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NOTICE

This document has been reviewed in accordance with U.S. Environmental Protection Agency
(EPA) policy and approved for publication. Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.

‘ This report was prepared by Eastern Research Group, Inc. (ERG), an EPA contractor (Contract
No. 68-D5-0028, Work Assignment No. 98-06) as a general record of discussions during the Workshop
on Selecting Input Distributions for Probabilistic Assessments. As requested by EPA, this report
captures the main points and highlights of discussions held during plenary sessions. The report is not a
complete record of all details discussed nor does it embellish, interpret, or enlarge upon matters that were
incomplete or unclear. Statements represent the individual views of each workshop participant; none of
the statements represent analyses by or positions of the Risk Assessment Forum or the EPA.
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' 'SECTION ONE

INTRODUCTION

1.1 BACKGROUND AND PURPOSE

The U.S. Environmental Protection Agency (EPA) has long emphasized the importance of
adequately characterizing uncertainty.and variability in its risk assessments, and it continuously studies
various quantitative techniques for better characterizing uncertainty and variability. Historically, Agency
risk assessments have been deterministic (i.e., based on a point estimate), and uncertainty analyses have
been largely qualitative. In May 1997, the Agency issued a policy on the use of probabilistic techniques
in characterizing uncertainty and variability. This policy recognizes that probabilistic analysis tools like
- Monte Carlo analysis-are acceptable provided that risk assessors present adequate supporting data and
credible assumptions.. The policy also identifies several implementation activities that are designed to
help Agency assessors review and prepare probabilistic assessments.

To this end, EPA's Risk Assessment Forum (RAF) is developing a framework for selecting input
distributions for probabilistic assessment. This framework emphasizes parametric distributions,
estimations of the parameters of candidate distributions, and evaluations of the candidate distributions’
quality of fit. A technical panel, convened under the auspices of the RAF, began work on the framework
in the summer of 1997. In September 1997, EPA sought input on the framework from 12 experts from
outside the Agency. The group’s recommendatlons included:

n Expanding the framework's discussion of exploratory data analysis and graphical
methods for assess the quality of fit.

] Discussing distinctions between variabifity and uncertainty and their iniplications.
n Discussing empirical distributions and biootstrappiﬁg.r
= Discussing correlation and its impl’ica_tic‘)ns. _
o= Making the framework available to the risk assessment comniunity as soon as possible.

In response to this input, EPA initiated a pilot program in which the Research Triangle Institute

~ (RTI) applied the framework for fitting distributions to data from EPA’s Exposure Factors Handbook
(EFH) (US EPA, 1996a). RTI used three exposure factors—drinking water intake, inhalation rate, and
residence time—as test cases. Issues highlighted as part of this effort fall into two broad categories: (1) .
issues associated with the representativeness of the data, and (2) issues associated with using the
Empirical Distribution Function (EDF) (or resamplmg techniques) versus using a theoretical Parametric
Distribution Function (PDF).

In April 1998, the RAF organized a 2-day workshop, "Selecting Input Distributions for
Probabilistic Assessments," to solicit expert input on these and related issues. Specific workshop goals

- included:
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= Discussing issues associated with the selection of probability distributions.

L] Obtaining expert input on measurements extrapolations and adjustments.

L] Discussmg qualitatively how to make quantltatlve adjustments

“ EPA developed two issue papers to serve as a focal point for discussions: "Evaluating
Representativeness of Exposure Factors Data" and "Empirical Distribution Functions and Non-
parametric Simulation." These papers which were developed strictly to prompt discussions during the
workshop are found in Appendix A. Discussions during the 2-day workshop focused on technical issues,
not pohcy The experts discussed issues that would apply to any exposure data.

~ This workshop report is intended to serve as an information piece for Agency assessors who
prepare or review assessments based on the use of probabilistic techniques and who work with various
exposure data. This report does not represent Agency guidance. It simply attempts to capture the
technical rigor of the workshop. discussions and will be used to support further development and
application of probabihstic analysis techniques/approaches.

1.2 WORKSHOP ORGANIZATION

The workshop was held on Apr11 21 and 22,1998, at the EPA Region 2 offices in New York
Ci lty The 21 participants, experts in exposure and risk assessment, included biologists, chemists,
engineers, mathematicians, physicists, statisticians, and toxicologists, and represented industry,
academia, state agencies, EPA, and other federal agencies. A limited number of observers also attended
the workshop. The experts and observers are listed in Appendix B.

The workshop agenda is in Appendix C. Mr. McCabe (EPA Region 2), Steven Knott of the
RAF, and Dr. H. Christopher Frey, workshop facilitator, provided opening remarks. Before discussions
began, Ms. Jacquellne Moya and Dr. Timothy Barry of EPA summarized the two issue papers.

During the 2-day workshop, the technical experts exchanged ideas in plenary and four small
group breakout sessions. Discussions centered on the two issue papers distributed for review and
comment before the workshop. Detailed discussions focused primarily on the questions in the charge
(Appendix D). "Brainwriting" sessions were held within the smaller groups. Brainwriting, an interactive
technique, enabled the experts to document their thoughts on a topic and build on each others' ideas.
Each small group captured the essence of these sessions and presented the main ideas to the entire group
during plenary sessions. A compilation of notes from the breakout sessions are included in Appendix E.
Following expert input, observers were allowed to address the panel with questions or comments. In
addition to providing input at the workshop, several experts provided pre- and postmeeting comments,
which are in Appendices F and G, respectively.

Section Two of this report contains the chairperson's summary of the workshop. Section Three
highlights workshop opening remarks. Section Four summarizes Agency presentations of the two issue
papers. Sections Five and Six describe expert input on the two main topic areas—representativeness and
EDF/PDF issues. Speakers' presentation materials (overheads and supporting papers) are included in
Appendm H.

1-2




' SECTION TWO

CHAIRPERSON’S SUMMARY
Prepared by: H. Christopher Frey, Ph.D.

The workshop was comprised of five major sessions, three of which were devoted to the issue of
 representativeness and two to issues regarding parametric versus empirical distributions and goodness-of-
fit. Each session began with a trigger question. For the three sessions on representativeness, there was -
discussion in a plenary setting, as well as discussions within four breakout groups. For the two sessions
regarding selection of parametric versus empirical distributions and the use of goodness-of-fit tests, the
discussions were conducted in plenary sessions.

2.1 REPRESENTATIVENESS

The first session covered three main questions, based on the portion of the workshop charge
(Appendix D) requesting feedback on the representativeness issue paper. After some general discussion,
the following three trigger questions were formulated and posed to the group:

1. What information is required to fully specify a problem definition?
2. What constitutes (lack of) representativeness?
3. What considerations should be included in, added to, or excluded from the checklists

given in the issue paper on representativeness (Appendix A)?

The group was then divided into four breakout groups, each of which addressed all three of these
questions. Each group was asked to use an approach known as "brainwriting." Brainwriting is intended
to be a silent activity in which each member of a group at any given time puts thoughts down on paper in
response to a trigger question. After completing an idea, a group member exchanges papers with another
group member. Typically, upon reading what others have written, new ideas are generated and written
down. Thus, each person has a chance to read and respond to what others have written. The advantages
of brainwriting are that all participants can generate ideas simultaneously, there is less of a problem with
domination of the discussion by just a few people, and a written record is produced as part of the process.
A disadvantage is that there is less "interaction" with the entire group. After the brainwriting activity
was completed, a representative of each group reported the main ideas to the entire group.

The experts generally agreed that before addressing the i issue of representatweness itis
necessary to have a clear problem definition. Therefore, there was considerable discussion of what
factors must be considered to ensure a complete problem definition. The most general requirement for a
good problem definition, to which the group gave general assent, is to specify the "who, what, when,
where, why, and how." The "who" addresses the population of interest. "Where" addresses the spatial
characteristics of the assessment. "When" addresses the temporal characteristics of the assessment.
"What" relates to the specific chemicals and health effects of concern. "Why" and "how" may help
clarify the previous matters. For example, it is helpful to know that exposures occur because of a
particular behavior (e.g., fish consumption) when attempting to define an exposed population and the
spatial and temporal extent of the problem. Knowledge of "why" and "how" is also useful later for
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proposing mitiga‘tion‘ or prevention strategies. The group in general agreed upén these principles for a
problem definition, as well as the more specific suggestions detailed in Section 5.1.1 of this workshop
report.

In regard to the second trigger question, the group generally agreed that “representativeness" is
cqptext-speciﬁc. Furthermore, there was a general trend toward finding other terminology instead of
usfng the term "representativeness.” In particular, many the group concurred that an objective in an
assessment is to make sure that it is "useful and informative" or "adequate” for the purpose at hand. The

dequacy of an assessment may be evaluated with respect to considerations such as "allowable error" as
well as practical matters such as the ability to make measurements that are reasonably free of major
errors or to reasonably interpret information from other sources that are used as an input to an
assessment. Adequacy may be quantified, in principle, in terms of the precision and accuracy of model
inputs and model outputs. There was some discussion of how the distinction between variability and
uﬂdértainty relates to assessment of adequacy. For example, one may wish to have accurate predictions
of exposures for more than one percentile of the population, reflecting variability. For any given
percentile of the population, however, there may be uncertainty in the predictions of exposures. Some
iqd‘ividlm;‘ls point‘ed‘“‘out that, because often it is not possible to fully validate many exposure predictions
orto nggfn input information that is free of error or uncertainty, there is an inherently subjective element
in assessing adequacy. The stringency of the requirement for adequacy will depend on the purpose of the
assessment. It was noted, for example, that it may typically be easier to adequately define mean values of
exposure than upper percentile values of exposure. Adequacy is also a function of the level of"detail of an
assessment; the requirements for adequacy of an initial, screening-level calculation will typically be less
rigorous than those for a more detailed analysis.

Regarding the third trigger question, the group was generally complimentary of the proposed
checklists in the representativeness issue paper (see Appendix A). The group, however, had many
suggestions for improving the checklists. Some of the broader concerns were about how to make the
checklists context-specific, because the degree of usefulness of information depends on both the quality
of the information and the purpose of the assessment. Some of the specific suggestions included using
flowcharts rather than lists; avoiding overlap among the flowcharts or lists; developing an interactive
Web-based flowchart that would be flexible and context-specific; and clarifying terms used in the issue
paper (e.g., "external” versus "internal" distinction). The experts also suggested that the checklists or
flowcharts encourage additional data collection where appropriate and promote a "value of information"
approach to help prioritize additional data collection. Further discussion of the group's comments is
given in Section 5.1.3. - ‘ ‘

22 SENSITIVITY ANALYSIS

The second session was devoted to issues encapsulated in the following trigger questions:

How can one do sensitivity analysis to evaluate the implications of non-representativeness? In

other words, how do we assess the importance of non-representativeness?

‘The experts were asked to consider data, models, and methods in answering these questions.
Furthermore, the group was asked to keep in mind that the charge requested recommendations for

immediate, short-term, and long-term studies or activities that could be done to provide methods or
examples for answering these questions. ‘
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There were a variety of answers to these questions. A number of individuals shared the view that
non-representativeness may not be important in many assessments. Specifically, they argued that many
assessments and decisions consider a range of scenarios and populations. Furthermore, populations and
exposure scenarios typically change over time, so that if one were to focus on making an assessment -
"representative" for one point in time or space, it could fail to be representative at other points in time or
space or even for the original population of interest as individuals enter, leave, or change within the
exposed population. Here again the notion of adequacy, rather than representativeness, was of concern to i
the group.

The group reiterated that representativeness is context-specific. Furthermore, there was some

discussion of situations in which data are collected for "blue chip" distributions that are not specific to
~ any particular decision. The experts did recommend that, in situations where there may be a lack of

adequacy of model predictions based on available information, the sensitivity of decisions should be -
evaluated under a range of plausible adjustments to the input assumptions. It was suggested that there
may be multiple tiers of analyses, each with a corresponding degree of effort and rigor regarding
sensitivity analyses. In a "first-tier" analysis, the use of bounding estimates may be sufficient to establish
sensitivity of model predictions with respect to one or more model outputs, without need for a
probabilistic analysis. After a preliminary identification of sensitive model inputs, the next step would
typically be to develop a probability distribution to represent a plausible range of outcomes for each of
the sensitive inputs. Key questions to be considered are whether to attempt to make adjustments to
improve the adequacy or representativeness of the assumptions and/or whether to collect addltlonal data
to improve the characterization of the input assumptions.

One potentially helpful criterion for deciding whether data are adequate is to try to answer the
question: "Are the data good enough to replace an assumption?" If not, then additional data collection is
likely to be needed. One would need to assess whether the needed data can be collected. A "value of
information" approach can be useful in prlorltlzmg data collection and in determining when sufﬁ01ent
data have been collected.

There was some discussion of sensitivity analysis of uncertainty versus sensitivity analysis of
variability. The experts generally agreed that sensitivity analysis to identify key sources of uncertainty is
a useful and appropriate thing to do. There was disagreement among the experts regarding the meaning
of identifying key sources of variability. One expert argued that identifying key sources of variability is
not useful, because variability is irreducible. However, knowledge of key sources of variability can be
useful in identifying key characteristics of highly exposed subpopulations or in formulating prevention or
mitigation measures. Currently, there are many methods that exist for doing sensitivity analysis,
including running models for alternative scenarios and input assumptions and the use of regression or
statistical methods to identify the most sensitive input distributions in a probabilistic analysis. In the
short-term and long-term, it was suggested that some efforts be devoted to the development of "blue
chip" distributions for quantities that are widely used in many exposure assessments (e.g., intake rates of
various foods). It was also suggested that new methods for sensitivity analysis might be obtained from
other fields, with specific examples based on classification schemes, time series, and "g-estimation."
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23 MAKING ADJUSTMENTS TO IMPROVE REPRESENTATION

In the third session, the group responded to the following trigger question:
How can one make a,djuétments from the samplc‘to better repres‘e‘nt“ the population of interest?

