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STATISTICAL QUESTIONS RELATING TO THE
VALIDATION OF AIR QUALITY SIMULATION MODELS

I. Introduction. This study examines techniques that can be used in evaluating
the predictive accuracy of air quality models and discusses some of the problems
of comparing predicted versus measured values. It considers the statistical basis
for some of these techniques and their associated figures of merit, scores or
indices; and recommends a specific validation procedure to be followed. The study
examines the effect of the inaccuracies in the input and output data used in the
validation process, and offers some suggestions regarding the major problem of
separating input-output data errors from those introduced by a poor mathematical

representation of the physical and chemical processes.

II. Background. In the past few years the Environmental Protection Agency (EPA)
has supported a major effort in the development of air quality models. The models
we are concerned with are deterministic physically based relationships between
emissions and ambient air quality, with a varying degree of formalism on the
turbulent diffusion process and its resulting mathematical description. The

model is a tool used by forecasters responsbile for short-term predictions as

well as by control officials and planners to indicate the impact of proposed
changes in such things as emission quantity, patterns and the like. A major
problem has been the lack of suitable data for performing model tests, especially
for the more complex models which appear to be promising but need improved emis-
sions inventory and meteorological information if they are to be more useful. To
help remedy this situation, the EPA is currently sponsoring a comprehensive Region-~
al Air Pollution Study (RAPS). The RAPS, described by Ruff and Fox E}97§], con-
centrates mainly on providing vast amounts of data of high quality which along
with a much improved emissions inventory will result in a large base of data to be
used in the development and validation of improved air quality models. Thus, it
now seems appropriate to consider some of the ways in which this data base can be
used effectively for validating models and to explain the significance and impli-

cations of recommended validation procedures.

ITI. Evaluatien and Validation. - The Problem. Often the verification and
scoring of predictions 1s controversial. Among the reasons may be the failure to
objectively and quantitatively define the quantities to be compared or to agree

on a scale of "goodness" to measure the difference between the predictions and



observations. Another reason may be the failure to define clearly the purpose
or purposes of evaluation. Generally speaking, these are:

(1) To determine the correspondence between predictions and observa-

tions -~ constituting a scientific, empirical or inferential evaluation;
(2) To determine the value of the predictions to '"decision makers"
constituting economic operational or decision-theoretic evaluation.

This study is concerned with the first of these objectives, and the agreement of
a model with observations is referred to as validity. If the agreement is good,
the model (or theory) is considered to be true, although it is generally recog-~
nized that the word true may be misleading since any model is at best an approxi-
mate description of reality. Once an agreement 1s reached on a scale to be used
in measuring the goodness of the prediction, an absolute (but usually arbitrary)
score or figure of merit can be defined to characterize this agreement (or lack
of it). This score may be used to compare the performance of different models,
or the performance of the same model under different circumstances or for differ-
ent locations. Such a score may be useful in helping to make a choice between
models, but the relative ranking given to different models may depend upon the
particular score used, and the criticism can be made that the model that verifies
best according to some arbitrary scoring system may not be the most useful model.
In this study we will attempt to show how some of these difficulties might be
avoided, or at least alleviated.

There are a number of statistical quantities that can be used in determining
the correspondence between predictions and observations. But it is important to
recognize the stochastic nature of the predictions and that validation statistics
computed from the sample of data are only estimates subject to considerable fluctua-
tions. The statistically conscious investigator realizes that however an experiment
or observational program actually turned out, it could have turned out somewhat
differently. By means of an appropriate statistical analysis, he attempts to make
a valid assessment of the uncertainty of the results in terms of a probability
statement or by setting confidence limits, The estimates discussed in this report
are consistent in the probability sense, i1.e. as the sample size increases, the
estimates converge in probability to the parameters they are estimating. In actual
practice the sample sizes are likely to be quite small, and estimates of the samp-
ling variances are necessary if valid conclusions are to be drawn.

