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PREFACE

The National Center for Environmental Assessment (INCEA)-Washington Office within
EPA’s Office of Research and Development (ORD) has prepared this document in response to
requests from users of the Exposure Factors Handbook (EPA/600/P-95/002Fa-Fc, August 1977)
who expressed the need for assistance in using probabilistic methods in exposure assessments.
This document summarizes procedures to fit distributions to selected data from the Exposure
Factors Handbook. 4
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Introduction

The EPA Exposure Factors Handbook (EFH) was published in August 1997 by the National
Center for Environmental Assessment of the Office of Research and Development (EPA/600/P-95/Fa,
Fb, and Fc) (U.S. EPA, 1997a). Users of the Handbook have commented on the need to fit distributions

to the data in the Handbook to assist them when applying probabilistic methods to exposure assessments.

This document summarizes a system of procedures to fit distributions to selected data from the
EFH. It is nearly impossible to provide a single distribution that would serve all purposes. It is the
responsibility of the assessor to determine if the data used to derive the distributions presented in this

report are representative of the population to be assessed.

The system is based on EPA’s Guiding Principles for Monte Carlo AnaZysis (U.S. EPA,
1997b). Three factors—drinking water, population mobility, and inhalation rates—are used as test cases.

A plan for fitting distributions to other factors is currently under development.

EFH data summaries are taken from many different journal publications, technical reports, and
databases. Only EFH tabulated data summaries were analyzed, and no attempt was made to obtain raw
data from investigators. Since a variety of summaries are found in the EFH, it is somewhat of a
challenge to define a comprehensive data analysis strategy that will cover all cases. Nonetheless, an
attempt was made to ensure that the procedures used in the three test cases are fairly general and broadly

applicable.

A statistical methodology was defined as a combination of (1) a dataset and its underlying
experimental design, (2) a family of models, and (3) an aﬁproach to inference. The approach to inference
itself may encompass a variety of activities (e.g., estimation, testing goodness-of-fit, testing other
hypotheses, and construction of confidence regions). For present purposes, the approach to inference

was limited to estimation, assessment of fit, and uncertainty analysis.
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This section presents a review of important statistical concepts (Sections 1.1-1.5) and a skeletal
summary of the recommended system (Section 1.6). A more detailed explanation of the system is
provided in Section 2. Technical, mathematical, and statistical details were kept to a minimum. For
instance, formulae for probability density functions, cumulative distribution functions, or means and
variances of the different types of distribution are not presented. In addition the systems of equatioﬂs
that must be solved to obtain maximum likelihood and other types of estimates are not presented.
Instead, references are given, and ideas are communicated intuitively. Appendices to this document

contain some of the details. Appendix A contains a glossary and a list of abbreviations.

1.1 Review of Pertinent Statistical Theory and Concepts

A numeric event whose values change from one population member to the next is called a
random variable. A random variable that takes only a finite number of values is called a discrete
random variable. The number of carrots consumed in a day is a discrete random variable. By contrast, a
continuous random variable can take on an infinite number of values over its range, that is, the total dry-
weight of the carrots consumed in a day. However, in practice, the number of possible values for a
continuous random variable will be limited by the precision of the instrument used to measure it.
Because this report describes procedures for fitting theoretical distributions té continuous data, this 7

review will be confined to the statistical properties of distributions of continuous random variables.

Samples of random variables often are summarized by their frequency distributions. A
frequency distribution is a table or a graph (Figure 1-1a) that displays the way in which the frequencies
(i.e., counts) of members of the sample are distributed among the values that they take on. The relative
frequency distribution (Figure 1-1b) can be calculated by dividing each count by the total sample size. If
the counts are large enough, it is often possible to summarize the relative distribution with a
mathematical expression called the probability density function (PDF). The PDF predicts the relative
frequency as a function of the values of the random variable and one or more constraining variables,
called model parameters, that can be estimated from the sample data. Continuous distributions whose
PDFs can be so defined are called parametric continuous distributions. In Figure 1-1b, the plot of a PDF
for a normal distribution is superimposed on the relative frequency distribution of the continuous random

variable, X, from which it was computed. The mathematical expression for the normal PDF is
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el )]

In this example, the two parameters of the PDF are the population mean p = 5.0 and the population
standard deviation 0=1.58. The area under any PDF curve is 1.0 and represents the probability of
observing a value of x between the population minimum and maximum. The probability that X will be

contained in some interval [X=a, X=b] can be calculated simply by integrating the PDF from a to b:

b

Pa<x<t]= | ﬁexpl:—(z—;—j(x—y)z} &,

x=a

It follows that the probability that X equals any particular value x is zero.

In epidemiology, many situations arise in which a measurable fraction of the study population
has not been exposed to the risk factor of interest. For example, the distribution of tap water
consumption by infants on any given day would be expected to have a relatii/ely large number of zero
values. This poses a problem to the risk modeler who attempts to fit a parametric PDF because the
associated models all predict an infinitesimal probability for any point value of X, including zero. One
compromise is to ignore the zeros and fit the model to the infant subpopulation that actually consumes
tap water. Obviously, this will not be helpful to the modeler who needs to model the entire population.
The solution is to fit a composite PDF model to the data such that the unexposed subpopulation is
assigned a fixed point-probability of being unexposed while the éxposed population is modeled with one
of the usual PDF families. Because such models allow a positive probability density at X=0, they are
referred to as PDFs with a point mass at zero. An example of the plot of a lognormal exposure
distribution with a 0.06 point mass at zero (i.e., 6% unexposed) is illustrated in Figure 1-3f. The

mathematical expression for its composite PDF is

0.06 if x=0
f(x)=1 1 (log(x)- 1)’ .

—exp- fx>0

xo_\/ﬁexp 77 if x >
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Another function often used to describe parametric distributions is the cumulative distribution function
(CDF). The CDF is the probability that X<x; for all x; in the population. Many of the more commonly
used nonparametric tests of differences in the distributions of continuous random variables evaluate
hypotheses about the CDFs. Plots of the PDF and CDF of a lognormal distribution are illustrated in
Figures 1-2a and 1-2b. PDFs from five additional families of continuous parameﬁic distributions are
illustrated in Figsures 1-3a—1-3f. These and other families considered in this report differ from the
normal distribution in that they are defined only for vpositive values. Because its domain includes
negative values, the normal distribution is not useful for modeling environmental exposure factors.
However, the log-transformations of many exposure factors and spatially aggregated environmental
variables are approximately normally distributed. For this reason, the lognormal is frequently employed

to model environmental and epidemiologic data.

A thorough treatment of the various families of parametric continuous random distributions
can be found in Johnson and Kotz (1970) or, in more concise form, in Evans et al. (1993). For any of
these general families, an infinite number of distributions can be generated by varying the values of the
parameters of the PDF (e.g., Figure 1-3a). However, regardless of the model, several methods are
available for fitting a parametric PDF to a sample of continuous data values. The method employed
throughout this report involves the fitting of PDFs by maximum likelihood estimation of the parameters
of the PDF model. Maximum likelihood estimation is reviewed in Section 1.2. Brief discussions of
some alternative parametric model fitting and estimation procedures are presented in Section 2. With
modifications and some penalties, these same methods also can be used to fit PDFs to quantiles and/or
other sample statistics (e.g., the mean and standard deviation). Quantiles are descriptive statistics whose
q-1 values divide a sample or population of a random variable into q portions, such that each portion
contains an equal proportion of the sample or population. For example, percentiles are obtained when
q=100, deciles when q=10, and quartiles when q=4. The distributions reported in the EFH are
summarized by the minimum, maximum, and 5%, 10%, 25®, 50%, 75%, 90, and 95™ percentiles. Thus, all
the examples presented in this report describe procedures for fitting parametric PDFs to these nine

quantiles.

Although this report primarily concerns the fitting of parametric distributions to empirical data,
it is important to note that alternative approaches can be used. Of particular importance are two methods
of probability density estimation that do not require the a priori specification of an underlying parametric

model. Both are based on the attributes of the observed sample empirical distribution function (EDF).

14
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As its name implies, the EDF is the empirical counterpart to the theoretical parametric CDF; that is, the
EDF is the probability that X<x; for all values of x in the sample. The EDF is the sum of the relative
frequencies of all sample values of X<x;. Its plot is a monotonically increasing step-function from zero

to one (Figure 1-6a).

The first nonparametfic method, kernel density estimation (Bowman and Azzalini, 1997), is an
extremely flexible method for estimating a smoothed probability distribution from an EDF. Like the |
parametric approach, this method involves the fitting of a smooth curve to the relative frequency
distribution. This is done by selecting an “optimal” nonparametric smoothing function. Several
selection techniqués are available, but most employ criteria that minimize the mean square error (e.g.,
ordinary least squares cross-validation). The second nonparametric method uses the EDF itself as the 7
source of all probability density information. This approach is especially appropriate for large samples
(e.g., n>1,000) wherein it can be argued that there is sufficient information to make broad inferences
regarding the population distribution. Both nonparam'etric'methods have the advantage of providing
density estimates without resorting to restrictive (and perhaps unrealistic) parametric assumptions.
However, they are less portable than their parametric counterparts, that is, there is no well-studied
reference distribution with known properties on which to rely. Also, their specification in risk
assessment simulations is more difficult than parametric model specification. The specific EDF must be
available to each investigator who wishes to ‘apply it, and its properties must be independently

investigated and verified.

A critical assumption for all the estimation methods so far discussed is that the sample
observations are identically and independently distributed (the “id” assumption). By “identically,” we
mean that all the sample members come from a population with a single PDF. “Independently” means
that the random variable values are not correlated among members of the population. In multivariable
risk assessment models there is an additional independence assumption, namely, that the values of fhe
covariates are not correlated with one another. In fact, this often is not the case. For example, the
distribution of dietary intakes for 8-year-old children may be composed of six components-—water,
vegetables, fruits, dairy products, meat, and fish—the relative amounts of which are correlated. Thus,
children who eat large quantities of fruit and dairy products may eat relatively little meat compared with
children who consume small amounts of dairy and fruit but large quantities of water. Depending on the
nature of these correlations, the joint distributions for the six intake categories will differ among

children. Multivariable mixtures of this kind are called multivariate distributions. Parametric
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multivariate distribution models include correlations among their parameters and thus do not require
independence. In contrast, the univariate models assume that the six intake PDFs are the same for all 8-
year-olds, vegetarians and nonvegetarians alike. Although this may be unrealistic, in many cases
(perhaps most), information on the multivariate correlation structure will not be available. Thus, the
univariate ‘approach may be the best option for the risk modeler. In such less than ideal situations, the
univariate methods presented in this report may be quite useful. However, it should be understood that

results based on such data must be interpreted with caution.

Statistical analyses should be consistent with the underlying study design. Many exposure
factor data sets are from complex sample surveys. Proper analysis of survey data requires that weights
and other design features such as clustering should be taken into account. The methods of inference that
are used in this document can be easily adapted to complex survey data (Krieger and Pfeffermann, 1997).
Survey data analysis software such as Research Triangle Institute’s SUDAAN (Shah et al., 1997) can be
used to obtain weighted percentiles and appropriate associated standard errors. This can be done for
selected percentiles such as the nine deciles, or the entire weighted EDF can be estimated (along with
standard errors appropriate to the EDF at each sample point). Finally, likelihood or minimum distance
methods analogous to those applied in the elementary simple random sampling context can be used to
estimate parametric distributions conforming as closely as possible to the survey-weighted percentiles or

EDF, in a way that takes account of both the survey weights and the clustering.

So far, we have discussed methods for fitting PDF models to empirical data by estimating the
appropriate parameters from the sample data. Having completed this step, the modeler is left with the
question of whether the estimated model(s) actually fits the sample data. Figures 1-3a, 1-3e, and 1-3f
illustrate a situation where this is not straightforward. Although the three PDFs are different, they have
the same mean (20) and standard deviation (16) and very similar shapes. In fact, there are many models
with mean=20 and standard deviation=16 that could be considered for a given set of daté. Clearly some
method of assessing the goodness-of-fit of each PDF model is required. Section 2.3 of this report
summarizes sev fral goodness-of-fit tests that evaluate the null hypothesis that the EDF and model CDF
are equal. In addition, three graphic procedures for visually assessing the CDF to EDF fit are introduced
(Section 1.4). Criteria based on joint consideration of the goodness-of-fit tests and EDF graphics can be
used to resolve the problem of model selection that is exemplified by the similarities of Figures 1-3a, 1-

3e, and 1-3f. These criteria are discussed in Section 2.3.

1-6
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1.2 Maximum Likelihood Estimation

Given a set of observed data, it is often of interest to develop statistical models to ir;vestigate
the underlying mechanisms that generated the data (causal models) and/or to predict future distributions
of the same variable (prognostic or predictive models). Usually there will be more than one model that
reasonably can be considered for the process or system under investigation. As a first step in
determining which of the models best fits the data, it is necessary to estimate the values of the parameters
of each hypothesized model. Several methods are available; among the most commonly used are the
method of moments (MOM), ordinary least squares (OLS), weighted least squares (WLS), and maximum
likelihood (ML). These methods and others have specific advantages and disadvantages. However, a
preponderance of statistical theory, research, and experience indicate that estimates obtained by ML have
minimum bias and variability relative to competing estimators in a very broad range of contexts (Efron,
1982). For this reason and others that are explained later, we have chosen to rely primarily on maximum
likelihood estimators (MLEs) in developing the methodology of Sections 2 and 3. Herein, we present a
brief introduction to MLE.

Suppose we obtain a sample of nine fish from a pond and we want to estimate the prevalence
of aeromonas infection (red sore disease) among fish in the pond. Because each fish must be counted as
either infected or uninfected, the binomial probability model is an immediate candidate for modeling the

prevalence. The binomial probability function is

Pr(Y=Ylp)=(;)p”(1—io)n_y

where y=number of fish in the sample with red sore lesions
n=the sample size (nine fish)

p=the probability of infection (0<p<1)

Clearly y and n are obtained directly from the data, leaving only p to be estimated. Suppose
further that we hypothesize three possible prevalence rates.0.20, 0.50, or 0.80; we can now construct a
table of the predicted probabilities of observing y=0,1,2...9 infected fish in a sample, given the binomial
model and each of the three hypothesized values of p. The predicted probabilities in Table 1-1 are
obtained by substituting these values into the binomial PDF. The results indicate that P=0.20 yields the

highest likelihoods for samples with three or fewer infected fish, P=0.50 for samples with four or five

1-7
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infected fish, and P=0.80 for samples with more than five infected fish. This example demonstrates that
the value of the MLE depends on the observed data. Accordingly, we define an MLE as that parameter
estimate that yields the largest likelihood for a given set of data.

For illustrative purposes, we specified three candidate parameter values a priori. In practice,
one usually specifies only the model and then estimates the parameters from the observed data. For
example, suppose we have four infected fish in a sample of nine. What is the MLE of P? We can obtain
the MLE by trial and error simply by varying P from 0 to 1.0 in very small increments (e.g., 0.001) with
y=4 and n=9, substituting them into the binomial PDF, and plotting the resulting likelihoods versus P.
To further illustrate the data-dependent nature of the MLE, we will repeat this exercise for y=2 and y=8.
The results are plotted in Figure 1-4. By inspection, we see that for samples with two, four, and eight
infections, the corresponding MLs occur at P=0.22 (2/9), P=0.44 (4/9), and P=0.89 (8/9), which are of
course the observed proportions of infection. In fact, for any sémple, the MLE of the binomial parameter

P will always be the sample proportion, y/n.

The preceding simple exercise illustrates the essential steps in computing an MLE:
W Obtain some data.
M Specify a model.
B Compute the likelihoods.
n

Find the value of the parameter(s) that maximizes the likelihood.

In this example, we estimated a single parameter by eyeballing the maximum of the plot of the likelihood.
However, most applied statistical problems require the simultaneous estimation of multiple model
parameters. For such cases, the maximum of the likelihood curve for each parameter must be obtained
by application of methods from differential calculus. Details of the mathematics are available in most
introductory mathematical statistics texts (e.g., Mendenhall et al., 1990); however, risk assessors may
find the more elementary (but complete) treatment of MLE by Kleinbaum et al. (1988) to be more

understandable.

Because many multivariate likelihood functions are nonlinear, closed-form solutions to the
differential equations often will not exist. Instead, computationally intensive iterative algorithms will
have to be applied to get the desired parameter MLEs. Thése algorithms are widely available in
statistical software packages (e.g., SAS and SPLUS) and execute quite rapidly on modern computers.

The same algorithms can be used to obtain the MLE of the variance-covariance matrix of the estimated

1-8
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model parameters. These estimates are crucial for statistical tests on the parameters and for estimates of
parameter uncertainty. For a model with P parameters, the associated variance;covariance matrix will be
PxP with the variance estimates of the parameters on the diagonal and the corresponding parameter
covariance estimates in the off-diagonal positions. For example, the variance-covariance matrix of a

model with three MLE parameters, ﬁo, Bl, 62 is:

Var/S’o Cov(ﬁo, /3)1) Cov(ﬁo, ﬁZ)
COV(/?O, ﬁ]) Vil?‘ﬁ., COV(/;)I, ﬁZ)
Cdv(j3’0,f3’2) Cov(ﬁl,ﬁz) Val’/.;’_,

For models that require independence among their parameters (e.g., normal theory, Analysis of Variance
[ANOVA], and regression), the covariance terms are assumed to be zero; however, other models (e.g.,
mixed model repeated measures ANOVA) permit nonzero correlations. In the case of the independence
models, parameter tests and estimates depend only on the diagonal elements of the variance-covariance
matrix. For all other models, the covariance terms must be taken into account when constructing
statistical tests or confidence intervals. The MLE variance-covariance matrix is routinely computed by

most statistical software packages that employ MLE.

One of the most useful and important properties of MLEs is that the ratio of the MLE to its

standard error has a normal distribution with mean zero and standard deviation of 1.0.; that is,

bfvarf, O

Another way of saying this is that the ratio is a standard normal variate (Z-score). Therefore, comparison

of the ratio to the Z distribution provides a test of Hy:p;=0. Alternatively, it can be shown that

A2 A o= Y2
ﬁi/VarBi X

with n-(1+p) degrees of freedom—{where n=the size of the sample from which MLE(p,) was computed
and p=number of ML estimates computed from the sample]—permitting one to test the same hypothesis
against the chi-square distribution. These relationships lead directly to the formation of 1-a% confidence

intervals about Gi:

B, + Zy ey V VarBi
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where Zl- «2) is the Z-score associated with a probability of 1-«; for a 95% confidence interval, ¢=0.05
and Z=1.96.

The width of the confidence interval is indicative of the degree of uncertainty associated with

the MLE. The narrower the confidence interval, the more certain we are of the estimate.

The properties of minimal bias and variability, as well as that of normality, can be assured only
when the MLE is based on “large samples” of data. Optimally “large” means n>30. While 20<n<30 will
often provide reasonably good MLEs, MLEs computed from samples of 10<n<20 should be viewed with
caution and those based on n<10 should be avoided altogether. This is because the sampling distribution
of an MLE becomes less normal, biased, and more variable as n approaches zero. Conversely, the

distribution tends to normality as n gets increasingly large. This tendency is called asymptotic normality.

