FINE PORE DIFFUSER CASE HISTORY FOR FRANKENMUTH, MICHIGAN

by

Thomas A. Allbaugh and S. Joh Kang McNamee, Porter & Seeley, Inc. Engineer/Architects Ann Arbor, Michigan 48108

Cooperative Agreement No. CR812167

Project Officer

Richard C. Brenner
Water and Hazardous Waste Treatment Research Division
Risk Reduction Engineering Laboratory
Cincinnati, Ohio 45268

RISK REDUCTION ENGINEERING LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268

DISCLAIMER

Development of the information in this report has been funded in part by the U.S. Environmental Protection Agency under Cooperative Agreement No. CR812167 by the American Society of Civil Engineers. The report has been subjected to Agency peer and administrative review and approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

FOREWORD

Today's rapidly developing and changing technologies and industrial products and practices frequently carry with them the increased generation of materials that, if improperly dealt with, can threaten both public health and the environment. The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. These laws direct EPA to perform research to define our environmental problems, measure the impacts, and search for solutions.

The Risk Reduction Engineering Laboratory is responsible for planning, implementing, and managing research, development, and demonstration programs to provide an authoritative, defensible engineering basis in support of the policies, programs, and regulations of EPA with respect to drinking water, wastewater, pesticides, toxic substances, solid and hazardous wastes, and Superfund-related activities. This publication is one of the products of that research and provides a vital communication link between the researcher and the user community.

As part of these activities, an EPA cooperative agreement was awarded to the American Society of Civil Engineers (ASCE) in 1985 to evaluate the existing data base on fine pore diffused aeration systems in both clean and process waters, conduct field studies at a number of municipal wastewater treatment facilities employing fine pore aeration, and prepare a comprehensive design manual on the subject. This manual, entitled "Design Manual - Fine Pore Aeration Systems," was completed in September 1989 and is available through EPA's Center for Environmental Research Information, Cincinnati, Ohio 45268 (EPA Report No. EPA/625-1-89/023). The field studies, carried out as contracts under the ASCE cooperative agreement, were designed to produce reliable information on the performance and operational requirements of fine pore devices under process conditions. These studies resulted in 16 separate contractor reports and provided critical input to the design manual. This report summarizes the results of one of the 16 field studies.

E. Timothy Oppelt, Director Risk Reduction Engineering Laboratory

PREFACE

In 1985, the U.S. Environmental Protection Agency funded Cooperative Research Agreement CR812167 with the American Society of Civil Engineers to evaluate the existing data base on fine pore diffused aeration systems in both clean and process waters, conduct field studies at a number of municipal wastewater treatment facilities employing fine pore diffused aeration, and prepare a comprehensive design manual on the subject. This manual, entitled "Design Manual - Fine Pore Aeration Systems," was published in September 1989 (EPA Report No. EPA/725/1-89/023) and is available from the EPA Center for Environmental Research Information, Cincinnati, OH 45268.

As part of this project, contracts were awarded under the cooperative research agreement to conduct 16 field studies to provide technical input to the Design Manual. Each of these field studies resulted in a contractor report. In addition to quality assurance/quality control (QA/QC) data that may be included in these reports, comprehensive QA/QC information is contained in the Design Manual. A listing of these reports is presented below. All of the reports are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161 (Telephone: 703-487-4650).

- 1. "Fine Pore Diffuser System Evaluation for the Green Bay Metropolitan Sewerage District" (EPA/600/R-94/093) by J.J. Marx
- 2. "Oxygen Transfer Efficiency Surveys at the Jones Island Treatment Plants, 1985-1988" (EPA/600/R-94/094) by R. Warriner
- 3. "Fine Pore Diffuser Fouling: The Los Angeles Studies" (EPA/600/R-94/095) by M.K. Stenstrom and G. Masutani
- 4. "Oxygen Transfer Studies at the Madison Metropolitan Sewerage District Facilities" (EPA/600/R-94/096) by W.C. Boyle, A. Craven, W. Danley, and M. Rieth
- 5. "Long Term Performance Characteristics of Fine Pore Ceramic Diffusers at Monroe, Wisconsin" (EPA/600/R-94/097) by D.T. Redmon, L. Ewing, H. Melcer, and G.V. Ellefson
- 6. "Case History of Fine Pore Diffuser Retrofit at Ridgewood, New Jersey" (EPA/600/R-94/098) by J.A. Mueller and P.D. Saurer
- 7. "Oxygen Transfer Efficiency Surveys at the South Shore Wastewater Treatment Plant, 1985-1987" (EPA/600/R-94/099) by R. Warriner
- 8. "Fine Pore Diffuser Case History for Frankenmuth, Michigan" (EPA/600/R-94/100) by T.A. Allbaugh and S.J. Kang
- 9. "Off-gas Analysis Results and Fine Pore Retrofit Information for Glastonbury, Connecticut" (EPA/600/R-94/101) by R.G. Gilbert and R.C. Sullivan
- "Off-Gas Analysis Results and Fine Pore Retrofit Case History for Hartford, Connecticut" (EPA/600/R-94/105) by R.G. Gilbert and R.C. Sullivan

- 11. "The Measurement and Control of Fouling in Fine Pore Diffuser Systems" (EPA/600/R-94/102) by E.L. Barnhart and M. Collins
- 12. "Fouling of Fine Pore Diffused Aerators: An Interplant Comparison" (EPA/600/R-94/103) by C.R. Baillod and K. Hopkins
- 13. "Case History Report on Milwaukee Ceramic Plate Aeration Facilities" (EPA/600/R-94/106) by L.A. Ernest
- 14. "Survey and Evaluation of Porous Polyethylene Media Fine Bubble Tube and Disk Aerators" (EPA/600/R-94/104) by D.H. Houck
- "Investigations into Biofouling Phenomena in Fine Pore Aeration Devices" (EPA/600/R-94/107) by W. Jansen, J.W. Costerton, and H. Melcer
- 16. "Characterization of Clean and Fouled Perforated Membrane Diffusers" (EPA/600/R-94/108) by Ewing Engineering Co.

ABSTRACT

Frankenmuth is a community of 4,000 people in central Michigan. About 25-30% of the flow and 50-70% of the BOD load to the wastewater treatment plant are contributed by a brewery. In January 1986, conversion from a stainless steel broad band coarse bubble diffuser system to fine pore aeration was completed in all of the six existing aeration tanks.

The Frankenmuth retrofit was designed with *in-situ* wastewater oxygen transfer efficiencies (OTE) at average air flow and peak flow based on off-gas tests at other locations. These values were adjusted to account for the significant high strength industrial component of the influent wastewater. The design OTE at 2 scfm/diffuser was only two-thirds that used at 1 scfm/diffuser (α SOTEs of 16.9% and 11.0%, respectively). In spite of lower than expected OTEs, the Frankenmuth retrofit to fine pore diffusers was an economic success. The actual capital cost of installation was slightly more than estimated during the evaluation period, but the projected energy savings appeared to be slightly greater as well.

OTEs were measured by off-gas testing on selected aeration cells on 13 different days between April 1987 and May 1988. Some of the off-gas tests were carried out on consecutive days before and after gas cleaning of the diffusers. No relationship could be developed between gas cleaning and OTE.

The rate of diffuser plugging and fouling at Frankenmuth is significant. The plant staff has employed different methods of determining when cleaning should be done since the fine pore equipment was installed. These have included cleaning when the dynamic wet pressure (DWP) reached 16-18 in. w.g., cleaning with small doses of gas every 2 weeks, and operating at higher air rates than required for oxygen demand to hopefully inhibit biological growth on the diffusers. The first two methods employed in 1986 and 1987 appear to have been successful in maintaining acceptable levels of DWP and system performance. Operating at elevated air flows (January through June 1988) was probably successful in limiting DWP but resulted in a significant increase in system operating cost. The hydrogen chloride gas used was approximately one-third of a pound per diffuser per year during the evaluation state.

The condition of the fine pore diffusers was monitored over the long term by measuring DWP and pressure drop across air distribution orifices in test diffuser assemblies. Four diffusers were placed in one of the six aeration cells, and measurements were obtained at 1 to 2 week intervals. No relationship could be developed between DWP and OTE. However, gas cleaning was effective in controlling diffuser DWP.

This report was submitted in partial fulfillment of Cooperative Agreement No. CR812167 by the American Society of Civil Engineers under subcontract to McNamee, Porter & Seeley, Inc. under the partial sponsorship of the U.S. Environmental Protection Agency. The work reported herein was conducted over the period of 1986-1988.

TABLE OF CONTENTS

	Page
Foreword	iii
Preface	
Abstract	
·	
Figures and Tables	viii
Summary	
Conclusions	
·	
System Description and Performance	3
Aeration System Retrofit Design	
Plugging/Fouling Potential	
33 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	8
Equipment Procurement and Specifications	10
Performance of the New Equipment	11
Off-Gas Oxygen Transfer Testing	
Appendix A - Summary of Plugging/Fouling Potential Test Results	25
Appendix B - Plant Operating Records	28
Appendix C - Off-Gas Oxygen Transfer Test Results	
V G	33

LIST OF FIGURES AND TABLES

<u>Figure</u>		Page
1	Aeration Tank Arrangement	4
2	Total Plant Energy Use vs. BOD Applied	12
3	KWH/lb. BOD vs. Time	
4	Cell 5 DWP vs. Time	17
5	Off-Gas Collections Plan	18
6	Alpha SOTE vs. Time	
<u>Table</u>		Page
. 1	Aeration Retrofit Energy Analysis Predesign Estimates	6
2	Fine Pore Aeration System Retrofit Design Parameters	. 7
3	Summary of Plugging/Fouling Potential Test Results	. 9
4	Electrical Energy Use	. 14
5 ,	Estimated Energy Cost Savings	. 15
6	Gas Cleaning Costs	. 16
7a	Off-Gas Oxygen Transfer Efficiency Test Results - Parallel Plug Flow Operation .	. 19
7b	Off-Gas Oxygen Transfer Efficiency Test Results - Series Flow Operation	
8	Gas Cleaning Results During Off-Gas Testing	
	t e e e e e e e e e e e e e e e e e e e	

SUMMARY

The Frankenmuth retrofit was designed with in waste oxygen transfer efficiencies at average air flow and peak flow based on off-gas tests at other locations. These values were adjusted to account for the significant high strength industrial component of the influent wastewater. The design OTE at 2 scfm/diffuser was only two-thirds that used at 1 scfm/diffuser (11.0% and 16.9% alpha SOTE, respectively).

In spite of the lower than expected OTE's, the Frankenmuth retrofit to fine pore diffusers was an economic success. The actual capital cost of installation was slightly more than estimated during the evaluation period, but the projected energy savings appeared to be slightly greater as well. This results from over-estimating the efficiency of both the coarse bubble and fine pore diffusers during the pre-design evaluation.

The rate of diffuser plugging and fouling at Frankenmuth is significant. The gas cleaning procedure has been practiced at varying intervals as shown in Table 4. The hydrogen chloride gas used was estimated to be approximately one pound per diffuser per year during the evaluation stage. Actual gas use has averaged about one-third that amount.

The plant staff has employed different methods of determining when cleaning should be done since the fine pore equipment was installed. These have included cleaning when DWP reaches 16-18 w.g., cleaning with small doses of gas every two weeks, and operating at higher air rates than required for oxygen demand to hopefully inhibit biological growth on the diffusers. The first two methods employed in 1986 and 1987 appear to have been successful in maintaining acceptable levels of DWP and system performance. Operating at elevated air flows (January through June 1988) was probably successful in limiting DWP, but resulted in a significant increase in system operating cost as shown in Table 5.

CONCLUSIONS

- The off-gas test data clearly shows the effect of changing "alpha" values from inlet end to outlet end of a plug flow aeration tank. Comparing alpha SOTE data for cells 5 and 6 (which always operated in series) found in Tables 7a and 7b shows increases in alpha SOTE ranging from 15% to 103%, for operation at reasonably similar conditions.
- No relationship could be developed between gas cleaning and oxygen transfer efficiency at Frankenmuth.
- No relationship could be developed between dynamic wet pressure (pressure loss across the diffusers) and oxygen transfer efficiency at Frankenmuth.
- Gas cleaning is effective in controlling the diffuser dynamic wet pressure at Frankenmuth.
- Operation at higher than necessary air flows to control DWP does not appear to have been economically successful for Frankenmuth.
- Ceramic fine pore diffusers are economically viable for plants with relatively high plugging/fouling potential.

SYSTEM DESCRIPTION AND PERFORMANCE

Frankenmuth is a central Michigan community of approximately 4,000 people. It is a well known tourist attraction in the State featuring German decor, gift shops and candy stores, and two large restaurants featuring family-style chicken dinners which feed in excess of 10,000 people daily. Frankenmuth is also the home of a G. Heileman Brewery which produces Carling Black Label, and other Heileman products. The City Wastewater Treatment Plant processes all the wastes from the City, and from the brewery as well.

During the study on aerator performance, approximately 25-30% of the flow and 50-70% of the plant influent BOD came from the brewery. The restaurants probably contribute significantly to the plant loading, but there are no long term records to quantify the effect. In the future, brewery waste will be pretreated using an upflow anaerobic sludge blanket system.

The process flow scheme on the plant site consists of a manual bar screen, raw sewage pumping, a square aerated grit tank, two rectangular primary settling tanks, aeration tanks, two fifty-foot diameter final settling tanks, and disinfection with chlorine. Primary and waste activated sludges are combined and anaerobically digested, dewatered with vacuum filters, and hauled offsite to disposal. In-plant recycle streams are returned to the raw sewage pumping station.

The plant's NPDES permit requires 30-day average effluent BOD₅ and SS to be less than 30 mg/l. There is no limit on ammonia nitrogen in the effluent.

AERATION SYSTEM RETROFIT DESIGN

The aeration tankage at Frankenmuth consists of six individual aeration cells, each measuring 44 feet by 22 feet with 15-foot side water depth. The total volume of all 6 cells is 87,000 cubic feet (651,000 gallons). The cells are interconnected as shown in Figure 1. The tank configuration allows considerable operating flexibility, ranging from modified contact stabilization by running up to 4 of the 6 cells in series for return sludge re-aeration followed by the remainder of the cells (2 to 4) for aeration, to conventional plug flow activated sludge with all 6 tanks operated in series. The plant has also been run with Tanks 1 and 2 re-aerating return sludge, and Tanks 4 and 3, and 5 and 6 operating as two parallel two-tank plug flow aeration trains. Normal operation is with Tanks 1 and 2 (and possibly tank 3) re-aerating return sludge, and the remainder of the tanks arranged in series as aeration tanks.

Figure 1 Aeration Tank Arrangement

The air diffusion equipment initially installed was stainless steel broad band coarse bubble diffusers mounted on galvanized steel headers. Four multi-stage centrifugal blowers were provided, each with a nominal capacity of 6,500 cfm. The existing system was not always able to keep up with the oxygen demand of the plant's primary effluent flow. This was at least partly due to the fact that corrosion had caused a significant number of the diffusers to break off.