A validation procedure does not need to be limited to a comparison of the

predictions with observed values. A good statistical analysis should have diagnostic



value, yielding clues about which parts of the model (or observations) may be
responsible for the errors uncovered. A complex Air Quality Simulation Model
(AQSM) contains many modules (for emissions, transport and diffusion, trans-
formations, and removal). The input to one of the modules might be the output
of one of the other modules, or a submodel might be used to process the basic data
to be used as an input. Final model validation must be based upon validation of
model components, but unfortunately in many cases the data are inadequate to do
this. However, when data are available to separately validate a component of a
model, the general principles to be followed are the same as for validating the
final output. The techniques discussed below are applicable in either case.

a. The mean square error. For the purpose of a statistical summary, the
mean square error (MSE) or the root-mean-square-error (RMSE) is often used. For

a series of n predictions it is defined as

2
MSE = 1/n [ d, , (1)
where di is the difference between prediction Xi and the corresponding observa-
tion Yi' If the di are normally distributed then all the information about the

frequency distribution of errors is contained in the statistics d and Sd’ where
d = 1/nid (2)
i1

is a sample estimate of the bias (the tendency to over-predict or under-predict)

and sd

defined by

is a sample estimate of the population standard deviation 9y and is

sq = [1/n3(d,-q) 2]1/2 . (3)

The mean absolute difference

1/n §ldi|

is commonly used and may have some advantages or disadvantages in comparison with
the MSE. (This will be discussed later.)

If the data are not normally distributed, the use of the MSE or mean absolute
difference can be quite misleading, especially when comparing predictions and observ-

ations of short-term concentrations of pollutants, since the distributions are
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likely to be non-normal with long 'tails." Thus certain precautions must be
taken, and this will be discussed in more detail in a later section. However,
even i1f the prediction errors are normally distributed, the MSE does not tell the
whole story for additional information can be obtained by consider,ing
the component parts representing various sources contributing to its value. 1t is

easy to show that

2 2
' = 3 2 _
MSE = d + sy * s 2rsys, , (4)
where
2 - 2
SX = l/n%{ (Xi - X) > i (5)
2 - 2
and
- 16 o000 D

(7)

2 - ? 1/? ’
) ) [3x, - X §(¥,- D]
where X and Y represent the means of the predictions and observations respective-

ly. For perfect predictions we must have

d = 0 R (8)
2 2
s
X = sY ,
and
r=1 .

The statistics Sys Sy, r and d may be useful quantities in diagnosing the errors
in the predictions and might provide useful indices for comparing models.

For the correlation to be near unity and the MSE to be near zero, both X and
Y must be essentially free of error. We can consider the model prediction X as
made up or a perfect prediction X* and an error term. Contributions to the error

can come from imperfections in the model as well as from errors in the input data.



Let

X=X* 4+ m + e (9)
where X* 1is the prediction from the perfect model, m 1is the output error pro-
duced by the model, and e 1is the contribution from errors in the input variables,
which may be original data or estimates derived from the output of a submodel. If
the model is applied in a number of different circumstances (e.g., different recep-
tor locations, different days, etc.), the set of predictions will have a variance

o] ; , and if m and e are uncorrelated

2 2 2 2 (10)

2 2
where o and o, are the variances of m and e respectively. Since X¥*
2

represents a deterministic predictin rather than a random variable, o repre-

X*
sents the varilance of the output of the perfect model as it is applied to different
circumstances.

Likewise, there is some true observation Y* | so that for a perfect pre-

diction Y* = X*, The observed Y is given by

11
Y = Y* 4+ ¢ (11)
where € 1s the observational error. If Y*¥ and ¢ are uncorrelated then
2 2 2
Oy = Oyx t O , (12)
2 2
where o is the error variance of the observations and Oy represents the
variation in the set of Y* over time or space. The correlation coefficient
between X and Y can be expressed as
2., 2,2, -1/2 2,2 -1/2
by = [1+ (o +0)/0y,] (1 +0_ /oy, ] (13)
2 2 2
Thus the correlation cannot be unity unless Op =0 = 0. = 0.



If the random errors m , e and € in (9) and (11) have zero means the
bias d will be zero. However, if d # O ,» 1t 1s not possible to determine
the source of this bilas by examining X and Y only, and additional independent
information must be obtained. This problem is discussed in more detail in
Section V.

