) NEWICS calls subroutine DATTIM, which retrieves the current date and time from the the
computer operating system. This time stamp becomes the creation date and time for the
NEWICON file. The CONC file header data are contained in the common blocks in the
HEADCN.EXT include file:

HEADCN . EXT
CONC file header block

QOO0 0

CHARACTER*80 TEXTCN
CHARACTER*8 GRDNCN
CHARACTER*4 SPNMCN, LVNMCN
REAL*4 SWLNCN, SWLTCN, NELNCN, NELTCN, DLONCN, DLATCN
INTEGER*4 CDATCN, CTIMCN, SDATCN, STHRCN, TSTPCN, FRSTCN,
NCOLCN, NROWCN, NLEVCN, NSPCCN, ICNTCN,
CDBMCN, CTBMCN, CDBTCN, CTBTCN,
CDBCCN, CTBCCN, CDICCN, CTICCN

f° RO Ro

COMMON /CHARCN/ GRDNCN, SPNMCN(NSPECS), LVNMCN(NLEVS), TEXTCN(20)
COMMON /HEADCN/ COATCN, CTIMCN, SDATCN, STHRCN, TSTPCN, FRSTCN,
SWLNCN, SWLTCN, NELNCN, NELTCN, DLONCN, DLATCN,
NCOLCN, NROWCN, NLEVCN, NSPCCN, ICNTCN,
CDBMCN, CTBMCN, CDBTCN, CTBTCN,
CDBCCN, CTBCCN, CDICCN, CTICCN

Ro RO R0 RO

62

2.5.2.1.1 Record 1-- The first record contains character strings of alphanumeric data that
describe the file’s contents. Data from the HEADCN.EXT common blocks are written to the
character buffer SEG1BF, which is then written (unformatted) to NEWICON by subroutine
WRCHAR. The scenario start date and time for the NEWICON file are obtained from the
current (last) CONC file date and time. The variable IELPIC, which represents time elapsed
on the ICON (or previous NEWICON) file from the scenario start time, is obtained from the
data stored in common in the HEADIC.EXT include file (refer to Section 2.4.2.1). This variable
is used to determine the time 10 the first step on the NEWICON file, FRSTIC. The ICON
time step size, TSTPIC, is simply copied from the HEADIC.EXT common block to become the
NEWICON time step size. The code segments and FORMAT statements for these steps are
shown below, and the variables of record 1 are shown in Table 30.

INTEGER*4 ..., UNITNI, ...
SUBROUTINE NEWICS

C CONC header buffers
CHARACTER*(B * 21 + 4 * 5) SEG1BF
INTEGER*4 ..., 10ST, ...

C get creation date for new IC file
CALL DATTIM (CDAT!C, CTIMIC)
[
C get initial time values from last CONC time step
C (Note: Model cannot be started from an ICON file at half-hour)
SDATIC = IDATCN
STHRIC = ITIMCN / 10000
C
C get elapsed time value from ICON
FRSTIC = IELPIC
o
C write 1st segment
WRITE(SEG1BF, 1001, IOSYAT = IOST)
COATIC, CTIMIC, SDATIC, STHRIC, TSTPIC, FRSTIC,
GRDNCN,
SWLNCN, SWLTCN, NELNCN, NELTCN,
DLONCN, DLATCN,
NCOLCN, NROWCN, NLEVCN, NSPCCN,
COBMCN, CTBMCN,
CDBTCN, CTBTCN,
CDBCCN, CTBCCN,
CDICCN, CTICCN,
ICNTCN
1001 FORMAT(618.8, A8, 4FB.3, 2F8.5, 414.4, 818.8, 14.4)

0 Ro 9 o Qo o RO RO Ko Qo

CALL WRCHAR (UNITNI, SEG1BF, 10ST)

SUBROUTINE WRCHAR (IUNIT, CHBUF, IOST)
IMPLICIT NONE

INTEGER*4 IUNIT, 10ST

CHARACTER*(*) CHBUFF

WRITECIUNIT, IOSTAT = I0ST) CHBUFF
RETURN

END

63

TABLE 30. NEWICON RECORD 1 VARIABLES

Var Var Data
No. Name Unit Type Description
1 CDATIC Integer*4 File creation date as MMDDYY
2 .CTIMIC EST Integer*4 File creation time as HHMMSS
3 SDATIC Integer*4 Julian start date of scenario as YYDDD
4 STHRIC EST Integer*4 Start hour of scenario (00 to 23)
S TSTPIC Integer*4 Time step size for simulation
6 FRSTIC Integer*4 Time to first step
7 GRDNCN Char*8 Grid definition name
8 SWLNCN °W Real*4 Longitude of southwest corner of grid
9 SWLTCN °N Real*4 Latitude of southwest corner of grid
10 NELNCN °W Real*4 Longitude of northeast corner of grid
1 NELTCN °N Real*4 Latitude of northeast corner of grid
12 DLONCN °W Real*4 Grid cell Jongitudinal increment
13 DLATCN °N Real*4 Grid cell latitudinal increment
14 NCOLCN Integer*4 Number of columns in grid
15 NROWCN Integer*4 Number of rows in grid
16 NLEVCN Integer*4 Number of levels in the simulation
17 NSPCCN Integer*4 Number of species in the NEWICON file
18 CDBMCN Integer*4 Creation date of the B-matrix file (BMAT)
from which the CONC file was generated, -
as MMDDYY
19 CTBMCN EST Integer*4 Creation time of the B-matrix file (BMAT)
from which the CONC file was generated,
as HHMMSS
20 CDBTCN Integer*4 Creation date of the backtrack file (BTRK)
from which the CONC file was generated,
as MMDDYY
21 CTBTCN EST Integer*4 Creation time of the backtrack file (BTRK)
from which the CONC file was generated,
. as HHMMSS
22 CDBCCN . Integer*4 Creation date of the boundary conditons file
(BCON) from which the CONC file was
. generated, as MMDDYY
23 CTBCCN EST Integer*4 Creation time of the boundary conditons file
. (BCON) from which the CONC file was
generated, as HHMMSS
24 CDICCN Integer*4 Creation date of the initial conditons file
(ICON) from which the CONC file was
generated, as MMDDYY
25 CTICCN EST Integer*4 Creation time of the initial conditons file
(ICON) from which the CONC file was
generated, as HHMMSS
26 ICNTCN Integer*4 Number of text records

s a—

2.5.2.1.2 Record 2-- This record contains the list of species names for which NEWICON
contains concentration data. The data are first written into the buffer SPNMBEF, which is
then written (unformatted) to NEWICON. These steps are listed below, and the variable of

record 2 is shown in Table 31. ' '

SUBROUTINE NEWICS

CHARACTER*(4 * NSPECS) SPNMBF
INTEGER*% ..., ISPC, ...

DO 101 ISPC = 1, NSPCIN
SPNMCN(ISPC) = SPNMIN(ISPC)
101 CONTINUE

C write the species names
WRITE(SPNMBF, 1003, IOSTAT = 10ST)
& (SPNMCN(ISPC), ISPC = 1, NSPCCN)
1003 FORMAT(35(A4))
CALL WRCHAR (UNITNI, SPNMBF, I0ST)

TABLE 31. NEWICON RECORD 2 VARIABLE

Var Var Data
No. Name Unit Type Description
1 SPNMCNg Char*4 Name of chemical species k t

t Alist of chemical species names can be found in Table 1.

2.5.2.1.3 Record 3-- This record contains the list of Core Model layer names. The data are
first written to the buffer LVNMBF, which is then written (unformatted) to the NEWICON
file. These steps are listed below, and the variable of record 3 is shown in Table 32.

SUBROUTINE NEWICS

CHARACTER®(4 * NLEVS) LEVNBF
INTEGER®% ..., ILEV

C write the level names
WRITE(LEVNBF, 1005, IOSTAT = 10ST)
& (LVNMCN(ILEV), ILEV = 1, NLEVCN)
1005 FORMAT(3(Aé))
CALL WRCHAR (UNITNI, LEVNBF, 10ST)

TABLE 32. NEWICON RECORD 3 VARIABLE

Var Var Data
No. Name Unit Type Description
1 LVNMCN, Char*4 Name of layer L

65

2.5.2.1.4 Records 4- (4 + ICNTCN)-- These records contain descriptive text that was copied
to the CONC file header from the model execution runstream control parameters and now

become the NEWICON descriptive text. One 80-character string is written to each record by
the following statements. The variable of the records is shown in Table 33.

SUBROUT INE NEWICS
INTEGER*4 ..., ITXT, ...

C write file text group
DO 101 ITXT = 1, ICNTCN

CALL WRCHAR (UNITNI, TEXTCN(ITXT), IOST)
101 CONTINUE

TABLE 33. NEWICON RECORDS 4 - (4+ICNTCN) VARIARLE

Var Var Data
No. Name Unit Type Description
1 TEXTCN, Char*80 Text string of n lines

2.5.2.2 NEWICON File Body Records--

2.5.2.2.1 Time Step Header Record-- There is one time step header record written for the
single time step increment on the NEWICON file. The time step header data is contained in
the common block RTSHCN, whose first variable is used in subroutine WRFILE’s argument
list; note that NCOLS x NLEVS is specified as the number of words to be written. The code
segments for these steps are listed below, and the record’s variables are shown in Table 34.
REAL*4 DATIC, TIMIC, ELPIC, STPIC, ...
COMMON /RTSHIC/ DATIC, TIMIC, ELPIC, STPIC, ...

SUBROUTINE NEWICS
INTEGER*4 IMOLTH, ..., 10ST, ...

PARAMETER (IWOLTH = NLEVS * NCOLS, ...)

C write NI T.S.H.
CALL WRFILE (UNITNI, IWOLTH, DATIC, IOST)

SUBROUTINE WRFILE (IUNIT, NWORDS, BUFFER, 10ST)
IMPLICIT NONE

INTEGER*4 IUNIT, NWORDS, BUFFER, 10ST
DIMENSION BUFFERCNWORDS)

WRITECIUNIT, IOSTAT = [OST) BUFFER

RETURN

END

TABLE 34. NEWICON TIME STEP HEADER RECORD VARIABLES

Var Var Data

No. Name Unit Type Description

1 DATIC Real*4 Current time step Julian date as YYDDD
2 TIMIC EST Real*4 Current time step time as HHMMSS

3 ELPIC s Real*4 Elapsed time since scenario start

4 STPIC Real*4 Step number

2.5.2.2.2 Data Records-- Each data record contains the concentration data for one chemical
species in one row of the domain grid for the final time step of a scenario execution. The
concentration data are first copied into the ICFILE common block from the initial condi-
tions buffer (common block BGICCN), which is written by subroutine ICPRCS at the end of
each scenario step. At the end of the scenario execution, the BGICCN common block
contains the last time step concentrations computed in the model. These data are written by
referencing the memory address corresponding to the column 1 and level 1 indices of the
array in the common block ICFILE for each species, and by passing the number of words to
be written to subroutine WRFILE. The code segments for these steps are listed below and the
variable for this record is shown in Table 35.

REAL*4 ICFILE
COMMON /ICFILE/ ICFILE(NCOLS, NLEVS, NSPECS)

REAL*4 BGICCN
INTEGER*4 TOG1, TOG2
COMMON /BGICCN/ TOG1, TOG2, BGICCN(NCOLS, NLEVS, NSPECS, NROWS, 2)

SUBROUTINE NEWICS

INTEGER*4 IWDLTM, ISPC, 10ST, 1TXT, JFILES,
& INDEX, 1COL, IROM, ILEV
INTEGER*4 ..., IWDLN2, ..., ISPC, 10ST

PARAMETER (IWDLTH = NLEVS * NCOLS, ...)

Cceopybody .« & v v v v v v i ot st e e e et e e e e . row*
c

IROM = 1
‘201 CONT INUE
IF (IROW .GT. NROWIC) GO TO 301
C
C reorder species
DO 203 ISPC = 1, NSPCIN
INDEX = NXSPIC(ISPC)
DO 203 ILEV = 1, NLEVIN
DO 203 I1COL = 1, NCOLIN
ICFILECICOL, ILEV, ISPC) = BGICCN(ICOL, ILEV, INDEX, IROW, TOG2)
203 CONTINUE
o
C write NEWICON file
DO 205 ISPC = 1, NSPECS
CALL WRFILECUNITNI, IWDLTH, ICFILE(1,1,1SPC),10ST)

67

205 CONTINUE

c
IROW = IROW + 1
GO 1O 201
c
Ceoopybody . . &« & v v 0t i it e e e e e e e e e e e e e e end
c

301 CONTINUE

TABLE 35. NEWICON DATA VARIABLE

Var Var Data .
No. Name Unit Type Description
1 ICFILE; 1 & ppm Real*4 Initial chemical species concentrations in

column i and layer L for species k

2.6 THE PROGRESS (PROG) FILE

The ROM Core Model requires a long execution time. We have found it convenient to be able to ascer-
tain the last completed time step of a scenario during the progress of a model execution. Although this
can be determined by interactively examining the currently open run log file, the progress file (PROG) is
much smaller, consisting of one line, and therefore is more easily accessed.

2.6.1 Opening the PROG File

At the completion of each scenario time step, the main program, RUNMGR, opens the PROG file to
write the one line time step progress data. After the data are written, RUNMGR closes the file so that
there will be no conflict if a user decides to read it. In order that the computer operating system does
not create new versions of the file every time it is reopened, it is necessary for the file to be opened
with status 'OLD’. This, then, requires that the file exist prior to the start of a model run. The code
segments below illustrate the steps to open the file.

INTEGER*4 ..., UNITPR

COMMON / LUNITS / ..., UNITPR

CHARACTER*12 ..., FLNMPR
COMMON / FLNAMS / ..., FLNMPR

PROGRAM RUNMGR

C get unit numbers for . . . PROGRESS file
UNITPR = JUNIT()

C update PROGRESS file
OPEN (UNIT = UNITPR,

& STATUS = ‘OLD’,

& ACCESS = 'SEQUENTIAL',
& FORM = 'FORMATTED',

& FILE = FLNMPR)

2.6.2 The PROG File Record

The one line PROG file record consists of text that echoes the scenario date, scenario time, and the
scenario time step number that has just been completed by the model’s execution. The code segments
that write this line are listed below, and the variables in the PROG record are shown in Table 36.
INTEGER*4 MDDATE, MDTIME, ..., MOSTEP, ...
COMMON /TSTEPS/ MDDATE, MDTIME, ..., MDSTEP, ...
PROGRAM RUNMGR
WRITECUNITPR, 1007) MODATE, MDTIME, MDSTEP
1007 FORMAT(3X, 16, 4X, 16.6, 4X, 14)
WRITE(LUNOUT, 1009) MDDATE, MOTIME, MDSTEP
1009 FORMAT(/ 5X, 'Progress Completed: DATE/TIME = ', 16, ' / ', 16.6,

& 4X, 'STEP =, 14)
CLOSE (UNIT = UNITPR)

TABLE 36. PROG RECORD VARIABLES

Var Var Data

No. Name Unit Type Description

1 MDDATE Integer*4 Julian scenario date as YYDDD
MDTIME EST Integer*4 Scenario time as HHMMSS

3 MDSTEP Integer*4 Scenario step number

2.7 THE STATE VECTOR (RESTRT) FILE

The purpose of the state vector file (RESTRT) is to allow the model run to be restarted in case a previous
execution was stopped before the end of the scenario. A model run may have been stopped by either a
user or the computer operating system (€.g., a queue time-out). The model can then be restarted, begin-
ning at any time step beyond the scenario start but before the scenario step where it was stopped. This
restart feature saves time and computer costs, although in our experience we have needed to use it

infrequently.

The Core Model code consists of 66 subprograms in addition to the main program, RUNMGR. Of these,
14 are variable-state subroutines, which we call processes to distinguish them from procedures. Procedures
execute their code from top to bottom whenever they are invoked. Processes interact with their calling
programs in a critical time sequence, hence their implementation as variable-state subroutinés. The
processes maintain variable text pointers in their code that are set when the process is suspended and
control is returned to the calling program. At the next invocation of the process, it resumes execution of
the code from the point at which it was previously suspended.

69

RESTRT saves all necessary data to reset the variable-state subroutines to the exact state they were in
when the previous run was stopped. RESTRT also contains a copy of the HEADIN.EXT common blocks,
which consists of the model input data. In addition to these data, RESTRT saves the following:

- the chemistry control parameters set by subroutine INIRUN;

» the BMAT, BCON and ICON files’ species look-up tables;

- species flags indicating which are the primary oxidant species;

« species flags for dealing with special species;

« diffusivities conversion factors; and

« model and file process clock data.

The first card in the user-supplied input run stream control dataset contains a text field, the requested
number of steps to execute, and the starting date and time. Under normal operations, the text field is set
10 'START_RUN ¢ (three embedded blank spaces). To restart a model run, you must set the text field to
'RESTART_RUN ' (one embedded blank space), and also supply the starting date and time from which to
continue the model execution. For example, under normal conditions for model execution, the first card
will appear as follows (refer to Part 4 of the ROM User’s Guide):

'START_RUN ' 144 85183 120000

Suppose that the model execution is stopped during step 100, leaving 45 steps to process until the end of
the scenario at 85191 12:00. To restart the run, you must change the first card to the following:
'RESTART_RUN ' 45 85190 133000

We recommend that you carefully count the number of time steps remaining until the end of the scenario
prior to restarting the run.

In the event of a restarted run, RUNMGR calls subroutine RDSTAV to open and read the state vector file
and retrieve the data necessary to reset the clocks and text pointers for all the processes (variable state
subroutines). In addition, RUNMGR opens and positions the RESTRT, BCON, BTRK, and BMAT files
10 the time step records corresponding to the requested scenario restart time. Finally, RUNMGR calls
subroutine RDCONC to get the concentration data from the CONC file for the time step prior to the
restart time step. These data are then loaded into the initial conditions buffer that BIGGAM reads to
calculate the advection component of the next time step’s concentration field (refer to Section 2'.4). With
the model thus reinitialized, execution proceeds normally from the restart time step.

2.7.1_Processing that Takes Place for Normal Model Execution (how the RESTRT file gets written)

2.7.1.1 Opening the RESTRT File--

At the completion of the first model scenario time step, the main program (RUNMGR) calls sub-
routine WRSTAV to open the RESTRT file and record the state of the model execution on the file.

70

WRSTAV opens the RESTRT file with default status "formatted," allowing you to edit and change
the file if you wish. The following code segments show the operations that open the file.
FLNMSV is set in the block data module, BLKMOD. JUNIT is a function subprogram that

returns the next FORTRAN I/O unit number not being used by the model execution. '

INTEGER*4 ..., UNITSV, ...
CHARACTER*12 ..., FLNMSV, ...
SUBROUTINE WRSTAV
INTEGER*4 JUNIT, ..., IOST, ...
g open STATE VECTOR file, formatted, read/write access

UNITSV = JUNIT()
OPEN (UNITSV,

& FILE = FLNMSV,

& ACCESS = 'SEQUENTIAL',
& STATUS = 'UNKNOWN®,

& 10STAY = 10ST)

2.7.1.2 RESTRT File Records

The structure of the RESTRT file conforms to the requirements for all ROM Core Model files,
and therefore contains a standard file header. In addition, the file consists of a data body orga-
nized by time steps, each section of which is headed by a time step header record. Descriptions of
the records containing this information are given below.

2.7.1.2.1 RESTRT file header records-- The first 16+ records constitute the RESTRT file
header.

Just as for the CONC file header, the data that are written to the RESTRT file header
originate from:

« the execution run stream’s control cards;

» header information from the BMAT, BTRK, BCON, and ICON files;

« variables set by assignment statements in subroutine INIRUN; and

« arguments returned from various subroutines called by INIRUN.

These data are loaded into the common blocks in the include file HEADIN.EXT at the end of
the first scenario time step of the model execution:

HEADIN.EXT

input header information

o000 0

C used to check file headers on BMATRIX, ICON, and BCON files
C and to create file header on RESTRT file
o

y)|

CHARACTER*80 TEXTIN

CHARACTER*B GRDNIN

CHARACTER*4 SPNMIN, LVNMIN

REAL*4 SWLNIN, SWLTIN, NELNIN, NELTIN, DLONIN, DLATIN
INTEGER*4 CDATIN, CTIMIN, SDATIN, STHRIN, TSTPIN, FRSTIN,

& NCOLIN, NROWIN, NLEVIN, NSPCIN, ICNTIN

o
COMMON /CHARIN/ GRONIN, SPNMIN(NSPECS), LVNMIN(NLEVS), TEXTIN(Z20)
COMMON /HEADIN/ CDATIN, CTIMIN, SDATIN, STHRIN, TSTPIN, FRSTIN,
& SWLNIN, SWLTIN, NELNIN, NELTIN, DLONIN, DLATIN,
& NCOLIN, NROWIN, NLEVIN, NSPCIN, ICNTIN

c

The data in the HEADIN.EXT common blocks are used in the creation of the RESTRT file
header. The INCLUDE file HEADSV.EXT contains the common blocks that are loaded with
the RESTRT file header variables.

HDSTAV.EXT
formatted STATE VECTOR file header block

OoOoo0O0n

CHARACTER*80 TEXTSV

CHARACTER*8 GRDNSV

CHARACTER*4 SPNMSV, LVNMSV

REAL*4 SWLNSV, SWLTSV, NELNSV, NELTSV, DLONSV, DLATSV
INTEGER*4 CDATSV, CTIMSV, SDATSV, STHRSV, TSTPSV, FRSTSV,
& NCOLSV, NROWSV, NLEVSV, NSPCSV, ICNTSV

COMMON /CHARSV/ GRDNSV, SPNMSV(NSPECS), LVNMSV(NLEVS), TEXTSV(20)
COMMON /HEADSV/ CDATSV, CTIMSV, SDATSV, STHRSV, TSTPSV, FRSTSV,
& SWLNSV, SWLTSV, NELNSV, NELTSV, DLONSV, DLATSV,
& NCOLSV, NROWSV, NLEVSV, NSPCSV, ICNTSV

2.7.1.2.1.1 Reocord 1-- The first two records contain character strings of alphanumeric
data that describe the file’s contents. The data that have been stored in the common
blocks in INCLUDE file HEADIN.EXT are first loaded into the common blocks in
INCLUDE file HEADSV.EXT. The data are then written (formatted) to the RESTRT file.
The data are written to two records (instead of one record) so that users can easily edit
the file. The code segments that perform these operations are listed below, along with
the WRITE and FORMAT statements. The variables of record 1 are shown in Table 37.

INTEGER*4 ..., UNITSV, ...
SUBROUTINE WRSTAV
INTEGER*4 ..., 10ST, ...

C prepare header buffer
C

COATSV = CDATIN
CTIMSV = CTIMIN
SDATSV = SDATIN
STHRSV = STHRIN
TSTPSV = TSTPIN

c
C first data is one time step beyond IC time step
c

FRSTSV = FRSTIN + TSTPIN
GRDNSY = GRDNIN

72

SWLNSV = SWLNIN
SWLTSV = SWLTIN
NELTSV = NELTIN
NELNSV = NELNIN
DLONSV = DLONIN
DLATSV = DLATIN
NCOLSV = NCOLIN
NROWSV = NROWIN
NLEVSV = NLEVIN
NSPCSV = NSPCIN
ICNTSV = ICNTIN

C write STATE VECTOR header segment 1

WRITECUNITSY, FMT = 1001, IOSTAT = I0ST)
& CDATSV, CTIMSV, SDATSV, STHRSV, TSTPSV,
& FRSTSV, GRDNSV, SWLNSV, SWLTSV, NELNSV
1001 FORMATCIX, 2¢16, 1X), 15, 1X, 12, 1X, 2(I8, 1X),
& A8, 1X, 3(F8.3, 1X))

TABLE 37. RESTRT RECORD 1 VARIABLES

Var Var Data

No. Name Unit Type Description

1 CDATSV Integer*4 File creation date as MMDDYY

2 CTIMSV EST Integer*4 File creation time as HHMMSS

3 SDATSV Integer*4 Julian start date of scenario as YYDDD
4 STHRSV EST Integer*4 Start hour of scenario (00 to 23)

5 TSTPSV s Integer*4 Time step size for simulation

6 FRSTSV s Integer*4 Time to first step

7 GRDNSV Char*8 Grid definition name

8 SWLNSV °W Real*4 Longitude of southwest corner of grid
9 SWLTSV °N Real*4 Latitude of southwest corner of grid

—
o

NELNSV °W Real*4 Longitude of northeast corner of grid

2.1.1.2.12 Record 2-- This record contains the remainder of the first segment
data. The relevant code segments are listed below, along with the WRITE and FOR-
MAT statements. The variables of record 2 are shown in Table 38.

SUBROUTINE WRSTAV
INTEGER*4 ..., 10ST, ...
C write STATE VECTOR header segment 2

c
WRITECUNITSV, FMT = 1003, IOSTAT = 1OST)
& NELTSV, DLONSV, DLATSV, NCOLSV,
& NROWSV, NLEVSV, NSPCSV, ICNTSV

1003 FORMAT(1X, F8.3, 2(1X, F8.5), 5(1X, 14))

73

TABLE 38. RESTRT RECORD 2 VARIABLES

E———
Var Var Data
No. Name Unit Type Description
1 NELTSV °N Real*4 Latitude of northeast corner of grid
2 DLONSV °W Integer*4 Grid cell longitudinal increment
3 DLATSV °N Integer*4 Grid cell latitudinal increment
4 NCOLSV Integer*4 Number of columns in grid
5 NROWSV Integer*4 Number of rows in grid
6 NLEVSV Integer*4 Number of levels in the simulation
7 NSPCSV Integer*4 Number of species in the RESTRT file
8 ICNTSV Integer*4 Number of text records

2.7.1.2.1.3 Records 3 and 4-- These records contain the list of species names for which
the Core Model computes concentration outputs. The data that have been stored in the
HEADIN.EXT INCLUDE file common blocks are first loaded into the HEADSV.EXT
common blocks. They are then written (formatted) to the RESTRT file. The data are
_ written to two records (instead of one record) so that users can easily edit the file. The
" code segments that perform these operations are listed below, along with the WRITE
and FORMAT statements. Note that if the number of species exceeds 30, the FORMAT
statement will cause additional records to be written when the last WRITE statement is
executed. The variable of records 3 and 4 is shown in Table 39.

SUBROUTINE WRSTAV
INTEGER*4 ..., ISPC, IOST, ...
DO 101 ISPC = 1, NSPCIN

SPNMSV(ISPC) = SPNMIN(CISPC)
101 CONTINUE

C write the species names records
c
WRITE(UNITSV, FMT = 1005, IOSTAT = 10ST)

& (SPNMSV(ISPC), ISPC = 1, 15)
1005 FORMAT(1X, 15¢A4, 1X))

MRITE(UNLITSV, FMT = 1005, IOSTAT = 10ST)
& (SPNMSV(ISPC), ISPC = 16, NSPCSV)

TABLE 39. RESTRT RECORDS 3 AND 4 VARIABLE

Var Var Data
No. Name Unit Type Description
1 SPNMSV, Char*4 Name of chemical species & t

t A list of chemical species names can be found in Table 1.

74

2.7.1.2.1.4 Record 5-- This record contains the list of Core Model layer names. The data
that are stored in the HEADIN.EXT common blocks are first loaded into the HEADSV.EXT
common blocks. They are then written (formatted) to the RESTRT file. The code
segments that perform these operations are listed below, along with the WRITE and
FORMAT statements. The variable of record S is shown in Table 40.

SUBROUTINE WRSTAV
INTEGER*6 ..., 10ST, ..., ILEV, ...

DO 103 ILEV = 1, NLEVSV
LVNMSV(ILEV) = LVNMIN(CILEV)
103 CONTINUE

C write the level names record
C
RECNSV = RECNSV + 1
WRITECUNITSV, FMT = 1005, IOSTAT = 10ST)
& (LVNMSV(ILEV), ILEV = 1, NLEVSV)

TABLE 40. RESTRT RECORD 5 VARIABLE

Var Var Data
No. Name Unit Type Description
1 LVNMSV, Char*4 Name of layer L

2.7.1.2.1.5 Records 6 - (6 + ICNTSV)-- These records contain the descriptive text that
was copied to the CONC file header from the model execution run stream control
parameters. One 80-character string is written to each record. The data have been stored
in the HEADIN.EXT common blocks, and are first loaded into the HEADSV.EXT common
blocks. They are then written (formatted) to the RESTRT file using the code segments
listed below. The variable of the records is shown in Table 41.

SUBROUTINE WRSTAV
INTEGER*4 ..., 10OST, ITXT, ...

DO 105 ITXT = 1, ICNTSV
TEXTSV(ITKT) = TEXTINCITXT)
105 CONTINUE

C write header text records
o

DO 109 ITXT = 1, ICNTSV

WRITE(UNITSV, FMT = 1007, IOSTAT = [0ST) TEXTSV(ITXT)
1007 FORMAT(1X, A80)

109 CONTINUE

75

TABLE 41. RESTRT RECORDS 6 - (6+ICNTSV) VARIABLE

Var Var Data
No. Name Unit Type Description
1 TEXTSV, Char*80 Text string of n lines

2.7.1.2.1.6 HEADIN record 1-- The next two records contain copies of the HEADIN.EXT
common blocks. The data are written to two records (instead of one record) so that users
can easily edit the file. The WRITE and FORMAT statements for this record are listed
below, and its variables are shown in Table 42.

SUBROUTINE WRSTAV
INTEGER*4 ..., 10ST, ...

C write HEADIN header record segment 1

‘ WRITECUNITSV, FMT = 1001, 10STAT = IOST)
& COATIN, CTIMIN, SDATIN, STHRIN, TSTPIN, FRSTIN,
& GRDNIN, SWLNIN, SWLTIN, NELNIN
TABLE 42. RESTRT HEADIN RECORD 1 VARIABLES
Var Var Data
No. Name Unit Type Description
1 CDATIN Integer*4 File creation date as MMDDYY
2 CTIMIN EST Integer*4 File creation time as HHMMSS
3 SDATIN Integer*4 Julian start date of scenario as YYDDD
4 STHRIN EST Integer*4 Start hour of scenario (00 to 23)
5 TSTPIN s Integer*4 Time step size for simulation
6 FRSTIN s Integer*4 Time to first step
7 GRDNIN Char*8 Grid definition name
8 SWLNIN °W Real*4 Longitude of southwest corner of grid
9 SWLTIN °N Real*4 Latitude of southwest corner of grid
10 NELNIN °W Real*4 Longitude of northeast corner of grid

2.7.1.2.1.7 _HEADIN record 2-- This record is the continuation of the HEA-
DIN.EXT common block’s data. The WRITE and FORMAT statements for this record
are listed below, and its variables are shown in Table 43.

SUBROUTINE WRSTAV
INTEGER*s ..., 10ST, ...

C write HEADIN header record segment 2

c
WRITE(UNITSV, FMT = 1003, 1OSTAT = 10ST)
& NELTIN, DLONIN, DLATIN, NCOLIN, NROWIN,
& NLEVIN, NSPCIN, ICNTIN

76

TABLE 43. RESTRT HEADIN RECORD 2 VARIABLES

Var Var Data

No. Name Unit Type Description

1 NELTIN °N Real*4 Latitude of northeast corner of grid

2. DLONIN °W Integer*4 Grid cell longitudinal increment

3 DLATIN °N Integer*4 Grid cell latitudinal increment

4 NCOLIN Integer*4 Number of columns in grid

5 NROWIN Integer*4 Number of rows in grid

6 NLEVIN Integer*4 Number of levels in the simulation

7 NSPCIN Integer*4 Number of species in the RESTRT file
8 ICNTIN Integer*4 Number of text records

2.7.1.2.1.8 _Chemistry control records-- The next two records contain the

chemistry control data used by subroutine LILGAM. These data are loaded into the
CHEMIN common block by subroutine INIRUN at the start of a model run. They are
saved in the RESTRT file to preserve the same data values in the event that a restart run
is required. The data are written to two records (instead of one record) so that users can
easily edit the file. The variables of these records are shown in Table 44 and Table 45, and
the code segments that write them to the RESTRT file are listed below.

INTEGER*4 NCOUT, ISPEC

REAL*4 ATS, GTS, UFRAX, BFRAX, FACTOR, DIVP, DIVQ,

& ULIM, BLIM, FNOLIM

COMMON /CHEMIN/ ATS, GTS, UFRAX, BFRAX, FACTOR, DIVP, DIVQ,
& NCOUT, ISPEC(NSPECS), ULIM, BLIM, FNOLIM

SUBROUTINE WRSTAV
INTEGER*4 ..., 10ST, ...

C write CHEMIN header record

C
WRITECUNITSV, FMT = 1013, 10STAT = IOST)
& ATS, GTS, UFRAX, BFRAX, FACTOR,
& DIVP, DIVQ, NCOUT

1013 FORMAT(1X, 2(F8.2, 1X), 5(F8.5, M), 15)
WRITECUNITSY, FMT = 1015, IOSTAT = 1OST)

& C(ISPECCISPC), ISPC = 1, NCOUT), ULIM, BLIM, FNOLIM
1015 FORMAT(1X, <NCOUT>(14.3, 1X), 3(E10.3, 1X))

77

TABLE 44. RESTRT CHEMISTRY CONTROL VARIABLES 1

Var Var Data :

No. Name Unit Type Description

1 ATS s Real*4 Advection time step

2 GTS s Real*4 G-tilde time step

3 UFRAX Real*4 Upper FRAX limit

4 BFRAX Real*4 Lower FRAX limit

5 FACTOR Real*4 Threshold factor to include species in
chemistry time step determination

6 DIVP Real*4 Chemistry decay term predictor -
corrector combination factor

7 DIVQ Real*4 Chemistry source term predictor -
corrector combination factor

8 NCOUT Integer*4 Number of primary oxidant species

TABLE 4S. RESTRT CHEMISTRY CONTROL VARIABLES 2

Var Var Data

No. Name Unit Type Description

1 ISPEC; Integer*4 Index for species k used in chemistry time’
step determination

2 ULIM s Real*4 Chemistry time step upper limit

3 BLIM s Real*4 Chemistry time step lower limit’

4 FNOLIM -1 Real*4 Chemistry solution accuracy control
parameter

2.7.1.2.1.9 BMAT species index records-- These records contain the expansion
list (look-up table) of species names for which the B-matrix file has values. (Refer to
P23G, Part 2 of the ROM User’s Guide, for an explanation of the expansion list.) These
values are mapped to the full Core Model list of species names (see Section 2.2.2.1.3).
The WRITE and FORMAT statements for these records are listed below; note that if the
number of species exceeds 30, the FORMAT statement will cause additional records to

be written when the last WRITE statement is executed. The records’ variable is shown in
Table 46.

SUBROUTINE WRSTAV
INTEGER*4 ..., ISPC, 10ST, ...

C write species ordering header record
c

78

WRITECUNITSV, FMT = 1019, [OSTAT = I0ST)
& (NXSPBM(1SPC), ISPC = 1, 15)
1019 FORMAT (1X, 15¢I3, 1X))

WRITECUNITSV, FMT = 1019, IOSTAT = 10ST)
& (NXSPBM(1SPC), ISPC = 16, NSPECS)

TABLE 46. BMAT SPECIES INDEX VARIABLE

Var Var Data
No. Name Unit Type Description
1 NXSPBM; Integer*4 BMAT file index for species & t

t A list of chemical species names can be found in Table 1.

2.7.1.2.1.10 BCON species index records-- These records contain the expansion
list (look-up table) of species names for which the BCON file has values. These values
are mapped to the full Core Model list of species (see Section 2.2.2.1.3). For ROM2.1,
the BCON file contains the same species list as the Core Model, therefore the mapping
table is one-to-one. The WRITE and FORMAT statements for these records are listed
. below; note that if the number of species exceeds 30, the FORMAT statement will cause
additional records to be written when the last WRITE statement is executed. The
records’ variable is shown in Table 47.

SUBROUTINE WRSTAV
INTEGER*4 ..., ISPC, lOST, ...

WRITECUNITSV, FMT = 1019, 10STAT = 10OST)
& (NXSPBC(ISPC), ISPC = 1, 15)

WRITE(UNITSV, FMT = 1019, 1OSTAT = 10ST)

& (NXSPBC(ISPC), ISPC = 16, NSPECS)
1019 FORMAT (1X, 15¢13, 1X))

TABLE 47. BCON SPECIES INDEX VARIABLE

Var Var Data -
No. Name Unit Type Description
1 NXSPBC, Integer*4 BCON file index for species k t

+ A list of chemical species names can be found in Table 1.

2.7.1.2.1.11 ICON species index records-- These records contain the expansion
list (look-up table) of species names for which the ICON file has values. These values are
mapped to the full Core Model list of species. For ROM2.1, the ICON file contains the
same species list as the Core Model, therefore the mapping table is one-to-one. The
WRITE and FORMAT statements for these records are listed below; note that if the

79

number of species exceeds 30, the FORMAT statement will cause additional records to
be written when the last WRITE statement is executed. The records’ variable is shown in
Table 48.

'SUBROUTINE WRSTAV
INTEGER* ..., ISPC, 10ST, ...

WRITE(UNITSV, FMT = 1019, IOSTAT = 10ST)
& (NXSPIC(ISPC), ISPC = 1, 15)

WRITE(UNITSV, FMT = 1019, I0STAT =]OST)

& (NXSPIC(ISPC), ISPC = 16, NSPECS)
1019 FORMAT (X, 15¢13, 1X))

TABLE 48. ICON SPECIES INDEX VARIABLE

Var Var Data
No. Name Unit Type Description
1 NXSPIC; Integer*4 ICON file index for species k t

t Alist of chemical species names can be found in Table 1.

27.1.2.1.12 Primary oxidant species flag records-- These records contain
LOGICAL variables corresponding to the list of model species indices. The variable has
the LOGICAL value of .-TRUE. if the species index corresponds to a primary oxidant
species, i.e., NO, NO,, or O3; otherwise the variable has the logical value of .FALSE..
The WRITE and FORMAT statements for these records are listed below; note that if the
number of species exceeds 30, the FORMAT statement will cause additional records to
be written when the last WRITE statement is executed. The records’ variable is shown in
Table 49,

SUBROUTINE WRSTAV
INTEGER*4 ..., ISPC, 10ST, ...
C write species, control for LILGAM
c
WRITECUNITSY, FMT = 1025, IOSTAT = lOST)
& CINBIG3(ISPC), ISPC = 1, 15)
1025 FORMAT(1X, 15¢L4, 1X))

WRITECUNITSV, FMT = 1025, IOSTAT = I0OST)
& CINBIG3(ISPC), ISPC = 16, NSPECS)

TABLE 49. PRIMARY OXIDANT SPECIES FLAG RECORDS VARIABLE

Var Var Data
No. Name Unit Type Description
1 INBIG3, Logical*4 Primary oxidant flag for species k

2.7.1.2.1.13 Special species record-- This record contains the indices for NO,
NO,, O3, PAR, TRAC, and NONR from the model species list. These variables are used
in the Core Model for special processing of these species. The WRITE and FORMAT
statements for this record are listed below, and the record’s variable is shown in Table 50.

SUBROUTINE WRSTAV
INTEGER*4 ..., 10ST, ..
WRITECUNITSY, FMT = 1027, IOSTAT = I0ST)

& NOHIT, NOZHIT, O3HIT, PARHIT, TRCHIT, NONHIT
1027 FORMAT(1X, 6(I3, 1X))

TABLE 50. SPECIAL SPECIES RECORD VARIABLES

Var Var Data
No. Name Unit Type Description
1 NOHIT Integer*4 Species list index for NO
2 NO2HIT Integer*4 Species list index for NO;
3 O3HIT Integer*4 Species list index for O3
4 PARHIT Integer*4 Species list index for PAR
5 TRCHIT Integer*4 Species list index for TRAC
6 NONHIT Integer*4 Species list index for NONR

2.7.1.2.1.14 Diffusivities conversion factor record-- These variables are used in
BIGGAM for the treatment of horizontal diffusion in the advection scheme used in the
model. They must be saved to the RESTRT file because, in the event of a restart, the part
of the BIGGAM code where they are set is bypassed. The WRITE and FORMAT
statements for this record are listed below, and the record’s variable is shown in Table 51.

SUBROUTINE WRSTAV

INTEGER*S4 ..., 10ST, ...
C Write diffusivities conversion factor for BIGGAM
o

WRITECUNITSV, FMT = 1029, IOSTAT = I0ST) RDLNT2, RDLTT2
1029 FORMAT(1X, E13.6, 2X, E13.6)

81

TABLE 51. DIFFUSIVITIES CONVERSION FACTOR RECORD VARIABLES

Var Var Data)
No. Name Unit Type Description
1 RDLNT2 srad-2 Real*4 Longitudinal horizontal diffusivities

conversion factor

2 RDLTT2 s-rad-2 Real*4 Latitudinal horizontal diffusivities con-
version factor

2.7.1.2.2_RESTRT file body records-- At the completion of each model scenario time step
the main program (RUNMGR) calls subroutine WRSTAV to record the state of the model
execution on the RESTRT file. RESTRT thus contains a state vector for each completed

time step.

2.7.1.2.2.1 Time step header record-- There is one time step header record for each time
step increment on the RESTRT file. The code references the time step data in the time
step header common block, TSHDSV, and writes it (formatted) to the RESTRT file.
The common block is loaded by the main program, RUNMGR, prior to calling subroutine’
WRSTAV. These steps are listed below, and the record’s variables are shown in Table 52.

INTEGER*4 IDATSV, ITIMSV, IELPSV, 1STPSV
COMMON /TSHDSV/ IDATSV, ITIMSV, IELPSV, ISTPSV

SUBROUTINE WRSTAV
INTEGER*4 ..., 10ST, ...

WRITE(UNITSV, FMT = 1031, IOSTAT = IOST)

& IDATSV, ITIMSV, IELPSV, ISTPSV
1031 FORMAT(1X, 15, 1X, 16, 1X, 18, 1X, 14)
c

TABLE §2. RESTRT TIME STEP HEADER RECORD VARIABLES
—

Var Var Data

No. Name Unit Type Description

1 IDATSV Integer*4 Current scenario Julian date as YYDDD
2 ITIMSV EST Integer*4 Current scenario time as HHMMSS

3 IELPSV s Integer*4 Elapsed time since scenario start

4 ISTPSV Integer*4 Step number

82

2.7.12.2.2 Text pointers record-- This record contains the current time step value for
the 14 variable-state subroutine text pointers. The WRITE and FORMAT statements
are listed below, and the record’s variables are shown in Table 53.

C write text pointers

c
" WRSVPT = 2
WRITECUNITSV, FMT = 1033, IOSTAT = I0ST)
& BIGMPT, LILGPT,
& BCPSPT, BMPSPT, BTPSPT, CNPSPT, ICPSPT,
& RDBCPT, RDBMPT, RDBTPT, RDCNPT, RDICPT,
& WRCNPT, WRSVPT

1033 FORMAT(1X, 14(13, 1X))

TABLE 53, TEXT POINTER RECORD VARIABLES

Var Var Data
No. Name Unit Type Description
1 BIGMPT Integer*4 Text pointer in subroutine BIGGAM
2 LILGPT Integer*4 Text pointer in subroutine LILGAM
3 BCPSPT Integer*4 Text pointer in subroutine BCPRCS
4 BMPSPT Integer*4 Text pointer in subroutine BMPRCS
5 BTPSPT Integer*4 Text pointer in subroutine BTPRCS
6 CNPSPT Integer*4 Text pointer in subroutine CNPRCS
7 ICPSPT Integer*4 Text pointer in subroutine ICPRCS
8 RDBCPT Integer*4 Text pointer in subroutine RDBCON
9 RDBMPT Integer*4 Text pointer in subroutine ROBMAT
10 RDBTPT Integer*4 Text pointer in subroutine RDBTRK
11 RDCNPT Integer*4 Text pointer in subroutine RDCONC
12 RDICPT Integer*4 Text pointer in subroutine RDICON
13 WRCNPT Integer*4 Text pointer in subroutine WRCONC
14 WRSVPT Integer*4 Text pointer in subroutine WRSTAV

2.7.1.2.2.3 Row counters record-- In addition to text pointers, some of the subroutines

also maintain variable indices that point to the row value of the grid currently being
executed. These pointers are also maintained in the state vector file. The intent of the
original design concept was to enable the model to be restarted not only at the start of a
time step but also within a time step on a row boundary. However, in ROM2.1 this
feature was not fully implemented. Therefore, ROM2.1 can be restarted only at time step
boundaries. The WRITE and FORMAT statements are listed below, and the record’s

variables are shown in Table 54.

