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RESEARCH REPORTING SERIES

Research reports of the Otfice of Research and Development, U S Environmental
Protection Agency. have been grouped into nine senes These nine broad cate-
gories were established to facilitate further development and app!ication of en-
vironmental technology Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields
The nine senes are

1 Environmental Health Eftects Research

2 Environmental Protection Technology
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PREFACE

Atmospheric turbidity and visibility restrictions are perhaps the most
obvious manifestations of air pollution. Historically, from the days of the
caveman's primitive fire through the Industrial Revolution and onto the mod-
ern technological era, it has been clearly apparent that the emission of
smoke, dust and fumes into the air decreases its clarity, and destroys scenic
vistas. Until recently, however, there has not existed an adequate scientific
understanding of the relationship between airborne particulate matter and
reduced visibility, or the mechanisms by which aerosols interact with light

rays to produce atmospheric turbidity.

This lack of knowledge has been a severe impediment to early efforts by
air pollution control authorities to accurately quantify the extent of
visibility reduction caused by particulate pollutants. The latter was evi-
denced by the initial attempts to set visibility standards in California,

based simply on concentration of total suspended matter.

In the early 1960's, W. Stoeber and I at the California Institute of
Technology concluded that such problems of visibility were amenable to
scientific investigation and solution. Accordingly, we proposed to undertake
a comprehensive study of the influence of aerosol characteristics on visi-
bility. The Public Health Service, recognizing the potential value of such

research, awarded the investigators a 3-year grant.

After the first year, the research project was transferred to the
University of Washington, Seattle, where I, joined in time by Masaki, Pueschel
and Charlson, continued the work. Ultimately Charlson and his associates,
Ahlquist and Waggoner, successfully expanded and deepened the scope of the

research.

The history of this research attests to the principle that a sound scien-

tific idea emerging at the proper time, adequately encouraged and supported,
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can not only add to the fund of knowledge, but also contribute greatly to the

technical solution of important social problems.

August T. Rossano

February 12, 1975
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ABSTRACT

This report summarizes progress in measuring the optical properties of
aerosols and in relating aerosol characteristics to visibility reduction
made in the author's laboratory during the period 1965-1971. An instrument,
the integrating nephelometer, which measures the scattering component of
extinction, bsp’ was developed and used in several field studies. Measured
bsp and observer visibility have been shown to be highly correlated and to
follow the Koschmieder relation. Measured bsp is highly correlated (0.95
in Los Angeles) with suspended particle volume in the 0.1 to 1.0 um size
range. A useful correlation (0.56 to 0.92 at various sites) has been found
between bSp and particle mass as collected on a filter. Techniques have
been developed to measure bSp as a function of relative humidity for ambient
and model aerosols. Water, absorbed by hygroscopic aerosols, as H2804,

and/or deliquescent aerosols, as (NH 804, make a substantial contribution

4)2
to visibility reduction. Techniques were also developed to measure the
absorption component of extinction, bab; to measure the forward/backward

scattering ratio; and to determine bSP as a function of wavelength.

This report was submitted in fulfillment of Grant No. R800665 by the
University of Washington under the sponsorship of the U.S. Environmental
Protection Agency. This report covers the period April 1, 1971, to December

31, 1974, and work was completed as of December 31, 1974.
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SECTION 1

INTRODUCT ION

Air pollution, or more specifically the suspended particulate matter or
aerosol, has dramatic effects on the optical properties of air. Visibility is
often degraded from tens or hundreds of kilometers down to a few kilometers.
In highly polluted areas such es Los Angeles, visual ranges as small as one
kilometer occur.

The results reported here are from research started in 1962 with USPHS
grant AP336. At that time, the consensus of ezperts was that the problem of
visibility was too complex for generalization:

"It seems apparent...that any relation which is found between
visibility and particulate concentration...would be limited
to the specific location and time period when the sampling
was done, Like most atmospheric phenomena, these are very
complex measurements in spite of their apparent simplicity."

E. Robinson in Stern's 1962 edition of Air Pollution.

As reported in our publications and by others, the instrumental approach
we developed has made visibility degradation one of the best understood and
most easily quantified effects of air pollutionm.