‘ The group was asked to consider "population," spatial, and temporal characteristics when
considering issues of representativeness and methods for making adjustments. The group was asked to
provide input regarding exemplary methods and information sources that are available now to help in
making such adjustments, as well as to consider short-term and long-term research needs. '

| - The group clarified some of the terminology that was used in the issue paper and in the
discussions. The term "population” was defined as referring to "an identifiable group of people.” The
experts noted that often one has a sample of data from a "surrogate population,” which is not identical to
the "target population" of interest in a particular exposure assessment. The experts also noted that there
is a difference between the "analysis" of actual data pertaining to the target population and
"extrapolation" of information from data for a surrogate population to make inferences regarding a target
population. It was noted that extrapolation always "introduces” uncertainty,

On the temporal dimension, the experts noted that, when data are collected at one point in time
and are used in an assessment aimed at a different point in time, a potential problem may occur because
of shifts in the characteristics of populations between the two periods.

Reweighting of data was one approach that was mentioned in the plenary discussion. There was
a discussion of "general" versus mechanistic approaches for making adjustments. The distinction here
was that "general” approaches might be statistical, mathematical, or empirical in their foundations (e.g.,
regression analysis), whereas mechanistic approaches would rely on theory specific to a particular
problem area (e.g., a physical, biological, or chemical model). It was noted that temporal and spatial
issues are often problem-specific, which makes it difficult to recommend universal approaches for
niaking adjustments. The group generally agreed that it is desirable to include or state the uncertainties
associated with extrapolations. Several participants strongly expressed the view that "it is okay to state
what you don't know," and there was no disagreement on this point.

The group recommended that the basis for making any adjustments to assumptions regarding
populations should be predicated on stakeholder input and the examination of covariates. The
group noted that methods for analyzing spatial and temporal aspects exist, if data exist. Of course, a
common problem is scarcity of data and a subsequent reliance on surrogate information. For assessment
of spatial variations, methods such as kreiging and random fields were commonly suggested. For

assessment of temporal variations, time series methods were suggested.

There was a lively discussion regarding whether adjustments should be "conservative." Some
experts initially argued that, to protect public health, any adjustments to input assumptions should tend to
be biased in a conservative manner (so as not to make an error of understating a health risk, but with
some nonzero probability of making an error of overstating a parﬁéular risk). After some additional
discussion, it appeared that the experts were in agreement that one should strive primarily for accuracy
and that ideally any adjustments that jntroduce "conservatism" should be left to decision makers. It was

inted out that invariably many judgments go into the development of input assumptions for an analysis
“éqd that these judgments in reality often introduce some conservatism. Several pointed out that
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“conservatism" can entail significant costs if it results in over control or misidentification of important
risks.” Thus, conservatism in individual assessments may not be optimal or even conservative in a
broader sense if some sources of risk are not addressed because others receive undue attention.
Therefore, the overall recommendation of the experts regarding this issue is to strive for accuracy rather
than conservatism, leaving the latter as an explicit policy issue for decision makers to introduce, although
it is clear that individual participants had somewhat differing views.

The group's recommendations regarding measures that can be taken now include the use of
stratification to try to reduce variability and correlation among inputs in an assessment, brainstorming to
generate ideas regarding possible adjustments that might be made to input assumptions, and stakeholder
input for much the same purpose, as well as to make sure that no significant pathways or scenarios have
been overlooked. It was agreed that "plausible extrapolations” are reasonable when making adjustments
to improve representativeness or adequacy. What is "plausible" will be context-specific.

In the short term, the experts recommended that the following activities be conducted:

Numerical Experiments. Numerical experiments can be used to test existing and new methods
for making adjustments based on factors such as averaging times or averaging areas. For
example, the precision and accuracy of the Duan-Wallace model (described in the
representativeness issue paper in Appendix A) for making adjustments from one averaging time
to another can be evaluated under a variety of conditions via numerical experiments.

Workshop on Adjustment Methods. The experts agreed in general that there are many potentially
useful methods for analysis and adjustment but that many of these are to be found in fields
outside the risk analysis community. Therefore, it would be useful to convene a panel of experts
from othéer fields for the purpose of cross-disciplinary exchange of information regarding v
methods applicable to risk analysis problems. For example, it was suggested that geostatistical
methods should be investigated. '

- Put Data on the Web. There was a fervent plea from at least one expert that data for "blue chip"
and other commonly used distributions be placed on the Web to facilitate the dissemination and
analysis of such data. A common concern is that often data are reported in summary form, which
makes it difficult to analyze the data (e.g., to fit distributions). Thus, the recommendation
includes the placement of actual data points, and not just summary data, on publicly accessible
Web sites. ' ’

Suggestions on How to Choose a Method. The group felt that, because of the potentially large
number of methods and the need for input from people in other fields, it was unrealistic to
provide recommendations regarding specific methods for making adjustments. However, they
did suggest that it would be possible to create a set of criteria regarding desirable features for
such methods that could help an assessor when making choices among many options.

In the longer term, the experts recommend that efforts be directed at more data collection, such
as improved national or regional surveys, to better capture variability as a function of different
populations, locations, and averaging times. Along these lines, specific studies could be focused on the
development or refinement of a select set of "blue chip" distributions, as well as targeted at updating or
extending existing data sets to improve their flexibility for use in assessments of various populations,
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locations, and averaging times. The group also noted that because populations, pathways, and scenarios
change over time, there will be a continuing need to improve existing data sets. o

2.4  EMPIRICAL AND PARAMETRIC DISTRIBUTION FUNCTIONS

‘ In the fourth session, the experts began to address the second main set of issﬁeé as given in the
charge. The trigger question used to start the discussion was:

What are the primary considerations in choosing between the use of pararheffic distribution |

functions (PDFs) and empirical distribution functions (EDFs)?

The group was asked to consider the advantages of using one versus thé other, whether the
choice is merely a matter of preference, whether one is preferred, and whether there are cases when
neither should be used.

The initial discussion involved clarification of the difference between the terms EDF and
"bootstrap.” Bootstrap simulation is a general technique for estimating confidence intervals and
characterizing sampling distributions for statistics, as described by Efron and Tibshirani (1993). An EDF
can be described as a stepwise cumulative distribution function or as a probability density function in
which each data point is assigned an equal probability. Non-parametric bootstrap can be used to quantify
sampling distributions or confidence intervals for statistics based upon the EDF, such as percentiles or
moments. Parametric bootstrap methods can be used to quantify sampling distributions or confidence
intervals for statistics based on PDFs. Bootstrap methods are also often referred to as "resampling"
methods, However, "bootstrap” and EDF are not the same thing. ‘ ‘

. The cxpertsmgenerally agreed that the choice of EDF versus PDF 1s usually a matter of
preference, and they also expressed the general opinion that there should be no rigid guidance requiring
the use of one or the other in any particular situation. The group briefly addressed the notion of
consistency. While consistency in the use of a particular method (e.g., EDF or PDF in this case) may
offer benefits in terms of simplifying analyses and helping decision makers, there was a concern that any
strict enforcement of consistency will inhibit the development of new methods or the acquisition of new
data and may also lead to compromises from better approaches that are context-specific. Here again, it is
important to point out that the experts explicitly chose not to recommend the use of either EDF or PDF as
a single preferred approach but rather to recommend that this choice be left to the discretion of assessors
on a case-by-case basis. For example, it could be reasonable for an assessor to include EDFs for some
inputs and PDFs for others even within the same analysis.

. Some partiéipants gave examples of situations in which they might prefer to use an EDF, such as: ‘
(a) when there are a large number of data points (e.g., 12,000); (b) access to high speed data storage and
g@trieval systems; (c) when there is no theoretical basis for selecting a PDF; and/or (d) when one has an
"“fgpgl" §§mple. Thére was some discussion of preference for use of EDFs in "data-rich" situations rather
than "data-poor" situations. However, it was noted that "data poor" is context-specific. For example, a
data set may be adequate for estimating the 90th percentile but not the 99th percentile. Therefore, one
may be "data rich" in the former case and "data poor" in the latter case with the same data set.

‘ Saome §XP§FS also gave examp}es of Whe_n they Would préfer to use PDFs. A potential limitation
of conventional EDFs is that they are restricted to the range of observed data. In contrast, PDFs typically
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intuitive or theoretical appeal. PDFs are also preferred by some because they provide a compact
representation of data and can provide insight into generalizable features of a data set. Thus, in contrast
to the proponent of the use of an EDF for a data set of 12,000, another expert suggested it would be
easier to summarize the data with a PDF, as long as the fit was reasonable. At least one person suggested
that a PDF may be easier to defend in a legal setting, although there was no consensus on this point.

For both EDFs and PDFs, the issue of extrapolation beyond the range of observed data received
considerable discussion. One expert stated that, the "further we go out in the tails, the less we know," to
which another responded, "when we go beyond the data, we know nothing." As a rebuttal, a third expert
asked "do we really know nothing beyond the maximum data point?" and suggested that analogies with
similar situations may provide a basis for judgments regarding extrapolation beyond the observed data.
Overall, most or all of the experts appeared to support some approach to extrapolation beyond observed
data, regardless of whether one prefers an EDF or a PDF. Some argued that one has more control over
extrapolations with EDFs, because there are a variety of functional forms that can be appended to create
a "tail" beyond the range of observed data. Examples of these are described in the issue paper. Others
argued that when there is a theoretical basis for selecting a PDF, there is also some theoretical basis for
extrapolatmg beyond the observed data. It was pointed out that one should not always focus on the

"upper" tail; sometimes the lower tail of a model input may lead to extreme values of a model output
(e.g., such as' when an input appears in a denominator).

There was some discussion of situations in which neither an EDF or a PDF may be particularly
desirable. One suggestion was that there may be situations in which explicit enumeration of all
combinations of observed data values for all model inputs, as opposed to a probabilistic resampling
scheme, may be desired. Such an approach can help, for example, in tracing combinations of input
values that produce extreme values in model outputs. One expert suggested that neither EDFs nor PDFs
are useful when there must be large extrapolations into the tails of the distributions.

A question that the group chose to address was, "How much information do we lose in the tails
of a model output by not knowing the tails of the model inputs?" One comment was that it may not be
necessary to accurately characterize the tails of all model inputs because the tails (or extreme values) of
model outputs may depend on a variety of other combinations of model input values. Thus, it is possible
that even if no effort is made to extrapolate beyond the range of observed data in model inputs, one may
still predict extreme values in the model outputs. The use of scenario analysis was suggested as an
alternative or supplement to probabilistic analysis in situations in which either a particular input cannot
reasonably be assigned a probability distribution or when it may be difficult to estimate the tails of an
important input distribution. In the latter case, alternative upper bounds on the distribution, or alternative
assumptions regarding extrapolation to the tails, should be considered as scenarios.

Uncertainty in EDFs and PDFs was discussed. Techniques for estimating uncertainties in the
statistics (e.g., percentiles) of various distributions, such as bootstrap simulation, are available. An
example was presented for a data set of nine measurements, illustrating how the uncertainty in the fit of a
parametric distribution was greatest at the tails. It was pointed out that when considering alternative
PDFs (e.g., Lognormal vs. Gamma) the range of uncertainty in the upper percentiles of the alternative
distributions will typically overlap; therefore, apparent differences in the fit of the tails may not be
particularly significant from a statistical perspective. Such insights are obtained from an explicit
approach to distinguishing between variability and uncertainty in a "two-dimensional" probabilistic
framework.
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The group discussed whether mixture distributions are useful. Some experts were clearly
proponents of using mixture distributions. A few individuals offered some cautions that it can be
difficult to know when to properly employ mixtures. One example mentioned was for radon
concentrations. One expert mentioned in passing that radon concentrations had been addressed in a

 particular assessment assuming a Lognormal distribution. Another responded that the concentration may
more appropriately be described as a mixture of normal distributions. There was no firm consensus on
whether it is better to use a mixture of distributions as opposed to a "generalized" distribution that can
take on many arbitrary shapes Those who expressed opinions tended to prefer the use of mixtures
because they could offer more 1n51ght -about processes that produced the data.

Truncation of the talls ofa PDF was dlscussed Most of the experts scemed o View thlS asa last
resort fraught with 1mperfectlons The need for truncation may be the result of an inappropriate selection
of a PDF. For example, one participant asked, "If you truncate a Lognormal, does this invalidate your
justification of the Lognormal?" It was suggested that alternative PDFs (perhaps ones that are less "tail
heavy™) be explored. Some suggested that truncation is often unnecessary. Depending upon the
probability mass of the portion of the distribution that is considered for truncation, the probablllty of
sampling an extreme value beyond a plausible upper bound may be so low that it does not occur in a
typical Monte Carlo simulation of only a few thousand iterations. Even if an unrealistic value is sampled
for one input, it may not produce an extreme value in the model output. If one does truncate a
distribution, it can potentlally affect the mean and other moments of the distribution. Thus, one expert
summarized the issue of truncation as “mtplckmg" that potentially can lead to miore problems than it

- solves.

2.5 GOODNESS-OF-FIT
The fifth and final session of the workshop was devoted to the following trigger question:

On what basrs should it be de01ded Whether a data set is adequately fitted by a parametric
‘ dxstrrbutlon?

The premise of this session was the assumption that a decision had already been made to use a
PDF instead of an EDF. While not all participating experts were comfortable with this assumption, all
agreed to base the subsequent drscussxon on it.

The group agreed unammously that visualization of both the data and the fitted d1str1but10n is the
most important approach for ascertaining the adequacy of fit. The group in general seemed to share a
view that conventional Goodness-of-Fit (GoF) tests have significant shortcomings and that they should
not be the only or perhaps even primary methods for determining the adequacy of fit.