The existing diffusion equipment needed to be replaced because of the corrosion failure, so this project was not a typical retrofit predicated on recouping the investment in new equipment from energy savings. Before actual detailed design was begun, an economic analysis was performed comparing the replacement of the existing system with new stainless steel coarse bubble diffusers and stainless steel headers and with a retrofit to ceramic fine pore diffusers in full floor coverage, but it did not include consideration of keeping the existing system in service. The results of this pre-design analysis are shown in Table 1. The capital costs of the two systems were judged to be approximately the same. It was estimated that the energy savings available with the fine pore system as compared to the coarse bubble system could repay the investment in new equipment in approximately six years, so the fine pore system was selected.

The estimated capital cost of the proposed ceramic fine pore diffuser system included the diffusers and in-tank piping, new air drop pipes in each tank, in-place gas cleaning, two new smaller blowers and new air inlet filters. The diffuser cost was based on a total of 2400 diffusers. The analysis assumed no salvage value for the existing equipment not incorporated into the new work. Capital costs for the proposed new coarse bubble equipment needed to replace the deteriorated existing equipment included new stainless steel drop pipes, in-tank headers and diffusers. The diffuser cost estimate was based on a total of 2000 stainless steel broad band coarse bubble units.

The analysis assumed an "alpha" value for the fine pore system of 0.50, and for the coarse bubble system of 0.90. "Beta" was assumed to be 0.99 in both cases. Complete design parameters are shown in Table 2.

Table 1 Aeration Retrofit Energy Analysis Predesign Estimates

	Ceramic Fine Pore	Stainless Coarse Bubble
Primary Effluent Flow (mgd) (1)	1.4	1.4
Primary Effluent BOD ₅ (mg/l) ⁽¹⁾	512	512
Primary Effluent BOD (lbs/day)	5977	5977
Actual Oxygenation Rate (AOR) (lbs/day) (2)	6575	6575
In-Waste Oxygen Transfer Effluent (3)	11.9%	7.2%
Average Air Flow Required (scfm) (3)	2214	3641
Average Brake Horsepower	80	180
Estimated Annual Energy Cost (\$)(4)	26,140	58,815
Estimated Annual Operation & Maintenance (\$)	3,000	
Total Estimated Annual Cost (\$)	29,140	58,815
Estimated Annual Savings (\$)	29,675	

Flows and loads based on average for November 1983 through October 1984. Assumes 1.1 lbs oxygen required per lb. BOD applied. At tank average D.O. of 2.0 mg/l. Average per kWh cost approximately \$0.05. (1)

⁽²⁾

⁽³⁾

⁽⁴⁾

Table 2
Fine Pore Aeration System Retrofit
Design Parameters

	Average	Peak
Primary Effluent Flow (mgd)	1.8	2.7
Primary Effluent BOD ₅ (mg/l)	515	
Lb. BOD per 1000 cf per day	86	147
Lb. BOD ₅ per day	7730	11,600
Lb. O ₂ Req'd/lb. BOD Removed	1.1	1.1
Tank Avg. D.O. (mg/l)	2.0	0.5
Average MCRT (days)	10	_f .
NPDES Permit Limits, BOD ₅ (mg/l)	30	45
NPDES Permit Limits, SS (mg/l)	30	45

A net energy savings of approximately \$32.000 per year was expected using the fine pore diffusers system. The net total savings was estimated to be \$29.000 per year by subtracting the estimated \$3.000 annual cost of additional maintenance required for the fine pore system. The anticipated operating range of air flows with the proposed fine pore diffuser system was from approximately 800 scfm (the estimated mixing limit) to approximately 4000 scfm required to satisfy the peak oxygen demand to aeration. The estimated annual average air flow was expected to be approximately 2200 scfm.

The minimum operating air flow of the existing blowers (surge point) was approximately 2100 cfm. Evaluation of the blower performance curves indicated that the operating efficiency in the range near surge was very poor when compared to the efficiencies possible with new smaller units. It was determined that to ensure that the anticipated energy savings were actually realized at the plant. new blowers sized to operate with the new equipment would have to be part of the project. As a result, two new units with nominal capacity of 2200 scfm were included as part of the new facilities. Only the blowers were replaced. Blower bases, motor starters, valves, flexible connectors, etc., were re-used with the new equipment.

Plugging/Fouling Potential

Before final design of the retrofit was begun, a test header with four ceramic plate-type diffusers was installed near the inlet end of Aeration Cell 5 to monitor the potential for plugging and fouling, and to ensure that fine pore diffusers were compatible with the waste. The dynamic wet pressure (DWP, pressure drop across the diffuser) was monitored daily for a period of approximately 10 weeks to develop an estimate for the plugging and fouling rate. At the end of that period, the test header was cleaned by injecting hydrogen chloride gas in with the air supply.

The observed fouling rate was significant. DWP was observed to increase more than 1 inch w.g. in as little as one day. However, short term increases in air flow per diffuser (air "bumping") reduced DWP, and the gas cleaning was effective in reducing DWP as well. The actual air flow rate during the "bumping" was not measured. Initial DWP readings were approximately six inches w.g. DWP's as high 24.5 inches were recorded. The DWP following gas cleaning was approximately 9.0 inches w.g. compared to the initial readings of 5-6 inches w.g. A weekly summary of the plugging/fouling test results is shown in Table 3. Daily data is shown in Appendix A. As shown, the DWP fluctuated throughout the test period, dropping abruptly for no apparent reason at times.

Table 3
Summary of Plugging/Fouling Potential Test Results

				Diffi	user			
Date	Orifice	DWP	2 Orifice		3 Orifice	DWP	4 Orifice	DWP
8/27/84	5.5	6.0	6.0	6.0	6.0	5.0	7.5	5.5
9/3/84	6.0	15.0	5.5	15.5	6.0	15.5	6.5	15.0
9/10/84	6.0	15.0	6.0	15.0	6.0	15.0	7.5	14.0
9/15/84	6.0	24.5	6.5	23.0	6.0	22.5	7.0	21.0
9/17/84	6.0	17.5	6.5	17.0	5.5	18.0	6.5	17.5
9/24/84 ⁽¹⁾	6.0	17.0	6.0	17.0	5.0	12.0	5.5	18.0
10/1/84 ⁽²⁾	6.0	11.5	5.5	11.5	5.0	12.0	6.0	12.0
10/8/84	6.0	17:0	6.5	17.0	5.0	19.0	, 5.5	18.0
10/14/84	6.0	11.0	6.5	11.0	5.0	12.0	4.5	13.0
10/22/84	6.0	10.0	6.0	10.0	6.0	10.0	6.0	10.0
10/31/84 (3)	6.0	14.5	6.0	14.0	6.0	13.5	5.0	14.5
11/4/84 (4)	6.0	9.0	6.0	9.5	6.5	9.5	7.0	9.0

Air flow per diffuser approximately 1.8 - 2.0 scfm.

Orifice = Pressure drop across distribution orifice.

DWP = Pressure drop across diffuser.

All values are inches water gauge

Values are weekly. Daily data is in Appendix A.

- (1) Before air bumping.
- (2) After air bumping.
- (3) Before gas cleaning
- (4) After gas cleaning.

It was decided that the plugging and fouling phenomenon could be controlled and that the potential energy savings were significant enough that design and installation of the retrofit to fine pore diffusers should proceed.

EQUIPMENT PROCUREMENT AND SPECIFICATIONS

The new diffused aeration equipment was specified to be ceramic disc-type diffusers in full floor coverage with in-place hydrogen chloride gas cleaning. Two new multi-stage 200 Hp centrifugal blowers, nominal capacity 2200 scfm. were specified to replace two of the existing blowers. Two existing (250 Hp) blowers were left in place to provide standby capacity for anticipated peaks. Because of the age of the existing air piping system, in-line air filters to be placed immediately upstream of the air drop into each cell were specified requiring 97 percent removal of particles 0.3 microns and larger to protect the new equipment from air side fouling. These were not installed. New elements for the existing inlet filters capable of removing 20 micron and above particles were installed instead at the City's request. This relaxation of the air filtration requirements was requested by the City because the inside lining of the existing air piping system was determined to be in excellent condition, thereby minimizing the potential for rust particles to plug the diffusers. City personnel also felt that the maintenance cost savings from the less expensive filter elements outweighed the danger of plugging from airborne particulate matter smaller than 20 microns.

A total of 2400 diffusers, 400 evenly distributed per aeration cell, were specified based on anticipated actual oxygen requirements under the design peak condition. This provides one diffuser for every 2.42 sf of tank bottom area. The anticipated maximum air flow rate per diffuser at peak load was approximately 1.7 scfm. A minimum air flow of approximately 1.750 cfm was anticipated based on review of past plant operating records. The air flow per diffuser at this rate would be 0.7 scfm. There is one air drop pipe into each aeration cell. Air flow to each cell is controlled manually with a butterfly valve.

Construction was begun in December 1985. The installation work was performed by the treatment plant staff, with the aeration equipment manufacturer providing technical assistance as required. The new equipment was placed in service in January 1986. The total project capital cost for equipment was \$160,000. The plant staff invested approximately 800 man hours in the installation and startup for the new equipment. The total project cost, including installation and engineering, was approximately \$190,000.

PERFORMANCE OF THE NEW EQUIPMENT

Figure 2 shows a graph of total plant energy use versus pounds of BOD treated. Figure 3 shows a plot of kWh per pound of BOD treated. As shown, a marked decrease in energy consumption was experienced in the two years (1986 and 1987) after the retrofit was completed. Data in 1988 indicates that savings may no longer be present. However, the plant staff has chosen, beginning in January 1988, to operate at higher air flow rates than previously to lessen the necessity for gas cleaning and, they believe, enhance treatment efficiency. This has resulted in higher operating levels of D.O. and consequent increased power usage. The efficiency of the primary settling tanks has also been increased, resulting (as shown is Table 4) in lower BOD loading to the aeration system. The 1988 data is not necessarily indicative of a loss in energy savings potential.

Table 4 shows total pounds of BOD treated and total plant electrical power use from December 1984 through May 1988. It also shows kWh per pound of BOD treated. Based on the average monthly BOD from December 1984 through December 1985 (295.939 lbs./month) and the average kWh/lb. BOD for that and succeeding years, estimated power savings are shown in Table 5.

The annual cost of practicing gas cleaning has varied considerably. Gas cost for Frankenmuth is approximately \$1.55/lb. Labor costs, including payroll taxes and insurance, average approximately \$20.00/hour. During the first 12 months when cleaning was done (4/86 - 5/87), the total gas used was 963 lbs., and the total labor required was 45 man-hours. The cost was approximately \$2,400. During the last 12 months reported, 152 lbs. of gas and 8.5 man-hours were used for a total cost of approximately \$400. A summary of gas use and cleaning labor is shown in Table 6. These figures would indicate that the preliminary economic evaluation, which estimated cleaning costs at \$1.25/year/diffuser, was fairly conservative.

The plant consistently meets its NPDES permit for effluent BOD in spite of the fact that wide daily fluctuation in BOD load are experienced. Appendix B contains a summary of some plant operating parameters for the period since the retrofit was completed. Significant additional decreases in energy consumption for aeration, and in the cost and frequency of gas cleaning are expected following completion and startup of the brewery pretreatment system.

Three diffusers in each cell were equipped for monitoring DWP and the pressure drop across the air distribution orifice in the holder. Readings have been recorded on a reasonably consistent basis since the equipment was installed. Figure 4 shows a plot of the average DWP

Figure 2
Total Plant Energy Use vs. BOD Applied

Figure 3 KWH/LB. BOD vs. TIME

TIME/MONTHS

Table 4
Electrical Energy Use

MONTH	BOD(1bs)	<u>KW(hrs)</u>	KW/LBS	MONTH	BOD(1bs)	KW(hrs)	KW/LBS
DEC. 84	266810	242256	0.91	JAN. 87	210740	154912	0.74
JAN. 85	254340	209316	0.82	FEB. 87	298960	174688	0.58
FEB. 85	211230	227424	1.08	MAR. 87	278445	184576	0.66
MAR. 85	283961	220832	0.78	APR. 87	366940	187872	0.51
APR. 85	330421	229072	0.69	MAY 87	315184	191168	0.61
MAY 85	326600	248848	0.76	JUN. 87	365205	186224	0.51
JUN. 85	312043	252144	0.81	JUL. 87	274125	207648	0.76
JUL. 85	402340	255440	0.63	AUG. 87	359589	254950	0.71
AUG. 85	386795	223612	0.58	SEPT 87	261220	202704	0.78
SEPT 85	328032	237312	0.72	OCT. 87	254339	171392	0.67
OCT. 85	318772	238960	0.75	NOV. 87	287606	271467	0.94
NOV. 85	183000	257088	1.40	DEC. 87	321225	215888	0.67
DEC. 85	242867	196112	0.81				•
				AVERAGE	299465	200291	0.68
AVERAGE	295939	233724	0.83	STD. DEV.	46374	32390	0.12
STD. DEV.	61385	17626	0.20			1	
**** 06	0.001.00		_	JAN. 88	246794	176336	0.71
JAN. 86	258458	163152	0.63	FEB. 88	172741	176336	1.02
FEB. 86	240308	161504	0.67	MAR. 88	173479	169744	0.98
MAR. 86	320626	174688	0.54	APR. 88	209258	197760	0.95
APR. 86	349158	177984	0.51	MAY 88	248001	199408	0.80
MAY 86	343273	182989	0.53	JUN. 88	238507	192816	0.81
JUN. 86 JUL. 86	259378	156085	0.60				
AUG. 86	314973 384139	169744	0.54	AVERAGE	214797	185400	0.88
SEPT 86	292973	163152 181280	0.42	STD. DEV.	32133	11643	0.11
OCT. 86	291326	163152	0.62 0.56				
NOV. 86	286486	194464	0.68	•		Ł	
DEC. 86	265777	191099	0.00			i	
555. 00	203111	171077	0.12			;	
AVERAGE	300573	173274	0.59	· × ×	•	F	•
STD. DEV.	41263	11914	0.08				
		• • • • •	0.90				

Table 5
Estimated Energy Cost Savings

	1985	1986	1987	1988
Assumed pounds BOD treated per Month	295.939	295.939	295.939	295.939
Average kWh/lb. BOD	0.83	0.59	0.68	0.88
Average Monthly Power Cost			1	•
(at \$0.05/kWh)	\$ 12.281	\$ 8.730	\$ 10.062	\$ 13.021
Average Monthly Savings		\$ 3,551	\$ 2.219	(-740)
Annual Savings	٠.	\$ 42.612	\$ 26.628	(-8,880)

vs. time for the three diffusers in Cell 5 for the period between February 1987 and December 1987. The times at which gas cleaning was performed are also indicated.