A new instrument, the integrating nephelometer, was developed for our
visibility investigations. This instrument has provided an objective
measure of the optical effect of urban aerosol, and the measured scattering
coefficient has been shown to be highly correlated with both visual range
and mass concentration of particles, particularly those between 0.1 and 1.0 um
in diameter. A 1973 report of the State of Califormia Air Resources Board
recommends the integrating nephelometer as an instrument for routine air

quality monitoring (Samuels, et al., 1973).

The following sections summarize current knowledge of aerosol properties
necessary to describe integral effects of the aerosol-atmosphere system as

they relate to the problem of visibility. Included is research by others as



well as that supported at the University of Washington. A list of publica-

tions supported by this grant is given in Appendix A.



SECTION 2

ATMOSPHERIC OPTICS AND VISIBILITY

It is convenient to define several parameters commonly used to describe

atmospheric optics.

The extinction coefficient be of a real aimosphere defines the change

Xt
in intensity of light traversing a pathlength Ax by the Beer-Lambert law:

AL _

I -bext ax
b is the sum of two terms:
ext
= + ]
bext bext (gases) bext (Particles)

bext (gases) = bRg + bag

where bRgAx is the fraction of incident light scattered into all directions

by gas molecules in Ax.

bagAx is the fraction of incident light absorbed by gas molecules in

AX.

Our interest is in bext (particles), which can be broken down as

follows:

bext (particles) = bap + bSp

where bapr is the fraction of incident light absorbed by particles in Ax.

bSpr is the fraction of incident light scattered into all directions

by particles in Ax.

The observer visibility, or visual range, is that distance at which a
black object can be just discerned against the horizon. Koschmieder (1924)
showed that a turbid media, such as urban air, reduces the contrast (ratio

of brightness of an object to the horizon brightness, minus one) of distant



objects as given by

c=C e °*  (Middleton, 1968),
where Co and C are the contrast relative to the horizon of an object at zero
distance and at distance x. A black object has a Co of -1. Experiments have
determined that typical observers can detect objects on the horizon with a
visual contrast of 0.02 to 0.05. Assuming horizontal homogeneity of aerosol
properties and illumination and a 0.02 detectable contrast, the visible range

is

LV - 3.9
ext
For a contrast of 0.05,
.
ext
Usually the assumption is made that b =b_ .
ext sp

bSp can be calculated from known or assumed aerosol particle size distribu-

tion, concentration and refractive index, as discussed in Section 3.



SECTION 3

PARTICLE OPTICS

The atmospheric aerosol is composed of particles that range in size
from smaller than 0.01 um to larger than 10 um diameter. The particles are
of various chemical compositions and each particle can be a mixture of sub-
stances or a single substance. The integral optical effect of the aerosol
particles is dependent on all of these parameters.

The integral properties of an aerosol can be expressed in a number of
ways: bsp’ bap’ condensation nucleii count, mass of particles per volume of
air, etc. Conversion from one integral aerosol property to another is
generally impossible without knowledge of the particle size distribution.
Earlier work by this laboratory (Charlson, 1969; Charlson, et al., a,b 1974)

has shown that aerosol optical parameters depend predominantly on (1) size

distribution, (2) molecular composition, and (3) relative humidity.

PARTICLE SIZE

The optical properties of an individual particle depend on its effective
area, its refractive index, and, to an extent poorly understood, its shape.

Aerosol particle size distribution may be graphed in a number of ways:
(1) log (dN/d1lnD) vs 1nD, (2) dN/dlnD vs 1nD, (3) dS/dlnD vs 1nD, and (4)
dvV/d1nD vs 1nD, as shown in Figures 1 and 2 for urban Los Angeles data
taken during a period in 1969 by K.T. Whitby (1972).