If it is possible to get estimates of oe2 and 082 (as discussed later),

then it is of interest to consider the index

2 ~2 2 ~2
I= (sX - oe)/(sY -0.) (14)
~ 2
where g is the estimated variance of the errors in the observations Y and
) €

o is the estimated variance of errors in prediction due to data input errors.
e 2

The‘index I is an estimate of (GX* + O )/OY* , and for large n should be
2

close to unity for a very good model, since by definition o, = 0. This is a

necessary, but not sufficient condition. Thus, if I = 1 , the model might be

good, since the variances og X and Y are the same. If I # 1 , the model
cagnot be pgrfect since o # 0 and r<l1 . Thus, if approximate estimates of
O and S can be obtained, then the index I might be helpful in separating
input-output data errors from those introduced by a poor physical model.

b. Regression analysis. In model validation a graphical representation by
means of a scatter diagram can be made showing the relationship between the model

predictions X and observations Y , as illustrated in Figure 1.

X

Figure 1. Graph showing relation between predictions X
and observations Y.



If both X and Y are essentially free from error, the points will lie along
the line Y = X (or very close to it). If there are appreciable errors in
X and Y , the 1line Y = X will no longer give a good fit, but there will

be another line
Y = A+ BX (15)

(called the regression line) which will give a better fit. This line, with slope
B and intercept A , is determined by the method of least squares, which mini-

mizes the sum of squares of the deviations from the regression. This line has been

used for model "calibration" or tuning, and although this procedure has been
examined and criticized by Brier [1973 , there is considerable merit in giving
attention to the coefficient B 1n validation studies. The formula for the slope

is

- - - -
B [Jx, -0 (v, - D] 3, - 017 (16)

In relation to data input and model error, it can be shown to be represented by

? 2.2 4
B = [1+ (o +0)/0p,] = rsy/sy 1mn

2 2
Thus, if B idis close to unity, it means that % + 9y is small relative to
2

o] and is suggestive of a good model if the sample size is sufficiently large.

X*
Errors in the observation Y do not produce a bias in B but will affect its
sampling distribution. Therefore, the slope B becomes a very meaningful

2
statistic in a valildation procedure, especially when o becomes small. A good

model must have B close to unity.

IV. The use of robust techniques. The standard correlation and linear regres-
sion procedures discussed above are based on a mathematical model where a number
of assumptions are made. Some of the important ones are as follows:
(i) The regression line is linear.
(ii) The distribution of Y for a given X 1s Gaussian
(or at least approximately).
(iii) The variance of the departures from the regression

line is constant.



In many cases it is likely that these assumptions will not be valid for
comparing predicted and observed value of pollutant concentrations, Inferences
about means and variances will be sensitilve to departures from assumptions such
as error normality, especlally in the case of short~term concentrations where
observed values may vary by an order of magnitude or more. The RAPS modelling
effort will be more concerned with short-term concentrations, such as predicting
hourly averages, but even in long-term models where input and output errors have
a chance to balance out, it 1s still important to determine the effects of de-
partures from the basic assumptions. When these effects are appreciable it is
desirable to use robust (resistant) statistical procedures. For example, instead
of the MSE the median error can be used, or the value that is exceeded (say) only
10% of the time. Although it may be desirable to present the frequency distribu-
tion of error ', a summary statistic is usually needed for making comparisons
between different models, meteorological conditions or receptor locations. Trans-
formation such as the logarithmic may be useful since percentage errors may be
relevant. However, a 50% error at high concentrations may be more important than
a 50% error at low concentrations where the measurements may be close to the back-
ground or noise level. Other transformations of the type XB (g<l) , for example,
may be more useful in stabillizing the variance or reducing the influence of a few
extremes or outliers -- that may not be representative,

In the case of correlation and regression analysis, a few outliers can some-
times have a dominant influence, perhaps even reversing the sign of the correlation.
Graphical methods can be very useful in detecting outliers. For example, Figure 2
shows the plot of predicted and observed monthly-mean concentrations for eight
Chicago stations in January 1967 as reported by GEOMET [1972]. The point number 4
has the largest prediction error, and if it is removed the calculated regression
line will be very close to the line Y = X, New methods of robust regres-
sion estimation have been developed (see Hogg [}974] ) and extended to the multi-
variate case where graphical methods may not be so effective in identifying outliers
or determining their influence. A recent analysis of air pollution data from New
Jersey and New York by Cleveland and Kleiner [197{] illustrate the usefulness of
robust statistical procedures and graphical methods., A recent article by Hawkins
[1974] discusses the use of principal components in detecting errors and outliers
in multivariate data. This is not to say that all outliers should arbitrarily be
removed or ignored, but the fact that they can be flagged makes it possible to give

them further study and examine their influence on the estimates of summary
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statistics such as MSE, Sy s Sy B and r .