One expert elaborated that any type of probability plot that allows one to transform data so that
they can be compared to a straight line, representing a petfect fit, is extremely useful. The human eye is
generally good at identifying discrepancies from the straight line perfect fit. Another pointed out that
visualization and visual inspection is routinely used in the medical community for evaluation of
information such as x-rays and CAT scans; thus, there is a credible basis for reliance on vrsuahzatron as a
means for evaluatmg models and data.
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One of the potential problems with GoF tests is that they may be sensitive to imperfections in the
fit that are not of serious concern to an assessor or a decision maker. For example, if there are outliers at
the low or middle portions of the distribution, a GoF test may suggest that a particular PDF should be
rejected even though there is a good fit at the upper end of the distribution. In the absence of a visual
inspection of the fit, the assessor may have no insight as to why a particular PDF was rejected by a GoF
test. :

The power of GoF tests was discussed. The group in general seemed comfortable with the

notion of overriding the results of a GoF test if what appeared to be a good fit, via visual inspection, was

‘rejected by the test, especially for large data sets or when the imperfections are in portions of the -
distribution that are not of major concern to the assessor or decision maker. Some experts shared stories
of situations in which they found that a particular GoF test would reject a distribution due to only a few
"strange" data points in what otherwise appears to be a plausible fit. It was noted that GoF tests become
increasingly sensitive as the number of data points increases, so that even what appear to be small or
negligible "blips" in a large data set are sufficient to lead to rejection of the fit. In contrast, for small data
sets, GOF tests tend to be "weak" and may fail to reject a wide range of PDFs. One person expressed
concern that any strict requirement for the use of GoF tests might reduce incentives for data collection,
because it is relatively easy to avoid rejecting a PDF with few data. '

The basis of GoF tests sparked some discussion. The "loss functions" assumed in many tests
typically have to do with deviation of the fitted cumulative distribution function from the EDF for the-
data set. Other criteria are possible and, in principle, one could create any arbitrary GoF test. One expert
asked whether minimization of the loss function used in any particular GoF test might be used as a basis
for choosing parameter values when fitting a distribution to the data. There was no specific objection,
but it was pointed out that a degree-of-freedom correction would be needed. Furthermore, other
methods, such as maximum likelihood estimation (MLE), have a stronger theoretical basis as a method
for parameter estimation.

The group discussed the role of the "significance level" and the "p-value" in GoF tests. One
expert stressed that the significance level should be determined in advance of evaluating GoF and that it
must be applied consistently in rejecting possible fits. Others, however, suggested that the appropriate
significance level would depend upon risk management objectives. One expert suggested that it is useful
to know the p-value of every fitted distribution so that one may have an indication of how good or weak
the fit may have been according to the particular GoF test.
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- SECTION THREE

OPENING REMARKS

At the opening session of the workshop, representatives from EPA Region 2 and the RAF
welcomed members of the expert panel and observers. Following EPA remarks, the workshop facilitator
described the overall structure and objectives of the 2-day forum, which this section summarizes.

3.1 WELCOME AND REGIONAL PERSPECTIVE
- Mr. William McCabe, Deputy Director, Program Support Branch, Emergency and
Remedial Response Division, U.S. EPA Region 2

William McCabe welcomed the group to EPA Region 2 and thanked everyone for participating
in the workshop. He noted that, in addition to this workshop, Region 2 also hosted the May 1996 Monte
Carlo workshop, which ultimately led to the release of EPA’s May 1997 policy document on
probabilistic assessment. He commented on how this 2-day workshop was an important followup to the
May 1996 event.” Mr. McCabe stresséd that continued discussions on viable approaches to probabilistic
assessments are important because site-specific decisions rest on the merit of the risk assessment. He
stated that this type of workshop is an excellent opportunity for attendees to discuss effective methods
and expressed optimism that workshop discussions would provide additional insight and answers to
probabilistic assessment issues. Resolution of key probabilistic assessment issues, he noted, will help the
region members as they review risk assessments using probabilistic techniques. He mentioned, for
example, the ongoing Hudson River PCB study for which deterministic and probabilistic assessments
will be performed. "In that case, as in others, Mr. McCabe said it will be critical for Agency reviewers to
put the results into the proper context and to validate/critically review probablllstlc techniques employed
by the contractor(s) for the Potentially Responsible Parties.

3.2 OVERVIEW AND BACKGROUND
Mr Steve Knott, U.S. EPA, Office of Research and Development, Risk Assessment Forum
On behalf of the RAF, Steve Knott thanked Reglon 2 for hosting the workshop. Mr. Knott briefly
explained how the RAF originated in the early 1980s and comprises approximately 30 scientists from
EPA program offices, laboratories, and regions. One primary RAF function is to bring experts together

to carefully study and help-foster cross-agency consensus on tough I‘lSk assessment issues.

Mr. Knott described the following activities related to probablhstlc analysis in which the RAF
has been involved:

L] Formation of the 1983 ad hoc technical panel on Monte Carlo analysis.
L] May 1996 workshop on Monte Carlo analysis (US EPA, 1996b).
L] Development of the guiding priﬁciples for Monte Carlo analysis (US EPA, 1997a)

| EPA’s general probabilistic analysis policy (US EPA, 1997b).
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Mr. Knott reiterated the Agency’s perspective on probabilistic techniques, stating that "the use of
probabilistic techniques can be a viable statistical tool for analyzing variability and uncertainty in risk
assessment" (US EPA, 1997b). Mr. Knott highlighted Condition 5 (on which this workshop was based)
of the eight condztzons Jor acceptance lrsted in EPA’s policy:

Informatron for each input and output distribution is to be provrded in the report. This includes
tabular and graphical representations of the distributions (e.g., probability density function and
cumulative distribution function plots) that indicate the location of any point estimates of interest
(e.g., mean, median, 95th percentile). The selection of distributions is to be explained and
Justified. For both the input and output distributions, variability and uncertainty are to be
differentiated where possible (US EPA, 1997b).

Mr. Knott referred to the recent RTI report, "Development of Statistical Distributions for
Exposure Factors" (1998), which presents a framework for fitting distributions and applies the
framework to three case studies.

Mr. Knott explained that the Agency is seeking input from workshop participants primarily in the
following areas:

n Methods for ﬁttmg distributions to less-than- perfect data (i.e., data that are not perfectly
representatrve of the scenario(s) under study).

L] Using the EDF (or resampling techniques) versus the PDF.

“ These 1ssues were the focus of the workshop Mr Knott noted that the workshop erl enable EPA to
~ receive input from experts build on existing gurdance and provrde Agency assessors additional msrght
EPA will use the lrrformatron from this ‘workshop i in future activities, mcludmg (1) developmg or revising

gurdehnes and models, 2) updatmg the Exposure Factors Handbook, (3) supporting modeling efforts,
and (4) applying probabrhstrc techniques to dose—response assessment.

3.3 WORKSHOP STRUCTURE AND OBJECTIVES
Dr. H. Chnstopher Frey, Workshop Chair

Dr. Frey, who served as workshop chalr and facrhtator rerterated the purpose and goals of the
workshop. As facilitator, Dr. Frey noted, he would attempt to foster discussions that would further
illuminate and support probablllstrc assessment activities. Dr. Frey stated that workshop discussions
would center on the two issue papers mentioned previously. He explained that the RTI report was
provided to experts for background purposes only. While the RTI report was not the review subject for
this workshop, Dr. Frey commented that it may provide pertinent examples.

‘The group’s charge, according to Dr. Frey, was to advise EPA and the profession on
rcpresenialzveness and distribution function issues. Because a slightly greater need exists for discussing
répresentativeness issues and developing new techniques in this area, Dr. Frey explained that this topic
would receive the greatest attention during the 2-day workshop. He reemphasized that the workshop
would focus on technical issues, not policy issues.




Dr. Frey concluded his introductory remarks by stating that the overall goal of the workshop was
to provide a framework for addressing technical issues that may be applied widely to different future
activities (e.g., development of exposure factor distributions).

Workshop Structure and Expert Charge

Dr. Frey explained that the workshop would be structured around technical questions related to
the two issue papers. Appendix D presents the charge provided to experts before the workshop,
-including specific questions for consideration and comment. The workshop material, Dr. Frey noted, is~
inherently technical. He, therefore, encouraged the experts to use plain language where possible. He
also noted that the workshop was not intended to be a short course or tutorial. In introducing the key
topics for workshop discussions, Dr. Frey highlighted the following, which he perceived as the most
challenging issues and questions based on experts’ premeeting comments:

Representativeness. How should assessors address representativeness? What deviation is
acceptable (given uncertainty and variability in data quality, how close will we-come to
answering the question)? How do assessors work representativeness into their problem
definition (e:g., What are we asking? What form will the answer take?) ' :

Sensitivity. How important is the potential lack of representativeness? How do we evaluate
this? ' ’

Adjustment. Are there reasonable ways to adjust or extrapolate in cases where exposure data are
not representative of the population of concern? ‘

EDF/PDF. How do assessors choose between EDFs and theoretical PDFs? On what basis do
assessors decide whether a data set is adequately represented by a fitted analytic distribution?

Dr. Frey‘ encouraged participants to remember the following general questions as they discussed
specific technical questions during plenary sessions, small group discussions, and brainwriting sessions:

= What do we know today that we can apply to answer the questions or provide guidance?

= What short-term studies (e.g., numerical experiments) could answer the question or
provide additional guidance?
L] What long-term research (e.g., greater than 18 months) may be needed to answer the
question or provide additional guidance? "
According to Dr. Frey, the answers to these questions will help guide Agency activities related to
probabilistic assessments. '

Dr. Frey also encouraged the group to consider what, if anything, is not covered in the issue
papers, but is related to the key topics. He noted some of the following examples, which were
communicated in the experts’ premeeting comments:




Lastly, Dr Frey explamed that the activities related to the workshop are pubhc 1nformat10n The -

Role of expert judgment and Bayesian methods, especially in making adjustments.

Is model output considered representative if all the inputs to the model are considered
representative? This issues relates, in part, to whether or not correlatiens or
dependencies among the input are properly addressed.

Role of representativeness in a default or generic assessment.

Role of the measurement process
AN

workshop was advertised in the Federal Register and observers were welcomed. Tlme was set aside on
both days of the workshop for observer questlons and comments,




SECTION FOUR

ISSUE PAPER PRESENTATIONS

Two issue papers were developed to present the expert panelists with pertinent issues and to
initiate workshop discussions. Prior to the plenary and small group discussions, EPA provided an
overview of each paper. This section provides a synopsis of each presentation. The two issue papers are
presented in Appendix A. The overheads are in Appendix H.

4.1 ISSUE PAPER ON EVALUATING REPRESENTATIVENESS OF EXPOSURE
FACTORS DATA .
Jacqueline Moya, U.S. EPA, NCEA, Washington, DC

Ms. Moya opened her overview by noting that, while exposure distributions are available in the
Exposure Factors Handbook, there is still a need to fit distributions for these data. Ms. Moya noted that a
joint NCEA-RTI pilot project in September 1997 was established to do this. She then discussed the
purpose of the issue paper and the main topics she planned to cover (i.e., framework for inferences,
components of representativeness, the checklists, and methods for improving representativeness). The
purpose of the issue paper, Ms. Moya reminded the group, was to introduce concepts and to prompt
discussions on how to evaluate representativeness and what to do if a sample is not representative.

Ms. Moya presented a flow chart (see Figure 1 in the issue paper) of the data-collection process
for a risk assessment. If data collection is not possible, she explained, surrogate data must be identified.
The next step is to ask whether the surrogate data represent the site or chemical. Ms. Moya pointed to
Checklist I (Assessing Internal Representativeness), which includes suggested questions for determining
‘whether the surrogate data are representative of the population of concern. If not, the assessor must ask,
"How do we adjust the data to make it more representative?"

Ms. Moya then briefly reviewed the key terms in the paper. Representativeness in the context of
an exposure/risk assessment refers to the comfort with which one can draw inferences from the data.
Population is defined in terms of its member characteristics (i.e., demographics, spatial and temporal
elements, behavioral patterns). The assessor’s population of concern is the population for which the
assessment is being conducted. The surrogate population is the population used when data on the
population of concern is not available. The population of concern for the surrogate study is the sample
population for which the surrogate study was designed. The population sampled is a sample from the
population of concern of the surrogate study.

Ms. Moya briefly described the external and internal components of representativeness. She
explained that external components reflect how well the surrogate population represents the population
of concern. Internal components refer to the surrogate study, specifically:

1. How well do sampled individuals represent the surrogate population? This depends on
how well the study was designed. For example, was it random?
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How well do the respondents represent the sample population? For example, if
recreational fishermen are surveyed, is someone who fishes more frequently more likely
to respond the survey, and therefore bias the response?

How well does the measured value represent the true value for the measurement unit?
For example, are the recreational fishermen in the previous example accurately reporting
the sizes of the fish they catch?

Ms. Moya reviewed the four checklists in the issue paper which may serve as tools for risk
assessors trying to eévaluate data representativeness. One checklist is for the population sampled versus
the populatlon of concern for the surrogate study (internal representatlveness) The other checklists refer
to the surrogate population versus the population of concern based on individual, spatial, and temporal
chnractenstlcs (external representativeness). One goal of the workshop, Ms. Moya explamed was to
sohcrt mput from experts on the use of these checklists. Specrﬁcally, she asked whether certain
questlons should be ehmmated (e g., only a subset of the questions may be needed for a screening risk
nssessment)

Lastly, Ms. Moya pointed to dlscusswns in the issue paper on attemptmg to improve
representatlveness One section refers to how to make adjustments for differences in population
charaetenstlcs (wrth discussions geared toward using weights for the sample). The second section refers
to time-unit dlfferences and includes how to adjust for this. Ms. Moya asked the group to consider how
to evaluate the sngmﬁcance of population dlfferences and how to perform extrapolations if they are
necessary.