When plotted in this way, the volume distribution is usually bi-modal
with one maximum between 0.2 and 1.0 uym and a second maximum between 3 and
20 pym in diameter, as shown in Figure 3. Using Mie solutions for spherical
particles, the optical scattering extinction coefficient (bsp) per log size
interval can be calculated and is shown in Figure 3 using the measured
Pomona aerosol size distribution., A similar plot of volume distribution and

bspfrom Garland (1973) is shown in Figure 4 for high relative humidity
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Figure 1. Figure 1 and 2 show different ways of plotting the same
particle size distribution data taken during 1969 in Los Angeles.

The size distribution was measured using a combination of electrostatic
mobility and single particle optical counter techniques (Whitby,

et al., 1972). Particle optical properties depend on particle surface
or volume. Hence this figure shows that the optical properties of

this sample are dominated by particles in the range 0.1 pm < D < 1 um.
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1.5.
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polluted British fog. It seems usual that sub-micrometer aerosol particles

dominate the aerosol scattering extinction in the visible spectrum although

there clearly are cases in fogs, rain, snow, clouds and dust storms in which
large particles influence or dominate visible extinction. A striking example
of the relationship of measured particle scattering to measured particle
volume in the 0.1 to 1.0 um decade of particle size is shown in Figure 5.

The correlation coefficient of bsp’ measured with a nephelometer, and
0.1 to 1.0 um particle volume, measured using electroststic mobility and
single particle optical counting techniques, was 0.95 at various locations in
the Los Angeles basin. The correlation of bSp with aerosol mass as collected

on a filter is generally poorer, although still useful, as shown in Table 1.
MOLECULAR COMPOSITION

The particle interaction with water, biological effects and complex
refractive index depend on the molecular composition. Therefore, it is
important that the composition of various aerosol systems be classified,
particularly insofar as this determines the imaginary part of the refractive
index and hygroscopicity. Unfortunately, this is an area in which very little
work has been done so far. Rasmussen and Went (1965) suggested that organic
materials (terpenes) are a major source of atmospheric particles, but did
not quantify their work adequately for application to optics. Junge (1954)

has shown that the reaction products of SO, with water and ammonia play an

important part in urban and rural aerosols? although he did not attempt to
relate quantitatively the composition with optical effects. We have pre-
limirary data suggesting that continental aerosol optics is often dominated
by H2504 and the products of its neutralization with NHB(Charlson et al.,
1974a; Charlson et al., 1974b).

There are two features of particulate chemistry which simplify the
situation considerably in some locations. First, relatively pure (i.e., mole
fraction >50%) molecular species (e.g. (NH4)2504, HZSO4 or seasalt) dominate
optical scattering in some atmospheric aerosols and second, certain compounds
are found almost exclusively in the submicrometer fraction (Patterson and
Wagman, 1974, Dzubay and Stevens, 1973), as shown in Table 2 and in Figure 6.

The molecular nature of individual particles is a function of the source

and removal mechanisms for these particles. The most important observable
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at Wash. Univ. in St. Louis, Mo. The sampled air volume was 68 m3,
This reproduction shows, as does the original photograph, that most
of the optical absorption is due to the small particle mode. (Dzubay,

1973).
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effect of composition on particle optics is the relationship of bsp and

relative humidity.
RELATIVE HUMIDITY

The humidity effects in aerosol optics fall into three categories:

RH < 100%: particles between and above water clouds
(including high RH hazes);

RH > 100%: wunactivated particles in water clouds and fog;
RH

v

100%: activated cloud droplets.

OQur efforts have been limited to the first two and are discussed in the

following paragraphs.

RH < 100%

Since a large fraction of submicrometer particles are hygroscopic or
deliquescent (Winkler, 1973; Junge, 1954; Hanel, 1971; Covert, 1974), the
size distribution of an atmospheric aerosol, and hence its optical or climat-
ological properties, depend largely on relative humidities, even at RH < 50%.

Figures 7, 8 and 9 show the total light scattering coefficient, bsp,as
a function of relative humidity for several different aerosol types as found
in the real atmosphere. These curves are representative of those taken over
a wide variety of locations and have certain highly reproducible features.
First of all, it will be noted that light scattering always increases with
humidity,, although for relatively hygrophobic systems the increase may be
very slight up to extremely high RH (for example, Figure 9a). While for
most aerosols, such as HZSO4 droplets, the curve increases monotonically,
definite inflection points due to deliquescent salts (see Figures 7 and 8a)
are seen frequently, indicating the dominance by rather pure inorganic

subtances such as,(NH4)2304.