V. Input-output errors and the validation process,

One of the problems in the use of validation techniques has been the
relative inattentipn given to the effect of input-output data errors on the vali-
dation process and to the related problem of separating these errors from those
introduced by deficiencies in the model. Some mention of this has been made
earlier in Section III with a brief discussion of some of the sources of error.
The problem of erroneous output data is relatively simple since contributions
from this source do not bias the regression coefficient B and for a sufficiently
large sample it could be possible to validate a good model even though there
might be considerable error on individual observations of concentration. Further-
more, the RAPS should provide a large amount of high quality data to minimize this
problem., However, the problem of erroneous input is a much more serious one, and
for the RAPS to be helpful here it must provide information on individual input
errors as well as on the complete structure of the errors, involving not only
their relationship with each other but with the model inputs. This section
attempts to provide a general framework showing how this error information along
with sensitivity analysis and model simulations might help to provide a solution
to some of the problems.

To deal with the question of separating the effects of input errors from
model errors 1s essentially the problem of distinguishing the relative contribu-
tions of m and e in (9). Since this 1s a fairly technical section we shall
begin by establishing some useful notation.

The type of model we are dealing with can be thought of as a function
f (say) which maps a point Z called the input vector, in Euclidean n -space,
onto a real number X , called the output or prediction. We will deal in this

section only with univariate output, so that we may write

Z)
X = £(2) ,2 =112
z
n

.

In our case Z contains such things as meteorological variables, locations and
strengths of pollution sources and sinks, and coordinates of recording station
(or stations). X 1s the predicted concentration.

The input vector Z has error 2z so that Z = 2* + z where Z%
represents true input values. With this notation we may write expressions for

m and e of (9) as

10



f(_z_*) - X% = f(_z_*) - Y% .

8
]

(18)

0]
1l

£z) - £@zZH .

(These expressions cannot be used to compute m + e wunless Z* and Y* are
known, in which case we have no problem. Most of our troubles arise from the
unknowability of Z%).

Since m and e are random variables, the maximum information available
is their joint distribution. We are going to have to settle for considerably
less than this. The minimum information needed to make useful inferences on any
random variable seems to be some estimate of its first two moments, mean and
varlance. This is what we will try for. DPopulation means will be denoted by
u's and variances by 02’5 with subscripts denoting which random variable is

being considered. Thus,

E (e),

2 2
E (e - ue)

=
1

Q
n

where E 1is the expectation operator. Likewise, we have

~ ~

Estimates of these quantities will be denoted by ’s . Thus Mo denotes an
estimate for the long-term average value of the error in the output due to input
error propagated through the model £ .

As mentioned before, we cannot get separate estimates for parameters in-
volving m or e separately by using only the observations Y and the pre-
dictions X for given inputs Z . We require some additional outside informa-
tion, namely some specific knowledge of the multivariate structure of input errors.
We can, however, get some information on combinations of both m and e wusing
only X and Y. To see this, it is easiest to take the case of zero (or

0 so that X* = Y* = Y. When

ft

negligible) observation errors, i.e. ¢

this holds we have from (9)



Taking expectations;

and if m and e are assumed uncorrelated (as before)

-

We wish our estimates to satisfy these same equations with s . We have avail-

able good estimates of the right hand sides of the above, namely the difference
2

in sample means X - Y and the sample variance Sy_y SO that
+ u = X - ¥ s (19)
m e
~ 2 ~ 2 2 (20)
% + O = Sy vy .
(Note: We may wish to replace X - Y by O in (19) if it is known beforehand
that the model f 1is definitely unbiased, i.e., M + Mg = Ol These equations

will enable us to estimate um and ue 2separattzely once we have an estimate of
either one singly and similarly for o and O

As a first step in attempting to separate m from e , we need first to
look at the structure of the input error. Ideally, we should know the joint dis-

tribution F (z7 25 ... Zn) of the input errors. As a very minimum we require the
b

mean vector = E(z) and covariance matrix I, = Cov (z) of the input error

vector.

First suppose we know (or have a reasonably good estimate of) F(zy, z5, ... zn) .