4.2 ISSUE PAPER ON EMPIRICAL DISTRIBUTION FUNCTIONS AND NON-
PARAMETRIC SIMULATION
Timothy Barry, U.S. EPA, NCEA, Washington, DC

Dr. Barry reviewed the issues of concern related to selecting and evaluating distribution
functions. He explained that, assuming data are representative, the risk assessor has two methods for
representing an exposure factor in a probabilistic analysis: parametric (e.g., a Lognormal, Gamma, or
Weibull distribution) and non-parametric (i.e., use the sample data to define an EDF).

To illustrate how the EDF is generated, Dr. Barry presented equations and histograms (see
Appendm H). The basic EDF propertres were defined as follows:

u Values between any two consecutlve samples, x, and xkr 1 cannot be 51mulated nor can
values smaller than the sample minimum, x,, or larger than the sample maximum, x,, be
generated (i.e. x>x, and x<x,).

The mean of the EDF equals the sample mean. The variance of the EDF mean is always
smaller than the variance of the sample mean; it equals (n-1)/n times the variance of the
sample mean.

Expected values of simulated EDF percentiles are equal to the sample percentiles.




m If the underlying distribution is skewed to the right (as are many environmental
quantities), the EDF tends to underestimate the true mean and variance.

In addition to the basic EDF, Dr. Barry explained, the following variations exist:

u Linearized EDF. In this case, a linearized cumulative distribution pattern results. The
linearized EDF linearly extrapolates between two observations.

= Extended EDF. An extended EDF involves linearization and adds lower and upper tails
to the data to reflect a "more realistic range" of the exposure variable. Tails are added

.. based expert judgment.

= Mixed Exponential. In this case, an exponential upper tail is added to the EDF. This

approach is based on extreme value theory.

After describing the basic concepts of EDFs, Dr. Barry provided an example in which
investigators compared and contrasted parametric and non-parametric techniques. Specifically, 90 air
exchange data points were shown to have a Weibull fit. When a basic EDF for these data is used, means
and variance reproduce well. It was concluded that if the goal is to reproduce the sample, Weibull does
well on the mean but poorly at the high end.

Dr. Barry encouraged the group to consider the following questions during the 2-day workshop:

- Is an EDF preferred over a PDF in any circumstances?
u Should an EDF not be used in certain situations?
= When an EDF is used, should the lineérized, extended, or mixed version be used?

Dr. Barry briefly described the Goodness of Fit (GoF) questions the issue paper introduces. He
explained that, generally, assessors should pick the simplest analytic distribution not rejected by the data.
Because rejection depends on the chosen statistic and on an arbitrary level of statistical significance, Dr.
Barry posed the following questions to the group:

= What role should the GoF statistic and its p-value (when available) play in deciding on
the appropriate distribution?

L What role should graphical assessments of fit play?

u When none of the standard distributions fit well, should you investigate more flexible -
families of distributions (e.g., four parameter gamma, four parameter F, mixtures)?
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SECTION FIVE
EVALUATING REPRESENTATIVENESS OF EXPOSURE FACTORS DATA

Discussions on the first day and a half of the workshop focused on developing a framework for
characterizing and evaluating the representativeness of exposure data. The framework described in the
issue paper on representativeness (see Appendix A) is organized into three broad sets of questions: (1)
those related to differences in populations, (2) those related to differences in spatial coverage and scale,
and (3) those related to differences in temporal scale. Therefore, discussions were held in the context of
these three topic areas. The panel also discussed the strengths and weaknesses of the proposed
"checklists" in the issue paper, which were designed to help the assessor evaluate representativeness.

The last portion of the workshop session on representativeness included discussions on sensitivity
(assessing the importance of non-representativeness) and on the methods available to adjust data to better
represent the population of concern. This section describes the outcome of each of these discussions.

Initial deliberations centered on the need to define risk assessment objectives (i.e. problem
definition) before evaluating the representativeness of exposure data. Discussions on sensitivity and
adjustment followed. ‘

5.1 PROBLEM DEFINITION

The group agreed on two points: that "representativeness” depends on the problem at hand and
that the context of the risk analysis is critical. Several experts commented that assessors will have a
difficult time defining representativeness if the problem has not been well-defined. The group therefore
spent a significant amount of time discussing problem definition and problem formulation in the context
of assessing representativeness. Several experts noted the importance of understanding the end use of the
assessment (e.g., site-specific or generic, national or regional analysis). The group agreed that the most
important step for assessors is to ask whether the data are representative enough for their intended use(s).

The group agreed that stakeholders and other data usérs should be involved in all phases of the
assessment process, including early brainstorming sessions. Two experts noted that problem definition
must address whether the assessment will adequately protect public health and the environment. Another
expert stressed the importance of problem formulation, because not doing so risks running analyses or
engaging resources needlessly. One participant commented that the importance of representativeness
varies with the level (or tier) of the assessment. For example, if data are to be used in a screening
manner, then conservativeness may be more important than representativeness. If data are to be used in
something other than screening assessments, the assessor must consider the value added of more complex
analyses (i.e., additional site-specific data collection, modeling). Two experts noted, however, that the
following general problem statement/question Would not change with a more or less sophisticated (tiered)
assessment: Under an agreed upon set of exposure conditions, will the population of concern experience
unacceptable risks? A more sophisticated analysis would merely enable a closer look at less
conservative/more realistic conditions. :
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5.1.1 'What information is required to specify a problem definition fully?

The group agreed that when defining any problem, the "fundamental who, what, when, where,
why, and how" questions must be answered. One individual noted that if assessors answer these
questions, they will be closer to determining if data are representative. The degree to which each basic
question is important is specific to the problem or situation. Another reiterated the importance of
remembering that the premier consideration is public health protection; he noted that if only narrow
issues are discussed, the public health impact may be overlooked.

The group concurred that the problem must be defined in terms of location (space), time (over
what duration and when in time), and population (person or unit). Some of these definitions may be
concrete (e.g., spatial locations around a site), while some, like people who live on a brownfield site, may
be more vague (e.g., because they may change with mobility and new land use). Because the problem
addresses a future context, it must be linked to observable data by a model and assumptions. The
problem definition should include these models and assumptions.

Various experts provided the following specific examples of the questions assessors should
consider at the problem formulation stage of a risk assessment.
m What is the purpose of the assessment (e.g., regulatory decision, setting cleanup
standards)?

What is the population of intereét?

What type of assessment is being performed (site-specific or generic)?
How is the assessment information being used? How will data be used (e.g., screening
assessment versus court room)? “ ” ‘

Who are the stakeholders?

What are the budget limitations? What is the cost/benefit of peffdrming a probabilistic
versus a deterministic assessment? ‘ ‘ ‘

What pdpulation is exposed, and what are its characteristics?

How, when, and where are people exposed?

In what activities does the exposed population engage? When does the exposed
population engage in these activities, and for how long? Why are certain activities
performed? o C ' ‘

What type of exposure is being evaluated (e.g., chronic/acute)?

What is the scenario of interest (e.g., what is future land use)?

What is the target or "acceptable" level of risk (e.g., 10 versus 10)?
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- What is the measurement error?

| What is the acceptable level of error?

u What is the geographic scale and location (e.g., city, county)?
L] What is the scale for data collection (e.g:, regional/city, national)?
u What are site/region-specific issues (e.g., how might a warm climate or poor-tasting

... water affect drinking water consumption rates)?

L] What is the temporal scale (day, year, lifetime)?
= What are the temporal characteristics of source emissions (continuous)?
L] What is/are the r<;ute(s) of exposure? v o
.= What is the dose (external, biological)?
L] What is/are the stati;fic(s) of interest (e.g., mean, uncertainty percentile)?
] Whét is the plausible worst case?
u What is the overall data quality?
= What models must be used?
® - What is the measurement error?
n When would results change a decision?

Many of the preceding questions are linked closely to defining representativeness. One subgroup
compiled a list of key elements that are directly related to these types of questions when defining
representativeness (see textbox on page 5-4).

5.1.2 - What constitutes representativeness (or lack thereof)? What is "acceptable
deviation"?

Several of the experts commented that, fundamentally, representativeness is a function of the
quality of the data but reiterated that it depends ultimately on the overall assessment objective. Almost
all data used in risk assessment fail to be representative in one or more ways. At issue is the effect of the
lack of representativeness on the risk assessment. One expert suggested that applying the established
concepts of EPA’s data quality objective/data quality assessment process would help assessors evaluate
data representativeness. Because populations are not fixed in time, one expert cautioned that if a data set
is too representative, the risk assessment may be precise for only a moment. Another stressed the

- importance of taking a credible story to the risk manager. In that context, "precise representativeness"
may be less important than answering the question of whether we are being protective of public health. It
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Sources of Variability and Uncertainty Related to the Assessment of Data Representativeness

EPA policy sets the standard that risk assessors should seek to characterize central tendency and plausible upper
bounds on both individual risk and population risk for the overall target population as well as for sensitive
subpopulations. To this extent, data representativeness cannot be separated from the assessment endpoint(s).

| Following are some key elements that may affect data representativeness. These elements are not mutually

| exclusive. ‘
Exposed Population
General target population
Particular ethnic group

Known sensitive subgroup (e.g., children, elderly, asthmatics)
Occupational group (é.g., applieators)

Age group (e.g., infant, child, teen, adult, whole life)

Gender

Activity group_(e.g., sport fishermen, subsistencé fishermen)

Geographic Scale, Location
Trends (e.g., stationary, nonstationary behaviors)
Past, present, future exposures
Lifetime exposures
Less-than-lifetime exposures (e.g., hourly, daily, weekly, annually)
Temporal characteristics of source(s) (e.g., continuous, intermittent, periodic, concentrated,
random)

Exposure Route
. inhalation
Ingestion (e.g., direct, indirect)
Dermal (direct) contact (by activity; e.g., swimming)
Multiple pathways

Exposure/Risk Assessment Endpoint
Cancer risk
Noncancer risk (margin of exposure, hazard index)
Potential dose, applied dose, internal dose, biologically effective dose
Risk statistic
Mean, uncertainty percentile of mean
Percentile of a distribution (e.g., 95th percentile risk)
Uncertainty limit of variability percentile (upper confidence limit on 95th percentile
risk)
Plausible worst case, uncertainty percentile of plausible worst case

Data Quality Issues
Direct measurement, indirect measurement (surrogates)
Modeling uncertainties
Measurement error (accuracy, precision, bias)
Sampling error (sample size, non-randomness, independence)
Monitoring issues (short-term, long-term, stationary, mobile)
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is important to understand whether a lack of representativeness could mean the risk assessment results
fail to protect public health or that they grossly overestimate risks.

One participant expressed concern that assessors feel deviations from representativeness can be
measured. In reality, risk assessors may more often rely on qualitative or semiquantitative ways of
describing that deviation. Another expert emphasized that assessors often have no basis on which to
Jjudge the representativeness of surrogate data (e.g., drinking water consumption), because rarely is local
data available for comparison. Therefore, surrogate data, must be accepted or modified based on some
qualitative information (e.g., the local area is hotter than that which the surrogate data is based).

The experts provided the following views on what constitutes representativeness and/or an
acceptable level of non- representatlveness These views were communicated during small group and
plenary discussions.

Nearly consistent with the definition in the issue paper, representativeness was defined by one
subgroup as "the degree to which a value for a given endpoint adequately describes the value of that
endpoint(s) likely seen in the target population." The term "adequately" replaces the terms "accurately
and precisely" in the issue paper definition. One expert suggested changing the word representative to
"useful and informative." The latter terms imply that one has learned something from the surrogate
population. For example, the assessor may not prove the data are the same, but can, at minimum, capture
the extent to which they differ. The term non-representativeness was defined as "important differences
between target and surrogate populations with respect to the risk assessment objectives." Like others, this 7
subgroup noted that the context of observation is important (e.g., what is being measured: environmental
sample [water, air, soil] versus human recall [diet] versus tissue samples in humans [e.g., blood]).
Assessors must ask about internal sample consistency, inappropriate methods, lack of descriptors (e.g.,
demographic, temporal), and inadequate sample size for targeted measure.

The group agreed, overall, that assessing adequacy or representativeness is inherently subjective.
However, differing opinions were offered in terms of how to address this subjectivity. Several
participants stressed the importance of removing subjectivity to the extent possible but without making
future guidance too rigid. Others noted, however, that expert judgment is and must remain an integral
part of the assessment process.

A common theme communicated by the experts was that representativeness depends on how
much uncertainty and variability between the population of concern and the surrogate population the
assessor is willing to accept. What is "good enough" is case specific, as is the "allowable error.” Several
experts commented that it is also important for assessors to know if they are comparing data means or
tails. One expert suggested reviewing some case studies using assessments done for different purposes to
illuminate the process of definmg representativeness. "With regard to exposure factors, we [EPA] need
to do a better job at specifying or providing better guidance on how to use the data that are available."
For example, the soil ingestion data for children are limited, but they may suffice to provide an estimate
of a mean. These data are not good enough to support a distribution or a good estimate of a high-end
value, however. o

One subgroup described representativeness/non- representatlveness as the degree of bias between
a data set and the problem. For example:
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Scenario: s a future tesidential scenario appropriate to the problem? For prospective tisk
désessirent, there are usiially irreducible uncertainties about making estimates
aboiit a future unknown population. Thereforé, a cértaifi amount of modeling
fiust occiir.