The relationship among the MLEs, their standard errors, and the chi-square distribution is the
basis for an extremely useful and versatile class of statistical tests called likelihood ratio tests (LRTs).

An LRT statistic is formed from the ratio of the likelihoods associated with two MLEs. By definition,

these are the maximurﬁ'values of the likelihood of observing the given data points under the specified

model. For example, the LRT formed between the binomial model MLEs associated with y=2 and y=4 in
our fish sampling problem would be the ratio of the infection likelihoods 0.306 and 0.260 (Figure 1-4). It
can be shown that -2 times the log of the ratio of two such maximum likelihdods will be distributed as a
chi-square with degrees of freedom equal to the number of ML parameters of the denominator likelihood
minus those of the numerator likelihood. In the example just described, the numerator and the

denominator have the same number of parameters (1), so the chi-square test cannot be carried out.

LRTs are used primarily for choosing among hierarchical multivariate models. Consider a
model for the random variable y for which three MLE parameters, GO, ﬁl, ﬁz, have been estimated. A
fundamental tenet of mathematical modeling is that parsimonious models are the most efficient models.
Thus, we would like to determine whether two- or single-parameter versions of our model would do as
good a job of describing our data as the full three-parameter model. This is done by f;)rming a series of
LRTs, each with the likelihood of the model with the lesser number of parameters as its numerator. To
test whether the full model performs better than a model containing only the first two parameters, we

would form the following LRT statistic:




Research Triangle Institute’ Introduction

Wy L(y1 58, B, B,)
where L(y l ,30, ,@ ,32) = Iﬁo ﬁl ﬁz the likelihood associated with the
full model

L(y | /Boa ﬂ) = the likelihood associated with the two-parameter model.

The difference between the number of parameters in the denominator and numerator models is
3-2=1. Thus, the LRT can be compared to a chi-square with one degree of freedom. This LRT evaluates
H,: B,=0; rejection at the specified a provides evidence that the three-parameter model is necessary.
Acceptance of H; would provide evidence in favor of the alternative two-parameter model. Tests
comparing three-parameter or two-parameter models with each other or with any of the three possible
one-parameter models can be formed by rsubstituting the appropriate likelihoods into the above

expression and comparing them to the appropriate chi-square distribution.
The LRT depends on the fact that
L(y|B) <L(»\ B B) < L(y| 5 B, B).

This relationship will exist only when the various models are formed by the deletion of one or more
parameters from the full model. Series of models that are so constructed are called hierarchical or nested
models. LRTs formed between models that are not hierarchical will not necessarily follow a chi-square
under H, and are therefore invalid. By definition, two models with the same number of parameters are
not hierarchical; thus, the LRT that we attempted to form earlier from the two binomial models did not

lead to a valid chi-square test.
In summary, MLES:
Provide estimates that are the most likely (consistent) given the observed data

Have minimum bias and variance and are asymptotically normal for n>30

Allow easy estimation of parameter uncertainty

Provide a flexible means of model fitting through LRTs .
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1.3 Probability Models

The parametric distributional models described in this report are mathematical functions of
continuous random variables and one or more model parameters. The numbers and kinds of parameters
together with their functional form may be used to generate different families of exposure distributions.
Sixteen such families are listed in Section 1.6; mathematical details are provided in Appendix D. Each

family may be defined in terms of one or more of the following types of parameters:

™ Location parameters define a point either at the center or in the upper and/or lower tails
relative to which all other points in the distribution are located. For example, the mean (i)
marks the center of the distribution of a normal random variable while the degrees of
freedom (df}, df,) mark the tails of an F-distributed variable. Thus, normally distributed
variables with different means are shifted with respect to one another, and two F-distributed
variables with different degrees of freedom will have different densities in their respective

tails.

®  Scale parameters define the amount of spread or variability in the distributions of continuous
random variables. For example, if we have two normal distributions with the same location
(i=p,) but with different sized variances (0,<0,), the one with the larger variance will tend
to have more extreme values than the other, even though on average their values will not
differ.

W Shape parameters are parameters that determine any remaining attributes of the shape of a
probability and/or frequency distribution that are not determined by either location and/or

scale parameters. These may include, but are not limited to, skewness and kurtosis.

Environmental distributions tend to concentrate on the nonnegative real numbers with a long
right tail and are often approximated using Iognormél, gamma, or Weibull two-parameter models. The
one-parameter exponential model, a special case of the gamma and Weibull models, is occasionally
useful. In the majority of cases, however, two or more paramieters are required to achieve adequate fit.
The generalized (power-transformed) gamma distribution is a three-parameter model that includes the
gamma, lognormal and Weibull models as special cases (Kalbfleisch and Prentice, 1980). Because of the

popularity of these two-parameter models, the generalized gamma distribution is a particularly important
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generalization. The SAS Lifereg procedure will fit regression models based on the generalized gamma
model. The generalized gamma is obtained by simply raising a two-parameter gamma random variable to

a positive power.

An even more general model, which includes most of those encountered in practice as special
cases, is the four-parameter generalized F distribution. An F random variable is the ratio of two
independent gamma or chi-square random variables. The generalized F random variable is a power-
transformed F, that is, it is obtained by raising an F variable to some power. The generalized F
distribution is a four-parameter model that includes the generalized gamma model as a special case, as
well as the two-parameter log-logistic model and the three-parameter Burr and generalized Gumbel
distributions (Kalbfleisch and Prentice, 1980). Appendix D contains formulae for probability density
functions, cumulative distribution functions, and moments for the generalized F distribution and many of

its special cases.

- Our treatment of the generalized F distribution is not intended to be exhaustive. Excellent
sources of additional information are Chapter 2 and Section 3.9 of Kalbfleisch and Prentice (1980) and

the classic books on distributions by Johnson and Kotz (1970).

Kalbfleisch and Prentice (1980) show graphically how various special cases of the generalized
F can be envisioned in a two-dimensional graph, with the horizontal and vertical axes representing the
numerator and denominator degrees of freedom (df; and df,) for the F random variable. For instance, the
log-logistic model has df,=df,=2, the generalized gamma distribution is obtained by letting df, approach
infinity, and the lognormal model is obfained by letting both degrees of freedom tend to infinity.

We have found that the most useful cases of the generalized F are those listed below, with

number of parameters in parentheses.

Generalized F (4)
Generalized gamma, Burr, and generalized Gumbel (3)
Gamma, lognormal, Weibull, and log-logistic (2)

Exponential (1)

A further generalization that is sometimes useful is to adjoin a point mass at zero to account for
the possibility that some population members are not exposed. This increases the number of parameters

by one.
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One question that is sometimes raised is whether the use of the generalized F distribution
constitutes overfitting. According to Norman Lloyd Johnson; the world’s foremost expert on parameter
probability distributions, “fitting a maximum of four parameters gives a reasonably effective
approximation” (Johnson, 1978). A more complete reply to the overfitting question is as follows.
Suppose we are in the fortunate situation where we have a few hundred or a few thousand observations,
and we want to fit a smooth curve model to the empirical distribution of the data. There is no reason why
nature should have dictated that a mere two parameters would account for the behavior in both tails as
well as the mid-range. In such a situation of extensive data, we find it perfectly reasonable to allocate
two parameters to the lower tail and two other parameters to the upper tail. But this is precisely how the

generalized F works: as the population variable x decreases to zero, the generalized F probability density

function behaves like a power function g,x* ; as the population variable x increases to infinity,

the generalized F probability density function behaves like a different power function aszz .
The generalized F is as simple and natural as this: it allows the two tails to be modeled independently,
allocating a power function with two parameters for each. In fact, a need for six-parameter models is

clear enough, allocating two more parameters to the mid-range.

It is important to emphasize that all of the distributions described in this report are just special
cases of the generalized F distribution, and they can be generated by setting one or more of the
parameters of the generalized F to specific values such a 0, 1, or infinity. Thus, the sequence of 16
distributional families listed in Section 1.6 constitute a hierarchical set of models. This property allows
us to apply the LRT methodology introduced in the previous section to select the “best™ parametric
model for a particular sample of data and motivated the development of most of the procedures described

and implemented in this report.

1.4 Assessment of Goodness-of-Fit

The methods described in Section 1.2 allow optimal estimation of the parameters of any of the
16 candidate hierarchical models listed in Section 1.6. Once this is done, LRTs can be used to determine
which of the models best fit the observed data. However, the LRT provides only a relative test of
goodness-of-fit (GOF); it is entirely possible that the model with smallest log-likelihood p-value may bev
the best among a group of very poor competitors. Clearly, some method of assessing the absolute GOF is

desirable.
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The first task is to define a criterion for absolute GOF. Perhaps the simplest method is to
subtract the observed data values from those predicted by the model with the fitted parameters. By
definition, this difference will be near zero for models that closely fit the data. This approach is
employed universally for evaluating the GOF of multiple linear regression and multiple logistic
regression models. Residual (i.e., observed-predicted) plots are used to evaluate both fit and validity of
model assumptions, while lack-of-fit and deviance tests are used to evaluate H,: the regression model fits
the data. In an analogous manner, both graphic and test-based methods can be applied to evaluate

observed data values versus those predicted by a parametric probability model.

Unlike multiple regression models that predict a mean or a proportion, the probability models
in Section 1.3 predict an entire population distribution. Thus, the GOF criteria must be applied to
statistics that specify all the data points of interest. Accordingly, we employ methods that compare the
EDF of the sample data to the fitted CDF of a specified parametric probability model. Because the EDF
and CDF define explicitly the probabilities of every data point, they can be used to compare the observed
sample with the type of sample that would be expected from the hypothesized distribution (Conover,
1980).

In this section, we introduce four graphical methods for comparing EDFs to CDFs and a GOF
test of Hy: EDF=CDF, based on the chi-square distribution. Although several alternative GOF tests are
described briefly in Section 2.7, we employ the chi-square GOF test and the four graphical methods

almost exclusively for the evaluation of models described in this report.

We illustrate these techniques with the EFH data for tap water consumption by persons 65
years of age or older (n=2,541). The data were originally presented as percentile summaries (EFH
Table 3-7) and are partially reproduced in Table 1-2 and in Table B-1 of Appendix B of this report. The
first column of Table 1-2 lists the percentiles, and the second column lists the corresponding values of
tap water consumption (mL/kg-day). Columns 3 and 4 are the actual and predicted proportions of the
sample that are in the interval. For example, 4% of the sample consumed between 4.5 and 8.7 mL/kg of
water per day versus the 4.777% predicted by the two-parameter gamma model. While the observed
pfobabilities were computed from the EFH data, the predicted gammé probabilities were computed from
the ML estimates of the gam;na parameters (Table 1-2) using SAS software. The observed and expected
- numbers of people in each ihterval are, respectively, the product of the observed and predicted

probabilities with 2,541 (n), the total sample size. Computation of the last column is explained later.
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The observed probability distribution (EDF) and the predicted probability distribution (CDF)
are computed by summing the observed and predicted probabilities. The simplest and most direct way to
compare the two distribution functions is to overlay their plots (Figure 1-5a). The CDF is continuous for
all possible data points, but the EDF is a step function with steps at each of the nine reported sample
percentiles. These are the only points for which information is available; however, at these nine points,
the CDF and EDF values égree very closely. The large sizes of the steps reflect the relative paucity of
information carried by the nine sample percentiles. Had the raw data been avéilable, the steps would

have been more numerous, much smaller, and closer together.

An alternative, clearer way to compare the CDF with the EDF is illustrated in Figure 1-5b. This plot
differs from the plots of the distribution functions in two respects. First, the observed values are replaced
on the horizontal axis by CDF. Since both axes represent probability measures, this type of graph is
called a probability-probability (P-P) plot. The diagonal line is the plot of the CDF against itself and
corresponds to the line of equality with the CDF. The second difference is that only the left ’top corner of
each step of the EDF is plotted (open circles). Because the EDF values are plotted against the CDF
values, proximity of the circles to the diagonal is an indication of good fit to the model. Although this
graph carries all the information of Figure 1-5a, it is much easier to interpret. Both figures provide

evidence that the gamma model is a very good fit to the EFH sample data.

Figure 1-6a, a rescaled version of the probability (P) plot, is called a percent error probability
plot. The vertical axis values are computed as:
P-p,
% Error =
: P

i

where P ; = the CDF value in the i® interval
P, =EDF value in the i" interval.

Plotting the proportionate deviation of the predicted from the observed versus the observed magnifies the
deviations and permits comparison with the horizontal reference line corresponding to 0% difference.
Based on this plot, it appears that lower values of tap water consumption deviate from the gamma model.

However, the only really large deviation (-58%) is associated with the first percentile of tap water
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consumption. This indicates that the model fails only in the lowest extreme of the consumption

distribution; for all other data, the model appears to perform quite well.

The final graphical technique, called a quantile-quantile (Q-Q) plot, compares the observed
quantiles of tap water consumption to those predicted by the gamma probability model. While the former
were computed from the data (column 2, Table 1-2), the latter were obtained by programming the SAS
RANGAM probability function. Obviously the scale of the two axes are different. However, this is
simply a reflection of the units used to measure the observed data. In this case, the observed values are
100 times the predicted quantiles. Thus, the diagonal reference line marks the points where the observed
values equal 100 times the predicted. The plotted points (open circles) mark the coordinates of the paired
observed and predicted quantiles. Because the plotted points all lie very close to the diagonal, we may

conclude that quantiles differ by not much more than the 100x scaling factor. This graph is further

indication that the gamma model fits the data well.

Percent error P-plots, P-P plots, Q-Q plots, and pefcent error Q plots (the quantile equivalent of
the percent error P-plots) are employed throughout this report to assess GOF. To improve readability,

“Nominal P” and “Estimated P” are substituted, respectively, as axis labels for EDF and CDF.

The Pearson chi-square GOF statistic is computed as:

*(0-E)

i=l

where O, = the observed frequency in the i interval
E; = the expected frequency in the i interval
¢ = the number of intervals.

The c intervals are arbitrarily defined but should be constructed so that at least 80% of them have
expected frequencies greater than five (Conover, 1980). For the data in Table 1-2, ¢c=10 (the number of
rows) and T is the sum of the values in the last column. The “Cell Chi-8q.” column contains the squared
deviations of the observed from the model predictions. Small values of the cell chi-square indicate a
good fit in the interval; large values indicate a lack of fit. For a model that provides a perfect fit to the
data, the expected value of T is zero. Thus, small values of T indicate a good fit. Under the null

hypothesis that the model fits the data, T will be distributed as y2 with c-(1+p) degrees of freedom, where
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p is the number of estimated parameters in the fitted model. Since a two-parameter gamma model was fit
to the data, T has seven degrees of freedom. The probability of observing a value of T>19.1285, with
seven degrees of freedom, is 0.0078. On the basis of this test, we should reject H,,.

Although the result of the chi-square test contradicts three out of the four graphical analyses, it
is consistent with the percent error probability plot (Figure 1-6a). The reason for this concordance has to
do with the underlying computations. Whereas T is based on the squared deviations in the cell
frequencies, the percent error is based on the simple deviations of the cell probabilities. As a
consequence, the two statistics differ primarily in thé'presence of the sign (£) of the deviation. Thus,
while both Figure 1-6a and row 1 of Table 1-2 indicate large deviations in the first percentile, only Figure

1-6a demonstrates that the deviation is due to underestimation by the model.

The primary reason for the small p-value on the chi-square test is sample size. The individual
cell chi-squares are multiples of the total sample size, n=2,541. If the same sized deviations from the
model had been observed in a smaller but still respectably sized sample of n=250, the resulting chi-
square statistic would have been 1.88 with P=0.9662. This illustrates the well-known maxim that no
model ever fits the data. As more data are accumulated in the sample, the data will eventually depart
from any model. The best one can hope for is a reasonable approximation. As with regression models, it
is recommended that interpretation of GOF be based on careful consideration of otk graphical
summaries and formal tests of GOF hypotheses. This is the approach that is applied throughout this
report.

1.5 Uncertainty in Monte Carlo Risk Assessment Models

Deterministic risk models are algebraic expressions wherein the input factors are point
estimates of attributes of the population at risk (PAR) and of the risk factors themselves. Monte Carlo
models employ similar algebraic expressions but their input values are random variables, that is, PAR
attributes and exposures are modeled as variables with known probability distributions. Such models are
called stochastic models and are further distinguished from their deterministic counterparts in that their
outputs are distributions of risk rather than point estimates. Stochastic models are necessarily more
complex in their mathematics and data requirements but yield estimates that are far more realistic and

hence more useful than deterministic models. The reason for this, of course, is that the “real world” is
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beset with uncertainty and variation. However, Monte Carlo simulation techniques do not automatically
ensure that the major components of natural variation and uncertainty will be accounted for. In this
section, we illustrate and discuss three types of uncertainty and their importance to risk assessment

modelers.

Consider a modeler who must estimate the risk for a rural population exposed to pesticides
through well water. Assume that the PAR is all the residents living within 10 miles of a large
agricultural operation that has been applying pesticide A to its croplands for the past 25 years. Assume
further that there are 500 wells within this area. Unfértunately, the only exposure data available to the
modeler come from a sample of 16 publicly owned wells in the target area. Nonetheless, our modeler
proceeds and, applying techniques outlined in this report, obtains MLEs for a series of candidate
parametric distribution models and finally determines tﬁat the 16 concentrations of pesticide A best fits a
lognormal with mean X and standard deviation S. After completing similar estimation and fitting
procedures for the other model variables, the modeler generates a distribution of 500 risk estimates from
which he determines the 95" percentile of risk with 95% confidence limits. Based upon these results,
local health and agricultural officials enact regulations to curtail the use of pesticide A by the farmer.

The farmer takes exception to their model results and their regulations; does he have a case?

Perhaps the most apparent problem concerns data uncertainty. If the data are not
representative of the PAR, then even the most skillfully applied state-of-the-art modeling procedures will
not yield reliable risk estimates. The definition of a “representative sample” is illusive. Kruskal and
Mosteller (1971) discuss the problem at length and conclude that representativeness does not have an
unambiguous definition. For our discussion, we follow the suggestions of Kendall and Buckland (197D
that a representative sample is one that is typical in respect to the characteristics of interest, however
chosen. But it should be recognized that, assuming a sufficient sample size, only sampling designs in
which all memiaers of the PAR have an equal chance of selection can be guaranteed to yield

representative samples.

Clearly that was not the case in our hypothetical example. For valid inference, the selected
wells should be typical of the PAR in time of measurement, geographical location, construction, and any
other attributes likely to affect pesticide concentration. The case in point, in which only some |
homogenous subset of the PAR was sampled, is typical of what often occurs in practice. Truly random
samples are difficult and often prohibitively expensive to obtain. Thus, the modeler often will be forced

to utilize surrogate data that generally have been collected for other purposes. Monte Carlo risk
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estimates based on surrogate sample data will be biased to the degree that the sample exposure
characteristics differ systematically from those of the PAR. While it is sometimes possible to employ
statistical adjustments (e.g., weighting) to improve surrogate samples, in many cases it is not. U.S. EPA
(1999) presents a complete discussion of diagnosis of and remedies for problems associated with the use

of surrogate sample data in Monte Carlo risk assessment models.