OFF-GAS OXYGEN TRANSFER TESTING

The Frankenmuth plant was selected by the ASCE Committee preparing this manual to undergo an extensive set of off-gas oxygen transfer tests. The purpose of this additional testing was to evaluate the effects on in-waste oxygen transfer efficiency of plugging and fouling, and of gas cleaning.

Off-gas testing was performed using techniques developed by Ewing Engineering and described in the literature, analysis equipment constructed in 1982 by Ewing Engineering, and a 2'-0" x 10'-0" fiberglass off-gas collection hood. The data was gathered by placing the collection hood in four locations bracketing the center of the aeration cell being tested as shown in Figure 5, except for data collected in May 1988. This was done in an attempt to make the data as consistant and reproducible as possible. In May 1988, eight hood locations spaced along the entire length of the tank were used. The four additional locations are shown by dashed lines in Figure 5. This alternate sampling scheme was used in an attempt to quantify the change in "alpha" from inlet end to outlet end of the tank. Only average values of the four or eight collection hood locations are reported in Table 7.

Each set of off-gas testing was conducted during two or three consecutive days. At least some test conditions from the first day were duplicated as closely as possible on subsequent days to identify radically changed conditions which might cause the test results to be misleading.

Table 6
Gas Cleaning Costs

1986 April	Month	Hours Worked	HCL (lbs)
April 14 .00 (1) 332 (1) May 10.50 142 June 4.25 114 July 2.00 51 August 4.75 121 September 0.00 0 0 October 2.00 46 November 1.50 32 December 1.50 31 1987 January 0.00 0 February 1.50 51 March 3.00 43 April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 2.25 47 October 1.00 17 November 0 0 0 December 2.25 22 1988 [2) January 0 0 0 0 March 1.00 22 April 1.00 18 May 1.00 18 May 1.00 18 May 1.00 16 June 0 0	1986		_
May 10.50 142 June 4.25 114 July 2.00 51 August 4.75 121 September 0.00 0 October 2.00 46 November 1.50 32 December 1.50 31 1987 January 0.00 0 February 1.50 51 March 3.00 43 April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 0 December 2.25 22 1988 [2) January 0 0 0 0 February 0 0 0 August 0 0 0 0 September 0 0 0 September 0 0 0 December 2.25 22 1988 [2) January 0 0 0 August 0 0 0 August 0 0 0 0 September 0 0 0 0 August 0 0 0 0 0 September 0 0 0 0 August 0 0 0 0 0 September 0 0 0 0 0 August 0 0 0 0 0 September 0 0 0 0 0 August 0 0 0 0 0 September 0 0 0 0 0 September 0 0 0 0 0 0 August 0 0 0 0 0 0 September 0 0 0 0 0 0 September 0 0 0 0 0 0 0 September 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	April ⁽¹⁾	14:00 (1)	222(1)
June 4.25 114 July 2.00 51 August 4.75 121 September 0.00 0 October 2.00 46 November 1.50 32 December 1.50 31 1987 30 0 January 0.00 0 February 1.50 51 March 3.00 43 April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 (2) 0 0 February 0 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0	May	10.50	142
July 2.00 51 August 4.75 121 September 0.00 0 October 2.00 46 November 1.50 32 December 1.50 31 1.50 31 1.50 0 February 1.50 51 March 3.00 43 April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 20 0 0 February 0 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0			
August 4.75 121 September 0.00 0 October 2.00 46 November 1.50 32 December 1.50 31 1987 January 0.00 0 February 1.50 51 March 3.00 43 April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 January 0 0 0 February 1.00 22 April 1.00 18 May 1.00 16 June 0 0	July		
September October October 2.00 46 November 1.50 32 December 1.50 31 1987 0.00 0 February 1.50 51 March 3.00 43 April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 0 December 2.25 22 1988 (2) 22 April 1.00 12 April 1.00 12 May 1.00 16 June 0 0			
October 2.00 46 November 1.50 32 December 1.50 31 1987 January 0.00 0 February 1.50 51 March 3.00 43 April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 2) 22 January 0 0 February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0			•
November December 1.50 32 December 1.50 31 1987 0.00 0 February January 0.00 51 March March 3.00 43 April April 4.60 75 May June 1.00 50 July July 1.00 29 August August 0.00 0 September October 1.00 17 November December 2.25 22 1988 2) 22 1988 2) 0 0 March 1.00 22 April 0 May 1.00 18 May June 0 0			
December 1.50 31	November		
January 0.00 0 February 1.50 51 March 3.00 43 April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 0 December 2.25 22 1988 (2) January 0 0 0 February 0 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0 0	December		
January 0.00 0 February 1.50 51 March 3.00 43 April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 2) 22 January 0 0 February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0	1987	•	
February 1.50 51 March 3.00 43 April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 2) 22 January 0 0 February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0		0.00	0
March 3.00 43 April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 20 0 January 0 0 February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0			
April 4.60 75 May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 (2) January 0 0 February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0			
May 2.85 88 June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 20 0 February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0			
June 1.00 50 July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 (2) 22 January 0 0 February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0			
July 1.00 29 August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 (2) 0 January 0 0 February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0			
August 0.00 0 September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 (2) 0 0 February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0	July		
September 2.25 47 October 1.00 17 November 0 0 December 2.25 22 1988 (2) 0 0 February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0	August		
October 1.00 17 November 0 0 December 2.25 22 1988 (2) 0 0 February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0			
November December 0 0 December 2.25 22 1988 (2) 0 0 February 0 0 March April 1.00 22 April 1.00 18 May 1.00 16 June 0 0		1.00	
1988 (2) February 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0	November	. 0	
February 0 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0	December	2.25	22
February 0 0 0 March 1.00 22 April 1.00 18 May 1.00 16 June 0 0	1988(2)		
March 1.00 22 April 1.00 18 May 1.00 16 June 0 0	5	0	0
April 1.00 18 May 1.00 16 June 0 0		0	0
April 1.00 18 May 1.00 16 June 0 0		1.00	22
June 0 0		1.00	
June 0 0		1.00	
July 0 0		0	
	July	0	. 0

⁽¹⁾ Demonstration and training period so values may not be representative.

A summary of the cumulative results of the off-gas test program are shown in Table 7a and 7b. Complete test results are in Appendix C. The initial plan for the off-gas testing was to operate the plant with cells 1 and 2 re-aerating return sludge, and cells 4 and 3, and 5 and 6

Conscious effort by plant staff to minimize cleaning effort by operating at elevated air flow rates during 1988.

GAS CLEANED

CEFF 2 (DMB), INCHES W.G.

PLAN OF TYPICAL AERATION CELL

Figure 5 Off-Gas Collection Plan

Off-Gas Oxygen Transfer Efficiency Test Results Parallel Plug Flow Operation Table 7a

	Tank	Tank 3 (NW)	Tank	4 (SW)	Tank	Tank 5 (SE)	Tank	Tank 6 (NE)			Prim	Prim. Eff.
Date	Qa SCFM/ DIFF	ОТЕ(1)	Qa SCFM/ DIFF	ОТЕ(1)	Qa SCFM/ DIFF	OTE(1)	Qa SCFM/ DIFF	ОТЕ(1)	(mg/l) (mg/l)	MCRT (days)	Flow (mgd)	BOD (lbs/ day)
4/14/87	1.75	16.7	1.90	10.6	1.62	9.7	2.08	13.1	5,020	:	1.82	3,988
4/15/87	1.96 0.68	18.9 17.8	1.69	10.1	1.56	6.6	1.72	16.4	5,280	6.7	1.89	4,398
3/28/88 (2)(3)	2.34	10.4			2.24	7.0	2.42	11.0	6,130	7.8	1.81	5,661
3/29/88	1.98	17.0	2.24	6.8	1.86	7.3 8.0	2.21	15.6 15.4	5,900	0.9	1.67	4,882
5/10/88 (5)(3)(2)			1.98	9.9	2.10 2.08	6.7 5.4			5,450	9.4	1.34	4,484
5/11/88(5)			2.06	6.3	2.27	8.1			7,350	10.0	1.22	3,236

"Alpha" SOTE (i.e., 20°C, 760 mm Hg, 0.0 mg/l D.O., C*20 = 10.3 mg/l). SOTE estimated to be 28%± at 14.25 submergence (Ref. L.A. Co. data).

mmediately before gas cleaning. 200

mmediately after gas cleaning.

fank Operating in reaeration mode. **₹**

Eight data points per set spaced along entire tank. (2)

Average of cells 5 and 6. 9

Parallel plug flow operation is with cells 4 and 3 operating in series as aeration tanks, and cells 5 and 6 operating in series as aeration tanks in parallel with 4 and 3.

Series flow operation is with cells 1, 2 and 3 in series as RAS reaeration and cells 4, 5 and 6 in series as aeration tanks. Complete test results are included in Appendix C.

Table 7b
Off-Gas Oxygen Transfer Efficiency Test Results
Series Flow Operation

Nk 3 (NW) Tank 4 (SW) Tank 5 (SE) Qa Qa Qa Qa Qa Qa GEM/ OTE(1) SCFM/ OTE(1) SCFM/ DIFF DIFF DIFF DIFF DIFF DIFF DIFF DIF														
Qa SCFM/ DIFF Qa SCFM/ DIFF OTE(1) SCFM/ DIFF OTE(1) DIFF OTE(1) DIFF DIFF 1.61 1.67 8.3 1.61 1.00 (4) 1.76 7.4 1.68 16.3 1.74 7.4 1.68 16.3 1.74 7.4 1.75 12.1(4) 2.14 7.7 1.75 12.1(4) 2.14 7.7		Tank	3 (NW)		4 (SW)	Tank	S (SE)	Tank	Tank 6 (NE)			Prin	Prim. Eff.	
1.67 8.3 1.64 7.3 1.64 7.3 1.14 7.6 1.14 7.6 1.14 7.6 1.14 7.6 1.15 16.3 1.74 7.4 1.90 8.2 1.75 12.1(4) 1.75 2.03 6.6		Qa SCFM/ DIFF		Qa SCFM/ DIFF	OTE(1)	Qa SCFM/ DIFF	OTE(1)	Qa SCFM/ DIFF	OTE(1)	MLSS(6) (mg/l)	MCRT (days)	Flow (mgd)	BOD (lbs/ day)	
1.61 10.0 (4) 1.76 7.4 7.6 1.14 7.6 1.14 7.7 1.14 7.7 1.14 7.7 1.15 1.24 12.1 1.24 12.1 1.24 12.1 1.24 12.1 1.24 12.1 1.24 1.24	2/87 (3)	·				1.67	8.3	2.17	10.4	3,630	11.8	1.67	20,580	
1.24 12.1 2.00 7.3 1.89 9.6 1.90 8.2 1.68 16.3 1.74 7.4 (4) 2.14 7.7 1.75 12.1(4) 4.05 7.4	3/87			1.61	10.0 (4)	1.76	7.4	1.89	10.3	3,820	10.0	1.64	15,018	
1.68 16.3 1.74 7.4 1.90 8.2 (4) 2.14 7.7 2.14 7.7 1.75 12.1(4) 1.05 7.1	/87			ů.	·	1.24	12.1	1.96	12.2	6,000	6.1	1.37	7,208	
1.68 16.3 1.74 7.4 (4) 2.14 7.7 2.14 7.7 1.75 12.1(4) 1.05 2.0	0/87					1.89	9.6	1.94	16.2	2,880	5.6	1.41	7,597	
2.14 7.7 2.03 6.6 1.75 12.1(4)	28/6	1.68	16.3 (4)	1.74	7.4			2.16	12.9	2,990	5.2	1.84	10,308	
1,75 121(4)	10/87 (3)			·		2.14	7.7	2.30	10.7	3,990	16.7	2.07	10,779	
4.7		1.75	12.1 (4)			1.95	7.4	2.03	10.0	6,940	36.1	2.05	10.375	

operating as two parallel plug flow aeration trains (See Figure 1). One train was to serve as a "control", and the other train was to be gas cleaned at different levels of DWP to determine if the effects of DWP and gas cleaning could be quantified in terms of oxygen transfer efficiency.

The first set of tests (April 1987) were performed in this matter. However, shortly after these tests were completed, the plant staff determined that in order to maintain compliance with their NPDES permit it would be necessary to have more than 2 cells re-aerating return sludge. The plant flow scheme was changed so that RAS went to Tanks 1, 2 and 3 in series. Return sludge and all primary effluent were then directed to Cell 4, then to 5 and 6.

Testing done in June. September and December 1987, was in this revised configuration. The plant was reverted to the original parallel flow scheme in February 1988 and remained so for tests conducted in March and May of that year. These operational changes precluded the possibility to have a parallel operation for comparison purposes.

Alpha SOTE vs. time is plotted for each each cell in Figure 6. A review of the off-gas test results will show that the observed oxygen transfer efficiency varies significantly from one set of test results to another. A review of the materials in Appendix C shows significant variation from one hood location to another at some times. This is possibly the result of short circuiting within an aeration cell caused by the feed point location and lack of "cross mixing" in a tank with fine pore diffusers in full floor coverage. Several sets of tests were run at different locations before and after gas cleaning. In most instances, an additional set of "after" readings were collected on the following date for comparison. This was not the case in September 1987 when the cleaning was done on the second day of testing (9/10/87).

Based on the data collected, no demonstrable effect can be observed on oxygen transfer efficiency as a result of the decreased DWP following gas cleaning. The data from one set of tests to the next is so variable that it is not possible to analyze the effect of DWP on OTE except by comparing values before and after cleaning. In some instances, immediately following gas cleaning, a slight decrease in OTE was observed. However, in each of these cases when additional testing was done the following day, the OTE had rebounded to be approximately the same as it was before the cleaning process took place. In no case did gas cleaning appear to increase OTE. However, it is important to note that it was effective in limiting the increase in DWP. Table 8 shows DWP before and after gas cleaning for each set of comparative off-gas tests, and the amount of HCl used for each cleaning.

4

TANK 4

TANK 6

TANK 5

Table 8
Gas Cleaning Results During Off-Gas Testing

		10			<u> </u>	Ţ	
Gas Use	(spur	Tank 6	9	6	0	15	
Gas	nod)	Tank 5	20	rv.	9	7	10
	After	Orifice	3.5 6.0 6.0	5.5 6.0 6.0	6.0 7.5 7.5	8.0 8.0 8.0	
Tank 6	Af	DWP	8.5 6.0 6.0	6.0 5.5 5.0	6.5 5.0 5.0	7.0 6.0 6.0	
Tar	Before	Orifice	3.5 6.0 6.0	6.0 8.0 7.0	4.0 6.0 6.0	6.0 9.0 8.5	
Be	DWP	11.0 8.0 8.0	11.0 10.0 10.5	9.0 7.0 6.5	10.0 7.0 7.0		
	Tank 5 ore After	Orifice	3.0 3.5 5.5	5.5 6.0 5.0	6.0 7.0 6.0	6.0 6.5 6.0	7.5 8.5 7.0
1k 5		DWP	8.5 6.5	7.0 6.5 7.0	6.0 6.0 7.0	8.0 0.0 0.0	10.5 9.5 11.0
Tar		Orifice	3.0 3.5 7.0	6.0 6.5 7.0	6.0 7.5 5.0	6.0 6.5 6.0	8.5 7.0
	Before	DWP	16.0 15.0 12.0	12.5 12.0 11.0	12.0 10.5 13.0	13.5 13.0 13.5	12.0 12.0 13.0
	Date		6/22/87	9/10/87	12/10/87	3/28/88	5/10/88

All values are in inches w.g. except gas use, which is in pounds.