C write row counters
WRITECUNITSV, FMT = 1035, IOSTAT = 10ST)

& BMPSRW, RDBMRW, RDBTRW, RDCNRW
1035 FORMAT(1X, 4(13, 1X))

83

" TABLE 54. ROW COUNTERS RECORD VARIABLES

——

Description

Var Var Data
No. Name Unit Type
1 BMPSRW Integer*4
2 RDBMRW Integer*4
3 RDBTRW Integer*4
4 RDCNRW Integer*4

Row counter in subroutine BMPRCS

Row counter in subroutine RDBMAT
Row counter in subroutine RDBTRK
Row counter in subroutine RDCONC

—

2.7.1.2.2.4 Model and file time step header records-- These two records save the process

clock steps of the principal processes (variable-state subroutines) that (1) maintain the
model scenario time (BIGGAM), and (2) manage the ROM’s data files (BCPRCS, BMPRCS,
BTPRCS, CNPRCS, and ICPRCS. These data ensure that the files are kept in step with one

another. The WRITE and FORMAT statements are listed below, and the records’

variables are shown in Table 55.

C write scenario time
c
WRITECUNITSV, FMT = 1037, IOSTAT = IOST)

& MODATE, MDTIME, MDELAP, MDSTEP,
& BCDATE, BCTIME, BCELAP, BCSTEP,
& BMDATE, BMTIME, BMELAP, BMSTEP

1037 FORMAT(1X, 3(I5, 1X, 16, 1X, 18, 14, 1X))
c
WRITECUNITSV, FMT = 1037, IOSTAT = IOST)

& BTDATE, BTTIME, BTELAP, BTSTEP,
& CNDATE, CNTIME, CNELAP, CNSTEP,
& ICDATE, ICTIME, ICELAP, ICSTEP

TABLE 55. MODEL AND FILE TIME STEP HEADER RECORDS VARIABLES

Var Var Data
No. Name Unit Type Description @

1 MDDATE Integer*4 Current scenario date for MODEL

2 MDTIME EST Integer*4 Current scenario time for MODEL

3 MDELAP s Integer*4 Time elapsed since start for MODEL

4 MDSTEP Integer*4 Current scenario step for MODEL

5 BCDATE Integer*4 Current scenario date for BCON file

6 BCTIME EST Integer*4 Current scenario time for BCON file

7 BCELAP s Integer*4 Time elapsed since start for BCON file

8 BCSTEP Integer*4 Current scenario step for BCON file

9 BMDATE Integer*4 Current scenario date for BMAT file
10 BMTIME EST Integer*4 Current scenario time for BMAT file
11 BMELAP s Integer*4 Time elapsed since start for BMAT file
12 BMSTEP Integer*4 Current scenario step for BMAT file
13 BTDATE Integer*4 Current scenario date for BTRK file
14 BTTIME EST Integer*4 Current scenario time for BTRK file
15 BTELAP s Integer*4 Time elapsed since start for BTRK file
16 BTSTEP Integer*4 Current scenario step for BTRK file
17 CNDATE Integer*4 Current scenario date for CONC file
18 CNTIME EST Integer*4 Current scenario time for CONC file
19 CNELAP s Integer*4 Time elapsed since start for CONC file
20 CNSTEP Integer*4 Current scenario step for CONC file
21 ICDATE Integer*4 Current scenario date for ICON file
22 ICTIME EST Integer*4 Current scenario time for ICON file
23 ICELAP s Integer*4 Time elapsed since start for ICON file
24 ICSTEP Integer*4 Current scenario step for ICON file

@ All dates are Julian, i.e., YYDDD;, all times are as HHMMSS.

2.7.2 Processing That Takes Place for Restarting Model Execution (how the RESTRT file gets read)

The Core Model main program, RUNMGR, calls subroutine RDSTAV to open and position the
RESTRT file. RDSTAV does this by calling subroutines OPSTAV and POSTAV. OPSTAV opens the file
and extracts the header data in the same manner as described above for subroutine WRSTAV. POSTAV
positions the file to the requested scenario date and time. RDSTAV then reads the RESTRT time step
header, the text pointers records (Section 2.7.1.2.2.2), the row counters record (Section 2.7.1.2.2.3),
and the model and file time step header records (Section 2.7.1.2.2.4), used to reset the clocks main-
tained by the principal processes. The code segments for these steps are shown below.

PROGRAM RUNMGR
INTEGER*4 ..., IDATE, I[TIME, ...

C open and read state vector file
CALL RDSTAV (IDATE, ITIME)

SUBROUTINE RDSTAV (IDATE, ITIME)

C open STATE VECTOR file
CALL OPSTAV

C

C position STATE VECTOR file
CALL POSTAV (IDATE, ITIME)

c .

C read STATE VECTOR T.S.H.
READCUNITSV, FMT = 1001, IOSTAY = lOST)

& IDATSV, ITIMSV, IELPSV, ISTPSV
1001 FORMAT(1X, I5, 1X, 16, 1X, 18, 1X, 14)

C read text pointers
READ(UNITSV, FMT = 1003, IOSTAT = [0ST)
& BIGMPT, LILGPT,
& BCPSPT, BMPSPT, BTPSPT, CNPSPT, ICPSPT,
& RDBCPT, RDBMPT, RDBTPT, RDCNPT, RDICPT,
& WRCNPT, WRSVPT

1003 FORMAT(1X, 14¢I3, 1X))

C read row counters
READCUNITSV, FNMT = 1005, I0STAT = 10ST)
& BMPSRW, RDBMRW, RDBTRW, RDCNRW
1005 FORMAT(1X, 4(13, 1X))

C read scenario time
READ(UNITSV, FMT = 1007, 1OSTAT = 10ST)
& MDDATE, MDTIME, MOELAP, MDSTEP,
' BCDATE, BCTIME, BCELAP, BCSTEP,
& BMDATE, BMTIME, BMELAP, BMSTEP
1007 FORMAT(1X, 3(15, X, 16, 1X, 18, 14, 1X))

READCUNITSV, FMT = 1007, 10STAT = 10ST)
& BTDATE, BTTIME, BTELAP, BTSTEP,
& CNDATE, CNTIME, CNELAP, CNSTEP,
& ICDATE, ICTIME, ICELAP, ICSTEP

Once the RESTRT file has been opened, positioned, and read, RUNMGR opens and positions the

BCON, BTRK, and BMAT files to the time step records corresponding to the requested scenario
restart time. Finally, RUNMGR calls subroutine RDCONC to obtain the concentration data for each
grid row from the CONC file for the time step prior to the restart time step. RDCONC calls subroutine
RDFILE to read NWDSCN words of data into the CNFILE common block. RUNMGR copies these
data into the initial conditions buffer (common block BGICCN) that BIGGAM reads to calculate the
advection component of the next time step’s concentration field (refer to Section 2.5.2.2.2). With the
mode} thus reinitialized, execution proceeds normally from the restart time step. “The essential steps

are shown below.

REAL*4 BGICCN
INTEGER*4 TOG1, TOG2
COMMON /BGICCN/ TOG1, TOG2, BGICCN(NCOLS, NLEVS, NSPECS, NROWS, 2)

REAL*4 CNFILE
COMMON /CNFILE/ CNFILE(NCOLS, NLEVS, NSPECS)

PROGRAM RUNMGR
INTEGER*4 ..., IDATE, ITIME, ..., IROW, ISPC, LEV, ICOL, ...

C open CONC file and check file header with STATE VECTOR file header
CALL OPCONC

C open BCON f%\e and check file header
CALL OPBCON

C open BTRK file and check file header
CALL OPBTRK

C open BMAT file and check file header
CALL OPBMAT

C position CONC file
CALL POCONC (IDATE, ITIME)

C position BCON file
CALL POBCON (IDATE, ITIME)

C position BTRK file
CALL POBTRK (IDATE, ITIME)

C position BMAT file
CALL POMXBM (IDATE, ITIME)

C copy CONC rows to ICCN file

DO 101 IROMW = 1, NROWIN

CALL RDCONC (10ST)

DO 101 ISPC = 1, NSPECS

DO 101 LEV = 1, NLEVS

DO 101 IcoL = 1, NCOLS

BGICCN(ICOL,LEV,ISPC, IROW,TOG2) = CNFILE(CICOL,LEV,1SPC)
101 CONTINUE

COMMON /CNFILE/ CNFILE(NCOLS, NLEVS, NSPECS)
SUBROUTINE RDCONC (IOST)
INTEGER*4 10ST, ..., NWDSCN, ISPC

C define record sizes
PARAMETER (..., NWDSCN = NCOLS * NLEVS)

87

DO 211 ISPC = 1, NSPECS
CALL ROFILE (UNITCN, NWDSCN, CNFILE(1,1,ISPC), I1OST)

211 CONTINUE

SUBROUTINE RDFILECIUNIT, NWORDS, BUFFER, 10ST)
INTEGER*4 IUNIT, NWORDS, BUFFER, 10ST
OIMENSION BUFFER(NWORDS)

READ(IUNIT, 10STAT=10ST) BUFFER

2.8 THE STOP CHECK (STOPCK) FILE

The stop check (STOPCK) file allows you to shut down a model execution before the run-stream-
designated scenario end time. The STOPCK file can be edited during the course of a model run and its
one line of text altered. If you alter the text to »stopw, then, at the end of the current time step, the model
writes a NEWICON file and exits.

2.8.1 Opening the STOPCK File

At the coxﬁplelion of each scenario time step, the main program, RUNMGR, opens the STOPCK file to
read the one line of text. If the text is “sTop*, (no leading or trailing blanks), then RUNMGR shuts the
model down. Otherwise, RUNMGR closes the file, and model execution continues until the end of the
scenario prescribed by the run control parameters. The file is closed so that that there will be no
co.nﬂict if a user decides to change the file. There is some risk involved if a user does edit the file to
change it. If the model execution is coincidentally at the point where it must open the STOPCK file
to check its text, and a user already has the file open to edit it, the execution will be aborted by the
system. We consider this risk minimal because the fraction of time users may have the file open is
small compared with the elapsing clock time required for one model step. In order that the computer
operating system does not create new versions of the file every time it is reopened, it is necessary for
the file to be opened with status 'OLD’. This, then, requires that the file exist prior to the start of a
model run. The code segments below illustrate the steps to open the file.

INTEGER*4 ..., UNITST, ...

COMMON / LUNITS / ..., UNITST, ...

CHARACTER*12 ..., FLNMPR
COMMON / FLNAMS / ..., FLNMPR

PROGRAM RUNMGR

C get unit numbers for STOP FLAG file . . .
UNITST = JURIT()

C check STOP flag
OPEN (UNIT = UNITST,

& STATUS = 'QLD',

& ACCESS = 'SEQUENTIAL’,
& FORM = *FORMATTED',

& FILE = FLNMST)

2.8.2 The STOPCK File Record

The one line STOPCK file record consists of text that controls the continuation of the model run.
The data variable is loaded into the STOPFG common block from BLOCK DATA at the start of a
model run. The variable remains unchanged unless a user edits the STOPCK file and changes it.
Anything other than »stop+ permits the model run to continue. The relevant code segments are listed
below, and the variable in the STOPCK record is shown in Table 56.

CHARACTER*4 STOPFG
COMMON /STOPFG/ STOPFG

BLOCK DATA BLKMOD
DATA STOPFG / *GO * /

PROGRAM RUNMGR

READCUNITST, 1011) STOPFG
1011 FORMAT(A4)
CLOSE (UNIT = UNITST)
IF (STOPFG .EQ. 'STOP') THEN
WRITE(LUNOUT, 1013) STOPFG
1013 FORMAT(/ 5X, *> > >STOP FLAG IS SET TO: ',A4)
GO TO 401
END IF

401 CONTINUE
C
C write NEW ICON file
CALL NEWICS
o
WRITE(LUNOUT, 1015) '
1015 FORMAT(// 10X, '.... Model Run Completion from RUNMGR'//)

c
STOP ! '
TABLE 56. STOPCK RECORD VARIABLE
Var Var Data
No. Name Unit Type Description
1 STOPFG Char *4 Flag that can terminate model execution

89

This page is intentionally left blank.

SECTION 3

THE CORE MODEL CONCENTRATION (CONC) OUTPUT FILE

The concentration file (CONC) contains the concentrations predicted by the ROM for each of the 35 chemi-
cal species, each grid cell, each of the model’s three layers, and each time step recorded for one execution of
the Core Model. The chemical species list consists of 35 species, 33 of which are the condensed species
required by the Carbon Bond 4.2 chemical mechanism; the other two species are a tracer species used for

quality assurance monitoring and a nonreactive hydrocarbon species.

When the model starts the execution for each scenario, the scenario initial conditions (either the ICON or the
NEWICON file) are used to start the computation for the subsequent steps in the scenario. These initial
concentration data are copied to the CONC file as the "zeroth" step. The first computed step, i.e., one time
step beyond the initial conditions, is counted as step one. Each succeeding step is incremented by one; a

CONC file for a typical three-day scenario will therefore have 145 steps, starting at day 1, hour 12 and ending
at day 4, hour 12.

During processing of this file, array dimensions are set by parameter statements contained in the INCLUDE
files REGION.EXT and DIMENS.EXT as follows:

INTEGER™4 NROWS, NCOLS

PARAMETER (..., NROMS = 52, NCOLS = 64)
INTEGER*4 NLEVS, NSPECS, ..., NPOXSP
PARAMETER (NLEVS = 3, NSPECS = 35, ..., NPOXSP = 3)

3.1 OPENING THE CONC FILE

The CONC file is opened at the start of the model scenario. Once the model has started, subroutine
BIGGAM calls LILGAM, which calls CNPRCS, which then calls WRCONC; WRCONC finally calls OPWRCN to
open the file (using the JFILES function subprogram) and write its header records. Note that all CONC
file records have a fixed record length equal to NLEVS x NCOLS.

FLNMCN contains the internal (logical) names for CONC that point to the actual file names in the
execution run stream. FLNMCN is set in the block data module BLKMOD. JUNIT is a function subpro-
gram that returns the next FORTRAN I/O unit number not being used by the model execution (refer to
Section 1.7). The code segments and the FORMAT statements that describe the processing steps to open
the CONC file are listed below.

91

INTEGER*4 ..., UNITCN, ...
CHARACTER*12 ..., FLNMCN, ...

SUBROUTINE OPWRCN
INTEGER*4 IWDLTH, ..., JFILES
LOGICAL*4 RECFMT, RDONLY
PARAMETER (IWDLTH = NLEVS * NCOLS,
& RECFMT = .FALSE., RDONLY = .FALSE.)
C .
C open concentration file, unformatted, read/write access
UNITCN = JFILE5 (FLNMCN, RECFMT, RDONLY, IWDLTH)
c

FUNCTION JFILES (FNAME, RECFMT, RDONLY, RECLEN)
CHARACTER*12 FNAME, FORM, UNFORM, FORMAT
INTEGER*4 RECLEN, IDEV, IOST, JFILES, JUNIT, ...
LOGICAL*4 RECFMT, RDONLY
DATA FORM / 'FORMATTED ¢ /
DATA UNFORM / 'UNFORMATTED ' /
IDEV = JUNIT()
IF (RECFMT) THEN

FORMAT = FORM

ELSE
FORMAT = UNFORM

END IF
IF (RDONLY) THEN

ELSE

OPEN (UNIT = IDEV,
& I0STAT = 1087,
& FILE = FNAME,
& STATUS = TUNKNOWN',
& ACCESS = 'SEQUENTIAL',
& FORM = FORMAT)

END IF
JFILES = IDEV

RETURN
END

3.2 CONCFILE RECORDS

The structure of the CONC file conforms to the requirements for all ROM Core Model files, and there-
fore contains a standard file header. In addition, the file consists of a data body organized by time steps,
each section of which is headed by a time step header record. Descriptions of the records containing this
information are given below, while Appendix B contains a structure diagram for the CONC file.

3.2.1 CONC File Header Records

The data that are written to the CONC file header originate from:
» the execution runstream’s control cards,
« header information from the BMAT, BTRK, BCON, and ICON files,
» variables set by assignment statements in subroutine INIRUN, and
» arguments returned from various subroutines called by INIRUN.

These data are loaded into the common blocks in the INCLUDE file HEADIN.EXT at the beginning of
the model execution:

HEADIN.EXT

input header information

OoOOO00

C used to check file headers on BMATRIX, ICON, and BCON files
C and to create file header on CONC file
C

CHARACTER*80 TEXTIN

CHARACTER*8 GRDNIN

CHARACTER*4 SPNMIN, LVNMIN

REAL*4 SWLNIN, SWLTIN, NELNIN, NELTIN, DLONIN, DLATIN

INTEGER*4 CDATIN, CTIMIN, SDATIN, STHRIN, TSTPIN, FRSTIN,
& NCOLIN, NROWIN, NLEVIN, NSPCIN, ICNTIN

COMMON /CHARIN/ GRDNIN, SPNMIN(NSPECS), LVNMIN(NLEVS), TEXTIN(20)
COMMON /HEADIN/ CDATIN, CTIMIN, SDATIN, STHRIN, TSTPIN, FRSTIN,

SWLNIN, SWLTIN, NELNIN, NELTIN, DLONIN, DLATIN,
& NCOLIN, NROWIN, NLEVIN, NSPCIN, ICNTIN

The data in the above common blocks are used in the creation of the CONC file header. The
INCLUDE file HEADCN.EXT contains the common blocks that are loaded with the CONC file header

variables:

HEADCN.EXT

CONC file header block

s NaNeNeNe)

CHARACTER*80 TEXTCN
CHARACTER*8 GRDNCN
CHARACTER*4 SPNMCN, LVNMCN
REAL*4 SWLNCN, SWLTCN, NELNCN, NELTCN, DLONCN, DLATCN
INTEGER*4 CDATCN, CTIMCN, SDATCN, STHRCN, TSTPCN, FRSTCN,
NCOLCN, NROWCN, NLEVCN, NSPCCN, ICNTCN,
CDBMCN, CTBMCN, CDBTCN, CTBTCN,
CDBCCN, CTBCCN, CDICCN, CTICCN

Q0 Qo o

COMMON /CHARCN/ GRDNCN, SPNMCN(NSPECS), LVNMCN(NLEVS), TEXTCN(20)
COMMON /HEADCN/ CDATCN, CTIMCN, SDATCN, STHRCN, TSTPCN, FRSTCN,
SWLNCN, SWLTCN, NELNCN, NELTCN, DLONCN, DLATCN,
NCOLCN, NROWCN, NLEVCN, NSPCCN, ICNTCN,
COBMCN, CTBMCN, CDBTCN, CTBTCN,
CDBCCN, CTBCCN, CDICCN, CTICCN

R0 R0 Qo Qo

The first four records comprise the CONC file header.

93

3.2.1.1 Record 1--

The first record contains character strings of alphanumeric data that describe the file’s contents.
The data are first loaded into the HEADCN.EXT common blocks. They are then written to the
character buffer SEG1BF, which is then written (unformatted) to the CONC file by subroutine
WRCHAR. The code segments for these steps are shown below, and the variables of record 1 are
shown in Table 57.

INTEGER*4 ..., UNITCN, ...
SUBROUTINE OPWRCN
C CONC header buffers
CHARACTER*(8 * 21 + 4 * 5) SEG1BF
INTEGER*4 ..., 10ST, ...

C load CONC header

COATCN = CDATIN
CTIMCN = CTIMIN
SDATCN = SDATIN
STHRCN = STHRIN
TSTPCN = TSTPIN
FRSTCN = FRSTIN
GRDNCN = GRDNIN
SWLNCN = SWLNIN
SWLTCN = SWLTIN
NELTCN = NELTIN
NELNCN = NELNIN
DLONCN = DLONIN
DLATCN = DLATIN
NCOLCN = NCOLIN
NROWCN = NROWIN
NLEVCN = NLEVIN
NSPCCN = NSPCIN
ICNTCN = ICNTIN + 1

c

C set values for creation dates/times of BM, BT, BC and IC files
CDBMCN = CDATBM
CTBMCN = CTIMBM
COBTCN = CDATBT
CTBTCN = CTIMBT
COBCCN = CDATBC
CTBCCN = CTIMBC
CDICCN = CDATIC
CTICCN = CTIMIC

c

C write 1st segment
WRITE(SEG1BF, 1001, IOSTAT = 10ST)
COATCN, CTIMCN, SDATCN, STHRCN, TSTPCN, FRSTCN,
GRDNCN,
SWLNCN, SWLTCN, NELNCN, NELTCN,
DLONCN, DLATCN,
NCOLCN, NROMCN, NLEVCN, NSPCCN,
CDBMCN, CTBMCN,
CDBTCN, CTBTCN,
CDBCCN, CTBCCN,
CDICCN, CTICCN,
ICNTCN
1001 FORMAT(618.8, A8, 4FB8.3, 2F8.5, 414.4, 818.8, 14.4)
C

RO Q0 R0 Q0 RO RO RO Qo O RO

CALL WRCHAR (UNITCN, SEGYBF, 10ST)

SUBROUTINE WRCHAR (IUNIT, CHBUF, 10ST)

IMPLICIT NONE

INTEGER*4 IUNIT, 10OST
CHARACTER*(*) CHBUFF
WRITE(IUNIT, 1OSTAT = I10ST) CHBUFF

RETURN
END
TABLE §7. CONC RECORD 1 VARIABLES
Var Var Data
No. Name Unit Type Description
1 CDATCN Integer*4 File creation date as MMDDYY
2 CTIMCN EST Integer*4 File creation time as HHMMSS
3 SDATCN Integer*4 Julian start date of scenario as YYDDD
4 STHRCN EST Integer*4 Start hour of scenario (00 to 23)
5 TSTPCN] Integer*4 Time step size for simulation
6 FRSTCN s Integer*4 Time to first step
7 GRDNCN Char*8 Grid definition name
8 SWLNCN °W Real*4 Longitude of southwest corner of grid
9 SWLTCN °N Real*4 Latitude of southwest corner of grid
10 NELNCN °wW Real*4 Longitude of northeast corner of grid
11 NELTCN °N Real*4 Latitude of northeast corner of grid
12 DLONCN °W Real*4 Grid cell longitudinal increment
13 DLATCN °N Real*4 Grid cell latitudinal increment
14 NCOLCN Integer*4 Number of columns in grid
15 NROWCN Integer*4 Number of rows in grid
16 NLEVCN Integer*4 Number of levels in the simulation
17 NSPCCN Integer*4 Number of species in the CONC file
18 CDBMCN Integer*4 Creation date of B-matrix file (BMAT) from
which the CONC file was generated (MMDDYY)
19 CTBMCN EST Integer*4 Creation time of B-matrix file (BMAT) from
which the CONC file was generated (HHMMSS)
20 CDBTCN Integer*4 Creation date of backtrack file (BTRK) from
which the CONC file was generated (MMDDYY)
21 CTBTCN EST Integer*4 Creation time of backtrack file (BTRK) from
which the CONC file was generated (HHMMSS)
22 CDBCCN Integer*4 Creation date of boundary conditions (BCON) file
from which the CONC file was generated
(MMDDYY)
23 CTBCCN EST Integer*4 Creation time of boundary conditions (BCON)
file from which the CONC file was generated
(HHMMSS)
24 CDICCN Integer*4 Creation date of initial conditions (CONC) file
from which the CONC file was generated
(MMDDYY)
25 CTICCN EST Integer*4 Creation time of initial conditions (CONC) file
from which the CONC file was generated
(HHMMSS) '
26 ICNTCN Integer*4 Number of text records

95

3.2.1.2 Record 2--

This record contains the list of species names for which the Core Model computes concentration
outputs. The data are written to the character buffer SPNMBF, which is then written (unfo-
rmatted) to the CONC file. These steps are listed below, and the variable of record 2 is shown in
Table 58.

SUBROUTINE OPWRCN

CHARACTER*(4 * NSPECS) SPNMBF
INTEGER*4 ..., ISPC, ..., IOST, ...

DO 101 ISPC = 1, NSPCIN
SPNMCN(ISPC) = SPNMIN(CISPC)
101 CONTINUE

€ write the species names
WRITE(SPNMBF, 1003, IOSTAT = 10ST)
& (SPNMCN(CISPC), 1SPC = 1, NSPCCN)
1003 FORMAT(<NSPECS>(A4))
CALL WRCHAR (UNITCN, SPNMBF, 10ST)

TABLE 58. CONC RECORD 2 VARIABLE

Var Var Data
No. Name Unit Type Description
1 SPNMCN; Char*4 Name of chemical species & t

—

+ A list of chemical species names can be found in Table 1.

3.2.1.3 Record 3--

This record contains the list of Core Model layer names. The data are written to the character
buffer LEVNBF, which is then written (unformatted) to the CONC file. The steps are listed
below, and the variable of record 3 is shown in Table 59.

SUBROUTINE OPWRCN

CHARACTER*(4 * NLEVS) LEVNBF
INTEGER*4 ..., ILEV, ..., 1087, ...

LVNMCN(1) =+ 1!
LVNMCN(2) =+ 2!
LVNMCN(3) = * 3¢

C write the level names
WRITECLEVNBF, 1005, 1OSTAT = 10ST)
& (LVNMCN(CILEV), ILEV = 1, NLEVCN)
1005 FORMAT(<NLEVS>(A4))
CALL WRCHAR (UNITCN, LEVNBF, 10ST)

TABLE 59. CONC RECORD 3 VARIARLE

Var Var Data .
No. Name Unit Type Description
1 LVNMCN, Char*4 Name of layer L

3.2.1.4 Records 4 - (4 + ICNTCN)--

These records contain descriptive text. The first text record is created by subroutine OPWRCN and
contains the model version name. The subsequent records consist of descriptive text to be copied
to the CONC file header. The text data were optionally entered as part of the model execution
run stream (€.g., see Section 4.3 for an IBM run stream). One 80-character string is written to
each record by the following statements. The variable of the records is shown in Table 60.

SUBROUTINE OPWRCN

INTEGER*4 ..., ITXT, ...

c

C copy input text records to CONC file
TEXTCN(1) = 'ROM2.1 !
CALL WRCHAR (UNITCN, TEXTCN(1), 10ST)

DO 103 ITXT = 2, ICNTCN

TEXTCNCITXT) = TEXTINCITXT - 1)

CALL WRCHAR (UNITCN, TEXTCN(ITXT), 10ST)
103 CONTINUE

TABLE 60. CONC RECORDS 4 - (4+ICNTCN) VARIABLE

Var Var Data .
No. Name Unit Type Description
1 TEXTCN, Char*80 Text string of n lines

3.2.2 CONC File Body Records

3.2.2.1 Time Step Header Record--

At the start of each model time step, subroutine LILGAM calls CNPRCS, which in turn calls
WRCONC to write the CONC file time step header. There is one time step header record written
for each time step increment on the CONC file. The time step header data are contained in the
common block RTSHCN. The following code segments illustrate how the data are written to the

CONC file. The first variable of the common block RTSHCN is used in subroutine WRFILE’S
argument list, and NCOLS x NLEVS is specified as the number of words to be written. The

record’s variables are shown in Table 61.

COMMON / RTSHCN / DATCN, TIMCN, ELPCN, STPCN

SUBROUTINE WRCONC
INTEGER*4 IWLTSH, ..., 10ST

C define record lengths

PARAMETER (IWLTSH = NCOLS * NLEVS,

eer)

CALL WRFILE (UNITCN, IWLTSH, DATCN, 10ST)

SUBROUTINE WRFILE (IUNIT, NWORDS, BUFFER, I0ST)

IMPLICIT NONE

INTEGER*4 IUNIT, NWORDS, BUFFER, 10ST

DIMENSION BUFFER(NWORDS)

WRITECIUNET, IOSTAT = 10ST) BUFFER

RETURN
END
TABLE 61. CONC TIME STEP HEADER RECORD VARIABLES

Var- Var Data
No. Name Unit Type Description
1 DATCN Real*4 Current time step date as YYDDD
2 TIMCN Real*4 Current time step time as HHMMSS
3 ELPCN] Real*4 Elapsed time since scenario start
4 STPCN Real*4 Step number on the CONC file

3.2.2.2 Data Records--

Each data record contains the concentration data for one chemical species in one row of the
domain grid. Subroutine LILGAM calls CNPRCS after it completes the calculations for the vertical
flux and the chemical reaction components of the concentration for all layers and all species in
one row of the grid. CNPRCS calls WRCONC, which calls WRFILE to write that row of data to the

CONC file for the current time step.

For each time step increment in the CONC file there are NSPECS records for each of the
NROWS domain rows. These data are written by referencing the memory address corresponding
to the column 1 and level 1 indices of the array in the common block CNFILE for each species,
and passing the number of words to be written to WRFILE. The code segments for these steps are
listed below, and the variable for these records is shown in Table 62.

COMMON /CNFILE/ CNFILE(NCOLS, NLEVS, NSPECS)

SUBROUTINE WRCONC
INTEGER*4 ..., IWDLN2, ..., ISPC, 10ST
c
C define record lengths
PARAMETER (..., IWDLNZ2 = NCOLS * NLEVS)

C write CONC row

DO 301 ISPC = 1, NSPECS

CALL WRFILE (UNITCN, IWOLNZ2, CNFILE(1,1,1SPC), 10ST)
301 CONTINUE

TABLE 62. CONC DATA VARIABLE

Var Var Data
No. Name Unit Type Description
1 CNFILE; & ppm Real*4 Chemical species concentrations in column i

and layer L for species k

This page is intentionally left blank.

APPENDIX A

JACKSON STRUCTURED PROGRAMMING (JSP)

We wrote much of the ROM Core and Processor codes using the JSP methodology because it allows us to (1)
eliminate the need for intermediate temporary files, (2) it eliminates the need for our knowing exactly when,
and in what order, 1o call subroutines and functions (this scheduling is accomplished automatically), and (3)
for future model upgrades, its modular format permits us to easily add or delete processors as we find neces- '
sary.

A useful JSP transformation is to write a stand-alone program, then invert it. We show examples of program
inversion in Section A.2. Section A.1 gives you some preliminary information about JSP. For a full discus-
sion of JSP, see Jackson (1975).

A.1 AN INTRODUCTION TO JSP FLOW DIAGRAMS

A is a sequence of B followed by C followed by D
‘ A
FEIRE

A is a selection of either Bor Cor D

A
O O O
B C D
) A is an izeration of B zero or more times
A
X
B

A2

A is a sequence of B followed by C (which is an
A iteration of D), followed by E (which is a selection
of either For G
B C E

The next two diagrams show you two common diagramming errors and their corrected versions.

INCORRECT CORRECT
A A
C I
[¢) O
B C D B Cc
[e
D E
INCORRECT E CORRECT
A § A
f_—_*_j [1T
B || c™| b B || c || E
x
D

We next show a simple specification flow diagram.

P |- Q |—

A.2 EXAMPLES OF PROGRAM INVERSION AND THE USE OF STATE VECTORS

To explain program inversion, refer to the specification flow diagram above. Program P reads file A and
writes to file B. B is then read by program Q, which finally writes file C. If we invert P with respect to its
input data stream, we could make P a subroutine of Q, so that whenever Q requires a record from file B jt
calls p. Conversely, Q could be made a subroutine of P, so that when P wants to write a record to file B, it
calls Q. The diagram below shows an example of the inversion of a linear process sequence. Part (a) is a

system specification diagram. Part (b) shows the inverted programs, and is termed a system implementa-
rion diagram.

P — Q R [

a)

SCHEDULER

(main program)

P Q R

b)
In (b) above, data stream B is replaced by the connecting channel between program P and the Scheduler;

data streams B and C are replaced by the channel between program Q and the Scheduler; finally, data
stream C is replaced by the channel between program R and the Scheduler.

These transformations eliminate the need for actual intermediate files, and establish an automatic
read/write sequence that is useful in system design. However, the program structure of the process con-

tinues to reflect the files’ existence. The intermediate files, although nonexistent, contain an implicit
structure reminiscent of the main files’ structure.

Sections A.2.1 and A.2.2 show two examples of program inversion. The text pointer TxTpiR allows the
program 1o always track exactly where it is within itself, and to return to that point when needed. Note
that when inverted, the program becomes a variable-state subroutine.

A4

A.2.1 Program Inversion with Respect to Its Input Data Stream

Before Inversion:

101

201

PROGRAM WRFILE

declarations

OPEN (OUTPUT_FILE)

OPEN (INTERMEDIATE_FILE)
CONTINUE

READ (INTERMEDIATE_FILE) INVAR
IF (INVAR .EQ. EOF) GO TO 201

process data

WRITE (OUTPUT_FILE) OUTVAR
GO TO 101

CONTINUE

sTOP

END

After Inversion

10001
101

10002
201

SUBROUTINE WRFILE (INVAR)

decla;ations

DATA TXTPTR /1/

GO TO (10001, 10002) TXTPTR
CONTINUE

OPEN (OUTPUT_FILE)

CONTINUE

IF (INVAR .EQ. EOF) GO TO 201

proceés data

WRITE (OUTPUT_FILE) OUTVAR
TXTPTR = 2

RETURN

CONTINUE

GO T0 101

CONTINUE

RETURN

END

A.2.2 Program Inversion with Respect to Its Qutput Data Stream

Before Inversion:

PROGRAM RDFILE

declarations

OPEN (INPUT_FILE)
OPEN (INTERMEDIATE_FILE)
101 CONT INUE
READ (INPUT_FILE) INVAR
1F (INVAR .EQ. EOF) GO TO 201

process data

WRITE (INTERMEDIATE_FILE) OUTVAR
GO TO 101
201 CONTINUE
sTOP
END

A.3 REFERENCE AND BIBLIOGRAPHY

Jackson, M. A,, 1975. Principles of Program Design. A.P.1.C. Studies in Data Processing 12. Academic

Press, London, United Kingdom. 299 pp.

Jackson, M. A,, 1983. System Development. ‘Prentice-Hall International Series in Computer Science.

After Inversion

10001
101

10002
201

SUBROUTINE RDFILE (INVAR)
decla;ations

DATA TXTPIR /1/

GO TO (10001, 10002) TXTPIR
CONTINUE

OPEN (INPUT_FILE)

CONTINUE

READ (INPUT_FILE) INVAR

IF (INVAR .EQ. EOF) GO TO 201

process data

TXTPTR = 2
RETURN
CONTINUE
G0 TO 101
CONTINUE
RETURN

END

Prentice/Hall International, Englewood Cliffs, New Jersey. 418 pp.

A-6

APPENDIX B

DESIGN AND STRUCTURE DIAGRAMS FOR THE ROM2.1 DATA FILES
IN THE ROMNET REGION

Refer to Appendix A for the explanation of symbols used.

Also note that boxes drawn with broken lines denote logical records.

B-1

BCON

FILE
|
[1
FILE FILE
HEADER BODY
%
] | _1] TIME
STEP
st SPECIES LEVEL TEXT (NSTEPS)
SEGMENT NAMES NAMES SEGMENT
SR P A K 1
: A T . *
. . Do : TEXT
SEGIL NSPECS NLEVS RECORDS
. WORDS WORDS WORDS (ICNTBC)
1] 1
* * . :
SPECIES LEVEL NTEXT
{NSPECS) (NLEVS) WORDS
] 1 1
Cwx4 C*4 C* 80
SPECIES LEVEL
NAME NAME STRING
SEGIL = (19 *2)+ (5% 1)
NSPECS = 35
NLEVS = 3
ICNTBC s 20
NTEXT = 20
NSTEPS < e

Figure B-1. The BCON file (page 1 of 3)

B-2

[| | 1 L

C+8 cC»8 Cv 8 cx8 C*8 Cx8
FILE FILE SCENARIO SCENARIO TIME STEP TIMETO
CREATE CREATE START START SIZE FIRST
DATE TIME DATE HOUR STEP
Cxg Cwxg Cx8 C»8g c+8 c*xg C* 8
GRID SOUTHWEST] ISOUTHWEST] NORTHEASW NORTHEAS‘W CELL CELL-
NAME CORNER CORNER CORNER CORNER LONGITUDE LATITUDE
LONGITUDE - LATITUDE LONGITUDE LATITUDE INCREMENT INCREMENT
Cwa Cw4 Cw4 Cw*4 C»4
NO OF NO OF |- NO OF NO. OF NO. OF
COLUMNS ROWS LEVELS SPECIES TEXT
STRINGS

The BCON file (page 2 of 3)

B-3

INWVA INIVA ANTVA INWA
ONOD ONOD ONO2 ONOD
vxHd vad v+ 4 v+
| |] |
(S700N) {ST00N) {SMOUN) (SMOUN)
NWNI0D NWNI00 Mol mod
* * * *
{SA3N) (SA3IN) {SA3IN) (SA3IN)
TBAIT \[AN RELE D 13AN
* * * *
ottt : CoTTT T 3 coTTTT T T
. sgHom | | SGHOM | sadom | . sadom !
! BSIN ¢ OHSIN 1 ! WESIN ! HESIN
) . L] ' L]
.------_ r-‘-_--L _.---_--L _---_.--._
(S03dSN) {$D3dSN) (SO3dSN) ($03dSN)
$3103dS $3103dS $3103dS $3103dS
* * * *
| | [1
SONOD SONOD SONOD SONOD
AHVAONNOS AHVANNO" AHVANNOSY AHVANNQE
HLNOS HIHON 1sv3 153M
AQo8d
d3ls
i 3L

$9 = ST0ON
25 = SMOUN
(SMOUN ‘STOON) XV ¥ SAJIN = O8SIN
(SMOUN 'STOON) XVIN # SAFIN = HESIN
r = HSIN
SU313NVHVd L1INWOY
"IBANN IniL IniL 3iva
dais a3asdvia dais diLs
| EN-] red st rad
+ .
s sadom !
¢+ HSIN '
L] 1
foon [-- 4
w3avaH
dais
3niL

The BCON file (page 3 of 3)

B-4

¥pi S Sd3ISN
02 = 1XAIN
. 02 5 WAINOI
WEBIAN » 2 » ¥+ €) = 1D3YIN
Y = WEINN
£ = SAIIN
S€ = SO3dSN
. (L 490+ (2 s€l) = 19035
v = 1DH
oL 5 48NSN
SHZLINWVHVA L INWOH
3NN anvA INVN
ONIdLS 13AT Xaani $3103dS
08 »0 X%} [Z %) (X%
U U] 1 |
451581 4s1544 WioL INOI : co :
3n3ans IN18ns : :
. sgUOM . sa4HOM . (SA3N) {$03dSN)
) v v %0 rx0 DOIX3IN C C 1o3udN 13A31 $3103d5 $3193ds
[| |] : Do : * * *
[- - | -d b
.] | N DR IV U ER
| SquoM - R‘mmohuwm {WEINN) ' SOHOM : | SGHOM - | SOMOM - . Sadom -
CoTou ety 4N : SAIIN | . SO3ASN . : S$O3dSN . . 9IS
. : * * . o Lo o .
rllit-‘lb — — Plll—|IIL -.III_IIII. f’ll_lllul r|ll_lllh
H3QHo INIWD3S INIWO3S SINVN dNoyo SINVN INIWO3S
(Sd31sN) 34 1X31 N REVEN X30Ni S3103d$ 4
d3ls
3L
* |] _]] 1] |
AQOg ¥3IQV3H
3114 3114
ans 8ns
_ ; |
(48nsSN)
3714
ans
*
34
1vig

Figure B-2. The BMAT file (page 1 of 5)

B-5

Cx 8 Cx g C* 8 C*>3 C»xg CcC*g
FILE FILE SCENARIO SCENARIO TIME STEP TIME TO
CREATE CREATE START START SIZE FIRST
DATE TIME DATE HOUR STEP
Cxg c*8 cC*8 Cx8 Cxs CxB Cw 8
GRID SOUTHWEST OUTHWESY |NORTHEAST| |NORTHEAST CELL CELL
NAME CORNER CORNER CORNER CORNER LONGITUDE LATITUDE
LONGITUDE LATITUDE LONGITUDE LATITUDE INCREMENT| |INCREMENT
C*4 Cx4 Cx4 Cw4 Cwx4 C*a
NO OF NO OF NO OF NO. OF NO OF NO. OF
COLUMNS ROWS LEVELS SPECIES MIF FILES TEXT
STRINGS
@
C» 12 C*§ Cx8 (o N} C»g
FILE FILE FILE FILE FILE
NAME CREATE CREATE UPDATE UPDATE
DATE TIME DATE TIME
The BMAT file (page 2 of 5)

B-6

anva 3NTVA- anva aNva anva 30VA
(%3] 29D 19 eg 228 [3%]
& N:] yxlY vxHd vsd vxH x4
] _ _ _ _ [
100 00 100 100 102 (s700N)
* * * * * * 100
[I] 1 | [
) 29 19 ieg 228 Lig
L | | [1]
T H
, sasom !
! 203N .
lLoeeeoo)
| L.
-~ b
] 1
(aydswa) i SQHOM |
$3103dS ¢ 103UN
* [] 1]
loncanad
[|
2Ltvd LLHvd

1

(SMOUN)
MOY
*

1

AQO8g
d3ls
Nt

(S1OONJ+ 9 = €03uN
(SA3IN*STOON) » ¢
+{dSXOdN #STOON) »9 + (STOON)w 81 = 1O3UN
€ = dSXOdN
92 = (ddswa
9 = ST00N
e = SMOUN
y = HSIN
SH3L3NVHVd LINWOY
H3IBWNN 3JNIL 3INIL 3iva
d3ls a3asdvi3 d3ls d3ls
AR] Pay v+H rad
))
" SQHOM "
i+ HSIN
{ 1
1 4

The BMAT file (page 3 of 5)

B-7

3aNvA ANTVA INIVA INWA 3INTIVA INIVA
OoVi£D SSED SED oviLo SStO Si9
Y vad v x b vxl N Pl
1 1 | [| : | _
dSXOdN
* dSx0 * dSX0O * dSX0 dSX0O * dSX0 % dSXO
1 1 1 L 1 : 1 :
STOON.
* 00 * 00 * 00 * 00 * 00 % 100
[| 1 { | |
OVILD SSEH SEO ov419 SSI19 St9
[| P | |]
ANTIvA aNIvA ANIVA 3INIVA 3NTvA 3ANIVA 3NTVA 3INTVA QA INTVA INIVA 3NTVA
ONOSS Jal Five o $S1£8 Si1E8 Ssiig siig [2%:] f4%°] €ed leg €ig 2ig
P » Y y+H ZX] £X] ZX:] vxH ¥ H 1 &X:] yelY &R r+H e Y
[1 1 1]] |] 1 | | - #_u =
o] 00
* 100 % 100 " 00 x 00 * 00 * 700 " 700 X 700 % 10 *. 02 x % 100
1 { | | | | | 1 L 1 |]
ONOSS OVIEQD ssiea sieg ssiig siig £ed 2c8 €29 128 €18 28
[| 1] | 1 | 1 L 1 |]

The BMAT file (page 4 of 5)

B-8

I B I I | |
ARHO TTEMP wWWvC TTHETA PPSI2 zz0 2z1 2z2 zz3
I 1 | H [{ I [[
(Nggts;k coL * co ¥ coL * coL * coL ¥ coL * coL ¥ coL ¥
I 1 | [| I | | [
(ths;k Lev * LEV * R4 R*4 R*4 R4 R*4 R4
TTHETA PPSI2 220 2zt 222 23
l l] VALUE VALUE VALUE VALUE VALUE VALUE
R+*4 R+ 4 R*4
RRHO TTEMP WWVC
VALUE VALUE VALUE
The BMAT file (page 5 of 5)

B-9

BTRK
FILE

FILE
HEADER

[|

1st MIF TEXT
SEGMENT SEGMENT SEGMENT
* *
TEXT
MIF
RECORD
3
(NMFBT) (ICNTBT)
'---'---’ "--'l--1
! MIFRECL | | NTEXT -
WORDS @ | WORDS -
C * 80
STRING

SEGIL = (13%2)+(4%1)
NMFBT = 6

MIFRECL = (3+ 4 % 2) * NMFBT
ICNTBT < 20

NTEXT = 20

NSTEPS < 144

Figure B-3. The BTRK file (page 1 of 3)

B-10

1

FILE
BOOY

L

mME *
STEP
(NSTEPS)

1

T

1

i

Cx8g Cxg Cx8 C+8 Cx8 C*x8
FILE FILE SCENARIO SCENARIO TIME STEP TIME TO
CREATE CREATE START START SIZE FIRST
DATE TIME DATE HOUR STEP
Crs Cxg C*8 cC*+s C*sg C*g C*8
GRID SOUTHWES SOUTHWES NORTHEAST NORTHEAST CELL CELL
NAME CORNER CORNER CORNER CORNER LONGITUDE LATITUDE
LONGITUDE LATITUDE LONGITUDE LATITUDE INCREMENT| | INCREMENT
C_* 4 Cw4 Cx4 C»4
NO. OF NO OF NO OF NO. OF
COLUMNS ROWS MIF FILES TEXT
STRINGS
2
C* 12 Cwg Cw g Cx g, C*g
FILE FILE FILE FILE FILE
NAME CREATE CREATE UPDATE UPDATE
DATE TIME DATE TIME
The BTRK file (page 2 of 3)

B-11

(S100N) 21 = 8SIN
26 = SMOUN
¥9 = SI0ON
y = HSIN
SHI13WVHVd 13INNOY
3INIVA 3INIVA INIVA 3NTVA 3NVA anwa 3MVA 3NWA INWA 3INIVA INVA 3NVA
AEHM A2HYN AFHYN NEHXN NZHN NEHYA EAA 2AA IAA enn nn nn
vl v xHd by H bel &Y rxHY Pt p»H [XY] ¥ x Y &%) Pat
L (S700N)
100 0 o) 109 100 02 100 02 100 102
* * © * © ¥ 109 * * * * * * * * 100
AEHXN AZHYN AVH©Y NEHMN NZHYN NIHYN EAA 2AA IAA £nn NN nn
L |]] 1 1]] 1 | L |
e--aloo g H38WNN i 3NIL aiva
. ! dals Q3s4v13 dits diis
, sagom
v BSIN 2y bl ved re+d
']
beee oo L | | 1
N .
L}]
(SMOBIN} . squom !
MOY ¢« HSIN
' [
* [_. - d
. V3H
A008 “iis
dals 3N
3L

]

The BTRK file (page 3 of 3)

B-12

ICON

SEGIL = (21%2)4(5% 1)
NSPECS = 35
NLEVS = 3
ICNTIC < 20
NTEXT - 20

Figure B-4. The ICON file (page 1 0f 3)

B-13

FILE
I
FILE FILE
HEADER BODY
1st SPECIES LEVEL TEXT
SEGMENT NAMES NAMES SEGMENT
SR N I A l
. . I . %
: [[N TEXT
- SEGIL [. NSPECS : ' NLEVS RECORD
. WORDS : : WORDS . . WORDS (ICNTIC)
|] N
% % . :
SPECIES LEVEL NTEXT
(NSPECS) (NLEVS) WORDS
C»4 Cw4 C*ago0
SPECIES LEVEL
NAME NAME STRING

A

c*8 c*8 cC*8 C*8 c*8 c*s
FILE FILE SCENARIO SCENARIO TIME STEP TIME TO
CREATE CREATE START START SIzE FIRST
DATE TIME DATE HOUR STEP
Cw8g C*8 C+*8 C*8 [] C* 8 C*x 8
GRID SOUTHWEST| [SOUTHWEST| [NORTHEAST| |NORTHEAST CELL CELL
NAME CORNER CORNER CORNER CORNER LONGITUDE| | LATITUDE
LONGITUDE LATITUDE LONGITUDE LATITUDE INCREMENT| | INCREMENT
Cx4 C»4 Cxd Cx4 Cx4
NO. OF NO OF NO. OF NO OF OUMMY NO OF
COLUMNS ROWS LEVELS SPECIES TEXT
STRINGS
%
FiLL
(8)
Cws
The ICON file (page 2 of 3)

B-14

TIME
STEP
HEADER
']
Y ONTSH
 WORDS |
)
Looq-o '
R %4 Rw4 R*x4 Rx4
STEP STEP ELAPSED STEP
DATE TiME TIME NUMBER
ROMNET PARAMETERS
NTSH = 4
NROWS = 52
NCOLS = 64 .
NTSB = NLEVS* NCOLS
The ICON file (page 3 of 3)

B-15

TIME
STEP
BODY

1
*
ROW

(NROWS)

—

*
SPECIES
(NSPECS)

LEVEL
{NLEVS)

1
*

COLUMN
(NCOLS)

1

R»4

CONC
VALUE

SCENARIO

CONC
FILE
FiLE FILE
HEADER BODY
. T T] *
TIME
STEP
1st SPECIES LEVEL TEXT (NSTEPS)
SEGMENT NAMES NAMES SEGMENT

.""E". .""’l"" """l'"‘.