In addition to problems associated with the sampling design, the representativeness of a sample
depends on the size of the sample. In general, the more variable a PAR characteristic, the larger the
minimum sample size necessary to ensure representativeness. Thus, it is unlikely that a sample as small
as n=16 will be sufficient to capture the variability inherent in a PAR. Relevant variance estimates may
be available from existing databases or the scientific literature; in rare cases, it may be necessary to.
conduct a pilot study to determine minimal sample sizes. Details of sample size determination are
available in most applied sampling texts (e.g., Thompson, 1992). Samples that are too small will

underestimate the PAR variance and are more likely to be biased than are larger samples.

Proper selection of exposure distribution models is the focus of this report. Given 16 candidate
parametric exposure models (Section 1.6), uncertainty about the identity of the “true” PAR exposure
model is a major concern. Risk distributions obtained from an incorrect exposure distribution model may
be severely biased. However, properly applied estimation and GOF techniques should reduce mode!
uncertainty to acceptable levels. Models with differing numbers of parameters can be compared and
selected with LRTs. Selection among competing models with same number of parameters can be made
on the basis of the size of the chi-square GOF p-value and the plots described in Section 1.4. However, it
is possible to obtain nearly identical fits from different models. Examples of the close similarity among
some models was illustrated in Section 1.1 and Figure 1-3. If the goal of the modeler is to predict the risk
distribution and if the pattern and size of the observed-predicted deviations are similar among two or
more competing distributions, it can be argued that it does not matter which one the modeler chooses.
However, if a causal model is desired, such that the parameters represent underlying physiologic, social,
and/or environmental processes, then proper discrimination among well-fitting models will be crucial.
Fortunately, the vast majority of risk assessments are predictive in nature so the modeler does not need to

be too concerned about very fine differences in fit among good-fitting models.

Because estimates of population parameters are based on sample data, any estimate, regardless

of how it is obtained (MLE, WLS, MOM, etc.), will be subject to sampling error. Accordingly, a Monte
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Carlo risk distribution estimated from an exposure model that has been correctly fit to a representative
sample still will be subject to the effects of parameter uncertainty in the fitted exposure model. To
account for these effects, it is necessary to estimate the sampling distribution of the model parameters. If
ML parameters are employed, asymptotic normality can be invoked and confidence limits on the
parameters can be computed as described in Section 1.3. Values of the parameters within the 95%
confidence limits then can be used in a sensitivity analyses of the exposure distribution model.
Alternatively, acceptable parameter values can be drawn from the multivariate normal distribution
centered at the parameter MLE, with variance-covariance matrix equal to the inverse of the information

matrix.

If asymptotic normality cannot be assumed either because the sample size is too small (e.g.,
n=16) or because MLEs were not (or could not) be obtained, bootstrap methods should be employed.
The bootstrap is a versatile nonparametric method that can be used in a wide variety of situations to
obtain the sampling distribution of any model parameter. For a given sample size n, some number (e.g.,
1,000) of bootstrap samples, each of size n, are obtained by sampling, with replacement, from the original
sample. A new estimate of the model parameter is obtained from each bootstrap sample, thereby
generating a distribution of 1,000 bootstrap parameter estimates. Finally, nonparametric bias-adjusted
techniques are used to compute the standard error and confidence intervals about the original parameter
point estimate. Details of the bootstrap method are available in Efron and Gong (1983) or in a more user
friendly format in Dixon (1993). Bootstrapping programs can be implemented easily with commercial
statistical software such as SAS or SPLUS.

1.6 Summary of a System for Fitting Exposure Factor Distributions

The system of options includes components for models, estimation, assessment of fit, and
uncertainty. The methods of estimation, testing of GOF, and uncertainty that we regard as most useful

are printed in boldface.

1.6.1 Models

The system is based on a 16-model hierarchy whose most general model is a five-parameter
generalized F distribution with a point mass at zero. The point mass at zero represents the proportion of

nonconsuming or nonexposed individuals. Appendix D contains a table of relevant functions for
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calculation of probabilities and moments (e.rg., means and variances) of models in the generalized F

hierarchy. To analyze a large number of EFH datasets, it may be possible and advisable to use a smaller

set of models. The number of free or adjustable parameters for each model is given in parentheses,

below.

B Models with a point mass at zero:.

-- Generalized F (5)

-- Generalized gamma (4)

-- Burr (4)

-- Gamma, lognormal, Weibull, log-logistic (3)
-- Exponential (2) '

®  Models without a point mass at zero:

-- Generalized F (4)

-- Generalized gamma (3)

~-  Burr (3)

-- Gamma, lognormal, Weibull, log-logistic (2)
-- Exponential (1)

1.6.2 WMethods of Estimation of Model Parameters

1.6.3

Maximum likelihood estimation
Minimum chi-square estimation
Weighted least squares estimation
Minimum distance estimation
Method of moments estimation
Meta-analysis

Regression on age and other covariates
Methods of Assessing Statistical GOF of Probability Models

Probability-probability plots, quantile-quantile plots, percent error plots
Likelihood ratio tests of fit versus a more general model

F tests of fit versus a more general model

Pearson chi-square tests of absolute fit

Tests of absolute fit based on distances between distribution functions
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1.6.4 Methods of Estimating Uncertainty in the Model Parameters

Asymptotic normality of parameter estimates
Bootstrapping from the estimated model
Simulation from the normalized likelihood

Meta-analysis-to combine multiple sources or studies
1.6.5 System Output

B  Recommended type of model
B Estimated distribution for model parameters

The system is discussed in more detail in Section 2. Section 2 is fairly technical and may be
skimmed. Applications to drinking water, population mobility, and inhalation rates are discussed in
Sections 3, 4, and 5, respectively. Section 6 discusses additional issues, such as the feasibilify of
applying the procedures as a production process to a large number of EFH factors.
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Table 1-1. Three MLEs of Prevalence, Given Different Observed Numbers of Infections

Obs. No. ats :
Infections i Likelihood of Infection MLE of Pop.
Sample of Nine IfP=20% IfP=50% IfP=80% Prevalence (P)
0 0.134 0.002 0.000 0.20
1 0.302 0.018 0.000 - 0.20
2 0.302 0.070 0.000 . 0.20
3 0.176 0.164 0.003 0.20
4 0.066 0.246 0.017 0.50
5 0.017 0.246 0.066 0.50
6 0.003 0.164 ' 0.176 0.80
7 0.000 0.070 0.302 0.80
8 0.000 0.018 0.302 0.80
9 0.000 0.002 0.134 0.80
1.000 1.000 1.000

Table 1-2.  Computation of Chi-Square GOF for Tap Water Consumption by Persons 65
Years or Older; the Hypothesized Probability Model Is a Gamma Distribution
(MLE[SCALE]=4.99731, MLE[SHAPE]=0.04365)

% Tap Water  Observ. Pred. Gamma Cell
Tile Consump. Prob. Prob. Obs. N Exp.N Chi-Sq.
1 4.5 0.01 0.00420 2541 10.67 8.5479
5 8.7 0.04 0.04777 101.64 121.38 3.8348
10 10.9 0.05 0.05651 127.05 143.60 2.1561
25 15.0 0.15 0.15457 381.15 392.76 0.3535
50 20.3 0.25 0.23312 635.25 592.35 2.8972
75 27.1 0.25 0.24666 635.25 626.76 0.1134
90 34.7 0.15 0.15509 381.15 394.08 0.4383
95 40.0 0.05 0.05283 127.05 134.25 0.4084
99 513 0.04 0.04045 101.64 102.79 0.0129
100 0.01 0.00880 25.41 22.36 0.3659

1.00 1.00000 2541.00 2541.00 19.1285
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Figure 1-1. Histograms and PDFs
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Figure 1-2. PDFs and CDFs
(a) Lognormal PDF (Mean=20, Std. Dev.=24)
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Figure 1-3. Examples of Parametric PDFs

(a) Lognormal (Mean=20, Std. Dev.=10,16,25)
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Likelihood of Infection

Figure 1-4. Demonstration of MLE
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Figure 1-5. Tap Water Gamma GOF Plots: Adults 65 Years Old and Older
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Figure 1-6. Tap Water Gamma P-P Plot and Q-Q Plot: Adults 65 Years Old
and Older
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2

A System for Fitting Distributions to
Exposure Factor Data

The system has components for models, estimation, assessment of fit, and uncertainty. In a
production process to analyze a large number of Exposure Factors Handbook (EFH) datasets, a reduced
set of options may be appropriate. Appendix B illustrates some pertinent calculations using tap water

consumption data for adults over age 65.

2.1 Models

The system is based on a 16-model hierarchy whose most general model is a five-parameter
geﬁeralized F distribution with a point mass at zero. The point mass at zero represents the proportion of
the population that is not exposed or does not consume. A smaller set of models might be used to
analyze a large number of EFH datasets. The first 8 models of our 16-model hierarchy (numbers of

adjustable parameters) are:

B Generalized F (4)

®  Generalized gamma (3)

B Burr (3) ‘

W Gamma, lognormal, Weibull, log-ldgistic 2)

B Exponential (1)

These models are discussed in Chapter 2 of Kalbfleisch and Prentice (1980). The generalized F
and generalized gamma models are power-transformed central F (Pearson type VI) and gamma random
variables. The degrees of freedom parameters for the F distribution do not have to be integers but can be
any positive numbers. Each model contains the models below it as special cases (except that the
generalized gamma does not include the log-logistic). Several two-parameter models are specified

because two-parameter models are most commonly used.
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The other eight models are obtained from those above by incorporating a point mass at zero.
This increases the number of adjustable parameters by one. The point mass is simply the probability that
a randomly selected population member is not exposed. Two additic;nal models that may occasionally be
useful are the normal distribution for approximately symmetric data and the beta distribution for bounded

populations with known bounds.

For a process to be applied to a large number of factors from the EFH, the use of the basic
two-parameter gamma, lognormal, and Weibull distributions is desirable for simplicity. In some cases, it
may be necessary to use a more general model to achieve satisfactory fit to the data. For instance, these
three models are unified within the three-parameter generalized gamma family, which includes them as
special cases. The need for a more general model might occur with large datasets, datasets exhibiting
multiple peaks or modes, or exposure factors where some individuals are not exposed. A large dataset
might require a model with more than two parameters to achieve adequate fit. A mixture of two-
parameter models may be needed in a multimodal situation. The inclusion of a parameter representing a
point mass at zero exposure may be required to fit a population containing a nonnegligible proportion of
unexposed individuals. Occasionally, a dataset may defy fit by standard textbook parametric models, and

recourse to the empirical distribution may be appropriate.

2.2 Methods of Estimation

Maximum likelihood estimation (MLE)
Minimum chi-square (MCS) estimation
Weighted least squares (WLS) estimation
Minimum distance estimation (MDE)
Method of moments (MOM) estimation

Meta-analysis

Regression on age and other covariates

These methods of estimation are defined in Kendall and Stuart (1979) and Kotz and Johnson (1985);

maximum likelihood was discussed in some detail in Section 1.2.
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In classifying methods of statistical estimation, it is useful to take an operations research or
optimization point of view. The statistician or modeler summarizes the objectives of estimation as a real-
valued criterion function. For the first four cases above, the criteria are the likelihood function, a chi-
square measure, a weighted sum of squares of errors, and a distance function. Having formulated the
problem in terms of a criterion function, the modeler proceeds to estimate parameters to optimize
(maximize or minimize) the criterion function. This typically leads to a calculus problem, that is, the
problem of finding a critical point where the partial derivatives of the criterion function with respect to
the parameters are equal to zero. Unfortunately, in most cases of interest, one cannot juSt write down the
partial derivatives and find their roots using simple algebra. A trial and error method is usually required,

using an iterative search routine starting from an approximate solution to the problem.

Optimization is a major branch of applied mathematics. Obtaining and validating solutions to
multidimensional optimization problems is not simple. Good overviews of optimization are given by
Chambers (1973) and Press et al. (1992).

2.21 Maximum Likelihood Estimation

MLE is applicable to raw data and to percentile data. A likelihood for the data is obtained using
the probability model in conjunction with assumptions regarding independence or dependence. The
MLE is the parameter vector that maximizes the likelihood. Loosely speaking, the MLE is the parameter
vector for which the data at hand are most likely. The MLE is the most plausible value for the parameter,

if plausibility is measured by the likelihood.

2.2.2 Minimum Chi-Square Estimation

To use MCS estiﬁation, it is necessary to group the data into categories. The categories can be
defined by selected percentiles,v so that MCS is applicable to percentile data as well as raw data. A
certain number of the data points fall into each category. These are called the observed counts and are
denoted by the symbol O. Under the model assumptions, for a given set of parameter values, a
corresponding expected (E) number of sample points fall into each category. The chi-square value is the

summation over the categories of (O- E)%/E. In some cases, an O is used in the denominator instead of
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E. This is referred to as the modified chi-square statistic. In either case, the MCS estimate is the

parameter vector that minimizes the chi-square value.

2.2.3 Weighted Least Squares and Minimum Distance Estimation

WLS, or regression, estimates are chosen to minimize a weighted sum of squared discrepancies
between model and data. Usually the weights are inversely proportional to (estimated) variances. WLS
estimators include several MDEs as special cases and are applicable to either raw data or percentile data.
For example, the parameter vector can be chosen to minimize the Anderson-Darling or Cramer-von
Mises distance between an empirical and theoretical distribution function. Such MDEs are reputedly
robust to model violations, but their distribution theory is less accessible than that for MLEs and MCS

estimates.

2.2.4 Method of Moments Estimation

The MOM produces estimates of parameters so as to achieve exact or approximate agreement
with specified sample moments. Hence, the criterion function is some measure of distance between
model-based and empirical moments. For example, the MOM can be applied by estimating the
parameters of a two-parameter model to provide exact agreement with the sample mean and standard
deviation. Generally speaking, the MOM is less efficient than the other methods mentioned above and is
not widely used. However, if the only available information is a sample mean and standard deviation,

there are few other options.

2.2.5 Estimation by‘Meta-Analysis

Meta-analysis is a set of techniques to synthesize information from multiple studies. For
instance, suppose there are estimated means and standard deviations for the same or similar populations
from multiple studies. It is possible to use analysis of variance techniques to estimate an overall mean, as
well as between-study, within-study, and total variation. The MOM can then be used to determine

gamma, lognormal, and Weibull distributions with mean and variance equal to the estimated overall
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mean and total variance. This technique is used in Section 5 to estimate a distribution for long-term

inhalation rates.

2.2.6 Regression on Age and Other Covariates

Parametric regression methods similar to those used in the field of clinical biostatistics provide a
promising technique to unify and summarize environmental exposure distributions across age groups.
This might entail some additional compromise of fit at the level of the individual age group, but the
resulting simplicity and unity of summaries may be worth the price. Risk assessment simulations may
also be simplified by programming a formula for repeated use in different age groups. The approach
works best if more general models (e.g., at least the generalized gamma) are used as the default. For
example, in the case of population mobility (discussed in Section 4), all three of the two-parameter
models (gamma, lognormal, and Weibull) are needed to obtain best fit to the data from the different age
groups. Thus, the regression approach would be simplified, in this case, by using the generalized gamma,

which contains all three distributions as special cases.

2.2.7 Distributions of Related Test Statistics

Associated with each type of estimation is additional machinery needed to approximate the
probability distribution of the statistics obtained by solving the optimization problem. In many cases, to
a first approximation, if the model is correct, the statistic that is the optimal solution has an
approximately multivariate normal distribution whose mean equals the true mean and whose variances
and covariances involve the second partial derivatives of the criterion function. Elliptical confidence
regions for the parameter vector can be based on this approximation. This method of approximating the
distribution of statistics will be referred to as asymptotic normality of parameter estimates. More
accurate confidence regions can be obtained by a technique called inverting the criterion function, but
they are computationally much more difficult. With either approach, simulations are useful to calibrate

the approach (i.e., to improve the accuracy of coverage probabilities).

Methods of estimation are discussed further in Appendix B, which illustrates the calculation of

criterion functions using the senior (age 65 or older) citizen drinking water percentile dataset.
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2.2.8 Recommended Methods of Estimation and Discussion

MLE is the single most credible and most widely applied method and, therefore, is the method
chosen for estimating exposure factor distributions. Caution is needed in the use of the MLE because
many of its touted virtues depend strongly on the assumption that the model is true. For instance, if the
model is correct, then the MLE converges to the correct value of the parameter as the sample size grows
larger. On the other hand, if the true model is gamma or Weibull, but is assumed to be lognormal, then
the MLE of the assumed lognormal mean converges to something other than the true mean. In addition,
the common assumption that the variance of the MLE is given by the expected negative second partial
derivatives of the log-likelihood function evaluated at the MLE will often lead to underestimation of the
variance. Generally speaking, even if the MLE is used as the parameter estimate, consideration should
be given to using other (regression or chi-square) methods to obtain variance estimates that are robust to

model violations and give approximately unbiased variance estimates, even if the model is wrong,.

2.3 Methods of Assessing Statistical Goodness-of-Fit (GOF)

P-P plots, Q-Q plots, and percent error plots
Likelihood ratio tests (LRTs) of fit versus a more general model
F tests of fit versus a more general model

Pearson chi-square tests of absolute fit

Tests of absolute fit based on distances between distribution functions

GOF tests are tests of the null hypothesis that the assumed family of models is correct. As is
evident from the discussion below, there is a natural correspondence between methods of estimation and
methods of testing GOF. This stems from the fact that most of the criteria functions that drive the

estimation process actually represent a type of fit to the data.

P-P plots and Q-Q plots, as well as GOF tests based on Pearson's chi-square and the empirical
distribution function (EDF), are discussed and applied in Law dnd Kelton (1991).




A System for Fitting Distributions to Exposure Factor Data Research Triangle Institute

2.3.1 P-P Plots, Q-Q Plots, and Percent Error Plots

P-P (probability-probability) plots, Q-Q (quantile-quantile) plots, and percent error plots are

commonly used graphical displays that are applicable to models fit to raw data or to percentile data.
These provide informal graphical aids for evaluating fit. P-P plots are made by plotting model-based
estimates of probability on the vertical axis versus nominal probability on the horizontal axis. Both axes
therefore go from 0 to 1. Q-Q plots show the model-based quantile estimates on the vertical axis versus
empirical quantiles (Xp values) on the horizontal axis. Although P-P plots and Q-Q plots are
informative, their regions of interest are near the main diagonal, and most of the plot field is blank.

Percent error plots convey the same information but magnify the regions of interest by referring to a

horizontal line instead of a diagonal line. Percent error probability plots are simply plots of (P-P)/P

versus P, where P denotes a model-based probability and P is an empirical or nominal probability.

Percent error plots are defined analogously for quantiles.