[&]quot;Orifice" loss is pressure drop across the air distibution orifice to the diffuser where DWP was measured. Three separate diffusers in each aeration cell are instrumented to read DWP and Orifice losses.

The detailed system design was based on an in-waste alpha SOTE of approximately 16.9% at an air flow of 1 scfm per diffuser, and approximately 11.0% at 2 scfm per diffuser, based on off-gas test results from another treatment plant. Actual in-waste oxygen transfer efficiency as measured by the off-gas testing is in general lower than was anticipated in the design stage, in some instances less than 6 percent. This indicates that alpha was actually lower than expected. The actual observed air flow rates per diffuser are higher than those expected to be required even for the peak design load to the plant, averaging more than 2 scfm per diffuser.

Attempts were made using the off-gas data to establish a relationship between oxygen transfer efficiency and air flow rate per diffuser using linear regression analysis. However, there is no apparent statistically significant correlation between the two, at least at Frankenmuth. As expected, oxygen transfer efficiency improves as alpha changes between the influent and effluent ends of the aeration portions of the system as shown by comparing data from the same dates taken in Tank 5 versus that collected in Tank 6. At all times during the testing Tanks 5 and 6 were operated in series with flow passing from 5 into 6, and then into the final settling tanks. Data collected in Tanks 4 and 3 in April 1987 and in May 1988 also represent series operation with flow from Tank 4 to Tank 3 and then to the final settling tanks. Other data collected in Tanks 4 and 3 were for periods when Tank 3 was operating as the last of 3 stages of return sludge reaeration and Tank 4 as the first of 3 stages of aeration.

APPENDIX A

Summary of Plugging/Fouling Potential Test Results

CITY OF FRANKENMUTH - WASTE TREATMENT PLANT FINE BUBBLE PRESSURE READINGS

DATE		ORFICE	LOSS		D.	YNAMIC WE	PRESSUR	
	GREEN	BLACK	BLUE	GRAY	GREEN	BLACK	BLUE	GRAY
8-27-84	5.5	6	6	6	6	5		· · · · · · · · · · · · · · · · · · ·
8-28-84	5.5	5.5		4.5	8.5	2	7.5	5.5
8-29-84	5.5	7	5 5 5	5.5	8.5	9 7	9	9.5
8-30-84	6	6	5	4	13		9.5	8.5
8-31-84	6	6	5	5.5	12.5	13	13.5	15
9-01-84	6	5.5	5.5	6	13	13	13.5	13
9-02-84	6	5.5	5.5	ĕ	25.5	13.5	13.5	12.5
9-03-84	6	5.5	6	6.5		16	16	15.5
9-04-84	6	5.5	5.5	6	15	15.5	15.5	15
9-05-84	6	5.5	5.25	6	16.5	17.5	16.5	16.5
9-06-84	6	6	6.5	6.5	17.5	17.5	17.5	17
9-07-84	6	6	5.5		18	18	17	16.5
9-08-84	6	6	5.5	6 7	18.5	18.5	19	18.5
9-09-84	6	5.5			16.5	17	17.5	15.5
9-10-84	ě	5.5	6	7.5	14.5	14.5	14	13.5
9-11-84	6	6	- 6 6	7.5	15	15	, 15	14
9-12-84	6	6		7	19	18.5	18.5	17.5
9-13-84	6	7	5.5	. 6	16	16	16	16
9-14-84	6		5.5	6.5	11	10.5	12	12
9-15-84	. 6	7	6.5	7	23	21.5	21.5	20
9-16-84	. 6	6.5	6	7	24.5	23	22.5	21
9-17-84	6	6.5	5.5 5.5	7	21	20	20	19
9-18-84	6	6.5	5.5	6.5	17.5	17	18	17.5
9-19-84	6	6.5	6	5.5	18.5	17.5	17.5	17.5
9-20-84	6	6.5	_ 5	5.5	16.5	16	17	16.5
9-21-84	6	6.5	5.5	5.5	13	12	13	13.5
9-22-84	6	6.5	5	5	16.5	15.5	17.5	18
9-23-84		6.	5	4.5	17	16.5	17.5	18
9-24-84	6	6.5	5.5	5	15	14.5	15.5	16
9-25-84	6	. 6	5	5.5	17	17	18	18
9-25-84	6	6	6	5.5	12.5	12.5	12.5	12.5
	6	6	5 5 5.5	5	14	14	14.5	14.5
9-27-84	6	5.5	5	4.5	15.5	16	16.5	
9-28-84	. 6	6	5 .5	6.5	10.5	11	11.5	17
9-29-84	6	6	5 "	6	15.5	16	16.5	10.5
9-30-84	6	6.5	5	6	17	17.5	18.5	16 18

CITY OF FRANKENMUTH - WASTE TREATMENT PLANT FINE BUBBLE PRESSURE READINGS

DATE	ORFICE LOSS					DYNAMIC WET PRESSURE			
	GREEN	BLACK	BLUE	GRAY		GREEN	BLACK	BLUE	GRAY
10-01-84	6	5.5	5	. 6		11.5	11.5	12	12
10-02-84	6	5.5	5 5 5	5.5		16	16	16.5	15.5
10-03-84	6	5.5	5	5.5		16.5	16.5	17	17
10-04-84	6	5.5	5 5	6		17.5	17	, 18	17.5
10-05-84	6	5.5	5	5.5		18	18.5	20	19.5
10-06-84			•						19.0
10-07-84	6	6	5	5		17	17	18.5	18
10-08-84	6	6.5	5	5.5		17	17	19	18
10-10-84	6	7	4.5	4.5		22	19.5	18	18
10-11-84	6	6	4.5	5		12	12	13.5	13.5
10-12-84	6	6	4.5	4.5		11.5	11.5	13.5	13.9
10-13-84	6	- 5	6.5	4.5		11.5	12.5	11.5	13.5
10-14-84	6	6.5	5	4.5		11	11	. 12	13.5
10-22-84	6	6	6	6		10	10	10	10
10-23-84	6	6	6	ě		10	9	9.5	9
10-24-84	6	7	5.5	6		12	11	12	11.5
10-25-84	6	7	5.5	ě		12.5	11.5	13	
10-26-84	6	7	6	5.5		12.5	11.5	12	13
10-27-84	6 6	7	6	5.5		12.3	11	12	13
10-28-84	6	7	6	5.5		11	9.5	11	13 11
10-29-84	6	6.5	ő	5.5		9.5	9.5	9	
10-30-84	. 6	5.5	ő	5.6		9.5	9	8.5	10.5
10-31-84	6	6	6	5		14.5	14	13.5	111 5
11-01-84	-	-	•	,		17.5	17	13.3	14.5
11-02-84	6	6	6	6.5		9.5	9.5	9.5	0 =
11-03-84	6	5.5	5.5	6.5		9.5	10	10	8.5
11-04-84	ě	5.5	5.5	6.5		9.5	9.5	9.5	9.5
11-05-84	6	6	5.5 6.5	7		13	12.5	11.5	9 10.5

APPENDIX B

Plant Operating Records

City of Frankenmuth WWTP Summary 1985

	Sus. Sol. (lb/day	184	266	507	535	188	123	129	329	268	268	219	266
fluent	Sus.Sol. (mg/l)	18	22	27	37	18	11	12	27	20	22	16	22
Final Effluent	BOD ₅ (lb/day	135	181	391	453	160	212	416	370	322	297	122	157
	BOD ₅ (mgd)	13	15	21	31	16	19	38	30	24	25	6	13
Aeration	Load Application BOD/1000 cf	95.4	. 86.3	101.7	131.8	103.4	118.6	117.8	114.7	97.6	108.1		78.9
	Sus. Sol. (lb/day	9,901	2,926	3,391	3075	2,182	3,842	3,320	3,004	3,059	2,898	9	3,480
Effluent	Sus.Sol. (mg/l)	958	245	183	213	213	344	304	247	229	240	*	288
Primary Effluent	BOD ₅ (lb/day)	8,298	7,508	8,846	11,464	000′6	10,314	10,251	5/6′6	8,490	9,403	i	898'9
	BOD ₅ (mgd)	802	089	478	262	228	923	938	816	624	782	1	268
i	riow (mgd)	1.24	1.43	2.22	1.73	1.23	1.34	1.31	1.46	1.60	1.45	1.69	1.45
	1985	January	February	March	April	May	June	July	August	September	October	November	December

City of Frankenmuth WWTP Summary 1986

	Sus. Sol. (lb/day	293	220	354	395	276	239	141	207	405	314	310	278
fluent	Sus.Sol. (mg/l)	23	21	23	32	24	18	12	20	27	22	32	24
Final Effluent	BOD ₅ (lb/day	183	233	452	658	339	316	292	174	220	125	137	349
	BOD _S (mgd)	15	22	29	51	29	24	22	17	16	6	14	29
Aeration	Application BOD/1000 cf	. 83.3	79.9	86.1	112.3	107.8	84.2	96.5	84.3	71.2	72.4	76.1	71.6
	Sus. Sol. (Ib/day	3,553	4,459	4,267	4,788	5,812	2,836	5,034	2,658	3,523	3,474	2,931	2,642
Effluent	Sus.50l. (mg/l)	283	430	288	378	479	231	422	248	220	232	289	222
Primary Effluent	BOD _S (lb/day)	6,720	7,545	8,129	10,605	10,172	7,947	9,111	7,959	6,724	6,830	7,185	6,655
	BOD ₅ (mgd)	539	729	287	838	998	621	692	723	474	490	673	520
WOI	(pgm)	1.46	1.20	1.77	1.47	1.35	1.52	1.39	1.27	1.90	1.72	1.20	1.39
Date Summary	1986	January	February	March	April	May	June	ylut	August	September	October	November	December

City of Frankenmuth WWTP Summary 1987

Date Summary	WO II		Primary Effluent	Effluent		Aeration		Final Effluent	fluent	
1987	(pbu)	BOD ₅ (mgd)	BOD ₅ (lb/da <u>y</u>)	Sus.Sol. (mg/l)	Sus. Sol. (lb/day	Application BOD/1000 cf	BOD ₅ (mgd)	BOD _S (lb/day	Sus.Sol. (mg/l)	Sus. Sol. (lb/day
January	1.11	418	4,081	200	1,903	43.2	15	142	17	157
February	1.34	604	6,716	268	3,040	71.1	20	226	25	283
March	1.37	472	2,567	246	2,843	58.9	20	241	25	281
April	1.60	479	6,352	323	4,395	67.3	21	278	25	339
May	1.32	610	6,952	343	4,476	73.6	47	536	29	323
June	1.48	673	8,534	385	4,777	90.4	54	689	29	365
July	1.24	288	6,264	306	3,202	66.3	32	338	41	414
August	1.45	819	10,114	279	3,507	107.1	24	286	42	472
September	1.30	573	6,503	247	2,663	68.8	18	205	42	458
October	1.50	225	6,610	186	2,297	70.0	14	175	16	203
November	1.37	605	970′9	226	2,672	63.8	19	239	37	497
December	1.69	462	6,634	150	2,148	70.2	24	355	35	208

City of Frankenmuth WWTP Summary 1988

Date Summary	Flow		Primary Effluent	Effluent		Aeration		Final Effluent	fluent	
1988	(pbm)	BOD ₅ (mgd)	BOD ₅ (lb/day)	Sus.Sol. (mg/l)	Sus. Sol. (lb/day	Application BOD/1000 cf	BOD _S (mgd)	BOD _S (lb/day	Sus.Sol. (mg/l)	Sus. Sol. (lb/day
January	1.24	481	5,057	220	2,250	53.5	16	182	27	286
February	1.14	420	4,233	250	2,467	44.8	14	139	27	264
March	1.43	288	3,401	200	2,410	36.0	16	189	26	303
April	1.54	399	4,941	177	2,268	52.3	6	109	20	266
May	1.21	491	2,090	264	2,733	53.9	15	160	16	168
June	1.26	454	4,835	261	2,835	51.2	22	224	20	217
July	1.41	413	4,896	297	3,548	51.8	19	227	24	278

APPENDIX C

Off-Gas Oxygen Transfer Test Results

Off-gas Analysis Equations and Nomenclature

Data Collected in Field:

F _{CO₂}	Mole fraction of carbon dioxide in off-gas
H _{OG} , H _R	Absolute humidity, off-gas and reference gas (air), lb. water/lb. dry air.
$^{\rm M}{ m OG}^{/{ m M}}{ m R}$	Oxygen sensor output, millivolts, for off-gas and reference gas.
MLT	Mixed Liquor Temperature
C* -C	Dissolved Oxygen deficit, C^* , is D.O. saturation for ML, C is actual D.O. Q test site.
A _s	Area of off-gas collection hood, square feet.
Ps	Absolute Barometric pressure, in Hg
R _{mm}	Rotometer float height, mm
P ₁	Hood pressure, inches water column
P ₂	Vacuum at oxygen sensor, in w.c.

Data To Be Computed:

Symbol	Definition
FOR	Mole fraction of oxygen in reference gas
	$F_{OR} = 0.2095 (1 - H_R (29/18))$
RR	Mole ratio, oxygen to inerts in reference gas
	$R_{R} = \frac{F_{OR}}{1 - F_{OR} - (H_{R}(29/18))}$
	29/18 = Molecular Wt Air Molecular Wt H ₂ O

(continued)

St	m	bo	1
V Y	ш	$\mathbf{v}\mathbf{v}$	

Definition

Fog

Mole fraction of oxygen in off-gas

$$F_{OG} = F_{OR} \times M_{OG}/M_R$$

 R_{OG}

Mole ratio of oxygen to inerts in off-gas

$$R_{OG} = \frac{F_{OG}}{1 - F_{OG} - F_{CO_2} - H_{OG} (29/18)}$$

OTETF

OTE at field conditions

$$OTE_{TF} = \frac{R_R - R_{OG}}{R_R}$$

OTESP

OTE corrected to standard conditions

$$OTE_{SP20} = \frac{OTE_{TF}}{C^*_{\infty} - C} (1.024)^{20-MLT}$$

Specific OTE, i.e., OTE per unit (mg/l) of driving force.