The evolution of a distribution of droplets under conditions of changing,
subsaturation RH modifies the optical interactions between radiation and
particles, thus changing the temperature of the environment of the particles
and hence in turn the relative humidity. This complex chain of events
cannot be satisfactorily modelled until the parameters which go into the
models (dependence of particle growth on chemistry, optical properties of

saturated and supersaturated droplets, etc.) and the basic physical principles

13
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of the component processes are understood.

A system has been designed and operated by this laboratory that (over a
period of about 120 seconds) sweeps the relative humidity of air containing
aerosol particles from 30% to 95%Z. Changes in particle diameter are detected
as changes in the scattering coefficient of the aerosol particles {(Covert,
1974; Charlson et al., a,b 1974).

In the midcontinent region 30 km southwest of St. Louis, this system
detected H2804/(NH4)HSO4/(NH4)2804 as dominate materials in the 0.1 to 1 um
decade of aerosol size. Injection of sub ppm concentrations of NH3 converted
the bsp(RH) response characteristic of H2804 to that of (NH4)2SO4. The
(NH4)2 SO4 is detected by comparing the value of relative humidity at the
deliquescence point for the unknown sample with that of laboratory generated
(NH4)ZSO4 aerosol. 98% of the time either H,S0, or (NH S0, was the domimnt

2774 4)2 4
substance in terms of optical effect (Charlson et al., 1974a). Figure 10

shows non-urban turbidity and SO4 and suggests a possible relationship

between the two parameters similar to that found during our measurements near

St. Louis.

Rl > 100%, Unactivated Particles

When RH > 100%, and in the presence of suitable cloud condensation
nuclei, some of the droplets grow to much larger sizes, forming fog and water
clouds. The study ot the processes leading up to the formation of the large
drops is a cornerstone of cloud physics. In addition to the activated par-
ticles, there are unactivated particles which often outnumber the cloud or
fog drops by orders of magnitude (Twomey, 1972), and which may still influence
or even dominate some optical properties of clouds. Both light scattering

and absorption by these unactivated particles may be important.

17
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Figure 10a. Non-urban turbidity, decadic extinction (Flowers et af

., 1969).
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Figure 10b. Non-urban SOz, ugm/M3 (NASN data).



SECTION 4

TECHNIQUES FOR MEASUREMENT OF RELEVANT OPTICAL PROPERTIES

In the past several years our efforts have _been focused on design and
testing of methods to measure aerosol optical properties that directly
determine aerosol radiative interactions. Methods for measurement of these
relevant integral aerosol optical properties--namely, b , b b__(RH), and

sp’ bsp’ “sp
bap-—are described in the following sections.

b
5p

Consider a layer of thickness dx illuminated by a parallel beam of

wavelength A and intensity Io For perpendicular incidence, the intensity

AT
of light scattered into solid angle dQ is

d1 _
A (@)da = I 8, (0)dx.

dQ

A visibility meter using the operator's eye as a detector was devised by
Buettell and Brewer (1949) that geometrically performs the integration of

BA(G) over solid angle to measure bsp,)\ (Middleton, 1968). Ahlquist and

Charlson (1967) increased the original instrument sensitivity by using a
photomultiplier tube to detect scattered light from a xenon flash lamp.
Ahlquist et al. (1974, patent application) improved the sensitivity,
stability and dynamic range by substituting an incandescent lamp for the
xenon flash lamp and detecting the scattered light using digital photon
counting techniques. This instrument, called an integrating nephelometer, is
shown in Figure 11. Modern versions of Beuttell and Brewer's device have
sufficient sensitivity to be calibratable in an absolute sense with bRg’ the

scattering coefficient of particle-free gases such as He, COZ’ CC12F2.
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The geometric errors of the instrument have been studied by Middleton
(1968), Ensor and Waggoner (1970), Heintzenberg and Quenzel (1973), and Rabin-
off and Herman (1973) and are estimated to be 10% or less for the aerosol
particle size distributions normally found in the atmosphere.