Model: 15 a miltiplicative, indepetidént varidble model approptiaie? Unceitainties in the
" ifiodel can cotiribute to hoti-represéntativeiiess (.g., it might hot apply, it may
be wionig, of calculations may be incorrect). B |

Variables: ~ 1s a particular study appropriate fo the problem at hand—are the variabies
‘ biased, uncertain? It may be easy to get confused about distinctioris betweeti bias
(ot inaccuracies), precision/itnprecisiolt, and representativeness/noi
representativeriess. It is often assiimed that a "representative" data set is one that
has been obtained with a certait amount of rafidomizationi. More often, however,
data that meet this definition are hot available.
‘ N . . o ) w .l
“ The group spokesperson explained that a well-designed and controlled randomized study
yielding two resulis can be "representative” of the mean and dispersiori but highly imprecise.
Imprec{sion and veness are therefore different, but related. The central ténidency of the

distribution may be accurately estimated, but the upper percetitile may not.

in summary, when assessing representativeness, the group agreed that emphasis should be placed

ofi the ddequacy of the data and how useful and informative a data set is to the defined problem. The
group agteéd that these terms are more appropriate than "accuracy and precision” in defining
representative daid in the context of a risk assessment. The importance of considering end use of the data
was stressed and was a recurring theme in the discussions (i.e., how much representativeness is needed to

afiswet the problem). Because the subject population is often a moving target with unpredictable
direction in terms of its demographics and coriditions of exposure, orie expeit cometited that, in some
ciises, represehtativeness of a giver data set may not be a relevant concept and generic models may be
niore appropriate.

513 What considerations should be included iti, added fo, or excluded from the
checklists? o

More than half the experts indicated that the checklists in Issue Paper 1 are useful for evaluating
representativeness. One expert tioted that regulators are often forced to make decisions without
information. A checklist helps the assessor/risk manager evaluate the potential importance of missing
exposure data. Orie expert re-emphasized the importarice of allowing for professional judgement and
sxpert elicitation when evaluating exposute data. Another panelist concutred, commenting that this type
of the checklist is preferred over prescriptive giiidatice. Several of the expetts noted, however, that
checklists could be improved and offered several recommendations. -

The group agreed that the checklist should be flexible for various problems and that users should
be directed to consider the purpose of the risk assessment. The assessor must know the minimum
requirettients for a screenitig versus a probabilistic assessment. As one expert said, the requirements for
4 screening level assessmefit must differ from those for a full-blown risk assessment: Do I have enough
iitformation about the population (e.g., type, space, time) to answer the questions at this tier, and is that
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information lcomplete enough to make a management decision? Do I need to go through all the checklists
before I can stop?

Instead of the binary (yes/no) and linear format of the checklists, several individuals suggested a
flowchart format centered on the critical elements of representativeness (i.e., a "conditional"

“ checklist)—to what extent does the representativeness of the data really matter? A flowchart would
allow for a more iterative process and would help the assessor work through problem-definition issues.
One expert suggested developing an interactive Web-based flowchart that would be flexible and context-
specific. Another agreed, adding that criteria are needed to guide the assessor on what to do if
information is not available. As one expert noted, questions should focus on the outcome of the risk
assessment. The assessor needs to evaluate whether the outcome of the assessment changes if the
populations differ. :

One of the experts strongly encouraged collecting more/new data or information. Collection of
additional data, he noted, is needed to improve the utility of these checklists. Another participant
suggested that the user be alerted to the qualities of data that enable quantifying uncertainty and
reminded that the degree of representativeness cannot be defined in certain cases. When biases due to
lack of representativeness are suspected, how can assessors judge the direction of those biases?

In addition to general comments and recommendations, several individuals offered the following
specific suggestions for the checklists:

w Clarifying definitions (e.g., internal versus external).

= Recategorizing. For example, use the following five categories: (1) interpreting
measurements (more of a validity than representative issue), (2) evaluating whether
sampling bias exists, (3) evaluating statistical sampling error, (4) evaluating whether the
study measured what must be known, and (5) evaluating differences in the population.
The first three issues are sources of internal error, the latter two are sources of external

representativeness.
n Redubing the checklists. Several experts suggested combining Checklists II, ITI, and IV.
n Combining temporal, spatial, and individual categories. Avoid overlap in questions. For

example, when overlap exists (e.g., in some spatial and temporal characteristics), which
questions in the checklist are critical? A Web-based checklist, with the flow of questions
appropriately programmed, could be designed to avoid duplication of questions.

| Including other populations of concern (e.g., ecological receptors).
] Including worked examples that demonstrate the criteria for determining if a question is
answered adequately and appropriately. These examples should help focus the risk

assessor on the issues that are critical to representativeness..

®  Separating bias and sampling quality and extrapolation from reanalysis and
reinterpretation. -
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Askmg the following addrtlonal questlons

Relatlve to appllcatlon is there cons1stency in the survey instruments used to
collect the exposure data‘7 How was measurement error addressed‘7 ‘

Isthe sample representatlve enough to bound the risk?

Are data avallable on populatlon characterrzatlon factors (e g age sex)?

What is known about the populatron of concern relatlve to the surrogate
population? (If the population of concern is inadequately characterized, then the
ability to consider the representativeness of the surrogate data is limited, and
meaningless adjustment may result).

In summary, the group agreed on the utility of the checklists but emphasized the need to include
in them decision criteria (i.e., how do we know if we have representative/non-representative data?) A
brief discussion on the need to collect data followed. Some experts posed the following questions: How
important is it to have more data? Is the risk assessment really driving decisions? Is more jinformation
needed to make good decisions? Is making risk assessment decisions on qualitative data acceptable?
What data must to be collected, at minimum, to validate key assumptions? The results of the sensitivity
analysis, as one expert pointed out, are key to answering these questions.

52 SENSITIVITY

How do we assess the importance of non-representativeness?

In considering the implications of non-representativeness, the group was asked to consider how
one identifies the implications of non-representativeness in the context of the risk assessment. One
expert commented that the term "non-representativeness” may be a little misleading, and as discussed
earlier, finds the terms data adequacy or data useability more fitting to the discussions at hand. The
expert noted that, from a Superfund perspective, data representativeness is only one consideration when
assessing overall data quality or useability. Others agreed. The workshop chair encouraged everyone to
discuss the suitability of the term "representativeness" while assessmg its importance during the small
group discussions.

W ‘ :

One group described a way in wluch to assess the issue of non- representatlveness as follows
The assessor must check the sensitivity of decisions to be made as a result of the assessment. That is,
under a range of plausible adjustments, will the risk decision change? Representativeness is often not
that important because risk management decisions depend on a range of target populations under various
scenarios. A few of the experts expressed concern that problems will likely arise if the exposure assessor
is sepamted from decision makers. One person noted that often times an exposure assessment will be
done absent of a speclﬁo decision (e g., nonsite, non-Superfund situation). Another noted that in the
pestncnde program srtuatlons occur in which an exposure assessment is done before toxicity data are
available. Such separations may be unavoidable. Another expert emphasized that any future guidance
should stress the importance of assessors being cognizant of data distribution needs even if the assessors
are removed from the decision or have hmlted data.
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One individual noted that examples would help. The assessor should perform context-specific
sensitivity analysis. It would help to.develop case studies and see how sensitivity analysis affects
application (e.g., decision focus).

Another group discussed sensitivity analysis in the context of a tiered approach. For the first tier,
a value that is "biased high" should be selected (e.g., 95th percentile upper bound). The importance of a
parameter (as evidenced by a sensitivity analysis) is determined first, making the representativeness or
non-representativeness of the nonsensitive parameters unimportant. For the second tier (for sensitive
parameters), the assessor must consider whether averages or high end estimates are of greater
importance. This group presented an example using a corn oil scenario to illustrate when differences
between individuals (e.g. high end) and mixtures (averages) may be important. Because corn oil is a
blend with input from many ears of corn, if variability exists in the contaminant concentrations in
individual ears of corn, then corn oil will typically represent some type of average of those
concentrations. For such a mixture, representativeness is less of an issue. It is not necessary to worry
about peak concentrations in one ear of corn. Instead, one would be interested in situations which might
give rise to a relatively high average among the many ears of corn that comprise a given quantity of corn
oil. If one is considering individual ears of corn, it becomes more important to have a representative
sample; the tail of the distribution becomes of greater interest. ‘

A third subgroup noted that, given a model and parameters, assessors must determine whether
enough data exist to bound the estimates. If they can bound the estimates, a sensitivity analysis is
performed with the following considerations: (1) identify the sensitive parameters in the model; 2
focus on sensitive parameters and evaluate the distribution beyond the bounding estimate (i.e., identify
the variability of these parameters) for the identified sensitive parameters; (3) evaluate whether the
distribution is representative; and (4) evaluate whether more data should be collected or if an adjustment
is appropriate.

Members of the remaining subgroup noted, and others agreed, that a "perfect” risk assessment is
not possible. They reiterated that it is key to evaluate the data in the context of the decision analysis.
Again, what are the consequences of being wrong, and what difference do decision errors make in the
estimate of the parameter being evaluated? This group emphasized that the question is situation-specific.
In addition, they noted the need for placing bounds on data used.

One question asked throughout these discussions was "Are the data good enough to replace an
existing assumption and, if not, can we obtain such data?" One individual again stressed the need for
"blue chip" distributions at the national level (e.g., inhalation rate, drinking water). Another expert
suggested adding activity patterns to the list of needed data.

In summary, the group generally agreed that the sensitivity of the risk assessment decision must
be considered before non-representativeness is considered problematic. In some cases, there may not be
an immediate decision; but good distributions are still important.

How can one do sensitivity analysis to evaluate the implications of non-representativeness?
The workshop chair asked the group to consider the mechanics of a sensitivity analysis. For
example, is there a specific statistic that should be used, or is it decision dependent? One expert

responded by noting that sensitivity analysis can be equated to partial correlation coefficients (which are
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internal to a2 model). He noted, however, that sensitivity analysis in the context of exposure assessment is
more "bottom line" sensitivity (i.e., if an assumption is changed, how does the change affect the bottom
line?). The focus here is more external—what happens when you change the inputs to the model (e.g.,
the distributions)? Another pointed to ways in which to perform internal sensitivity analysis. For
example, the sensitivity of uncertainty can be separated out from the sensitivity of the variability
c¢omponent (see Wllham Huber’s premeetmg comments on sens1t1v1ty) Another expert stressed,
however, that sen51t1v1ty analysis is inherently tied to uncertainty; it is not tied to varlablhty unless the
variability is uncertain. It was noted that sensitivity analysis is an opportunity to view things that are
subjective. Variability, in contrast is inherent in the data, unless there are too few data to estimate
variability sufficiently. One expert commented that it is useful to know which sources of variability are
nost important mwc‘letermmmg exposure and risk.

One individuel voiced eoﬁcem regarding how available models address sensitivity. Another
questioned whether current software (e.g., Crystal Ball® and @Risk®) covers sensitivity coefficients
adequately (i.e., does it reflect the depth and breadth of existing literature?).

Lastly, the group discussed sensitivity analysis in the context of what we know now and what we
need to know to improve the existing methodology. Individuals suggested the following:

L Add the ability to classify sample runs to available software. Classify inputs and
evaluate the effect on outputs.

= Crystal Ball® and @Risk® are reliable for many calculations, but one expert noted they |

“ may not currently be useful for second-order estimates, nor can they use time runs. Time
series analyses are particularly important for Food Quality Protection Act (FQPA) ‘
evaluations.

] Consider possible biases built into the model due to residuals lost during regression
_ana lyses ThlS factor is 1mportant to the sen51t1v1ty of the model predlctlon
" ‘\ ' B I
. - One expert pomted out that regression analyses can mtroduce blas because reslduals are often
-dropped out. Others agreed that this is an important issue. F or example, it can make an order-of-
magnitude difference in body weight and surface area scaling. Another expert stated that this issue is of
specml mterest for work under the FQPA, where use of surrogate data and regression analysis is
receiving more and more attention. Another expert noted that "g-estimation" looks at this issue. The
group revisited this issue during their discussions on adjustment.

53  ADJUSTMENT
How can one adjust the sample to better represent the population 0f interest?

The experts addressed adjustment in terms of population, spatial, and temporal characteristics.
The group was asked to identify currently available methods and information sources that enable the
‘quantltatlve adJustment of surrogate sample data. In addition, the group was asked to identify both short-
and long-term research needs in this area. The workshop chair noted that the issue paper only mcludes
discussion on adjustments to account for time-scale differences. The goal, therefore, was to generate
some discussion on spatial and population adjustments as well. Various approaches for making
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adjustments were discussed, including general and mechanistic. General approaches include those that
are statistically-, mathematically-, or empirically-based (e.g., regression analysis). Mechanistic
approaches would involve applying a theory specific to a problem area (e.g., a blologlcal chemical, or
physical model).

Some differing opinions were provided as to how reliably we can apply available statistics to
adjust data. In time-space modeling, where primary data and multiple observations occur at different
spatial locations or in multiple measures over time, one expert noted that a fairly well-developed set of
analytic methods exist. These methods would fall under the category of mix models, kreiging studies for
spatial analysis, or random-effects models. The group agreed that extrapolating or postulating models are
less well-developed. One person noted that classical statistics fall short because they do not apply to
situations in which representativeness is a core concern. Instead, these methods focus more on the
accuracy or applicability of the model. The group agreed that statistical literature in this area is growing.

Another individual expressed concern that statistical tools and extrapolations introduce more
uncertainty to the assessment. This uncertainty may not be a problem if the assessor has good
information about the population of concern and is simply adjusting or reweighing the data, but when the
assessor is extrapolating the source term, demographics, and spatial characteristics simultaneously, more
assumptions and increasing uncertainty are introduced.

In general, the group agreed that a model-based approach has merit in certain cases. The
modeled approach, as one expert noted, is a cheap and effective approach and likely to support
informed/more objective decisions. The group agreed that validated models (e.g., spatial/fate and
transport models) should be used. Because information on populations may simply be unavailable to
validate some potentially useful models, several partlc1pants reemphasized the need to collect more data,
which was a recurring workshop theme.