OTE_{TF}

Mean weighted field oxygen transfer efficiency.

$$OTE_{TF} = \frac{(OTE_{TF} \times Q_A)}{Q_A}$$

 $\overline{\mathtt{OTE}}_{\mathtt{SP}}$

Mean weighted specific oxygen transfer efficiency.

$$\overline{OTE}_{SP} = \frac{\xi(OTE_{SP} \times Q_A)}{\xi^{Q_A}}$$

X

Flow rate correction factor to air flow rate for oxygen depletion, mixed liquor temperature, pressure and humidity.

(continued)

$$X = \frac{1}{1 - 0.21 \text{ (OTE}_{TF}) A_s} \times \left[\frac{293}{(273 + MLT)} \right] \times \left[\frac{P_s - \frac{P_1 + P_2}{27}}{29.92} \right] \times \frac{1 - H_{OG} (29_{/18})}{1 - 0.007 (29_{/18})}$$

 Q_{A1}

 $\mathbf{Q}_{\mathbf{A2}}$

Corrected air flow rates for small (1) and large (2) rotameters.

$$Q_{A1} = \frac{0.0235 R_{mm} + 0.34}{A_{S}}$$

$$Q_{A2} = \frac{0.0909 R_{mm} + 1.85}{A_{S}}$$

AIRFLOW version 3.01 on 29-MAY-1987 10:54:41.71

Aerator name: 336.05.01 Title: Frankenmuth ASCE Study Data created by: OFFGAS version 3.01 on 28-MAY-1987 15:47:23.85

· · · · · · · · · · · · · · · · · · ·	SW	ı ÖN	QA/DIFF=1.90 SCFM	· · · · · · · · · · · · · · · · · · ·		SE NO. 2	QA/DIFF=1.62 SCFM				ND.3 QA/DIFF=2.08 SCFM
	ş	0.8356 0.8465 0.7120 0.7468	0.7852		\$	0.7150 0.6507 0.6437 0.6711	0.6701			ş	0.8678 0.8031 0.8903 0.8721 0.8583
# # # # # # # # # # # # # # # # # # #	XFACT	1.0082 1.0103 1.0150 1.0121	Avg.	网络卢格河名 计直接定律 美可肯或过来 计多级外互标识 可以特殊的	XFACT	1.0062 1.0129 1.0163	Avg.=		THE MICHAEL	XFACT	1.0191 1.0134 1.0079 1.0081 Avg.=
网络日代比如日日常年代 阿瓦姆代 网络托	0TESP	0.00932 0.01023 0.01159 0.01029	防机 计对象标题 计系统统	机花花属 医牙毛红斑	OTESP	0.00728 0.01031 0.01184 0.00849		网络拉耳库里加加克斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯拉斯	化化丁基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	OTESP	0.01594 0.01342 0.01078 0.01077
A	OTE	0.09378 0.10351 0.11741 0.10410	海 环 经 计 计 计 计 对 对 的 医 医 新 米 用 计 我	有關 计担心符 等新 相似 外联	0TE	0.07386 0.10454 0.12029 0.08631				OTE	0.14034 0.11428 0.08864 0.08960
	ROG	0.000 0.238 234 234 234	- 1	"并以 笑 医 爱 静 高 复 医	ROG	0.245 0.233 0.233				ROG	0.228 0.235 0.242 0.241
月旬日日曜日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	F06	0.190 0.189 0.187 0.189	化氯甲基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯	计算程序 医可以及性性	F06	0.194 0.188 0.188 0.192				F0G	0.183 0.187 0.192 0.192
.50:31.06	æ	0.263 0.263 0.263 0.263	250	188.28.09	æ	0.265 0.265 0.265	35/ 941		05:24.93	æ	0.265 0.265 0.265 0.265 0.265 270
R-1987 Y-1987 15:	FOR	rururu	SP: 0.010	14-APR-1987 28-MAY-1987 15:5	FOR	ratatata	P: 0.0%3		14-APR-1987 28-MAY-1987 16:05:24.95	FOR	0.207 0.207 0.207 0.207 0.10795
ple: 14-AP	Time	1. 1011. 0 2. 1033. 0 3. 1111. 0 4. 1121. 0	ighted OTE	ple: 14-API d 28-MA	Time	1. 1205. 1. 1228. 1. 1230. 1. 1230. 1. 1230. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	signted Uli ighted OTE:		be: 14-4PF	Time	1. 1456. 2. 1512. 3. 1425. 4. 1438. Mean weighted OTE: Mean weighted OTE:
Date of sample: 14-APR-1987 Data entered 28-HAY-1987 15:30:31.06	Station	다. 다.야다.4. 블	Nean weighted OTESP: 0.010	Date of Sample: 14-APR-1987 Data entered 28-MAY-1987 15:5	Station	નંતાંલ ે વ	Nean weighted U/E : 0.0% Nean weighted O/ESP: 0.009	\$P\$	Date of sample: Data entered	Station	1. 1456. 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.10795 0.10795

Date of samile: 14-APR-1987 Data enter 28-MAY-1987	Date of samile: 14-APR-1987 Data enter 28-MAY-1987 16:10:41.14	1-1987 1-1987 16:	16:10:41.14							
Station	Time	FOR	≊.	F0G	x 00	0TE	01ESP	XFACT	8	
iai T	1614. 1627.	0.20 7 0.20 7	0.265	0.200	0.0 200 360 360	0.03629 0.03262	0.01294	0.9931	0.7373	
										NO. 4
	3. 1536. 4. 1550. Hean watchted OTE:	880	0.265 0.265 026	0.195	0.247 0.246	0.06772 0.07123	0.01892 0.02231	0. 9998 1. 0003	0.6605	MN
Mean weighted Olibb: 0	ighted OTES		01615	"但严格的"等就是是		化苯乙基甲基苯甲基苯甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	网络 科片 化甲基异丙基异丙基异丙基异丙基异丙基异丙基异丙基异丙基异丙基异丙基异丙基异丙基异丙基	AVI	AVG7237	QA/DIFF=1.75 SCFM
ummanaamamamama Date of sample: Data entered	sample: 15-APR-1987 Lered 28-MAY-1987		16:15:42.21	· 阿尔克特拉特拉特拉克斯(计分类 化苯甲甲基苯甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲			
Station	Time	FOR	. &	F06	ROG	OTE	OTESP	XFACT	8	
+: 4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4	1. 1105. 2. 1117. 3. 1039. 4. 1030.	68886	0.265 0.265 0.265 10231	0.192 0.192 0.187 0.180	0.235 0.235 0.235	0.07550 0.07829 0.11320 0.15027	0.01253 0-01321 0.01941 0.02535	0.9955 0.9961 1.0086 1.0134	0. 2965 0. 2672 0. 2566	NO. 5
IMEN WEIGHTON DIEST. O.	igntæd Ulesk mannessammen		82/					AV(AVG 2807	QA/BIFF=0.68 SCFM
cursemessuces Date of sample: Data entered	1a: 15-APR-1987	, F	6:22:21.73		R 最新 第 第 第 第 第 第 3 3 3 3 3 3 3 3 3 3 3 3 3	"" "	复行过数记的双环或地 小声风呼戏词 英眼球坏	你这样是他们把这只是只有对对 医乳腺性		
Station	Time	FOR	88	FOG	ROG	0TE	OTESP	XFACT	\$	
~: 여연수. 출 3	1144. 1154. 1211. 1224. ighted OTE		0.265 0.265 0.265 0.265	0.178 0.180 0.177 0.188	0.023	0.15911 0.14614 0.16640 0.09998	0.01956 0.01677 0.01773 0.01229	1.0150 1.0104 1.0149	0.7212 0.7043 0.7028 0.7121	NO. 6
Mean weighted OTESP: 0.	Mean weighted OTESP ussunmannuman	P: 0.0163	AVG7101		11 12 13 14 15 14 15	##	11 11 11 11 11 11 11 11 11 11 11 11 11	AVC	AVG7101	QA/DIFF=1.72

Station Time 1. 1415. 0. 2. 1357. 0. 4. 1334. 0. Hean weighted OTE: Hean weighted OTE:									
1. 1415. 2. 1357. 3. 1344. 4. 1344. Hean weighted OTES	5 5	88	F0G	ROG	OTE	OTESP	XFACT	\$	
Mean weighted UlES	99999	0.000 2883 2883 2883 2883	0.192 0.187 0.186 0.188	0.0.0 0.037 2337 8837 8837	0.07689 0.10392 0.11372 0.10144	0.00757 0.01020 0.01117 0.00997	0.9928 1.0002 1.0023 0.9996	0.7416 0.5471 0.6302 0.6313	NO. 7
	၁ဝ	00%22			-		AVG-	AVG-0.6426	QA/DIFF=1.56 SCFM
Date of sample: 15-APR-1987 16 Data entered 28-14AY-1987 16	1-1987 1-1987 16::	:31:46.06							
Station Time	FOR	8	FOG	ROG	0TE	OTESP	XFACT	8	
1. 1507.	0.206	0.265 0.265	0.190	0.241 0.241	0.09183 0.09103	0.00906 0.00896	1.0007 0.9989	0.7611	
	-			•				,	NO. 8
3. 1441. 0. 4. 1428. 0. Hosy testobled OTF .	88	0.265 0.265	0.186 0.188	0.233	0.11507 0.10058	0.01134	1.0024	0.6531	
Mean weighted Offsp: 0.0	p: 0.00%	0978			· · · · · · · · · · · · · · · · · · ·		AVC	AVG6963	QA/DIFF = 1.69
Date of sample: 15-APR-1987 Data entered 29-1AY-1987 10		:50:46.71	特 結 見 別 記 規 に 規 の の の の の の の の の の の の の の の の の						
Station Time	FOR	8	F06	ROG	OTE	0TESP	XFACT	8	
1. 944. 2. 1019. 3. 1019. 4. 1002. Hean weighted OTE.	0. 207 0. 0. 207 0. 0. 207 0. 0. 207 0. 0. 207 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.265 0.265 0.265 0.265 113 138	0.199 0.198 194 194	0.255 0.255 0.249 0.247	0.03942 0.04589 0.05936 0.06953	0.01478 0.01661 0.01946 0.02432	0.9928 0.9942 0.9970 0.9992	28 0.9221 70 0.8918 70 0.7266 72 0.6919	NO. 9
			1	1		1000 • - 5 AU	2	.000	(A/ D11' f ** 1 • 90

Agrator name: Sanitaire Fine Fitle: SE Tank before Cleaning Data created by: OFFCAS version 3.01 on 25-XXM-1987 19:12:23.48

	3	Data entered CO-CM-1787 17:1	19:13:37.78							
Station	Time	FOR	æ	F06	ROG	OTE	OTESP	XFACT	8	ង
ri(913	0.203	0.263	0.189	0.242	0.08838	0.00836	0.9837	0.7706	
પંભંચ	1000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	263	000	0.25	0.08873	0.00833	0.9837	0.6588	
Mean weighted OTE :	ghted OTE hted OTES	00	08338 00807	1.	; ! ;			AV	AVG6893	(2,42)=1,67 SCFM/DIFF
						# # # # # # # # # # # # # # # # # # #				

Aerator name: Sanitaire Fine Project number: 356.05.01 Data created by: OFFGAS version 3.01 on 25-UN-1987 19:30:44.95

		2.42)=1.64 SCFM/DIFF
,	\$	24 0.6740 24 0.6937 36 0.5514 73 0.7968 AVG-, 6790
·	XFACT	0.9798 0.9824 0.9836 0.9773
:31:28.61	OTESP	0.00627 0.00833 0.00800 0.00597
	OYE.	0.06512 0.08537 0.08337 0.06199
	ROC	0000 0000 0000 0000
	F06	0.194 0.190 0.191 0.191
:31:28.61	88	0.263 0.263 0.265 0.265 0.265 0707
⊢1987 ⊢1987 19∷	30.	0.200 0.200 0.200 0.000 0.000
1e: 22-Ju	Tine	1. 1435. 2. 1400. 3. 1340. 4. 1245. Mean weighted OTE:
Date of sample: 22-JUN-1987 Data entered 25-JUN-1987 19:	Station	는 (스) (U, A, E A E E E E E E E E E E E E E E E E

Aerator name: Sanitaire Fine Project number: 356.05.01 iitle: NE: Jank Defore Cleaning Data created by: OFFGAS version 3.01 on 25-UNM-1987 19:22:33.17

		32	(2,42)=2,17 SCFM/DIFF
	₩.	0.9865 0.9533 0.8274 0.8454	AVG8982
	XFACT	0. 9784 0. 9877 0. 9929 0. 9875	AVG
共口以和种种规则	OTESP	0.00722 0.01075 0.01228 0.01062	
" 将 组 帮 梅 托 板 戶 野 搭	07E	0.07403 0.11073 0.12737 0.10996	
	ROG	0.245 0.236 0.231 0.231	
	. F0G	0.191 0.185 0.183 0.186	
23:48.	RR	0.265 0.265 0.265 0.265 451	212
-1987 -1987 19:	FOR	0.203 0.203 0.203 0.203 0.10	0.0
namentanicamponicamentales late of sample: 22-UN-1987 late entered 25-UN-1987 19:	tion Time	1. 1210. 2. 1200. 3. 1130. 4. 1105. Nean weighted Off:	ighted OjES
Date of sample: 22-UN-1987 Data entered 23-UN-1987 19::	Station		Tean we

经球项目 与转移移 经对款债券 经转换 医静脉 计波用作 经经济股份

Aerator name: Sanitaire Fine Ittle: NE Jank after Ddiffuser cleanin

Data created by: OFFGAS version 3.01 on 25-JUM-1987 19:40:12.08

(2,42)=1.83 SCFM/DIFF NE 0.8182 0.7766 0.6532 0.7761 AVG-.7565 ş 0.9712 0.9745 0.9784 0.9793 XFACT 0.00479 0.00702 0.00733 0.00778 0.04977 0.07320 0.07650 0.08103 0.195 0.190 0.191 0.191 0.265 0.265 0.265 0.265 Date of sample: 22-JNN-1987 Data entered 25-JNN-1987 19:40:52.21 æ 0.206 0.206 0.206 0.206 0.06879 0.06878 ş 1. 1620. 2. 1600. 3. 1540. 4. 1510. Hean weighted OTE: Tine Station

Aerator name: Sanitaire Fine Fithe: NE Tank normal air flow Data created by: OFFGAS version 3.01 on 25-3N-1987 19:44:44.40