P-P plots, Q-Q plots, and percent error plots do not take into consideration the number of
estimated model parameters. Accordingly, they can be misleading if used to compare models with
different numbers of parameters. A valid comparison of models requires the use of GOF statistics or p-

values that take into account the number of estimated parameters.

2.3.2 Relative and Absolute Tests of Model Fit

Of the four test-based methods of assessing fit, two (LRTs and F tests) are tests of relative fit,
and two (Pearson chi-square tests and tests based on EDF statistics) are tests of absolute fit. Relative
tests of GOF are conducted by comparing one model (model 1) against another more general model.
(model 2) that contains the first model as a special case. Model 2 has more parameters than model 1, and
model 1 is obtained by setting certain parameters of model 2 to fixed values. If model 2 is itself
inadequate, little is gained by establishing the adequacy of model 1 relative to model 2. However, if

model 1 is rejected relative to model 2, then model 2 improves the fit relative to model 1.

Tests of absolute fit of the model to the data are done without reference to any particular
alternative model. Hence, they are more general than relative tests, because they do not require

specification of a more general model.
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2.3.3 Likelihood Ratio Test of Fit Versus a More General Model

LRTs are a natural companion to MLE because the two models are evaluated at their respective
MLEs. The log-likelihood ratio is calculated by LR = -2*log(maxlik 1/maxlik2), where maxlik 1
(maxlik2) is the maximized log likelihood for model 1 (model 2). The GOF p-value usually is calculated
by assuming the likelihood ratio has a chi-square distribution with degrees of freedom (df) given by the
difference in dimensionality of the two parameter spaces. For example, the generalized gamma model
contains the gamma, lognormal, and Weibull models as special cases, and allows for LRTs of the relative
adequacy of these two-parameter models. In this case, df=3-2=1, since the generalized gamma has three

parameters and the other models have two parameters.

One virtue of LRTs is the accuracy or reliability of their p-values, even for relatively small
sample sizes. Generally, the performance of LRTs is much better than that of tests based on asymptotic

normality assumptions (Barndorff-Nielsen and Cox, 1994).

2.3.4 F Test of Fit Versus a More General Model

F tests in nonlinear regression or WLS contexts provide another method of judgiﬁg the adequacy
of one model relative to a more general model. The F statistic is calculated as F=[(WSSEI-
WSSE2)/(np2-np1)]/[WSSE2/(n-np2)], where WSSE1 and WSSE2 are the weighted sums of squares of
errors for models 1 and 2, npl and np2 are the number of parameters for models 1 and 2, and n is the
number of data points. GOF p-values are calculated by assuming that F has an F distribution with
df,;=np1-np2 and df,=n-np2 degrees of freedom. This test can be used for linear or nonlinear models
(Jennrich and Ralston, 1979).

2.3.5 Pearson Chi-Square GOF Test

The Pearson chi-square and EDF-based GOF tests are tests of absolute fit of the model to the
data, without reference to any particular alternative model. Hence, they are more general than LRTs,
because they do not require specification of a more general model but only compare a fitted model

against the data.
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The chi-square test is the simplest and most widely used of the absolute fit methods. The
calculation of the summary chi-square value is described in Section 2.2. This chi-square calculation can
be done using either the MLE or the MCS estimator to obtain the expected counts. Usually, the MLE is
used, even though the MCS estimate minimizes the chi-square statistic. GOF p-values are calculated by
assuming a chi-square distribution with df=c-np degrees of freedom, where c is the number of categories,
and np is the number of model parameters. (Actually, the question of how many degrees of freedom to

attribute to the chi-square does not have a firm answer [Law and Kelton, 1991, pages 384-385].)

2.3.6 GOF Tests Based on the EDF

Among absolute GOF tests, the chi-square test suffers from rather low power. Generally, tests
based on the EDF are more powerful (Stephens, 1974). EDF tests involve generalized distances between
the EDF and a theoretical CDF whose parameters have been estimated, usually by maximum likelihood.
EDF tests based on Anderson-Darling (AD), Cramer-von Mises (CvM) and Kolmogorov-Smirnov (KS)
distances are available. Although these EDF tests are more powerful than the chi-square test, their
associated distribution theory is much more complex than that of the chi—équare test. Tabulated
approximations for AD and KS tests based on simulation studies for gamma, lognormal, and Weibull
distributions are contained in D'Agostino and Stephens (1986). However, these do not easily adapt to the
generalized F model, to censored data, or to models with point masses at zero. (Bootstrapping the test
statistic is an option.) Despite its low power, the chi-square test is the most broadly applicable GOF test

across distributional types.

2.3.7 Recommended Methods for Assessing Statistical GOF and Discussion

If raw data or several percentiles are available, P-P, Q-Q, and percent error plots are
recommended as graphical aids in evaluation of GOF. A situation may arise where GOF tests indicate
that one of the more general models fits considerably better than any of the two-parameter models. P-P,
Q-Q, and percent error plots may be adequate for deciding which two-parameter model to use for a given
exposure factor, but they may not lead to the right decision if the question is whether the best fitting two-
parameter model is an adequate summary relative to a more general model with more than two

parameters. Unlike GOF tests, these plots do not account for the number of estimated model parameters.
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Another way to address this question is at the level of the overall risk assessment (RA), by sensitivity
analysis. Iftwo RAs are done, one with the best fitting two-parameter models, another with the absolute
best fitting models, and negligible differences between bottom line measures of risk are obtained, then

use of the simpler models is justified.

The chi-square and LRT GOF tests are recommended here because of their broad applicability
and ease of use. If raw data are available, the AD GOF test for gamma, lognormal, and Weibull

distributions may be used with tables in D'Agostino and Stephens (1986).

2.4 Methods of Obtaining Distributions for Parameter Uncertainty

Asymptotic normality of parameter estimates
Bootstrapping

Simulation from the normalized likelihood

Meta-analysis to combine multiple sources or studies

The first three methods for obtaining distributions of parameter uncertainty pertain to analyses of
individual studies or datasets. Meta-analysis is used to combine results from two or more studies.

Section 5 contains an example of meta-analysis for inhalation rates.

Although uncertainty in risk assessment has been discussed extensively, a consensus for its
treatment has not yet emerged. A simple theoretical model is not expected to capture a complex real-
world situation exactly. If we select and recommend a specific distribution that fits best to a given set of
data, we neglect two kinds of uncertainty: uncertainty as to the type of model, and uncertainty in the
numeric values of the model's parameters. Issues related to these two types of uncertainty are discussed

in Guiding Principles for Monte Carlo Analysis (U.S. EPA, 1997b) and in Section 6.
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2.4.1 Model Uncertainty

Regarding model uncertainty, three cases may be distinguished. In each case, it is assumed that
several models have been fit to the available data, for example, the generalized gamma, gamma,

lognormal, and Weibull.

®  Case 1. One model fits adequately, and the other models are rejected. In this case, model
uncertainty seems negligible, and the uniquely qualified model can be used for risk

assessment.

®  Case 2. All of the models are rejected, but one fits better than the others. If a model that fits
cannot be found, then obviously model uncertainty is present. Nonetheless, one might work
with the best fitting of the models tried, if the approximation is good enough. To give some
indication of the effect of model uncertainty in risk assessment, the empirical distribution
also might be included, in addition to the best fitting parametric model. Alternatively, some

risk assessors might prefer to use the empirical distribution as the best guess distribution.

W Case 3. There is a virtual tie among two or more models. In this case, all of the viable

models could be used for risk assessment.

In a sense, the distinction between the three cases is illusory, because the textbook distributions

are conceded to be approximations in every case.

2.4.2 Parameter Uncertainty

Regarding parameter uncertainty, the fifth principle in Guiding Principles for Monte Cario
Analysis (U.S. EPA, 1997b) specifies that "for both the input and output distributions, variability and
uncertainty are to be differentiated." The structurally sound approach of Rai et al. (1996) is followed:
"Each variable is assumed to follow a distribution with one or more parameters reflecting population
variability; uncertainty in the value of the variable is characterized by an appropriate distribution for the

parameter values."
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Four methods to obtain probability distributions for model parameters are discussed below.

2.4.21 Uncertainty Analysis Based on Asymptotic Normality of Parameter
Estimates

Most parametric methods of statistical analysis can provide estimates of parameters as well as
estimates of their variances and covariances. In the case of two-parameter models, this suggests that a
certain bivariate normal distribution can be used for simulating the parameters, namely, the one with the
estimated means and covariance structure. More generally, a multivariate normal distribution can be
used. Caution must be exercised in the use of this approximate method that requires a large sample. It is
difficult to provide simple guidance on how large a sample is required. The answer depends on specifics

of the population distribution.

2.4.2.2 Uncertainty Analysis Based on Bootstrapping

The bootstrap method would generate many (e.g., 1,000) random samples of the same size as the
original sample, drawn with replacement from the estimated (“best guess™) distribution. Then, the
modeling process would be applied to each such sample, resulting in an empirical distribution of
estimated parameter values. This could be summarized as a data file with 1,000 records, each containing
one set of parameter values. The risk assessor could sample at random from this list to obtain parameter

values.

2.4.2.3 Uncertainty Analysis Based on the Normalized Likelihood

This method would normalize the likelihood function so it integrates to one over the parameter
space. This normalized likelihood can be used as a probability distribution for the parameters. This
method can be approximated by using a fine grid in the parametér space. The likelihood is evaluated at
each grid point and divided by the sum of the likelihoods at all the grid points to obtain discrete
probabilities. This discrete distribution can be sampled in proportion to these probabilities to obtain

parameter vectors.
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Methods 2 and 3 are much more computationally intensive than method 1. The risk assessor
would not be expected to conduct the bootstrapping or likelihood normalization. Rather, the risk assessor

could be provided with the appropriate data files for sampling.

It should be recognized that if the uncertainty distribution is inferred from a single study, then the
treatment of uncertainty may be superficial and tend to neglect major portions of parameter uncertainty
(Hattis and Burmaster, 1994, discussed further below). This is the rationale for the fourth method, based

on meta-analysis.

2.4.2.4 Uncertainty Based on Meta-Analysis

Meta-analysis (discussed in Section 2.2.5) is a technique for synthesizing results from multiple
studies. As part of a meta-analysis, it may be possible to obtain estimates of precision of the meta-
estimates. These may be highly dependent on model assumptions. Meta-analysis is applied to estimate

distributions of daily inhalation rates in Section 5.

Meta-analysis could be complicated by the fact that different types of probability models seem to
be required for different studies. However, in many cases, it may be possible to proceed on the basis of '

the first two moments (mean and standard deviation), as in Section 5 on inhalation rates.

2.4.3 Recommended Method for Uncertainty and Discussion

The first of the four methods, based on asymptotic normality, is recommended for individual
studies. The first method is simplest to apply because the required statistics are provided routinely by

most methods of statistical analysis.

As described below, it would be possible to summarize each risk factor by providing two
distributions, one that neglects uncertainty and one that incorporates uncertainty. An uncertainty
distribution could then be obtained as the deconvolution of these two distributions. By conducting two
risk assessments—using distributions neglecting uncertainty and using distributions incorporating

uncertainty—variability and uncertainty could be differentiated.
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The first distribution would be the one selected as providing the best fit to the available data. It
is specified by identifying the appropriate type of distribution (e.g., gamma) and assigning the values for
its parameters (e.g., the MLEs).

The second distribution would embody uncertainty in the model parameters, as well as
population variability. It would be obtained by repeating a two-step simulation process many times and
then summarizing, perhaps via additional modeling, the simulated data resulting from the two-step
process. The two-step process involves first generating parameter values by sampling from the
distribution representing parameter uncertainty, then generating a value for the variable of interest from
the specified population distribution. This two-step process would be repeated many times (e.g., 10,000).
Finally, the models can be fit to this simulated data to arrive at a best fitting distribution reflecting

uncertainty.

Unfortunately, this approach is not adequate for all purposes (Paul White, statistician, Office of
Research and Development, U.S. EPA, personal communication, Sept. 12, 1997). Interest in risk
assessment typically centers on certain key parameters of the risk distribution, such as the mean and 95th
percentile of the overall distribution of risk. Hence, to address uncertainty in a meaningful way in the
context of the overall risk assessment requires that a distribution for such parameters be available. This
implies that only information on the distribution of the model parameters for each risk factor be provided.
The risk assessor then can use these uncertainty parameter distributions to empirically generate

distributions for the risk distribution parameter.

For example, a total of 10,000 simulations can employ an outer loop of 100 sets of parameter
values. For each set of parameter values, 100 population values are generated. For each step in the outer
loop, the distribution of aggregate risk is calculated. This results in an empirical distribution for any risk

parameter of interest, such as 95" percentile of risk or mean risk.

It is important to realize that there may be major neglected uncertainties beyond those that can be
estimated from a single study. "The application of standard statistical techniques to a single dataset will
nearly always reveal only a trivial proportion of the overall uncertainty" (Hattis and Burmaster, 1994).
Each study reported in the scientific literature contains its own unique types of bias. These biases may
be impossible to ascertain or estimate. In this case, the biases may be ascribed to randomness whose

variance is estimated by meta-analyses that pool results across multiple studies.
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2.5 System Output (Summary of Reported Statistics)

The most important summaries will be:

B  Recommended type of model

B Estimated distribution for model parameters

Also reported would be variables identifying the data used for analysis, such as EFH table

numbers, and the following statistics for each of the fitted models:

Parameter estimates
Parameter standard errors

Asymptotic correlations between parameters

Values of GOF statistics and associated p-values
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3.1 Methods

Here and throughout this report, the statistical summaries from the Exposure Factors Handbook

(EFH) are analyzed. No attempt was made to obtain raw data from investigators.

The key studies identified in the EFH are Canadian Ministry of National Health and Welfare
(1981) and Ershow and Cantor (1989). Since the first dataset is Canadian, is older, and involves a much
smaller sample size, it was decided to base the analysis only on the second dataset. Specifically, the
focus was on the six age groups at the bottom part of Table 3-7 in the EFH, which has age categories for
infants (age <1), children (ages 1-10), teens (ages 11-19), younger adults (ages 20-64), and older adults
(ages 65+), as well as all ages. The EFH Table 3-7 data summaries analyzed here consist of nine
estimated percentiles for total daily tap water intake in dL/kg/day. (EFH Table 3-7 units are mL/kg/day;
these were rescaled to dL/kg/day to obtain better convergence properties for numerical optimization
routines.) The tabulated percentiles from EFH Table 3-7 are reproduced in this report in Table 3-5,
columns labeled “X, = Data Qtile” and “Nom p” (for “Data Quantile” and “Nominal p”). These
percentiles correspond to probabilities of 0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, and 0.99. That is,
Xp is the tap water éonsumption value such that 100p% of the population consumes Xp or less daily, or
the tap water consumption value such that the cumulative distribution function (CDF) value is p at Xp,
F(Xp)=p. For example, referring to Table 3-5, the 25" percentile for adults of ages 20-64 is 0.124, so
that approximately one-fourth of adults between ages 20 and 64 consume 12.4 mL/kg/day or less of tap
water. Only six percentiles are shown for infants because the 1st, 5th, and 10th percentiles are all zero
for infants. This motivates the inclusion of a point mass at zero in probability models as discussed in

Section-1.

The 12 models of the generalized F hierarchy were fit to each of the six tap water datasets from
the bottom of EFH Table 3-7 using three different estimation criteria—maximum likelihood estimation

(MLE), minimum chi-square (MCS) estimation, and weighted least squares (WLS). The Pearson chi-
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square tests and likelihood ratio tests (LRTs) of goodness-of-fit (GOF) were used. These models,

estimation criteria, and GOF tests are discussed in Section 2.

Because the sampl¢ size was quite large, the asymptotic normality approach was used to obtain
parameter uncertainty distriButions. The two-step simulation process was applied 10,000 times to obtain
simulated distributions of drinking water values for each age group. Quantiles corresponding to the same
nine nominal probability values (0.01, 0.05, . . ., 0.99) were determined from the simulated drinking
water distributions. Models were fit to these simulated quantiles using the same MLE technique that was
applied to the empirical percentiles. Model-based averages, standard deviations, and quantiles were

estimated from the simulated data and compared with those estimated from the percentile data.

3.2 Resulits

The three methods of estimation (MLE, MCS, and WLS) and two methods of testing fit (chi- -
square and LRT) led to essentially the same conclusions regarding fit of the different models. Therefore,

only results from the chi-square GOF test based on the MLE are shown.

Values of the chi-square statistic and associated p-values for chi-square GOF tests are provided
in Tables 3-1a and 3-1b. In each case, the null hypothesis tested is that the data arose from the given type
of model. A low p-value casts doubt on the null hypothesis. Clearly, the only model that appears to fit
most of the datasets is the five-parameter generalized F distribution with a point mass at zero, referred to
as GenFS. This point is illustrated graphically via probability-probability (P-P), quantile-quantile (Q-Q),
and percent error plots in Figures 3-1 and 3-2 (figures are at the end of Section 3).

P-P plots are made by plotting model-based estimates of probability on the vertical axis versus
nominal probability on the horizontal axis. Both axes therefore go from 0 to 1. For the tap water data,
the nominal probabilities are 0.01, 0.05, 0.10, etc. Q-Q plots show the model-based quantile estimates on
the vertical axis versus empirical quantiles (Xp values) on the horizontal axis. For the tap water data for
adults between ages 20 and 64, the empirical quantiles corresponding to nominal probabilities of 0.01
and 0.05 are 0.022 and 0.059. In addition to P-P and Q-Q plots, Figures 3-1 and 3-2 also show the
corresponding percent error plots, that is, plots of (13-P)/P versus P and plots of (Q—Q)/Q versus Q. As
explained in Section 2.3.1, the region of interest in P-P and Q-Q plots is near the main diagonal, and

percent error plots are more informative because they transform and magnify this region. The term
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percent error is used loosely, because the plotted quantities are error fractions as opposed to percents

(e.g., 1.5 and -1.5 are plotted to represent 150% and -150%).

If possible, it is desirable to use one of the standard two-parameter models (gamma, lognormal,
Weibull), unless there is strong evidence that a model with more parameters is required. Results of this
analysis have shown, in fact, that the five-parameter generalized F distribution with a point mass at zero
provides considerably better fit to the tap water data than any of these two-parameter models. However,
risk assessors might still prefer to use the two-parameter models, on grounds of simplicity and

familiarity.

According to Table 3-1a, the gamma model provides the best fit (smallest chi-square) of the
two-parameter models to the data for each of the five individual age groups. For the group with all ages

pooled, the log-logistic and gamma are the best and second-best fitting two-parameter models.