The numerical procedure is as follows:

(1) Break the n -dimensional input space into a number (N say) of
subregions Rl’ R2’ ves Rn’ in such a way that the model £(Z) is
deemed to be reasonably constant within each subregion (i.e. the
response of the model to the input variable is essentially uniform
over the range covered by the subregion)., This requires the knowledge

obtained from a good sensitivity analysis of the model (such as the
GEOMET [1972 study).

12



Note: If the sensitivity study shows that the model is
essentially constant over the whole range of some particular
input, considered singly and in combination with others, it
should probably be eliminated as an input, and its (constant)
effect be included as a parameter in the model.

(2) Determine (by numerical integration if necessary) the probabil-

ity content of . of each R,
J J

pj = ffR:jo- f dF(Zl ’Z' s » e zn) .

In this respect, it is highly recommended that the regions Rl’ e Rn’ be
N-dimensional rectangles if possible. 1If this is the case, then p,’s can be
obtained by properly combining the values of F(z) at the corners of the rectangles.
This also provides each region with an easily computed centroid or "representative
point," Ej say. In any case we require some 'representative point" for R,.

What we have achieved by the above process is actually a discrete (N point)
approximation of the probability density of the "input error" term e defined
by (9). At value f(gj) we have probability of occurrence pj . Whatever
departures from this occur in the distribution of Y must be attributed (in the

absence of observational errors) to the model error m .

We can now write down the estimates:

= ¥ () p.

He i ( CJ) P; >

A2 N ~ 2

Ue - z[f( Cj ) - ue] Pj .
We also have

v, Y - X - My (in general)

- Mg (if model is known to be unbiased),

and

2 2 a2

2 = Sx-y ~ % ¢

13



This last equation assumes:

2
(1) No observation error (0E = 0 ,
(2) No correlation between m and e (pme = 0) .
If we do not know the distribution function F , or cannot get a reasonable

estimate for it, but have the other information mentioned above, M, s Zz
?

then one could make a kind of zerth order first approximation to obtaining the

~

needed results, assuming n-variate multi-normality, z MVN (uj and

L 2)
proceeding with the above program on that basis. Previous experience with multi-
variate normal distributions indicates that whatever inferences are made with
respect to the first two moments of the resulting distribution they are likely to
be conservative but probably not too wildly bad, even if the real distribution
departs rather markedly from multivariate normality.

The question of observation errors when they are present is fairly routine.
We must obtain by separate means (e.g. by duplicate measuring instruments at some
sites) estimates of He and oz . Then, under the assumption that = dis uncor-

related with both m 2and e (prgbably a good assumption), we replace X - Y with
- A ?
with

X =Y = ue and -, in the above scheme.

°X-Y X~y
All of the previous discussion has been based on the premise that the errors

m and e are uncorrelated. This seems to be a good place to start if one expects

to make progress on the problem of separating input-output data errors from those

introduced by the model. However, if m and e are correlated, a more complex and

troubling question arises that leads to unsolved and perhaps unsolvable problems.

In light of (18) and on both physical and mathematical grounds, it may be an un-—

warranted assumption to state that the correlation between m and e 1is zero.

The consequences of making such an error could be costly in the estimation procedure,

and could well lead to a negative estimate for SR That is, it could happen that

if we assume no correlation between m and e , when in fact there is some, a

a2

situation in which 9 > Sy.y could lead to the difficulty. (The presence of obser-

vation errors in Y could only make the situation worse.)

A closer look at the estimation procedure can show the possible effect of a

poor estimate of p . N N
me 5 A
To avoid tedious notation, let u = m , VvV = e > o= o
Sx-yY SX-Y

Then the general relation between u , v , o is:

14



2 2
u + v + 20uv = 1 (21

which reduces to (20) when the estimated correlation, o is zero.
For a fixed o ( - 1<a<l ) , (21) represents an ellipse in u,v space.
The problem can be illustrated graphically. Let x = (utv)/V/2 , y = (u-v)//2 ,

representing a 45° rotation of the axes. (21) then becomes

2 2
(1 +a) x + (1-a)y = 1.
If we sketch the various ellipses obtained for different values of a ( a = 0
gives a circle, a = + 1 degenerates to a pair of straight lines) we get some-