The modern instrument is alternately filled with ambient and particle-
free air and the difference in scattered light intensity is proportional to
the scattering extinction coefficient due to aerosol particles, bsp' The
measured values of bS in the atmosphere range from 10—7m—l at Mauna Loa
Observatory to 3 x 10~-3m~1 in polluted Los Angeles (0.005 to 150 times the
Rayleigh scattering coefficient at 530nm).

The integrating nephelometer has become an accepted instrument for
measurement of aerosol scattering extinction. A series of patents, based on
the designs of the authors of this report and covering various aspects of
the nephelometer, have been issued to the University of Washington. Several
hundred instruments have been produced and are in regular use for both
research and monitoring. High sensitivity, multiwavelength instruments have
been purchased by Institute fur Meteorologie, Mainz, Germany, Air Force
Cambridge Research Lab and the National Oceanographic and Atmospheric
Administration.

The draft version of Volume I of the ACHEXl final report from Rockwell
International to the Air Resources Board, State of California, recommends the
integrating nephelometer for both long term monitoring and short term sur-

veillance of aerosol properties.

bbsp

An optically thin aerosol layer over a dark surface increases the albedo
by scattering incident radiation backwards into space. The albedo per unit
thickness of an aerosol layer illuminated by a zenith sun can be determined
by integrating the aerosol volume scattering function over the backward
hemisphere of scattering angle., A partial shutter, shown in Figure 11, can
change the angle of integration of the nephelometer so that the scattered

light intensity is proportional to the backward hemisphere scattering

ACHEX Aerosol Characterization Experiment of the California Air Resources

Board. Prime contractor is Rockwell International Science Center (Hidy
et al., 1975).
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extinction coefficient bbsp due to aerosol particles. bbsp normally is in the

range 0.1 to 0.2 times the aerosol scattering extinction coefficient bS

b
ap

The two aerosol parameters needed in simple radiative climatic models
are the particle backward hemisphere scattering coefficient, bbsp’ and the
particle absorption extinction coefficient, bap' There are a number of ways
of measuring bap’ and none is entirely satisfactory.

1 1

Long path extinction cannot be used because bap is lO—Qm_ to lOme— or
smaller. Various techniques based on inverting angular scattering information
have been used by Eiden (1966) and Grams et al. (1974), etc., but these
methods require precise knowledge of the aerosol size distribution, and
contain errors of unknown size and magnitude, since the scattering by
irregular particles is calculated using Mie formulae for spheres. The ab-
sorption coefficient of collected aerosol samples can be estimated with low
precision from measurement of the transmission of KBr pellets containing
dispersed aerosol (Volz, 1972). Lindberg and Laude (1974) measured aerosol
absorption by measuring the decrease of diffuse reflectance of a white powder

when a small amount of aerosol is dispersed in it.

All of the above methods, in our opinion, are poorly suited for measure-
ments in background locations. Measurement of the angular dependence of
the aerosol volume scattering function is difficult when molecular scattering
dominates. The methods of Volz and Lindberg require collecting an aerosol
sample over several days, scraping the sample off the collecting surface, and
dispersing the sample in another media. Any treatment of the sample that
alters the aerosol size distribution will alter the optical absorption
coefficient (Waggoner et al., 1973; Bergstrom, 1973). A different technique
for measurement of bap has been developed in our laboratory that we believe
is superior to those described above.

Atmospheric aerosol is collected by passing ambient air through a
Nuclepore filter. The filter consists of a 10 um thick film of polycarbonate
plastic with 0.4 pm holes etched through it. The holes are etched along
damage tracks from highly ionizing particles and are round and perpendicular

to the surface of the film. Individual particles with a mean separation of
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several diameters are collected on the surface of the filter. The filter
and the particles are placed in an optical system that illuminates the
particles and the filter with a parallel beam of, in this case, green light,
and collects both direct transmitted and forward scattered light. The
extinction or change in transmission between a clean filter and the filter
plus aerosol is assumed to be the same as absorption by the same aerosol
dispersed in a long column of air. Knowing the volume of air passed through
the filter during collection of the aerosol, one can calculate the optical