Table 3-2 summarizes several additional aspects of interest for the tap water populations.
Within each age group, the first row (SOURCE=data) is basically a data summary. Within the top row,
the columns labeled N, MEAN, and SDEV contain the sample size, the sample mean, and the sample
standard deviation. Within the top row, the columns labeled P01, P05, . . ., P99 contain the nominal
probabilities 0.01, 0.05, . . ., 0.99. The values in the top row for MEAN, SDEV, and the nine nominal
probabilities can be thought of as 11 targets that the models are trying to hit. :

In Table 3-2, the other five rows (second through sixth rows) within each age group contain
results from fitting four models, including gamma, lognormal, and Weibull, using selected estimation
criteria. The model and estimation criteria are indicated by the variable SOURCE. For instance,
SOURCE=gammle indicates the two-parameter gamma model fit using MLE. The model gf5 is the five-
parameter generalized F with a point mass at zero. The infants group does not contain results from the
five-parameter generalized F because the model selected had infinite variance. For the gamma and
Weibull models, there was little difference between the three estimation criteria, and the MLE performed
best overall. For the lognormal model, results from the WLS estimation criterion are shown in addition

to the MLE. These will be contrasted below.

The last two columns contain summary GOF measures. CHIDF is the value of the chi-square

statistic divided by its degrees of freedom. The methods are ordered with respect to this CHIDF
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measure. CHIDF is more comparable across cases involving different degrees of freedom than is the chi-
square statistic. PGOF is the p-value for model GOF based on the chi-square test. Low-values of PGOF,
such as PGOF<0.05, cast doubt on the null hypothesis that the given type of model is correct.

Note that MLE performed much worse for the lognormal model than the WLS method of
estimation, as determined by CHIDF and PGOF measures.

If a two-parameter model must be used for tap water consumption, then the gamma model with
parameters estimated by maximum likelihood is recommended. The five-parameter generalized F

distribution could be used for sensitivity analyses.

The age effect seems sufficiently strong to justify the use of separate age groups in risk
assessment. Note, however, that the lognormal model with parameters estimated by WLS provides the

best~ fit among the two-parameter models, as determined by CHIDF, when all age groups are pooled.

3.3  Uncertainty Analysis

Table 3-3 contains information on the uncertainty distribution parameters of the best fitting
two-parameter distributions, namely, the gamma distributions. The parameter estimates log & and log
are the MLEs of the natural logs of the usual gamma parameters « and B. The variables SEL« and SELJ
are the standard errors of these estimates, and CORR is the estimated correlation between the parameter
estimates. To generate values for the gamma parameters, first values for the logarithms of « and P are ‘
generated by sampling from a bivariate normal distribution with mean parameters log « and log B, with
standard deviations SELo and SEL, and correlation CORR. The generated values of log « and log p are

then exponentiated to obtain values for « and .

Because the underlying sample sizes are quite large, these parameter uncertainty distributions
based on asymptotic normality are probably adequate. Comparisons with bootstrap and likelihood

methods via simulation studies could shed light on this issue.

Tables 3-4 and 3-5 contain results from the original data analysis and from the two-step
simulation process based on asymptotic normality, using the bivariate normal distributions summarized

in Table 3-3 to represent distributions of parameter uncertainty. For each age group, 10,000 drinking
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water values were generated by first drawing a parameter pair (loge and logB) from the bivariate normal
distribution of Table 3-3, then generating a drinking water value from the selected gamma distribution.
Next, the nine nonparametric quantiles were estimated for each age group from the samples of size
10,000. Gamma distributions were fit to these quantiles using the same maximum likelihood method that

was applied in the original analysis described in Section 3.2.

Tables 3-4 and 3-5 show that the results of the two-step process are very similar to the original
fitted gamma distributions. Table 3-4 contains data means and standard deviations as well as MLEs of
the means and standard deviations from the original analysis of the data (MLE Mean and MLE Sdev) and
from the analysis of the simulated data from the two-step process (MLE2 Mean and MLE2 Sdev). In all
cases, except infants, MLE and MLE2 agree to within 0.002.

Table 3-5 contains several estimates of quantiles as well as two estimates of the CDF evaluated
at the pth quantile, F(x,). As before, X, denotes the original empirical pth quantile from EFH Table 3-7.
(In theory, if x, were the true quantile, then F(x,)=p.) The other quantile estimates are the MLE from the
original data analysis (MLE Qtile), the nonparametric quantiles from the simulated data (two-step Empl
Qtile) that incorporate parameter uncertainty, and the MLE for the simulated data (MLE2 Qtile). The
last two columns contain MLEs of F(x,) from the original data analysis and from the simulated data.

Except for the teens group, these MLES of F(x,) always agree to within 0.004.

In general, the values of the MLEs of quantities estimated from the original analysis of the raw
data and from the simulated data reflecting parameter uncertainty are very close. Presumably, this is a

consequence of the large sample sizes underlying the raw data.
3.4 Conclusions

The tap water data from EFH Table 3-7 force a difficult question: How good does the fit need
to be? Among two-parameter models, the gamma distribution fits best. The two-parameter gammé
model may fit well enough for most purposes. However, it is also true that this model fails to pass the
chi-square GOF test, while the five-parameter generalized F distribution passes at the 0.05 level in four

of six cases.

If the situation warrants a more sophisticated model, the generalized F may be used. However,

the uncertainty analysis for the five-parameter model could be complicated. The five-parameter model
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entails very highly correlated parameters. Contours of the likelihood in five-space might be highly

nonelliptical. One would not be comfortable with an uncertainty analysis for the five-parameter model

based on asymptotic normality without investigating its behavior by additional simulation studies.
Another possibility worth investigating would be uncertainty analysis for the five-parameter model based
on bootstrapping. According to Efron and Tibshirani (1993), the parametric bootstrap will automatically
endow the right shape to the simulated distribution for the parameters, although bias correction may be

needed if the simulated distribution is not centered at the original parameter estimates.

The distributions presented in this section for tap water intake were derived based on data of
Ershow and Cantor (1989). These data were obtained from the U.S. Department of Agriculture 1977-78
Nationwide Food Consumption Survey (USDA, 1984). The main limitations of the data are that they are
old and do not reflect the expected increase in the consumption of bottled water and soft drinks. The
survey has, however, a large sample size (26,466 individuals), and it is a representative sample of the
U.S. population with respect to age distribution, sex, racial composition, and regions. Therefore, these
distributions are applicable to cases where the national tap water consumption is the factor of interest or
it can reasonably be assumed that the population of interest will have consumption rates similar to the

national U.S. population.
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Table 3-3. Uncertainty Distribution of Gamma Parameters Estimated from Tap Water Data®

Std. Err. Std. Err. CORR

Age Group log () log (B) Log () Log (B) (e.P)

Infants (<1) 0.1744 -0.9767 0.1738 0.2005 -0.8663
Children (1-10) 0.9221 -1.9585 0.0684 0.0757 -0.9087
Teens (11-19) 0.9889 -2.6920 0.0980 0.1077 -0.9150
Adults 1 (20-64) 1.2067 -2.8214 0.0782 0.0843 -0.9310
Adults 2 (65+) 1.6089 -3.1316 0.0555 0.0584 -0.9533
All 0.9715 -2.4653 0.1167 0.1287 -0.9143

*Log (o) and log (B) are MLEs of the natural logs of the gamma parameters ¢ and 3. CORR(e,B) is the estimated correlation
between log (o) and log (B).

Table 3-4. Results of Two-Step Simulation Process to Incorporate Uncertainty Into Drinking
Water Distributions Using Asymptotic Normality®

Age Group Data Mean MLE Mean MLE2 Mean Data Sdev MLE Sdev MLE2 Sdev
Infants (<1) 435 448 451 425 411 417
Children (1-10) 355 .355 356 229 224 225
Teens (11-19) 182 182 .184 .108 111 112
Adults1 (20-64) .199 .199 200 .108 .109 .109
Adults2 (65+) 218 218 218 .098 .098 099
All 226 225 224 154 .138 .138

*MLE Mean and Sdev are MLEs of the two-parameter gamma mean and standard deviation from the original analysis.

MLE2 Mean and MLE2 Sdev are the result of the following process: generate 10,000 (¢:,B) pairs using the distribution of

Table 3-3; for each pair, generate a drinking water value from the specified gamma distribution; calculate the nine quantiles for
the resulting 10,000 drinking water values; fit a gamma distribution to the quantiles using maximum likelihood, and determine its
mean and standard deviation.
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Table 3-5. Uncertainty Analysis Based on Asymptotic Normality Using Two-Step Simulation
Process for Two-Parameter Gamma Distributions
X,= MLE Empl MLE2 Nom MLE MLE2

Age Group Data Qtile Qtile Qtile Qtile p F(x,) F(x,)
Infants (<1) 153 152 .151 151 25 252 254
Infants .353 331 332 331 .50 525 525
Infants 547 620 622 624 as 702 .699
Infants 1.02 989 996 .999 .90 908 905
Infants 1.27 126 1.28 1.28 95 951 949
Infants 221 1.89 1.93 1.92 .99 996 995
Children (1-10) 027 .040 038 .039 .01 .004 004
Children .083 .082 081 .082 .05 052 052
Children 125 115 114 115 10 118 118
Children .196 190 190 .190 25 262 262
Children 305 309 310 310 .50 492 491
Children 460 470 476 471 5 .738 737
Children 644 654 654 657 .90 .894 893
Children 794 784 780 787 .95 953 952
Children 1.14 1.07 1.05 1.07 99 993 993
Teens (11-19) 012 .023 022 023 01 .002 .002
Teens .043 .045 046 046 .05 045 .044
Teens 065 062 .063 .063 .10 110 .106
Teens .106 .100 .102 .102 25 274 267
Teens 163 160 162 162 .50 S11 .503
Teens 236 240 243 243 75 740 733
Teens 323 331 335 335 .90 891 .887
Teens 389 395 397 399 95 947 944
Teens .526 .533 536 .539 .99 989 988
Adults 1 (20-64) 022 033 034 034 01 .003 .003
Adults 1 .059 059 .060 060 .05 .049 .048
Adults 1 .080 078 078 079 .10 .105 .103
Adults 1 124 119 120 .120 25 270 268
Adults 1 182 179 .180 .180 .50 510 507
Adults 1 253 258 257 258 75 738 737
Adults 1 337 345 347 345 90 .891 .890
Adults 1 400 405 401 405 95 947 947
Adults 1 .548 .534 .545 534 .99 992 992
Adults 2 (65+) 045 .056 054 055 01 .004 005
Adults 2 .087 .086 085 085 .05 .052 .055
Adults 2 .109 .106 .105 105 .10 .109 112
Adults 2 150 147 146 .146 25 263 267
Adults 2 203 204 203 203 .50 497 499
Adults 2 271 274 274 274 75 742 742
Adults 2 347 349 351 350 .90 .898 .896
Adults 2 400 399 399 401 95 950 949
Adults 2 513 .506 512 510 .99 .991 .990
All 017 .027 027 .027 .01 .003 003
All .058 054 055 054 .05 .058 .058
All 082 075 076 075 .10 118 119
All 130 123 123 123 25 274 275
All 194 197 .196 197 .50 491 491
All 280 296 296 296 75 718 718
All .398 410 406 409 90 .890 .890
All .500 489 488 489 95 955 955
All .798 662 .682 662 .99 997 .997
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Figure 3.1 Tap Water Intake P-P Plots: Children (EFH Table 3-7)
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Figure 3.2 Tap Water Intake Q-Q Plots: Children (EFH Table 3-7)
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Analysis of Population Mobility

Data

4.1 Methods

411 Data

The Exposure Factors Handbook (EFH) has three key studies for population mobility. Each
study uses a unique approach to define and estimate residence time. Israeli and Nelson (1992) work with
current residence time (time since moving into the current residence) and total residence time (time
between moving into and out of a residence). Current residence time does not seem to be directly
relevant to risk assessment because it is censored; that is, the unobserved residence time is ignored.

Total residence time is more relevant, but Israeli and Nelson (1992) apparently estimate it in a way that
allows frequent movers to contribute more times than infrequent movers. The result is a residence time
distribution that tends to be much shorter than those‘ from the other two key studies; that is, median is 1.4

years versus a median of 9 years for each of the other two key studies.

The second key study is based on a national survey by the U. S. Bureau of the Census (1993) of
55,000 housing units that yielded 93,147 res’idence times. Residents were asked about time lived at

current and past residences.

Johnson and Capel (1992) used a simulation model to estimate the distribution of residential
occupancy periods based on a methodology described in the EFH. Occupancy period is the time between
a person moving into a residence and moving out or dying. Census data were used for the dynamics of

mobility. Data from the National Center for Health Statistics were used for mortality.

Table 4-1 contains estimates of selected percentiles from the three key studies. For Israeli and

Nelson (1992), total residence time is used.

41
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The residence time distributions for the second and third key studies are fairly similar at the
25% 50" and 75™ percentiles, but the distribution of Johnson and Capel (1992) has a shorter right tail
than the Census Bureau (1993) distribution. Times from Israeli and Nelson (1992) tend to be much

shorter.

The first of two relevant studies (National Association of Realtors, 1993) estimated an average
occupancy period of 7.1 years for homeowners. However, the response rate was only 12%. The second
relevant study (Lehman, 1994) estimated average residence tinieé as ‘14.3, 13.4, and 12 years for 1991,
1992, and 1993, respectively. Apparently, residence times are decreasing. The 12-year average is

similar to the estimate of Johnson and Capel (1992).

Based on discussions and comparisons of the studies, Johnson and Capel (1992) seem to
provide the most representative summary for EPA risk assessment purposes. They are the only source of
age-specific distributions, and age is clearly a relevant factor. The analysis of population mobility data
will therefore focus on the age-specific distributions of EFH Table 14-159, taken from the simulation
study of Johnson and Capel (1992).

4.1.2 Statistical Methods

Models were fit to the 30 different age groups of EFH Table 14-159, which includes simuiated
averages and six percentiles for each group. The data of Johnson and Capel (1992) from EFH Table 14-
159 are shown in Table 4-2. The simulation sample size was 0.5 million, or about 17,000 per age group.
However, because their data came entirely from Monte Carlo simulations, it did not seem appropriate to
treat them as if they had come from a sample survey of a “real” population. Accordingly, the weighted
least squares (WLS) regression methods wére used to estimate models whose cumulative distribution
functions (CDFs) came as close as possible to the nominal probabilities at the tabulated percentiles. The
models used were the generalized gamma and its three two-parameter special cases (gamma, lognormal,
and Weibull). The adequacy of fit of the two-parameter models was evaluated by comparison with the fit
of the generalized gamma distribution, using an F test with one degree of freedom for the numerator and

three degrees of freedom for the denominator. This is a GOF test relative to the three-parameter model.
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4.2 Results

Table 4-3 summarizes results. For each age group, the best fitting two-parameter model is

indicated in column 2. Columns 3 through 8 contain the values of the estimated CDFs for these models

at the tabulated quantiles from EFH Table 14-159. As for tap water consumpﬁon, the goal is to estimate

the CDF in order to come as close as possible to the nominal cumulative probabilities of 0.25, 0.50, 0.75,
0.90, 0.95, and 0.99. Columns 9 and 10 contain the estimated mean for the fitted model and the
simulated mean from EFH Table 14-159. The next to last column contains the F test p-value, PGOF, for .
goodness-of-fit (GOF) of the selected model relative to the three-parameter generalized gamma model.
The generalized gamma distribution improves significantly on the best fitting two-parameter model at the
5% significance level whenever PGOF <0.05. This occurs in 6 of 30 cases. In 20 of 30 cases, the best

fitting two-parameter model was the Weibull model.

4.3 Uncertainty Analysis

Information on parameter uncertainty distributions can be summarized as for tap water
consumption in Section 3, using parameter estimates and the asymptotic covariance matrix produced by
the SAS nonlinear regression (NLIN) procedure. For the gamma and Weibull models, logarithms of the
usual positive parameters should be used. For the lognormal model, the parameters should be the mean

and logarithm of variance of the logarithm of residence time.

Work is in progress to develop parameter uncertainty distributions for population mobility.

4.4 Conclusions

Given that all three types of the basic two-parameter models are needed to adequately fit the
population mobility data, it might appear simpler just to tabulate the best fitting generalized gamma
distributions. However, this would somewhat complicate the uncertainty analysis, which would require
the use of a trivariate normal distribution with some parameters very highly correlated, or the use of one

of the other uncertainty methods.
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Another promising approach to population mobility as well as tap water consumption involves

the use of generalized gamma regression models (Section 2.2.6).

The analysis of population mobility data focused on the age-specific distributions of EFH
Table 14-159 taken from the simulation study of Johnson and Capel (1992). However, Israeli and Nelson
(1992) provide results for geographic regions, farms, urban versus rural, and renters versus owners.
These factors are also relevant. Efforts are under way within EPA to develop region-specific

distributions for residence time.

Extensive information on population mobility is available on the worldwide web
(http://www.census.gov/prod/1/pop/p20-485.pdf). We recommend that this information be reviewed to

determine its applicability to estimation of population mobility distributions.