thing like Figure 3. We have shown the situation for a > 0 . For negative a's
the ellipses are simply rotated 90° so that the major axis is along the x-axis,
i,e, simply interchange x,y in Figure 3. With this to guide us, we see that a
situation in which one of u or v is greater than 1 1is not hard to evaluate;
it just means we ought to have some negative « . Our estimate u should be
placed on an ellipse instead of a circle. A perusal of Figure 3 and some contempla-
tion of what it means quickly convinces one that a gggg_estimatg of the correlation
between m and e ought to be a prerequisite to egtimating O by means of (21).
If an independent way could be found to estimate om then (21) can be used to
estimate Pne ° At this point it is not clear how this can be done without essen-
tially knowing Z* , the true input. Further study will be needed to determine the

importance of these questions and whether a solution is available,

VI. A validation procedure. Since model validations are likely to be carried out
under a variety of circumstances, with variations in the quality and quantity of
data, it does not seem desirable to specify a fixed set of rules to be followed
blindly under all conditions. However, certain general guidelines and suggestions
can be provided that should be applicable in most cases to give assistance in plan-
ning and executing a validation study. As experience is gained in the use of dif-
ferent types of models under different geographical or meteorological conditiomns,
it will become clear that each case has its own particular problems, both physical
and statistical, and that modifications are likely to be needed in the usual pro-
cedure so that the emphasis can be properly placed on the particular problem or
problems at hand. The following discussion will emphasize those areas that need
serious attention in any complete and thorough validation analysis.

One of the requirements would appear to be a good sensitivity analysis. Such

an analysis should show up any internal inconsistencies in the model and help to
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define and understand the real-world parameters which dominate the process. The
results should indicate the main areas of interest, especially as related to data
collection efforts. The analysis provides information which, along with knowledge
of the input error structure, makes it possible to see how input error is propa-
gated through the model. Without this it would not be possible to attack the
problem of separating input-output data errors from those introduced by the model,
although as discussed in Section V some problems may remain.

After the sensitivity study the MSE and regression analysis would logically
follow, The comparison between the predictions X and observed concentrations Y
involve various statistics such as estimated correlation coefficients, standard
deviations, etc., but none of these is necessarily more important than the others
and they can all provide useful information. The standard deviations of the pre-
dictions and the observations must be the same for perfect forecasts, but because
there are likely to be departures from normality it is desirable to look at the
overall distributions of the calculated and observed concentrations. For good pre-
diction the correlation r and coefficient B should be close to unity. The value
of r will be lowered if there are errors either in the predictions X or observa-
tions Y. It is desirable to have an independent estimate of the error variance
of the observed Y's , and since they don't tend to bias the regression coeffici-
ent, a comparison of r and B with respect to the output errors might provide
information on the influence of model and data input errors. However, as discussed
in Section V, the separation of data input errors from model errors is a more com—
plex problem.

In addition to obtaining an estimate of the variance of the observed Y's ,
one should have an estimate of the mean erro' or bias in the observation. This must
be known if the tendency to over-predict or under-predict ( X-Y # 0 ) is to be
understood, i.e., whether to attribute a prediction hias to the bias in the observed
concentration data or to error in the prediction due to input data or model failure.

As mentioned earlier, the statistics discussed above are related to the
mean-square-error, or its square root (RMSE). If the error distributions are normal,
it is quite appropriate to use the RMSE, Since in many cases the distributions
will not be normal, it is desirable to use additional methods for summarizing the
data. The mean absolute difference |a| can be computed since it is less affected
by departures from normility. More information is provided by presenting a histo~
gram showing the entire error distribution, from which it should be possible to

determine the median difference d , which will not be affected by a few extreme

17



values. 1In addition, other percentile points can be stated which may be mean-
ingful for particular applications.

In the data analysis careful attention should be given to effects of de-
parture from normality on the statistics computed. A few outliers or extremes
could have undue influence and invalidate some of the conclusions. Graphical
procedures should be used to help in detecting errors, inconsistencies and un-
usual or unexpected situations. The use of robust techniques and data trans-
formations should be considered when there appear to be appreciable departures
from the assumptions usually made in standard statistical analysis.