SEG1L

WORDS

SEGIL
NSPECS
NLEVS
ICNTCN
NTEXT
NSTEPS

W AN N

NSPECS : !

NLEVS
WORDS WORDS
* *
SPECIES LEVEL
(NSPECS) (NLEVS)
C*s C*q4
SPECIES LEVEL
NAME NAME

(1 * 21+ (5% 1)
35

3
20
20
145

MODEL TEXT
NAME BODY
N 1
*
TEXT
NTEXT RECORD
WORDS (ICNTCN)
1 ol
C*go
MODEL NTEXT
NAME WORDS
VALUE
C+ 80
STRING

Figure B-5. The CONC file (page 1 of 3)

B-16

(M

cxg c*8 Cx8 C*s c*8 C*8
FILE FILE SCENARIO SCENARIO TIME STEP TIME TO
CREATE CREATE START START SIZE FIRST
DATE TIME DATE HOUR STEP
C»8 Cxsg Cxg C*x8 Cw8 Cx8 Cxg
GRID SOUTHWEST| |SOUTHWEST| |NORTHEAST| |NORTHEAST CELL CELL
NAME CORNER CORNER CORNER CORNER LONGITUDE LATITUDE
LONGITUDE LATITUDE LONGITUDE LATITUDE INCREMENT | { INCREMENT
Cw4 Cw4 Cv4 C*4
NO. OF NO OF NO. OF NO OF

COLUMNS ROWS LEVELS SPECIES

Cwg Cxg C*8 Cwg
BMAT FILE BMAT FILE BTRK FILE BTRK FILE
CREATE CREATE CREATE CREATE

DATE TIME DATE TiIME
©
Cwe Cwg Cc»8 C*g Cw4
BCONFILE BCON FILE ICON FILE ICON FILE NO OF
CREATE CREATE CREATE CREATE TEXT
DATE TIME DATE TIME STRINGS
The CONC file (page 2 of 3)

B-17

TIME
STEP
HEADER
r"J"'I
L] 1)
! NTSH
. WORDS
+
Loeqee '
1] | 1
R*4 Rweg R*4 R*4
STEP STEP ELAPSED STEP
DATE TIME TIME NUMBER
ROMNET PARAMETERS
NTSH = 4
NROWS = 52
NCOLS = 64
NTSB = NLEVS * NCOLS
The CONC file (page 3 of 3)

B-18

TIME
STEP
BODY

1
*
ROW
(NROWS;)

]
%
SPECIES
(NSPECS)

LEVEL
(NLEVS)

]
*
COLUMN
(NCOLS)

|

Rea

CONC
VALUE

APPENDIX C

DESIGN AND STRUCTURE DIAGRAMS
FOR THE PRINCIPAL ROM2.1 SUBROUTINES

Refer to Appendix A for the explanation of symbols used.
Subprograms are indicated in italics.
T.S.H. = Time Step Header

C1

BTRK RDBTRK | BT BTPRCS BGBT

RDBCON 1 e BCPRCS | BGBC

BIGGAM

ICON RDICON b IC ICPRCS @

WRCONC | CN | CNPRCS

ICCN

CONC, ROCONC e ‘ LILGAM

BMAT RDBMAT I BM BMPRCS —--»@—

Figure C-1. Core Model System specification diagram.

C-2

WRSTAV

CONTROL
GROUP 1 — RUNMGR
= RDSTAV
-
-
-
-
.2 —
CONC RDCONC NEWICS | —»-| NEWICON
CONTROL
GROUP 2 —»| BIGGAM LILGAM
BTPRCS BCPRCS ICPRCS CNPRCS BMPRCS
RDBTRK RDBCON RDICON WRCONC RDBMAT
| A /| 'y
BTRK BCON ICON CONC BMAT

Figure C-2. Core Model Jackson Structured Design implementation diagram.

C3

RUNMGR

READ
1st
CTAL
GROUP

RUN
INIT

START
RUN

INIY

. MODEL

TIME

l

[o]
RESTART
AUN
READ ?&%N PRODUCE
STATE ICCN
POSITION
VECTOR s FILE
ADSTAV

|

RUNMGR
BODY

|

RUN
BODY

%k
TSTEP (NSTEPS)

WRITE
NEW
ICON
FILE

NEWICS

T

READ WRITE WRITE CK
MODEL STATE PROGRESS STOP

TSH VECTOR FILE FLAG
BIGGAM WRSTAV

Figure C-3. RUNMGR (page 1 of 2).

C4

POSITION

OPEN
FILES FILES
OPBTRK OPBMAT POCONC 'S:ILETE POBCON
DATE/
TIMES
[i
SET
1
CLOCK Cone CLOCK2
DATE/
TIME
[|
READ o
CONC T0
TSH
ICCN
RDCONC ROW
READ copPy
CONC ARRAY
ROW
ADCONC

RUNMGR (page 2 of 2).

BIGGAM
1 1 i ! i !
READ READ READ READ WRITE BIGGAM
INIT BGIC BGBC BGBT BGIC ADVS BODY
TSH TSH TSH. FILE TSH
%
INIRUN ICPRCS BCPRCS BTPACS ICPRCS LILGAM TSTEP
A
READ READ TSTEP WRITE READ READ READ WRITE UPDATE
B8GBC B8GBT BODY MODEL BGBC BGBT BGIC ADVS MODEL
FILE FILE TSH. TSH. T.SH FILE T.SH. TIME
BCPACS BTPRCS row BCPRCS BTPACS ICPRCS LILGAM cLocK2
‘ WRITE
ooy ADVS
ROW
1 1
*
coL LILGAM
v *
COMP COMPUTE POSSIBLE TRAP
,m;’l‘ 6X6 L;'XASD 8C COMPUTE ABOVE
VARIABLES CELL ARRAY SuBSTI- ADVS MODEL
INDICES UTION ZERO
-] o] =]
SOUTHERN| | NORTHERAN| | EASTERN | | WESTERN
BC BC 8Cc 8c

Figure C4. BIGGAM (page 1 of 1).

C-6

ICPRCS

READ INDEX INIT WRITE 1ST CLOSE PROC
ic ICON Ic 8GIC TIME ICON BODY
TSH SPECIES TIME TSH STEP FILE
* *
RDICON ORSPIC CLOCK1 ROW cLosIC TSTEP
READ BUFFER WRITE TSTEP UPDATE
ic BGIC BGIC 80DY iIc
ROW ROW FILE TIME
RDICON ROW *| CLOCK2
BUFFER
BGIC
ROW

Figure C-5. ICPRCs (page 1 0f 1).

C-7

RDICON

OPEN
ICON
FILE

]

OPICON

I

POSITION
ICON
FILE

T

POICON

Figure C-6. RDICON (page 1 of 1).

C-8

READ PROC
ICON BODY
TSH.
| 1
%
ROFILE TSTEP
CONVERT WRITE READ
TIME TSTEP
Ic ICON
DATA TSH BODY TSH
TYPE e ’
row ¥ RDFILE
READ WRITE
ICON i
ROW ROW
E3
SPEC
RDFILE

BCPRCS

—

READ

TSH

|

RDBCON

INDEX NIT PROC
BCON BC Phoe
SPECIES TIME
*
ORSPBC CLOCK1 TSTEP
WRITE READ BUFFER WRITE UPDATE READ
BGBC BC BGBC BGBC BC 8C
TSH RECORD RECORD REC TIME TSH
I I cLockz ADBCON
EAST/ NORTH/
WEST SOUTH
spec ¥ spec ¥
tev ¥ tev ¥
row ¥ co ¥

Figure C-7. BCPRCs (page 10f 1).

ROBCON

1] | 1
OPEN POSITION READ
BCON BCON BCON gg‘g‘;’
FILE FILE TSH.
B 13 | 1
OPBCON POBCON RDFILE TSTEP *
]] | 1
CONVERT
O T B B I A (Y e
DATA
okl TSH. FILE TSH.
RDFILE
{ | [1l
WEST EAST NORTH SOUTH
| [| 1
* * * %
SPEC SPEC SPEC SPEC
| 1 I |
ROFILE ADFILE ROFILE ROFILE

Figure C-8. RDBCON (page 1 of 1).

C-10

BTPRCS

READ
BT
TSH.

1

RDBTRK

NIT
BT PROC
TIME BODY
%
CLOCK1 TSTEP
WRITE TSTEP WRITE UPDATE READ
BGBT BODY BGBT BT BT
TSH FILE TIME TSH
row * CLOCK2 ADBTAK
READ BUFFER
BT BGBT
ROW ROW
RDBTRK

c-1

Figure C-9. BTPRCs (page 1 of 1).

RDBTRK

1
[1 1 I
OPEN POSITION READ
BTRK BTRK BTRK gggs
FILE FILE TSH.
1 N |]
OPBTRK POBTRK RDBT TSTEP*
i] | |
CONVERT
TIME WRITE TSTEP READ
BT BTRK
DATA TSH BoDY TSH
TYPE T T
ROW * ROBT

Figure C-10. RDBTRK (page 1 of 1).

C-12

READ WRITE
BTRK BT
ROW ROW
ROBT

RDBT

OPEN READ WRITE READ BODY PRINT
BTRK HDR HDR RECORD SUMMARY
*
RECORD { (EOF)
WRITE READ
RECORD RECORD

Figure C-11. RDBT (page 1 0f 1).

C-13

LILGAM

I 1 1 |
(READ READ WRITE
ADVS INIT LGBM ICCN L';gg‘;:
TSH) TSH TSH
*
BMPRCS CNPRCS TSTEP
WRITE READ READ
Lsc;'[ff ICCN ADVS LGBM
FILE TSH, TSH.
row *| | cweacs BMPRCS
READ AEAD
LGBM ADVS o
ROW ROW
BMPACS coL ¥
COMPUTE
RATE PG GTILDE coL CoMPUTE
CONSTFANT INTEGRA- BODY CELL
CoMPS TION STEP CONC
—— :
HSTEP GTTM™ | (GTTIM > ATS)
ATPHO ATSET

Figure C-12. LILGAM (page 1 of 2).

C-14

|

RATED

COMPUTE
GTTM VERTICAL
BODY FLUX
COMP
*
v | | | |
GTLDE
I] GTILD! NO NO, o,
SET Nt LEVEL | | I 1
FRAX ICONSTANTS Booy "
-] SPEC GTILDE GTILDE GTILDE
POCOEF cHenm™® I
(CHETIM > GTS) ‘ GTILDE
TRAP POSSIBLE
PREDICTOR lcorrRecTOR CHEMISTRY FRAX
COMP RESET
INTIAL CHEMISTRY INITIAL FINAL FINAL
PQ TIME CHEMISTRY] PQ CHEMISTRY
ESTIMATES STEP COMP ESTIMATES COMP
[J spec ¥ spec * spec *
PO RATED POI
LILGAM (page 2 of 2).

BMPRCS

[[i
READ INDEX INIT
BM BMAT BM ';ROC
TSH SPECIES TIME oDY
] [| 1
ADBMAT ORSPBM cLocK1 Tstep ¥
!
[| [1
WRITE TSTEP UPDATE READ
LGBM BODY BM BM
T.SH. TIME TSH
| [{
row ¥ cLOCkK2 RDBMAT
[]
READ BUFFER WRITE
BM LGBM LGBM
ROW ROW ROW
|
RDBMAT

Figure C-13. BMPRCs (page 1 of 1).

C-16

RDBMAT

|
[]]]
OPEN POSITION READ
BMAT BMAT BMAT ;ggs
FILE FILE TSH
]]] 1
OPBMAT POMXEM RDMXBM Tstep ¥
I T I 1
CONVERT
WRITE
TIME BM TSTEP gm?r
DATA Tou BODY B
TYPE : S
%
ROW ROMXBM
READ READ WRITE
BMAT BMAT BM
PART 1 PART 2 ROW
E 3
ROMXEM SPEC | (BMSPRD)
ADMXEM

Figure C-14. RDBMAT (page 1 of 1).

C-17

RDMXBM

OPEN READ WRITE AST
1ST FILE FILE BODY sbBHLE
SUBFILE HEADER HEADER
*®
ADHDBM SUBFL | (NSUBFL-1)
VERIFY READ SUBFL PRINT CLOSE 8';)5(‘.;‘ READ
SUBFILE RECORD BODY SUMMARY SUBFILE SUBPLE HEADER
rRec ¥ | eoR) RDHDBM
WRITE READ
RECORD RECORD
! 1 { | 1]
VERIFY READ LAST PRINT CLOSE WRITE
SUBFILE RECORD SugfFL SUMMARY SUBFILE EOF
BODY
rec ¥ | (oF)
WRITE READ
RECORD RECORD

Figure C-15. RDMXBM (page 1 of 1).

C-18

CNPRCS
(READ OPEN READ PROC
ICCN CONC C?g Y ICCN BoDY
T.SH) FILE FILE
*

WRCONC r J TSTEP

COPY WRITE copY

Ic CN ic
TSH. TSH BODY
%*
WRCONC AOW
BUFFER WRITE
CN oN
ROW ROW
WACONC
A
UPDATE copyY WRITE READ
N ICCN cN Lgr‘f,f’ ICCN
TIME TSH TSH FILE
%
CLOCK2 * WRCONC ROW
BUFFER WRITE
cN CN
ROW ROW
WRCONC

Figure C-16. CNPRCs (page 10f1).

C-19

WRCONC

OPEN
CONC
FILE

OPWRCN

Rgﬁo PROC
TSR BODY
Tstep *
| I |]
CONVERT
TIME WRITE TSTEP READ
CONC eN
DATA TSH BODY ey
TYPE Rk SH,
*
WRFILE ROW
READ WRITE
cN CONC
ROW ROW
%
sPEc
WRFILE

Figure C-17. WRCONC (page 1 of 1).

C-20

ROCONC

OPEN POSITION READ PROC
CONC CONC CONC BODY
FILE FILE TSH
1 | 1 1
sk
OPCONC POCONC RDFILE TSTEP
P 1 | 1
CONVERT
e WRITE TsTEP READ
ic CONC
DATA TSH sopy TSH
TYPE = >
*
ROW ROFILE
READ WRITE
CONC ic
ROW ROW
*
SPEC
RDFILE

Figure C-18. RDCONC (page 1 of 1).

C-21

This page is intentionally left blank.

APPENDIX D

SAMPLE COMPILE AND LINK STREAM FOR THE
UNIPROCESSOR ROM2.1

D-1

//GJDCROM JOB (NERIRSMRP,B012), ' JORDAN ', ,MSGCLASS=P, 0000000
// NOTIFY=GJD, TIME=(,45) ,PRTY=2 0000000
/*JOBPARM LINES=999

//*FTER JKVOFFO3

/*ROUTE PRINT RMT378

//VSF2CL PROC FVPGM=FORTVSZ2, FVREGN=1400K, FVPDECK=NODECK, FVPOLST=NOLIST,

// FVPOPT=0, FVTERM="'SYSOUT=*"' PGMNAME=ROM21R ,PGMLIB="8&&GOSET",
7/ FVLNSPC='3200, (25,6)"

//FORT EXEC PGM=&FVPGM,REGION=&FVREGN,COND=(4,LY),

1/ PARM="'&FVPDECK,&FVPOLST,&0PT(&FVPOPT)!

//STEPLIB DD DSN=SYS1.VSF2COMP,DISP=SHR

//SYSPRINT DD SYSOUT=*,DCB=BLKSI1ZE=3429

//SYSTERM DD &FVTERM

//SYSPUNCH DD SYSOUT=B,DCB=BLKSIZE=3440

//SYSLIN DD DSN=R&LOADSET,D1SP=(MOD,PASS),UNIT=SYSDA,

/7 SPACE=(&FVLNSPC),DCB=BLKSIZE=3200
//LKED EXEC PGM=1EWL,REGION=768K,COND=(4,LT),
1/ PARM='LET,LIST, XREF!

//SYSPRINT DD SYSOUT=*

//SYSLIB DD DSN=SYS1.VSF2FORT,DISP=SHR

// DD DSN=BTLNER1.ROM.LOADLIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))

//SYSLMOD DD DSN=&PGMLIB(&PGMNAME),DISP=(,PASS),UNIT=SYSDA,

7, SPACE=(TRK, (10,10, 1),RLSE)

J/SYSLIN DD DSN=8&LOADSET,DI1SP=(OLD,DELETE)

/1 DD DDMAME=SYSIN

1 PEND

//VSFVCL EXEC VSF2CL,PGMLIB='GJDNER1.ROMNET1.LOADLIB', 00000300

// FVREGN=4M, FVLNSPC='3200, (250,60) ", 00000400

// PARM.FORT='NODECK,NOLIST,OPT(2),CHARLEN(1024)", 00000500

// PARM.LKED='LET,LIST,XREF! 00000600

//FORT.STEPLIB DD DSN=SYS1.VSF2COMP,DI1SP=SHR 00000700

//FORT.SYSLIB DD DSN=GJDNER1.ROMNET1.INCLUDES,DISP=SHR 00000800

// DD DSN=GJDNER1.R0"1.XNCLUDES,DISP=$NR 00000800

//FORT.SYSIN DD DSN=GJDNER?1.ROM1.FORT(ROM),0ISP=SHR 00000900

//LKED.SYSLMOD DD DSN=GJDNER1.ROMNET1.LOADLIB,DISP=SHR 00001000

//LKED.SYSIN DD * , 00001100
NAME ROM21R(R) . 00001200

/i

1 00000110

APPENDIX E
INCLUDE FILES

E-1

DIMENS.EXT and REGION.EXT contdin the dimensions and definitions that are used by the ROM, and are tabulated first. The
remaining include files are tabulated in alphabetical order.

TABLE E-1. INCLUDE FILE DIMENS.EXT
Smstmee e s

Referenced by

Description

BCPRCS, BIGGAM, BLKMOD, BMPRCS, BTPRCS, CNPRCS, Model dimensions
DUMPHD, GTILDE, HSTEP, ICPRCS, INIRUN, LILGAM,

NEWICS, OPBCON, OPBMAT, OPBTRK, OPCONC,

OPICON, OPSTAV, OPWRCN, ORSPBC, ORSPBM, ORSPIC,

POBCON, POBTRK, POCONC, POICON, POMXBM,

POSTAV, PQ1, PQCOEF, RATED, RDBCON, RDBMAT,

RDBT, RDBTRK, RDCONC, RDHDBM, RDICON,

RDMXBM, RDSTAV, RTPHO, RTSET, RUNMGR,

WRCONC, WRSTAV

Variables Type Value Description
NLEVS Integer*4 3 Number of levels in model grid
For Carbon Bond 4.2 Chemistry:
NSPECS Integer*4 35 Number of chemical species in model
NRCT Integer*4 84 Number of reactions
NPPRX Integer*4 5 Number of primary photolytic reactions
NRKL Integer*4 11 . Number of levels at which photolytic rate constani is given
NPOXSP integer*4 3 ’ Number of primary oxidant species (for dimensioning
LGBMFL.EXT)
TABLE E-2. INE]&L_E__ REGION.EXT
Referenced by Description

BCPRCS, BIGGAM, BMPRCS, BTPRCS, CNPRCS, ICPRCS, Region-dependent parameters for the ROMNET domain
INIRUN, LILGAM, NEWICS, OPCONC, OPICON, OPSTAV,

OPWRCN, PQCOEF, RDBCON, RDBMAT, RDBT, RDBTRK,

RDCONC, RDICON, RDMXBM, RUNMGR, WRCONC,

WRSTAV
Variables Type Value Description
GRDNAM Character*8 'ROMNET Name of the region
NROWS Integer*4 52 Number of rows in the model grid
NCOLS Integer*4 64 Number of columns in the model grid

TABLE E-3. INCLUDE FILE ADVSFL.EXT

Common block Referenced by Description
ADVSFL BIGGAM, LILGAM This is the ADVECTION solution file. An advected row of
BIGGAM is passed to LILGAM.
Variables Type Dimension Description
ADVSFL(Lik) Real*4 (NLEVS, NCOLS, NSPECS) ADVECTION solution for one row
TABLE E-4. INCLUDE FILE BCFILE.EXT
Common block Referenced by Description
BCFILE BCPRCS, RDBCON The boundary values for each time step for species concen-
trations (by layer) for all modeling domain border cells.
Variables Type Dimension Description
NORTH(i,l k) Real*4 (NCOLS, NLEVS, NSPECS) Boundary condition concentrations along northern edge
WEST(j,1,k) Real*4 (NROWS, NLEVS,NSPECS) Boundary condition concentrations along western edge
EAST(,1,k) Real*4 (NROWS, NLEVS, NSPECS) Boundary condition concentrations along eastern edge
SOUTH(,Lk) Real*4 (NCOLS, NLEVS, NSPECS) Boundary condition concentrations along southern edge
TABLE E-S. INCLUDE FILE BGBCFL.EXT
Common block Referenced by Description
BGBCFL BCPRCS, BIGGAM Boundary conditions produced by BCPRCS for use by
BIGGAM
Variables Type Dimension Description
BCW(,1k) Real*4 (NROWS, NLEVS, NSPECS) Boundary condition concentrations along western edge
BCE(j,Lk) Real*4 (NROWS, NLEVS, NSPECS) Boundary condition concentrations along eastern edge
BCN(iLk) Real*4 (NCOLS, NLEVS, NSPECS) Boundary condition concentrations along northern edge
BCS(i,L,k) Real*4 (NCOLS, NLEVS, NSPECS) Boundary condition concentrations aléng southern edge

TABLE E-6. INCLUDE FILE BGBTFL.EXT

Common block Referenced by Description
BGBTFL BIGGAM, BTPRCS BTRK data for BIGGAM produced by BTPRCS
Variables Type Dimension Description
Backtrack locations:
XU(i) Real*4 (NLEVS, NCOLS, NROWS) Longitudinal component
XV(,ij) Real*4 (NLEVS, NCOLS, NROWS) Latitudinal component
Horizontal diffusivities:
XKU(1,i,) Real*4 (NLEVS, NCOLS, NROWS) Longitudinal component
XKV(1,i) Real*4 (NLEVS, NCOLS, NROWS) Latitudinal component
TABLE E-7. INCLUDE FILE BGICCN.EXT
Common block Referenced by Description
BGICCN BIGGAM, CNPRCS, ICPRCS, ICCONC file: time step initial concentrations for BIGGAM
LILGAM, NEWICS, and time step concentrations finalized in LILGAM
RUNMGR
Variables Type Dimension Description
BGICCN(i,1k,j,2) Real*4 (NCOLS, NLEVS, NSPECS, Time step initial concentrations for BIGGAM and time step
NROWS, 2) concentrations finalized in LILGAM
TOG1 Integer*4 " Pointer to upper half of BGICCN
TOG2 Integer*4 Pointer to lower half of BGICCN

E4

TABLE E-8. INCLUDE FILE BMCOEF.EXT

Common block Referenced by Description
BMCOEF HSTEP, LILGAM BMAT coefficients from LILGAM for use by HSTEP
Variables Type Dimension Description
B-matrix coefficient in column i for species k for:
BB11(k) Real*4 (NSPECS) layer 1/surface 1 flux
BB22(k) Real*4 (NSPECS) layer 2/surface 2 flux
BB31(k) Real*4 (NSPECS) layer 3/surface 1 flux
B-matrix coefficient in column i for:
BB12 Real*4 layer 1/surface 2 flux
BB21 Real*4 layer 2/surface 1 flux
BB23 Real*4 layer 2/surface 3 flux
BB32 Real*4 layer 3/surface 2 flux
BB33 Real*4 layer 3/surface 3 flux
B-matrix coefficient for subgrid scale adjustment in column i for:
BB11S Real*4 layer 1/surface 1 flux
BB11SS Real*4 alternate layer 1/surface 1 flux
BB31S Real*4 layer 3/surface 1 flux
BB31SS Real*4 alternate layer 3/surface 1 flux

E-5

TABLE E-9. INCLUDE FILE BMFILE.EXT

Common block Referenced by

Description

BMFILE BMPRCS,RDBMAT Data from BMAT read by RDBMAT to be passed to BMPRCS
Variables Type Dimension Description
B-matrix coefficient in column i for:
XB12(i) Real*4 (NCOLS) layer 1/surface 2 flux
XB13(i) Real*4 (NCOLS) layer 1/surface 3 flux
XB21(i) Real*4 (NCOLS) layer 2/surface 1 flux
XB23(i) Real*4 (NCOLS) layer 2/surface 3 flux
XB32(i) Real*4 (NCOLS) layer 3/surface 2 flux
XB33(i) Real*4 (NCOLS) layer 3/surface 3 flux
B-matrix coefficient for subgrid scale adjustment in column i for:
XB115(i) Real*4 (NCOLS) layer 1/surface 1 flux
XB11SS(i) Real*4 (NCOLS) alternate layer 1/surface 1 flux
XB31S(i) Real*4 (NCOLS) layer 3/surface 1 flux
XB3185(i) Real*4 (NCOLS) alternate layer 3/surface 1 flux
Run time subgrid scale adjustment parameters in column i:
XQO3FC(i) Real*4 (NCOLS) ozone factor
XSSONO(i) Real*4 (NCOLS) NO surface emissions source strength
XG1S(i,k) Real*4 (NCOLS, NPOXSP) emissions source term in layer 1 for primary oxidant species k
XG1SS(i,k) Real*4 (NCOLS, NPOXSP) alternate emissions source term in layer 1 for primary oxidant species &
XGI1FAC(ik) Real*4 (NCOLS, NPOXSP) emissions source factor in layer 1 for primary oxidant species k
XG3S(i.k) Real*4 (NCOLS, NPOXSP) emissions source term in layer 3 for primary oxidant species k
XG38S(i,k) Real*4 (NCOLS, NPOXSP) alternate emissions source term in layer 3 for primary oxidant species k
XG3FAC(G,k) Real*4 (NCOLS, NPOXSP) emissions source factor in layer 3 for primary oxidant species k
XRHO(,h) Real*4 (NCOLS, NLEVS) Rate constants density correction factor in column i for layer /
XTEMP(i,hH Real*4 (NCOLS, NLEVS) Absolute temperature for rate constants adjustment in column i for layer!/
XWVC(i,)) Real*4 (NCOLS, NLEVS) Water vapor concentration for rate constants adjustment in column ; for
’ layer!
XTHETA() Real*4 (NCOLS) Solar zenith angle for photolytic rate constants adjustment in column
XPS12(i) Real*4 (NCOLS) Cloud cover correction factor for photolytic rate constants adjustment in
column i
Heights above sea level in column i (used for rate constant adjustments):
XZ0(i) Real*4 (NCOLS) Layer 0
XZ1() Real*4 (NCOLS) Layer1
XZ2(i) Real*4 (NCOLS) Layer 2
XZ3(3i) Real*4 (NCOLS) Layer3
Buffer containing six species-dependent B-matrix variables:
AAL(1,6,k) Real*4 (NCOLS, 6, NSPECS) B11, B22, B31, G1, G2, G3

E-6

TABLE E-10. INCLUDE FILE BTFILE.EXT

Common block Referenced by Description
BTFILE BTPRCS, RDBTRK BTRK file block data from the BTRK file read by RDBTRK - '
to be passed to BTPRCS
Variables Type Dimension Description
Backtrack locations:
XRU(,1) Real*4 (NCOLS, NLEVS) Longitudinal component, column i, layer /
XRV(i,)) Real*4 (NCOLS, NLEVS) Latitudinal component, column i, layer !
Horizontal Diffusivities:
XRKU(i,D) Real*4 (NCOLS, NLEVS) Longitudinal component, column i, layer /
XRKV(i,}) Real*4 (NCOLS, NLEVS) Latitudinal component, column i, layer

TABLE E-11. INCLUDE FILE CHEMIN.EXT

Common block Referenced by Description
CHEMIN INIRUN, GTILDE, HSTEP, Input control for LILGAM chemistry calculations
LILGAM, OPSTAV, WRSTAV

Variables Type Dimension Description

ATS Real*4 ADVECTION time step length (seconds)

GTS Real*4 VERTICAL FLUX time step length (seconds)

UFRAX Real*4 Upper tolerance for FRAX (FRAX = time step tolerance for change in
species value to sct the chemistry time step)

BFRAX Real*4 Lower tolerance for FRAX

FACTOR Real*4 Fraction of (NO + NO; + O3) to represent lower limit of species
concentration considered in time step computations

DIVP Real*4 Mutltiplier (0 .LT. DIVP .LE. 1.0) to determine intermediate value of P1
to be used in CORRECTOR chemistry solution per time step

DIVQ Real*4 Multiplier (0 .LT. DIVQ .LE. 1.0) to determine intermediate value of Q1
to be used in CORRECTOR chemistry solution per time step

NCOUT Integer*4 Number of species (3) whose concentrations are used to determine which
species are included in chemistry time step computations

ISPEC(k) Integer*4 (NSPECS) List of species indices whose concentrations are used to determine which
species are included in chemistry time step computations

ULIM Real*4 Upper limit of chemistry time step length (seconds)

BLIM Real*4 Lower limit of chemistry time step length (seconds)

FNOLIM Real*4 Upper limit to control UFRAX/BFRAX chemistry computation accuracy

E-7

TABLE E-12. INCLUDE FILE CHEMSW.EXT

Common block Referenced by Description
CHEMSW LILGAM, RUNMGR Chemistry on/off flag
Variables Type Dimension Description
CHEMON Logical*4 = TRUE. = LILGAM normal run
= .FALSE. = LILGAM chemistry calculations bypassed
TABLE E-13. INCLUDE FILE CNFILE.EXT
_—
Common block Referenced by Description
CNFILE CNPRCS, RDCONC, Final solution concentrations passed to CNPRCS by
RUNMGR, WRCONC LILGAM
Variables Type Dimension Description
CNFILE(i, k) Real*4 (NCOLS, NLEVS, NSPECS) Solution concentrations for one row
TABLE E-14. INCLUDE FILE CONFAC.EXT
Common block Referenced by Description
CONFAC BIGGAM, OPSTAYV, Diffusivities conversion factors for BIGGAM
WRSTAV
Variables Type Dimension Description
RDLNT2 Real*4 Longitudinal borizontal diffusivities conversion factor
RDLTT2 Real*4 Latitudinal horizontal diffusivities conversion factor

E-8

TABLE E-15. INCLUDE FILE ERRG.EXT

Common block Referenced by Description
ERRGT GTILDE, LILGAM GTILDE error counts
Variables Type Dimension Description
NGTILN() Integer*4 (NSPECS) Count of number of negative GTILDE’s computed

TABLE E-16. INCLUDE FILE FLNAMS.EXT

Common block Referenced by Description

FLNAMS BLKMOD, DUMPHD, NEWICS, Internal program names used for file operating system
OPBCON, OPCONC, OPICON,
OPSTAV, OPWRCN, RDBT, RDMXBM,
RUNMGR, WRSTAV

Variables Type Dimension Description

FLNMBC Character*12 Internal name of BCON file

FLNMBM(m) Character*12 (NUMBMF) Internal name of BMAT subfile m

FLNMBT Character*12 Internal name of BTRK file

FLNMCN Character*12 Internal name of CONC file

FLNMIC Character*12 Internal name of ICON file

FLNMSV Character*12 Internal name of STATE VECTOR file

FLNMNI Character*12 Internal name of NEW IC file

FLNMST Character*12 Internal name of STOP file

FLNMPR Character*12 Internal name of PROGRESS file

NUMBMF Integer*4 Maximum number of multiple BMAT subfiles (=6; passed
from common block LUNITS)

TABLE E-17. INCLUDE FILE GTCOEF.EXT

Common block Referenced by Description
COEFsS GTILDE, LILGAM Terms in 3 X 3 system of differential equations solved by .
GTILDE
Variables Type Dimension Description
X0 Real*4 Initial condition (time tp) for GTILDE
YO Real*4 Initial condition (time to) for GTILDE
z0 Real*4 Initial condition (time ty) for GTILDE
Al Real*4 Coefficient in differential equations
A2 Real*4 Coefficient in differential equations
A3 Real*4 Coefficient in differential equations
B1 Real*4 Coefficient in differential equations
B2 Real*4 Cocfficient in differential equations
B3 Real*4 Cocfficient in differential equations
C2 Real*4 Coefficient in differential equations
C3 Real*4 Coefficient in differential equations
GS1 Real*4 Inhomogeneous source term in differential equations
GS2 Real*4 Inhomogeneous source term in differential equations
GS3 Real*4

Inhomogeneous source term in differential equations

—

TABLE E-18. INCLUDE FILE HDFMTS.EXT

Common block Referenced by Description
HDEMTS BLKMOD, DUMPHD, NEWICS, OPBCON, OPBMAT, Formats for headers
OPBTRK, OPCONC, OPICON, OPSTAV, OPWRCN,
WRSTAV
Variables Type Dimension Description
Buffers that contain Fortran formats for echoing file header
information to the log:
HDALL Character*488 First segment record log format
HSPN Character*48 Species record log format
HLVN Character®48 Level record log format
HTEXT Character*48 Text record log format

- _— — — — —— — _—— __ — — — — — __———— — ——— —— — — — — —

E-10

TABLE E-19. INCLUDE FILE HDSTAV.EXT

Common block Referenced by Description

CHARSV, OPSTAV, POSTAYV, Formatted STATE VECTOR file header block

HEADSV RUNMGR, WRSTAV

CHARSV
Variables Type Dimension Description
GRDNSV Character*8 Grid definition name
SPNMSV(k) Character*4 (NSPECS) Name of species k
LVNMSV(l) Character*4 (NLEVS) Name of level/
TEXTSV(20) Character*80 (20) Text description
HEADSV

Variables Type Dimension Description
CDATSV Integer*4 Creation date (MMDDYY) of STATE VECTOR file
CTIMSV Integer*4 Creation time (HHMMSS) of STATE VECTOR file
SDATSV Inmteger*4 Start date (YYDDD) of scenario
STHRSV Integer*4 Start hour (00 to 23) of scenario
TSTPSV Integer*4 Size of step (seconds) used in simulation
FRSTSV Integer*4 First time step (seconds past start time of model scenario) in simulation
SWLNSV Real*4 Longitude (degrees) of southwest corner of grid
SWLTSV Real*4 Latitude (degrees) of southwest corner of grid
NELNSV Real*4 Longitude (degrees) of northeast corner of grid
NELTSV Real*4 Latitude (degrees) of northeast corner of grid
DLONSV Real*4 Longitudinal increment cell (degrees)
DLATSV ~ Real*4 Latitudinal cell increment (degrees)
NCOLSV Integer*4 Number of columns in grid (= NCOLS)
NROWSV Integer*4 Number of rows in grid (= NROWS)
NLEVSV Integer*4 Number of levels (= NLEVS)
NSPCSV Integer*4 Number of species in simulation (= NSPECS)
ICNTSV Integer*4 Number of text records in header

E-11

TABLE E-20. INCLUDE FILE HEADBC.EXT
S e e e

Common block Referenced by Description

CHARBC, BCPRCS, OPBCON, BCON file header block
HEADBC OPWRCN, ORSPBC,
POBCON, RDBCON,

RUNMGR

CHARBC
Variables Type Dimension Description
GRDNBC Character*8 Grid definition name
SPNMBC(k) Character*4 (NSPECS) Name of species k
LVNMBC(l) Character*4 (NLEVS) Name of level /
TEXTBC(20) Character*80 (20) Text description

HEADBC
Variables Type Dimension Description
CDATBC Integer*4 Creation date (MMDDYY) of BC file
CTIMBC Integer*4 Creation time (HHMMSS) of BC file
SDATBC Ineger*4 Start date (YYDDD) of scenario on BC file
STHRBC Integer*4 Start hour (00 to 23) of scenario on BC file
TSTPBC Integer*4 Size of time step (seconds) used in BC file
FRSTBC Integer*4 First time step (seconds past start time of
SWLNBC Real*4 BCON scenario) on BCON file
SWLTBC Real*4 Longitude (degrees) of southwest corner of grid
NELNBC Real*4 Latitude (degrees) of southwest corner of grid
NELTBC Real*4 Longitude (degrees) of northeast corner of grid
DLONBC Real*4 Latitude (degrees) of northeast corner of grid
DLATBC Real*4 Longitudinal increment cell (degrees)
NCOLBC Integer*4 Latitudinal cell increment (degrees)
NROWBC Integer®4 Number of columss in grid
NLEVBC Integer*4 - Number of rows in grid
NSPCBC Integer*4 Number of levels
ICNTBC Integer*4 Number of species in BCON file

Number of text records in header

——

—

E-12

TABLE E-21. INCLUDE FILE HEADBM.EXT

Common block Referenced by Description
CHARBM, HEADBM, BMPRCS, DUMPHD, OPBMAT, OPWRCN, ORSPBM, BMAT file header block
BMSPRD POMXBM, RDBMAT, RDHDBM, RDMXBM, RUNMGR

Variables Type

Value -

Description

NMFBM Integer*4 4

NVRBM1 Integer*4

NVRBM2 Integer*4 6

18+3xNLEVS+6xNPOXSP

Number of MIF files used in generating BMAT file

Number of part 1 BMAT variables, specifically: B12, B13, B21, B23, B32, B33,
B11S, B11SS, B31S, B31SS, QO3FAC, SSONO, TTHETA, PPSI2, ZZ0, ZZ71,
272, 773; RRHO(NLEVS)’s, TTEMP(NLEVS)’s, WWVC(NLEVS)’s; and
G1S, G188, GIFAC, G3S, G3SS, G3FAC, each dimensioned by NPOXSP
Number of species array BMAT variables (part 2), specifically: B11, B22, B31,
G1, G2, G3

CHARBM

Variables Type Dimension Description

GRDNBM Character*8 Grid definition name

SPNMBM(k) Character*4 (NSPECS) Name of species k

LVNMBM(I) Character*4 (NLEVS) Name of level /

TEXTBM(20) Character*80 (20) Text description

MFNMBM(m) Character*12 (NMFBM) File name of MIF file m used to produce the BMAT file
HEADBM

Variables Type Dimension Description

ISUBFL Integer*4 Ordinal subfile number

NSUBFL Integer*4 Total number of subfiles of BMAT file

FRSTSF Integer*4 First time step on subfile ISUBFL

LSSTSF Integer*4 Last time step on subfile ISUBFL

CDATBM Integer*4 Creation date (MMDDYY) of BMAT file

CTIMBM Integer*4 Creation time (HHMMSS) of BMAT file

SDATBM Integer*4 Start date (YYDDD) of scenario

STHRBM Integer*4 Start hour (00 to 23) of scenario

TSTPBM Integer*4 Time step size (seconds) for simulation

FRSTBM Integer*4 First time step (scconds past start time of scenario) on BMAT file

SWLNBM Real*4 Longitude (degrees) of southwest corner of grid

SWLTBM Real*4 Latitude (degrees) of southwest corner of grid

NELNBM Real*4 Longitude (degrees) of northeast corner of grid

NELTBM Real*4 Latitude (degrees) of northeast corner of grid

DLONBM Real*4 Longitudinal cell increment (degrees)

DLATBM Real*4 Latitudinal cell increment (degrees)

NCOLBM Integer*4 Number of columns in grid

NROWBM Integer*4 Number of rows in grid

NLEVBM Integer*4 Number of levels

NSPCBM Integer*4 Number of species on BMAT file

NMIFBM Integer*4 Number of MIF files used to generate BMAT

CDMFBM(m) Integer*4 (NMFBM) Creation date of MIF file m used to produce the BMAT file

CTMFBM(m) Integer*4 (NMFBM) Creation date of MIF file i used to produce the BMAT file

UDMFBM(m) Integer*4 (NMFBM) Last update date of MIF file m used to produce the BMAT file

UTMFBM(m) Integer*4 (NMFBM) Last update time of MIF file m used to produce the BMAT file

ICNTBM Integer*4 Number of text records on header

BMINDX(k) Integer®4 (NSPECS) Index array for species expansion from reduced BMAT set to full MODEL set
BMSPRD

Variables Type Dimension Description

BMSPRD Integer*4 Number of species in BMAT reduced set representing NSPCBM species.