Johnson and Capel (1992) developed a methodology to determine the distribution of residential
occupancy periods in a simulated population of 500,000 individuals. The input data used for this
analysis are considered representative of the general U.S. population. Therefore, the distributions
presented in Table 4-3 may be used when the general population is the population of concern and for the

age groups presented.
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Table 4-1. Selected Percentiles of Residence Times in Years from Three Key Studies

Statistic Israeli & Nelson (1992) Census Bureau (1993)  Johnson & Capel (1992)
25" percentile 0.5 4 4
50™ percentile 14 9 9
75" percentile 3.7 18 16
90™ percentile 12.9 32 26
95" percentile 23.1 40 33
Average 4.6 N/A 11.7
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Table 4-2. Residence Time® Distributions in Years from Johnson and Capel (1992)

Percentile
Age Mean
Group Years 25" 50 75t 90t 95th 99t
00-03 6.50 3 5 8 13 17 22
04-06 8.00 4 7 10 15 18 22
07-09 8.90 5 8 12 16 18 22
10-12 9.30 5 9 13 16 18 23
13-15 9.10 5 8 12 16 18 23
16-18 8.20 4 7 11 16 19 23
19-21 6.00 2 4 8 13 17 23
22-24 5.20 2 4 6 11 15 25
25-27 6.00 3 5 8 12 16 27
28-30 7.30 3 6 9 14 19 32
31-33 8.70 4 7 11 17 23 39
34-36 104 5 8 13 21 28 47
37-39 12.0 5 9 15 24 31 48
40-42 13.5 6 11 18 27 35 49
43-45 15.3 7 13 20 31 38 52
46-48 16.6 8 14 22 32 39 52
49-51 174 9 15 24 33 39 50
52-54 18.3 9 16 25 34 40 50
55-57 19.1 10 17 26 35 41 51
58-60 19.7 11 18 27 35 40 51
61-63 20.2 11 19 27 36 " 41 51
64-66 20.7 12 20 28 36 41 50
67-69 21.2 12 20 29 37 42 50
70-72 21.6 13 20 29 37 43 53
73-75 21.5 13 20 29 38 43 53
76-78 21.4 12 19 29 38 44 53
79-81 21.2 11 20 29 39 45 55
82-84 20.3 11 19 28 37 44 56
85-87 20.6 10 18 29 39 46 57
88-90 18.9 8 15 27 40 47 56
Adult 16.2 8 14 22 30 36 48
All 11.7 4 9 16 . 26 33 47

*Number of years between the date that a person moves into a new residence and the date that a
person dies or moves out of the residence.
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Table 4-3. Results of Statistical Modeling of Population Mobility Data®

Age Best Model Data
Group Model P25 P50 P75 Poo P95 P99 Mean Mean PGOF

00-03 Wei2 287 485 709 904 965 991 6.3 6.5 .088
04-06 Wei2 257 513 718 .909 959 .988 7.7 8.0 597
07-09 Wei2 248 491 758 910 .949 986 8.8 8.9 299
10-12 Wei2 217 527 779 .894 .940 989 9.3 9.3 096
13-15 Wei2 252 492 755 .906 946 .989 8.8 9.1 720
16-18 Wei2 252 495 744 911 957 985 8.1 82 745
19-21 Gam?2 260 480 752 .905 956 987 5.8 6.0 949
22-24 Log2 237 542 721 904 953 .989 52 52 782
25-27 Log2 245 509 752 894 950 991 6.4 6.0 1.00

28-30 . Log2 222 552 744 .890 948 .989 73 7.3 336
3133 Log2 241 520 745 894 951 .991 8.9 8.7 751
34-36 Log2 259 495 739 901 953 .991 10.6 10.4 1.00

37-39 Log2 235 515 757 904 949 986 11.8 12.0 .011
40-42 Gam?2 255 .501 740 .896 .956 991 13.5 13.5 192
43-45 Gam?2 248 513 732 905 953 989 15.3 15.3 872
46-48 Wei2 261 497 736 .900 954 991 16.4 16.6 .055
49-51 Wei2 257 486 754 .902 951 989 174 17.4 .882
52-54 Wei2 241 .501 759 .903 951 .987 18.0 18.3 .030
55-57 Wei2 246 498 756 902 952 987 18.9 19.1 123
58-60 Wei2 245 498 762 500 947 .989 19.7 19.7 204
61-63 Wei2 235 517 749 904 949 .988 20.1 20.2 .118
64-66 Wei2 233 516 755 .900 949 .988 20.9 20.7 042
67-69 Wei2 231 .507 767 904 950 985 212 21.2 .002
70-72 Wei2 253 493 755 .896 .952 990 212 21.6 763
73-75 Wei2 254 491 751 .905 .950 989 21.7 21.5 .933
76-78 Wei2 251 486 762 904 953 .986 21.1 214 413
79-81 Wei2 229 520 754 .904 951 .986 21.3 212 .048
82-84 Wei2 243 S10 751 .895 .952 .990 20.6 20.3 518
85-87 Wei2 239 498 768 903 951 .986 20.5 20.6 .039
88-90 Wei2 244 483 770 919 956 981 18.6 18.9 259

*Tabulated probabilities are obtained by evaluating the best fitting two-parameter CDF at the percentile value of Johnson and
Capel (1992), from Table 4-2. .
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Application to Inhalation Rates

The treatment of long-term inhalation rates relies on Francis and Feder (1997), who provide a
thorough review of available data sources for estimation of long-term and short-term inhalation rate
distributions. The authors identify several areas where data are lacking or are out of date and make
several recommendations for improving data sources. As Francis and Feder (1997) point out, a
potentially important technique for estimating long-term breathing rate distributions is to combine
activity pattern distributions with short-term activity-specific breathing rate distributions. Because

activity pattern distributions have not yet been developed, this approach is not yet applicable.

Computation of risk for a defined population typically involves sums of products of random
variables. The summation is over exposure pathways. For a given pathway, the risk is typically a
product of factors. The estimation of distributions for inhalation rates is somewhat similar to a risk

assessment, because inhalation rates are themselves the product of component factors.

The approach used to address inhalation rates is considered reasonable when very limited data,
such as only estimated means and standard deviations, are available. The method used is motivated by
Rai et al. (1996). Assuming independence of the factors within each subpopulation, the mean and
standard deviation of the product can be estimated. Since distributional information for the individual
factors is not available, model uncertainty is present. Therefore, it is recommended that the lognormal
and at least one of the gamma and Weibull distributions with the same estimated product mean and
standard deviation be used in risk assessment. In some cases (e.g., if the coefficient of variation [CV] of
the product is on the order of 50% or less), these distributions may be sufficiently similar that risk
assessment can be reasonably based on any one of them. “For small variance it is likely to be difficult to

discriminate between lognormal models and gamma models” (McCullagh and Nelder, 1983).
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51 Data

Layton (1993) is the only study referenced in the Exposure Factors Handbook (EFH) that
allows direct calculation of long-term breathing rate (expressed as cubic meters [m®] per day) without
combining activity distributions with short-term breathing rate distributions. Layton's methods are based
on oxygen consumption associated with energy expenditures. The general equation for a metabolically

based determination of ventilation rate is:

Ve=E*H*VQ 5.1
where
Ve = ventilation rate (inhalation rate) (m?/day)
E = energy expenditure rate in megajoules/day (MJ/day)
H = oxygen uptake factor, the volume of oxygen (at standard temperature and pressure,

dry air) consumed in the production of 1 MJ energy expended (m*/MJ)

vQ

ventilatory equivalent, the ratio of minute volume to oxygen uptake (unitless).

Layton (1993) presented three approaches for the calculation of Vi based on different methods
for estimating the energy expenditure rate. Layton's first method estimates food energy intake from the
1977-1978 National Food Consumption Survey (NFCS) and the National Health and Nutrition
Examination Survey INHANES II). Layton argues that the NFCS and NHANES II estimates are biased

low and develops a correction factor of 1.2.

Layton's second method is based on the relationship EEBMR * A, where BMR is the basal
metabolic rate (MJ/day) and A is the ratio of the total daily energy expenditure to the daily BMR. BMR
values for specific gender/age cohorts are provided by Layton as means and standard deviations that can

be used to develop energy expenditure distributions. Sample sizes for each gender/age group range from
38 to 2,879 and are based on Schofield (1985).

Layton's third method is to combine activity pattern distributions with short-term activity-

specific breathing rate distributions. For reasons given in the introduction to this section, this approach is
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not pursued at this time. The second approach is used here. The first approach is not used because of the

arbitrariness of the bias correction factor 1.2.
To apply Layton's second method, the basic equation (5.1) becomes
Ve=BMR* A *H*VQ
where:

BMR = basal metabolic rate (MJ/day)
A = (aka, PAI or MET) ratio of total daily energy expenditure to daily BMR.

Table 5-1 contains the statistical summaries that were used to estimate the distribution of V.
This is essentially the same information as given by EFH Table 5-12, supplemented by population
variance estimates for each quantity. The derivation of the estimated means and standard deviations in

Table 5-1 for ventilation rate (V) were as follows:

The mean of oxygen uptake factor (H) was a weighted average from NFCS and NHANES
II. We assumed a 10% CV for H based on the idea that any human biochemical attribute
must have at least this much variability. However, larger values (10%-20%) may be more

reasonable in some situations.

Ventilatory equivalent (VQ) estimates for ages 0-3 were pooled estimates from Stahlman
and Meece (1957) and Cook et al. (1955). A log transformation of the geometric mean
and geometric standard deviations reported in the EFH was used to obtain means and
standard deviations of log (VQ). A weighted average of the means and variances of log
(VQ) was used to obtain pooled estimates. These pooled estimates were then transformed
to obtain the mean and variance of an assumed underlying lognormal distribution. (VQ

statistics for ages greater than 3 are from Layton, 1993; five studies pooled).

BMR estimates of the mean were obtained from Table 5-12 in the EFH. EFH Table 5A-4
provided CVs for the same age categories, so the means from Table 5-12 and CVs from

Table 5A-4 were used to calculate the standard deviations. Values of BMR and VQ were
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chosen to reflect “average” people and are not intended to represent population extremes

(e.g., marathon runners).

W Ratio of total daily energy expenditure (A) for ages 0-10 was obtained from Griffiths and
Payne (1976). A weighted average of the CVs for A from the 10-60 age groups for males
and females to obtain a CV for ages 0-10 was used. Estimates of A for ages 10-60 were
obtained from Basiotis et al. (1989). Estimates for ages >60 were obtained from James et
al. (1989), who summarized five studies for ages >60. Means were calculated from the
three estimates for females and four estimates for males. CVs were assumed to be the

same as for ages 10-60.

5.2 Statistical Methods

Since the available data consist of means and standard deviations, the only applicable non-

Bayesian estimation technique is the method of moments.

The following calculations were carried out for each of the 12 groups defined by gender and the
six age ranges (0-3, 3-10, 10-18, 18-30, 30-60, >60 years). Using the estimated means and standard
deviations from Table 5-1, the mean and variance of inhalation rate (BMR*A*H*VQ) were estimated,
assuming the four factors are statistically independent within each subpopulation. Since independence is
assumed only within each subpopulation, this allows for some dependence among the factors (i.e., does
not assume overall independence of these factors). Independence implies that the mean of the product is
the product of the means. If X and Y are two independent random variables with means MX, MY, and
variances VX, VY, then the variance of the product of X*Y is given by

variance of X*Y = VX*VY + VX*MY? + MX? * VY.

The variance of a product of more than two terms can be obtained by repeatedly applying this relation.
Finally, the gamma and lognormal distributions with the given product means and variances were

calculated and compared.

Since only moment information was available, the standard goodness-of-fit tests are not

applicable.
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To obtain parameter distributions for uncertainty analysis, the following two approaches are
possible. Under the assumption that each of the four factors has a specific distribution (e.g., lognormal),
distributions for the individual factor means and variances could be obtained by using a normal or t
distribution for the mean and a chi-square distribution for the variance. However, this would be a
questionable approach if gamma distributions were assumed for the factors. A bootstrap method would

be applicable for either the gamma or lognormal assumption.

The bootstrap method using the gamma case is described for illustration. One thousand
simulated copies of Table 5-1 would be generated by assuming gamma distributions with the tabulated
means and standard deviations for each factor and group. For each of these 1,000 tables, the 12
estimated means and variances of the products of Equation 5.2 would be calculated. This would yield a.

bootstrapped distribution for the gamma parameters.

This uncertainty analysis requires special methods based on the method of moments and is

planned for a future manuscript.

5.3 Results

Table 5-2 contains estimated means and CVs for inhalation rates, using the methods of
Secfion 5.2 for calculating the mean and variance of a product of independent random variables. Except
for ages <3, most of the CVs are on the order of 30%. Because the CVs are of moderate size, the
quantiles of the estimated gamma (XG50, XG90, XG95, XG99) and lognormal (XL.50, X190, XL95,
X1.99) distributions are reasonably similar. The %Diff measure was calculated as the average absolute
percent discrepancy between the four gamma and lognormal estimated quantiles, that is, as
[XG99 - X1.99 | / [(XG99 + XL.99) / 2], using the average of the two estimated quantiles as the nominal

value.

54 Conclusions

For most purposes, the difference between the gamma and lognormal distributions would
probably be negligible, and the lognormal distributions could be used. If the CVs had been larger (e.g.,

CV>100%), the difference between gamma and lognormal distributions would have been much more
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evident. It thus appears that lack of knowledge of distributional form for the individual factors is not a

serious drawback, because the individual factors and the product do not have large CVs.

However, the values assumed for the means and standard deviations of individual factors are
important determinants of the product distribution. ‘Francis and Feder (1997) have reviewed the available
data sources, including those used here and have made a number of recommendations for updating and

improving estimates based on more recent and more relevant data.

The results presented in this analysis are based on the Layton (1993) study in which inhalation
rates were determined indirectly, based primarily on the BMR and energy expenditures. BMR values
were determined based on the literature, and energy expenditures were calculated based on the USDA
1977-78 NFCS. Therefore, this distribution may be used when conducting an assessment where the U.S.
national population is of concern. These values also represent daily average inhalation rates and are not

applicable to activity-specific inhalation rates (short—terrh).
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Table 5-1. Parameter Estimates for Individual Factors Affecting Long-Term Inhalation Rates

(m’/day)
Standard Coefficient
Parameter Age Group Gender Mean Deviation of Variant Sample Size
H ALL Both 0.05 0.005 10.0 51,092
vQ 0-3 Both 28.01 7.44 26.6 61
vQ >3 Both 27.37 4.56 16.7 75
BMR 0-3 Male 340 2.07 60.9 162
BMR 3-10 Male 430 0.52 12.1 338
BMR 10-18 Male 6.70 1.34 20.0 734
BMR 18-30 Male 7.70 0.92 11.9 2,879
BMR 30-60 Male 7.50 0.98 13.1 646
BMR >60 Male 6.10 1.04 17.0 50
BMR 0-3 Female 2.60 1.53 58.8 137
BMR 3-10 Female 4.00 0.52 13.0 413
BMR 10-18 Female 5.70 0.86 15.1 575
BMR 18-30 Female 5.90 0.83 14.1 829
BMR 30-60 Female 5.80 0.64 11.0 372
BMR >60 Female 5.30 0.64 12.1 38
A 0-10 Both 1.58 0.30 19.6 12
A 10-60 Male 1.59 0.33 20.8 13
A 10-60 Female 1.38 0.24 17.4 16
A >60 Male 1.52 0.32 20.8 14
A >60 Female 1.44 0.25 17.4 14

Table 5-2. Estimated Mean, Coefficient of Variation, and Quantiles for Inhalation Rate (m*/day),
Assuming Gamma or Lognormal Distribution

Age Sex Mean CV XG50 XL50 XG9% XI90 XG95 XL95 XG99 XIL99 %Diff

0003 M 752 73 6.2 6.1 149 141 182 178 257 279 4.61
00-03 F 575 71 4.8 47 112 107 137 134 192 208 4.47
03-10 M 930 30 9.0 89 13.0 130 143 145 170 17.7 1.54
03-10 F 8.65 31 84 83 122 121 134 135 16.0 16.6 1.57
10-18 M 1458 36 140 13.7 215 214 240 242 292 306 1.94
10-18 F 10.76 31 104 103 151 151 167 16.8 199  20.7 1.57
1830 M 1675 31 162 160 237 23.7 262 265 31.3 326 1.63
1830 F 11.14 30 108 107 156 156 172 173 204 212 1.53
30060 M 1632 32 158 156 232 232 257 259 308 320 1.66
30-60 F 1095 29 107 105 151 151 16.6 16.7 196 203 1.43
>60 M 12,69 34 122 120 184 184 205 207 248 259 1.83
>60 F 1044 29 102 100 145 145 159 16.0 18.8 195 1.46
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Discussion and Recommendations

This section discusses applicability on a large scale of the methodology presented here to other
factors in the Exposure Factors Handbook (EFH). Data quality issues are discussed first, then

recommendations are presented.

6.1 Adequacy of Data

As defined in Section 1, a statistical methodology is a combination of an experimental design or
data set, a class of models, and an approach to inference. Although each of these three factors is
important, their relative importance as determinants of the overall quality of the output is the same as the
order given. That is, the quality of the data is obviously the most important factor, the quality of the

models is second in importance, and the approach to inference is third (Cox, 1990; Johnson, 1978).

The greatest possible gains in overall risk assessment quality would come from designing and
conducting a survey of the population of interest for each risk assessment. Ideally, individuals selected
from the population by probability-based sampling would be monitored for periods of time, which would
allow both long-term and short-term parameter estimates. Duplicate diet techniques would be employed,
whereby exact copies of all foods and beverages consumed would be obtained, weighed, catalogued, and
chemically analyzed for each subject. Similarly representative direct tactics would be employed for other
routes of exposure for the same sample subjects. Probability-based surveys are uniquely qualified to
produce representative data on the population of interest. Any other approach entails questionable

assumptions of independence of factors.

However, the customized survey approach will rarely be used. In most cases, exposure assessors
must do the best they can, working with data from diverse sources, summarized in the fashion of the

EFH. For some of the EFH factors, it may be possible to ﬁpdate the key studies.
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In some cases, EFH data are extremely limited and may consist of only a single number, such as
an estimated mean. In such a case, one is tempted to claim that the data are inadequate for choosing
distributions. However, the risk assessor may not have this luxury. In many cases, something must be
done, no matter how limited the data are, or even in a complete absence of data. In fact, cases of such
limited data are precisely the kind where quantification of uncertainty is most important. Expert
judgment may have to be substituted for data, and sweeping, apparently unwarranted, assumptions may
be necessary. Sensitivity analysis is almost essential in such a case. In implementing the sensitivity
analyses, two or three plausible assignments should be made for the distribution of the factor, and a
corresponding number of risk assessment simulations should be done, based on each assignment. Of
course, if F factors each require D different distributions for sensitivity analysis, then F*D separate risk

assessment simulations are required, which could be prohibitivelyiexpensive.

Given only a mean and standard deviation, or only a mean and 99" percentile, one would produce
the corresponding gamma, lognormal, and Weibull distributions. Since each would fit the two given
numbers perfectly, one would have no data-based method for preferring one of the three, and each would
have to be used in risk assessment simulations to investigate sensitivity of conclusions to the type of
distribution. If only a point estimate, such as a mean, were available, one would try to obtain a plausible
population coefficient of variation (CV) or standard deviation by considering similar factors or eliciting
expert judgment. Then, one would determine the gamma, lognormal, and Weibull distributions with the
given mean and standard deviation and recommend that all three be used in risk assessment simulations

to investigate sensitivity of conclusions.

To conclude the discussion of data adequacy, it is important to acknowledge again that situations
will arise where data are so limited that most scientists and statisticians would prefer not to make

distributional assumptions. In some of these cases, empirical distributions may be used.

6.2 Application of Methodology to Other Exposure Factors

The remainder of this section concerns the applicability of this methodology to other exposure
factors of the EFH. The available EFH data summaries can be roughly classified into four cases: (1) six
or more percentiles available, (2) three to five statistics available, (3) two statistics available, and (4) at
most one statistic available. Raw data are rarely available. However, if raw data were available, it would

probably be treated as case 1, unless the sample sizes were very small.
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6.2.1 Case 1: Percentile Data
Summary of Methodology
B Models: 12-model hierarchy based on generalized F with point mass at zero
®  Estimation: maximum likelihood
B Goodness-of-fit (GOF) tests: chi-square and likelihood ratio tests (LRTs)

®  Uncertainty: asymptotic normality for large samples, bootstrap or normalized likelihood for
small samples

Many EFH data summaries contain six or more empirical percentiles for the given population '
and factor. In many cases, other information also is provided, which may include a sample mean,
standard deviation, sample size, and percent exposed or percent consuming. This is referred to as the

percentile case, even though other information besides percentiles is also usually available.

Because more percentiles than moments are available, it seems reasonable to focus the analysis
on the percentiles, using the moment information as a check or validation on the distribution estimated
from the percentiles. However, the possibility of tailoring the inference to all the available information is
not ruled out. For example, the tap water data of Section 3 include nine empirical percentiles, the sample
mean, and sample standard deviation for each age group. Model parameters could be estimated to
minimize the average pefcent error in all 11 of these quantities. The resulting nonstandard estimate
would not have a nice textbook distribution, but simulation or bootstrap techniques could be used to

approximate its distribution to obtain GOF tests and uncertainty parameter distributions.