Input~output data errors have been discussed in Section V where it was
pointed out that observational data on the structure of the input errors are
needed if there is to be a serious attempt to tackle the difficult problem of
separating input-o' tput data errors from those introduced by a poor mathematical
representation of the physical and chemical processes. If data on input errors
indicate that there are no interactions with each other or with the input vari-
ables and that the errors have constant variance over the range of input, then
there is no problem. The sensitivity analysis, where one factor is varied at a
time, and the numerical simulations using combinations over a reasonable range,
should suffice. However, it is nearly certain that the situation will be more
complex, and once some data or reasonable information is available on the
structure of the input errors one can go ahead along the lines suggested in

Section V.

ViIi. Recommendations and conclusions.

When Air Quality Simulations Models (AQSM) are applied to practical air
pollution control or planning problems the user should be provided with an indica-
tion of the limitations and accuracy of a particular model in terms that he can
understand. The tests used for the validation of a model usually consist of com-
parisons of the model calculations (X) with observed air pollutant .cncentrations
(Y), from which the distribution of the errors (X - Y) can be obhtaine and various
summary statistics computed which may be used to compare different models or to
determine whether a particular complex model is an improvement over i1 simpler
model. A validation process which includes a good statistical analys s can also
yvield clues about which parts of the model (or observations) may b« -esponsible

for the errors uncovered and, if the right data are available, help oune to
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separate input—output data errors from those introduced by a poor mathematical
representation of the physical and chemical processes. Furthermore, it is recog-~
nized that the final model validation must be based upon validation of model
components, since any AQSM contains main modules (for emissions, transport and
diffusion, transformations, and removal) as well as submodels to estimate the
required model inputs. Unfortunately the data are inadequate in many cases to
separately validate the component parts, but in principle the technique is the
same as validating the complete model, i.e., comparing the output (prediction)

of the submodel with the measured value. Basically, we have a model (or sub-
model) which calculates an output X which is in error because of input errors

e and model deficiencies that produce errors m. The output X 1s compared
with the directly measured values Y that have errors ¢ . The error of pre-
diction (X - Y) will be affected by these various sources of error and a thorough
validation analysis attempts to identify the natur¢ and source of these errors so
that more meaningful comparisons can be made. 1t is important to recognize that
these errors and the stochastic nature of the prediction produces sampling fluctua-
tions in the validation statistics that must be considered before drawing infer-
ences about models or comparisons between models Recommendations for a valida-
tion procedure follow.

For a measure of prediction accuracy, it is recommended that the mean square
error (MSE) given by (1) be used along with d , the mean bias of the prediction.
If the prediction errors are normally distributed, then the MSE and d give all
the necessary information about the distribution of errors. However, since the
distributions are not likely to be normal, especially where pollutant concentra-
tions are concerned, it is also desirable to obtain the frequency histogram of
the forecast errors. From the examination of this distributicn one can determine
the median error 5 or the value that is exceeded (say) onlv '0% of the time.
Averages based on percentage errors might be more meaningful in some cases.

Next would come a regression analysis with the computarion of the correlation
coefficient r , the regression slope B and the intercept A. Each of thece
statistics gives useful information for making model comparisons and for diagnosing
possible sources of error. Also, a comparison between the variance of the pre-
dictions (sig and of the observations (s%) is essential, but since there are
to be departures from normal it 1s important to look at the « -rall distributions
of calculated and observed concentrations. Since the standard correlation and

regression procedures are based on a mathematical model with certain assumptions,
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care should be taken to see that there are not sufficient departures from
these assumptions to invalidate the conclusions. The use of robust techniques
is recommended where such departures are indicated. Graphical and other tech-
niques, including transformations, are suggested for detecting whether a few
extreme values or outliers have undue influence on the results.

Attempts should be made to get e§timates of the error variance (UZ) of
input datg and the egror variance (o;) of the observations (Y). These esti-
mates, ge and Se respectively, can then be used to compute the index I,
given by (14), which might indicate how good the model is and be helpful in
separating input-output data errors from those introduced by the model, A more
complete solution of this problem requires information on the detailed structure
of the input errors along with a good sensitivity analysis. . The sensitivity
analysis is needed to show up any internal inconsistencies in the model, and to-
gether with the knowledge of the input error structure makes it possible to
attack the problem of separating input-output data errors from those introduced
by the model, as discussed in Section V. Proceeding along these lines (under the
assumption that the errors m and e are independent) should help to delineate
some of the effects of using good models with poor data or vice versa. It is

anticipated that RAPS and other programs will soon provide the necessary data.
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