E-13

TABLE E-22. INCLUDE FILE HEADBT.EXT
S e e e e e

Common block Referenced by Description

CHARBT, BTPRCS, OPBTRK, BTRK file header block

HEADBT OPWRCN, POBTRK, RDBT,

RDBTRK, RUNMGR
Variables Type Value Description
NMFBT Integer*4 6 Number of MIF files used in generating BTRK file
NVARBT Integer*4 4 Number of LEVEL-DEPENDENT BTRK variables, specifically: UU’s, VV’s,
KKHU's, KKHV’s
CHARBT
Variables Type Dimension Description
GRDNBT Character*8 Grid definition name
TEXTBT(20) Character*80 (20) Text description
MFNMBT(m) Character*12 (NMFBT) File name of MIF file m used 1o produce the BTRK file
HEADBT

Variables Type Dimension Description
CDATBT Integer*4 Creation date (MMDDYY) of BTRK file
CTIMBT Integer*4 Creation time (HHMMSYS) of BTRK file
SDATBT . Integer®4 Start date (YYDDD) of scenario)
STHRBT Integer*4 Start hour (00 to 23) of scenario
TSTPBT Integer*4 Time step size (seconds) for simulation
FRSTBT Integer*4 First time step (seconds past start time of scenario) on BTRK file
SWLNBT Real*4 Longitude (degrees) of southwest comer of grid
SWLTBT Real*4 Latjtude (degrees) of southwest corner of grid
NELNBT Real*4 Longitude (degrees) of northeast comner of grid
NELTBT Real*4 Latitude (degrees) of northeast corner of grid
DLONBT Real*4 Longitudinal cell increment (degrees)
DLATBT Real*4 Latitudinal cell increment (degrees)
NCOLBT Integer*4 Number of columns in grid
NROWBT Integer*4 Number of rows in grid
NMIFBT Integer*4 Number of MIF files used to generate BTRK file
CDMFBT(m) Integer*4 (NMFBT) Creation date of MIF file m used to produce the BTRK file
CTMFBT(m) Integer*4 (NMFBT) Creation date of MIF file m used to produce the BTRK file
UDMFBT(m) Integer*4 (NMFBT) Last update date of MIF file m used to produce the BTRK file
UTMFBT(m) Integer*4 (NMFBT) Last update time of MIF file m used to produce the BTRK file
ICNTBT Integer*4 Number of text records in header

E-14

TABLE E-23. INCLUDE FILE HEADCN.EXT

Common block Referenced by Description

CHARCN, CNPRCS, NEWICS, CONC file header block

HEADCN OPCONC, OPWRCN,

POCONC, RDCONC,
RUNMGR
CHARCN
Variables Type Dimension Description
GRDNCN Character*8 Grid definition name
SPNMCN(k) Character*4 (NSPECS) Name of species k
LVNMCN(l) Character*4 (NLEVS) Name of level
TEXTCN(20) Character*80 (20) Text description
HEADCN

Variables Type Dimension Description
Variables Type Dimension Description
CDATCN Integer*4 Creation date (MMDDYY) of CONC file
CTIMCN Integer*4 Creation time (HHMMSS) of CONC file
SDATCN Integer*4 Start date (YYDDD) of scenario
STHRCN Integer*4 Start hour (00 to 23) of scenario
TSTPCN Integer*4 Size of step (seconds) used in simulation
FRSTCN . Integer*4 First time step (seconds past start time of model scenario) on CONC file
SWLNCN Real*4 Longitude (degrees) of southwest corner of grid
SWLTCN Real*4 Latitude (degrees) of southwest corner of grid
NELNCN ~ Real*4 Longitude (degrees) of northeast corner of grid
NELTCN Real*4 Latitude (degrees) of northeast corner of grid
DLONCN Real*4 Longitudinal increment cell (degrees)
DLATCN Real*4 Latitudinal cell increment (degrees)
NCOLCN Integer*4 Number of columns in grid (= NCOLS)
NROWCN Integer*4 Number of rows in grid (= NROWS)
NLEVCN Integer*4 Number of levels (= NLEVS)
NSPCCN Integer*4 Number species in CONC file (= NSPECS)
ICNTCN Integer*4 Number of text records in header
CDBMCN Integer*4 Creation date (MMDDYY) of BMAT file used in simulation
CTBMCN Integer*4 Creation time (HHMMSS) of BMAT file used in simulation
CDBTCN Integer*4 Creation date (MMDDYY) of BTRK file used in simulation
CTBTCN Integer*4 ’ Creation time (HHMMSS) of BTRK file used in simulation
CDBCCN Integer*4 Creation date (MMDDYY) of BCON file used in simulation
CTBCCN Integer*4 Creation time (HHMMSS) of BCON file used in simulation
CDICCN Integer*4 Creation date (MMDDYY) of ICON file used in simulation
CTICCN Integer*4 Creation time (HHMMSS) of ICON file used in simulation

E-15

TABLE E-24. INCLUDE FILE HEADIC.EXT
=

Common block Referenced by Description
CHARIC, ICPRCS, NEWICS, ICON file header block
HEADIC OPICON, OPWRCN,

ORSPIC, POICON,
RDICON, RUNMGR

CHARIC
Variables Type Dimension Description
GRDNIC Character*8 Grid definition name
SPNMIC(k) Character*4 (NSPECS) Name of species &
LVNMIC(l) Character*4 (NLEVS) Name of level
TEXTIC(20) Character*80 (20) Text description

HEADIC
Variables Type Dimension Description
CDATIC Integer*4 Creation date (MMDDYY) of ICON file
CTIMIC Integer*4 Creation time (HHMMSS) of ICON file
SDATIC Integer*4 Start date (YYDDD) of scenario
STHRIC Integer*4 Start hour (00 to 23) of scenario
TSTPIC Integer*4 . Size of step (seconds) used in simulation
FRSTIC Integer*4 First time step (seconds past start time of model scenario) on ICON file
SWLNIC Real*4 Longitude (degrees) of southwest corner of grid
SWLTIC Real*4 Latitude (degrees) of southwest corer of grid
NELNIC Real*4 Longitude (degrees) of northeast corner of grid
NELTIC Real*4 Latitude (degrees) of northeast comner of grid
DLONIC Real*4 Longitudinal increment cell (degrees)
DLATIC Real*4 Latitudinal cell increment (degrees)
NCOLIC Integer*4 Number of columns in GRID (= NCOLS)
NROWIC Integer*4 Number of rows in GRID (= NROWS)
NLEVIC Integer*4 Number of levels (= NLEVS)
NSPCIC Integer*4 Number of species in ICON file (= NSPECS)
IDUM(8) Integer*4 (8) Padding
ICNTIC Integer*4 Number of text records

E-16

TABLE E-25. INCLUDE FILE HEADIN.EXT _

Common block Referenced by

Description

CHARIN, BCPRCS, BIGGAM, Input header information, used to check file headers on
HEADIN BLKMOD, BMPRCS, BMAT, ICON, and BCON files, and to create file header on
BTPRCS, CNPRCS, CONC file.
DUMPHD, HSTEP, ICPRCS,
INIRUN, LILGAM, NEWICS,
OPSTAV, OPWRCN,
ORSPBC, ORSPBM, ORSPIC,
PQ1, RDBCON, RDBMAT,
RDBTRK, RDCONC,
RDICON, RUNMGR,
WRSTAV
CHARIN
Variables Type Dimension Description
GRDNIN Character*8 Grid definition name
SPNMIN(k) Character*4 (NSPECS) Name of species k
LVNMIN(l) Character*4 (NLEVS) Name of level /
TEXTIN(20) Character*80 (20) Text description
HEADIN
Variables Type Dimension Description
CDATIN Integer*4 Creation date of simulation (YYMMDD)
CTIMIN Integer*4 Creation time of simulation (HHMMSS)
SDATIN Integer*4 5-digit JULIAN start date (YYDDD) for model scenario
STHRIN Integer*4 Start hour (00 TO 23) for model scenario
TSTPIN Integer*4 Step size (seconds) for modet scenario
FRSTIN Integer*4 First time step (seconds past start time of model scenario) in simulation
SWLNIN Real*4 Longitude (degrees) of southwest corner of grid
SWLTIN Real*4 Latitude (degrees) of southwest comer of grid
NELNIN Real*4 Longitude (degrees) of northeast corner of grid
NELTIN Real*4 Latitude (degrees) of northeast corner of grid
DLONIN Real*4 Longitudinal increment cell (degrees)
DLATIN Real*4 Latitudinal cell increment (degrees)
NCOLIN Integer*4 Number of columns in grid (= NCOLS)
NROWIN Integer*4 Number of rows in grid (= NROWS)
NLEVIN Integer*s Number of levels (= NLEVS)
NSPCIN Integer*4 Number of species in model
ICNTIN Integer*4 Number of text records in header

— L __________________

E-17

TABLE E-26. INCLUDE FILE HSTEPS.EXT

Common block

Referenced by

Description

HSTEPS HSTEP, LILGAM Integration steps (H) for GTILDE computed by HSTEP
Variables Type Dimension Description
HSTEPS(k) Real*4 (NSPECS) Integration step
HSTPO3(2) Real*4) Integration step for OZONE, two possible conditions
IND(k) Integer*4 (NSPECS) Indicator of success in root calculation from HSTEP
= 1 = valid root
= 2 => invalid root
INDO3(2) Integer*4) Indicator of success in root calculation from HSTEP
e ———— —
TABLE E-27. INCLUDE FILE ICFILE.EXT
Common block Referenced by Description
ICFILE ICPRCS, NEWICS,RDICON Initial conditions file read by ICPRCS
Variables Type Dimension Description
ICFILE(iLk) Real*4 (NCOLS, NLEVS, NSPECS) Initial concentrations for one row

E-18

TABLE E-28. INCLUDE FILE LGBMFL.EXT

Common block Referenced by

Description

LGBMFL BMPRCS, LILGAM Intermediate BMAT file read by LILGAM written by BMPRCS
Variables Type Dimension Description
B-matrix coefficient in column for:
B12(i) Real*4 (NCOLS) layer 1/surface 2 flux
B13(i) Real*4 (NCOLS) layer 1/surface 3 flux
B21(i) Real*4 (NCOLS) layer 2/surface 1 flux
B23(i) Real*4 (NCOLS) layer 2/surface 3 flux
B32(i) Real*4 (NCOLS) layer 3/surface 2 flux
B33(i) Real*4 (NCOLS) layer 3/surface 3 flux
B-matrix coefficient in column i for species k for:
B11(i,k) Real*4 (NCOLS, NSPECS) layer 1/surface 1 flux
B22(i,k) Real*4 (NCOLS, NSPECS) layer 2/surface 2 fhx
B31(i,k) Real*4 (NCOLS, NSPECS) layer 3/surface 1 flux
Emissions source term in column { for species k for:
G1(i,k) Real*4 (NCOLS, NSPECS) layer 1
G2(i,k) Real*4 (NCOLS, NSPECS) layer 2
G3(i,k) Real*4 (NCOLS, NSPECS) layer 3
B-matrix coefficient for subgrid scale adjustment in column § for:
B11S(i) Real*4 (NCOLS) layer 1/surface 1 flux
B11SS(i) Real*4 (NCOLS) alternate layer 1/surface 1 flux
B31S(i) Real*4 (NCOLs) layer 3/surface 1 flux
B31SS(i) Real*4 (NCOLS) alternate layer 3/surface 1 flux
Run time subgrid scale adjustment parameters in column i:
QO3FAC(i) Real*4 (NCOLS) ozone factor
SSONO(i) Real*4 (NCOLS) NO surface emissions source strength
G18(i.,k) Real*4 (NCOLS, NPOXSP) emissions source term in layer 1 for primary oxidant species k
G18S(i,k) Real*4 (NCOLS, NPOXSP) allernate emissions source term in layer 1 for primary oxidant species &
GIFAC(i,k) Real*4 (NCOLS, NPOXSP) emissions source factor in layer 1 for primary oxidant species &
G3S(i,k) Real*4 (NCOLS, NPOXSP) emissions source term in layer 3 for primary oxidant species k
G38S(i,k) Real*4 (NCOLS, NPOXSP) alternate emissions source term in layer 3 for primary oxidant species k
G3FAC(i,k) Real*4 (NCOLS, NPOXSP) emissions source factor in layer 3 for primary oxidant species k
RHO(,1) Real*4 (NCOLS, X;ILEVS) Rate constants density correction factor in column i for layer £
TEMP(i,l) Real*4 (NCOLS, NLEVS) Absolute temperature for rate constants adjustment in column { for layer/
WVC(i,l) Real*4 (NCOLS, NLEVS) Water vapor concentration for rate constants adjustment in column i for
layer!
THETA() Real*4 (NCOLS) Solar zenith angle for photolytic rate constants adjustment in column i
PSI2(3) Real*4 (NCOLS) Cloud cover correction factor for photolytic rate constants adjustment in
column i '
ZLEV(i)) Real*4 (NCOLS,NLEVS + 1) Heights above sea level in column i (used for rate constant adjustments)

for layer/

E-19

TABLE E-29. INCLUDE FILE LILGSP.EXT

Common block Referenced by Description
LILGSP HSTEP, LILGAM, OPSTAV, Contains special SPECIES control for LILGAM
PQ1, WRSTAV
Variables Type Dimension Description
INBIG3(k) Logical*4 (NSPECS) .TRUE. for SPECIES NO, NO,, O3, otherwise .FALSE.
NOHIT Integer*4 Index for NO
NOZHIT Integer*4 Index for NO,
O3HIT Integer*4 Index for O3
OLEHIT Integer*4 Index for OLE
PARHIT Integer*4 Index for PAR
TRCHIT Integer*4 Index for METH
NONHIT Integer*4 Index for NONR
TABLE E-30. INCLUDE FILE LUNITS.EXT
Common block Referenced by Description
LUNITS BLKMOD, DUMPHD, ICPRCS, NEWICS, OPBCON, UNIT numbers of input and output files
OPCONC, OPICON, OPSTAV, OPWRCN, POBCON,
POBTRK, POCONC, POICON, POMXBM, POSTAV,
RDBCON, RDBT, RDCONC, RDHDBM, RDICON,
RDMXBM, RDSTAV, RUNMGR, WRCONC,
WRSTAV
Variables Type Value Description
NUMBMF Integer*4 6 Maximum number of multipie BMAT subfiles
LUNITS
Variables Type Dimension Description
UNITBC Integer*4 Logical unit number of BCON file
UNITBM Integer*4 Logical unit number of BMAT subfile
UNITBT Integer*4 Logical unit pumber of BTRK file
UNITCN Integer*4 Logical unit number of CONC file
UNITIC Integer*4 Logical unit number of ICON file
UNITSV Integer*4 Logical unit number of STATE VECTOR file
UNITNI Integer*4 Logical unit number of NEW ICON file
UNITST Integer*4 Logical unit number of STOP file
UNITPR Integer*4 Logical unit number of PROGRESS file

—
————

E-20

TABLE E-31. INCLUDE FILE LVNAME.EXT

Common block Referenced by Description
LVNAME BLKXMOD, INIRUN Level names for model processors
Variables Type Dimension Description
LVNAME() Character*4 (NLEVS) Name of Ith level in model order
TABLE E-32. INCLUDE FILE NDXPC.EXT
Common block Referenced by Description
NDXSPC BCPRCS, BMPRCS, Index lists for SPECIES ordering of input files
DUMPHD, ICPRCS,
NEWICS, OPSTAV,
ORSPBM, ORSPBC, ORSPIC,
WRSTAV
Variables Type Dimension Description
NXSPIC(k) Integer*4 (NSPECS) Position of kth specie in model on ICON file
NXSPBC(k) Integer*4 (NSPECS) Pasition of kth specie in model on BCON file
NXSPBM(k) Integer*4 (NSPECS) Position of kth specie in model on BMAT file
TABLE E-33. INCLUDE FILE NROOTS.EXT
Common block Referenced by Description
NROOTS HSTEP, LILGAM HSTEP roots counts
Variables Type Dimension Description
NCMPLX Integer*4 Number of complex roots of characteristic polynomial computed
NPOS Integer*4 Number of positive roots of characteristic polynomial computed
NDBL Integer*4 Number of doubic roots of characteristic polynomial computed
NTRPL Integer*4 Number of triple roots of characteristic polynomial computed

E-21

TABLE E-34. INCLUDE FILE RKLEVS.EXT
S e e

Common block Referenced by Description
RKLEVS BLKMOD, RTPHO
Variables Type Dimension Description
RKL() Real*4 (NRKL) Level I for which photolytic rate constant is given
NRKL Integer*4 11 Number of levels in table (from DIMENS.EXT)
TABLE E-35. INCLUDE FILE ROWSCT.EXT
Common block Referenced by Description
ROWSCT BMPRCS, RDBMAT, RDBTRK, Local row counters for 1/O processes
RDCONC, RDSTAV, RUNMGR,
WRSTAV
Variables Type Dimension Description
BMPSRW Integer*4 Row counter for BMPRCS
RDBMRW Integer*4 Row counter for RDBMAT
RDBTRW Integer*4 Row counter for RDBTRK
RDCNRW Integer*4 Row counter for RDCONC

E-22

TABLE E-36. INCLUDE FILE RTCONS.EXT

Common block Referenced by Description
RTCONS BLKMOD, LILGAM, PQ1, Chemistry reaction and rate constants information
PQCOEF, RATED, RTPHO,
RTSET
Variables Type Dimension Description
CGA(k,l) Real*4 (NSPECS, NLEVS) Advection component of concentration for species & in level /
GPR(k,)) Real*4 (NSPECS, NLEVS) Chemistry component of concentration for species k in level /
ADTVF(k) Real*4 (NSPECS) Product of advection component and vertical flux component of
concentration for species k
INVADT(k) Real*4 (NSPECS) 1/ ADTVF(NSPECS)
RK1(m,l) Real*4 (NRCT, NLEVS) Rate constant for reaction m in level/
RKK1(m) Real*4 (NRCT) Rate constant for reaction m
RKTADV(m) Real*4 (NRCT) Product of rate constant for reaction m and advection component
and vertical flux of concentration
PQM(m) Real*4 (NRCT) Product of RKTADV and chemistry component of concentration
for reaction m
CSPR1(m,n,]) Real*4 (5, 0:90, NRKL) Clear sky photolytic reaction rate constant for reaction number
m=1-5 solar angles n=0-90, rate constant level
I =1 -NRKL,; for Carbon Bond 4.2:
m = 1 corresponds to reaction number 1
m = 2 corresponds to reaction number 8
m = 3 corresponds to reaction number 33
m = 4 corresponds to reaction number 34
m = 5 corresponds to reaction number 40
NRCT 84 Number of reactions in chemistry solver (from DIMENS.EXT)
NRKL 11 Number of levels at which photolytic rate constant is given (from
DIMENS.EXT)
TABLE E-37. INCLUDE FILE RTSHBC.EXT
Common block Referenced by Description
- RTSHBC RDBCON BCON file real time step header block
Variables Type Dimension Description
DATBC Real*4 5-digit JULIAN date (YYDDD) on BCON file
TIMBC Real*4 6-digit time (HHMMSS) on BCON file
ELPBC Real*4 Elapsed time (seconds) since start time for BCON scenario
STPBC Real*4 Step number on BCON file '

TABLE E-38. INCLUDE FILE RTSHBM.EXT

Common block Referenced by Description

RTSHBM RDBMAT BMAT file real time step header block
Variables Type Dimension Description
DATBM Real*4 5-digit JULIAN date (YYDDD) on BMAT file
TIMBM Real*4 6-digit time (HHMMSS) on BMAT file
ELPBM Real*4 Elapsed time (seconds) since start time for BMAT scenario
STPBM Real*4 Step number on BMAT file

TABLE E-39. INCLUDE FILE RTSHBT.EXT
—

Common block Referenced by Description

RTSHBT RDBTRK BTRK file real time step header block
Variables Type Dimension Description
DATBT Real*4 5-digit JULIAN date (YYDDD) on BTRK file
TIMBT Real*4 6-digit time (HHMMSS) on BTRK file
ELPBT Real*4 Elapsed time (seconds) since start time for BTRK scenario
STPBT Real*4 Step number on BTRK file

E-24

TABLE E-40. INCLUDE FILE RTSHCN.EXT

Common block Referenced by Description
RTSHCN RDCONC, WRCONC CONC file real time step header block
Variables Type Value Description
IDLT Integer*4 NLEVS xNCOLS - 4 Number of words for padding time step header for file fixed
record length
RTSHCN
Variables Type Dimension Description
DATCN Real*4 (IDLT) S-digit JULIAN date (YYDDD) on CONC file
TIMCN Real*4 6-digit time (HHMMSS) on CONC file
ELPCN Real*4 Elapsed time (seconds) since start time for CONC scenario
STPCN Real*4 Step number on CONC file
RDUMCN(m) Real*4 Dummy array for padding time step header out to record length
for fixed record length file

TABLE E-41. INCLUDE FILE RTSHIC.

—

Common block Referenced by Description
RTSHIC NEWICS, RDICON CONC file real time step header block
Variables Type Value Description
IDLT Integer*4 NLEVS xNCOLS - 4 Number of words for padding time step header for file fixed
record length
RTSHIC
Variables Type Dimension Description
DATIC Real*4 (IDLT) 5-digit JULIAN date (YYDDD) on ICON file
TIMIC Real*4 6-digit time (HHMMSS) on ICON file
ELPIC Real*4 Elapsed time (seconds) since start time for ICON scenario
STPIC Real*4 - Step number on ICON file
RDUMIC(m) Real*4 Dummy array for padding time step header out to record length
for fixed record length file

E-25

TABLE E-42. INCLUDE FILE RUNTMS.EXT

Common block Referenced by Description
RUNTMS BIGGAM, RUNMGR, Run timing statistics
TIMER
Variables Type Dimension Description
RUNCPU Real*4 Elapsed CPU time for current run
RUNCLK Real*4 Elapsed clock time for current run
OLDCPU Real*4 Elapsed CPU time of prior step
OLDCLK Real*4 Elapsed clock time of prior step
KDATE Integer*4 Current clock date (during execution)
KTIME Integer*4 Current clock time (during execution)
TABLE E-43. INCLUDE FILE SPNAME.EXT
Common block Referenced by Description
SPNAME BLKMOD, DUMPHD, Species names list in model order
INIRUN, LILGAM, ORSPBC,
ORSPBM, ORSPIC, PQ1
Variables . Type Dimension Description
SPNAME(k) Character*4 (NSPECS) Name of kth species in model order
TABLE E44. INCLUDE FILE STOPFL.EXT

Common block Rctcm;ced by Description

STOPFG BLKMOD, RUNMGR Stop flag
Variables Type Dimension Description

Characier string:

STOPFG Character*4 .EQ. 'STOP’ = model run halts at end of current time step

.NE. 'STOP’ = model run continues

TABLE E45. INCLUDE FILE SUBID.EXT

Common block

Referenced by Description

SUBID

ADATE, ASORT, BCPRCS, BIGGAM, Internal module description listed at run time by PRGSMY
BLKMOD, BMPRCS, BTPRCS, CELLM,
CLOCKI1, CLOCK2, CNPRCS, CPUTIM,
DATTIM, DUMPHD, FSKIP1, GTILDE,
HSTEP, ICPRCS, INDEX1, INIRUN, 10CL,
JFILEZ2, JFILES, JFILE6, JULIAN, JUNIT,
LILGAM, NEWICS, OPBCON, OPBMAT,
OPBTRK, OPCONC, OPICON, OPSTAV,
OPWRCN, ORSPBC, ORSPBM, ORSPIC,
POBCON, POBTRK, POCONC, POICON,
POMXBM, POSTAV, PQ1, PQCOEF,
PRGSMY, RATED, RDBCON, RDBMAT,
RDBT, RDBTRK, RDCHAR, RDCONC,
RDFILE, RDHDBM, RDICON, RDMXBM,
RDSTAV, RTPHO, RTSET, RUNMGR,
TIMER, WRCHAR, WRCONC, WRFILE,
WRSTAV

Variables

Type Dimension Description

SUBDES
SUBDTE
SUBNAM
SUBVER

Character*80 Description of module
Character*12 Date of last update of module
Character*8 Module name

Character*8 ’ Module version

E-27

TABLE E-46. INCLUDE FILE TEXTPT.EXT

Common block Referenced by Description

TEXTPT BCPRCS, BIGGAM, BLKMOD, BMPRCS, BTPRCS, Text pointers for all processes
CNPRCS, ICPRCS, LILGAM, RDBCON, RDBMAT,
RDBTRK, RDCONC, RDICON, RDSTAV, RUNMGR,
WRCONC, WRSTAV

Variables Type Dimension Description

BIGMPT Integer*4 Text pointer for BIGGAM process
LILGPT Integer*4 Text pointer for LILGAM process

BCPSPT Integer*4 Text pointer for BCON process (BCPRCS)
BMPSPT Integer*4 Text pointer for BMAT process (BMPRCS)
BTPSPT Integer*4 Text pointer for BTRK process (BTPRCS)
CNPSPT Integer*4 Text pointer for CONC process (CNPRCS)
ICPSPT Integer*4 Text pointer for ICON process (ICPRCS)
RDBCPT Integer*4 Text pointer for RDBCON process
RDBMPT Integer*4 Text pointer for RDBMAT process
RDBTPT Integer*4 Text pointer for RDBTRK process
WRCNPT Integer*4 Text pointer for WRCONC process
RDICPT Integer*4 Text pointer for RDICON process
RDCNPT Integer*4 Text pointer for RDCONC process
WRSVPT Integer*4 Text pointer for WRITE STATE VECTORS process (WRSTAV)

TABLE E-47. INCLUDE FILE TILDEEXT

Common block Referenced by Description

TILDE GTILDE, LILGAM, PQ1 GTILDE values
Variables Type Dimension Description
GTILD1(k) Real*4 (NSPECS) GTILDE values for LEVEL ONE
GTILD2(k) Real*4 (NSPECS) GTILDE values for LEVEL TWO
GTILD3(k) Real*4 (NSPECS) GTILDE values for LEVEL THREE
GTI(k,) Real*4 (NSPECS, NLEVS) GTILDE values for ONE ROW

NOTE: DIMENSION GTI(NSPECS, NLEVS)
EQUIVALENCE (GTI, GTILD1)

—

E-28

TABLE E48. INCLUDE FILE TSHDBC.EXT

Common block Referenced by Description
TSHDBC POBCON, RDBCON BCON file time step header block
Variables Type Dimension Description
IDATBC Integer*4 5-digit JULIAN date (YYDDD) on BCON file
ITIMBC Integer*4 6-digit time (HHMMSS) on BCON file
IELPBC Integer*4 Elapsed time (seconds) since start time for BCON scenario
ISTPBC Integer*4 Step number on BCON file
TABLE E-49. INCLUDE FILE TSHDBM.EXT
Common biock Referenced by Description
TSHDBM POMXBM, RDBMAT BMAT file time step header block
Variables Type Dimension Description
IDATBM Integer*4 5-digit JULIAN date (YYDDD) on BMAT file
ITIMBM Integer*4 6-digit time (HHMMSS) on BMAT file
IELPBM Integer*4 Elapsed time (seconds) since start time for BMAT scenario
ISTPBM Integer*4 Step number on BMAT file
TABLE E-50. INCLUDE FILE TSHDBT.EXT
Common block Referenced by Description
TSHDBT POBTRK, RDBTRK BTRK file time step header block
Variables Type Dimension Description
IDATBT Integer*4 5-digit JULIAN date (YYDDD) on BTRK file
ITIMBT Integer*4 6-digit time (HHMMSS) on BTRK file
IELPBT Integer*4 Elapsed time (seconds) since start time for BTRK scenario
ISTPBT Integer*4 Step number on BTRK file

E-29

) TABLE E-51. INCLUDE FILE TSHDCN.EXT

Common block Referenced by Description
TSHDCN CNPRCS, NEWICS, CONC file time step header block
POCONC, RDCONC,
WRCONC
Variables Type Dimension Description
IDATCN Integer*4 5-digit JULIAN date (YYDDD) on CONC file
ITIMCN Integer*4 6-digit time (HHMMSS) on CONC file
IELPCN Integer*4 Elapsed time (seconds) since start time for model scenario
ISTPCN Integer*4 Step number on CONC file
TABLE E-52. INCLUDE FILE TSHDIC.EXT
Common block Referenced by Description
TSHDIC CNPRCS, ICPRCS, NEWICS, ICON file time step header block
POICON, RDICON
Variables Type Dimension Description
IDATIC Integer*4 5-digit JULIAN date (YYDDD) on ICON file
ITIMIC Integer*4 6-digit time (HHMMSS) on ICON file
IELPIC Integer*4 Elapsed time (seconds) since start time for model scenario
ISTPIC Integer*4 Step number on ICON file
—
TABLE E-53. INCLUDE FILE TSHDMD.EXT
Common block Referenced by Description
TSHDIN BIGGAM, RUNMGR Model time step header block
Variables Type Dimension Description
IDATMD Integer*4 5-digit JULIAN date (YYDDD) of current modetl step
ITIMMD Integer*4 6-digit time (HHMMSS) of current model step
IELPMD Integer*4 Elapsed time (seconds) since start time for model scenario
ISTPMD Integer*4 Step number of current model step

E-30

' TABLE E-54. INCLUDE FILE TSHDSV.EXT

Common block Referenced by Description
TSHDSV POSTAV, RDSTAV, STATE VECTOR file time step header block
RUNMGR, WRSTAV
Variables Type Dimension Description
IDATSV Integer*4 5-digit JULIAN date (YYDDD) on STATE VECTOR file
ITIMSV Integer*4 6-digit time (HHMMSS) on STATE VECTOR file
IELPSV Integer*4 Elapsed time (seconds) since start time for model scenario
ISTPSV Integer*4 Step number on STATE VECTOR file
TABLE E-55. INCLUDE FILE TSTEPS.EXT
Common block Referenced by Description
TSTEPS BIGGAM, BCPRCS, BMPRCS, BTPRCS, Time step information for processes
ICPRCS, CNPRCS, INIRUN, RDBCON,
RDBMAT, RDBTRK, RDCONC, RDICON,
RDSTAV, RUNMGR, WRSTAV
Variables Type Dimension Description
MDDATE Integer*4 Date of current step in RUNMGR
MDTIME Integer*4 Time of current step in RUNMGR
MDELAP Integer*4 Elapsed time from start of scenario (seconds) in RUNMGR
MDSTEP Integer*4 Current step number in RUNMGR
BCDATE Integer®4 Date of current step in BCON process
BCTIME Integer*4 Time of current step in BCON process
BCELAP Integer*4 Elapsed time from start of scenario (seconds) in BCON process
BCSTEP Integer*4 Current step number in BCON process
BMDATE Integer*4 Date of current step in BMAT process
BMTIME Integer*4 Time of current step in BMAT process
BMELAP Integer*4 Elapsed time from start of scenario (seconds) in BMAT process
BMSTEP Integer*4 Current step number in BMAT process
BTDATE Integer*4 Date of current step in BTRK process
BTTIME Integer*4 Time of current step in BTRK process
BTELAP Integer*4 Elapsed time from start of scenario (seconds) in BTRK process
BTSTEP Integer*4 Current step number in BTRK process
CNDATE Integer*4 Date of current step in CONC process
CNTIME Integer*4 Time of current step in CONC process
CNELAP Integer*4 Elapsed time from start of scenario (seconds) in CONC process
CNSTEP Integer*4 Current step number in CONC process
ICDATE Integer*4 Date of current step in ICON process
ICTIME Integer*4 Time of current step in ICON process
ICELAP Integer*4 Elapsed time from start of scenario (seconds) in ICON process
ICSTEP Integer*4 Current step number in ICON process

E-31

TABLE E-56. INCLUDE FILE UNITIO.EXT

Common block Referenced by Description

UNITIO ADATE, BCPRCS, BIGGAM, BLKMOD, Logical unit numbers of system-defined default FORTRAN
BMPRCS, BTPRCS, CELLM, CPUTIM, standard input and output files
DATTIM, DUMPHD, FSKIP1, ICPRCS,

INIRUN, JFILE2, JFILES, JFILE6,
JUNIT, LILGAM, NEWICS, OPBCON,
OPBMAT, OPBTRK, OPCONC,
OPICON, OPSTAV, OPWRCN, ORSPBC,
ORSPBM, ORSPIC, POBCON, POBTRK,
POCONC, POICON, POMXBM,
POSTAYV, PQ1, PRGSMY, RDBCON,
RDBMAT, RDBT, RDBTRK, RDCONC,
RDHDBM, RDICON, RDMXBM,
RDSTAV, RUNMGR, WRCONC,

WRSTAV
Variables Type Dimension Description
LUNIN Integer*4 Logical unit number of standard input file
LUNOUT Integer*4 Logical unit number of standard output file
—— — —
TABLE E-57. INCLUDE FILE ZADVSL.EXT
Common block Referenced by Description
ZERADV BIGGAM, BLKMOD " Positive "zero” values to replace negative advection solutions
calculated by BIGGAM

Variables Type Dimension Description
ZADVSI(k) Real*4 (NSPECS) Replacement value for species k

E-32

APPENDIX F

CORE MODEL ERROR CHECKING

F-1

SUBROUTINE ADATE

ERROR CHECK #1:

In subroutine ADATE, the current date (month, day, year) is obtained by calling an internal system routine.
The month, day, and year are then written to an internal formatted buffer (CDATE). The I/O status value of
the formatted write operation is stored in the variable IOST. If IOST is not equal to zero, then a write error
has occurred. A message is written to the log indicating that an error has occurred. The error message con-
tains the subroutine name, the month, the day, the year, and the I/O status value. The program exits by a call
to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c
C get date from system

CALL IDATE (IMON, IDAY, IYEAR)

WRITE (CDATE, 1001, IOSTAT=10ST) IMON, IDAY, IYEAR
1001 FORMAT(312.2)

IF (10ST .NE. 0) THEN

WRITE (LUNOUT, 2001) IMON, IDAY, IYEAR, 10ST

2001 FORMAT(/ 5X, 'XXX% ERROR ENCODING DATE IN ADATE!'

& / 5X, 'IMON = ', 14, 2X, 'IDAY = ', 14,
& 2x, 'IYEAR = ', 14, 2X, '1/0 STATUS = ', 14)
CALL EXIT
END IF

SUBROUTINE ASORT
NONE
SUBROUTINE BCPRCS
ERROR CHECK #1:

The BCON time step header is read by calling subroutine RDBCON. The parameter IOST is passed to
RDBCON. Upon return from subroutine RDBCON, IOST contains the I/O status of the read of the BCON time
step header. 10ST is tested; if IOST is Jess than zero, an end-of-file marker was reached, and control is passed
back to the calling subroutine BIGGAM. If IOST is not equal to zero, then an error occurred on the read
operation. A message is written to the log indicating that an error has occurred. The error message contains
the subroutine name, the time and date that were read from the BCON time step header, and the 1/O status
value. The program exits by a call to the system subroutine EXIT. '

CODE FOR ERROR CHECK #1:

c
C read BC T.S.H.

CALL RDBCON (IOST)
[

1F (I10ST .LT. 0) RETURN

IF (JOST .NE. 0) THEN

WRITE (LUNOUT, 2001) BCDATE, BCTIME, 10ST

2001 FORMAT(/ 5X, '%XX READ ERROR ON T.S.H. FROM BCON FILE®

& / 5X, 'BCDATE = ', 16.6, 2X, 'BCTIME = ', 16.6
& / 5%, '170 STATUS = ', 18 /)
CALL EXIT
END IF
SUBROUTINE BIGGAM
ERROR CHECK #1:

Calls are made to the following subroutines:

ICPRCS to read the ICON time step header

BCPRCS to read the BCON time step header

BTPRCS to read the backtrack time step header

ICPRCS to read the initial condition concentrations data
LILGAM to write the advection time step header

BCPRCS 1o read the boundary conditions data

BTPRCS 0 read the backtrack locations and diffusivities data

A distinctive parameter is passed into each of these subroutines - the 1/O status value of a read or write oper-
ation performed in the called subroutine. This parameter is tested. If it is not equal to zero, then either an
end-of-file marker was reached or an error was encountered in the subroutine that was called. If the
par'ameter is not equal to zero, then the variable [IEOFBG in BIGGAM is set 10 a specific number but not zero.
IEOFBG is set to a number determined by the routine in which the end of file was reached. IEOFBG is tested
in subroutine BIGGAM. Ifit is not equal to zero, an error message is written to the log indicating that an error

has occurred. The error message contains the subroutine name and the value of IEOFBG. Control is
returned back to the calling program RUNMGR.

CODE FOR ERROR CHECK #1:

C read BGIC T.S.H.
CALL ICPRCS (IEOFIC)
1F (IEOFIC .NE. 0) IEOFBG = 1

C read BGBC T.S.H.
CALL BCPRCS (1EOFBC)
IF (IEOFBC .NE. 0) IEOFBG

"
n

C read BGBT T7.S.H.
CALL BTPRCS (IEOFBT)
IF (IEOFBT .NE. 0) IEOFBG = 3

C read initial condition concentrations
CALL ICPRCS (IEOFIC)
1f (1EOFIC .NE. O) 1EOFBG = 4

C write ADVS T.S.H. (done here so that ICON's can be copied to CONC)
CALL LILGAM (1EOFLG)

1IF (1EOFLG .NE. 0) IEOFBG = 7
c
C read boundary corditions

CALL BCPRCS (IEOFBC)

1F (1EOFBC .NE. 0) IEOFBG = S5

C read backtrack locations and diffusivities
CALL BTPRCS (1EOFBT)
IF (1EOFBT .NE. 0) IEOFBG = 6

IF (IEOFBG .NE. 0) THEN
WRITE (LUNOUT, 2001) IEOFBG
2001 FORMAT(// 5X, 'XXX BIGGAM NOT GETTING DATA’
& / 2X, ‘1ECFBG: ', 14 /)
RETURN
END IF

ERROR CHECK #2:

Calls are made to the following subroutines:

BCPRCS 1o read the BCON time step header

BTPRCS to read the backtrack time step header

ICPRCS to read the ICON file data

LILGAM to write the advection time step header

BCPRCS to read the boundary conditions data

BTPRCS to read the backtrack locations and diffusivities data

A distinctive parameter is passed into each of these subroutines - the /O status value of a read or write oper-
ation performed in the called subroutine. This parameter is tested. If it is not equal to zero, then either an
end-of-file marker was reached or an error was encountered in the subroutine that was called. If the
parameter is not equal to zero, then the variable IEOFBG in BIGGAM is set to a specific number - but not to
zero. IEOFBG is set to a number determined by the routine in which the end of file was reached. IEOFBG is

F-4

tested in subroutine BIGGAM. If it is not equal to zero, an error message is written to the log indicating that an
error has occurred. The error message contains the subroutine name and the value of IEOFBG. Control is
returned back to the calling program RUNMGR.

CODE FOR ERROR CHECK #2:

o0

read BGBC T.S.H.
CALL BCPRCS (IEOFBC)
IF (IEOFBC .NE. 0) I1EOFBG

"
V]

C read BGBT T7.S.H.
CALL BTPRCS (I1EOFBT)

IF (IEQFBT .NE. 0) IEOFBG = 3
C
C read BGIC file

CALL ICPRCS (lEOFIC)

IF (IEOFIC .NE. 0) IEOFBG = 1
c
C write ADVS T.S.H.

CALL LILGAM (IEOFLG)

IF (IEOFLG .NE. 0) IEOFBG = 7
c
C read boundary conditions

CALL BCPRCS (IEOFBC)

IF (1EOFBC .NE. O) IEOFBG = 5

C read backtrack locations and diffusivities
CALL BTPRCS (IEOFBT)
IF (1EOFBT .NE. 0) IEOFBG = 6

c
IF (IEOFBG .NE. 0) THEN
WRITE (LUNOUT, 2001) !EOFBG
RETURN
END IF
SUBROUTINE BMPRCS
ERROR CHECK #1:

The BMAT time step header is read by calling subroutine RDBMAT. The parameter IOST is passed to
RDBMAT. Upon return from subroutine RDBMAT, IOST contains the read of the BMAT time step header.
IOST is tested; if IOST is less than zero, then an end-of-file marker was reached and control is passed back to
the calling routine BIGGAM. If IOST is not equal to zero then an error occurred on the read operation. A
message is written to the log indicating that an error has occurred. The error message contains the subroutine
name, the time and date that were read from the BMAT time step header, and the I/O status value. The
program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

9
C read BM T.S.H.

CALL RDBMAT (10ST)
o

IF (10ST .LT. 0) RETURN

IF (10ST .NE. 0) THEN

WRITE (LUNOUT, 2001) BCDATE, BCTIME, 10ST

2001 FORMAT(/ 5X, 'X%X% READ ERROR ON T.S.H. FROM BMAT FILE®

& / 5X, 'BMDATE = ', 16.6, 2X, 'BMTIME = ', 16.6
& / 5X, '1/0 STATUS = ', 18 /)
CALL EXIT
END IF
SUBROUTINE BTPRCS
ERROR CHECK #1:

The BTRK time step header is read by calling subroutine RDBTRK. The parameter IOST is passed to RDBTRK.
Upon return from subroutine RDBTRK, IOST contains the I/O status of the read operation of the BTRK time
step header. IOST is tested; if IOST is less than zero, then an end-of-file marker was reached and control is
passed back to the calling routine BIGGAM. If IOST is not equal to zero, then an error occurred on the read
operation. A message is written to the log indicating that an error has occurred. The error message contains
the subroutine name, the time and date that were read from the BTRK time step header, and the /O status
value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

4
C read BT T.S.H.
CALL RDBTRK (10ST)

c
IF (10ST .LT. 0) RETURN.
1F (10ST .NE. 0) THEN
WRITE (LUNOUT, 2001) BTDATE, BTTIME, 10ST
2001 FORMAT(/ 5X, '%XX% READ ERROR ON T.S.H. FROM BTRK FILE®
& / 5X, 'BTDATE = *, [6.6, 2X, "BTTIME = *, 16.6
& 7 SX, ‘170 STATUS = ¢, 18 /)
CALL EXIT .
END IF
SUBROUTINE CELLM
ERROR CHECK #1:

The parameter GRDNM is passed to subroutine CELLM. GRDNM is the grid name from the standard input
file (user supplied input). GRDNM is tested against the three defined grid names (NEROS1, SEROSI,

F-6

ROMNET]1). If GRDNM is not equal to one of these, then a message is written to the log indicating that an
error has occurred. The error message contains the subroutine name and "GRDNM'. The program exits by a
call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c
DIMENSION GRDNMS(NREG)
Cc
DATA GRDNMS / 'NEROS1 ', 'SEROS1 ', 'ROMNET1 ' /
C
C assume grid region is not defined
c

C assume grid region is not defined

DO 101 IRG = 1, NREG

IF (GRDNM .EQ. GRDNMS(IRG)) GO 7O 201

101 CONTINUE
[
C grid region is not defined

WRITE(LUNOUT, 2001) GRDNM
2001 FORMAT(// 5X, '%%X ERROR ABORT IN CELLM XXX'

& 3X, 'GRID REGION ', A8, ' IS NOT DEFINED')
CALL EXIT

SUBROUTINE cLOCK1

NONE

SUBROUTINE cLock2

NONE

SUBROUTINE CNPRCS

NONE

SUBROUTINE CPUTIM

NONE

SUBROUTINE DATTIM

F-7

A call to subroutine ADATE is made. The parameter DATE is passed to the subroutine ADATE. ADATE
returns the current date (MMDDYY) from the system in the character string DATE. The parameter TIME is

passed into the subroutine ADATE. ADATE returns the current time (HHMMSS) from the system in the
character string TIME.