The joint asymptotic distribution of any specified sample percentiles is known to be multivariate
normal, with known means, variances, and covariances (Serfling, 1980). The joint asymptotic
distribution of specified sample moments is also known (Serfling, 1980). Conceivably, the joint
asymptotic distribution of specified percentiles and moments also could be determined. This would
make it possible to apply a conventional type of asymptotic analysis that takes into account all of the

available sample percentile and moment information.

If six or more percentiles are available, the methods applied in Section 3 to the tap water data are

recommended. Specifically, use maximum likelihood estimation (MLE) to fit the five-parameter
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generalized F distribution and all of the special cases identified in Sections 1 and 2 and used in Section 3.
For formal GOF, use both the chi-square test of absolute fit and the LRT of fit relative to the five-
parameter model. To obtain distributions for parameter uncertainty, use asymptotic normality for large
samples, and use bootstrapping or the normalized likelihood for small samples. Ideally, simulation

studies would be used to at least check on coverage probabilities associated with the uncertainty analysis.

6.2.2 Case 2: Three to Five Statistics Available
Summary of Methodology
M Models: two-parameter gamma, lognormal, and Weibull
® Estimation: minimize average absolute percent error in the available statistics
B GOF tests: bootstrapping
W Uncertainty: bootstrapping

Because the available information is quite limited, consideration should be given to obtaining the

raw data.

If only three to five statistics are available, information is very limited, and it seems important to
use all available quantities in the estimation process. Such limited data also make it difficult to justify
going beyond the two-parameter models. Accordingly, fitting the two-parameter gamma, lognormal, and
Weibull model§, using estimation to minimize the average absolute percent error in all available
quantities, is recommended. (With four or five statistics available, it would also be possible to fit the

generalized gamma, in addition to the two-parameter models.)

If the original sample size n is known, then bootstrapping can be used to obtain p-values for GOF
as well as to obtain parameter uncertainty distributions. To illustrate these applications of bootstrapping,
assume that three statistics are originally available: for example, the mean, standard deviation, and 90%
percentile. Parameters have been estimated for each of the three models (gamma, lognormal, and
Weibull) by minimizing the average absolute percent error. To apply bootstrapping, first generate 1,000

random samples of size n from the estimated (gamma, lognormal; or Weibull) distribution. For each’
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sample, calculate the mean, standard deviation, and 90" percentile. Also for each sample, determine the
minimized average absolute percent error (MAAPE) and note which parameter values achieve the
minimum. Rank these 1,000 MAAPEs from largest to smallest. The p-value for GOF is determined by
the location of the original MAAPE among the 1,000 ordered simulated MAAPEs. For instance, if the
original MAAPE is between the 47™ and 48™ largest ordered simulated MAAPEs, then the p-value for
GOF is 0.048. The parameter uncertainty distribution for each model is simply the discrete distribution
that places mass 0.001 on each of the simulated parameter pairs for that model. The possibility of bias in
the bootstrapped parameter pairs should be checked. If necessary, such bias can be removed by a simple
translation so that the mean of the parameter uncertainty distribution is equal to the original estimated

parameter vector.

~ This bootstrap approach can be used for each of the three types of models. GOF p-values can be
used to decide whether model uncertainty requires that more than one of the three types of models be

used for risk assessment.

6.2.3 Case 3: Two Statistics Available
Summary of Methodology
®  Models: two-parameter gamma, lognormal, and Weibull
B Estimation: exact agreement with the available statistics
B GOF tests: not applicable

M Uncertainty: bootstrap the available statistics for each model

" Another fairly common EFH situation involves only two summary statistics, such as a mean and
upper percentile, or a mean and standard deviation. We will assume for illustrative purposes that the
mean and standard deviation are available. If bio-physico-chemical considerations do not dictate the type
of model, then determining the two-parameter gamma, lognormal, and Weibull distributions that agree
with the given information is recorhmended. Because of the considerable model uncertainty, at least the

first two types of models should be used in risk assessment. In some cases, such as CV<50%, as in
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Section 5 for inhalation rates, the differences between the models may be negligible relative to the

overall risk assessment so that use of any one of the models may be sufficient.

Because of data limitations, the models fit the available data perfectly and formal GOF tests are

not possible.

For parameter uncertainty distributions for each type of model, bootstrapping from the estimated

model can be used to obtain a distribution of parameter uncertainty, as described in Section 6.2.2. That
is, using the original estimated model parameters, 1,000 random samples of the original size are
generated and summarized in terms of the same two quantities, mean and standard deviation. For each
such simulated pair, the model agreeing with the mean and standard deviation is determined. This yields

parameter uncertainty distributions.

6.2.4 Case 4: At Most, One Statistic Available

If this situation arises, it will have to be treated on a case-by-case basis, as described in the fifth
paragraph of Section 6.1. Subjective, even Bayesian methods, would seem to be required, using expert

judgment and analogies with other similar factors to hypothesize models and parameter distributions.

6.2.5 Topics for Future Research

In Section 1.1, we discuss briefly two important problems related to the iid (identically and
independently distributed) assumption: modeling data from complex survey designs and the need to
account for correlations among exposure factors. While both issues were beyond the scope of the present
study, their importance cannot be overstated. Since risk assessors often lack raw data and must work
with published data summaries that may not be properly weighted, it would be useful to investigate
(perhaps by simulation) the magnitudes and nature of inaccuracies that arise by ignoring various aspects
of sample designs. Further, it would be interesting to examine whether these biases might be
differentially reflected in different PDF models and/or estimation procedures; in particular, it would be
useful to compare the robustness of the nonparametric density estimators to the parametric probability

density functions (PDF) models.
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Because many exposures, especially through dietary intake, are strongly correlated, multivariate
PDF modeling may be preferable to the univariate approach presented here. While multivariate models
are more realistic, their complexity makes them much more difficult to fit, estimate, and validate, and
they require considerably more data than their univariate counterparts. Nonetheless, efforts should be
made to extend the topics covered in this report to the multivariate case. Recent availability of user-
friendly software for implementing multivariate parametric PDFs in Monte Carlo risk assessment models
(Millard, 1998; Millard and Neerchal, 1999) suggests that if the data are available and the limitations and
requirements properly understood, multivariate PDF models could be utilized by risk assessors who have

a basic understanding of statistical methods.

Finally, it should be noted that this report does not address temporal correlations within
individuals. Frequently, risk assessors will want to model, longitudinally, an individual’s exposure to
one or more risk factors from birth to some advanced age. However, it is likely that assessors will have
to utilize cross-sectional exposure data reported for discrete age classes. While the methods described in
this report can be used to fit parametric PDFs to such data, there is an implicit assumption that the age-
specific exposure distributions are mutually independent. In reality, a person’s quantile values in the
various age-specific distributions will be correlated. Thus, a person who is in the first quartile of meat
ingestion in the j* age class is more likely to be in the first quartile of the j+1% age class than is a person
who was in the third quartile of meat ingestion in the j™ age class. This problem is similar to the
multivariate exposure factor issue, just discussed, and should have a similar solution. It is important to
investigate and solve both in a manner that allows risk assessors to develop more realistic and flexible

models.







References

Barndorff-Nielsen, OE; Cox, DR. (1994) Inference and asymptotics. New York: Chapman and Hall.

Basiotis, PP; Thomas, RG; Kelsay, JL; Mertz, W (1989) Sources of variation in energy intake by men
and women as determined from one year’s daily dietary records. Am J Clin Nutr 50:448-452.

Bowman, AW; Azzalini, A. (1997) Applied smoothing techniques for data analysis. Oxford, U.X:
Clarendon Press, 193 pp.

Canadian Ministry of National Health and Welfare. (1981) Tapwater consumption in Canada. Document
number 82-EHD-80, Public Affairs Directorate, Department of National Health and Welfare,
Ottawa, Canada.

Chambers, JM. (1973) Fitting nonlinear models: numerical techniques. Biometrika 60(1):1-13.

Conover, WIJ. (1980) Practical nonparametric statistics. New York: John Wiley and Sons, Inc., 493 pp-

Cook, CD; Cherry, RB; O’Brien, D; Kalber, P; Smith, CA. (1955) Studies of respiratory physiology in
the newborn infant. 1. Observations on normal and premature and full-term infants. J Clin Invest
34:975-982.

Cox, DR. (1990) Role of models in statistical analysis. Stat Sci 5(2):169-174.

D'Agostino, R; Stephens, MA,eds. (1986) Goodness-of-fit techniques. New York: Marcel Dekker, Inc.

Dixon, PM. (1993) The bootstrap and the jackknife: describing precision in ecological studies. In:

Design and analysis of ecological experiments. Scheiner, SM; Gurevitch, J, eds. New York:

Chapman and Hall, 445 pp.

71




References ‘ Research Triangle Institute

Efron, B. (1982) Maximum likelihood and decision theory. Ann Stat 10(2):340-356.

Efron, B; Gong, G. (1983) A leisurely look at the bootstrap, the jackknife and cross-validation. Am Stat
37(1):36-48.

Efron, B; Tibshirani, R. (1993) An introduction to the bootstrap. New York: Chapman and Hall.

Ershow, AG; Cantor, K. (1989) Total water and tapwater intake in the United States: population-based
estimates of quantities and sources. Life Sciences Research Office Monograph. Bethesda, MD:
Federation of American Societies for Experimental Biology. Available from 9650 Rockville
Pike, Bethesda, MD 20814.

Evans, M; Hastings, N; Peacock, B. (1993) Statistical distributions, 2™ ed. New York: J. Wiley and
Sons, Inc., 170 pp.

Francis, M; Feder, P. (1997) Development of long-term and short-term inhalation rate distributions.

Draft report. Battelle Memorial Institute, Columbus, Ohio.

Griffiths, M; Payne, PR. (1976) Energy expenditure in small children of obese and nonobese parents.
Nature 260:698-700.

Hattis, D; Burmaster, D. (1994) Assessment of variability and uncertainty distributions for practical risk
analyses. Risk Anal 14(5):713-730.

Israeli, M; Nelson, CB. (1992) Distribution and expected time of residence for U.S. households. Risk
Anal 12(1):65-72.

James, WPT; Ralph, A; Ferro-Luzzi, A. (1989) Energy needs of elderly, a new approach. In: Munro,
HN; Danford, DE, eds. Nutrition, aging and the elderly. New York: Plenum Press, pp. 129-151.

Jennrich, RI; Ralston, ML. (1979) Fitting nonlinear models to data. Ann Rev Biophys Bioeng 8:195-
238. '




Research Triangle Institute References

Johnson, NL. (1978) Approximations to distributions. In: International encyclopedia of statistics.
Kruskal, WH; Tanur, JM, eds. New York: The Free Press, a division of the Macmillan
Company.

Johnson, NL; Kotz, S. (1970) Continuous univariate distributions, vols. 1 and 2. New York: John Wiley

and Sons, Inc.

Johnson, T; Capel, J. (1992) A Monte Carlo approach to simulating residential occupancy periods and
its application to the general U.S. population. Research Triangle Park, NC: U.S. Environmental
Protection Agency, Office of Air Quality and Standards.

Kalbfleisch, JD; Prentice, RL. (1980) The statistical analysis of failure time data. New York: John Wiley

and Sons, Inc.

Kendall, MG; Buckland, WR. (1971) A dictionary of statistical terms, 3™ ed. New York: Hafner
Publishing Co., Inc., 166 pp.

Kendall, M; Stuart, A. (1979) The advanced theory of statistics (three volumes). New York: Macmillan
Publishing Company, Inc. »

Kleinbaum, DG; Kupper, LL; Muller, KE. (1988) Applied regression analysis and other multivariable
methods. Boston: PWS-Kent, 718 pp.

Kotz, S; Johnson, NL. (1985) Encyclopedia of statistical sciences (9 volumes and index). New York:
John Wiley and Sons, Inc.

Krieger, AM; Pfeffermann, D. (1997) Testing of distributions from complex surveys. J Off Stat
13(2):123-142.

Kruskal, W; Mosteller, F. (1979) Representative sampling I: non-scientific literature. Intern Stat Rev
47:13-24.




References Research Triangle Institute

Kruskal, W; Mosteller, F. (1979) Representative sampling II: scientific literature. Intern Stat Rev
47:111-127. |

Kruskal, W; Mosteller, F. (1979) Representative sampling III: the current statistical literature. Intern
Stat Rev 47:245-265.

Law, AM; Kelton, WD. (1991) Simulation modeling and analysis, 2nd ed. New York: McGraw-Hill,

Inc.

Layton, DW. (1993) Metabolically consistent breathing rates for use in dose assessments. Health Phys
64(1):23-36.

Lehman, HJ. (1994) Homeowners relocating at faster pace. Virginia Homes Newspaper, Saturday, June
15, p. El.

McCullagh, P; Nelder, JA. (1983) Generalized linear models. New York: Chapman and Hall.

Mendenhall, W; Wackerly, DD; Scheaffer, RS. (1990) Mathematical statistics with applications, 4* ed.
Boston: PWS-Kent, 713 pp. '

Millard, SP. (1998) EnvironmentalStats for S-Plus. New York: Springer, 381 pP-

Millard, SP; Neerchal, NK. (1999) Environmental statistics. Ir press. Boca Raton, FL: Chapman and
Hall/CRC, 416 pp.

National Association of Realtors. (1993) The estate business series. Washington, DC: National

Association of Realtors, Palisade Corporation.
Prentice, R. (1975) Discrimination among some parametric models. Biometrika 62(3):607-614.

Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP. (1992) Numerical recipes in C: the art of

scientific computing. Cambridge, UK: Cambridge University Press.

74




Research Triangle Institute 7 References

Rai, SN; Krewski, D; Bartlett, S. (1996) A general framework for the analysis of uncertainty and
variability in risk assessment. Hum Ecol Risk Assess 2(4):972-989.

Schofield, W. (1985) Predicting basal metabolic rate, new standards, and reviews of previous work.

Hum Nutr Clin Nutr 39C(suppl) 1:5-41.

Serfling, R. (1980) Approximation theorems of mathematical statistics. New York: John Wiley and

Sons, Inc.

Shah, BV; Barnwell, BG; Bieler, GS. (1997) SUDAAN user’s manual, release 7.5. Research Triangle
Park, NC: Research Triangle Institute. (email: sudaan@rti.org; website:
http://www.rti.org/patents/sudaan/html)

Stahlman, MT; Meece, NJ. (1957) Pulmonary ventilation and diffusion in the human newborn infant. J
Clin Invest 36:1081-1091.

Stephens, MA. (1974) EDF statistics for goodness of fit and some comparisons. J Am Stat Assoc
69(347):730-737.

Thompson, SK. (1992) Sampling. New York: John Wiley and Sons, Inc., 343 pp.

U.S. Bureau of the Census. (1993) Geographical mobility: March 1991 to March 1992, Current
Population Reports, pp. 20-473.

U.S. Department of Agriculture. (1984) Nationwide Food Consumption Survey, 1977-78 Individual
Intake Data. Spring, Summer, Fall and Winter Basic Individual Food Intake Surveys. NTIS
Accession Nos. PB80190218/HBF, PB80-197429/HBF, PB8020023/HBF, and PB81-
118853/HBF. Springfield, VA: National Technical Information Service, US Department of

Commerce.

U.S. Environmental Protection Agency. (1997a) Office of Research and Development, National Center
for Environmental Assessment, Washington, DC. Exposure factors handbook. Final, vols L1IIL,
1. EPA/600/P-95/002F(a-c). '

7-5




References Research Triangle Institute

U.S. Environmental Protection Agency. (1997b) Guiding principles for Monte Carlo analysis. Risk
Assessment Forum, EPA/630/R-97/001.

U.S. Environmental Protection Agency. (1999) Report of the Workshop on Selecting Input Distributions
for Probabilistic Assessments. National Center for Environmental Assessment, Washington, DC.

EPA/630/R-98/004.




Research Triangle Institute References

This page intentionally left blank.







Appendix A

Glossary

asymptotic normality—Refers to the condition in which the sampling distribution of a parameter
estimate approaches that of a normal distribution as the sample size becomes “large.” Depending on the
estimator, large usually means 30 to 60 observations. When these conditions hold, the estimate is said to
be asymbtotically normal, and the normal approximation can be used to establish confidence limits for
the parameters. One of the many desirable attributes of maximum likelihood estimators is that they are

asymptotically normal under fairly simple but broadly applicable conditions.

Bayesian inference—A method that regards model parameters as random variables with prior
probability distributions reflecting prior knowledge about the parameters. Bayesian inference is based,

via Bayes Theorem, on the conditional (posterior) distribution of the parameters, given the data.

bootstrap estimation—A technique for estimating the variance and/or the bias of a sample estimate of a
population parameter by repeatedly drawing (with replacement) a large number (e.g., 1,000) of new;
“bootstrap” samples from the original sample. The sample size of each bootstrap sample is the same as
the original sample. The variance and bias estimators are computed from the distribution of the bootstrap
samples. This technique is most useful for cases where there is no known closed-form estimator for the
population variance or in other situations where the usual estimators are not appropriate (e.g., for small '

sample sizes).

coefficient of variation (CV)—A dimensionless measure of dispersion, equal to the standard deviation

divided by the mean, often expressed as a percentage.

complex sampling design—A sampling design in which individual population elements do not have
equal probabilities of selection. Complex sample surveys generally incorporate stratification and/or
clustering wherein the population members may be correlated. As a consequence, the iid assumption

(see p. A-3) may not hold for the sampled population members.
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confidence interval—The interval or region about a sample estimate within which the desired
population parameter is expected to occur with some specified probability (i.e., the true value of the

population parameter will lie within the interval or range for 95% of all samples).

continuous random variable—A random variable that may take on an infinite number of values. The

cumulative distribution function of a continuous random variable is therefore a smooth function.

correlation coefficient—A scale-invariant measure of the association between two variables that takes
on values between —1 and +1. The correlation coefficient has a value of +1 whenever an increase in one
is accompanied by an increase in the other, zero when there is no relationship (i.e., the two variables are

independent of one another), and -1 when there is an exact inverse relationship between them.

covariance—A scale-dependent measure of the tendency of the values of one variable to change with
those of a second variable. Algebraically, the covariance is the expected value of the product of the
deviations of two random variables from their respective means. When this product is zero, the two

variables are said to be uncorrelated; otherwise, they will be correlated.

covariates—Random variables (discrete and/or continuous) that are specified as predictor variables in a

multivariable model.

cumulative distribution function (CDF)—F(x) equals the probability that a randomly chosen member
of a population has a value less than or equal to x for the variable of interest. With reference to a random
variable X, the CDF of X, F(x), is the probability that the random variable X does not exceed the number
X. Symbolically, F(x) = P[X< x].

degrees of freedom (df)—As used in statistics, df has several interpretations. A sample of » variate
values is said to have n degrees of freedom, but if £ functions of the sample values are held constant, the
number of degrees of freedom is reduced by k. In this case, the number of degrees of freedom is
conceptually the number of independent observations in the sample, given that k functions are held
constant. By extension, the distribution of a statistic based on » independent observations is said to have

n-p degrees of freedom, where p is the number of parameters of the distribution.
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discrete random variable—A random variable that may take on only a finite number of values. The

CDF of a discrete random variable is therefore a step function.

empirical distribution function (EDF)—The sample estimate of the CDF. For any value of X=x,, it is
the proportion of observations that are less than or equal to x;. The graph of the EDF is a step function
for which the value at X=x; is n;/n, where n, is the number of sample observations with values of X<x;
and n is the total number of observations in the sample. The plot is a series of steps ascending, left to

right, from 0 to 1.

goodness-of-fit (GOF) test—Any of several statistical tests of the null hypothesis that the population
distribution of the observations is a specified probability distribution or is in a specified set of probability
distributions (e.g., the lognormal distribution). The tests evaluate whether or not the EDF is significantly

different from the specified CDF.

iid assumption (independent and identically distributed assumption)}—Assumes that the values of a
random variable in a sample are not correlated with each other and that they share a common probability
density function (PDF). This assumption will hold for data collected by simple random sampling but

(usually) not for data from more complex (i.e., stratified and/or clustered) sampling designs.

kernel density estimation—A technique for estimating the probability density of a distribution by fitting
a smooth curve to the underlying frequency histogram. The choice of the degree to which the
distribution should be smoothed is crucial and usually is based on criteria that minimize the mean square
error. Unlike the parametric methods that depend on the parameters of a known theoretical PDF, the

kernel estimate is derived entirely from the attributes of the sample EDF.

key study—Designation used in the Exposure Factors Handbook (U.S. EPA, 1997a) to distinguish the
studies that were regarded as the most useful (representative) for deriving a recommendation for an

exposure factor.

likelihood ratio test (LRT)—A parametric test of a null hypothesis that uses as its test statistic (-2)
times the natural logarithm of the ratio of two maximized likelihoods. The numerator likelihood is

maximized under the constraint (condition) of the null hypothesis. The denominator likelihood does not
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have this constraint. The test statistic is usually assumed to have a chi-squared distribution with degrees

of freedom equal to the differences in dimensionality of the two parameter spaces.

maximum likelihood estimator (MLE)—The parameter estimates that maximize the probability of

obtaining the sample observations.

meta-analysis—The process of using statistical techniques to combine the results of several different
studies. Meta-analyses may permit stronger and/or broader inferences than were possible in any of the

constituent studies.

model parameter—Numerical characteristic of'a given population (e.g., the mean and variance of a
normal population) that determines some response of interest in accordance with a specific mathematical
formula. Such an expression is called a model. By convention, statistical model parameters are usually

symbolized as Greek letters.