(2.42)=1.89 SCFM/DIFF 빞 0.8268 0.7660 0.7488 0.7845 AVG-. 7815 0.9815 0.9836 0.9845 0.9732 XFACT 0.00%11 0.01123 0.01152 0.00786 OTESP 0.09840 0.11588 0.12042 0.08213 0000 2000 2004 2004 2004 0.185 0.182 0.188 0.188 25,25,25 25,25,25 25,25,25 25,25,25 25,25,25 25,25,25 25,25,25 25,25,25 Date of sample: 23-JN-1987 Data entered 25-JN-1987 19:45:51.19 쫉 0.10387 0.01003 0.208 0.208 0.208 0.208 0.208 泛 1. 845. 0. 2. 905. 0. 3. 920. 0. 4. 950. 0. Hean weighted OTE: Tean weighted OTE: Station

Aerator name: Sanitaire Fine Title: NE Tank with reduced air flow Data created by: OFFGAS version 3.01 on 25-UN-1987 19:49:35.46

~(2.42)=1.03 SCFM/DIFF 띩 0.4409 0.4243 0.4114 0.4203 AVG-.4242 0.9666 0.9689 0.9802 0.9800 XFACT 0.00738 0.00790 0.01159 0.01149 OTESP 0.07928 0.08281 0.12125 0.12022 OTE 00.00 233344 333344 0.188 0.187 0.181 0.182 0.265 0.265 0.265 0.265 Date of sample: 23-JNN-1987 Data entered 25-JNN-1987 19:50:10.56 0.203 0.203 0.203 0.203 0.10048 5 1. 1123 0. 2. 1103. 0. 3. 1043. 0. 4. 1023. 0. Mean weighted OTE: Station

Aerakor name: Sanitaire Fime Project number: 356.05.01 Title: SE Tank normal air flow Data created by: 0FF6AS version 3.01 on 25-42M-1967 19:57:42.29

as.			(2.42)=1.76 SCFM/DIFF
	\$	0.7688 0.7563 0.6582 0.7184	AVG7254
柯兹林州村建筑山村福州城村市建筑城市建筑城市	XFACT	0.9337 0.9399 0.9697 0.9617	AVC
	OTESP	0.00394 0.00686 0.01060 0.00767	AVG7254
化二甲烷甲基甲甲基甲甲基甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	OTE	0.04120 0.07180 0.11099 0.08025	医氏征脉搏器 电计算机
	ROG	0.000 2000 4000 4000 4000 4000	30000000000000000000000000000000000000
ii K K K K K K K K K K K K K K K K K K	F06	0.187 0.181 0.181	
**************************************	RR	0.265 0.265 0.265 0.265)714
N-1987 N-1987 19	S.	88888 88888	SP: 0.00
10 23-4 25-4	Time	1. 1203. 2. 1223. 3. 1223. 4. 1233.	ighted Off
Date of sample: 23-UN-1987 Data entered 23-UN-1987 19	Station	ਜੇ ਂ ਹੈ ਹੈ ਹੈ	Hean weighted OTESP: 0.00

Aerator mame: Samitaire Fine Froject number: 356.03.01 Title: SE Tank reduced air flow Data created by: OFFGAS version 3.01 on 25-UN-1987 20:02:01.82

a de la companya de l	SE	0.4733 0.4762 0.4839 0.4580	AVG4729 (2.42)=1.14 SCFM/DIFF
Date of sample: 23-JNN-1987 Data entered 25-JNN-1987	XFACT	0.9323 0.9382 0.9362 0.9363 0.9363	Mean weighted OTESP: 0.00738 AVG4729
	OTESP	0.00647 0.00848 0.00758 0.00693	
	0TE	0.06790 0.08897 0.07946 0.07287	
	200	0000 2241 2441 2441 2441	·
다 보 보 보 보 보 보 보 보 1 1 1 1 1 1 1 1 1 1 1 1	902	0.187 0.184 0.185 0.186	
:02:38.83	er er	0.265 0.265 0.265	738
N-1987 N-1987 20:	FOR	50000 50000 50000	SP: 0.00
ple: 23-Ju	Time	1405. 1345. 1330.	Hean weighted OTESP:
Date of sample: 23-JMN-1987 Data entered 25-JMN-1987 20:	Station	નું બાબ નું ફું નું બાબ નું ફું	Tean se

Amrator name: Sanitaire Fine Project number: 336.05.01 Title:SW Tank in stabilization mode Data created by: OFFGAS version 3.01 on 25-JRM-1997 20:06:16.44

	MS	(2.42)=1.61 SCFM/DIFF
		(2.42
司 吳 聖 斯 節 師 心 性 君	8	312 0. 7019 318 0. 6893 362 0. 6317 345 0. 6435 AVG-0, 6666
医骨髓细胞 医电子性 化二苯甲甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	XFACT	0.9512 0.9518 0.9562 0.9545 AVG-
67世日苏苏湘州是7.	OTESP	0.00926 0.00950 0.01081 0.00925
1. 经工程证券 医毛髓管 医牙髓炎	. 310	0.09802 0.10039 0.11427 0.09779
	ROG	\$858 8888 8888 9999
er en nemen ker	F0G	0.179 0.179 0.180
:06:55.04	X	0.265 0.265 0.265 0.265 0.263 0.268
-1987 -1987 20:(FOR	8888800
1e: 23-JUY 25-JUN	Tine	1. 1320. 0 2. 1503. 0 3. 1450. 0 4. 1430. 0 Nean weighted OTE:
mannenvenammannumvenvenmens Date of sample: 23-JUN-1987 Date entered 23-JUN-1987 20:	Station	H.C.C.A. W. B.

Data entered	id 12-00	12-0CT-1987 16:29:01.54	29:01.54								
Station	Tine	FOR	&	-	ROG	OTE	OTESP	XFACT	8		
મ્યું માંળણન હું 3	1. 1130. 3. 1215. 4. Hean Weighted Off	0.206 0.206 0.206 0.206 0.12270	0.265 0.265 0.265 0.265 270	0.182 0.181 0.181 0.184	0.000 2000 2000 2000 2000 2000	0.11648 0.13066 0.13460 0.11199	0.01114 0.01248 0.01286 0.01070	0.9782 0.9891 0.9899 0.9802	0.5594 0.4759 0.5526	SE Low QA	
rean weighted OfES	ighted OJE:). Series	Name of Personal Pers	当	調整に対けなる。	2.英姿可以及我们打扮最高级) 		0.5141 x	x 2.42=1.24	.24 SCFM
Date of sample: 9-8ep-	ple: 9-8ep-19	-1987 -1987 -1987 16:35:53:23	35:53:23								
Station	Tine	FOR	8	F06	ROG	OTE	OTESP	XFACT	2		
નંભંજ	1141 13410 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.200 2003 0.2003	0.265 0.265 265 265	0.192 0.184 0.184	000 1787 1787 1787 1787	0.05447	0.00523 0.01069	0.9600	82	E.	
4. 1320 5. 1505 6. 1535	1320. 1505. 1535.		0.265 0.265 265	0.190 0.191 0.191	0.250 0.250 251	0.05747 0.05747 0.05315	0.00678 0.00573 0.00513	0.9630 0.9630 0.9581	0.7138 0.8592 0.9013	Higher	φ
Mean weighted OTESP	ghted OTES	P: 0.00707	202						0.8279=2	0.8279=2.00/DIFF	۰.
same un mean amenum Date of samole: 10-		1607							**************************************		
Data entered	12-001-1	-1987 17:00:30.16	0:30.16			•					
Station	Tine	FOR	88	FOG	ROG	0TE	OTESP	XFACT	8		
ું જોઇએ ફે	1203. 1203. 11203. 1003. 1003.	0000 0000 0000 0000 0000	00.00 2655 2655 2655	0. 186 0. 183 0. 189	0.000 2222 2336 2336 2336	0.08747 0.10935 0.12142 0.07512	0.00841 0.01032 0.01168 0.00723	0.9544 0.9703 0.9731 0.9667	0. 7977 0. 7364 0. 7339	SE	
Mean weighted OTESP	phted Offish	0.00933	38				!		7816-1	perore cleaning	Cleanin

	Julug	Cleaning		Ing
	0.8230 0.7116 0.6552 0.8794 0.8702 7839=1.90/DIFF	NE High QA .96/DIFF NE Before Clea		NE After Cleaning 80/DIFF
Ąj	0. 8230 0. 7116 0. 6552 0. 6532 0. 8497 0. 8702 0. 7839=1	0.8017-1		0. 7323 0. 7464 0. 7464 0. 755 0. 7436=1.
X A	0.9592 0.9683 0.9681 0.9578 0.9511 0.9583	XFACT 0. 95.247 0. 96.37 0. 96.380 0. 95.883 0. 95.883 XFACT 0. 97.54 0. 97.54 0. 97.54		XFACT 0.9623 0.9693 0.9603
	0.00707 0.01128 0.01117 0.00541 0.00589	0.00844 0.00844 0.01630 0.01665 0.00479 0.00683 0.01201 0.01201 0.01570		0.01125 0.01484 0.01698 0.00940
# 5	0.07358 0.11740 0.11628 0.06671 0.0461	0.03674 0.03674 0.08901 0.039999 0.04540 0.04540 0.045373 0.07713		0.09161 0.09865 0.11497 0.06478
i King	0.246 0.234 0.234 0.247 0.243	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0		0.00.234 0.2343 0.2335 0.235
1	0.188 0.180 0.181 0.187 0.187 0.189	F0C 0.193 0.188 0.188 0.194 0.194 0.189	바 서 시 년 독립 열차 보 개 년 부 하 개	FDC 0.1886 0.1888 0.188
X; X;	0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265	08:15:03.66 08:15:03.66 0.265 00:26	08:25:02.35	00.00 0.000 2655 2655 2655 2655 2655 2655 2655 2
¥;	30. 0.203 50. 0.203 110. 0.203 44. 0.203 23. 0.203 64 0TE 0.008 4 0TESP 0.008		* #	FDR 0.203 0.203 0.203 0.203 0.08995 0.08995
	1430. 1450. 1510. 1540. 1665. 1625. Weighted OTE		1e: 10-sep-1987 13-001-1987	n Time 1720. 1740. 1820. n weighted OTE
STALION	1. 143 2. 154 3. 154 4. 154 6. 162 Hean weighter Mean weighter	Station Ti Station Ti Station Ti 3. 173 4. 171 5. 180 5. 160 6. 160 6. 160 Fean weighted	Date of sample	Station 1. 2. 3. 4. Hean weil

								1.00 00 14-055-175/07	ATTOCK AND DOUGH AND	5.30:47.69
Date of sample: Data entered	ie: 12-9-87 14-DEC-1987 1	1987 15:5	5:56:54.49							
Station	Tine	FOR	X	F06	ROG	OTE	OTESP	XFACT	\$	
Te	6. 1137. 6. 1237. 6. 1233. 6. 1233.	0.207 0.207 0.207 0.207 0.10738	0.265 0.265 0.265 0.265	0.187 0.188 0.186 0.190	0.000 0.234 234 34	0.11046 0.10380 0.11660 0.09683	0.01129 0.01092 0.01473 0.01304	1.0054 1.0054 1.0053 1.0051	0.9061 0.9097 0.9042 0.8546	≅(N
Nean weighte seconneasement	jhted OTESP	0	48						0.8937	2.42=2.16 scrm/d1ff
Date of sample Data entered	le: 12-9-87 14-0EC-1987 1	1987 16:0	6:02:01.12							
Station	Time	FOR	88	F0G	ROG	OTE	0TESP	XFACT	8	
က်က်က်	1307. 1422. 1500.	0.00 0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.265 0.265 0.265	0.188 0.177 0.193	0.221 0.221 0.243	0.10319 0.16448 0.07449	0.01563 0.02384 0.01020	1.0219 1.0219	0.8012 0.5392 0.7110	MM
33	ighted OTE ghted OTESP		0.265 10668 01580	0. 188	0.239	0.09910	0.01548	1.0073	0.6939 \$1.68	\$1.68 scfm/diff
Date of sample: Data entered	10: 12-9-67 16-DEC-1987 10	1987 10:4	0:47:02.14							
Station	Tine	FOR	æ	FOG	ROC	OTE	OTESP	XFACT	ક	
	1536. 1630. 1705.	0000	0.000 265 265 265 265 265	0.000 1933 1933 1933	0.00 0.243 0.243 0.243	0.07495 0.07612 0.06964 0.07084	0.00737 0.00746 0.00685 0.00685	1.0046 1.0046 1.0032	0.8386 0.6579 0.6980 0.6683	MS
Hean weigh	ighted OTE printed of ESP	0.07298	128		/	ř ř L			0001	
经存储的现在分词经验									0./20271./4	1./4 scrm/diff

PROFESSIONAL STANDARD SECTION OF THE	1e: 12-10-0	87 -1987 10:5	Z:17.35		######################################					
Station	Time	FOR	X	F0G	800	OTE	0TESP	XFACT	8	
ព ព ព ព	857. 1010.	8888° •••••	0.265 0.265 0.265	0.192 0.192 0.193 0.193	0000 9000 4000 400 400 400 400 400 400 4	0.07117 0.08357 0.08119 0.07044	0.00703 0.00821 0.00798 0.00692	1.0067 1.0110 1.0063	0.8360 0.9327 0.9428	SE
Mean we	ighted OTESP		00722	1001-541-54					0.8829 >2	2.14 scfm/diff
Date of samp Data entered	le: 12-1 16-6	10-87 EC-1987 10:56:04.67	56:04.67	₩.						
Station	Time	50	88	FOG	ROG	OTE	OTESP	XFACT	.	
4444	20.000 20.0000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.0000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000	88888 88888	00000 20000 20000 20000 20000	0.189 0.190 0.183 0.183	0.000 0.026 0.024 0.024 0.024 0.024 0.024 0.024	0.10303 0.09291 0.09001 0.13367	0.01024 0.00918 0.00893 0.01320	1.0094 1.0073 1.0050	0.9301 0.9326 0.9459 0.9349	NE
Mean wei	ighted Oyes		61039						0.9509 \$2	2.30 scfm/diff
Canada do cobe	Contract mentals	67					THE STREET		\$	
Data entered	122	EC-1987 11:00:53.	99:53:00							
Station	Time	FOR	Qí Qí	F06	908	OTE	OTESP	XFACT	.	
ব্ৰক্ত	13.00 10.00 10.00	8888	00.265 265 265 265 265 265 265 265 265 265	0.000	0000	0.06444 0.05993	0.00769 0.01010 0.00328	0.9993 1.0088 0.9988	0.9362 0.9036 0.8836	NE
Hean wei	sighted OTESP	;	:			1030		1.0027	0.9048 \$2	.19 scfm/dlff
Date of sample: Date entered	1e: 12-10- 16-06C	12-10-87 16-DEC-1987 14:16:33.43	6:33.43							
Station	Time	Ş.	æ	FOG	ROG	OTE	OTESP	XFACT	3	
នាំស់ស់ស គឺ សំសំសំសំ គឺ	1600 1703 1703 1703 1813 1814 1814 1814 1814 1814 1814 181	88886°	00.285 0.285 2855 2855 2855 2855 2855 2855 2855	0.197 0.198 0.193 0.193	00.00 20.00	0.05713 0.05054 0.08021 0.07938	0.00557 0.00492 0.00781 0.00775	0.9998 1.0063 1.0046	0.8819 0.8807 0.7139 0.8862	<u>ਤ</u>
Nean weighted Off	ghted OTESP	!	12						0.8407 ⇒2.03	.03 scfm/d1ff
					***	*********				