absorption coefficient due to particles, ba

This method has been checked for accuracy using laboratory aerosols of
known (including zero) absorption coefficient and is described by Lin et al.
(1973). The disadvantages of the method center on errors introduced by
sample alteration that may take place during collection, but the sample
alteration is probably much less than in the techniques\of Volz and Lindberg.
The sample collection is simple and gnly requires 10 to 20 ug/cm2 of aerosol

on the filter. (Data is presented in Figure 12.)
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Figure 12. Histograms showing the absorption fraction of
extinction at three sites in industrial-urban residential-urban
and rural Missouri. bap (530 nm) was measured via the method

of Lin (1973). bSp (530 nm) was measured with a University
of Washington nephelometer.
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SECTION 5

ATMOSPHERIC MEASUREMENTS AND DATA

bSp AND VISIBILITY

As discussed in Section 2, Koschmieder related bext to the distance at
which a black object is just visible when viewed against the horizon sky.

The distance of visibility is given by

vV = T (Middlecon, 1968),

assuming aerosol homogeniety, uniform illumination and a 0.02 detectable
contrast. Commonly it is assumed that b =b , i.e. b = 0. Measure-
ext scat abs

ments of bS and observer visibility show good agreement with the formula

cat
above,

Horvath and Noll (1969) conducted a study in Seattle between total light

scattering, b , measured with an integrating nephelometer, and prevailing

visibility oszized by two separate people. Their results were in good agree-
ment with the theoretical expression of Koschmieder for RH < 65% RH.
Apparently the location of the nephelometer in a heated room caused a reduced
RH in the light scattering measurements. In the cases where RH < 657, the

correlation between bS and the prevailing visibility was 0.89 and 0.91,

respectively, with a cgzzficient in the Koschmieder expression of 3.5 + 0,36
and 3.2 + 0.25, respectively. This can be compared with the theoretical value
of 3.9, indicating a slightly lower prevailing visibility than meteorological
range. Since no ideal black targets were used (only trees, buildings, etc.),
these would have caused just such a deviation.

Samuels et al. (1973) conducted the most extensive tests to date of the

relationship of prevailing visibility to light scattering and various mass

concentration measures as discussed earlier.
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They conclude that bS as measured with the integrating nephelometer

cat
is a good predictor of prevailing visibility and that the regression analysis
is in agreement with Koschmieder's theory. These workers noted that there

was a smaller observed prevailing visibility than that predicted from theory

and bS measurement, which they suggested was due to non-ideal black

cat
visibility targets.

MEASUREMENTS OF SCATTERING PARAMETERS

Under support from the Environmental Protection Agency, National Science
Foundation and the California Air Resources Board, we have measured various
aerosol scattering parameters in urban and rural locations in California,
Colorado, Missouri and Washington. In all locations the incoming air was
heated 5° to 200C above ambient to lower relative humidity of the sample.

The measured parameters were:

b - Scattering extinction coefficient of particles at 530 nm. (Rayleigh

-2 a4t 530 om = 0.15 x 10~4 m-1)

a - Wavelength dependence of bSp parameterized

b =A%
sp

Two values of a were computed from Red-Green b and Blue-Green
bsp. Red is 640 nm. Blue is 430 nm. Green iS'530 nm.
Scat. ratio - Ratio of half sphere back scatter to bSp from particles at 530nm.
The sites were:
Richmond - Northeast corner of San Francisco Bay in vicinity of petro-
chemical plants.

Point Reyes - Coast Guard station on cliff 150 meters above the sea
surface, 50 km NW of San Francisco.

Fresno - Central Valley of California, urban agricultural site.

Hunter Liggett - Rural California site 20 km inland from ocean. Local
elevation 400 m. Local vegetation consisted of dry
grass and sparce trees.

Cal. Tec. - Site on campus in Pasadena in Los Angeles basin.
Pomona -~ Site at county fairgrounds in inland area of Los Angeles basin,

Washington Univ. - Campus site located in residential area of St. Louis,
MO.