ERROR CHECK #1:

From the character string DATE the current month, day, and year are extracted by a formatted read opera-
tion. The J/O status value of the read operation is stored in the variable IOST. 1OST is tested, and if not
equal to zero, then a read error has occurred. A message is written to the log indicating that an error has
occurred. The error message contains the subroutine name, the month, day, year, and I/O status value. The
program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c
C date
C
CALL ADATE (DATE, TIME, TSTR)
READ (DATE, 1001) IMON, IDAY, IYEAR
1001 FORMAT(312)
IF (IOST .NE. 0) THEN
WRITECLUNOUY, 2001) IMON, IDAY, IYEAR, IOST
2001 FORMAT(/ 5X, 'XXX ERROR ENCODING DATE IN DATTIM '/
& / 5X, "IMON =', 18, 2X, 'IDAY =', 18,
& 2X, 'IYEAR =*, 18, 3X, '1/O STATUS = ', 12 /)
CALL EXIT
END IF

ERROR CHECK #2:

From the character string TIME, the current hour, minute, and second are extracted by a formatted read
operation. The I/O status value of the read operation is stored in the variable IOST. 10ST is tested, and if not
equal to zero, then a read error has occurred. A message is written to the log indicating that an error has
occurred. The error message contains the subroutine name, the hour, the minute, the second, and 1/O status
value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

C
C time
c
READ (TIME, 1001, IOSTAT = 10ST) IHR, IMIN, 1SEC
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2003) IHR, IMIN, ISEC, 10ST
2003 FORMAT(/ S5X, 'XX% ERROR ENCODING TIME IN DATTIM '/

& / 5X, "IHR =', 18, 2X, 'IMIN =', 18,
& 2X, 'ISEC =', 18, 3X, '1/0 STATUS = ', 12 /)
CALL EXIT
END IF
SUBROUTINE pumMPHD
ERROR CHECK #1:

The BMAT file requires a large amount of disk space and may have been written to several smaller subfiles on

different disk packs (since each pack may not individually have had sufficient space to contain the entire file).

These subfiles would then be assigned separate logical names in the job’s run stream. In subroutine RDMXBM,
the subfile number is tested. If the test fails, then the B-matrix subfiles are out of order. A call to subroutine

DUMPHD is made. The subfile number (ISUB) is the parameter passed to DUMPHD. Upon return from

DUMPHD, the program exits by issuing a call to the system subroutine EXIT. In subroutine DUMPHD, a message

is written to the log indicating that an error has occurred. The error message states that an error occurred in

the BMAT sequence, and also states the subfile number, the unit number, the logical name of the file, and the

actual name of the file.

CODE FOR ERROR CHECK #1:

c
from subroutine RDMXBM
C verify subfile
IF (ISUBFL .NE. ISUB .OR. NSUBFL .NE. NSUB) THEN
CALL DUMPHD (ISUB)

CALL EXIT
END IF
In subroutine DUMPHD:
c
c

INQUIRE (FILE = FLNMBM(ISUB), NAME = EQNAME)
WRITECLUNOUT, 2001) ISUB, UNITBM, FLNMBM(ISUB), EQNAME
2001 FORMAT(/ 5X, 'XXX SUBFILE INCORRECT IN BMAT SEQUENCE:'

& / ' SUBFILE NUMBER', I3, 3X, 'JOB ABORTED'
& 7 5X, 'UNITBM = 1, 12, 'FNAME = ', AB
& / 3X, 'EQNAME = ', A64)

ERROR CHECK #2:

An iteration over the number of species is made. For each iteration, the following takes place:

+ Acall to the function INDEX1 occurs. SPNAME(ISPC), and SPNMBM are passed into INDEXI1.
(SPNMBM is an array containing the species name in the BMAT list, obtained from the BMAT
header. SPNAME is an array containing the list of species names for the model.)

« The position of each of the species names of the model is searched for in the list of species names
from the BMAT list of species names. This positional value is assigned to the variable SPCNUM
in the subroutine DUMPHD.

« If SPCNUM equals zero, then the species name was not found in the BMAT list of species names.
A message is written to the log indicating that an error has occurred.

The error message contains the subroutine name, the current species name that is being considered (SPNA-

ME(ISPC)), the models species name (SPNMIN(ISPC)), and the value of SPCNUM (which should be zero).
The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

C
DO 101 ISPC = 1, NSPCIN
c
C check that model species name i in BMATRIX species list
C and get model list species’ name position in BMATRIX list
SPCNUM = INDEX1 (SPNAME(ISPC), NSPCBM, SPNMBM)
IF (SPCNUM .EQ. 0) THEN
WRITE(LUNOUT, 2009) SPNAME(ISPC)
2009 FORMAT(/ SX, 'XXX ERROR IN DUMPHD®
& / 5X, 'species', 2X, A4, 2X,
& 'is not present on BMATRIX file--job aborted')
WRITECLUNOUT, 2011) SPNMIN(CISPC), SPNAME(ISPC), SPCNUM
2011 FORMAT(6X, A4, 8X, A4, 7X, 14.2)
CALL EXIT
END IF
101 CONTINUE

SUBROUTINE FsKIP1

This subroutine positions a file by skipping forward or backward.

ERROR CHECK #1:

The amount of records to skip is computed and stored in the variable IFORWD. An iteration of IFORWD
takes place in order to skip the appropriate amount of records. For each iteration the following takes place:

« If the file is formatted, then a formatied read takes place.

- If the file is unformatted, then an unformatted read takes place. The record to be skipped is read

into a dummy variable.

F-10

+ The I/O status value of the read operation is stored in the variable IOST. If IOST is not equal to
zero, then a read error has occurred. A message is written to the log indicating that an error has
occurred.

The error message contains the subroutine name, the unit number of the file and the I/O status value. The
program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

DO 111 ISKP = 1, 1FORWD

IF (FMTD) READ(CIDEV, 1001, IOSTAT = 10ST) DUM
1001 FORMAT (A1)

IF (.NOT. FMTD) READ(IDEV, IOSTAT = IOST) IDUM

IF (IOST .NE. 0) THEN
WRITECLUNOUT, 2001) IDEV, 10ST
2001 FORMAT(/ 5X, 'XXX 1/0 ERROR IN FSKIP!

& / 5%, 'IDEV = ', I3, 2X, '1/0 STATUS = ', 1I3)

CALL EXIT

END IF

111 CONTINUE

ERROR CHECK #2:

Records are skipped by moving forward through the file until an end-of-file marker is reached. For each
record skipped the following takes place:

- . Ifthe file is formatted, then a formatted read takes place.

 If the file is unformatted, then an unformatted read takes place. The record to be skipped is read
into a dummy variable.

« The I/O status value of the read operation is stored in the variable IOST.

« JOST is tested. If IOST is less than zero, then an end-of-file marker is reached. The file is
rewound. Records are skipped and control is returned to the calling subroutine. If IOST is not
equal to zero, then a read error has occurred. A message is written to the log indicating that an
error has occurred.

The error message contains the subroutine name, the unit number of the file, and the I/O status value. The

program exits by a call to the system subroutine EXIT.

F-11

CODE FOR ERROR CHECK #2:

C
201 CONTINUE
IF (FMTD) READ(IDEV, 1001, IOSTAT = IOST) DUM
IF (.NOT. FMTD) READ(IDEV, IOSTAT = [OST) IDUM
IF (I0ST .LT. 0) THEN
REWIND IDEV
DO 211 ISKP = 1, NSKIPD + IREC
IF (FMTD) READ(IDEV, 1001, IOSTAT = JOST) DUM

IF (.NOT. FMTD) READ(IDEV, IOSTAT = IOST)
211 CONTINUE
RETURN
END IF

IF (10ST .NE. 0) THEN
WRITE(LUNODUT, 2001) IDEV, 10ST
CALL EXIT

END IF

NSKIPD = NSKIPD + 1

GO TO 201

ERROR CHECK #3:

Records are skipped by moving forward through the file until an end-of-file marker is reached. For each
record skipped the following takes place:

« If the file is formatted, then a formatted read takes place.

+ If the file is unformatted, then an unformatted read takes place. The record to be skipped is read
into a dummy variable.

+ The I/O status value of the read operation is stored in the variable IOST.

+ 1OSTis tested. IfIOST is less than zero, then an end-of-file marker is reached. Control is returned

to the calling subroutine. If IOST is not equal to zero, then a read error has occurred. A message
is written to the log indicating that an error has occurred.

The error message contains the subroutine name, the unit number of the file, and the /O status value. The
program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #3:

c
301 CONTINUE
DO 311 ISKP = 1, N2SKIP
IF (FMTD) READCIDEV, 1001, IOSTAT
IF (.NOT. FMTD) READCIDEV, IOSTAT
1F (10ST .LT. 0) RETURN
IF (1OST .NE. 0) THEN
WRITECLUNOUT, 2001) IDEV, IOST
CALL EXIT
END IF
NSKIPD = NSKIPD + 1
311 CONTINUE
RETURN
NSKIPD = NSKIPD + 1
GO TO 301

10ST) DUM
10ST) 1DUM

F-12

SUBROUTINE GTILDE

NONE

SUBROUTINE HSTEP

NONE

SUBROUTINE ICPRCS

ERROR CHECK #1:

The ICON time step header is read by calling subroutine RDICON. The parameter IOST is passed to RDICON.
Upon return from subroutine RDICON, IOST contains the I/O status of the read operation of the ICON time
step header. IOST is tested; if IOST is less than zero, then an end-of-file marker was reached and control is
passed back to the calling routine BIGGAM. If IOST is not equal to zero, then an error occurred on the read
operation. A message is written to the log indicating that an error has occurred. The error message contains
the subroutine name, the time and date that were read from the ICON time step header, and the I/O status -
value. 'I‘hé program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c

C initialize file process elapsed time and step
CALL CLOCKY (ICDATE, ICTIME, SDATIC, STHRIC, TSTPIC,
& ICELAP, ICSTEP)

IF (IDATIC _NE. ICDATE .OR. ITIMIC .NE .ICTIME) THEN
WRITE(LUNOUT, 2001) ICDATE, ICTIME, IDATIC, ITIMIC
2001 FORMAT(/ 5X, 'XXX DATES/TIMES DO NOT MATCH IN ICPRCS®

& / 5X, EXPECTED DATE AND TIME = ', 16.6, 5X, 16.6
& / 5X, 'DATE AND TIME READ =1, 16.6, 5%, 16.6)
CALL EXIT
END IF
ERROR CHECK #2:

A call to subroutine CLOSIC is made to close the ICON file. The parameter I0ST contains the T/O status value
of the close operation of the ICON file. IOST is tested. If IOST is not equal to zero, then an error has
occurred on the close operation. A message is written to the log indicating that an error has occurred. The
error message contains the subroutine name and the I/O status. The program exits by a call to the system
subroutine EXIT.

F-13

CODE FOR ERROR CHECK #2:

[
C close the ICON file

CALL CLOSIC (l0ST)

WRITE (LUNOUT, 1001) UNITIC
1001 FORMAT(/ SX, 'ICON file closed on unit *, 12 /)
[

IF (10ST .NE. Q) THEN

WRITE(LUNOUT, 2003) 10ST
2003 FORMAT(/ 5X, *XXX ICON FILE CLOSE ERROR IN ICPRCS OR',
& ' RDICON/CLOSIC: 1/0 STATUS = ', 110)

CALL EXIT
END IF

FUNCTION INDEX1

NONE

SUBROUTINE INIRUN

ERROR CHECK #1:

From the standard input file (user supplied input), the grid name is read. This is compared with the accept-’
able grid name obtained from the include file REGION.EXT. If these names do not match, then a message is
written to the log indicating that an error has occurred. The error message contains the expected grid name
and the ir{putted grid name. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

[
C read grid definition record
C
READ (LUNIN, *) GRDNIN
WRITECLUNOUT, 1003) GRONIN
1003 FORMAT(/ 10X, ‘grid name: *, A8)
c

IF (GRDNIN .NE. GRDNAM) THEN
WRITECLUNOUT, 2001) GRDNAM, GRDNIN
2001 FORMAT(/ 5X, 'XXX EXPECTED REGION NAME, ‘', A8,
&1X, 'DOES NOT MATCH INPUT REGION NAME, ', A8 /)

CALL EXIT
END IF

FUNCTION 1ocL

NONE

FUNCTION JFILE2

F-14

ERROR CHECK #1:

This function opens a file and attaches a unit number to it. The I/O status of the open operation is stored in
the variable IOST. If IOST is not equal to zero, then an error has occurred when opening the file. I0ST is
then passed as a parameter to function I0CL so that the clause field in the /O status word can be extracted.
Once extracted, IOST is passed back to JFILE2. A message is written to the log indicating that an error has
occurred. The error message contains the subroutine name, the logical name of the file, the actual name of

the file, the unit number, and the I/O status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:
c
IF (RDONLY) THEN
OPEN (UNIT = IDEV,
& IOSTAT = 10ST,
& FILE = FNAME,
Fl STATUS = ‘OLD’,
& ACCESS = 'SEQUENTIAL',
& FORM = FORMAT,
& READONLY)
STAT = 'OLD*
RD = 'YES'
ELSE
OPEN (UNIT = IDEV,
1 10STAT = IOST,
& FILE = FNAME,
& STATUS = 'UNKNOWN',
& ACCESS = 'SEQUENTIAL®,
& FORM = FORMAT)
STAT = 'UNKNOWN®
RD = 'NO'
END IF
c
INQUIRE (FILE = FNAME, NAME = EQNAME)
c

IF (IOST .NE. 0) THEN
10ST = 10CL(10ST)
WRITE (LUNOUT, 2001) FNAME, EQNAME, IDEV, 1OST
2001 FORMAT(/ 5X,'XXX ERROR ABORT IN JFILE2®

& / 5X, 'UNABLE TO OPEN SEQUENTIAL FILE ', A12
& / 5X, 'EQNAME-= ', AG4
& / 5%, 'IDEV = ', [2, 2X, '1/0 STATUS = ', 12)
CALL EXIT
END IF
FUNCTION JFILES
ERROR CHECK #1:

This function opens a file and attaches a unit number to it. The /O status of the open operation is stored in
the variable IOST. If IOST is not equal 10 zero, then an error has occurred when opening the file. JOST is

then passed as a parameter to function 10CL so that the clause field in the I/O status word can be extracted.

F-15

Once extracted I0ST is passed back to JFILES. A message is written to the log indicating that an error has
occurred. The error message contains the subroutine name, the logical name of the file, the actual name of
the file, the unit number, and the [/O status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:
c
IF (RDONLY) THEN
OPEN (UNIT = IDEV,
& 10STAT = 10ST,
1 FILE = FNAME,
& STATUS = 10LD",
& ACCESS = ISEQUENTIAL',
& FORM = FORMAT,
& RECORDTYPE = 'FIXED’,
& RECL = RECLEN,
& READONLY)
STAT = 'OLD'
RO = 'YES!
ELSE
OPEN (UNIT = 1DEV,
& I0STAT = 10ST,
& FILE = FNAME,
& STATUS = 'UNKNOMWN',
& ACCESS = 'SEQUENTIAL',
& FORM = FORMAT,
& RECORDTYPE = 'FIXED!,
& RECL = RECLEN)
STAT = 'UNKNOWN'
RD = 'NO
END IF
c
INQUIRE (FILE = FNAME, NAME = EQNAME)
c

IF (IOST .NE. 0) THEN
10ST = 10CL(10ST) .
WRITE (LUNQUT, 2001) FNAME, EQNAME, 1DEV, 10ST
2001 FORMAT(/ 5X,'XXX ERROR ABORT IN JFILES®

& / 5X, 'UNABLE TO OPEN SEQUENTIAL FILE ', A12
& /' EQNAME = ', A64
& / 5X, 'IDEV = *, 12, 2X, '1/0 STATUS = ', 12)
CALL EXIT
END IF
FUNCTION JFILES
ERROR CHECK #1:

This function opens a file and attaches a unit number to it. The 1/O status of the open operation is stored in
the variable JOST. If IOST is not equal to zero, then an error has occurred when opening the file. IOST is
then passed as a parameter to function 10CL so that the clause field in the [/O status word can be extracted.
Once extracted IOST is passed back to JFILE6. A message is written to the log indicating that an error has
occurred. The error message contains the subroutine name, the logical name of the file, the actual name of

the file, the unit number, and the 1/O status value. The program exits by a call to the system subroutine EXIT.

F-16

CODE FOR ERROR CHECK #1:

c
IF (RDONLY) THEN
OPEN (UNIT = IDEV,
I0STAT
FILE = FNAME,
STATUS
ACCESS
FORM = FORMAT,
CARRIAGECONTROL
RECORDTYPE
RECL = RECLEN,
READONLY)
STAT = 'OLD!
RD = 'YES!
ELSE
OPEN (UNIT = IDEV,
I0STAT
FILE = FNAME,
STATUS
ACCESS
FORM = FORMAT,
CARRIAGECONTROL
RECORDTYPE
RECL = RECLEN)
STAT = ‘UNKNOWN®
RD = 'NO!
END IF

108T,

'‘oLp?,
'SEQUENTIAL®,

*FORTRAN',
'VARIABLE',

29 RO o o RO RO Qo RO Ro

108T,

TUNKNOWN
YSEQUENTIAL',

'FORTRAN' ,
'WARIABLE !,

Re Q9 Q3 Qo Qa0 Qo P

INQUIRE (FILE = FNAME, NAME = EQNAME)

IF (10ST .NE. 0) THEN
10ST = JOCL(I0ST)
WRITE (LUNOUT, 2001) FNAME, EQNAME, IDEV, 10ST
2001 FORMAT(/ 5X,'%XX ERROR ABORT IN JFILE6'

3 / 5X, 'UNABLE TO OPEN SEQUENTIAL FILE ', A12
& /' EGNAME = ', A4
- & / 5X, 'IDEV = ', 12, 2X, '1/0 STATUS = ', 14)
CALL EXIT
END IF
FUNCTION JULIAN
NONE
FUNCTION JUNIT
ERROR CHECK #1:

This function returns the next available FORTRAN logical unit number. The variable IUN is a counter
variable initially set to 1. Each time it is incremented the following takes place: '

« TUNis tested to see if the unit number corresponding to it is available. If it is not available, then
IUN is incremented and tested again.

F-17

« IUN is also compared with MAXUN. MAXUN is equal to 53 and corresponds to the maximum

allowable unit number available on the system. If IUN is greater than MAXUN, then an error has
occurred.

An error message is written to the log indicating that an error has occurred. The message contains the func-
tion name, the value of JTUN, and a table listing the numbers 1 through 53 along with a T or a F, indicating

whether that particular unit number is available or not. The program exits by a call to the system subroutine
EXIT.

CODE FOR ERROR CHECK #1:

c

IF (IUN .GT. MAXUN) GO TO 301
c
301 CONTINUE

WRITE(LUNOUT, 2001)
2001 FORMAT(/// 1X, 'XXX ERROR ABORY IN JUNIT XXX' /

& X, 'NO MORE UNIT NUMBERS AVAILABLE FOR 1/0')

WRITE(LUNOUT, 2003) (IUN, AVAILCIUN), IUN = 1, MAXUN)
2003 FORMAT(1X, 'AVAILABLE UNIT NUMBERS ARE: ' /

& 31X, 20¢12, *-', L1, 2X) /))
CALL EXIT

SUBROUTINE LILGAM

ERROR CHECK #1:

A call to subroutine PQ1 is made. In subroutine PQ1, IOST is set equal to 1 if values for GPR or ADTVF are
less than or equal 10 zero. Otherwise IOST is not set. (GPR is the chemistry component of concentration for
a particular species in a specific level; ADTVF is the product of the advection component and the vertical flux
component of concentration for a particular species.) Upon return from subroutine PQ1, IOST is tested. If
IOST is not equal 1o zero, then an error occurred in subroutine PQl. A message is written to the log indicating
that an error occurred. The error n-xessage contains the subroutine name, the row, column, layer number,
value for GTTIM, and value for CHETIM. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c
CALL PQ1 (P1, Q1, LEV, IOST)
IF (10ST .NE. O) THEN
WRITECLUNOUT, 2001) IROM, ICOL, LEV, GTTIM, CHETIM
2001 FORMAT(/ 5X, 'X%% P,Q PREDICTOR RETURN ---->'
& / 5X, 'IROW =', 14, 2X, ‘ICOL =', 14,
22X, 'LEV =', 14,
& / 5X, '‘GTTIM =', 1PE15.5, 2X, 'CHETIM =', 1PE15.5 /)
CALL EXIT
END IF
ERROR CHECK #2:

F-18

Same as error check #1

CODE FOR ERROR CHECK #2:

CALL PQ1 (PP1, G&1, LEV, 10ST)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2003) IROW, ICOL, LEV, GTTIM, CHETIM
2003 FORMAT(/ 5X, 'XXX P,Q CORRECTOR RETURN ---->!
& / 5X, 'IROW =t, 14, 2X, 'ICOL =', 14,
&2X, 'LEV =', 14,
& / 5X, 'GTTIM =', 1PE15.5, 2X, 'CHETIM =', 1PE15.5 /)
CALL EXIT
END IF

SUBROUTINE NEWICS

ERROR CHECK #1:

The NEWICON file is opened unformatted. The first segment is written to an internal buffer using a for-
matted write statement. The I/O status of the write operation is stored in variable IOST. IOST is tested; if
IOST does not eqan zero, a write error has occurred. A message is written to the log indicating that an error
has occurred. The error message contains the subroutine name, the segment number and I/O status value.
The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c
C write ist segment
WRITE(SEG1BF, 1001, IOSTAT = l0ST)
CDATIC, CTIMIC, SDATIC, STHRIC, TSTPIC, FRSTIC,
GRDNCN, .
SWLNCN, SWLTCN, NELNCN, NELTCN,
DLONCN, DLATCN,
NCOLCN, NROWCN, NLEVCN, NSPCCN,
CDBMCN, CTBMCN,
CDBTCN, CTBTCN,
CDBCCN, CTBCCN,
COICCN, CYICCN,
ICNTCN
1001 FORMAT(618.8, AB, 4FB.3, 2F8.5, 414.4, 818.8, 14.4)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) * SEGMENT 1 *, 10ST

R0 29 Q0 0o Qo RO 0 RO RO Ra

2001 FORMAT(/ 5X, 'XXX INTERNAL WRITE ERROR IN NEWICS: *, A12,
/ 5X, '1/0 STATUS = ', 14)
CALL EXIT
END 1F
ERROR CHECK #2:

The unit number, buffer containing the first segment record, and IOST are passed to subroutine WRCHAR,
which writes the first segment record to the NEWICON file. Upon return from subroutine WRCHAR, JOST
contains the I/O status of the first segment write to the NEWICON file. 10ST is tested; if IOST does not

F-19

equal zero, a write error has occurred. A message is written to the log indicating that an error has occurred.
The error message contains the subroutine name, the unit number and I/O status. The program exits by a call
to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

CALL WRCHAR (UNITN1, SEGIBF, 105T)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2003) UNITNI, IOST
2003 FORMAT(/ 5X, 'XXX HEADER WRITE ERROR IN NEWICS',
& / 5X, ‘UNIT NUMBER = ', 12, 2X, '1/0 STATUS = *, 14)
CALL EXIT
END IF

ERROR CHECK #3:

The species names record is written to an internal buffer using a formatted write statement. The J/O status of
the write operation is stored in variable IOST. IOST is tested; if IOST does not equal zero, a write error has
occurred. A message is written to the log indicating that an error has occurred. The error message contains

the subroutine name and /O status value. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #3:

c
C write the species names
WRITE(SPNMBF, 1003, IOSTAT = 10ST)
& (SPNMCN(ISPC), ISPC = 1, NSPCCN)
1003 FORMAT(35(A4))
If (10ST .NE. 0) THEN
WRITE(LUNOUT, 2001) ' SPEC. NAMES', 10ST
CALL EXIT
END IF

ERROR CHECK #4:

The unit number, the buffer containing the species names record, and IOST are passed to subroutine
WRCHAR, which writes the species names record to the NEWICON file. Upon return from the subroutine
WRCHAR, IOST contains the I/O status of the write of the species names record to the NEWICON file. IOST
is tested, and if not equal to zero, then a write error has occurred. A message is written to the log indicating
that an error has occurred. The error message contains the subroutine name and /O status value. The pro-
gram exits by a call to the system subroutine EXIT.

F-20

CODE FOR ERROR CHECK #4:

CALL WRCHAR (UNITNI, SPNMBF, 10ST)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2005) 10ST
2005 FORMAT(/ 5X, 'XXX SPECIES NAMES WRITE ERROR IN NEWICS: ',
&2X, '1/0 STATUS = ', 14)
CALL EXIT
END IF

ERROR CHECK #5:

The layer names record is written to an internal buffer using a formatted write statement. The I/O status of
the write operation is stored in variable IOST. TOST is tested; if IOST does not equal zero, a write error has
occurred. A message is written to the log indicating that an error has occurred. The error message contains

the subroutine name and 1/O status value. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #5:

c
C write the level names
WRITECLEVNBF, 1005, IOSTAT = 10ST)
& C(LVNMCN(CILEV), ILEV = 1, NLEVCN)
1005 FORMAT(3(A4))
IF (I10ST .NE. 0) THEN
WRITECLUNOUT, 2001) * LEV. NAMES', 10ST
CALL EXIT
END IF

ERROR CHECK #6:

The unit number, the buffer containing the layer names record, and IOST are passed to subroutine WRCHAR,
which writes the level names record to the NEWICON file. Upon return from subroutine WRCHAR, IOST
contains the I/O status of the write of the layer names record to the NEWICON file. 10ST is tested, and if not
equal to zero, then a write error has occurred. A message is written to the log indicating that an error has
occurred. The error message contains the subroutine name and 1/O status value. The progrém exits by a call
to the system subroutine EXIT.

CODE FOR ERROR CHECK #6:

CALL WRCHAR CUNITNI, LEVNBF, 10ST)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2007) 10ST
2007 FORMAT(/ 5X, 'XXX LEVEL NAMES WRITE ERROR IN NEWICS: !,
&2X, '1/0 STATUS = *, 14)
END IF

ERROR CHECK #7:

F-21

The text records are written by subroutine WRCHAR to the NEWICON file. The V/O status of the write oper-
ation is stored in variable IOST. IOST is tested; if IOST does not equal zero, a write error has occurred. A
message is written to the log indicating that an error has occurred. The error message contains the subroutine

name and /O status value. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #7:

[
C write file text group
DO 101 ITXT = 1, ICNTCN
CALL WRCHAR (UNITNI, TEXTCN(ITXT), 10ST)
IF (10ST .NE. D) THEW
WRITECLUNOUT, 2009) 10ST

2009 FORMAT(/ 5X, 'XXX TEXT WRITE ERROR IN NEWICS: !,
&2X, '1/0 STATUS = ', 14)
CALL EXIT
END IF

101 CONTINUE

ERROR CHECK #8:

The NEWICON time step header is written by calling subroutine WRFILE. The unit number, number of
words, starting address of the common block RTSHIC, and the variable 1OST are passed to subroutine
WRFILE. Upon return from subroutine WRFILE, IOST contains the I/O status value of the write of the
NEWICON time step header. IOST is tested; if IOST does not equal zero, an error occurred while writing the
time step header. A message is written to the log indicating that an error has occurred. The error message
contains the subroutine name, the unit number, the [/O status value and the number of words in the buffer to

be written. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #8:

c
C write NI T.S.H.
CALL WRFILE (UNITNI, IWOLTH, DATIC, IOST)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2013) UNITNI, IOST, IWDLTH
2013 FORMAT(/ 5X, 'XXX T.S.H. WRITE ERROR IN NEWICS',

& / SX, 'UNIT NUMBER = %, 12, 2X, '1/0 STATUS = ¢, 14,
' / 5X, 'NO. OF WORDS = !, I4)
CALL EXIT
END 1Ff
ERROR CHECK #9:

Each row of the NEWICON file is written by iterating over the chemical species. For each iteration, a call is
made to subroutine WRFILE. The unit number, number of words, starting address of the common block
ICFILE, and the variable IOST are passed to WRFILE. Upon return from the subroutine call to WRFILE, IOST
contains the [/O status value of a write operation to the NEWICON file. IOST is tested; if IOST is not equal

F-22

to zero, then an error occurred on the write operation. A message is written to the log to indicate an error has
occurred. The error message contains the subroutine name, the unit number, the I/O status value and the
number of words to be written. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #89:

C
C write NEWICON file
DO 205 ISPC = 1, NSPECS
CALL WRFILE(UNITNI, IWOLTH, ICFILE(1,1,ISPC),10ST)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2015) UNITNI, 10ST, IWDLTH
2015 FORMAT(/ 5X, 'XXX ROW WRITE ERROR IN NEWICS',

& / 5X, 'UNIT NUMBER = ', 12, 2X, '1/0 STATUS = ', 14,
& / 5X, 'NO, OF WORDS = ', 14)
CALL EXIT
END IF

205 CONTINUE

SUBROUTINE 0OPBCON

ERROR CHECK #1:

The BCON file is opened. The first segment record is read from the BCON file into a buffer by célling sub-
routine RDCHAR. The unit number, buffer, and IOST are passed to RDCHAR. Upon return from subroutine
RDCHAR, IOST contains the 1/O status value of the read of the BCON first segment record. I0ST is tested,; if
IOST does not equal zero, an error occurred on the read operation. A message is written to the log indicating
that an error has occurred. The error message contains the subroutine name and the 1/0O status value. The
program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

[of
C read 1st segment
CALL RDCHAR (UNITBC, SEGIBF, IOST)

c
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2001) 1OST, 'FIRST RECORD *
2001 FORMAT(/ 5X, 'XXX READ ERROR IN OPBCON'
85X, 'IOSTAT = ', 14, 4X, A16)
CALL EXIT
END IF :
ERROR CHECK #2:

Next, a formatted read from the buffer that contains the first segment record is made, and the common block
HEADBGC is loaded. The I/O status of the read operation is set to be the variable IOST. 10ST is tested; if

10ST does not equal zero, a read error has occurred. A message is written to the log indicating that an error
has occurred. The error message contains the subroutine in which the efror occurred and the /O status value.
The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

[
C convert character header to mixed char & numeric
READ(SEG1BF, 1001, IOSTAT = I0ST)
CDATBC, CTIMBC, SDATBC, STHRBC, TSTPBC, FRSTBC,
GRDNBC,
SWLNBC, SWLTBC, NELNBC, NELTBC,
DLONBC, DLATBC,
NCOLBC, NROWBC, NLEVBC, NSPCBC, ICNTBC
1001 FORMAT(618.8, A8, 4F8.3, 2F8.5, 514.4)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2001) 10ST, 'INTERNAL READ #1!
CALL EXIY
END IF

Ro Ro 2o Ro RO

ERROR CHECK #3:

The next record read from the BCON file is the species names record. This record is read into a buffer by
calling subroutine RDCHAR. The unit number, buffer, and JOST are passed to RDCHAR. A fonﬁatted read
from the buffer that contains the species names record is made, and the common block HEADBC is loaded.
The 1/O status of the read operation is set to be the variable IOST. IOST is tested; if IOST does not equal
zero, a read error has occurred. A message is written to the log indicating that an error has occurred. The
error message contains the subroutine in which the error occurred and the I/O status value. The program
exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #3:

C
C read the species names record
CALL RDCHAR (UNITBC, SPNMBF, I0ST)
READ(SPNMBF, 1003, IOSTAT = 10ST)
& (SPNMBC(ISPC), ISPC = 1, NSPCBC)
1003 FORMAT(6(10(A4))/)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) 10ST, *'SPECIES NAMES '
CALL EXIT
END IF

ERROR CHECK #4:

The next record read from the BCON file is the layer names record. This record is read into a buffer by calling
subroutine RDCHAR. The unit number, buffer, and IOST are passed to RDCHAR. A formatted read from the
buffer that contains the layer names record is made, and the common block HEADBC is loaded. The I/O
status of the read operation is set to be the variable IOST. IOST is tested; if IOST does not equal zero, a read

F-24

error has occurred. A message is written to the log to indicate that an error has occurred. The error message
contains the subroutine in which the error occurred and the I/O status value. The program exits by a call to
the system subroutine EXIT.

CODE FOR ERROR CHECK #4:

c
C read level names record
CALL RDCHAR (UNITBC, LEVNBF, 10ST)
READ(LEVNBF, 1005, IOSTAT = IOST)
& (LVNMBC(CILEV), ILEV = 1, NLEVBC)
1005 FORMAT(2(10(A4))/)
IF (10ST .NE. D) THEN
WRITECLUNOUT, 2001) 10ST, 'LEVEL NAMES '
CALL EXIT
END IF

ERROR CHECK #5:

The next records read are the text segment records. These records are read into a buffer by iterating over the
number of text records. For each iteration, a call to subroutine RDCHAR is made. The unit number, buffer,
and IOST are passed to RDCHAR. The I/O status of the read operation is set to be the variable IOST. 10ST is
tested; if IOST does not equal zero, a read error has occurred. A message is written to the log to indicate an
error has occurred. The error message contains the subroutine in which the error occurred and the J/O status
value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #5:

c
C read file text group
DO 101 ITXT = 1, ICNTBC

CALL RDCHAR (UNITBC, TEXTBF, 10ST)
c

IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) 10ST, *'TEXT RECORDS !
CALL EXIT

END IF
C

TEXTBC(ITXT) = TEXTBF
101 CONTINUE

SUBROUTINE OPBMAT

NONE

SUBROUTINE OPBTRK

NONE

SUBROUTINE oprCONC

ERROR CHECK #1:

The CONC file is opened. The first segment record is read from the CONC file into a buffer by calling sub-
routine RDCHAR. The unit number, buffer, and 1OST are passed to RDCHAR. Upon return from subroutine
RDCHAR, IOST contains the I/O status value of the read of the CONC first segment record. IOST is tested; if
IOST does not equal zero, an error occurred on the read operation. A message is written to the log indicating
that an error has occurred. The error message contains the subroutine name and the }/O status value. The
program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c
C read 1st segment
CALL RDCHAR (UNITCN, SEG1BF, 10ST)
c
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) 10ST, *FIRST RECORD t
2001 FORMAT(/ 5X, 'XXX READ ERROR IN OPCONC'
85X, 'IOSTAT = ', 4, 4X, A16)
CALL EXIT
END IF

ERROR CHECK #2:

Next, a formatted read from the buffer that contains the first segment record is made, and the common block
HEADCN is loaded. The J/O status of the read operation is set to be the variable IOST. IOST is tested; if
IOST does not equal zero, a read error has occurred. A message is written to the log indicating that an error
has occurred. The error message contains the subroutine in which the error occurred and the I/O status value.
The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

READ(SEG1BF, 1001, IOSTAT = IOST)
CDATCN, CTIMCN, SDATCN, STHRCN, TSTPCN, FRSTCN,
GRDNCN,
SWLNCN, SWLTCN, NELNCN, NELTCN,
DLONCN, DLATCN,
NCOLCN, NROWCN, NLEVCN, NSPCCN,
CDBMCN, CTBMCN,
CDBTCN, CTBTCN,
COBCCN, CTBCCN,
CDICCN, CTICCN,
1CNTCN
1001 FORMAT(618.8, A8, 4FB.3, 2F8.5, 414.4, 818.8, 14.4)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) 10ST, 'INTERNAL READ #1'
CALL EXIT
END IF
ERROR CHECK #3:

RS 2O RO RO N0 RO RO o RO

The next record read from the CONC file is the layer names record. This record is read into a buffer by calling
subroutine RDCHAR. The unit number, buffer, and IOST are passed into RDCHAR. A formatted read from the
buffer that contains the level names record is made, and the common block HEADCN is loaded. The 1/O
status of the read operation is set to be the variable IOST. 10ST is tested; if IOST does not equal zero, a read
error has occurred. A message is written to the log indicating that an error has occurred. The error message

contains the subroutine name and the I/O status value. The program exits by a call to the system subroutine
EXIT.

CODE FOR ERROR CHECK #3:

CALL RDCHAR (UNITCN, LEVNBF, I0ST)
READ(LEVNBF, 1005, IOSTAT = 10ST)
& (LVNMCNCILEV), ILEV = 1, NLEVCN)
1005 FORMAT(<NLEVS>(A4))
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2001) 10ST, 'LEVEL NAMES '
CALL EXIT
END IF

ERROR CHECK #4:

The next records read are the text segment records. These records are read into a buffer by iterating 'over the
number of text records. For each iteration, a call to subroutine RDCHAR is made. The unit number, buffer,
and JOST are passed to RDCHAR. The I/O status of the read operation is set to be the variable IOST. 10ST is
tested; if IOST does not equal zero, a read error has occurred. A message is written to the log indicating that
an error has occurred. The error message contains the subroutine name and the 1/O status value. The pro-

gram exits by a call to the system subroutine EXIT.

F-27

CODE FOR ERROR CHECK #4:

C
C read file text group
DO 107 ITXT = 1, ICNTCN
CALL RDCHAR (UNITCN, TEXTBF, 10ST)
IF (IOST .NE. 0) THEN
WRITE(LUNOUT, 2001) I0ST, 'TEXT RECORDS '
CALL EXIT
END IF
101 CONTINUE

SUBROUTINE orPICON

ERROR CHECK #1:

The ICON file is opened. The first segment record is read from the ICON file into a buffer by calling sub-
routine RDCHAR. The unit number, buffer, and IOST are passed t0 RDCHAR. The /O status of the read
operation is stored in the variable IOST. In subroutine OPICON, IOST is tested, and if not equal to zero, then
an error occurred on the read operation. A message is written to the log indicating that an error has occurred.
The error message contains the subroutine name and the I/O status value. The program exits by a call to the
system subroutine EXIT.

CODE FOR ERROR CHECK #1:

o
C read 1st segment
CALL RDCHAR (UNITIC, SEGIBF, 10ST)
c
1F (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) 10ST, *FIRST RECORD '

2001 FORMAT(/ 5X, 'XXX READ ERROR IN OPICON'
&5X, 'IOSTAT = !, 14, 4X, A16)
CALL EXIY
END IF
ERROR CHECK #2:

Next, a formatted read from the buffer that contains the first segment record is made, and the common block
HEADIC is loaded. The IO status of the read operation is set to be the variable IOST. IOST is tested; if
IOST does not equal zero, a read error has occurred. A message is written to the log indicating that an error
has occurred. The error message contains the subroutine in which the error occurred and the I/O status value.
The program exits by a call to the system subroutine EXIT.

F-28

CODE FOR ERROR CHECK #2:

READ(SEG1BF, 1001, IOSTAT = IOST)
CDATIC, CTIMIC, SDATIC, STHRIC, TSTPIC, FRSTIC,
GRONIC,
SWLNIC, SWLTIC, NELNIC, NELTIC,
DLONIC, DLATIC,
NCOLIC, NROWIC, NLEVIC, NSPCIC,
CIDUMCITXT), ITXT = 1, 8),
ICNTIC
1001 FORMAT(618.8, AB, 4F8.3, 2F8.5, 414.4, BIB, 14.4)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2001) 10ST, 'INTERNAL READ #1°
CALL EXIT
END IF

R0 Q0 RS RO RO Ro RO

ERROR CHECK #3:

The next record read from the ICON file is the species names record. This record is read into a buffer by
calling subroutine RDCHAR. The unit number, buffer, and IOST are passed into RDCHAR. A formatted read
from the buffer that contains the species names record is made, and the common block HEADIC is loaded.
The 1/O status of the read operation is set to be the variable IOST. 10ST is tested; if IOST does not equal
zero, a read error has occurred. A message is written to the log indicating that an error has occurred. The
error message contains the subroutine name and the 1/O status value. The program exits by a call to the
system subroutine EXIT.

CODE FOR ERROR CHECK #3:

c
C read the species names record
CALL RDCHAR (UNITIC, SPNMBF, 10ST)
READ(SPNMBF, 1003, IOSTAT = 1OST)
&(SPNMIC(ISPC), ISPC = 1, NSPCIC)
1003 FORMAT(<NSPECS>(A4))
IF (10ST .NE. O) THEN
WRITE(LUNOUT, 2001) IOST, 'SPECIES NAMES '
CALL EXIT
END IF

ERROR CHECK #4:

The next record read from the ICON file is the layer names record. This record is read into a buffer by calling
subroutine RDCHAR. The unit number, buffer, and IOST are passed into RDCHAR. A formatted read from the
buffer that contains the level names record is made and the common block HEADIC is loaded. The 1/O status
of the read operation is set to be the variable IOST. 10ST is tested; if IOST does not equal zero, a read error
has occurred. A message is written to the log indicating that an error has occurred. The error message con-

tains the subroutine name and the I/O status value. The program exits by a call to the system subroutine EXIT.

F-29

CODE FOR ERROR CHECK #4:

C
C read the level names record
CALL RDCHAR (UNITIC, LEVNBF, 10ST)
READ(LEVNBF, 1005, 10STAT = 10ST)
&(LVNMICCILEV), ILEV = 1, NLEVIC)
1005 FORMAT(<NLEVS>(A4))
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) I10ST, 'LEVEL NAMES '
CALL EXIT
END IF

ERROR CHECK #35:

The next records read are the text segment records. These records are read into a buffer by iterating over the
number of text records. For each iteration, a call to subroutine RDCHAR is made. The unit number, buffer,
and IOST are passed to RDCHAR. The /O status of the read operation is set to be the variable IOST. I0ST is
tested; if IOST does not equal zero, a read error has occurred. A message is written to the log indicating that
an error has occurred. The error message contains the subroutine name and the I/O status value. The pro-
gram exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #5:

C
C read file text group
DO 101 ITXT = 1, ICNTIC

CALL RDCHAR (UNITIC, TEXTBF, 10ST)

IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2001) tOST, 'TEXT RECORDS '
CALL EXIT

END IF
c

TEXTICCITXT) = TEXTBF
101 CONTINUE

SUBROUTINE OPSTAV

ERROR CHECK #1:
The STATE VECTOR file is opened. 1I0ST contains the I/O status of the open operation. 10ST is tested; if
IOST is not equal to zero, then an error occurred while opening the file. A message is written to the log

indicating that an error has occurred. The error message contains the subroutine name, the unit number and
the I/O status value. The program exits by a call to the system subroutine EXIT.

F-30

CODE FOR ERROR CHECK #1:
c
C open the STATE VECTOR file
c

UNITSV = JUNIT(Q)
OPEN (UNITSV,

& FILE = FLNMSV,

& ACCESS = 'SEQUENTIAL',
& STATUS = *UNKNOWN',

& 10STAT = 10ST)

IF (I0ST .NE. 0) THEN
WRITE(LUNOUT, 2001) UNITSV, IOST
2001 FORMAT(/ 5X, 'XXX SV FILE OPEN ERROR IN OPSTAV!

R / 5X, 'UNIT NUMBER = ', I2
& / 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #?2:

A formatted read of the second segment header record of the STATE VECTOR file is made and the common
block HEADSV is loaded. The I/O status of the read operation is stored in the variable IOST. IOST is tested;
if IOST does not equal zero, a read error has occurred. A message is written to the log indicating that an error
has occurred. The error message contains the subroutine name, the unit number, the record number, and the

I/O status value. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #2:

C
C read STATE VECTOR header segment 2
c
READ(UNITSV, FMT = 1003, IOSTAT = 10ST)
& NELTSV, DLONSV, DLATSV, NCOLSV,
& NROWSV, NLEVSV, NSPCSV, ICNTSV
1003 FORMAT(1X, F8.3, 2(1X, F8.5), 5(1X, 14))
IF (ICNTSV .EQ. 0) ICNTSV = 1
1F C10ST .NE. O) THEN
WRITE(LUNOUT, 2003) UNITSV, RECNSV, 10ST
2003 FORMAT(/ 5X, 'XXX SV HEADER READ ERROR IN OPSTAV!

& / 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', 14
& 7 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #3:

A formatted read of the first segment of the species names record of the STATE VECTOR file is made, and
the common block CHARSYV is loaded. The I/O status of the read operation is stored in the variable IOST.
10ST is tested; if IOST does not equal zero, a read error has occurred. A message is written to the log indi-
cating that an error has occurred. The error message contains the subroutine name, the unit number, the
record number, and the I/O status value. The program exits by a call to the system subroutine EXIT.