Vate or sample Date entered		12-11-6/ 16-0EC-1987 16:52:32.72	52:32.72							
Station	Ties	£	#	F0G	ROC	310	OTESP	XFACT	3	
ស់ស់ស់ស	1020. 1040.	8888	0.265	0.193 0.193	0.00 9.00 4.40 4.40 4.40 4.40	0.07789 0.07827 0.06407	0.00773 0.00769 0.00632	1.0063	0.8296 0.7780 0.7984	SE
Hean weigh	Mean weighted OTE		245 715	6.17	0.64	0.0693/	6.00084	1.0043	0.8071	0.8071 ⇒1.95 scfm/diff
Date of sample: 12-11- Data entered		12-11-87 17-0EC-1987 11:37:13 00	37-13-00							
Station		Æ	RR	FOG	800	OTE	OTESP	XFACT	\$	
7 0 0 0 0 0 0 0	1145. 1210. 1450. 1455. 1455.	. 0.0.0. 20.208 20.208 20.208 20.208 20.208	0.265 0.265 0.265 0.265	0.190 0.194 0.188 0.194	0.246 0.246 0.238 0.247	0.09387 0.07005 0.10312 0.06810	0.00946 0.00691 0.01331 0.00978	1.0015 0.9960 1.0030 0.9936	0.7970 0.8922 0.7709 0.8963	NE
Mean weighted Office	Mean weighted OTESP	P: 0.00	975						0.8391	0.8391 > 2.03 scfm/diff
Date of sample:) Data entered		12-11-87 17-DEC-1987 11:41:06.94	11:06.94						河 机	
Station	Tine	FOR	8	F06	ROG	0TE	OTESP	XFACT	\$	
Mes west	3. 1245. 3. 1305. 3. 1400. 3. 1420. Hean weighted OTE	7.00.208 0.208 0.208 0.106	0.265 0.265 0.265 0.265	0.192 0.184 0.192 0.174	0000 2222 2222 8672 86	0.07613 0.12410 0.07247 0.17849	0.00792 0.01349 0.00810 0.02049	0.9956 1.0076 0.9949 1.0195	0.8874 0.6599 0.7691 0.5750	MN
Mean weighted	OTE	0.011	7	, i	f	4 · · · · · · · · · · · · · · · · · · ·	Î	: :	0.7229	\$1.75 scfm/diff

FOR RR FOG NO. 248 0.04573 0.00483 1.0078 0.9193 0.0248 0.0248 0.0249 0.	Date of su Data enter	Date of sample: 3/28/88 Data entered 12-APR-198	1988 08	NB 08:56:48.33	·							
1. 1023. 0.288 0.265 0.197 0.248 0.0663 1.0078 0.9193 0.9193 0.0289 0.222 0.9124 0.0289 0.0289 0.2220 0.0289 0.2220 0.0289 0.2220 0.0289 0.028	Station	Time	FOR	88	FOG	ROG	0TE	OTESP	XFACT	8		
### 13728/98 1. 1135.	元 ····································	1025. 1040. 1000. 1010. weighted OTE.	0000 0000 0000 0000 0000	aaaa a	0.194 0.197 0.193	0000 9000 8000 6000 6000 6000 6000 6000	0.06603 0.04976 0.03860 0.08360	0.00683 0.00514 0.00614 0.00888	1.0078 1.0052 1.0054 1.0112 AVC	0.9124 0.9124 0.9491 0.9224 :-0.9258	QA/DIFF=2.24 SCFM	SCF
1 1135. 0.208 0.265 0.196 0.251 0.0533 0.01108 1.0092 0.9756 2 1200. 0.208 0.265 0.196 0.257 0.03152 0.01327 1.0081 1.0296 3 1220. 0.208 0.265 0.196 0.257 0.03152 0.01327 1.0081 1.0296 4 1120. 0.208 0.265 0.196 0.257 0.03152 0.01327 1.0081 1.0096 Hean weighted OTE: 0.04457 of sample: 3/28/88 tof sample: 3/28/88 of sample: 3/28/88 of sample: 3/28/88 tof sample: 220. 0.208 0.265 0.195 0.251 0.05346 0.01090 1.0074 1.0426 3 220. 0.208 0.265 0.195 0.255 0.05087 0.00870 1.0074 1.0450 3 200. 0.208 0.265 0.197 0.255 0.05087 0.00870 1.0074 1.0450 1 220. 0.208 0.265 0.197 0.255 0.03547 0.00816 1.0034 1.0054 Then weighted OTE: 0.04440 0.265 0.199 0.256 0.03567 0.00816 1.0036 1.0054	Date of se	eple: 3/28/86 ed 12-APR-	1988 09:1	06:21.38								
1. 1135. 0.208 0.265 0.196 0.251 0.05330 0.01108 1.0092 0.9736 3. 1220. 0.208 0.265 0.196 0.251 0.05238 0.01327 1.0081 1.0296 4. 1120. 0.208 0.265 0.198 0.257 0.03152 0.00836 1.0045 1.0168 Hean weighted OTE: 0.01071 Hean weighted OTE: 0.01071 of sample: 3/28/88 entered 12-APR-1988 09:12:03.03 1. 220. 0.208 0.265 0.195 0.251 0.05346 0.01090 1.0074 1.0426 3. 220. 0.208 0.265 0.195 0.255 0.0367 0.00870 1.0074 1.0426 3. 220. 0.208 0.265 0.195 0.255 0.03647 0.00870 1.0074 1.0456 Hean weighted OTE: 0.0440	Station	Time	FOR	2	F06	ROG	OTE.	OTESP	XFACT	§		
Lation Time FOR RDC OF DTE OTESP XFACT 1. Z20. 0.208 0.265 0.195 0.251 0.05346 0.01090 1.0074 1.0 2. Z10. 0.208 0.265 0.195 0.255 0.03647 0.00870 1.0077 1.0 3. Z00. 0.208 0.265 0.199 0.255 0.03647 0.00870 1.0077 1.0 4. Z33. 0.208 0.265 0.199 0.256 0.03647 0.00870 1.0054 1.0 Them weighted OTE: 0.04640		1135, 1200. 1220. 1120. Weighted OTESP	0000	0000	0.196 0.200 0.198 0.198	11707 11707 1000	0.05238 0.05238 0.04113	0.01108 0.01327 0.00836 0.01009	1.0092 1.0081 1.0063 1.0066	0.9736 1.0296 1.0168 0.9731 0.9988	2.42 SCFM	•
Lation Time FOR RR FOC RDC 07E 0TESP XFACT 2.220. 0.208 0.265 0.195 0.251 0.05346 0.01090 1.0074 3.200. 0.208 0.265 0.195 0.249 0.06023 0.01500 1.0097 3.200. 0.208 0.265 0.199 0.255 0.03647 0.00870 1.0097 1.0036 1.0036 1.0036 0.256 0.03567 0.00816 1.0036 1.0036	Date of se Date enter	M . M	1988 09:1	12:03.03					#			
1. 220. 0.208 0.265 0.195 0.251 0.05346 0.01090 1.0074 1.220. 210. 0.208 0.265 0.195 0.249 0.06023 0.01500 1.0097 1.200. 0.208 0.265 0.199 0.255 0.03647 0.00870 1.0054 1.235. 0.208 0.265 0.199 0.256 0.03547 0.00816 1.0054 1.0036 1.0036 0.256 0.03567 0.00816 1.0036 1.0	Station	Time	. FCR .	. 88	F06	ROC	OTE	0TESP	XFACT	\$		
THE PARTY OF THE P				0000	0000 91919 929119 929119	0.000 0.249 0.000 0.000 0.000	0.05346 0.06023 0.03647 0.03547	0.010%0 0.001500 0.00870 0.00816	1.0074 1.0097 1.0054 1.0036	1. 0426 1. 0450 1. 0451		

Station 1 1. 2. 3. 4. 3. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	1. 330. 2. 345. 3. 300. 4. Hean weighted OTE Hean weighted OTE	מס מטש	QQ	F0G	6	•		10475	8
	330. 345. 300. 315. 315. 19ted OTE 19ted OTESP	£	Ę		XOX.	5	OTESP	- ₹ ₹	
Date of sampl Data entered Station		0.208 0.208 0.208 0.208 0.208 0.04192	0.265 0.265 0.265 13 0.265	0.201 0.201 0.175 0.175	0.258 0.258 0.258 0.258	0.02723 0.02272 0.06388 0.05646	0.00629 0.00629 0.01539 0.01304	1.0024 1.0015 1.0111 1.0087	1.0101 1.0228 1.0648 0.7642 0.9655
Station	e: 3/28/88 12-4PR-1	3/28/88 12-498-1988 09:18:36.27	1:36.27						
	· Time	3	RR	FOG	800	OTE	OTESP	XFACT	8
E. 3. Fean wei	1. 500. 2. 515. 4. 450. Hean weighted OTE Hean Wighted OTESP	0.208 0.208 0.208 0.208 0.06518 0.0653	00.2853 00.2853 00.2853 00.2853	0.193 0.193 0.188	0.00.0547 0.00.0547 0.00.0547	0.04554 0.04554 0.05426 0.09513	0.00661 0.00458 0.00546 0.00733	1.0084 1.0040 1.0147	0.937 0.9341 0.8908 0.9025 0.9153
Date of sample: Data entered	e: 3/29/88 12-APR-1	3/29/88 12-498-1988 09:21:18.06	:18.0%						
Station	Time	F.	ZZ.	FOG	ROG	OTE	OTESP	XFACT	\$
S.E. 3. Hean weld Hean weigh	925. 936. 910. 850. ghted OTE.	0.208 0.208 0.208 0.208 0.208 0.208 0.06932	0.265 0.265 0.265 0.265 8	0.000	0.251 0.251 0.248 0.248	0.05783 0.03403 0.05304 0.09323	0.00686 0.00532 0.00649 0.00948	1.0048 1.0011 1.0046	0.7979 0.7903 0.7109 0.7674 0.7666
encrementarions Date of sample: Data entered		3/29/88 12-4PR-1988 09:23:57.73	57.73						
Station	Time	19	3	FOG	806	OTE	OTESP	XFACT	8
S.E. 3. 102 N.E. 3. 105 Hean weighted	d oo.	0.208 0.208 0.208 0.208 0.07471 0.00772	21. 0.000.2655 0.005555 0.005555	0.190 0.195 0.194 0.194	2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.08707 0.05749 0.06646 0.08789	0.00899 0.00593 0.00689 0.00907	1.0084 1.0021 1.0040 1.0086	1.0207 1.0052 0.9432 0.9776

Station Time FOR RR FOG S.W. 3. 1120. 0.207 0.265 0.193 0. S.W. 3. 1120. 0.207 0.265 0.193 0. Fran weighted OTESP: 0.00664 Thean weighted OTESP: 0.00664 Bate of sample: 3729/88 Date of sample: 3729/88	•			
1. 1145. 0.207 0.265 0.195 3. 1120. 0.207 0.265 0.193 1120. 0.207 0.265 0.193 1120. 0.207 0.265 0.193 1120. 0.207 0.265 0.193 1120. 0.207 0.265 0.193 e of sample: 3/29/88 a entered 12-APR-1988 09:29:32.16 Lation Time FOR RR FOC 1. 1230. 0.207 0.265 0.198 2. 1230. 0.207 0.265 0.197 3. 120. 0.207 0.265 0.197 Hean weighted OTESP: 0.01654 be of sample: 3/29/88 e ntered 12-APR-1988 09:32:29.12 tation Time FOR RR FOC tation Time FOR 0.265 0.191 2. 200. 0.207 0.265 0.193 3. 235. 0.207 0.265 0.192 4. 225. 0.207 0.265 0.192 4. 225. 0.207 0.265 0.192 8. 225. 0.207 0.265 0.192 9. 207 0.265 0.193	G ROG	OTE OTESP	XFACT	\$
### of sample: 3/29/88 # entered 12-APR-1988 09:29:32.16 ####################################	5 0.250 0.05824 3 0.247 0.06882 5 0.249 0.05888 30.246 0.07163	824 0.00602 882 0.00715 888 0.00603 165 0.00738	1.0004 1.0019 1.0014 1.0041	0.9444 0.9333 0.9133 0.8931 0.9253
1. 1230. 0.207 0.265 0.198 2. 1230. 0.207 0.265 0.198 3. 1230. 0.207 0.265 0.197 4. 135. 0.207 0.265 0.191 Rean weighted OTE: 0.06224 Inam weighted OTE: 0.0624 Inam weighted OTE: 0.01634 Solution Time FOR RR FOG 1. 210. 0.207 0.265 0.193 2.200. 0.207 0.265 0.193 3. 225. 0.207 0.265 0.195 Hean weighted OTE: 0.06369 Hean weighted OTE: 0.06369 Hean weighted OTE: 0.06369 Rean weighted OTE: 0.06369 Rean weighted OTE: 0.06369 Rean weighted OTE: 0.06369				
1. 1230. 0.207 0.265 0.198 3. 120. 0.207 0.265 0.198 4. 135. 0.207 0.265 0.191 Hean weighted OTE: 0.06224 Hean weighted OTE: 0.06224 Hean weighted OTE: 0.0634 cof sample: 3/29/88 entered 12-APR-1988 09:36:05.33 Hean weighted OTE: 0.207 0.265 0.193 2. 200. 0.207 0.265 0.193 4. 225. 0.207 0.265 0.193 Hean weighted OTE: 0.04369 Hean weighted OTE: 0.01514 Resple: 3/29/88 entered 12-APR-1988 09:36:05.33	G ROG	OTE OTESP	XFACT	\$
of sample: 3/29/88 a entered 12-APR-1988 09:32:29.12 tation Time FUR RR FUG 1. 210. 0.207 0.265 0.191 2. 200. 0.207 0.265 0.193 3. 235. 0.207 0.265 0.192 Hean weighted OTE: 0.00369 Rean weighted OTESP: 0.01514 be sample: 3/29/88 e of sample: 3/29/88 e of sample: 3/29/88	0.0.00 N. 1995 1895 1895 1895 1895 1895 1895 1895	0.03491 0.01032 0.03764 0.01246 0.09714 0.02531 0.07967 0.01818	0.9923 0.9923 1.0066 1.0028	0.8152 0.8283 0.8084 0.8291
Lation Time FOR RR FOG 1. 210. 0.207 0.265 0.191 2. 200. 0.207 0.265 0.193 3. 225. 0.207 0.265 0.196 Hean weighted OTE: 0.06369 Hean weighted OTESP: 0.01514 Prof. sample: 3729/88 Prof. sample: 3729/88 Prof. sample: 3729/88				
1. 210. 0.207 0.265 0.191 2. 200. 0.207 0.265 0.193 3. 235. 0.207 0.265 0.196 4. 225. 0.207 0.265 0.192 Hean weighted OTESP: 0.01514 Possible: 3/29/88 entered 12-APR-1988 09:36:05.33	G ROG	OTE OTESP	XFACT	\$
sample: 3/29/88 ered 12-APR-1988	1 0.244 0.07789 3 0.248 0.06340 6 0.253 0.04528 2 0.247 0.06803	789 0.01574 340 0.01731 526 0.01177 805 0.01580	1.0014 0.9983 0.9945 0.9993	0.9363 0.9016 0.9207 0.9025 0.9153
Station Time FOR RR FOG	G · ROG ·	OTE OTESP	XFACT	\$
N.E. 2. 335. 0.207 0.265 0.195 0. 350. 0.207 0.265 0.195 0. 4. 310. 0.207 0.265 0.199 0. 4. 325. 0.207 0.265 0.197 0. Hean weighted OTE: 0.04487	5 0.252 0.05025 5 0.250 0.05531 9 0.257 0.02964 7 0.254 0.04269	025 0.01389 531 0.02015 964 0.01117 269 0.01413	0.9949 0.9960 0.9914 0.9941	1.02% 0.9268 0.9269 0.99905