Tyson - Rural area 25 km WSW of St. Louis.
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St. Louis Univ. - Campus site in industrial St. Louis

Henderson - Site 10 km NE of Denver.

Trout Farm - Site 8 km N of Denver.

Table 3 lists the measured values at each site, TFor each measurement
parameter, the range of that parameter containing 63% of the data is specified.

For bsp’ the units are lO-QMﬁdl and the range low to high contains 637 of data.

b MEASUREMENTS
ap

Using the technique described in Section 4 (Lin et al., 1973), we
measured bap at three locations near St. Louis during fall of 1973. The sites
are discussed in the previous section. The measurements are presented in
Figure 12 as the ratio of bap to bext’ where bext is the sum of bap and bsp'
The results are as expected in that the rural area has much less absorption
than the industrial area. The magnitude of absorption is very high in the
industrial location; bap is nearly equal to bsp' In terms of reducing solar
energy at the surface, at Tyson backscatter and absorption have equal effect.

At St. Louis University absorption deminates.
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SECTION 6

CONCLUSIONS

In 1962, experts in the field considered the relationship of visibility
to measureable aerosol parameters to be intractable (see the Robinson quota-

tion on page 1).

As described in Section 5, we now have a good understanding of the
relationship of visibility to aerosol parameters, as well as instruments to
measure those aerosol parameters. In the aerosol field the contributions of
K.T. Whitby, B.Y.H. Liu and co-workers at the University of Minnesota cannot

be over-emphasized.

We would summarize the result of the past 12 years of research on aero-
sol properties by ourselves and others as:

1. The integrating nephelometer is a useful instrument to measure the
scattering component of extinction, bsp'

2, Measured bSp and observer visibility are highly correlated and
follow the Koschmieder relation,.

3. Measured bsp’ using a commercial integrating nephelometer, has been
shown to have a very high correlation coefficient (e.g. 0.95 in measurements
at several Los Angeles basin sites) with measured suspended particle volume

concentration in the 0.1 to 1.0 um decade of particle diameter.

4, A useful correlation exists between bSp and particle mass as collec-
ted on filters. Measured correlation coefficients at various sites range
from 0.56 to 0.92,

5. As Whitby and others have shown, a plot of particle volume concentra-
tion per log radius interval usually has two log normal modes., Our optical
results are consistent with this model.

6. Whitby's coarse particle mode, centered on 6 to 20 pm diameter, is

the product of mechanical operations, grinding fracture, etc,, has the chemi-
cal properties of its local sources, usually has short atmospheric lifetime
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and transport and usually has little or no optical effect, at least in all of
our measurements,

7. The fine particle mode, centered on 0.3 to 0.6 um diameter, is the
product of high or low temperature condensation, coagulation and gas to par-
ticle conversion of natural or anthropogenic source materials., This mode is
dominated by NH+, SOZ, Pb, Br and organic matter, has long atmospheric life-
time and transport, and dominates light scattering.

8. Visibility reduction is predominately due to the fine particle mode.

9. Our measurements have shown that sulfates, sometimes as HZSO4/
NH4HSO4 and sometimes as (NH4)2804, dominate the small particle mode in rural
Missouri.

10. In terms of aerosol optical scattering properties (i.e. bsp, etc.),
the differences between rural and urban sites seems to be small, with the

exception of Los Angeles and clean coastal sites such as Point Reyes.
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SECTION 7

EPILOGUE

As pointed out in the second paragraph of this report, when Prof. A.T.
Rossano began this project, the probability of success seemed slim. The
granting agencies (USPHS/DHEW) had to undertake support with an element of
faith in the process of basic research. In retrospect, we feel this was
warranted. The project successfully explained those aerosol characteristics
which control visibility and developed an instrument, the integrating nephe-
lometer, which is widely and successfully used. The entire project has been
conducted as basic research as opposed to directed research.

In this day of increased control of research, of demands for relevance
and application to natural needs, we are pleased to note that basic, undirec-
ted research still works. We feel it is safe for granting agencies to support

some research with an element of faith that the results will be useful.
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