F-31

CODE FOR ERROR CHECK #3:

C
C read species names records
C
READ(UNITSV, FMT = 1005, IOSTAT = 10ST)
& (SPNMSV(ISPC), ISPC = 1, 15)
1005 FORMAT(1X, 15(A4, 1X))
1F (10ST .NE. 0) THEN
WRITEC(LUNOUT, 2005) UNITSV, RECNSV, I0ST
2005 FORMAT(/ 5X, 'XXX SPECIES NAMES READ ERROR IN OPSTAV'
& 7/ S5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', 14
& / 5%, '1/0 STATUS = *, 14)
WRITECLUNOUT, 2005) UNITSV, RECNSV, 10ST
CALL EXIT
END IF

ERROR CHECK #4:

A formatted read of the second segment of the species names record of the STATE VECTOR file is made,
and the common block CHARSYV is loaded. The I/O status of the read operation is stored in the variable
IOST. IOST is tested; if IOST does not equal zero, a read error has occurred. A message is written to the log
indicating that an error has occurred. The error message contains the subroutine name, the unit number, the

record number, and the 1/O status value. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #4:

c .
READCUNITSV, FMT = 1005, IOSTAT = I0ST)
& (SPNMSV(ISPC), ISPC = 16, NSPCSV)
IF (10ST .NE. 0) THEN

WRITE(LUNOUT, 2005) UNITSV, RECNSV, 10ST
CALL EXIT
END IF

ERROR CHECK #5:

A formatted read of the layer names record of the STATE VECTOR file is made, and the common block
CHARSV is loaded. The I/O status of the read operation is stored in the variable IOST. I0ST is tested; if
IOST does not equal zero, a read error has occurred. A message is written to the log indicating that an error
has occurred. The error message contains the subroutine name, the unit number, the record number, and the
I/O status value. The program exits by a call to the system subroutine EXIT.

F-32

CODE FOR ERROR CHECK #5:

c
C read level names record
c

RECNSV = RECNSV + 1

READ(UNITSV, FMT = 1005, IOSTAT = 10ST)

& (LVNMSV(ILEV), ILEV = 1, NLEVSV)
IF (10ST .NE. D) THEN
WRITECLUNOUT, 2007) UNITSV, RECNSV, 10ST

2007 FORMAT(/ 5X, 'XXX LEVEL NAMES READ ERROR IN OPSTAV!'

& / 5X, 'UNIT NUMBER = ', I2, 5X, °RECORD = ', 14
& / 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #6:

The text segment records are read by iterating over the number of text records. For each iteration, a for-
matted read of a text record of the STATE VECTOR file is made, and the common block CHARSYV is loaded.
The /O status of each read operation is stored in the variable IOST. IOST is tested; if IOST does not equal
zero, a read error has occurred. A message is written to the log indicating that an error has occurred. The
error message contains the subroutine name, the unit number, the record number, and the I/O status value.
The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #6:

DO 103 ITXT = 1, ICNTSV

RECNSV = RECNSV + 1

READ(UNITSV, FMT = 1007, IOSTAT = IOST) TEXTSV(ITXT)
1007 FORMAT(1X, ABO)

IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2003) UNITSV, RECNSV, IOST
CALL EXIT

END IF
103 CONTINUE

ERROR CHECK #7:

A formatted read from the STATE VECTOR file unit number loads the first header segment record into the
common block HEADIN. The I/O status of the read operation is set to be the variable IOST. IOST is tested;
if IOST does not equal zero, a read error has occurred. A message is written to the log indicating that an error
has occurred. The error message contains the subroutine name, the unit number, the record number, and the

/O status value. The program exits by a call to the system subroutine EXIT.

F-33

CODE FOR ERROR CHECK #7:

C
C read HEADIN header record segment 1
c

READCUNITSV, FMT = 1001, IOSTAT = IOST)
& CDATIN, CTIMIN, SDATIN, STHRIN,
& TSTPIN, FRSTIN, GRDNIN, SWLNIN,
& SWLTIN, NELKIN
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2009) UNITSV, RECNSV, 10ST
2009 FORMAT(/ 5X, '%XX HEADIN READ ERROR IN OPSTAV'

& / 5X, 'UNIT NUMBER = *, I2, 5X, 'RECORD = ', I4
&] 5%, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #8:

A formatted read from the STATE VECTOR file unit number loads the second header segment record
(species index records) into the common block HEADIN. The I/O status of the read operation is set to be the
variable IOST. IOST is tested; if IOST does not equal zero, a read error has occurred. A message is written
to the log indicating that an error has occurred. The error message contains the subroutine name, the unit

number, the record number, and the I/O status value. The program exits by a call to the system subroutine
EXIT.

CODE FOR ERROR CHECK #8:

c
C read HEADIN header record segment 2
C
READCUNITSY, FMT = 1003, I10OSTAT = 10ST)
& NELTIN, DLONIN, DLATIN, NCOLIN,
& NROWIN, NLEVIN, NSPCIN, ICNTIN
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2011) UNITSV, RECNSV, 10ST
2011 FORMAT(/ 5X, 'XXX HEADIN INTERNAL READ ERROR IN OPSTAV

& / 5X, 'UNIT NUMBER = !, I2, 5X, 'RECORD = ', 14
& / SX, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #9:

A formatted read from the STATE VECTOR file unit number loads the chemistry control records into the
common block CHEMIN. The I/O status of the read operation is set to be the variable IOST. IOST is tested;
if IOST does not equal zero, a read error has occurred. A message is written to the log indicating that an error
has occurred. The error message contains the subroutine name, the unit number, the record number, and the
I/O status value. The program exits by a call to the system subroutine EXIT.

F-34

CODE FOR ERROR CHECK #9:

RECNSV = RECNSV + 1
READ(UNITSV, FMT = 1015, I1OSTAT = 1OST)
& (ISPECCISPC), ISPC = 1, NCOUT), ULIM, BLIM, FNOLIM
1015 FORMAT(1X, <NCOUT>(14.3, 1X), 3(E10.3, 1X))
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2013) UNITSV, RECNSV, 10ST
2013 FORMAT(/ 5X, 'XXX CHEMIN READ ERROR IN OPSTAV®

& / 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', 14
& / 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #10:

A formatted read from the STATE VECTOR file unit number loads the ICON species index records into the
common block NDXSPC. The I/O status of the read operation is set to be the variable IOST. 10ST is tested;
if IOST does not equal zero, a read error has occurred. A message is written to the log indicating that an error
has occurred. The error message contains the subroutine name, the unit number, the record number, and the

1/O status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #10:

READ(UNITSV, FMT = 1019, IOSTAT = [OST)
& (NXSPIC(ISPC), ISPC = 16, NSPECS)

1F (10ST .NE. 0) THEN
WRITE(LUNOUT, 2015) UNITSV, RECNSV, I0ST
2015 FORMAT(/ 5X, 'XXX SPECIES ORDER LIST READ ERROR IN OPSTAV!

& / 5X, 'UNIT NUMBER = ', 12, 5K, 'RECORD = ', 14
& / 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF
SUBROUTINE oPWRCN

ERROR CHECK #1:

A formatted write of the common blocks CHARCN and HEADCN is made to a buffer. CHARCN and
HEADCN contain the first segment record of the CONC file. The /O status of the write operation is stored
in the variable IOST. IOST is tested,; if IOST does not equal zero, a write error has occurred. A message is
written to the log indicating that an error has occurred. The error message contains the subroutine in which
the error occurred and the I/O status value. The program exits by a call to the system subroutine EXIT.

F-35

CODE FOR ERROR CHECK #1:

C
C write 1st segment
WRITE(SEG1BF, 1001, IOSTAT = IOST)
CDATCN, CTIMCN, SDATCN, STHRCN, TSTPCN, FRSTCN,
GRDNCN,
SWLNCN, SWLTCN, NELNCN, NELTCN,
DLONCN, DLATCN,
NCOLCN, NROMWCN, NLEVCN, NSPCCN,
CDBMCN, CTBMCN,
CDBTCN, CTBTCN,
CDBCCN, CTYBCCN,
COICCN, CTICCN,
ICNTCN
1001 FORMAT(618.8, A8, 4F8.3, 2F8.5, 414.4, 818.8, 14.4)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) ' SEGMENT 1 ', 10ST
2001 FORMAT(/ 5X, '"XXX INTERNAL WRITE ERROR IN OPWRCN: ', A12,
& / 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF

RO Qo Qo R0 O Qo Ro Ro RO Qo

ERROR CHECK #2:

The buffer containing the first segment record is written to the CONC file by calling subroutine WRCHAR.

The unit number, buffer, and IOST are passed to WRCHAR. Upon return from subroutine WRCHAR, IOST
contains the 1/O status value of the write of the CONC first segment header record. IOST is tested; if IOST-
does not equal zero, then an error occurred on the write operation. A message is written to the log to indicate

an error has occurred. The error message contains the subroutine name and the I/O status value. The pro-

gram exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

CALL WRCHAR (UNITCN, SEGBF, IOST)
IF (I10ST .NE. 0) THEN
WRITECLUNOUT, 2003) UNITCN, 10ST
2003 FORMAT(/ 5X, 'XXX HEADER WRITE ERROR IN OPWRCN'
& / 5X, 'UNIT NUMBER = !, 12, 2X, '1/0 STATUS = *, 14)
CALL EXIT
END IF

ERROR CHECK #3:

A formatted write of the common block CHARCN is made to a buffer. CHARCN contains the species names
record of the CONC file. The I/O status of the write operation is stored in the variable IOST. IOST is tested;
if IOST does not equal zero, a write error has occurred. A message is written to the log indicating that an
error has occurred. The error message contains the subroutine in which the error occurred and the 1/O status
value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #3:

c
C write the species names
WRITE(SPNMBF, 1003, IOSTAT = IOST)
& (SPNMCN(ISPC), ISPC = 1, NSPCCN)
1003 FORMAT(<NSPECS>(A4))
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2001) ' SPEC. NAMES', 10ST
CALL EXIT
END IF

ERROR CHECK #4:

The buffer containing the species names record is written to the CONC file by calling subroutine WRCHAR.
The unit number, buffer, and 10ST are passed to WRCHAR. Upon return from subroutine WRCHAR, IOST
contains the /O status value of the write of the CONC species names record. I0ST is tested; if IOST does not
equal zero, then an error occurred on the write operation. A message is written to the log indicating that an
error has occurred. The error message contains the subroutine in which the error occurred and the J/O status

value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #4:

CALL WRCHAR (UNITCN, SPNMBF, TOST)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2005) IOST

2005 FORMAT(/ 5X, 'XXX SPECIES NAMES WRITE ERROR IN OPWRCN: !,
&2x, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #5:

A formatted write of the common block CHARCN is made to a buffer. CHARCN contains the level names
record of the CONC file. The I/O status of the write operation is stored in the variable JOST. 10ST is tested;
if IOST does not equal zero, a write error has occurred. A message is written to the log to indicate that an
error has occurred. The error message contains the subroutine in which the error occurred and the I/O status
value. The program exits by a call to the system subroutine EXIT.

F-37

CODE FOR ERROR CHECK #5:

[
C write the level names
WRITE(LEVNBF, 1005, IOSTAT = I10ST)
& C(LVNMCNCILEV), ILEV = 1, NLEVCN)
1005 FORMAT(<NLEVS>(A4))
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) * LEV. NAMES', 10ST
CALL EXIT
END IF

ERROR CHECK #6:

The buffer containing the level names record is written to the CONC file by calling subroutine WRCHAR. The
unit number, buffer, and IOST are passed to WRCHAR. Upon return from subroutine WRCHAR, IOST con-
tains the I/O status value of the write of the CONC level names record. IOST is tested; if IOST does not equal
zero, then an error occurred on the write operation. A message is written to the log indicating that an error
has occurred. The error message contains the subroutine in which the error occurred and the I/O status value.
The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #6:

CALL WRCHAR (UNITCN, LEVNBF, 10ST)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2007) I0ST
2007 FORMAT(/ 5X, 'XXX LEVEL NAMES WRITE ERROR IN OPWRCN: ',
&2X, '1/0 STATUS = ', 14)
END 1F

ERROR CHECK #7:

The first text record is written to the CONC file by calling subroutine WRCHAR. The unit number, buffer, and
10ST are passed 1o WRCHAR. Upon return from subroutine WRCHAR, IOST contains the I/O status value of
the write of the first CONC text record. IOST is tested; if IOST does not equal zero, then an error occurred
on the write operation. The I/O status of the write operation is stored in the variable IOST. 10ST is tested; if
I0ST does not equal zero, a write error has occurred. A message is written to the log to indicate that an error
has occurred. The error message contains the subroutine in which the error occurred and the I/O status value.
The program exits by a call to the system subroutine EXIT.

F-38

CODE FOR ERROR CHECK #7:

C
C copy input text records to CONC file
TEXTCN(1) = 'ROM2.1 !
CALL WRCHAR (UNITCN, TEXTCN(1), IOST)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2009) IOST
2009 FORMAT(/ SX, ‘XXX TEXT WRITE ERROR IN OPWRCN: °,
&2X, '1/0 STATUS = ', 14)
CALL EXIT
END IF

ERROR CHECK #8:

The remaining text records are written to the CONC file by iterating over the number of text records. For
each iteration a call to subroutine WRCHAR is made. The unit number, buffer, and IOST are passed to
WRCHAR. Ubpon return from subroutine WRCHAR, 1OST contains the I/O status value of the write of the
CONC text records. IOST is tested; if IOST does not equal zero, then an error occurred on the write opera-
tion. A message is written to the log indicating that an error has occurred. The error message contains the
subroutine in which the error occurred and the I/O status value. The program exits by a call to the system
subroutine EXIT.

CODE FOR ERROR CHECK #8:

DO 103 ITXT = 2, ICNTCN
TEXTCNCITXT) = TEXTINCITXT - 1)

CALL WRCHAR (UNITCN, TEXTCNCITXT), 10ST)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2009) l10ST
CALL EXIT
END IF
103 CONTINUE

SUBROUTINE ORSPBC

ERROR CHECK #1:
An iteration over the number of species is made. For each iteration, the following takes place:

» A call to the function INDEX1 occurs. SPNAME(ISPC) and SPNMBC are passed into INDEX1.
(SPNMBC is an array containing the species name in the BCON list, obtained from the BCON
header. SPNAME is an array containing the list of species names for the model.)

« The position of each of the species names of the model is searched for in the list of species names
from the BCON list of species names. This positional value is assigned to the variable SPCNUM.

« If SPCNUM equals zero, then the species name was not found in the BCON list of species names.
A message is written to the log indicating that an error has occurred.

F-39

The error message contains the subroutine name, the current species name that is being considered (SPNA-
ME(ISPC)), the models species name (SPNMIN(ISPC)), and the value of SPCNUM (which should be zero).
The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c

DO 101 ISPC = 1, NSPCIN
c
C check that model species name is in BCON species list
C and get model list species' name position in BCON list
c

SPCNUM = INDEX1 (SPNAME(ISPC), NSPCBC, SPNMBC)
IF (SPCNUM .EQ. 0) THEN
WRITE(LUNDUT, 2001) SPNAMECISPC)
2001 FORMAT(/ 5X, 'XXX ERROR IN ORSPBC' /
/ 5X, 'SPECIES', 2X, A4, 2X,
& '1S NOT PRESENT ON BCON FILE --JOB ABORTED')
WRITE(LUNOUT, 1003) SPNMIN(ISPC), SPNAME(ISPC), SPCNUM
1003 FORMAT(6X, A4, 8X, A4, 7X, 14.2)
CALL EXIT
END IF
101 CONTINUE

SUBROUTINE ORSPBM

ERROR CHECK #1:
An iteration over the number of species is made. For each iteration the following takes place:

+ Acall to the function INDEX1 occurs. SPNAME(ISPC) and SPNMBM are passed into INDEX1.
(SPNMBM is an array containing the species name in the BMAT list, obtained from the BMAT
header. SPNAME is an array containing the list of species names for the model.)

-« The position of each of the species names of the model is searched for in the list of species names
from the BMAT list of species names. This positional value is assigned to the variable SPCNUM.

« If SPCNUM equals zero, then the species name was not found in the BMAT list of species names.
A message is written to the log to indicate that an error has occurred.

The error message contains the subroutine name, the current species name that is being considered (SPNA-
MEC(ISPC)), the models species name (SPNMIN(ISPC)), and the value of SPCNUM (which should be zero).
The program exits by a call to the system subroutine EXIT.

F-40

CODE FOR ERROR CHECK #1:

DO 101 ISPC = 1, NSPCIN

[TN o]

C check that model species name is in BMATRIX species list
C and get model list species' name position in BMATRIX list
c

SPCNUM = INDEX1 (SPNAME(ISPC), NSPCBM, SPNMBM)

IF (SPCNUM .EQ. 0) THEN
WRITE(LUNOUT, 200%) SPNAME(ISPC)
2001 FORMAT(/ 5X, 'XXX ERROR IN ORSPBM'

/ 5X, ‘'SPECIES', 2X, A4, 2X,

'IS NOT PRESENT ON BMATRIX FILE--JOB ABORTED')
WRITECLUNOUT, 1003) SPNMINCISPC), SPNAME(ISPC), SPCNUM
1003 FORMAT(6X, AL, 8X, A4, TX, 14.2)

CALL EXIT
END IF

Ra Q2

c
101 CONTINUE

SUBROUTINE ORSPIC

ERROR CHECK #1:

An iteration over the number of species is made. For each iteration the following takes place:

» Aall to the function INDEX1 occurs. SPNAME(ISPC) and SPNMIC are passed into INDEXI. .
(SPNMIC is an array containing the species name in the ICON list, obtained from the ICON
header. SPNAME is an array containing the list of species names for the model.)

» The position of each of the species names of the model is searched for in the list of species names
from the ICON list of species names. This positional value is assigned to the variable SPCNUM.

» If SPCNUM equals zero, then the species name was not found in the ICON list of species names.
A message is written to the log to indicate that an error has occurred.

The error message contains the subroutine name, the current species name that is being considered (SPNA-
ME(ISPC)), the models species name (SPNMIN(ISPC)), and the value of SPCNUM (which should be zero).
The program exits by a call to the system subroutine EXIT.

F-41

CODE FOR ERROR CHECK #1:

c
DO 101 ISPC = 1, NSPCIN
C check that model species name is in ICON species list
C and get model List species’ name position in ICON list
c
SPCNUM = INDEX1 (SPNAME(ISPC), NSPCIC, SPNMIC)
IF (SPCNUM .EQ. 0) THEN
WRITECLUNOUT, 2001) SPNAME(ISPC)
2001 FORMAT(/ 5X, 'XX%X ERROR IN ORSPIC' /
3 / 5X, 'SPECIES', 2X, A4, 2X,
& YIS NOT PRESENT ON ICON FILE--JOB ABORTED')
WRITECLUNOUT, 1003) SPNMIN(ISPC), SPNAME(ISPC), SPCNUM
1003 FORMAT(OX, A4, BX, A4, X, 14.2)
CALL EXIT
END IF

SUBROUTINE POBCON

ERROR CHECK #1:

A call to subroutine CLOCKI1 is made to obtain the file process elapsed time step. The first time step
(FRSTBC) is compared with the elapsed time step (IELPBC) obtained from the call to CLOCK1. If the times
do not match, thenvan error has occurred. The error message contains the subroutine in which the error
occurred, the expected time, the time read from the time step header, the scenario start time, the elapsed time,)

the step number, and the time step size. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #1:

c
C compute intervals and records to be skipped
C
CALL CLOCK' (IDATE, ITIME, SDATBC, STHRBC, TSTPBC,
& 1ELPBC, 1STPBC)

IF (IELPBC .LT. FRSTBC) THEN
WRITECLUNOUT, 2001) IDATE, ITIME, SDATBC, STHRBC,
& 1ELPBC, 1STPBC, TSTPBC
2001 FORMAT(/ 5X, 'XX% DATE/TIME PRECEDES FIRST DATE/TIME ON ',
&'BCON FILE IN POBCON' :
& / 5X, 'REQUESTED DATE/TIME: *, 15, 5X, 16
& / 5X, 'SCENARIO START: ', 15, 3X, 14
& / 5X, 'ELAPSED TIME: ', 17, 2X, 'STEP NUMBER: ', I3
3 / 5X, 'TIME STEP SIZE: *, 14 /)
CALL EXIT
END IF

ERROR CHECK #2:

A call to FsKIP1 is made in order to skip the appropriate amount of records. The parameter IOST is passed to
FsKir1. Upon return from the subroutine FsKIP1, IOST contains the I/O status value of the read operation.
IOST is tested; if IOST is equal to zero, then an end-of-file marker was reached while reading records on the

F-42

BCON file. The error message contains the subroutine in which the error occurred, the requested time, the
scenario start time, the elapsed time, the step number, the I/O status value and the time step size. The pro-
gram exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

C
C and skip forward -
c

CALL FSKIP1 (UNITBC, FMTD, SKIPDR, NSKIP, RECPOS, SKIPNO,
& 108T)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2003) IDATE, ITIME, SDATBC, STHRBC,
IELPBC, ISTPBC, 10ST, TSTPBC
FORMAT(/ 5X, 'XXX ERROR ENCOUNTERED ON BCON FILE',
' BEFORE DATE/TIME REACHED IN POBCON'
/ 5X, 'REQUESTED DATE/TIME: ', I5, 5X, 16
/ 5X, 'SCENARIO START: 1, 15, 3X, 14
/ 5X, 'ELAPSED TIME: ', 17, 2X, 'STEP NUMBER: ', I3
/ 5X, 'IOSTAT: *, 18, 4X, ‘TIME STEP SIZE: ', 14 /)
CALL EXIT
END IF

2003

RO Q0 RO RO Ro RO

SUBROUTINE POBTRK

ERROR CHECK #1:

A call to subroutine CLOCK1 is made to obtain the file process elapsed time step. The first time step
(FRSTBT) is compared with the elapsed time step (IELPBT) obtained from the call to CLOCK1. If the times
do not match, then an error has occurred. A message is written to the log to indicate that an error has
occurred. The error message contains the subroutine in which the error occurred, the expected time, the time
read from the time step header, the scenario start time, the elapsed time, the step number, and the time step
size. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

C
C determine and validate step number
p .

CALL CLOCK1 (IDATE, ITIME, SDATBT, STHRBT, TSTPBT,
& IELPBT, ISTPBT)

c
IF (IELPBT .LT. FRSTBT) THEN
WRITE(LUNOUT, 2001) IDATE, ITIME, SDATBT, STHRBT,
& IELPBT, ISTPBT, TSTPBT
2001 FORMAT(/ 5X, 'XXX DATE/TIME PRECEDES FIRST DATE/TIME ON ',
&'BTRK FILE IN POBTRK'
& / 5X, 'REQUESTED DATE/TIME: ', 15, 5X, 16
& / 5X, 'SCENARIO START: ', 15, 3X, 14
& / 5X, 'ELAPSED TIME: ', 17, 2X, 'STEP NUMBER: ', I3
& / 5X, 'TIME STEP SIZE: *, 14 /)
CALL EXIT
END IF

F-43

ERROR CHECK #2:

To skip the appropriate amount of records an iteration over the number of records is done. For each iteration
a call to RDBT is made. The parameter JOST is passed to RDBT. Upon return from subroutine RDBT, IOST
contains the I/O status value of a read operation. If IOST is not equal to zero, then an error occurred while
reading records on the BTRK file. A message is written to the log to indicate an error has occurred. The error
message contains the subroutine in which the error occurred, the expected time, the time read from the time
step header, the scenario start time, the elapsed time, the step number, and the time step size. The program
exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

DO 101 ISKIP = 1, NSKIP
CALL RDBT (1, ADUM, 10ST)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2003) IDATE, ITIME, SDATBT, STHRBT,
& 1ELPBT, ISTPBT, 10ST, TSTPBT
2003 FORMAT(/ 5X, *XXX ERROR ENCOUNTERED ON BTRK FILE',
& ! BEFORE DATE/TIME REACHED IN POBTRK'
& / 5X, 'REQUESTED DATE/TIME: ', 15, 5X, 16
& / 5X, 'SCENARIO START: ', 15, 3X, 14
& / 5X, 'ELAPSED TIME: *, 17,
& 2X, 'STEP NUMBER: *, I3
& / 5X, 'IOSTAT: ', 18,
& 4X, 'TIME STEP SIZE: *, 14 /)
CALL EXIT
: END IF
101 CONTINUE

SUBROUTINE POCONC

ERROR CHECK #1:

A call 10 subroutine CLOCK1 is made to obtain the file process elapsed time step. The first time step
(FRSTCN) is compared with the elapsed time step (IELPCN) obtained from the call to cLoOCK1. If the times
do not match, then an error has occurred. A message is written to the log to indicate that an error has
occurred. The error message contains the subroutine in which the error occurred, the expected time, the time
read from the time step header, the scenario start time, the elapsed time, the step number, and the time step
size. The program exits by a call to the system subroutine EXIT.

F-44

CODE FOR ERROR CHECK #1:

c

C compute step number

c
CALL CLOCK1 (IDATE, I1TIME, SDATCN, STHRCN, TSTPCN,
& IELPCN, ISTPCN)

c

IF (IELPCN .LT. FRSTCN) THEN
WRITECLUNOUT, 2001) IDATE, ITIME, SDATCN, STHRCN,
& IELPCN, ISTPCN, TSTPCN
2001 FORMAT(/ 5X, 'XXX DATE/TIME PRECEDES FIRST DATE/TIME ON ',
&'CONC FILE IN POCONC!
& / 5X, ‘REQUESTED DATE/TIME: !, I5, 5X, 16
& / 5X, 'SCENARIO START: ', IS, 3X, 14
& / 5X, ‘ELAPSED TIME: ', 17, 2X, 'STEP NUMBER: !, I3
& / 5X, 'TIME STEP SIZE: ', 14 /)
CALL EXIT
END IF

ERROR CHECK #2:

A call to FsKIP1 is made in order to skip the appropriate amount of records. The parameter I0ST is passed to
FsKkIP1. Upon return from the subroutine FsKIP1, IOST contains the 1/O status value of the read operation.
IOST is tested; if IOST is equal to zero, then an end-of-file marker was reached while reading records on the
CONC file. The error message contains the subroutine in which the error occurred, the requested time, the
scenario start time, the elapsed time, the step number, the I/O status value and the time step size. The pro-
gram exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

c
C and skip forward -
¥
CALL FSKIP1 (UNITCN, FMTD, SKIPDR, NSKIP, RECPOS, SKIPNO,
& 10ST)
IF (10ST .NE. 0O) THEN
WRITE(LUNOUT, 2003) IDATE, ITIME, SDATCN, STHRCN,
1ELPCN, ISTPCN, 10ST, TSTPCN
FORMAT(/ 5X, 'XXX ERROR ENCOUNTERED ON CONC FILE',
' BEFORE DATE/TIME REACHED IN POCONC!®
/ 5X, 'REQUESTED DATE/TIME: ', 15, 5X, 16
/ 5X, 'SCENARIO START: ',15, 3, 14
/ 5X, 'ELAPSED TIME: ', I7, 2X, °'STEP NUMBER: ', I3
/ 5X, 'IOSTAT: ', 18, 4X, 'TIME STEP SIZE: ', 14 /)
CALL EXIT
END IF

2003

fofoRo oo o

SUBROUTINE POICON

ERROR CHECK #1:

F-45

A call to subroutine CLOCK!1 is made to obtain the file process elapsed time step. The first time step
(FRSTIC) is compared with the elapsed time step (IELPIC) obtained from the call to cCLocK1. If the timesdo
not match, then an error has occurred. A message is written to the log to indicate that an error has occurred.
The error message contains the subroutine in which the error occurred, the expected time, the time read from
the time step header, the scenario start time, the elapsed time, the step number, and the time step size. The

program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #1:

c
C compute step number
c

CALL CLOCK1 (IDATE, ITIME, SDATIC, STHRIC, TSTPIC,
& IELPIC, ISTPIC)

IF (IELPIC .LT. FRSTIC) THEN
WRITECLUNOUT, 2001) IDATE, ITIME, SDATIC, STHRIC,
1 1ELPIC, ISTPIC, TSTPIC
2001 FORMAT(/ 5X, 'XXX DATE/TIME PRECEDES FIRST DATE/TIME ON °*,
&'ICON FILE IN POICON’
l / 5X, 'REQUESTED DATE/TIME: *, 15, 5X, 16
Fl / 5X, 'SCENARIO START: 1, 15, 3x, 14
& / 5X, 'ELAPSED TIME: ', 17, 2X, 'STEP NUMBER: ', I3
& / 5X, ‘TIME STEP SIZE: ', 14 /)
CALL EXIT
END [F

ERROR CHECK #2:

A call to FsKIP1 is made in order to skip the appropriate amount of records. The parameter IOST is passed to
FSKIP1. Upon return from the subroutine FsKiP1, IOST contains the J/O status value of the read operation.
IOST is tested; if IOST is equal to zero, then an end-of-file marker was reached while reading records on the
ICON file. The error message contains the subroutine in which the error occurred, the requested time, the
scenario start time, the elapsed time, the step number, the /O status value and the time step size. The pro-
gram exits by a call to the system subrc-mtine EXIT.

F-46

CODE FOR ERROR CHECK #2:

c
C and skip forward -
C

CALL FSKIP1 (UNITIC, ¥MTD, SKIPDR, NSKIP, RECPOS, SKIPNO,
& 10ST)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2003) IDATE, ITIME, SDATIC, STHRIC,

& IELPIC, ISTPIC, 10ST, TSTPIC
2003 FORMAT(/ 5X, 'XXX ERROR ENCOUNTERED ON ICON FILE',
& * BEFORE DATE/TIME REACHED IN POICON'
& / 5X, 'REQUESTED DATE/TIME: ', 15, 5X, Ié
& / 5X, 'SCENARIO START: 1, IS5, 3%, 14
& / 5X, 'ELAPSED TIME: ', 17, 2X, 'STEP NUMBER: ', I3
& / 5X, 'IOSTAT: ', I8, 4X, 'TIME STEP SIZE: ', 14 /)
CALL EXIT
END IF
SUBROUTINE POMXBM
ERROR CHECK #1:

A call to subroutine CLOCK1 is made. The first time step (FRSTBM) is compared with the ¢lapsed time step
(IELPBM) obtained from the call to CLOCK1. If the times do not match, then an error has occurred. A mes-
sage is written to the log to indicate that an error has occurred. The error message contains the subroutine in
which the error occurred, the expected time, the time read from the time step header, the scenario start time,

the elapsed time, the step number, and the time step size. The program exits by a call to the system subroutine
EXIT.

CODE FOR ERROR CHECK #1:

c
C get position step number
o

CALL CLOCK1 (IDATE, ITIME, SDATBM, STHRBM, TSTPBM,
& IELPBM, ISTPBM)

IF (IELPBM .LT. FRSTBM) THEN
WRITE(LUNOUT, 2001) IDATE, ITIME, SDATBM, STHRBM,
IELPBM, ISTPBM, TSTPBM
2001 FORMAT(/ 5X, 'XXX DATE/TIME PRECEDES FIRST DATE/TIME ON ',
&'BMAT FILE IN POMXBM'
& / 5X, 'REQUESTED DATE/TIME: *, 15, 5X, 16
& / 5X, ‘SCENARIO START: VL5, 3X, 14
& / SX, 'ELAPSED TIME: ', 17, 2X, 'STEP NUMBER: ', I3
: / 5X, 'TIME STEP SIZE: ', 14 /)
CALL EXIT
END IF

ERROR CHECK #2:

F-47

The appropriate amount of records are skipped by performing an IF test. For each test, a call to subroutine
RDMXBM is made. The parameter IOST is passed to ROMXBM. Upon return from subroutine RDMXBM, IOST
contains the J/O status of a read of the BMAT file. A test of the correct subfile is made. If this test fails, then
10ST is tested; if IOST is less than zero, then the end-of-file marker is reached on the BMAT file. If this test
passes, then IOST is tested, and if not equal to zero, then an error occurred while reading the BMAT file. An
error message is written to the log indicating that an error has occurred. The error message contains the
subroutine name, the requested time, the scenario start time, the elapsed time, the step number, the I/O status
value, and the time step size. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

CALL RDMXBM (1, ADUM, 10ST)
IF ¢ ISUBFL .NE. JSUBFL) THEN
IF (10ST .LT. 0) THEN
WRITECLUNOUT, 2003) ' EOF', IDATE, ITIME, SDATBM,
& STHRBM, IELPBM, 1STPBM, 10ST, TSTPBM

2003 FORMAT(/ 5X, 'XXX', A6, ' ENCOUNTERED ON BMAT FILE®
& ' BEFORE DATE/TIME REACHED IN POMXBM'
& / 5X, 'REQUESTED DATE/TIME: ', 15, 5X, 16
& / 5X, 'SCENARIO START: ', 15, 3X, 14
& / 5X, ‘ELAPSED TIME: *, 17, 2X, 'STEP NUMBER: ', 13
& / 5X, '"IOSTAT: ', 18, 4X, °'TIME STEP SIZE: ', 14 /)
CALL EXIT .

ELSE

ELSE IF CIOST .NE. 0) THEN

WRITECLUNOUT, 2003) * ERROR', IDATE, ITIME, SDATBM, STHRBM,
& IELPBM, ISTPBM, 10ST, TSTPBM

CALL EXIT
END IF

SUBROUTINE POSTAV

ERROR CHECK #1:
A call to subroutine CLOCK1 is made to obtain the elapsed time (IELPSV). This time is tested against the first
time step (FRSTSV). If the elapsed time step is less than the first time step, then an error has occurred. An

error message is written to the log indicating that an error has occurred. The error message contains the
subroutine in which the error occurred. The program exits by a call to the system subroutine EXIT.

F-48

CODE FOR ERROR CHECK #1: .

compute step

CALL CLOCK1 (IDATE, ITIME, SDATSV, STHRSV, TSTPSV,
& IELPSV, ISTPSV)

[« NeNel

If (IELPSV .LT. FRSTSV) THEN
WRITE(LUNOUT, 2201)
2201 FORMAT(/ 5X, 'XXX DATE/TIME PRECEDES FIRST DATE/TIME ON °',
&'STATE VECTOR IN POSTAV!)
CALL EXIT
END IF

ERROR CHECK #2:

To skip records on the STATE VECTOR file, an iteration is made. For each iteration, a formatted read from
the STATE VECTOR file is done, and the I/O status is saved in the variable IOST. 1OST is tested after each
read; if IOST does not equal zero, then an error has occurred. A message is written to the log indicating that
an error has occurred. The message contains the subroutine name, the unit number, the current record being

read, and the I/O status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

DO 101 IREC = 1, RECNSV
READ(UNIT = UNITSvV, FMT = 1001, 10STAT = 10ST) DUMBUF
1001 FORMAT (AB0)
IF (IOST .NE. 0) THEN
WRITE(LUNOUT, 2003) UNITSV, IREC, DUMBUF, IOST

2003 FORMAT(/ 5X, 'XXX READ ERROR IN POSTAV'
& / 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', 14
& / 5X, A8O
& / 5X, '1/0 STATUS = *, 14)
CALL EXIT .
END IF

101 CONTINUE

SUBROUTINE ro1

ERROR CHECK #1:

For each iteration over each species, each chemistry component (GPR) is tested to see if it is less than or
equal to zero. At the same time, each ADTVF component is also tested to see if it is less than or equal to
zero. If either test fails, then an error has occurred. A message is written to the log. The message contains the
subroutine name, as well as some chemistry reaction and rate constant values. IOST is then set to have a value

of 1, and control is returned to the calling subroutine.

F-49

CODE FOR ERROR CHECK #1:

o
DO 201 ISPC = 1, NSPCIN
IF (GPR(ISPC,LEV) .LE. 0.0 .OR. ADTVF(ISPC) .LE. 0.0) THEN
WRITE(LUNOUT, 2001) LEV
2001 FORMAT(/ 5X, *'XXX ERROR REPORTED FROM PQ1 FOR LEVEL', 12,
& 2X, '- ZERO OR NEGATIVE CONC COMPONENY VALUES:',
& / 5X, 'SPEC --- GPR(SPEC) ---

& GTI(SPEC) --- CGA(SPEC)')
DO 101 JSPC = 1, NSPCIN
WRITECLUNOUT, 2003) SPNAME(JSPC), GPR(JSPC,LEV),
& GTICJSPC,LEV), CGA(JSPC,LEV)

2003 FORMAT(/ 5X, A4, 2X, 3(2X, 1PE12.5))
101 CONT INUE
10ST = 1
RETURN
END IF

201 CONTINUE

SUBROUTINE PQCOEF

NONE

SUBROUTINE PRGSMY

ERROR CHECK #1:

A call to subroutine ADATE is made to obtain the run date and run time. A formatted read from the buffer
extracts the date and time. IOST contains the 1/O status of this read operation. If IOST is not equal to zero,
then an error has occurred. A message is written to the log indicating that an error has occurred. The error
message contains the subroutine name, the run daté and run time extracted from the call to ADATE, the entire

character string from ADATE, and the /O status value. The program exits by a call to the system subroutine
EXIT.

CODE FOR ERROR CHECK #1:

c
C get run date, time
c
CALL ADATE (CDT(1), CDT(2), DUMSTR)
READ(STRING, 1001, IOSTAT = 10ST) RUNDTE, RUNTIM
1001 FORMAT(16, 2X, 16)
IF (10ST .NE. 0) THEN
10ST = 10CL (10ST)
WRITECLUNOUT, 2001) RUNDTE, RUNTIM, STRING, 10ST
2001 FORMAT(/ 5X, 'XXX ERROR ABORT IN PRGSMY -'
& ¢ UNABLE TO DECODE DATE/TIME®

& / 5X, 'RUNDTE = ', 18, 2X, 'RUNTIM = ', I8

& / 5X, 'STRING = *, A16, 2X, '10ST = ', 16)
CALL EXIT

END IF

F-50

SUBROUTINE RATED

NONE

SUBROUTINE RDBCON
ERROR CHECK #1:

The BCON file is opened by a call to OPBCON, and the common block HEADBC is loaded. HEADBC con-
tains the header information for the BCON file. The header information is then tested in the subroutine
RDBCON. If any of the parameters fail the test, then an error has occurred. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name and the BCON header infor-
mation. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

[
C open BCON file
CALL OPBCON
c
C check header parameters
IF ((TSTPBC .NE. TSTPIN) .OR. (GRDNBC .NE. GRDNIN) .OR.
& (ABS(SWLNBC - SWLNIN) .GT. 0.001) .OR.

-

WRITE(LUNOUT, 2001) TSTPBC, TSTPIN, GRDNBC, GRDNIN,

& SWLNBC, SWLNIN, SWLTBC, SWLTIN,
& NELNBC, NELNIN, NELTBC, NELTIN,
& DLONBC, DLONIN, DLATBC, OLATIN,
& NCOLBC, NCOLIN, NROWBC, NROWIN,
& NLEVBC, NLEVIN, NSPCBC, NSPCIN
2001 FORMAT(/ 5X, '%XX PARAMETER CHECK FAILURE IN RDBCON'
3 / 5X, 'TSTPBC = ', 15, 5X, 'TSTPIN = Y, IS
& / SX, 'GRDNBC = ', AB, 5X, 'GRDNIN = ', A8
2 / 5X, 'NELNBC = ', F10.5, 5X, 'NELNIN = ', F10.5
& / SX, 'NELTBC = ', F10.5, 5X, 'NELTIN = ', F10.5
& / 5X, 'SWLNBC = *, F10.5, 5X, 'SWLNIN = ', F10.5
& / 5X, 'SWLTBC = ', F10.5, 5X, *SWLTIN = !, F10.5
& / 5X, 'DLONBC = ', F10.5, 5X, 'DLONIN = ', F10.5
& / 5X, 'DLATBC = ', F10.5, 5X, 'DLATIN = ', F10.5
& / 5X, °*NCOLBC = *, I3, 5X, 'NCOLIN = ', I3
& / 5X, 'NROMBC = ', I3, 5X, 'NROWIN = ', I3
& / 5X, 'NLEVBC = ¢, I3, 5X, 'NLEVIN = ', I3
& 7 5X, 'NSPCBC = *, 13, 5X, 'NSPCIN = ', 13)
CALL EXIT
END 1F
ERROR CHECK #2:

The BCON time step header is read by calling the subroutine RDFILE. The unit number, number of words to
be read, starting address of the common block RTSHBC, and IOST are passed to RDFILE. Upon return from
the call 10 RDFILE, IOST contains the /O status of the read operation of the BCON time step header. I0ST

F-51

is tested; if IOST is less than zero, then an end-of-file marker was reached. Control is returned to the calling
subroutine. If IOST is not equal to zero, then an error occurred on the read operation. A message is written
to the log to indicate that an error occurred. The message contains the subroutine name, the number of words
to read, the value of the 1/O status, the time step date and time. The program exits by a call to the system
subroutine EXIT.

CODE FOR ERROR CHECK #2:

9
C read BCON T.S.H.
c

CALL RDFILE (UNITBC, NWDTSH, DATBC, IOST)
[+

IF (IOST .LT. 0) RETURN

IF (10ST .NE. 0) THEN

WRITECLUNOUT, 2003) NWDTSH, 10ST, BCDATE, BCTIME

2003 FORMAT(/ 5X, *XXX T.S.H. READ ERROR IN RDBCON'

& / 5X, 'NO. OF WORDS = ', 12, 2X, '1/0 STATUS = ', 14,
&2X, 'BCDATE = ', 16.6, 2X, ‘BCTIME = ', 16.6)
CALL EXIT
END IF
ERROR CHECK #3:

The current model time step time and date are compared with the time step time and date obtained from
reading the BCON time step header. If either the time or date do not match, then an error has occurred. A
message is written to the log to indicate that an error has occurred. The message contains the subroutine
name, date and time from the time step header, and the model date and time. The program exits by a call to
the system subroutine EXIT.

CODE FOR ERROR CHECK #3:

IF (BCDATE .NE. IDATBC .OR. BCTIME .NE. ITIMBC) THEN
WRITECLUNOUT, 2005) IDATBC, ITIMBC, BCDATE, BCTIME
2005 FORMAT(/ 5X, 'XXX DATES/TIMES DO NOT MATCH IN RDBCON'

3 / 5X, 'IDATBC = ', 16.6, 2X, 'ITIMBC = ', 16.6
& / SX, 'BCDATE = *, 16.6, 2X, 'BCTIME = ', 16.6)
CALL EXIT
END IF
ERROR CHECK #4:

The western boundary conditions are read by iterating over the number of species. For each iteration, a call
10 RDFILE is made. The unit number, the number of words to read, the starting address of the common block
BCFILE, and IOST are passed to RDFILE. Upon return from RDFILE, IOST contains the 1/O status of the

F-52

read operation. If IOST is not equal to zero, then an error has occurred. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name, the unit number, the I[/O

status value, and the number of words. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #4:

c
C read Western boundary conditions species*

DO 201 ISPC = 1, NSPECS
CALL RDFILE (UNITBC, ROWWRD, WEST(1,1,ISPC), IOST)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2007) UNITBC, 10ST, ROWWRD
2007 FORMAT(/ 5X, 'XXX READ ERROR IN RDBCON'
& /7 5X, 'UNIT = ', I3, 2X, '1/0 STATUS = ', 13,
& 2X, 'NO. OF WORDS = ', 14)
CALL EXIT
END IF
201 CONTINUE

ERROR CHECK #5:

The eastern boundary conditions are read by iterating over the number of species. For each iteration, a call to
RDFILE is made. The unit number, the number of words to read, the starting address of the common block
BCFILE, and IOST are passed to RDFILE. Upon return from RDFILE, IOST contains the I/O status of the
read operation. If IOST is not equal to zero, then an error has occurred. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name, the unit numbef, the I/O

status value, and the number of words. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #5:

c
C read Eastern boundary conditions species*
c .
DO 301 ISPC = 1, NSPECS

CALL ROFILE (UNITBC, ROWWRD, EAST(1,1,1SPC), 10ST)

IF C(10STY .NE. 0) THEN
WRITECLUNOUT, 2007) UNITBC, 10ST, ROWWRD
CALL EXIT

END IF
301 CONTINUE

ERROR CHECK #6:

The northern boundary conditions are read by iterating over the number of species. For each iteration, a call
to RDFILE is made. The unit number, the number of words to read, the starting address of the common block
BCFILE, and IOST are passed to RDFILE. Upon return from RDFILE, IOST contains the I/O status of the

F-53

read operation. If IOST is not equal to zero, then an error has occurred. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name, the unit number, the I/O
status value, and the number of words. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #6:

C
C read Northern boundary conditions species*
c

DO 401 ISPC = 1, NSPECS

CALL RDFILE (UNITBC, COLWRD, NORTH(1,1,1SPC), 10ST)
IF (10ST .NE. 0) THEN

WRITE(LUNOUT, 2007) UNITBC, 10ST, COLWRD

CALL EXIT

END IF
401 CONTINUE

ERROR CHECK #7:

The southern boundary conditions are read by iterating over the number of species. For each iteration, a call
to RDFILE is made. The unit number, the number of words to read, the starting address of the common block
BCFILE, and IOST are passed to RDFILE. Upon return from RDFILE, IOST contains the I/O status of the
read operation. If IOST is not equal to zero, then an error has occurred. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name, the unit number, the I/O
status value, and the number of words. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #7:

[
C read Southern boundary conditions
c

DO 501 ISPC = 1, NSPECS
CALL RDFILE (UNITBC, COLWRD, SOUTH(1,1,ISPC), 10ST)

IF (10ST .NE. 0) THEN

WRITE(LUNOUT, 2007) UNITBC, IOST, COLWRD
CALL EXIT

END IF
501 CONTINUE

SUBROUTINE RDBMAT

ERROR CHECK #1:

The BMAT file is opened by a call to OPBMAT, and the common block HEADBM is loaded. HEADBM
contains the header information for the BMAT file. The header information is then tested in the subroutine
RDBMAT. If any of the parameters fail the test, then an error has occurred. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name and the BMAT header
information. The program exits by a call to the system subroutine EXIT.