One expert pointed out that the assessor must ask which unit of observation is of concern. For
example, when evaluating cancer risk, temporal/spatial issues (e.g., residence time) are less important.
When evaluating developmental effects (when windows of time are important), however, the
temporal/spatial issues are more relevant. Agam assessors must consider the problem at hand before
identifying the umt of time. :

From a pesticide perspective, it was noted that new data cannot always be required of registrants.
When considering the effects of pesticides, for example, crop treatment rates change over time. As a
result, bridging studies are used to link available application data to crop residues (using a multiple linear
regression model). :

One expert stressed the importance and need for assessors to recognize uncertainty. Practitioners
of probabilistic assessment should be encouraged to aggressively evaluate and discuss the uncertainties in
extrapolations and their consequences. Often, probabilistic techniques can provide better information for
better management decisions. The expert pointed out that, in some cases, one may not be able to assign a
distribution, or one may choose not to do so because it would risk losing valuable information. In those
cases, multiple scenarios and results reported in a nonprobabilistic way (both for communication and
management decisions) may be appropriate.

At this point, one expert suggested that the discussion of multiple scenarios was straying from
the basic question to be answered— "If I have a data set that does not apply to my population, what do I
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need to do, if anything?" Others disagreed, noting that it may make sense to run different scenarios and
evaluate the difference. If a different scenario makes a difference, more data must be collected. One
expert argued, however, that we cannot wait to observe trends; assessors must predrct the future based on
a "snapshot" of today

One expert suggested the followmg hrerarchy when decrdmg on the need to reﬁne/adjust data:

Can the effect be bounded‘? If yes, no adjustment is needed
If the bias is eonseryative, no adjustrnent is needed.
Use a simple model to adjust the data.

If adjustments fail, resample/collect more data, if possible.

The group then discussed the approaches and methods that are currently avallable to address non-
representatlve data, and mdrcated that the followmg approaches are viable: ‘

1.

Start with brainstorming. Obtain stakeholder mput to determme how the target
population differs from the population for which you have data.

Look at covariates to get an idea of what adjustment might be needed. Stratify data to
see if correlation exists. Stratification is a good basis for adjustments.

Use "kreiging" techniques (deriving information from one sample to a smaller, sparser
data set). Kreiging may not fully apply to spatial, temporal, and population adjustments,
however, because it applies to the theory of random fields. Kreiging may help improve
the accuracy of existing data, but it does not enable extrapolation.

Inolude time-steps in models to evaluate temporal trends.

Use the "plausible extrapolatlon" model This model is acceptable if biased
conservatlvely

Qohsider spatial estimates of covariate data (random fields).

Use the scenario approach instead ofa probabilistic approach.

Bayesian statistical methods may be applicable and relevant.

One expert presented a brief case study as an eXample of Bayesian analysis of variability
and uncertainty and use of a covariate probability distribution model based on regression

- to allow extrapolation to different target populations. The paper he summarized,

3ayesian Analysrs of Varlablllty ‘and Uncertainty on Arsenic Concentrations in U.S.
Public Water Supplies," and supporting overheads, are in Appendix G. The paper
describes a Bayesian methodology for estimating the distribution and its dependence on

“covarlates Posterior distributions were computed using Markov Chain Monte Carlo “
(MCMC) In thlS example uncertalntles and varlabrhty were assocrated with time 1ssues o
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and the self-selected nature of arsenic samples. After briefly reviewing model
specifications and distributional assumptions, the results and interpretations were
presented, including a presentation of MCMC output plots and the posterior cumulative
distribution of source water. The uncertainty of fitting site-specific data to the national
distribution of arsenic concentrations was then discussed. The results suggest that
Bayesian methodology powerfully characterizes variability and uncertainty in exposure
factors. The probability distribution model with covariates provides insights and a basis
for extrapolation to other targeted populations or subpopulations. One of the main points
of presenting this methodology was to demonstrate the use of covariates. This case study
showed that you-can fit a model with covariates, explicitly account for residuals (which
may be important), and apply that same model to a separate subpopulation where you
know something about the covariates. According to the presenter, such an approach helps
reveal whether national data represent local data.

- . When evaluating research needs, one expert pointed out that assessors should identify the
minimal amount of information they need to analyze the data using available tools. The group offered
the following suggestions for both short and long-term research areas. The discussion of short-term
needs also included recommendations for actions the assessors can take now or in the short term to
address the topics discussed in this workshop.

Short-term research areas and actions

1. Design studies for data collection that are amenable to available methods for data
analysis. Some existing methods are unusable because not all available data, which were
used to support the methods, are from well-designed studies.

2. Validate existing models on population variability (e.g., the Duan-Wallace model
[Wallace et al., 1994] and models described by Buck et al. [1995]). ‘This validation can
be achieved by collecting additional data.

3. Run numerical experiments to test existing and new methods for making adjustment
based on factors such as averaging times or area. Explore and evaluate the Duan-Wallace
model.

4, Hold a separate workshop on adjustment methods (e.g., geostatistical and time series

methods).. Involve the modelers working with these techniques on a cross-disciplinary
panel to learn how particular techniques might apply to adjustment issues that are
specific to risk assessment.

5. Provide guidelines on how to evaluate or choose an available method, instead of simply
_describing available techniques. These guidelines would help the assessor determine
whether a method applies to a specific problem.

6. To facilitate their access and utility, place national data on the Web (e.g., 3-day CSFII
data, 1994-1996 USDA food consumption data). Ideally, the complete data set, not just
summary data, could be placed on the Web because data in summary form is difficult to
analyze (e.g., to fit distributions).
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Possible long-term research areas

TR Collect additional exposure parameter data on the national and regional levels (e.g., "blue
‘ chip" distributions). One expert cautioned that some sampling data have been or may be
ected by field investigators working independently of risk assessment efforts.
" Th “:‘Hrefowre, risk assessors Should have input in methods fqr designing data collection.

2, Perform targeted studies (spatial/temporal characteristics) to update existing data.

" Discussions of adjustment ended with emphasis on the fact that adjustment and the previously
described methods only need be considered if they impact the endpoint. One expert reiterated that when
no quantitative or objective ways exist to adjust the surrogate data, a more generalized screening
approach should be used. S ‘

As a follow-up to the adjustment discussions, a few individuals briefly discussed the issue of
"bias/loss function" to society. Because this issue is largely a policy issue, it only received brief
attention. One expert noted that overconservatism is undesirable. Another stressed that it is not in the
public interest to extrapolate in the direction of not protecting public health; assessors should apply
conservative bias but make risk managers aware of the biases. The other expert countered that blindly
applying conservative assumptions could result in suboptimal decisions, which should not be taken
lightly. In general, the group agreed on the following point: Assessors should use their best scientific
- _judgment and strive for accuracy when considering representativeness and uncertainty issues. Which
choice will er;isure:ﬁrotection of public health without unreasonable loss? It was noted that the cost of
overconservatism should drive the data-collection push (e.g., encourage industry to contribute to data
~ collection efforts because they ultimately pay for conservative risk assessments).

54 SUMMARY OF EXPERT INPUT ON EVALUATING REPRESENTATIVENESS

! Workshop discussions on representativeness revealed some common themes. The group
generally agreed that representativeness is context-specific. Methods must be developed to ensure
representativeness exists in cases where lack of representativeness would substantially impact a risk-
management decision. Methods, the sensitivity analysis, and the decision endpoint are closely linked.
One expert warned that once the problem is defined, the assessor must understand how to use statistical
tools properly to meet assessment goals. Blind application of these tools can result in wrong answers
(c.g., examining the tail versus the entire curve).

One or more experts raised the following issues related to evaluating the quality and
"representativeness” of exposure factors data:

n Representativeness might be better termed "adequacy" or "usefulness."

n Before evaluating representativeness, the risk assessor, with input from stakeholders,
must define the assessment problem clearly.

No data are perfect; assessors must recognize this fact, clearly present it in their
assessments, and adjust non-representative data as necessary using available tools. The
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assessors must make plausible adjustments if non—representatlveness matters to the
endpoint.

L To perform a probabilistic assessment well, adequate data are necessary, even for an
assessment with a well-defined objective. In large part, current exposure distribution data
fall short of the risk assessors’ needs. Barriers to collecting new data must be identified,
then removed. Cost limitations were pointed out, however. One expert, therefore,
recommended that justification and priorities be established.

L] Methods must be sensitive to needs broader than the Superfund/RCRA programs (e.g.,
food quality and pesticide programs).

L] When evaluating the importance of representativeness and/or adjusting for non-
representativeness, the assessor needs to make decisions that are adequately protective of
public health while still considering costs and other loss functions. Ultimately, the
assessor should strive for accuracy.

Options for the assessor when the population of concern has been shown to have different habits
than the surrogate population were summarized as follows: (1) determine that the data are clearly not
representative and cannot be used; (2) use the surrogate data and clearly state the uncertainties; or (3)
adJust the data, using what information is available to enable a reasonable adjustment.
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SECTION SIX

EMPIRICAL DISTRIBUTION FUNCTIONS AND RESAMPLING
VERSUS PARAMETRIC DISTRIBUTIONS

Assessors often must understand and judge the use of parametric methods (e. g., using such
theoretical distribution functions as the Lognormal, Gamma, or Weibull distribution) versus non-
parametric methods (using an EDF) for a given assessment. The final session of the workshop was
therefore dedicated to exploring the strengths and weaknesses of EDF's and issues related to judging the
quality of fit for theoretical distributions. Discussions centered largely on the topics in Issue Paper 2 (see
Appendix A for a copy of the paper and Section 3 for the workshop presentatlon of the paper). This
section presents a summary of expert input on these topics.

Some of the experts thought the issue paper imposed certain constraints on discussions because it
assumed that: (1) no theoretical premise exists for assuming a parametric distribution, and (2) the data
are representative of the exposure factor in question (i.e., obtained as a simple random sample and in the
proper scale). These experts noted that many of the assertlons in the issue paper do not exist in reality.
For example, it is unlikely to find a perfectly random sample for exposure parameter data.

As a result, the discussions that followed covered the relative advantages and dlsadvantages of
parametric and non-parametric distributions under a broader range of conditions.

6.1 SELECTING AN EDF OR PDF
Experts were asked to consider the following questions.

What are the primary considerations in choosing between the use of EDFs and theoretical
PDFs? What are the advantages of one versus the other? Is the choice a maiter of preference?
Are there situations in which one method is preferred over the other? Are there cases in which
neither method should be used?

The group agreed that selecting an EDF versus a PDF is often a matter of personal preference or
professional judgment. It is not a matter of systematically selecting either a PDF- or EDF-based
approach for every input. It was emphasized that selection of a distribution type is case- or situation-
specific. In some cases, both approaches might be used in a single assessment. The decision, as one
expert pointed out, is driven largely by data-rich versus data-poor situations. The decision is based also
on the risk assessment objective. Several experts noted that the EDF and PDF have different strengths in
different situations and encouraged the Agency not to recommend the use of one over the other or to
develop guidance that is too rigid. Some experts disputed the extent to which a consistent approach
should be encouraged. While it was recognized that a consistent approach may benefit decision making,
the overall consensus was that too many constraints would inhibit the implementation of new/innovative
approaches, from which we could learn.

Technical discussions started with the group distinguishing between "bootstrap" methods and
EDFs. One expert questioned if the methods were synonymous. EDF, as one expert explained, is a
specific type of step-wise distribution that can be used as a basis for bootstrap simulations. EDF is one
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way to describe a distribution using data; bootstrapping enables assessors to resample that distribution in
a special way (e.g., setting boundaries on the distribution of the mean or percentile) (Efron and
Tibshirani, 1993). Another expert distinguished between a parametric and non-parametric bootstrap,
statmg that there are good reasons for using both methods. These reasons are well-covered in the
statistical literature. 'One expert noted that bootstrapping enables a better evaluation of the uncertainty of
the distribution.

Subsequent dlscusswn focused on expert mput on de01d1ng which dtstrxbutxon to fit, if any, for a
given risk assessment problem. That is, if the assessor has a data set that must be represented, is it better
to use the data set as is and not make any assumptions or to fit the data set to a parametric distribution?
The following is a compllatxon of expert input.

L] Use of the EDF. The use of an EDF may be preferable (1) when a large number of data
“ points exists, (2) when access is available to computers with high speed and storage
capabilities, (3) when no theoretical basis for selecting a PDF exists, or (4) when a
“perfect" data set is available. With small data sets, it was noted that the EDF is unlikely
to represent an upper percentile adequately; EDFs are restricted to the range of observed
- data. One expert stated that while choice of dlstrlbutlon largely depends on sample size,
in most cases he would prefer the EDF

When measurement or response error exists, one expert pointed out that an EDF should
not be used before 1ookmg at other optlons

Use of the PDF. One expert noted that it is easier to summarize a large data set with a

- PDF as long as the fit is reasonable. Use of PDFs can provide estimates of "tails" of the
distribution beyond the range of observed data. A parametric distribution is a convenient
way to concisely summarize a data set. That is, instead of reporting the individual data
values, one can report the distribution and estimated parameter values of the distribution.