1. 1210. 0.207 0.203 0.154 0.0036 0.765 0.0035 0.765 0.8035 0.765 0.8035 0.765 0.8035 0.765 0.8035 0.765 0.8035 0.765 0.8035 0.765 0.8035 0.765			10-TMI-1708 13:33:32.27	33:36.67						4				
1.00	tation	Time	2	æ	502	806	OTE	OTEBP	XFACT	\$				
150 0.20 0.20 0.20 0.20 0.00 0	-ંતાં લંગ	1210. 1145.		0.00	0.092		0.03671 0.03638 0.06336	0.00586 0.00591 0.00572	0.9861 0.9851 0.9875	0.8723 0.8251 0.8711	SE	H	-	•
Average Colored Colo	ڋ ؈۬؇ٙۮۄ	1130.0.5 1130.0.5 1130.0.5		00000 888888 888888	2000 2000 2000 2000 2000 2000 2000 200		0.05139 0.08929 0.04967	00000 000000 0000000000000000000000000	0.9850 0.9830 0.98430	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	2	BEFORE		
### ### ##############################			š <u>.</u> .	3.53	0.176		V. Ve364	9.00.9	4.7861 AVC	9. 831£	0A/DIFF=2.10			
### 15/10/288 #### 15/10/288 #### 15/10/288 #### 15/10/288 #### 15/10/288 #### 15/10/288 #### 15/10/288 #### 15/10/288 #### 15/10/288 #### 15/10/288 #### 15/10/288 ##### 15/10/288 ###################################														
Fig.			1988 14:0	17.76:00	,									
1. 645. 0.207 0.285 0.199 0.287 0.0067 0.00309 0.9822 0.7549 2. 553. 0.207 0.285 0.199 0.281 0.0199 0.284 0.0077 0.9972 0.977 0.9972 3. 455. 0.207 0.285 0.199 0.281 0.0199 0.281 0.00789 0.00873 0.9872 5. 500. 0.207 0.285 0.199 0.281 0.00789 0.00789 0.9862 0.9879 6. 550. 0.207 0.285 0.199 0.281 0.00789 0.00789 0.9872 0.9879 8. 440. 0.207 0.285 0.199 0.281 0.00789 0.00789 0.9872 0.9879 8. 440. 0.207 0.285 0.199 0.281 0.00789 0.00789 0.9872 0.9879 8. 440. 0.207 0.282 0.199 0.281 0.00789 0.00789 0.9879 0.9879 8. 440. 0.207 0.283 0.199 0.281 0.00789 0.00789 0.00789 0.9879 8. 440. 0.207 0.283 0.199 0.284 0.04171 0.00418 0.9879 0.9859 8. 440. 0.207 0.283 0.199 0.284 0.04171 0.00418 0.9879 0.9829 8. 440. 0.207 0.203 0.203 0.199 0.2049 0.00729 0.9829 8. 440. 0.207 0.203 0.199 0.204 0.00729 0.00729 0.9829 8. 440. 0.207 0.203 0.199 0.204 0.00729 0.00729 0.9929 8. 440. 0.207 0.203 0.199 0.204 0.00729 0.00729 0.9929 8. 440. 0.207 0.203 0.199 0.204 0.00729 0.00729 0.9929 8. 440. 0.207 0.203 0.199 0.204 0.00729 0.00729 0.00729 0.9029 8. 440. 0.207 0.203 0.199 0.204 0.00729 0.0	Station	Time	Æ	2	. FOC	ROG	OTE	OTESP	XFACT	ક			,	
5. 500. 0.207 0.207 0.203 0.195 0.251 0.0544 0.00548 0.9702 0.8703 AFTER (1st DAY) 6. 520. 0.207 0.205 0.195 0.253 0.197 0.00548 0.00548 0.9873 0.8873 Fig. 6. 0.207 0.205 0.197 0.254 0.0417 0.00418 0.9845 0.8858 Fig. 4. 0.00224 Sample: 5711/RB Fig. 7. 0.002 0.207 0.205 0.197 0.00418 0.00548 0.9872 0.9872 Fig. 7. 0.207 0.205 0.197 0.0048 0.0052 0.9972 0.9972 Fig. 6. 0.207 0.205 0.197 0.0048 0.0052 0.9972 Fig. 6. 0.207 0.205 0.197 0.0048 0.0049 0.0049 0.9972 Fig. 6. 0.207 0.205 0.197 0.0048 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.0048 0.0048 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.9972 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.9072 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.9072 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.9072 Fig. 6. 0.207 0.205 0.197 0.205 0.0048 0.0048 0.9072 Fig. 6. 0.207 0.205 0.197 0.205 0.197 0.0048 0.0048 0.9072 Fig. 6. 0.207 0.207 0.207 0.207 0.207 0.207 0.0048 0.0048 0.0048 0.9077 Fig. 6. 0.207 0.207 0.207 0.207 0.207 0.207 0.0048 0.0048 0.9077 Fig. 6. 0.207 0.207 0.207 0.207 0.207	નંતાંલંચ	2503. 2503. 2503.	0.000 2000 2000 2000 2000 2000 2000 200	0.265 0.265 0.265	0.193	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	0,03067 0,07758 0,05456	0.00309	0.9822 0.9921 0.9872	0.7549 0.8796 0.8753	SE	TANK		,
Hay weighted OTESP: 0.05224 ean weighted OTESP: 0.05224 AVC=0.8581 AVC=0.8581 AVC=0.8581 AVC=0.8581 AVC=0.8581 Q/DIFF=2.08 Lion Time FOR RD C OTE OTESP XFACT QA 1. 990. 0.207 0.225 0.190 0.243 0.06286 0.0043 1.0018 0.9293 2. 990. 0.207 0.225 0.190 0.244 0.00738 0.00739 0.9972 0.9922 3. 990. 0.207 0.225 0.190 0.246 0.0043 1.0018 0.9293 3. 990. 0.207 0.225 0.190 0.246 0.00738 0.00739 0.9972 0.9922 4. 1045. 0.207 0.225 0.199 0.246 0.0043 1.0018 0.9293 5. 1045. 0.207 0.225 0.199 0.246 0.0043 1.0018 0.9293 7. 1020. 0.207 0.225 0.199 0.246 0.0043 1.0040 0.9222 7. 1020. 0.207 0.225 0.199 0.246 0.0043 1.0040 0.9222 7. 1020. 0.207 0.225 0.199 0.246 0.0043 1.0018 0.9293 9. 200 0.207 0.225 0.199 0.246 0.0043 1.0018 0.9292 9. 200 0.207 0.225 0.199 0.0043 1.0018 0.9292 9. 200 0.207 0.225 0.199 0.247 0.0045 1.0014 0.9292 9. 200 0.207 0.225 0.199 0.247 0.0045 1.0018 0.9292 9. 200 0.207 0.225 0.199 0.247 0.0045 1.0018 0.9292 9. 200 0.207 0.225 0.199 0.246 0.0043 1.0018 0.9292 9. 200 0.207 0.225 0.199 0.247 0.0045 1.0018 0.9292 9. 200 0.207 0.225 0.199 0.247 0.0045 1.0018 0.9292 9. 200 0.207 0.225 0.199 0.247 0.0045 1.0018 0.9292 9. 200 0.207 0.225 0.199 0.247 0.0045 1.0018 0.9292 9. 200 0.207 0.225 0.199 0.247 0.0045 1.0018 0.9292 9. 200 0.207 0.208 0.199 0.2093 0.9170 AVC=0.9373	ભુગ	ાં કુંદ્ <u>ય</u> ું કુંદ્	3333	9000 1888 1888 1888 1888 1888 1888 1888	0.00 1930 1930 1930 1930 1930 1930 1930 19	1222 1222 1222 1222 1222 1222 1222 122	0.05443	0.00548 0.00548 0.00548	0.9872 0.9872 0.9860	0.8733 0.8733 0.8698			1st DAY)	
Presente: 5/11/88 14:07:49.08 Lion Time FOR RR FOC 0723 0.0843 1.0018 0.9293 0.9293 0.9293 0.9209 0.243 0.08286 0.00843 1.0018 0.9293 0.9170 0.245 0.199 0.243 0.08286 0.00843 1.0018 0.9293 0.9177 0.263 0.199 0.243 0.00538 0.00538 0.9992 0.9177 0.9282 0.9177 0.263 0.199 0.244 0.00234 0.00538 0.9992 0.9177 0.9282 0.9177 0.263 0.199 0.244 0.00234 0.00433 1.0040 0.9222 0.9177 0.263 0.199 0.244 0.00234 0.00433 0.9170 0.9222 0.9170 0.224 0.00434 0.00538 0.9979 0.99	ness veig Ness veigh	hted ones	Š	24 24 24	0.197	G G	0.04171	0.00418		0.8683 =0.8581	!			
tion Time FOR BR FOG 07243 0.08284 0.00843 1.0018 0.9293 SE, TANK 5 3.000720 0.207 0.265 0.190 0.243 0.08284 0.00843 1.0018 0.9293 SE, TANK 5 3.000720 0.207 0.265 0.192 0.244 0.07058 0.00720 0.9992 0.9177 AFTER (following 5.000720 0.207 0.207 0.265 0.192 0.246 0.07058 0.00720 0.9992 0.9177 AFTER (following 5.000720 0.207 0.207 0.203 0.192 0.246 0.07058 0.00720 0.9992 0.9177 AFTER (following 6.207 0.203 0.192 0.246 0.07254 0.00720 0.9992 0.9177 AFTER (following 6.207 0.203 0.192 0.247 0.00459 0.00943 1.0040 0.9222 0.9170 0.203 0.192 0.247 0.00459 0.00459 0.9979 0.9770	te of saple		1008	7.60 /6							Ų/DIF⊬=2.08			
900. 0.207 0.245 0.190 0.243 0.08284 0.00843 1.0018 0.9293 SE, TANK 5 930. 0.207 0.245 0.192 0.237 0.10476 0.01068 1.0055 0.9382 SE, TANK 5 950. 0.207 0.245 0.192 0.246 0.07289 0.9979 0.9620 0.9177 AFTER (following 915. 0.207 0.245 0.187 0.248 0.06485 0.00538 0.9979 0.9620 1.0040 0.9222 1.0040 0.9222 0.207 0.248 0.248 0.06485 0.00483 0.9779 0.9222 0.9779 0.9222 0.207 0.248 0.0248 0.06488 0.00483 0.9779 0.9770 0.	Station		2	8	F06	ROG	OTE	OTESP	XFACT	\$				
1020. 0.207 0.265 0.189 0.240 0.09339 0.00943 1.0040 1020. 0.207 0.265 0.193 0.247 0.06657 0.00686 0.9983 1100. 0.207 0.265 0.192 0.248 0.06468 0.00653 0.9979 weighted OTE: 0.07744 AVC=		0.000000000000000000000000000000000000	000000	0.0000 2865 2865 2865 2865 2865 2865 2865 2865	0.000	0.0243 0.2437 0.248 0.248 0.248	0.08286 0.10476 0.07058 0.06485	0.00845 0.01068 0.00720 0.00658	1.0018 1.0065 0.9992 0.9979 0.9996	0.9293 0.9382 0.9177 0.9620 0.9408	SE.	TANK 5 AFTER		day)
weighted Diese: 0.00789	ė 7.69	1020 1100.	00	. 0.0. 28.53 28.53 28.53	0.189 0.193 0.192	0.240 0.247 0.248	0,09339 0.06657 0.06468	0.00943 0.00686 0.00653	1.0040 0.9983 0.9979	0.9222 0.9170 0.9710		š.		•
to o markly	Hean weigh	ted ones		\$ &			-		AVC	=0.9373				

Date of sample: 5/10/58 Data entered 16-16/7-	14: 5/10/88 14: 16-14Y-1		988 14:12:56.73			TRANSPORTER				
Station	Tiae	\$	₹ .	500	202	OTE	OTESP	XFACT	8	
≓\ic	230. 230.	0.20				0.08942	0.00924	0.9935	0.7861	SW, TANK 4
ગં જં કાં	19.15.	888 000				0.03240	9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	0.9864 0.9864	0.8292 0.8702 0.7731	
જં∾જ	Sign Sign Sign Sign Sign Sign Sign Sign	666	222	0.00	0.00 2.22 2.22 2.22 2.23 2.23 2.23 2.23	0.06381 0.08076 0.05976	0.00809	0.9881 0.9917 0.9873	0.8268 0.8207 0.8350	
Hean weigh	52	98 88							AVC=0.8199	
										(/ D1FF=1.98
Date of sample: 5/1 Data entered 16-	le: 5/11/88 16-flAY-1	-1988 14:	1989 14:18:30.21				#			
Station	Time	E	æ	F0C	ROC	OTE	OTESP	XFACT	8	
નંતા	1115.	0.207			0.243	0.07533	0.00733	0.9972	0.8389 0.8645	
ni v ioi	1235. 1235.	000 000 000	0.0.0 28.85			0.04161 0.04161 0.05508	0.00363 0.00417 0.00552	0.9932 0.9929 0.9929	0.8445 0.8419 0.8082	SW, TANK 4
	128 138 188 188 188 188 188 188 188 188 18	888 888 868	000 888 888 888	0.00	000 27 27 27 27 27 27 27 27 27 27 27 27 27	0.06089 0.07326 0.05509	0.00610 0.00742 0.00555	0.9941 0.9967 0.9929	0.8363 0.8928 0.8894	
Hean weigh	25		790 610						AVG=0.8521) 0 - mara/0