F-54

CODE FOR ERROR CHECK #1:

c

C open BMAT file
CALL OPBMAT

c

C check parameters in headers
IF ((TSTPBM .NE. TSTPIN) .OR. (GRDNBM _NE. GRDNIN) .OR.
& (ABS(SWLNBM - SWLNIN) .GT. 0.001) .OR.
& (ABS(SWLTBM - SWLTIN) .GT. 0.001) .OR.

2001 F6RHAT(/ 5X, 'XXX PARAMETER CHECK FAILURE IN RDBMAT'

3 / 5X, ‘TSTPBM = ', IS5, 5X, 'TSTPIN = ', I5

& / 5X, 'GRDNBM = ', AB, 5X, 'GRDNIN = ', A8

& / SX, 'NELNBM = ¢, F10.5, 5X, 'NELNIN = ', F10.5
& / 5X, 'NELTBM = ', F10.5, 5X, 'NELTIN = ', F10.5
& / 5X, 'SWLNBM = !, F10.5, 5X, 'SWLNIN = !, F10.5
& / 5X, 'SWLTBM = !, F10.5, 5X, 'SWLTIN = ', F10.5
2 / 5X, 'DLONBM = ', F10.5, 5X, 'DLONIN = ', F10.5
& / 5X, ‘DLATBM = ', F10.5, 5X, 'DLATIN = ¢, F10.5
& / 5X, 'NCOLBM = !, 13, 5X, 'NCOLIN = ', I3

& / 5X, 'NROWBM = ', 13, 5X, 'NROWIN = ', I3

& / 5X, 'NLEVBM = ', 13, 5X, 'NLEVIN = ', I3

& / 5X, 'NSPCBM = ', 13, 5X, 'NSPCIN = ', I3)

CALL EXIT
END IF
ERROR CHECK #2:

The BMAT time step header is read by calling the subroutine RDMXBM. The number of words to be read,
starting address of the common block RTSHBM, and IOST are passed to RDMXBM. Upon return from the
call to RDMXBM, IOST contains the 1/O status of the read operation of the time step header. IOST is tested;
If IOST is less than zero, then an end-of-file marker was reached. Control is returned to the calling subrou-
tine. If IOST is not equal to zero, then an error occurred on the read of the BMAT time step header. A
message is written to the log indicating that an error occurred. The message contains the subroutine name,
the number of words to read, the value of the I/O status, the time step date and time. The program exits by a
call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

o
C read BMAT T.S.H.
CALL RDMXBM (NWDTSH, DATBM, 10ST)
c
IF (10ST .LT. 0) RETURN
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2003) NWDTSH, 10ST, BMDATE, BMTIME
2003 FORMAT(/ 5X, *XXX T.S.H. READ ERROR IN RDBMAT®
& / 5X, 'NO. OF WORDS = ', I2, 2X, '1/0 STATUS = ', 14,
82X, 'BMDATE = ', 16.6, 2X, 'BMTIME = ', 16.6)
CALL EXIT
END IF

ERROR CHECK #3:

F-55

The current model time step time and date are compared with the time step time and date obtained from
reading the BMAT time step header. If the time or date do not match, then an error has occurred. A message
is written to the log to indicate that an error has occurred. The message contains the subroutine name, date

and time from the time step header, and the model date and time. The program exits by a call to the system
subroutine EXIT.

CODE FOR ERROR CHECK #3:

IF (IDATBM .NE. BMDATE .OR. ITIMBM .NE. BMTIME) THEN
WRITE(LUNOUT, 2005) IDATBM, ITIMBM, BMDATE, BMTIME
2005 FORMAT(/ 5X, 'XXX DATES/TIMES DO NOT MATCH IN RDBMAT'

& / 5X, 'IDATBM = !, 16.6, 2X, 'ITIMBM = ', 16.6
& / 5X, 'BMDATE = ', 16.6, 2X, 'BMTIME = ', 16.6)
CALL EXIT
END IF
ERROR CHECK #4:

Part 1 of the BMAT file is read by calling subroutine RDMXBM. The number of words to read, the starting
address of the common block BMFILE, and IOST are passed to RDMXBM. Upon return from RDMXBM, IOST
contains the I/O status of the read operation. If IOST is not equal to zero, then an error has occurred. A
message is written to the log to indicate that an error has occurred. The message contains the subroutine

name, the 1/O status value, the number of words, the model step date and time, and the row. The program
exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #4:

c

C read BMAT pert 1
CALL RDMXBM (NWDBM1, XB12, 10ST)
IF (10ST .NE. 0) THEN

WRITE(LUNQUT, 2007) 10ST, NWDBM1, BMDATE, BMTIME, RDBMRW
2007 FORMAT(/ 5X, 'XXX FILE READ ERROR IN PART 1 IN RDBMAT'

& / 5%, '1/0 STATUS = ', 14, 2X, 'NO. OF WORDS = ', 16
& / 5X, 'BMDATE = *, 16.6, 2X, 'BMTIME = *, 16.6,
&2X, 'ROM = ', I3)
CALL EXIT
END IF
ERROR CHECK #5:

Part 2 of the BMAT file is read by iterating over the number of reduced species. For each iteration, a call to
RDMXBM is made. The number of words to read, the starting address of the common block BMFILE, and
I0ST are passed to RDMXBM. Upon return from RDMXBM, IOST contains the /O status of the read opera-
tion. If IOST is not equal to zero, then an error has occurred. A message is written to the log to indicate that

F-56

an error has occurred. The message contains the subroutine name, the I/O status value, the number of words,
the time step date and time, the row, and the species number. The program exits by a call to the system
subroutine EXIT.

CODE FOR ERROR CHECK #5:

c
C read BMAT part 2 (reduced species list)
DO 301 ISPC = 1, BMSPRD
CALL RDMXBM (NWDBM2, AA1(1,1,1SPC), 10ST)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2009) 10ST, NWDBM2, BMDATE, BMTIME,
& RDBMRW, ISPC
2009 FORMAT(/ 5X, 'XXX READ ERROR ON PART 2 IN RDBMAT!'
& / 5%, 'I/0 STATUS = ', 14
& / 5X, 'NO. OF WORDS = !, I3
& / 5X, 'BMDATE = ‘', 16.6, 5X, 'BMTIME = *, 16.6
& / 5%, 'ROW = ', 12, 5X, 'SPECIES NUMBER = ', 12)
CALL EXIT
END IF
301 CONTINUE

SUBROUTINE RDBT

ERROR CHECK #1:

RDBT is called by RDBTRK to read the header record. In RDBT, the header record is read from the BTRK file
into the character buffer RECONE. The I/O status value for the read operation is stored in the variable
IOST. IOST is tested; if IOST does not equal zero, an error has occurred on the read. A message is written to
the log to indicate that an error has occurred. The error message contains the subroutine name, the unit
number, the logical name of the file, the actual name of the file, the I/O status value, and the record length.
The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c
C read header record

C
READ(UNITBT, 10STAT = [0ST) RECONE
IF (10ST .NE. 0) THEN
INQUIRE (FILE = FLNMBT, NAME = EQNAME)
WRITE(LUNOUT, 2001) UNITBT, FLNMBT, EQNAME, 10ST, RECLEN,
& ‘FIRST RECORD °
2001 FORMAT(/ 5X, 'XXX ERROR READING MEADER RECORD IN RDBT!,
& / 5X, 'UNITBT = ', 12, 2X, 'FNAME = ', AB
& / 5X, 'EQNAME = ', AGh
& / 5X, '10ST = ', 14, 2X, 'RECLEN = ', 14, 2X, A16)
CALL EXIT
END IF
ERROR CHECK #2:

F-57

A formatted read of the buffer containing the header information (RECONE) is made to convert the header
information into character or numeric type, and the common block HEADBT is loaded. 10ST is tested; if
IOST does not equal zero, an error has occurred on the read. A message is written to the log to indicate that
an error has occurred. The error message contains the subroutine name, the unit number, the logical name of

the file, the actual name of the file, the I/O status value, and the record length. The program exits by a call to
the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

C
C convert character to mixed character & numeric

READ(RECONE, 1001, IOSTAT = 10ST)
& CDATBT, CTIMBT, SDATBT, STHRBT, TSTPBT, FRSTBT,
& GRDNBT, SWLNBT, SWLYBT, NELNBT, NELTBT, DLONBT,
& DLATBT, NCOLBT, NROWST, NMIFBT, ICNTBT
1001 FORMAT(61B.8, A8, 4F8.3, 2F8.5, 414.4)
IF (10ST .NE. 0) THEN
INQUIRE (FILE = FLNMBT, NAME = EQNAME)
WRITECLUNOUT, 2001) UNITBT, FLNMBT, EQNAME, 10ST, RECLEN,
& 'INTERNAL READ #1°
CALL EXIT
END IF

ERROR CHECK #3:

The MIF data records are next read by iterating over the number of MIF data records. For each iteration, an
MIF record is read into the buffer RECMIF. The I/O status value from the read operation is stored in the
variable IOST. 1OST is tested; if IOST does not equal zero, an error has occurred on the read. A message is
written to the log to indicate that an error has occurred. The error message contains the subroutine name, the
unit number, the logical name of the file, the actual name of the file, the I/O status value, and the record
length. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #3:

C
C read the MIF data records
Cc

DO 101 INIF = 1, NMIFBT
READ(UNITBT, 10STAT = 10ST) RECMIF
IF (10ST .NE. 0) THEN
INGUIRE (FILE = FLNMBT, NAME = EQNAME)
WRITE(CHBUF, 1003) * MIF - NO. *, IMIF
1003 FORMAT(A12, 14)
WRITECLUNOUT, 2001) UNITBT, FLNMBT, EQNAME, 10ST,
& RECLEN, CHBUF
CALL EXIT
END IF

ERROR CHECK #4:

F-58

A formatted read of the buffer containing the MIF information (RECMIF) is made to convert the MIF
records to character and numeric data, and the common blocks HEADBT and CHARBT are loaded. IOST is
tested; if IOST does not equal zero, an error has occurred on the read. A message is written to the log to
indicate that an error has occurred. The error message contains the subroutine name, the unit number, the
logical name of the file, the actual name of the file, the I/O status value, and the record length. The program

exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #4:

READ(RECMIF, 1005, IOSTAT = 10ST)
& MFNMBT(IMIF), COMFBTCIMIF), CTMFBTCIMIF),
& UDMFBT(IMIF), UTMFBT(IMIF)
1005 FORMAT(A12, 418.8)
IF (10ST .NE. 0) THEN
INQUIRE (FILE = FLNMBT, NAME = EQNAME)
WRITE(CHBUF, 1003) 'INTERNAL READ #2', IMIF
WRITE(LUNOUT, 2001) UNITBT, FLNMBT, EQNAME, 10ST,
& RECLEN, CHBUF
CALL EXIT
END IF
101 CONTINUE

ERROR CHECK #5:

The text records are next read by iterating over the number of text records. For each iteration, a text record is
read into the buffer RECTXT. The 1/O status value from the read operation is stored in the variable I0ST.
IOST is tested; if IOST does not equal zero, an error has occurred on the read. A message is written to the log
to indicate that an error has occurred. The error message contains the subroutine name, the unit number, the
logical name of the file, the actual name of the file, the /O status value, and the record length. The program
exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #5:

c
C read header text records

DO 201 ITXT = 1, ICNTBT
READ (UNITBT, IOSTAT = IOST) RECTXT
IF (10ST .NE. 0) THEN
INQUIRE (FILE = FLNMBT, NAME = EQGNAME)
WRITECLUNOUT, 2001) UNITBT, FLNMBT, EQNAME, IOST, RECLEN,

& 'TEXT RECORDS '
CALL EXIT
END IF
ERROR CHECK #6:

F-59

A formatted read of the buffer containing the text records (RECTXT) is made to convert the text records to
character data, and the common block CHARBT is loaded. IOST is tested; if IOST does not equal zero, an
error has occurred on the read. A message is written to the log to indicate that an error has occurred. The
error message contains the subroutine name, the unit number, the logical name of the file, the actual name of

the file, the /O status value, and the record length. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #6:

READCRECTXT, 1007, IOSTAT = 10ST) TEXTBT(ITXT)
1007 FORMAT (A80)
IF (10ST .NE. 0) THEN
INQUIRE (FILE = FLNMBT, NAME = EQNAME)
WRITE(LUNOUT, 2001) UNITBT, FLNMBT, EQNAME, 10ST, RECLEN,
& VINTERNAL READ
WRITE(LUNOUT, 1009) RECTXT
1009 FORMAT(5X, A80)
CALL EXIT
END IF

ERROR CHECK #6:

Each row of the backtrack file is read. The I/O status value of the read is stored in the variable IOST. IOST
is tested; if IOST is less than zero, then the end-of-file marker is reached. An informational message is written
to the log. The backtrack file is closed and control returns to the calling subroutine. If IOST is not equal to
zero, then.an error has occurred on the read. A message is written to the log to indicate that an error has
occurred. The error message contains the subroutine name, the unit number, the file name, the ldgical file

name, the I/O status value, and the record length. The program exits by a call to the system subroutine EXIT.

F-60

CODE FOR ERROR CHECK #6:

c
C read data record
[o
READ (UNITBT, IOSTAT =]OST) DATA
RECNO = 1
[
Creadbody . . « « v ¢ ¢ v vt o 4 e v o o o o o v s record*®
c

IF (10ST .LT. 0) GO TO 401
IF (I0ST .NE. 0) THEN
INQUIRE (FILE = FLNMBT, NAME = EQNAME)
WRITE(LUNOUT, 2003) UNITBT, FLNMBT, EQNAME, 10ST, RECNO
2003 FORMAT(/ 5X, 'XXX ERROR READING DATA RECORD IN RDBT',
&5X, 'CONTROL RETURNED TO RDBTRK®

& / 5X, 'UNITBT = ', 12, 2X, 'FNAME = ', A8

& / 5X, 'EQNAME = ', AGh

& / 5X, 'IOST = !, 12, 2X, 'RECNO = ', I4)
RETURN

END IF

401 CONTINUE
WRITE(LUNOUT, 1011) RECNO, FLNMBT, UNITBT
1011 FORMAT(5X, 16, ' records read on ', A12, ' from unit ', 12 /)

CLOSE (UNIT = UNITBT)

SUBROUTINE RDBTRK

ERROR CHECK #1:

The BTRK file is opened by a call to OPBTRK, and the common block HEADBT is loaded. HEADBT con-
tains the header information for the BTRK file. The header information is then tested in the subroutine
RDBTRK. If any of the parameters fail the test, then an error has occurred. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name and the BTRK header infor-
mation. The program exits by a call to the system subroutine EXIT.

F-61

CODE FOR ERROR CHECK #1:

c

C open BTRK file
CALL OPBTRK

c

C check parameters in headers
IF ((TSTPBT .NE. TSTPIN) .OR. (GRDNBT .NE. GRDNIN) .OR.
& (ABS(SWLNBT - SWLNIN) .GT. 0.001) .OR.
& (ABS(SWLTBT - SWLTIN) .GT. 0.001) .OR.

WRITE(LUNOUT, 2001) TSTPBT, TSTPIN, GRDNBT, GRDNIN,

& SWLNBT, SWLNIN, SWLTBT, SWLTIN,
& NELNBT, NELNIN, NELTBT, NELTIN,
& DLONBT, DLONIN, DLATBT, DLATIN,
& NCOLBT, NCOLIN, NROWBT, NROWIN

2001 FORMAT(/ 5X, ‘XXX PARAMETER CHECK FAILURE IN RDBTRK'
& / 5X, ‘TSTPBT = ', 15, 5X, 'TSTPIN = *, IS
& / 5X, 'GRDNBT = ', A8, 5X, '‘GRONIN = ', A8
& / 5X, 'NELNBT = ', F10.5, 5X, 'NELNIN = ', F10.5
& / 5X, 'NELTBT = *, F10.5, 5X, 'NELTIN = ', F10.5
3 / 5X, 'SWLNBT = ', F10.5, 5X, 'SWLNIN = ', F10.5
& / 5X, 'SWLTBT = *, F10.5, 5X, 'SWLTIN = ¢, F10.5
& / 5X, 'DLONBT = ', F10.5, 5X, 'DLONIN = ', F10.5
& / 5X, 'DLATBT = ', F10.5, 5X, 'DLATIN = ', F10.5
& / 5X, 'NCOLBT = *, I3, 5X, *NCOLIN = !, I3
& / 5X, 'NROWBT = ', I3, 5X, 'NROWIN = ', I3 /)

CALL EXIT
END IF
ERROR CHECK #2:

The BTRK time step header is read by calling the subroutine RDBT. The number of words to be read, starting
address of the common block RTSHBT, and 10ST are passed to RDBT. Upon return from the call to RDBT,
10ST contains the I/O status of the read operation of the BTRK time step header. IOST is tested; if IOST is
less than zero, then an end-of-file marker was reached. Control is returned to the calling subroutine. If IOST
is not equal to zero, then an error occurred on the read operation. A message is written to the log to indicate
that an error occurred. The message contains the subroutine name, the number of words to read, the value of
the 1/O status, the time step date and time. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2

c
C read BTRK T.S.H.

CALL RDBT (IWDLN1, DATBT, 10ST)
c

IF (10ST .LT. 0) RETURN

IF (IOST .NE. 0) THEN

WRITECLUNOUT, 2003) IWDLN1, 10ST, BTDATE, BTTIME

2003 FORMAT(/ 5X, 'XXX T.S.H. READ ERROR IN RDBTRK'

& / 5X, 'WOLN1 = ', 12, 2X, '1/0 STATUS = ', 14,
&2X, 'BTDATE = !, 16.6, 2X, 'BTTIME = ', 16.8)

CALL EXIT
END IF

F-62

ERROR CHECK #3:

The current model time step time and date are compared with the time step time and date obtained from
reading the BTRK time step header. If the time or date do not match, then an error has occurred. A message
is written to the log to indicate that an error has occurred. The message contains the subroutine name, date
and time from the time step header, and the model date and time. The program exits by a call to the system
subroutine EXIT.

CODE FOR ERROR CHECK #3:

IF (IDATBT .NE. BTDATE .OR. ITIMBT .NE. BTTIME) THEN
WRITECLUNOUT, 2005) IDATBT, ITIMBT, BTDATE, BTTIME
2005 FORMAT(/ 5X, 'XXX% DATES/TIMES DO NOT MATCH IN RDBTRK'

& / 5X, 'IDATBT = ', 16.6, 2X, 'ITIMBY = ', 16.6
& / 5X, 'BIDATE = ', 16.6, 2X, 'BTTIME = ', 16.6)
CALL EXIT
END IF
ERROR CHECK #4:

The backtrack file records are read by calling subroutine RDBT. The number of words to read, the starting
address of the common block BTFILE, and IOST are passed to RDBT. Upon return from RDBT, IOST con- -
tains the I/O status of the read operation. If IOST is not equal to zero, then an error has occurred while
reading a record from the BTRK file. A message is written to the log to indicate that an error has occurred.
The message contains the subroutine name, the I/O status value, the number of words, the time step' date and

time, and the row. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #4:

c
C read BTRK
CALL RDBT (IWDLN2, XRU, 10ST)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2007) 10ST, IWDLN2, BTDATE, BTTIME, RDBTRW
2007 FORMAT(/ 5X, 'XXX FILE READ ERROR IN RDBTRK®

& / 5X, *1/0 STATUS = ', 14, 2X,
& INUMBER OF WORDS TO BE READ = ¢, 13
& / 5X, 'BIDATE = ', 16.6, 2X, 'BTTIME = ', 16.6,
22X, ‘RO = ', 13)
CALL EXIT
END IF
SUBROUTINE RDCHAR

NONE

F-63

SUBROUTINE RDCONC
ERROR CHECK #1:

The CONC file is opened by a call to OPCONC, and the common block HEADCN is loaded. HEADCN con-
tains the header information for the CONC file. The header information is then checked in the subroutine
RDCONC. If any of the parameters fail the test, then an error has occurred. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name and the CONC header infor-

mation. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c
C open the CONC file

CALL OPCONC
c
C check parameters in header

IF ((TSTPCN .NE. TSTPIN) .OR. (GRDNCN .NE. GRDNIN) .OR.
& (ABS(SWLNCN - SWLNIN) .GT. 0.001) .OR.
& (ABS{SWLTCN - SWLTIN) .GT. 0.001) .OR.

WRITE(LUNOUT, 2001) TSTPCN, TSTPIN, GRDNCN, GRDNIN,

& SWLNCN, SWLNIN, SWLTCN, SWLTIN,
& NELNCK, NELNIN, NELTCN, NELTIN,
F DLONCN, DLONIN, DLATCN, DLATIN,
& NCOLCN, NCOLIN, NROWCN, NROWIN,
& NLEVCN, NLEVIK, NSPCCN, NSPCIN
2001 FORMAT(/ 5X, 'X%X PARAMETER CHECK FAILURE IN RDCONC'
. & / 5X, 'TSTPCN = *, I5, 5X, *TSTPIN.= *, I5
& / 5X, 'GRDNCN = ', A8, 5X, 'GRONIN = ', A8
& / 5X, 'NELNCN = *, F10.5, 5X, 'NELNIN = ', F10.5
2 / 5%, 'NELTCN = ', F10.5, 5X, 'NELTIN = ', F10.5
& / 5X, 'SWLNCN = ', F10.5, 5X, 'SWLNIN = ', F10.5
& / 5X, 'SWLTCN = ', F10.5, 5X, 'SWLTIN = ', F10.5
F / S5X, 'DLONCN = ', F10.5, 5X, 'DLONIN = ', F10.5
& / 5X, 'OLATCN = ', F10.5, 5X, 'DLATIN = ', F10.5
& / 5%, 'NCOLCN = ', I3, 5X, 'NCOLIN = !, I3
& / 5X, 'NROWCN = *, 13, 5X, 'NROMIN = *, 13
: / 5X, 'NLEVCN = ', I3, 5X, 'NLEVIN = !, I3
& / 5X, 'NSPCCN = ', I3, 5X, 'NSPCIN = ', 13)
CALL EXIT
END IF
ERROR CHECK #2:

The CONC time step header is read by calling the subroutine RDFILE. The unit number, the number of words
to be read, starting address of the common block RTSHCN, and IOST are passed to RDFILE. Upon return
from the call to RDFILE, IOST contains the I/O status of the read operation of the CONC time step header.
10ST is tested; if IOST is less than zero, then an end-of-file marker was reached. Control is returned to the

calling subroutine. If IOST is not equal to zero, then an error occurred on the read operation. A message is

F-64

written to the log to indicate that an error occurred. The message contains the subroutine name, the number

of words to read, the value of the I/O status, the time step date and time. The program exits by a call to the
system subroutine EXIT.

CODE FOR ERROR CHECK #2:

c
C read CONC T.S.H.

CALL RDFILE (UNITCN, NWDTSH, DATCN, I10ST)
c

IF (IOST .LT. 0) RETURN

IF (10OST .NE. 0) THEN

WRITE(LUNOUT, 2003) NWOTSH, 10ST, CNDATE, CNTIME

2003 FORMAT(/ 5X, '"XXX T.S.H. READ ERROR IN RDCONC!'

& / 5X, 'NO. OF WORDS = ', 12, 2X, '1/0 STATUS = ', 14,
82X, 'CNDATE = ', 16.6, 2X, 'CNTIME = !, 16.6)
CALL EXIT
END IF
ERROR CHECK #3:

The current model time step time and date are compared with the time step time and date obtained from
reading the CONC time step header. If either the time or date do not match, then an error has occurred. A
message is written to the log to indicate that an error has occurred. The message contains the subroutine .
name, date and time from the time step header, and the model date and time. The program exits by a call to
the system subroutine EXIT.

CODE FOR ERROR CHECK #3:

IF (IDATCN .NE. CNDATE .OR. ITIMCN .NE. CNTIME) THEN
WRITE(LUNOUT, 2005) IDATCN, ITIMCN, CNDATE, CNTIME
2005 FORMAT(/ 5X, XXX DATES/TIMES DO NOT MATCH IN RDCONC'

& / 5X, 'IDATCN = *, 16.6, 2X, 'ITIMCN = ', 16.6
& / 5X, 'CNDATE = ', 16.6, 2X, 'CNTIME = ', 16.6)
CALL EXIT
END I[F
ERROR CHECK #4:

Each row of the CONC fil¢ is read by iterating over the number of species. For each iteration, a call to RDFILE
is made. The unit number, the number of words to read, the starting address of the common block CNFILE,
and IOST are passed to RDFILE. Upon return from RDFILE, JOST contains the I/O status of the read opera-
tion. If IOST is not equal to zero, then an error has occurred. A message is written to the log indicating that
an error has occurred. The message contains the subroutine name, the I/O status value, the number of words,

the time step date and time, and the row. The program exits by a call to the system subroutine EXIT.

F-65

CODE FOR ERROR CHECK #4:

c
C read CONC row
DO 211 ISPC = 1, NSPECS
CALL RDFILE (UNITCN, NWDSCN, CNFILE(1,1,1SPC), 10ST)
1IF (10ST .NE. O0) THEN
WRITECLUNOUT, 2007) 10ST, NWDSCN, CNDATE, CNTIME, RDCNRW
2007 FORMAT(/ 5X, 'XXX FILE READ ERROR ON ROW IN RDCONC'
& / 5X, '1/0 STATUS = ¢, 14,
& 2X, 'NO. OF WORDS = ', 16
& / 5X, 'CNDATE = ', 16.6, 2X, 'CNTIME = ¢, 16.6,
& 2X, 'ROW = ', 13)
CALL EXIT
END IF
211 CONTINUE

SUBROUTINE RDFILE

NONE

SUBROUTINE RDHDBM
ERROR CHECK #1:

In RDHDBM, the header record is read from the BMAT file into the buffer RECONE. The I/O status value of ~
the read operation is stored in the variable JOST. JOST is tested; if IOST does not equal zero, an error has
occurred on the read. A message is written to the log to indicate that an error has occurred. The error mes-
sage contains the subroutine name, the subfile number, and the I/O status value. The program exits by a call
to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c
C read 1st segment record
o
READ(UNITBM, IOSTAT = [0OST) RECONE
IF (I0ST .NE. 0) THEN
WRITECLUNOUT, 2001) ISUB, 10ST, 'XXX FIRST RECORD '
2001 FORMAT(/ 5X, 'XXX READ ERROR IN RDHDBM'®
& / SX, 'YSUBFILE NO. *, 12,
&5X, 'IOSTAT = ', 14, 4X, A24)
CALL EXIT
END IF

ERROR CHECK #2:

A formatted read of RECONE, the buffer containing the header record, converts the header record into
character and numeric data, and loads the record into HEADBM. The I/O status of the read operation is
stored in the variable IOST. 1O0ST is tested; if IOST does not equal zero, an error has occurred on the read.

F-66

A message is written to the log to indicate that an error has occurred. The error message contains the sub-
routine name, the subfile number, and the I/O status value. The program exits by a call to the system sub-
routine EXIT.

CODE FOR ERROR CHECK #2:

c

C convert character to mixed character & numeric and load HEADBM
c
READ(RECONE, 1001, IOSTAT = IOST)
& CDATBM, CTIMBM, SDATBM, STHRBM, TSTPBM, FRSTBM,
& GRONBM, SWLNBM, SWLTBM, NELNBM, NELTBM, DLONBM,
& DLATBM, NCOLBM, NROWBM, NLEVBM, NSPCBM, NMIFBM,
& ICNTBM
1001 FORMAT(618.8, A8, 4F8.3, 2F8.5, 614.4)
1F (10ST .NE. O) THEN
WRITECLUNOUT, 2001) 1SUB, 10ST, 'INTERNAL READ, 1ST REC '
CALL EXIT
END IF

ERROR CHECK #3:

The species names record is read from the BMAT file and stored in the common block CHARBM. The /O
status of the read operation is stored in the variable IOST. IOST is tested; if IOST does not equal zero, an
error has occurred on the read. A message is written to the log to indicate that an error has occurred. The -
error message contains the subroutine name, the subfile number, and the /O status value. The program exits
by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #3:

c
C read species names record
C

READ(UNITBM, IOSTAT = IOST) (SPNMBM(ISPC), ISPC = 1, NSPCBM)
IF (10ST .NE. 0) THEN :

WRITE(LUNOUT, 2001) ISUB, IOST, 'XXX SPECIES NAMES '
CALL EXIT
END IF

ERROR CHECK #4:

The index group record is read from the BMAT file into the buffer RECNDX. The I/O status of the read
operation is stored in the variable IOST. 10ST is tested; if IOST does not equal zero, an error has occurred
on the read. A message is written to the log to indicate that an error has occurred. The error message con-
tains the subroutine name, the subfile number, and the I/O status value. The program exits by a call to the
system subroutine EXIT.

F-67

CODE FOR ERROR CHECK #4:

c
C read the index group record
c
READ(UNITBM, IOSTAT = I0ST) RECNDX
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) ISUB, 10ST, '%%X INDEX GROUP !
CALL EXIT
END IF
ERROR CHECK #5:

A formatted read of RECNDX, the buffer containing the index group record, converts the index group record
to character and numeric data, and loads the record into HEADBM. The I/O status of the read operation is
stored in the variable IOST. 10OST is tested; if IOST does not equal zero, an error has occurred on the read.
A message is written to the log to indicate that an error has occurred. The error message contains the sub-

routine name, the subfile number, and the I/O status value. The program exits by a call to the system sub-
routine EXIT.

CODE FOR ERROR CHECK #5:

c
C convert character to numeric and load HEADBM
c
READ(RECNDX, 1003, IOSTAT = IOST)
& (BMINDX(ISPC), ISPC = 1, NSPCBM)
1003 FORMAT(<NSPCBM>14)
IF (1OST .NE. 0) THEN

WRITE(LUNOUT, 2001) ISUB, [OST, 'INTERNAL READ, INDEX REC'
CALL EXIT
END IF

ERROR CHECK #6:

The layer names record is read from the BMAT file and loaded into CHARBM. The I/O status of the read
operation is stored in the variable IOST. 10ST is tested; if IOST does not equal zero, an error has occurred
on the read. A message is written to the log to indicate that an error has occurred. The error message con-
tains the subroutine name, the subfile number, and the 1/O status value. The program exits by a cail to the
system subroutine EXIT.

F-68

CODE FOR ERROR CHECK #6:

C
C read the level names record
c
READCUNITBM, IOSTAT = 10ST) (LVNMBM(LEV), LEV = 1, NLEVBM)
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) ISUB, 10ST, 'X%% LEVEL NAMES '
CALL EXIT
END IF

ERROR CHECK #7:

The MIF data records are next read by iterating over the number of MIF data records. For each iteration, an
MIF record is read into the buffer RECMIF. The I/O status value from the read operation is stored in the
variable JOST. IOST is tested; if IOST does not equal zero, an error has occurred on the read. A message is
written to the log to indicate that an error has occurred. The error message contains the subroutine name, the
subfile number, and the I/O status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #7:

c
C read the MIF data records
c
DO 101 IMIF = 1, NMIFBM
' READ(UNITBM, I10STAT = I0ST) RECMIF
1F (10ST .NE. 0) THEN
WRITE(CHBUF, 1005) 'XXX MIF - NUMBER ', IMIF
1005 FORMAT(A20, 14)
WRITE(LUNOUT, 2001) ISUB, 10ST, CHBUF
CALL EXIT
END IF

ERROR CHECK #8:

A formatied read of RECMIF, the buffer containing the MIF record, converts the MIF record to character
and numeric data, and loads the record into HEADBM. The /O status of the read operation is stored in the
variable JOST. 10ST is tested; if IOST does not equal zero, an error has occurred on the read. A message is
written to the log to indicate that an error has occurred. The error message contains the subroutine name, the
subfile number, and the I/O status value. The program exits by a call to the system subroutine EXIT.

F-69

CODE FOR ERROR CHECK #8:

READ(RECMIF, 1007, IOSTAT = IOST)
F MFNMBMCIMIF), COMFBMCIMIF), CTMFBM(IMIF),
& UDMFBMCIMIF), UTMFBMCIMIF)
1007 FORMAT(A12, 418.8)
IF (10ST .NE. 0) THEM
WRITECCHBUF, 1005) *INTERNAL READ, MIF DATA ', IMIF
WRITE(LUNOUT, 2001) ISUB, 10ST, CHBUF
CALL EXIT
END IF
101 CONTINUE

ERROR CHECK #9:

The text records are next read by iterating over the number of text records. For each iteration, a text record is
read into the buffer RECTXT. The /O status value from the read operation is stored in the variable JOST.
IOST is tested; if IOST does not equal zero, an error has occurred on the read. A message is written to the log
to indicate that an error has occurred. The error message contains the subroutine name, the subfile number,

and the [/O status value. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #9:

Cc
C read header text records
c
DO 201 ITXT = 1, ICNTBM
READ(UNITBM, IOSTAT = 10ST) RECTXT
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2001) ISuB, 10ST,
& ‘XXX TEXT RECORDS '
CALL EXIT
END IF

ERROR CHECK #10:

A formatted read of RECTXT, the buffer containing the text records, converts the text records to character
data, and loads them into CHARBM. The I/O status of the read operation is stored in the variable IOST.
IOST is tested; if IOST does not equal zero, an error has occurred on the read. A message is written to the log
to indicate that an error has occurred. The error message contains the subroutine name, the subfile number,
and the I/O status value. The program exits by a call to the system subroutine EXIT.

F-70

CODE FOR ERROR CHECK #10:

c

READ(RECTXT, 1009, 10STAT = 10ST) TEXTBMCITXT)
1009 FORMAT (A80)

IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2001) ISUB, 10ST,

& 'INTERNAL READ, TEXT RECS'

WRITECLUNOUT, 1011) RECTXT
1011 FORMAT(5X, A80)
CALL EXIT

END IF
201 CONTINUE

ERROR CHECK #11:

The subfile header record is read from the BMAT file into the buffer FLCREC. The 1/O status of the read
operation is stored in the variable IOST. IOST is tested; if IOST does not equal zero, an error has occurred
on the read. A message is written to the log to indicate that an error has occurred. The error message con-

tains the subroutine name, the subfile number, and the /O status value. The program exits by a call to the
system subroutine EXIT.

CODE FOR ERROR CHECK #11:

c
C read subfile header record
C
READ(UNITBM, IOSTAT =]OST) FLCREC
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) ISuB, I0ST, 'XXX SUBFILE RECORD !
CALL EXIT
END IF

ERROR CHECK #12:

A formatted read of FLCREQC, the buffer containing the subfile header record, converts the record to integer
data, and loads the record into HEADBM. The I/O status of the read operation is stored in the variable
IOST. IOST is tested; if IOST does not equal zero, an error has occurred on the read. A message is written to
the log to indicate that an error has occurred. The error message contains the subroutine name, the subfile
number, and the I/O status value. The program exits by a call to the system subroutine EXIT.

F-71

CODE FOR ERROR CHECK #12:

c
C convert character to numeric and load HEADBM
c
READ(FLCREC, 1013, IOSTAT = 10ST) ISUBFL, NSUBFL,
& FRSTSF, LSSTSF
1013 FORMAT(414)
IF (IOST .NE. Q) THEN
WRITECLUNOUT, 2001) ISUB, 1OST, 'XXX SUBFILE COUNT '
CALL EXIT
END IF

SUBROUTINE RDICON

ERROR CHECK #1:

The ICON file is opened by a call to OPICON, and the common block HEADIC is loaded. HEADIC contains
the header information for the ICON file. The header information is then tested in the subroutine RDICON.
If any of the parameters fail the test, then an error has occurred. A message is written to the log to indicate
that an error has occurred. The message contains the subroutine name and the ICON header information.
The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

C
C open the ICON file
CALL OPICON
o
C check parameters in header
IF (CTSTPIC .NE. TSTPIN) .OR. (GRDNIC .NE. GRONIN) .OR.
& (ABS(SWLNIC - SWLNIN) .GT. 0.001) .OR.

& (ABS(SWLTIC - SWLTIN) .GT. 0.001) .OR.
WRITE(LUNOUT, 2001) TSTPIC, TSTPIN, GRDNIC, GRDNIN,
& SWLNIC, SWLNIN, SWLTIC, SWLTIN,
& NELNIC, NELNIN, NELTIC, NELTIN,
& DLONIC, DLONIN, DLATIC, DLATIN,
& NCOLIC, NCOLIN, NROWIC, NROWIN,
& NLEVIC, NLEVIN, NSPCIC, NSPCIN
2001 FORMAT(/ 5X, 'XXX PARAMETER CHECK FAILURE IN RDICON'
& / 5X, 'TSTPIC = *, I5, 5X, *TSTPIN = ', IS5
& / 5X, 'GRORIC = ', A8, 5X, 'GRONIN = ', A8
& / 5X, 'NELNIC = ', F10.5, 5X, 'NELNIN = ', F10.5
& / SX, SNELTIC = *, F10.5, 5X, *NELTIN = *, F10.5
& / 5X, 'SWLNIC = *, F10.5, 5X, 'SWLNIN = *, F10.5
& / SX, 'SWLTIC = *, F10.5, 5X, 'SWLTIN = ', F10.5
& / 5X, 'DLONIC = ', F10.5, 5X, 'DLONIN = ', F10.5
& / 5X, 'DLATIC = ', F10.5, 5X, 'OLATIN = *, F10.5
& / 5X, *NCOLIC = *, I3, 5X, 'NCOLIN = ', I3
& / 5X, 'NROWIC = ', 13, SX, 'NROWIN = ', I3
& / 5X, 'NLEVIC = ', 13, 5X, 'NLEVIN = ', I3
& / 5X, 'NSPCIC = *, I3, 5X, 'NSPCIN = ', I3)
CALL EXIT
END IF
ERROR CHECK #2:

F-72

The ICON time step header is read by calling the subroutine RDFILE. The unit number, the number of words
to be read, starting address of the common block RTSHIC, and IOST are passed to RDFILE. Upon return
from the call to RDFILE, IOST contains the I/O status of the read operation of the ICON time step header.
IOST is tested; if IOST is less than zero, then an end of file was reached. Control is returned to the calling
subroutine. If IOST is not equal to zero, then an error occurred on the read operation. A message is written
to the log to indicate that an error occurred. The message contains the subroutine name, the number of words

1o read, the value of the I/O status, the time step date and time. The program exits by a call to the system
subroutine EXIT.

CODE FOR ERROR CHECK #2:

c
C read ICON T.S.H.

CALL RODFILE (UNITIC, NWOTSH, DATIC, 10ST)
c

IF (I10ST .LT. 0) RETURN

IF (JOST .NE. 0) THEN

WRITECLUNOUT, 2003) NWDTSH, 10ST, ICDATE, ICTIME

2003 FORMAT(/ 5X, 'XXX T.S.H. READ ERROR IN RDICON'

& / 5%, 'NO. OF WORDS = ', 12, 2X, 'I/O STATUS = ', 14,
82X, ‘ICDATE = ', 16.6, 2X, ‘ICTIME = *, 16.6)
CALL EXIT
END IF
ERROR CHECK #3:

The current model time step time and date are compared with the time step time and date obtained from
reading the ICON time step header. If either the time or date do not match, then an error has occurred. A
message is written to the log to indicate that an error has occurred. The message contains the subroutine
name, date and time from the time step header, and the model date and time. The program exits by a call to
the S);stem subroutine EXIT.

CODE FOR ERROR CHECK #3:

IF (IDATIC .NE. ICDATE .OR. ITIMIC .NE. ICTIME) THEN
WRITE(LUNOUT, 2005) IDATIC, ITIMIC, ICDATE, ICTIME
2005 FORMAT(/ 5X, XXX DATES/TIMES DO NOT MATCK IN RDICON'

& / 5X, VIDATIC = ', 16.6, 2X, 'ITIMIC = ', 16.6
& / 5X, 'ICDATE = ', 16.6, 2X, 'ICTIME = ', 16.6)
CALL EXIT
END IF
ERROR CHECK #4:

Each row of the ICON file is read by iterating over the number of species. For each iteration, a call to RDFILE
is made. The unit number, the number of words to read, the starting address of the common block ICFILE,
and IOST are passed to RDFILE. Upon return from RDFILE, IOST contains the 1/O status of the read opera-

F-73

tion. If IOST is not equal to zero, then an error has occurred. A message is written to the log to indicate that
an error has occurred. The message contains the subroutine name, the /O status value, the number of words,
the time step date and time, and the row. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #4:

c
€ read ICON row
DO 211 ISPC = 1, NSPECS
CALL RDFILE CUNITIC, NWOSIC, ICFILE(1,1,1SPC), IOST)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2007) 10ST, NWDSIC, ICDATE, ICTIME, IROM
2007 FORMAT(/ 5X, 'XXX FILE READ ERROR ON ROW IN RDICON'
&/ 5X, '1/0 STATUS = !, 14, 2X, "NO. OF WORDS = ', 16
&/ 5X, 'ICDATE = ', 16.6, 2X, 'ICTIME = *, 16.6,
& 2X, ‘ROM = 1, I3)
CALL EXIT
END IF
211 CONTINUE

SUBROUTINE RDMXBM

ERROR CHECK #1:

The BMAT file requires a large amount of disk space and may have been written to several smaller subfiles on
different disk packs (since each pack may not individually have had sufficient space to contain the entire file).
These subfiles would then be assigned separate logical names in the job’s run stream. In subroutine RDMXBM,
the subfile number is tested. If the test fails, then the BMAT subfiles are out of order. A call to subroutine
DUMPHD is made. The subfile number is the parameter passed to DUMPHD. Upon return from DUMPHD, the
program exits by issuing a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #1:

c
C verify subfile
IF (ISUBFL .NE. ISUB .OR. NSUBFL .NE. NSUB) THEN -
CALL DUMPHD (1SUB)
CALL EXIT
END IF

ERROR CHECK #2:

A record is read from the BMAT subfile. The I/O status value for the read operation is stored in the variable
1OST. IOST is tested; if IOST is less than zero, then the last record was read. An informational message is
printed to the log. The BMAT subfile is closed and control is returned to the calling subroutine. If IOST is
not equal to zero, then an error has occurred. A message is written to the log to indicate that an error has

F-74

occurred. The message contains the subroutine name, the subfile number, the unit number, the logical name
of the file, the actual name of the file, the I/O status value, and the number of records. Control is returned to
the calling subroutine.