Monte Carlo methods—Methods used to investigate the properties of an inferential procedure by
applying it to computer-generated data that serve as a surrogate for “real data” collected by random

sampling.

multivariate parametric distribution—The joint theoretical probability distributions of two or more
random variables. The component univariate distributions can be of the same kind (e.g., three lognormal
distributions), or they may be combinations of several different kinds (e.g., lognormal, Weibull, and
exponential). Typically, the component variables are correlated; thus, correlations comprise additional

parameters of multivariate distributions.

P-P (probability-probability) plot—A graph used to subjectively assess GOF. For any given X=x;, the
value of the CDF for the theoretical distribution of interest is plotted on one axis, and the observed value
of the EDF for X=x; is plotted on the other axis. P-P plots that closely approximate a diagonal line
through the origin indicate a good fit between the EDF and the theoretical CDF.

p-value—A value between 0 and 1 that is often regarded as a measure of the belief in a statistical null
hypothesis (H,). In the Frequentist view (vs. the Bayesian view), a test statistic has a specific parametric

distribution when Hj is true. A test statistic is computed from sample data and compared with its
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expected parametric distribution. The p-value is the probability that a value of the test statistic, as
extreme or more extreme than the observed test statistic, came from the null distribution. If the p-value is
less than or equal to the significance level () of the test, the null hypothesis is rejected. A major
objection of Bayesian statisticians to the Frequentist approach is that the specification of the « value

(usually 0.05) is arbitrary.

percent error plots—A graphical GOF test. The difference between the observed and hypothesized
quantile values, expressed as a percent of the hypothesized value, is plotted on the vertical axis versus the
observed quantiles on the horizontal axis. Because the points on the plot are compared with a horizontal
reference line (i.e., percent difference=0) and because of the relative nature of the differences being

displayed, lack-of-fit is more apparent than in P-P or Q-Q plots.

point mass at zero—aA positive probability that the observed value of the random variable is zero (e.g.,
the probability that the amount of tap water consumed by an infant per day is zero). If the distribution of
a random variable, X, is a continuous parametric distribution, the probability of observing a value in the
interval from X=a to X=b.is equal to the area under the probability density function (the derivative of the
CDF) between a and b. By definition, a single point (e.g., X=0) does not occupy any space and, hence,
has probability zero of occurring exactly. Therefore, the distribution for some exposure factors may be a
composite probability distribution that includes a positive probability of observing X=0 and a continuous

parametric distribution (e.g., lognormal) for positive values of X.

probability density function (PDF)—The PDF of a continuous random variable X is the first derivative
of its CDF, f(x) = F'(x). The probability that a < X < b is found by integrating f(x) from a to b.

Q-Q plot—A graph used to subjectively assess GOF. For any given probability value p, the value of the
random variable, X, for which the theoretical CDF is. p; is plofted on one axis, and the observed value of
X=x;, for which the EDF is p; is plotted on the other axis. Q-Q plots that closely approximate a diagonal
line through the origin indicate a good fit between the EDF and the theoretical CDF. Depending on
observed patterns of deviation from the diagonal, lack-of-fit due specifically to differences in location

(i.e., mean or median) and/or scale (i.e., variance) can be diagnosed.

quantile—The g-1 partition values of a random variable that divide a sample or population into q

subdivisions, each of which contain an equal proportion of the sample or population. For example, when
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q=4, the three resulting values are the first, second (=median), and third quartiles that collectively divide
the data into four equal parts.

random variable—A numeric event whose values change from one sampling unit or one experimental

unit to the next. Random variable values may be either discrete or continuous.

relevant study—Designation in the Exposure Factors Handbook (U.S. EPA, 1997a) to distinguish the

studies that were applicable or pertinent, but not necessarily the most important for making a

recommendation for an exposure factor.

representative sample—A sample that captures the essence of the population from which it was drawn;
one which is typical with respect to the characteristics of interest, regardless of the manner in which it
was chosen. While representativeness in this sense cannot be completely assured, randomly selected
samples are more likely to be representative than are haphazard or convenience samples. This is true

because only in random sampling will every population element have an equal probability of selection.

residence time—The time in years between a person moving into a residence and the time the person

moves out or dies.

risk assessment—Qualitative or quantitative estimation of the probability of adverse health or
environmental effects due to exposure to specific behavioral, dietary, environmental, occupational, or

social factors.

sensitivity analysis—The process of varying one or more model parameters while leaving the others
constant to determine their effect on the model predictions. The results help to identify the variables that
have the greatest effect on model estimates and may be useful for fine-tuning the model or identifying

problems for additional research.

simple random sampling design—A sampling design in which every member of the target population
has an equal probability (p=1/N) of selection to the sample. Random variables measured on observations

from a simple random sample satisfy the iid assumption.
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tap water—Water consumed directly from the tap as a beverage or used in preparation of foods and

beverages (coffee, tea, frozen juices, soups, etc.).

uncertainty analysis—Identification of the components of variability of risk that are due to model
uncertainty or parameter uncertainty, that is, to uncertainty in the type of model (e.g., gamma vs.
lognormal vs. Weibull) or uncertainty in the values of model parameters. Parameter uncertainty can be
built into risk assessment simulations by randomly drawing population parameters from appropriate
distributions before selecting individuals from the population. Model uncertainty can be addressed by

sensitivity analysis, using separate simulations for different viable competing models.

univariate parametric distribution—A theoretical probability distribution for a random variable whose
CDF is described by a mathematical function of population parameters (e.g., the population mean and

variance), such as a normal or lognormal distribution.







Appendix B

Fitting Models to Percentile Data

The Exposure Factors Handbook (EFH) (U.S. EPA, 1997a) often uses percentiles to summarize
data for an exposure factor. Let x denote the random variable of interest, that is, x=daily tap water
consumption or x=daily inhalation rate. Theoretically, the 100pth percentile of a continuous distribution
with cumulative distribution function (CDF) F(x) is the value x, for which F(x,)=p. That is, the 100pth

percentile is the value x, for the variable of interest that places 100p% of the probability below X,

A precise definition for empirical percentiles is rather involved because of finite sample size
complications. If the sample size is large enough, think of the 100pth percentile simply as the smallest
data value (x,) with at least 100p% of the sample below it. It can be estimated from the linearly
interpolated empirical distribution function (EDF) by reading over from p on the vertical axis to the

grélph of the linearized EDF, then dropping straight down to the horizontal axis to obtain x,.

The EDF contains all the information in the sample. Ideally, raw data would be available, and
we could calculate and work with the EDF. However, raw data often is unavailable because the
published literature rarely provides it. Even if raw data are available, it is not practical to include all data
points for large samples in the EFH. A summary of percentiles such as those corresponding to p=0.01,
0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, and 0.99 contains much of the information in the original data and

can be used as a basis for estimation of the distribution and testing goodness-of-fit (GOF).

A variety of methods for fitting distributions to percentile data can be identified. Four are

discussed, and three of them are illustrated with a drinking water example from the EFH. -

The problem of estimating distributions for exposure factors seems complicated enough by the
fact that more than a dozen families of theoretical probability distributions may be needed in a toolkit for
fitting environmental data. The most credible and widely used fitting method is maximum likelihood
(ML) estimation. Why not simply use ML estimation? Because it may not be the best method. Some

evidence of this is shown in the treatment of the tap water consumption data in Section 3.
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B.1 Four Methods of Fitting Parametric Models to Percentile Data

Serfling (1980) provides procedures for statistical inference for quantiles based on a large

sample.

We concentrate here on three methods that have better small sample properties, which basically
select an estimated distribution by attempting to make the fitted probabilities F(x,) close to the nominal
values of 0.01, 0.05, 0.10, etc. Graphically, the data are summarized as a plot of the nine points with x,,
plotted on the horizontal axis and p plotted on the vertical axis. The goal is to find a theoretical model
that passes close to the nine data points. The three methods are obtained by using different notior‘is of
closeness and are referred to as weighted least squares (WLS), minimum chi-square (MCS), and ML

approaches.

EXAMPLE: Calculation of WLS, MCS, and ML measures for the tap water consumption data of older
adults.

This example is from Table 3-7 of the EFH. The empirical quantile values x, have the property
that 100p% of the sample are below them. The values of X, and p are in columns 3 and 4 of Table B-1.
The quantile values x, in Table B-1 are those from Table 3-7 divided by 100. This rescaling improves

the performance of iterative search methods used to fit the curves.

The results in Table B-1 are from fitting a gamma distribution. The notes for Table B-1
indicate how the various columns are calculated. Column 5 contains the estimated or fitted probabilities
F(x,). The goal of fitting is to choose F to make these F(x,) values close to the target p’s. This gamma
distribution was chosen to minimize a weighted sum of squares of errors (WSE) whose individual terms

are

n*[F(x,)-p]*[F(x,)-pl p*(1-p)].

These terms are given in column 6 of Table B-1, labeled “Wtd Sqd Err (WSE).” For example, the WSE

term corresponding to p=0.50 is

2541*[(.5 - .4942)*(.5 - .4942)/[(.5)*(.5)] = .345.
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The column total 13.57 is the minimized WSE. That is, F was chosen as the gamma distribution, which

minimizes the sum of these nine WSE terms.

By comparison with the defining formula for the Anderson-Darling (AD) statistic (Law and
Kelton, 1991), it can be seen that this WSE measure is the AD discrepancy limited to the nine available
quantiles. Intuitively, if a parametric distribution that agrees closely with the data at the available
quantiles is selected, good agreement with respect to any aspect of the distribution, such as the mean,

should be obtained.

The chi-square and log-likelihood values for this particular fitted model also are calculated on
the right-hand side of Table B-1. Unlike the WSE/AD measure, the chi-square and likelihood measures
focus on individual rather than cumulative probabilities associated with intervals. This distinction is

illustrated in the diagram below.

1% of prob 4% of prob 5% of prob
is in here is in here is in here
x01 : x05 x10
' { :
1% of cum prob 5% of cum prob 10% of cum prob
is below here is below here is below here

"Thus, column 7 of Table B-1 for nominal probability mass (labeled "Nom Prob Mass pm")
contains successive differences between the nominal cumulative probability values. Similarly, column 8
for estimated probability mass (labeled "Estd Prob Mass pm~") contains successive differences between
the gamma estimated cumulative probability values F(x,). The observed and expected numbers (O and E)
of sample points in each interval are the products of the sample sizes times these nominal and estimated
individual probabilities. That is, column 9 is the product of column 2 times column 7, and column 10 is
the product of column 2 times column 8. The chi-square values in column 11 are calculated as (O-
E)*(O-E)/O. Thé first chi-square value is (25.41-9.57)*(25.41-9.57)/25.41 = 9.874. The log-likelihood

values are the natural logarithms of pm” raised to the O power, that is, O*log(pm").

The sum of the chi-square and log-likelihood values for the fitted gamma distribution are 17.60
and -4870. To obtain the MCS and ML solutions, the gamma parameters would be selected to minimize

the chi-square or maximize the likelihood, rather than to minimize the WSE measure.




Research Triangle Institute

Fitting Models to Percentile

-4

"89¢- = (£68°T)%1°LT1 = (Lud)30],O = PoOU[-30] = 7] UWN[0)

L'0v1 = (#SS0'0)«1#ST

"$0°0=50"0-01"0=(d 3s¥]) -

‘0/[(3-0)«(3-0)] = o1enbS-1Y2 = | UWM[O)
= ud, U = 7 Joqumu pajoadxs = 0] uwnjo)

T'LT1 = (S'0)41PST = WU = O JoquIntl PIAIISO = 6 UTIN[O))
"L6¥0°0-1S0T°0 = [(*) 158]] -(*X) = ssewr qoid pajewimiso — § wumjo)

d=ssew A1qeqoid [BUILION = / UWN[OD
- “p ‘ summpoo Sursn [(d-d)AI(N)I-d)[(X)d-d)} 4u =

9 uwn{o)

‘(%) onjeA 3@ BWuIeS popl = ¢ uwmjo)
"001 AQ PapIAIp ‘.-€ S[qeL Hd woy ajnuenb [eornduwo oY) = ¢ UMD
"01°0=d ‘¢ MOI 10 suone[no[eo sdures :SAON

0.8y~  09'LI LS€l
1Z1- eSO €LIT IFST  S800°0 100 000'1 01 1§24 +59
8ze- 1000 €101 9101 66£0°0 v00 0PSO S166%0 660 €150 18494 +$9
vLE-  ¥SEO0  8EEl 0°LT 92500 SO0 YEL'O 91560 $60 - 00t 75T +59
LOL-  80L0  9'L6E  TI8E  S9SI0 SI'0  IE00 68680 060-  LYEO 1§74 +59
¢88- 6200  OIE9  €SE9  €8YT0 STO  L9L0  STWLO L0 1LT0 18294 +59
616~ SOI'T  T86S  £SE9  PSETO STO  SVE0  TW6Y0 050 €0T0  1¥ST +59
piL- 6200  S06€  TI8E  LESI'O SI0 19071 88570 570 0S1°0 18274 +$9
89¢-  LLYT L'ov1 LTl $S50°0 00 0EL0 15010 01°0 601°0 75T +59
€1e-  TeLe  L9Tl 9’101 6510°0 v0'0  S000  L6¥0'0 $0°0 L80°0 1§25 +59
Twl-  pL86  OLS'6  I¥'ST  8€000 100 ¥L66  8€00°0 100 SH0°0 18254 +59
Jud wd  (FSM) d
q 0 SSEJAI SSBJAI Jag “*)a qoxd u
ayry  aaenbg wny wnpN qoaxd qoigq pbs pIsy wn) P AZIS dnoin
o1 gL) pdxy  PsqO pIsH woN P emmed woN spuend odweg o3y
A 11 01 6 8 L 9 S 1 € z 1
HAT Jo L-€ d[qe.], oy 59 98V
J9AQ) S)NPV J0¥ ie( uondwmnsuo)) Ijeps de], Suis() suonduny eLIdILY) JO SHOPE[MI[E) ojdmexq ‘1~ 3lqe.lL

aymyisuj ojbuely yosreasay

ejE(Q 9]1}UB213d 0} S|opol Bumld

B-4



Appendix C

Fitting Quantiles by Combining
Nonlinear and Linear Regression

The approach outlined below was motivated by a July 3, 1997, memorandum from Timothy
Barry, Senior Analyst, Office of Policy and Re-Invention, to Jackie Moya, Environmental Engineer,

Office of Research and Development.

Let F(x) be the cumulative distribution function (CDF) of a nonnegative continuous random
variable X, that is, F(x)=P[X<x ]=the probability of a value<x. Since X is continuous, F is continuous
and strictly increasing, and its inverse FINV exists, so that F[FINV(p)]=p and FINV[F(x)]=x. Let Y=a
X" be a power transform of X with both a and r strictly positive (a>0, 1>0), and let G(y)=P[Y <y] be the
CDF of Y. Recall that y, is the p th quantile of Y iff G(y,)=p. Here iff denotes logical equivalence (“if
and only if”).

Using basic algebra, set theory, and probability, it can be shown that
log (y,)=r - log [FINV(p)]+log (a). (C.1)

Hence, if F and its inverse FINV are known, and there are empirical quantiles y,, for several
different values of p, then the power transform parameters a and r by linear regression of log (y,) on log
[FINV(p)] can be estimated. This is easily extended to cover distributions that are nonnegative and
continuous except for a point mass M at zero. To see this, let H(y)=0 for y<0, H(y)=M+(1-M) G(y) for
¥20, and note that H(y,)=p iff G(y,)=(p-M)/(1-M). Hence for p>M, the pth quantile y, for H is obtained
by solving G(y,)=p,, where p,=(p-M)/(1-M). This leads to

log (y,)=r - log [FINV(p,)]+log (a). (C2)

These arguments suggest the following combined nonlinear/linear regression approach to

ﬁttiné the five-parameter generalized F distribution with a point mass M at zero.

C-1
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Let pmin be the smallest p for which a positive empirical quantile y, exceeds zero. Then M

should not exceed pmin.

1. Perform an outer search on M, or simply use a grid of M values, such as

M =0, 0.1 pmin, 0.2 pmin, . . ., 0.9 pmin.

2. For a given value of M, perform a two-:dimensional search on the degrees-of-freedom

parameters df}, df, of the generalized F distribution.

3. Given M, df|, and df;, estimate a and r by solving the linear regression problem defined by

Equation C.2.
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The Generalized (Power Transformed) F Family
of Nonnegative Probability Distributions
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