While data may not be generated exactly according to a parametric distribution,
evaluating parametric distributions may provide insight to generalizable features of a
data set, such as moments, parameter values, or other statistics. Before deciding which

" distribution to use, two experts pointed out the value of trying to fit a parametric
distribution to gain some insight about the data set (e.g., how particular parameters may
be related to other aspects of the data set). These experts felt there is great value in
exdmining larger data sets and thinking about what tools can be used to put data into
better perspective Another expert noted that the PDF is easier to defend at a public
meetmg or m a legal settmg because it has some theoretlcal basxs

Assessing risk assessment outcome. The 1mportance of understandmg what the
implications of the distribution choice are to the outcome of the risk assessment was
stressed. An example of fitting soil ingestion data to a number of parametric and non-

: parame’mc distributions yielded very different results. Depending on which distribution
was used, cleanup goals were changed by approxnmately 2 to 3 times. Therefore, the
choxce may have cost 1mphcatlons

Assummg all data are empirical. One expert felt strongly that all dlstrlbutlons are
empirical. In data poor situations, why assume that the data are Lognormal? The data
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could be bimodal in the tails. If a data set is assumed to be empirical, there is some
control as to how to study the tails. Another expert reiterated that using EDFs in data
poor situations (e.g., six data points) does not enable simulation above or below known
data values. One expert disagreed providing an example that legitimizes the concern for
assuming that data fit a parametric distribution. He noted that if there is no mechanistic
basis for fitting a parametric distribution, and a small set of data points by chance are at
the lower end of the distribution, the 90th percentile estimate will be wrong.

Evaluating uncertainty. Techniques for estimating uncertainty in EDFs and PDFs were
discussed. The workshop chair presented an example in which he fit a distribution for
“variability to nine data points. He then placed uncertainty bands around the distributions
(both Normal and Lognormal curves) using parametric bootstrap simulation. (See Figure
6-1). For example, bands were produced by plotting the results of 2,000 runs of a
synthetic data set of nine points sampled randomly from the Lognormal distribution fitted
to the original data set. The wide uncertainty (probability) bands indicate the confidence
in the distribution. This is one approach for quantifying how much is known about what
is going on at the tails, based on random sampling error. When this exercise was
performed for the Normal distribution, less uncertainty was predicted in the upper tail;
however, a lower, tail with negative values was predicted, which is not appropriate for a
non-negative physical quantity such as concentrations. The chair noted that, if a stepwise
EDF had been used, high and low ends would be truncated and tail concentrations would
not have been predicted. This illustrates that the estimate of uncertainty in the tails
depends on which assumption is made for the underlying distribution. Considering
uncertainty in this manner allows the assessor to evaluate alternative distributions and
gain insight on distinguishing between variability and uncertainty in a "2-dimensional
probabilistic framework." Several participants noted that this was a valuable example.

Figure 6-1: Variability and Uncertainty in the Fit of Lognormal Distribution to a.
Data Set of n=9 (Frey, H.C. and D.E. Burmaster, 1998)
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Eﬂrapolatmg beyond the range of observable data. The purpose of the risk analysis
drives what assessors must know about the tails of the dlstrrbutlon One expert
emphasized that the ﬁthher assessors go into the tails, the less they know. Another

* stréssed that once assessors get outside the range of the data, they know nothing.

er expert dlsagreed 'with the pomt that assessors know nothing beyond the highest
fata point. He suggested using analogous data sets that are more data rich to help in
predlctmg the tails of the distribution. The primary issue becomes how much the
assessors are wrllmg to extrapolate

Several experts agreed that uncertainty in the tails is not always problematlc If the

assessor wants to focus on a subgroup, for example it is not necessary to look at the tail

i of 1e larger group Stratzf cation, used routinely by epidemiologist, was suggested. Wlth

stratlﬁcatlon the assessor would look at the subgroup and ayoid having to perform an

exhaustive assessment of the tail, especially for more preliminary calculations used in a

trered approach 'In a tiered risk assessment system if the assessor assumes the data are

w Lognormal standard multiplicative equations can be run on a simple calculator. While

Monte Carlo-type analyses can provide valuable information in many cases, several

experts agreed that probabilistic analyses are not always appropriate or necessary. It was

suggested that, in some cases, deterministic scenario-based analyses, rather than Monte

Carlo simulation would be a useful way to evaluate extreme values for a model output.

In a srtuatron Where a model is used to make predlct1ons of some dlstrlbutlon several
experts agreed that the absence of perfect information about the tails of the distribution

. of each input does not mean that assessors will not have adequate information about the

“ of the model output. Even if all we have is good information about the central

s po jons of the input distributions, it may be possrble to srmulate an extreme value for the

model output ‘

“ Use of data in the tails of the dzstrzbutzon One expert cautloned assessors to be sens1t1ve
to potentlally 1mportant data in the tails. He provided an example in which assessors
relied on the "expert judgement" of facility operators in predicting contaminant releases
from a source. They failed to adequately predict "blips” that were later shown to exist in
20 to 30 percent of the distribution. Another expert noted that he was skeptical about
adding tails (but was not skeptical about setting upper and lower bounds). It was agreed
that, in general, assessors need to carefully consider what they do know about a given

* data set that could enable them to set a realistic upper bound (e.g., body weight). The
goal is to provide the risk manager with an "unbiased estimate of risk." One expert

i relterated that subjective _]udgments are mherent in the risk assessment process. In the

L ca e of truncatmg data, such Judgments must be explained clearly and justified to the risk

m nager. In contrast to truncation, one expert reminded the group that the risk manager
fecides upon what percentrle of the tail is of interest. Because situations arise in which
the risk manager may be looking for 90th to 99th percentrle values, the assessor must

how to approach the problem and, ultlmately, must clearly communicate the
approach and the possrble large uncerta1nt1es “

Scenartos The group d1scussed approaches for evaluatmg the high ends of dzstrzbutzons
., the treatment blips ‘mentioned previously or the pica child). Should the strategy for
essmg overall risks include hrgh end or unusual behav1or‘7 Several experts felt that
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including extreme values in the overall distribution was not justified and suggested that
the upper bounds in these cases be considered "scenarios." As with upper bounds, one
expert noted that low end values also need special attention in some cases (e.g., air
exchange in a tight house).

] Generalized distributions versus mixtures. Expert opinion differed regarding the issue of
generalized versus mixture distributions. One expert was troubled by the notion of a
mixture distribution. He would rather use a more sophisticated generalized distribution.
Another expert provided an example of radon, stating that it is likely a mixture of
Normal distributions, not a Lognormal distribution. Therefore, treatment of mixtures
might be a reasonable approach. Otherwise, assessors risk grossly underestimating risk
in concentrated areas by thinking they know the parametric form of the underlying
distribution.

- The same expert noted that the issue of mixtures highlights the importance of having -
some theoretical basis for applying available techniques (e.g., possible Bayesian
methods). Another expert stated that he could justify using distributions that are
mixtures, because in reality many data sets are inherently mixtures.

] Truncation of distributions. Mixed opinions were voiced on this issue. One expert noted
that assessors can extend a distribution to a plausible upper bound (e.g., assessors can
predict air exchange rates because they know at a certain point they will not go higher).
Another expert noted that truncating the distribution by 2 or 3 standard deviations is not
uncommon because, for example, the assessors simply do not want to generate 1,500-
pound people. One individual questioned, however, whether truncating a Lognormal
distribution invalidates calling the distribution Lognormal. Another commented on
instances in which truncating the distribution may be problematic. For example, some
relevant data may be rejected. Also, the need to truncate suggests that the fit is very
poor. The only reason to truncate, in his opinijon, is if one is concerned about getting a
zero or negative value, or perhaps an extremely high outlier value. One expert noted that
truncation clearly has a role, especially when a strong scientific or engineering basis can
be demonstrated. : ' '

m When should neither an EDF nor PDF be used? Neither an EDF nor a PDF may be
useful/appropriate when large extrapolations are needed or when the assessor is
uncomfortable with extrapolation beyond the available data points. In these cases, )
- scenario analyses may come into play. ' o -

In their final discussions on EDF/PDF, the group widely encouraged visual or g%aphical
representation of data. Additional thoughts on visually plotting the data are presented in the following
discussions of goodness of fit.

62  GOODNESS-OF-FIT (GoF)
On what basis should it be decided whether a data set is adequately represented by a fitted

baramelric distribution?
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The final workshop discussions related to the appropriateness of using available GoF test
statistics in evaluating how well a data set is represented by a fitted distribution. Experts were asked to
consider what optlons are best suited and how one chooses among multiple tests that may provide
dlfferent answers. The following hlghhghts the maJor pomts of these dlscussmns

Im‘e) pl eting poor fit. GoF in the mlddle of the dlstrlbu‘uon is not as 1mportant as that of
the tails (upper and lower percentlles) Poor fit may be due to outliers at the other end of
the distribution. If there are even only a few outliers, GoF tests may provide the wrong
answer.

Gr aphzcal F epresentatzon of data is key to evaluating goodness or quality of fit.
Unanimously, the experts agreed that using probability plots (e.g., EDF, QQ plots, PP
plots) or other visual techniques in evaluating goodness of fit is an acceptable and
recommended approach In fact, the group felt that graphical methods should always be

- used. Generally, it is easier to judge the quallty of fit using probability plots that compare
data to a straight line. There may be cases in which a fit is rejected by a partlcular GoF
test but appears reasonable when using visual techniques.

The group supported the idea that GoF tests should not be the only con51derat10n in
fitting a distribution to data. Decisions can be made based on visual inspection of the
data. It was noted that graphical presentations help to show quirks in the data (e.g.,
mixture distributions). It was also recommended that the assessor seek the consensus of a
few tramed individuals when mterpretmg data plots (as is done in the medical
community when visually inspecting X-rays or CAT scans)

What is the significance of failing a weak test such as chi-square? Can we justify using
data that fail a GoF test? GoF tests may be sensitive to imperfections in the fit that are
not 1mpoxtant to the assessor or decision maker. The group therefore agreed that the
fitted distribution can be used especially if the failure of the test is due to some part of
the distribution that does not matter to the analysis (e.g., the lower end of the
dlstrlbutlon) The reason the test failed, however, must be explained by the assessor.
Failing a chi-square test is not problematic if the lower end of the distribution is the
reason for the failure. One expert questioned whether the assessor could defend (in
court) a failed statistical test. Another expert responded indicating that a graphical
presentation might be used to defend use of the data, showing, for example, that the poor
fit was a result of data set size, not chance.

Considerations for rlsk assessors when GoF tests are used

The evaluatlon of dlstnbutlons is an estimation process (e g, PDFs) Usmg a
systematic testing approach based on the straight line null hypothesis may be
problematic.

R? is a poor way to assess GoF.

The appropriate loss function must be identified.




— The significance level must be determined before the data are analyzed.
Otherwise, it is meaningless. It is a risk management decision. The risk assessor
and risk manager must speak early in the process. The risk manager must
understand the significance level and its application.

= Should GoF tests be used for parameter estimation (e.g., objective function is to
minimize the one-tail Anderson-Darling)? A degree of freedom correction is needed
before the analysis is run. The basis for the fit must be clearly defined—are the objective
and loss functions appropriate?

n "Maximum likelihood estimation (MLE)" is a well-established statistical tool and
provides a relatively easy path for separating variability from uncertainty.

] The adequacy of Crystal Ball®’s curve-fitting capébilities was questioned. One of the
- ~ experts explained that it runs three tests, then ranks them. If the assessor takes this one
step further by calculating percentiles and setting up plots, it is an adequate tool.

L] The Office of Water collects large data sets. Some of the office’s efforts might provide
some useful lessons into interpreting data in the context of this workshop.
- What do we do if only summary statistics are available? Summary statistics are often all
that are available for certain data sets. The group agreed that MLE can be used to
estimate distribution parameters from summary data. In addition, one expert noted that -

probability plots are somewhat useful for evaluating percentile data. Probability plots
enable assessors to evaluate the slope (standard deviation) and the intercept (mean).
Confidence intervals cannot be examined and uncertainty cannot be separated from
variability.

In summary, the group identified possible weaknesses associated with using statistical GoF tests
in the context described above. The experts agreed unanimously that graphical/visual techniques to
evaluate how well data fit a given distribution (alone or in combination with GoF techniques) may be
more useful than using GoF techniques alone.

6.3 SUMMARY OF EDF/PDF AND GoF DISCUSSIONS

The experts agreed, in general, that the choice of an EDF versus a PDF is a matter of personal
preference. The group recommended, therefore, that no rigid guidance be developed requiring one or the
other in a particular situation. The decision on which distribution function to use is dependent on several
factors, including the number of data points, the outcome of interest, and how interested the assessor is in
the tails of the distribution. Varied opinions were voiced on the use of mixture distributions and the
appropriateness of truncating distributions. ‘The use of scenario analysis was suggested as an alternative
to probabilistic analysis when a particular input cannot be assigned a probability distribution or when
estimating the tails of an important input distribution may be difficult.

Regarding GoF, the group fully agreed that visualization/graphic representation of both the data
and the fitted distribution is the most appropriate and useful approach for ascertaining adequacy of fit. In
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general, the group agreed that conventional GoF tests have sighiﬁcant shortcorﬁings and should not be
the primary method for determining adequacy of fit.




SECTION SEVEN

OBSERVER COMMENTS

This section presents observers’ comments and questions during the workshop, as well as
responses from the experts participating in the workshop.

DAY ONE: Tuesday, April 21, 1998

Comment 1
Helen Chernoff, TAMS Consultants

Helen.Chernoff said that, with the release of the new policy, users are interested in guidance on
how to apply-the information on data representativeness and other issues related to probabilistic risk
assessment. She had believed that the workshop would focus more on application, rather than just on the
background issues of probabilistic assessments. What methods could be used to adjust data and i improve
data representatlveness (e.g., the difference between past and current data usage)?

Response

The workshop chair noted that adjustment discussions during the second day of the workshop
start to explore available methods. One expert stated that, based on his impression, the workshop was
designed to gather input from experts in the field of risk assessment and probabilistic techniques. He
noted that EPA’s policy on probabilistic analysis emerged only after the 1996 workshop on Monte Carlo
analysis. Similarly, EPA will use the information from this workshop to help build future guidance on
probabilistic techniques, but EPA will not release specific guidance immediately (there may be an
approximate two-year lag).