CODE FOR ERROR CHECK #2:

C

C read record

c
READ (UNITBM, IOSTAT = 10ST) BUFF
RECNO = 1

c
C read subfile body
c
IF (10ST .LT. 0) GO TO 301
IF (10ST .NE. 0) THEN
INQUIRE (FILE = FLNMBM(ISUB), NAME = EQNAME)
WRITE(LUNOUT, 2001) ISUB, UNITBM, FLNMBM(ISUB), EQNAME,
& 10ST, RECNO
2001 FORMAT(/ 5X, '%XX ERROR READING RECORD IN RDMXBM',
& ' FOR SUBFILE NUMBER®, I3,
&5X, 'CONTROL RETURNED TO RDBMAT'
&

/ 5%, 'UNITBM = ', 12, 2X, 'FNAME = ', AB
& / 5X, 'EQNAME = ', A64
& / 5X, '10ST = 1, 12, 2X, 'RECNO = ', 14)
RETURN
END IF

301 CONTINUE
WRITE(LUNOUT, 1001) RECNO, FLNMBM(ISUB), UNITBM
1001 FORMAT(// 5X, 16, ' records read on ', A12,
& ' from unit ', 12 /)
TOTREC = TOTREC + RECNO
c
C close subfile
INQUIRE (UNIT = UNITBM, NAME = EQNAME)
CLOSE (UNIT = UNITBM)
WRITE(6, 1003) ISUB, EQNAME, UNITBM
1003 FORMAT(/ 3X, 'Subfile ', 12, ', ' A64
& / 3X, '‘closed on unit ¢, 12)

ERROR CHECK #3:

Each record of the last subfile of the BMAT file is read. The I/O status value for the read operation is stored
in the variable IOST. IOST is tested; If IOST is less than zero, then the last record was read. An informa-
tional message is printed to the log. The BMAT subfile is closed and control is returned to the calling sub-
routine. If IOST is not equal to zero, then an error has occurred. A message is written to the log to indicate
that an error has occurred. The message contains the subroutine name, the subfile number, the unit number,
the logical name of the file, the actual name of the file, the [/O status value, and the 'number of records.
Control is returned to the calling subroutine.

F-75

CODE FOR ERROR CHECK #3:

c
C read record
c
READ (UNITBM, IOSTAT = 10ST) BUFF
RECNO = RECNO + 1
c .
Clastsubfl body . . . & . & v v v 4 ¢« t v o v o o o » record*
C
IF (I10ST .LT. 0) GO TO 601
IF (10ST .NE. 0) THEN
INQUIRE (FILE = FLNMBM(ISUB), NAME = EQNAME)
WRITE(LUNOUT, 2001) ISUB, UNITBM, FLNMBM(ISUB), EQNAME,
& 10ST, RECNO
RETURN
END IF
c'last subfl body . . . ¢ . ¢ 0o o v v v s 0 o e v . . end
c

601 CONTINUE
WRITE(LUNOUT, 1001) RECNO, FLNMBM(ISUB), UNITBM
TOTREC = TOTREC + RECNO
WRITECLUNOUT, 1005) NSUB, TOTREC
1005 FORMAT(/ 5X, 'Total number of records read from', I3,
& ' subfiles = ', 18)
c
C close subfile
INQUIRE (UNIT = UNITBM, NAME = EQNAME)
CLOSE (UNIT = UNLITBM) .
WRITE(6, 1003) ISUB, EQNAME, UNITBM

SUBROUTINE RDSTAV

ERROR CHECK #1:

A formatted read from the STATE VECTOR file (RESTRT) is made to obtain the STATE VECTOR time
step header. This formatted read converts the data into integer data, and loads them into the common block
TSHDSV. The /O status value for the read operation is stored in variable IOST. 10ST is tested; if IOST
does not equal zero, an error has occurred on the read. A message is written to the log to indicate that an
error has occurred. The error message contains the subroutine name, the unit number, the record number,
and the 1/O status value. The program exits by a call to the system subroutine EXIT.

F-76

CODE FOR ERROR CHECK #1:

c
C read STATE VECTOR T.S.H.

RECNSV = RECNSV + 1

READ(UNITSV, FMT = 1001, IOSTAT = 10ST)

& IDATSV, ITIMSV, IELPSV, ISTPSV
1001 FORMAT(1X, 15, 1X, 16, 1X, I8, 1X, 14)
c .

1F (10ST .NE. 0) THEN
WRITE(LUNOUT, 2001) UNITSV, RECNSV, 10ST
2001 FORMAT(/ 5X, 'XXX T.S.H READ ERROR IN RDSTAV'

F / 5X, YUNIT NUMBER = ', 12, 5X, 'RECORD = ', I4
& 7 5X, '1/0 STATUS = *, 14)
CALL EXIT
END IF
ERROR CHECK #2:

The current model time step time and date are compared with the time step time and date obtained from
reading the STATE VECTOR time step header. If either the time or date do not match, then an error has
occurred. A message is written 1o the log to indicate that an error has occurred. The message contains the
subroutine name, date and time from the time step header, and the model date and time. The program exits
by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #2:

IF (IDATSV .NE. IDATE .OR. ITIMSV .NE. ITIME) THEN
WRITE(LUNOUT, 2003) IDATE, ITIME, IDATSV, ITIMSV
2003 FORMAT(/ 5X, *XXX DATES/TIMES DO NOT MATCH IN RDSTAV'

& /5%, 'IDATE = ', 16.6, 2X, 'ITIME = ', 16.6
& / 5%, VIDATSV = 1, 16.6, 2X, ‘ITIMSV = ', 16.6)
CALL EXIT
END IF
ERROR CHECK #3:

A formatted read from the STATE VECTOR file is made to obtain the text pointers record. . This formatted
read converts the data into integer data, and loads them into the common block TEXTPT. The I/O status
value for the read operation is stored in variable IOST. IOST is tested; if IOST does not equal zero, an error
has occurred on the read. A message is written to the log to indicate that an error has occurred. The error
message contains the subroutine name, the unit number, the record number, and the I/O status value. The

program exits by a call to the system subroutine EXIT.

F-77

CODE FOR ERROR CHECK #3:

C
C read text pointers

RECNSV = RECNSV + 1
READ(UNITSV, FMT = 1003, 10STAT = 10ST)
& BIGMPT, LILGPT,
& BCPSPT, BMPSPT, BTPSPT, CNPSPT, ICPSPT,
& RDBCPT, RDBMPT, RDBTPT, RDCNPT, RDICPT,
& WRCNPT, WRSVPT
1003 FORMAT(1X, 14¢I3, 1X))
IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2005) UNITSV, RECNSV, 10ST
2005 FORMAT(/ 5X, 'XXX TEXTPT READ ERROR IN RDSTAV'
& / 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', i&
& / 5%, '1/0 STATUS = *, 14)
CALL EXIT
END IF

ERROR CHECK #4:

A formatted read from the STATE VECTOR file is made to obtain the row counters record. This formatted
read converts the data into integer data, and loads them into the common block ROWSCT. The I/O status
value for the read operation is stored in variable IOST. JOST is tested; if IOST does not equal zero, an error
has occurred on the read. A message is written to the log to indicate that an error has occurred. The error
message contains the subroutine name, the unit number, the record number, and the I/O status value. The
program éxits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #4:

[
C read row counters
c
RECNSV = RECNSV + 1
READCUNITSV, FMT = 1005, IOSTAT = IOST)
& BMPSRW, RDBMRW, RDBTRW, RDCNRW
1005 FORMAT(1X, 4(13, 1X))
IF (10ST .NE. O) THEN
WRITEC(LUNOUT, 2023) UNITSV, RECNSV, 10ST
2023 FORMAT(/ 5X, *XXX ROW COUNTERS READ ERROR IN RDSTAV'®

& / 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', 14
& / 5%, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #5:

A formatted read from the STATE VECTOR file is made to obtain the scenario time record. This formatted
read converts the data into integer data, and loads them into the common block TSTEPS. The l/O status
value for the read operation is stored in variable IOST. 10ST is tested; if IOST does not equal zero, an error

F-78

has occurred on the read. A message is written to the log to indicate that an error has occurred. The error
message contains the subroutine name, the unit number, the record number, and the I/O status value. The
program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #5:

[
C read scenario time
c
RECNSV = RECNSV + 1
READ(UNITSV, FMT = 1007, 1OSTAT = 10ST)
& MDDATE, MOTIME, MOELAP, MOSTEP,
& BCDATE, BCTIME, BCELAP, BCSTEP,
& BMDATE, BMTIME, BMELAP, BMSTEP
1007 FORMAT(1X, 3(15, 1X, 16, 1X, 18, 14, X))
c
RECNSV = RECNSV + 1
READCUNITSV, FMT = 1007, IOSTAT = 10ST)
& BTDATE, BTTIME, BTELAP, BYSTEP,
& CNDATE, CNTIME, CNELAP, CNSTEP,
& ICDATE, ICTIME, ICELAP, ICSTEP
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2007) UNITSV, RECNSV, 10ST
2007 FORMAT(/ 5X, *'XXX SCENARIO TIME READ ERROR IN RDSTAV'
& / 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', I4
& / 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF

c .
Cfilebody e e e e e e .« . . end

SUBROUTINE RTPHO

NONE

SUBROUTINE RTSET

NONE

SUBROUTINE RUNMGR

ERROR CHECK #1:

The CONC file is opened, and the file header time and date information is tested against the STATE VEC-
TOR file (RESTRT) header time and date. If either the time or date do not match, then an error has
occurred. A message is written to the log to indicate that an error has occurred. The message contains the
subroutine name, date and time from the CONC file time step header, and the date and time from the STATE
VECTOR file time step header.

F-79

CODE FOR ERROR CHECK #1:

c

C open CONC file and check file header with STATE VECTOR file header
CALL OPCONC
IF (CDATCN .NE. CDATSV .OR. CTIMCN .NE. CTIMSV) THEN

WRITECLUNOUT, 2001) CDATCN, CTIMCN, CDATSV, CTIMSV

2001 FORMAT(// 22X, '!111 WARNING IN RUN MANAGER (1t!
& / 36X, ‘CONC FILE CREATION DATE/TIME: *, 16, 2X, 16
& / 3X, 'DOES NOT MATCH CREATION DATE/',
& 'TIME ON STATE VECTOR FILE HEADER: ', 16, 2X, 16 //)
END IF

ERROR CHECK #2:

The BCON file is opened. The CONC file header time and date information is tested against the BCON file
header time and date. If either the time or date do not match, then an error has occurred. A message is
written to the log to indicate that an error has occurred. The message contains the subroutine name, date and
time from the CONC file time step header, and the date and time from the BCON file time step header.

CODE FOR ERROR CHECK #2:

c .
C open BCON file and check file header
CALL OPBCON
IF (CDATBC .NE. CDBCCN .OR. CTIMBC .NE. CTBCCN) THEN
WRITE(LUNOUT, 2003) *BCON', CDATBC, CTIMBC, CDBCCN, CTBCCN
2003 FORMAT(// 22X, ‘11! WARNING IN RUN MANAGER 11t
& / 29X, A4, ' FILE CREATION DATE/TIME: ', 16, 2X, 16

& / 4X, *DOES NOT MATCH CREATION DATE/®,
& 'TIME ON CONC FILE NEADER: *, 16, 2X, 16 //)
END IF
ERROR CHECK #3:

The BTRK file is opened. The CONC file header time and date information is tested against the BTRK file
header time and date. If either the time or date do not match, then an error has occurred. A message is
written to the log to indicate that an error has occurred. The message contains the subroutine name, date and
time from the CONC file time step header, and the date and time from the BTRK file time step header.

CODE FOR ERROR CHECK #3:

c
C open BTRK file and check file header
CALL OPBTRK
IF (COATBT .NE. COBTCN .OR. CTIMBT .NE. CTBTCN) THEN
WRITECLUNOUT, 2003) 'BTRK', CDATBT, CTIMBY, CDBTCN, CTBTCN
END IF

ERROR CHECK #4:

F-80

The BMAT file is opened. The CONC file header time and date information is tested against the BMAT file
header time and date. If either the time or date do not match, then an error has occurred. A message is
written to the log to indicate that an error has occurred. The message contains the subroutine name, date and
time from the CONC file time step header, and the date and time from the BMAT file time step header.

CODE FOR ERROR CHECK #4:

c
C open BMAT file and check file header
CALL OPBMAY
IF (CDATBM .NE. CDBMCN .OR. CTIMBM .NE. CTBMCN) THEN
WRITECLUNOUT, 2003) *BMAT', CDATBM, CTIMBM, CDBMCN, CTBMCN
END IF

ERROR CHECK #5:

The CONC file time step header is read by calling the subroutine RDCONC. The parameter IOST is passed to
RDCONC. Upon return from subroutine RDCONC, IOST contains the I/O status of the read of the CONC time
step header. 1OST is tested, if IOST is less than zero, then an end-of-file marker is reached while reading the
CONCfile. A message is written to the log stating that an end-of-file marker is reached, the /O status value,
and the unit number. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #5:

C
C read CONC T.S.H
CALL RDCONC (I0ST)
IF (10ST .LT. 0) THEN
WRITECLUNOUT, 2005) 10ST, UNITCN
2005 FORMAT(/ 5X, '%XX EOF REACHED ON CONC FILE®

& / 5X, '1/0 STATUS = ', 18
& / 5X, 'UNIT =1, 13)
CALL EXIT
END IF
ERROR CHECK #6:

Each row of the CONC file is copied to the BGICCN file by calling subroutine RDCONC. The parameter
IOST is passed to RDCONC. Upon return from subroutine RDCONC, IOST contains the I/O status of the read
of a row of the CONC file. IOST is tested; if IOST is less than zero, then an end-of-file marker is reached
while reading the CONC file. A message is written to the log stating that an end-of-file marker is reached, the
1/O status value, and the unit number. The program exits by a call to the system subroutine EXIT.

F-81

CODE FOR ERROR CHECK #6:

c
C copy CONC rows to ICCN file
DO 101 IROW = 1, NROWIN

CALL RDCONC (10ST)

IF (10ST .LY. 0) THEN
WRITE(LUNOUT, 2005) 10ST, UNITCN
CALL EXIT

END IF

ERROR CHECK #7:

A test is made to determine whether the run is a full run or a restart run. The variable RUNMODE is tested.
If RUNMODE does not equal 'START or 'RESTART’, then RUNMODE is not valid. A message is written

to the log to indicate that the mode is incorrect and the value of RUNMODE is written to the log. The
program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #7:

IF (RUNMODE .EQ. START) THEN

start run

(s XgNel [g]

ELSE IF (RUNMODE .EQ. RESTART) THEN
c

C restart run

C error
c
WRITE(LUNOUT, 2007) RUNMODE
2007 FORMAT(// 5X, '%XX ERROR SETTING RUN MODE IN',
&' RUN MANAGER; MODE WAS SET 10: *, A12 //)
CALL EXIT
END IF

ERROR CHECK #8:

For each model time step, a call to subroutine BIGGAM is made. The parameter IEOFBG is passed to
BIGGAM. In subroutine BIGGAM, each file (ICON, BCON, BTRK, AND BMAT) is read. The time step
header is read from each file along with every row for the model step. If an end-of-file marker is reached while
reading any one of the above files, or if an error was reached while reading the files, then the parameter
IEOFBG is set 1o a specified number. Upon return from BiGGAM, IEOFBG is tested. If it is not equal to

F-82

zero, then an end-of-file marker or error was encountered while reading the input files. A message is written
to the log indicating in which file the error or end-of-file marker was reached, along with the model time step
and date. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #8:
[
Crunbody . . . v v v v o v o s o o o s o o s o a o« time step*

DO 301 JSTEP = 1, NSTEPS

C
C read MODEL T.S.H.

CALL BIGGAM (1EOFBG)
c

IF (1EOFBG .EQ. 1) THEN
WRITE(LUNOUT, 2009) 'ICON', IDATMD, ITIMMD
2009 FORMAT(/ 5X, *XXX EOF ON ', A4, ' FILE AT MODEL DATE:',

& 16, 2X, 16)

CALL EXIT

ELSE IF (IEOFBG .EQ. 2) THEN
WRITE(LUNOUY, 2009) *BCON*, IDATMD, ITIMMD
CALL EXIT

ELSE IF (IEOFBG .EQ. 3) THEN
WRITECLUNOUT, 2009) 'BTRK', IDATMD, ITIMMD
CALL EXIT

ELSE IF (IEOFBG .EQ. 7) THEN
WRITECLUNOUT, 2009) 'BMAT', IDATMD, ITIMMD
CALL EXIT

ELSE IF (1EOFBG .EQ. 4) THEN
WRITECLUNOUT, 2011) ‘ICON', IDATMD, ITIMMD

2011 FORMAT(/ 5X, *XXX ERROR READING ', A4,
& ' FILE AT MODEL DATE:*,
: & 16, 2%, 16)
CALL EXIT

ELSE IF (IEOFBG .EQ. 5) THEN
WRITE(LUNOUT, 2011) *BCON', IDATMD, ITIMMD
ELSE IF (IEOFBG .EQ. &) THEN
WRITECLUNOUT, 2011) 'BTRK', IDATMD, ITIMMD
END IF

SUBROUTINE TIMER

NONE

SUBROUTINE WRCHAR

NONE

SUBROUTINE WRCONC

ERROR CHECK #1:

F-83

The CONC time step header is written by calling the subroutine WRFILE. The unit number, the number of
words to be written, starting address of the common block RTSHCN, and IOST are passed to WRFILE. Upon
return from the call to WRFILE, IOST contains the /O status of the write operation of the CONC time step .
header. 10ST is tested. If IOST is less than zero, then an end-of-file marker was reached. Control is returned '
to the calling subroutine. If IOST is not equal to zero, then an error occurred on the write operation. A
message is written to the log to indicate that an error occurred. The message contains the subroutine name,
the unit number, the I/O status value, and the number of words to write. The program exits by a call to the
system subroutine EXIT.

CODE FOR ERROR CHECK #1:

write CONC T.S.H.

CALL WRFILE (UNITCN, IWLTSH, DATCN, 10ST)

(2] OO0

IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2001) UNITCN, 1OST, IWLTSH
2001 FORMAT(// 5X, 'XXX ERROR WRITING TSH IN WRCONC'

& / 5X, 'UNIT NUMBER = ', I2, 2X, 'I/O STATUS = ', 14,
& 2X, 'NO. OF WORDS = ¢, 14 /)
CALL EXIT
END IF
ERROR CHECK #2:

Each row of the CONC file is written by iterating over the number of species. For each iteration, a call to
WRFILE is made. The unit number, the number of words to read, the starting address of the common block
CNFILE, and IOST are passed to WRFILE. Upon return from WRFILE, IOST contains the I/O status of the
write operation. If IOST is not equal to zero, then an error has occurred. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name, the 1/O status value, the
number of words, the time step date and time, and the row. The program exits by a call to the system sub-
routine EXIT.

CODE FOR ERROR CHECK #2:

o
C write CONC row
DO 301 ISPC = 1, NSPECS
CALL WRFILE (UNITCN, IWOLN2, CNFILE(1,1,ISPC), 10ST)
IF (IOST .NE. 0) THEN
WRITECLUNOUT, 2003) UNITCN, IOST, IWOLN2
2003 FORMAT(// SX, 'XXX ERROR WRITING ROW IN WRCONC®
& / 5X, 'UNIT NUMBER = ', 12,
& 2%, *1/0 STATUS = ', 14,
& 2X, 'NO. OF WORDS = ', 14 /)
CALL EXIT
END IF
301 CONTINUE

F-84

SUBROUTINE WRFILE

NONE

SUBROUTINE WRSTAV

ERROR CHECK #1:

The STATE VECTOR file is opened. The 1/O status value of the open statement is stored in variable JOST.
IOST is tested; if IOST does not equal zero, an error occurred on the open statement. A message is written to
the log to indicate that an error has occurred. The message contains the subroutine name, the unit number

and the 1/O siatus value. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #1:

c
C open STATE VECTOR file, formatted, read/write access
C

UNITSV = JUNIT()

OPEN (UNITSV,

& FILE = FLNMSV, :
& ACCESS = 'SEQUENTIAL’,
& STATUS = 'UNKNOMWN',

& I0STAT = 10ST)

1F (10ST .NE. 0) THEN
WRITE(LUNOUT, 2001) UNITSV, 10ST
2001 FORMAT(/ 5X, 'XXX% SV FILE OPEN ERROR IN WRSTAV'

& / 5X, 'UNIT NUMBER = ', I2
& / 5%, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #2:

A formatted write of the common blocks CHARSYV and HEADSYV writes the first header segment record to
the STATE VECTOR file. The I/O status of the formatted write statement is stored in the variable IOST.
10ST is tested; if IOST does not equal zero, an error has occurred on the write operation. A message is
written to the log to indicate that an error has occurred. The message contains the subroutine name, the unit
number, the record number, and the /O status value. The program exits by a call to the system subroutine
EXIT.

F-85

CODE FOR ERROR CHECK #2:

[
C write STATE VECTOR header segment 1
c
RECNSV = RECNSV + 1
WRITECUNITSV, FMT = 1001, IOSTAT = 10ST)
& CDATSV, CTIMSV, SDATSV, STHRSV, TSTPSV,
& FRSTSV, GRDNSV, SWLNSV, SWLTSV, NELNSV
1001 FORMAT(1X, 2(16, 1X), 15, 1X, 12, 1X, 2(18, X),
& A8, 1X, 3(F8.3, 1X))
1F (10ST .NE. O) THEN
WRITE(LUNOUT, 2003) UNITSV, RECNSV, 10ST
2003 FORMAT(/ 5X, 'XXX HEADER WRITE ERROR IN WRSTAV!®

& / 5X, ‘UNIT NUMBER = ', I2, 5X, 'RECORD = *, I4
& / 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #3:

A formatted write of the common block HEADSYV writes the second header segment record to the STATE
VECTOR file. The I/O status of the formatted write statement is stored in the variable IOST. IOST is tested;
if IOST does not equal zero, an error has occurred on the write operation. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name, the unit number, the record

number, and the I/O status value. The program exits by a call to the system subroutine EXIT.
CODE FOR ERROR CHECK #3:

C
C write STATE VECTOR header segment 2
c
RECNSV = RECNSV + 1
WRITECUNITSV, FMT = 1003, IOSTAT = 10ST)
& NELTSV, DLONSV, DLATSV, NCOLSV,
& NROWSV, NLEVSV, NSPCSV, ICNTSV
1003 FORMAT(1X, F8.3, 2(1X, F8.5), S(IX, 14))
IF (10ST.NE.Q) THEN

WRITE(LUNOUT, 2003) UNITSV, RECNSV, IOST
CALL EXIT
END IF

ERROR CHECK #4:

A formatted write of the common block CHARSYV writes the first segment of the species names record to the
STATE VECTOR file. The J/O status of the formatted write statement is stored in the variable IOST. IOST
is tested; if IOST does not equal zero, an error has occurred on the write operation. A message is written to
the log to indicate that an error has occurred. The message contains the subroutine name, the unit number,

the record number, and the [/O status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #4:

C
C write the species names records
c
RECNSV = RECNSV + 1
WRITECUNITSV, FMT = 1005, I0STAY = 10ST)
& (SPNMSV(ISPC), ISPC = 1, 15)
1005 FORMATC1X, 15(A4, 1X))
1F (10ST .NE. 0) THEN
WRITECLUNOUT, 2005) UNITSV, RECNSV, IOST
2005 FORMAT(/ 5X, 'XXX SPECIES NAME WRITE ERROR IN WRSTAV'
/ 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', 14
& J 5%, '1/0 STATUS = ', 14)
CALL EXIT
END IF

ERROR CHECK #5:

A formatted write of the common block CHARSYV writes the second segment of the species names record to
the STATE VECTOR file. The I/O status of the formatted write statement is stored in the variable JOST.
The second species names record is written. The I/O status of the formatted write statement is stored in the
variable IOST. IOST is tested; if IOST does not equal zero, an error has occurred on the write operation. A
message is written to the log to indicate that an error has occurred. The message contains the subroutine
name, the unit number, the record number, and the I/O status value. The program exits by a call to the system
subroutine EXIT.

CODE FOR ERROR CHECK #5:

RECNSV = RECNSV + 1
WRITE(UNITSV, FMT = 1005, IOSTAT = 10ST)
& (SPNMSV(ISPC), ISPC = 16, NSPCSV)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2005) UNITSV, RECNSV, 10ST
CALL EXIT
END IF

ERROR CHECK #6:

A formatted write of the common block CHARSV writes the levels names record to the STATE VECTOR
file. The I/O status of the formatted write statement is stored in the variable IOST. 10ST is tested; if IOST
does not equal zero, an error has occurred on the write operation. A message is written to the log to indicate
that an error has occurred. The message contains the subroutine name, the unit number, the record number,
and the /O status value. The program exits by a call to the system subroutine EXIT.

F-87

CODE FOR ERROR CHECK #6:

c
C write the level names record
c

RECNSV = RECNSV + 1

WRITECUNITSV, FMT = 1005, IOSTAT = [OST)

& (LVNMSV(ILEV), ILEV = 1, NLEVSV)
1F (I0ST .NE. 0) THEN
WRITECLUNQUT, 2007) UNITSV, RECNSV, 10ST

2007 FORMAT(/ 5X, 'XX%X LEVEL NAMES WRITE ERROR IN WRSTAV'

& / 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', I4
& / 5%, '1/0 STATUS = *, 14)
CALL EXIT
END IF
ERROR CHECK #7:

The header text records are written by iterating over the number of text records. For each iteration, a for-
matted write of the common block CHARSYV writes a text record to the STATE VECTOR file. The I/O
status of the formatted write statement is stored in the variable IOST. IOST is tested; if IOST does not equal
zero, an errof has occurred on the write operation. A message is written to the log to indicate that an error
has occurred. The message contains the subroutine name, the unit number, the record number, and the I/O
status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #7:

o
C write header text records
c
DO 109 ITXT = 1, ICNTSV
RECNSV = RECNSV + 1
WRITECUNITSY, FMT = 1007, 10STAT = I0ST) TEXTSV(ITXT)
1007 FORMAT(1X, A80)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2009) UNITSV, RECNSV, 10ST
2009 FORMAT(/ 5X, 'XXX SV HEADER WRITE ERROR IN WRSTAV!
& / 5X, ‘UNIT NUMBER = ', 12, 5X, 'RECORD = ', 14
& / 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF
109 CONTINUE

ERROR CHECK #8:

A formatted write of the common block HEADIN writes the first header segment record to the STATE
VECTOR file. The [/O status of the formatted write statement is stored in the variable IOST. 10ST is tested;
if IOST does not equal zero, an error has occurred on the write operation. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name, the unit number, the record
number, and the J/O status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #8:

c
C write HEADIN header record segment 1
C

RECNSV = RECNSV + 1

WRITE(UNITSV, FMT = 1001, IOSTAT =]OST)

& CDATIN, CTIMIN, SDATIN, STHRIN, TSTPIN, FRSTIN,

& GRONIN, SWLNIN, SWLTIN, NELNIN

IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2011) UNITSV, RECNSV, 10ST

2011 FORMAT(/ 5X, *XXX% FILE WRITE ERROR IN WRSTAV!

& / 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', I4
& / 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #9:

A formatted write of the common block HEADIN writes the second header segment record to the STATE
VECTOR file. The I/O status of the formatted write statement is stored in the variable IOST. 1OST is tested;
if IOST does not equal zero, an error has occurred on the write operation. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name, the unit number, the record
number, and the I/O status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #9:

[+
C write HEADIN header record segment 2
c
RECNSV = RECNSV + 1
WRITECUNITSV, FMT = 1003, IOSTAT = 10ST)
& NELTIN, DLONIN, DLATIN, NCOLIN, NROWIN,
& NLEVIN, NSPCIN, ICNTIN
IF (10ST .NE. D) THEN
WRITECLUNOUT, 2011) UNITSV, RECNSV, 10ST
CALL EXIT
END IF

ERROR CHECK #10:

A formatted write of the common block CHEMIN writes the header record to the STATE VECI‘QR file.
The I/O status of the formatted write statement is stored in the variable IOST. 10ST is tested; if IOST does
not equal zero, an error has occurred on the write operation. A message is written to the log to indicate that
an error has occurred. The message contains the subroutine name, the unit number, the record number, and
the 1/O status value. The program exits by a call to the system subroutine EXIT.

F-89

CODE FOR ERROR CHECK #10:

c
C write CHEMIN header record
Cc
RECNSV = RECNSV + 1
WRITE(UNITSV, FMT = 1013, IOSTAT =]0ST)
& ATS, GTS, UFRAX, BFRAX, FACTOR,
& DIVP, DIVQ, NCOUT
1013 FORMAT(1X, 2(F8.2, 1X), 5(F8.5, 1X), I5)
IF (I0ST .NE. O) THEN
WRITE(LUNOUT, 2013) UNITSV, RECNSV, 1OST
2013 FORMAT(/ 5X, 'XXX CHEMIN INTERNAL WRITE ERROR IN WRSTAV!'

H / 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', 14
& / 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #11:

A formatted write of the common block CHEMIN writes the species record to the STATE VECTOR file.
The I/O status of the formatted write statement is stored in the variable JOST. IOST is tested; if IOST does
not equal zero, an error has occurred on the write operation. A message is written to the log to indicate that
an error has occurred. The message contains the subroutine name, the unit number, the record number, and
the /O status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #11:

RECNSV = RECNSV + 1
WRITECUNITSV, FNT = 1015, IOSTAT = 10ST)
3 (ISPECCISPC), ISPC = 1, NCOUT), ULIM, BLIM, FNOLIM
1015 FORMAT(1X, <NCOUT>(I4.3, 1X), 3(E10.3, 1X))
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2013) UNITSV, RECNSV, 10ST
CALL EXIT
END IF

ERROR CHECK #12:

A formatted write of the common block NDXSPC writes the first segment record of the species ordering
header record (NXSPBM) to the STATE VECTOR file. The I/O status of the formatted write statement is
stored in the variable IOST. IOST is tested; if IOST does not equal zero, an error has occurred on the write
operation. A message is writien to the log to indicate that an error has occurred. The message contains the
subroutine name, the unit number, the record number, and the I/O status value. The program exits by a call
to the system subroutine EXIT.

CODE FOR ERROR CHECK #12:

c
C write species ordering header record
c

RECNSV = RECNSV + 1

WRITECUNITSV, FMT = 1019, IOSTAT = [0ST)

& (NXSPBM(ISPC), ISPC = 1, 15)

1019 FORMAT (1X, 15(13, 1X))

IF (IOST .NE. 0) THEN

WRITECLUNOUT, 2015) 'BM-1', UNITSV, RECNSV, 10ST

2015 FORMAT(/ 5X, 'XXX FILE WRITE ERROR IN WRSTAV: NXSP', A4

& / 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', I4
& / 5%, '1/0 STATUS = !, 14)
CALL EXIT
END IF
ERROR CHECK #13:

A formatted write of the common block NDXSPC writes the second segment record of the species ordering
header record (NXSPBM) to the STATE VECTOR file. The I/O status of the formatted write statement is
stored in the variable IOST. 1OST is tested; if IOST does not equal zero, an error has occurred on the write
operation. A message is written to the log to indicate that an error has occurred. The message contains the
subroutine name, the unit number, the record number, and the 1/O status value. The program exits by a call
to the system subroutine EXIT.

CODE FOR ERROR CHECK #13:

RECNSV = RECNSV + 1
WRITECUNITSV, FMT = 1019, IOSTAT = I0ST)
& (NXSPBM(ISPC), ISPC = 16, NSPECS)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2015) *BM-2°, UNITSV, RECNSV, 10ST
CALL EXIT
END IF

ERROR CHECK #14:

A formatted write of the common block NDXSPC writes the first segment record of the sbecies ordering
header record (NXSPBC) to the STATE VECTOR file. The I/O status of the formatted write statement is
stored in the variable IOST. IOST is tested; if IOST does not equal zero, an error has occurred on the write
operation. A message is written to the log to indicate that an error has occurred. The message contains the
subroutine name, the unit number, the record number, and the I/O status value. The program exits by a call
to the system subroutine EXIT.

F-91

CODE FOR ERROR CHECK #14:

RECNSV = RECNSV + 1

WRITECUNITSV, FMT = 1019, IOSTAT = I0ST)

& (NXSPBCCISPC), ISPC = 1, 15)

IF (10ST .NE. 0) THEN
WRITECLUNOUT, 2015) 'BC-1', UNITSV, RECNSV, 10ST
CALL EXIT

END IF

ERROR CHECK #15:

A formatted write of the common block NDXSPC writes the second segment record of the species ordering
header record (NXSPBC) to the STATE VECTOR file. The I/O status of the formatted write statement is
stored in the variable IOST. 10ST is tested; if IOST does not equal zero, an error has occurred on the write
operation. A message is written to the log to indicate that an error has occurred. The message contains the
subroutine name, the unit number, the record number, and the 1/O status value. The program exits by a call
to the system subroutine EXIT.

CODE FOR ERROR CHECK #15:

c
RECNSV = RECNSV + 1
WRITE(UNITSV, FMT = 1019, IOSTAT = 10ST)
& (NXSPBC(ISPC), ISPC = 16, NSPECS)
IF (10ST .NE. 0) THEN '
WRITE(LUNOUT, 2015) 'BC-2', UNITSV, RECNSV, [OST
CALL EXIT
END IF
ERROR CHECK #16:

A formatted write of the common block NDXSPC writes the first segment record of the species ordering
header record (NXSPIC) to the STATE VECTOR file. The I/O status of the formatted write statement is
stored in the variable IOST. 10ST is tested; if IOST does not equal zero, an error has occurred on the write
operation. A message is written to the log to indicate that an error has occurred. The message contains the
subroutine name, the unit number, the record number, and the /O status value. The program exits by a call
to the system subroutine EXIT.

F-92

CODE FOR ERROR CHECK #16:

RECNSV = RECNSV + 1
WRITE(UNITSV, FMT = 1019, IOSTAT = 10ST)
& (NXSPICCISPC), ISPC = 1, 15)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2015) 'IC-1', UNITSV, RECNSV, 10ST
CALL EXIT
END IF

ERROR CHECK #17:

A formatted write of the common block NDXSPC writes the second segment record of the species ordering
header record (NXSPIC) to the STATE VECTOR file. The I/O status of the formatted write statement is
stored in the variable IOST. IOST is tested; if IOST does not equal zero, an error has occurred on the write
operation. A message is written to the log to indicate that an error has occurred. The message contains the
subroutine name, the unit number, the record number, and the 1/O status value. The program exits by a call
to the system subroutine EXIT.

CODE FOR ERROR CHECK #17:

c
RECNSV = RECNSV + 1
WRITE(UNITSV, FMT = 1019, IOSTAT = 10ST)
& (NXSPICCISPC), ISPC = 16, NSPECS)
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2015) 'I1C-2*, UNITSV, RECNSV, 10ST
CALL EXIT
END IF

ERROR CHECK #18:

A formatted write of the common block TSHDSYV writes the time step header record of the STATE VEC-
TOR file. The I/O status of the formatted write statement is stored in the variable IOST. 10ST is tested; if
IOST does not equal zero, an error has occurred on the write operation. A message is written to the log to
indicate that an error has occurred. The message contains the subroutine name, the unit number, the record

number, and the I/O status value. The program exits by a call to the system subroutine EXIT.

F-93

CODE FOR ERROR CHECK #18:

RECNSV = RECNSV + 1
WRITE(UNITSV, FMT = 1031, IOSTAT = IOST)
& IDATSV, ITIMSV, IELPSV, ISTPSV
1031 FORMAT(1X, 15, 1X, 16, 1X, 18, 1X, 14)
c

IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2017) UNITSV, RECNSV, 10ST
2017 FORMAT(/ 5X, 'XXX T.S.H WRITE ERROR IN WRSTAV!'

& / 5X, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', 14
& 7 5%, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #19:

A formatted write of the common block TEXTPT writes the text pointers record to the STATE VECTOR
file. The I/O status of the formatted write statement is stored in the variable IOST. 1OST is tested; if IOST
does not equal zero, an error has occurred on the write operation. A message is written to the log to indicate
that an error has occurred. The message contains the subroutine name, the unit number, the record number,
and the I/O status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #19:

c
C write text pointers
c

RECNSV = RECNSV + 1
WRITE(UNITSY, FMT = 1033, IOSTAT = I0ST)
& BIGMPT, LILGPT,
& BCPSPT, BMPSPT, BYPSPT, CNPSPT, 1CPSPT,
& ROBCPT, RDBMPT, RDBTPT, RDCNPT, RDICPT,
& WRCNPT, WRSVPT
1033 FORMAT(1X, 14(13, 1X))
IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2019) UNITSV, RECNSV, lOST
2019 FORMAT(/ 5X, 'XXX TEXTPT WRITE ERROR IN WRSTAV'

& / 5%, 'UNIT NUMBER = ', 12, 5X, 'RECORD = ', 14
& / 5X, '1/0 STATUS = ', 14)
CALL EXIT
END IF
ERROR CHECK #20:

A formatted write of the common block ROWSCT writes the row counters record to the STATE VECTOR
file. The I/O status of the formatted write statement is stored in the variable IOST. IOST is tested; if [OST
does not equal zero, an error has occurred on the write operation. A message is written 1o the log to indicate
that an error has occurred. The message contains the subroutine name, the unit number, the record number,
and the I/O status value. The program exits by a call to the system subroutine EXIT.

F-94

CODE FOR ERROR CHECK #20:

c
C write row counters
[~
RECNSV = RECNSV + 1
WRITE(UNITSV, FMT = 1035, IOSTAT = 10ST)
& BMPSRW, RDBMRW, RDBTRW, RDCNRW
1035 FORMAT(1X, 4(I13, 1X))
IF CIOST .NE. 0) THEN
WRITE(LUNOUT, 2021) UNITSV, RECNSV, 10ST
2021 FORMAT(/ 5X, 'XXX ROM COUNTERS WRITE ERROR IN WRSTAV!'
& / 5X, 'UNIT NUMBER = ', 12, 5X, ‘RECORD = ', 14
& / 5X, '170 STATUS = ', 14)
CALL EXIT
END IF

ERROR CHECK #21:

A formatted write of the common block TSTEPS writes the scenario time record to the STATE VECTOR
file. The I/O status of the formatted write statement is stored in the variable IOST. IOST is tested; if IOST
does not equal zero, an error has occurred on the write operation. A message is written to the log to indicate
that an error has occurred. The message contains the subroutine name, the unit number, the record number,

and the /O status value. The program exits by a call to the system subroutine EXIT.

CODE FOR ERROR CHECK #21:

C
C write scenario time
C

RECNSV = RECNSV + 1

WRITECUNITSV, FMT = 1037, I10STAT = 10ST)

& MODATE, MDTIME, MDELAP, MDSTEP,

& BCDATE, BCTIME, BCELAP, BCSTEP,

& BMDATE, BMTIME, BMELAP, BMSTEP
1037 FORMAT(1X, 3(1I5, 11X, 16, 1X, 18, 14, 1X))
[

RECNSV = RECNSV + 1
WRITECUNITSV, FMT = 1037, 10STAT = IOST)

& BTDATE, BTTIME, BTELAP, BTSTEP,
& CNDATE, CNTIME, CNELAP, CNSTEP,
& ICDATE, ICTIME, ICELAP, ICSTEP

IF (10ST .NE. 0) THEN
WRITE(LUNOUT, 2023) UNJTSV, RECNSV, 10ST
2023 FORMAT(/ 5X, 'XXX SCENARIO TIME WRITE ERROR IN WRSTAV®

& /7 5X, 'UNIT NUMBER = ', [2, 5X, 'RECORD = ', l4
& / 5X, '1/0 STATUS = *, 14)
CALL EXIT
END IF :

F-95

This page is intentionally ieft blank.

Chemical species
mapping, 39

Error checking in
ADATE, F-2
ASORT, F-2
BCPRCS, F-2
BIGGAM, F-3
BMPRCS, F-5
BTPRCS, F-6
CELLM, F-6
CLOCK1, F-7
CLOCK2,F-7
CNPRCS, F-7
CPUTIM, F-7
DATTIM, F-7
DUMPHD, F-9
FSKIP1, F-10
GTILDE, F-13
HSTEP, F-13
ICPRCS, F-13
INDEX], F-14
INIRUN, F-14
IOCL, F-14
JFILE2, F-14
JFILES, F-15
JFILES, F-16
JULIAN, F-17
JUNIT, F-17
LILGAM, F-18
NEWICS, F-19
OPBCON, F-23
OPBMAT, F-25
OPBTRK, F-25
OPCONC, F-26
OPICON, F-28
OPSTAV, F-30
OPWRCN, F-35
ORSPBC, F-39
ORSPBM, F-40
ORSPIC, F-41
POBCON, F-42
POBTRK, F-43
POCONC, F-44
POICON, F-45
POMXBM, F-47

INDEX

POSTAV, F-48
PQ1, F-49
PQCOEEF, F-50
PRGSMY, F-50
RATED, F-51
RDBCON, F-51
RDBMAT, F-54
RDBT, F-57
RDBTRK, F-61
RDCHAR, F-63
RDCONC, F-64
RDFILE, F-66
RDHDBM, F-66
RDICON, F-72
RDMXBM, F-74
RDSTAYV, F-76
RTPHO, F-79
RTSET, F-79
RUNMGR, F-79
TIMER, F-83
WRCHAR, F-83
WRCONC, F-83
WREFILE, F-85
WRSTAV, F-85

Include files (EXT)

ADVSFL,E-3
BCFILE, E-3
BGBCFL, E-3
BGBTFL, E-4
BGICCN, E-4
BMCOEF, E-5
BMFILE, E-6
BTFILE, E-7
CHEMIN, E-7
CHEMSW, E-8
CNFILE, E-8
CONFAGC, E-8
DIMENS, E-2
ERRG, E-9
FLNAMS, E-9
GTCOEF, E-10
HDFMTS, E-10
HDSTAV, E-11
HEADBC, E-12
HEADBM, E-13

Index-1

HEADBT, E-14
HEADCN, E-15
HEADIC, E-16
HEADIN, E-17
HSTEPS, E-18
ICFILE, E-18
LGBMFL, E-19
LILGSP, E-20
LUNITS, E-20
LVNAME, E-21
NDXPC, E-21
NROOTS, E-21
REGION, E-2
RKLEVS, E-22
ROWSCT, E-22
RTCONS, E-23
RTSHBC, E-23
RTSHBM, E-24
RTSHBT, E-24
RTSHCN, E-25
RTSHIC, E-25
RUNTMS, E-26
SPNAME, E-26
STOPFL, E-26
SUBID, E-27
TEXTPT, E-28
TILDE, E-28
TSHDBC, E-29
TSHDBM, E-29
TSHDBT, E-29
TSHDCN, E-30
TSHDIC, E-30
TSHDMD, E-30°
TSHDSV, E-31
TSTEPS, E-31
UNITIO, E-32
ZADVSL, E-32
Input files
BCON, 27
BMAT, 34
BTRK, 48
ICON, 54
NEWICON, 60
PROG, 68
RESTRT, 69

Output file
CONC, 90

Procedures, 3, 69
Processes, 3, 69
Program inversion, A-4

Restarting the core model
RESTRT, 70

ROM
chemical species in, 8
CPU time on a VAX 8650, 122
episode, 3
horizontal grid resolution, 3
IBM 3090 clock time, 2
IBM 3090 CPU time, 14
modeling domains, 4
principal components, 10

start time of the Core Model,
13

time zone, 3
vertical layers, 5 -
Run manager, 16

Start time, 13
Starting the core model
RESTRT, 70
State vectors, A-4
Subprograms
ADATE, 23
ASORT, 23
BCPRCS, 18
BLKMOD, 24
BMPRCS, 20
BTPRCS, 19
CELLM, 23
CLOCK], 23
CLOCK2,23
CNPRCS, 21
CPUTIM, 24
DATTIM, 23
DUMPHD, 21
FSKIP1, 23
GTILDE, 21
HSTEP, 21
ICPRCS, 17
INDEX]1, 23
INIRUN, 16
10CL, 23

JFILE?, 23
JFILES, 23
JFILES, 23
JULIAN, 23
JUNIT, 23
NEWICS, 24
OPBCON, 18
OPBMAT, 20
OPBTRK, 19
OPCONC, 22
OPICON, 17
OPSTAV, 22
OPWRCN, 21
ORSPBC, 19
ORSPBM, 21
ORSPIC, 18
POBCON, 19
POBTRK, 19
POCONC, 22
POICON, 18
POMXBM, 21
POSTAV, 22
PQ1,21
PQCOEF, 21
PRGSMY, 24
RATED, 21
RDBCON, 18
RDBMAT, 20
RDBT, 19
RDCHAR, 23
RDCONC, 22
RDFILE, 24
RDHDBM, 20
RDICON, 17
RDMXBM, 20
RDSTAYV, 22
RTBTRK, 19
RTPHO, 21
RTSET, 21
TIMER, 24
WRCHAR, 24
WRCONC, 21
WRFILE, 24
WRSTAYV, 22

Variable-state subroutines, 3, 69,

A4

VAX to IBM translation, 14

Index-2