The chair noted that assessors may want to know when they can/should implement alternate
approaches. He pointed out that the representativeness issue is not specific to probabilistic assessment. It
applies to all assessments. Since EPA released its May 1997 policy on Monte Carlo analysis,
representativeness has been emphasized more, especially in exposure factor and distribution evaluations.
He noted, however, that data quality/representativeness is equally important when considering a point
estimate. However, it may not be as important if a point estimate is based on central tendency instead of
an upper percentile where there may be fewer data. Another agreed that the representativeness issue is
more important for probabilistic risk assessment than deterministic risk assessment (especially a point.
estimate based on central tendency).

Comment 2
Emran Dawoud, Human Health Risk Assessor, Oak Ridge National Laboratory

Mr. Dawoud commented that the representativeness question should reflect whether additional
data must be collected. He noted that the investment (cost/benefit) should be considered. From a risk
assessment point of view, one must know how more data will affect the type or cost of remedial activity.
In his opinion, if representativeness does not change the type or cost of remedial activity, further data
collection is unwarranted.
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Mr. Dawoqd also commented that the risk model has three components source, EXposure, and
dose-response Has the sensitivity of exposure component been measured relative to the sensitivity of the
other two components? He noted the importance of the sensitivity of the source term, especially if fate
and transport are involved.

Mr. Dawoud brleﬂy noted that in practlce a Lognormal distribution is being fit with only a few
samples Uncertamty of the source term in these cases is not quantlﬁed or incorporated into risk
predictions. Even if standard deviation is noted, the contribution to final risk prediction is not
considered. Mr. Dawoud noted that the workshop discussions on the distribution around exposure
parameters seem to be less important than variation around the source term. Likewise, he noted the
wiicertainties associated with the dose-response assessment as well (e.g., applying uncertainty factors of
10, 100, etc.).

Response
e o ' " to ]

One partlclpant noted that representatlveness mvolves more than collectmg more data
Evaluating representativeness is often about choosing from several data sets. He agreed that additional
data are collected depending on how the collection efforts may affect the bottom line assessment answer.
He noted that if input does not affect output then its distribution need not be descrlbed

Relative to Mr. Dawoud’s second point, it was noted that source term evaluation is part of
exposure assessment While exposure factors (e.g, soil ingestion and exposure duration) affect the risk
assessment, one expert emphasized that the most important driving "factor" is the source term. As for
dose-response, the industry is just beginning to explore how to quantify variability and uncertainty.

The workshop chair noted that methodologically, exposure and source terms are not markedly
different. The source term has representativeness issues. There are ways to distinguish between
varlabxhty and uncertamty in the varlablllty estimate.

Lastly, more than one expert agreed that the prediction of risk for noncancer and cancer
endpoints (based on the reference dose [RfD] and cancer slope factor [CSF], respectively) is very
uncertain. The methods discussed during this workshop cannot be dlrectly applied to RfDs and CSFs, but
they could be used on other toxicologic data. More research is needed in this area.

Comment 3
Ed Garvey, TAMS Consultants

Mr. Garvey questioned whether examining factors of 2 or 3 on the exposure s1de is worthwhile,
glven the level of uncertamty on the source or dose-response term, wlnch can be orders of magmtude

Response

It was an EPA policy choice to examine distributions looking first at exposure parameters,
according to one EPA panelist. He also reiterated that the evaluation of exposure includes the source
term (i.e., exposure = concentration x uptake/averagmg time). One person noted that it was time to "step
up" on quantxf}mg toxicity uncertainty. Exposure issues have been driven primarily by engineering
approaches (e.g., the Gaussian plume model), toxicity has historically been driven by toxicologists and
statisticians and are more data orlented
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It was noted that, realistically, probabilistic risk assessments will be seen only when money is
available to support the extra effort. Otherwise, 95% UCL concentrations and point estimates will
continue to be used. Knowing that probabilistic techniques will enable better evaluations of variability
and uncertainty, risk assessors must be explicitly encouraged to perform probabilistic assessments. We
must accept that the existing approach to toxicity assessment, while lacking somewhat in scientific
integrity, is the only option at present.

Comment 4 ,
Emran Dawoud, Human Health Risk Assessor, Oak Ridge National Laboratory

Mr. Dawoud asked whether uncertamty analysis should be performed to evaluate fate and
transport related estimates.

Response

One expert stressed that whenever direct measurements are not available, variability must be
assessed. He commented that EPA’s Probabilistic Risk Assessment Work Group is preparing two
chapters for Risk Assessment Guidance for Superfund (RAGS): one on source term variability and
another on time-dependent considerations of the source term.

Comment 5
Zubair Saleem, Office of Solid Waste, U.S. EPA

Mr. Saleem stated that he would like to reinforce certain workshop discussions. He commented
that any guidance on probabilistic assessments should not be too rigid. Guidance should clearly state that
methodology is evolving and may be revised. Also, guidance users should be encouraged to collect
additional data.

Response

The workshop chair recognized Mr. Saleem’s comment, but noted that the experts participating’
in the workshop can only provide input and advice on methods, and is not in a position to recommend
specific guidelines to EPA.

DAY TWO: Wednesday, April 22, 1998

Comment 1
Lawrence Myers, Research Triangle Institute -

Mr. Myers offered a word of caution regarding GoF tests. He agrees that many options do not
work well but he stated that in an adversarial situation (e.g., a court room) he would rather be defending
data distributions based ona quantitative model instead of a graphical representation. ‘

Mr. Myers noted that the problem with goodness of fit is the tightness of the null hypothesis (i.e.,
it specifies that the true model is exactly a member of the particular class being examined). Mr. Myers
cited Hodges and Layman (1950s) who generalized chi-square in a way that may be meaningful to the
issues discussed in this workshop. Specifically, because exact conformity is not expected, a more
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appropriate null hypothesis would be that the true distribution is "sufficiently close™ to the family being
examined.

Response

One expert reiterated that when a PDF is fitted, it is recognizabl§ an approximation and therefore
makes apk)licatio‘n‘ of standard GoF statistics difficult. Another expressed concern that practitioners could
g0 on a *fishing expedition," especially in an adversarial situation, to find a GoF test that gives the right
answer. He did not fect this is the message we want to be giving practitioners. A third expert noted a
definite trend in th{;”scientiﬁb commmnity away from GoF tests and towards, visualization.




SECTION EIGHT
REFERENCES
Buck, R.J., K.A. Hammerstrom, and P.B. Ryan, 1995. Estimating Long-Term Exposures from Short-
term Measurements. Journal of Exposure Analysis and Environmental Epidemiology, Vol. 5, No. 3, pp.
359-373.
Efron, B. and R.J. Tibshirani, 1993. An Introduction to the Bootstrap. Chapman and Hall. New York.

Frey, H‘.C. and D.E. Burmaster, “Methods for Characterizing Variability and Uncertainty: Comparison of
Bootstrap Simulation and Likelihood-Based Approaches,” Risk Analysis (Accepted 1998).

RTI, 1998. Development of Statistical Distributions for Expo&ure Factors. Final Report. Prepared by
Research Triangle Institute. U.S. EPA Contract 68D40091, Work Assignment 97-12. March 18, 1998.

U.S. Environmental Protection Agency, 1996a. Office of Research and Development, National Center
for Environmental Assessment. Exposure Factors Handbook, SAB Review Draft (EPA/600/P-95/002Ba).

U.S. Environmental Protection Agency, 1996b. Summary Report for the Workshop on Monte Carlo
Analysis. EPA/630/R096/010. September 1996. .

U.S. Environmental Protection Agency, 1997a Guiding Principles for Monte Carlo Analyszs
EPA/630/R-97/001. March 1997.

U.S. Environmental Protection Agency, 1997b. Policy for Use of Probabilistic Analysis in Risk
Assessment at the U.S. Environmental Protection Agency. May 15, 1997.

Wallace, L.A., N. Duan, and R. Ziegenfus, 1994. Can Long-term Exposure Distributions Be Predicted
from Short-term Measurements? Risk Analysis, Vol. 14, No. 1, pp. 75-85.

8-1







APPENDIX A

ISSUE PAPERS







Issue Paper on Evaluating Representativeness
of Exposure Factors Data

This paper is based on the Technical Memorandum dated March 4, 1998 submitted by Research
Triangle Institute under U.S. EPA contract 68D40091.

1. INTRODUCTION

The purpose of this document is to discuss the concept of representativeness as it relates
to assessing human exposures to environmental contaminants and to factors that affect exposures
and that may be used in a risk assessment. (The factors, referred to as exposure factors, consist
of measures like tapwater intake rates, or the amount of time that people spend in a given -
microenvironment.) This is an extremely broad topic, but the intent of this document is to
provide a useful starting point for discussing this extremely important concept.

Section 2 furnishes some general definitions and notions of representativeness. Section 3
indicates a general framework for making inferences. Components of representativeness are
presented in Section 4, along with some checklists of questions that can help in the evaluation of
representativeness in the context of exposures and exposure factors. Section 5 presents some
techniques that may be used to improve representativeness. Section 6 provides our summary and
conclusions.

-~

2. GENERAL DEFINITIONS/N OTiONS OF REPRESENTATIVENESS

Representativeness is defined in American National Standard: Specifications and
Guidelines for Quality Systems for Environmental Data and Envzronmenl‘al Technology
Programs (ANSI/ASQC E4 - 1994) as follows:

The measure of the degree to which data accurately and precisely represent a
characteristic of a population, parameter variations at a sampling point, a process
condition, or an environmental condition.

Although Kendall and Buckland (4 Dictionary of Statistical Terms, 1971) do not define
representativeness, they do indicate that the term “representative sample” involves some
confusion about whether this term refers to a sample “selected by some process which gives all
samples an equal chance of appearing to represent the population” or.to a sample that is “typical
in respect of certain characteristics, however chosen.” Kruskal and Mosteller (1979) point out
that representativeness does not have an unambiguous definition; in a series of three papers, they
present and discuss various notions of representativeness in the scientific, statistical, and other
literature, with the intent of clarifying the technical meaning of the term.




In Chapter 1 of the Exposure Factors Handbook (EFH) the considerations for including
the p’tmcular source studies are enumerated and then these considerations are evaluated
quahtatlvely at the end of each chapter (i.e., for each type of exposure factor data). One of the
criteria is “representatlveness of the population,” although there are several other criteria that
clearly relate to various aspects of representativeness. For example these related criteria include
the followmg

EI H Study Selectxon Criterion ' EFH Perspective |

focus on factor of interest studies with this speciﬁc focus are preferred

data pertment to U S. |  studies of U S. re51dents are preferred

current information - - recent studles are preferred especially if
‘ R " changes over time are expected

adequacy of data collection period * generally the goal is to characterize long-term
‘ o ‘ ‘ ‘ behavior

yalidity of approach | direct measurements are preferred
representatlveness of the populatlon ~ U.S. national studies are preferred

variability in the population studies with adequate characterizations of
o B . ‘ variability are des1rab1e

minimal (or defined) bias in study design studies havmg des1gns with mlmmal bias are
‘ preferred (or with known direction of bias)

minimal (or defined) uncertainty in the data large studies with high ratings on the above
- ‘ L e * considerations are preferred

3. A GDNERAL FRAMEWORK FOR MAKING INFERENCES

Despite the lacl\ of specificity of a definition of representatrveness it is clear in the
present context that representativeness relates to the “comfort” with which one can draw
inferences from some set(s) of extant data to the population of interest for which the assessment
is to, be conducted‘ and in partlcular to certain characteristics of that popula’uon S exposure or
exposure factor distribution. The following subsections provide some definitions of terms and
attempt to break down the overall inference into some meaningful steps.

3.1 1nferences frpm a Sample to a Population
In this paper, the word population to refers to a set of units which may be defined in

terms of person and/or space and/or time characteristics. The population can thus be defined in
‘ terms of its 1nd1v1duals charactenstms (deﬁned by demographw and soc1oeconom1c factors,
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human behavior, and study design) (e.g., all persons aged 16 and over), the spatial characteristics
(e.g., living in Chicago) and/or the temporal characteristics (e.g., during 1997).

In conducting a risk assessment, the assessor needs to define the population of concern —
that is, the set of units for which risks are to be assessed (e.g., lifetime risks of all U.S. residents).
At a Superfund site, this population of concern is generally the population surrounding the site.

- In this document, the term population of concern refers to that population for which the assessor
wishes to draw inferences. If it were practical, this is the population for which a census (a 100%

. sample) would exist or for which the assessor would conduct a probability-based study of
exposures. Figure 1 provides a diagram of the exposure assessor decision process during the
selection of data for an exposure assessment.

As depicted in figure 1, quite often it is not practical or feasible to obtain data on the
population of concern and the assessor has to rely on the use of surrogate data. These data
generally come from studies conducted by researchers for a variety of purposes. Therefore, the
assessor’s population of concern may differ from the surrogate population. Note that the
population differences may be in any one (or more) of the characteristics described earlier. For
example, the surrogate population may only cover a subset of the individuals in the assessor’s
population of concern (Chicago residents rather than U.S. residents). Similarly, the surrogate
data may have been collected during a short period of time (e.g., days), while the assessor may be
concern about chronic exposures (i.e., temporal characteristics).

The studies used to derive these surrogate data are generally designed with a population
inmind. Since it may not be practical to sample everyone in that population, probability-based
sampling are often conducted. This sampling scheme allows valid statistical (i.e., non-model-
based) inferences, assuming there were no implementation difficulties (e.g., no nonresponse and
valid measurements). Ideally, the implementation difficulties would not be severe (and hence
ignored), so that these sampled individuals can be considered representative of the population. If
there are implementation difficulties, adjustments are typically made (e.g., for nonresponse) to
compensate for the population differences. Such remedies for overcoming inferential gaps are
fairly well documented in the literature in the context of probability-based survey sampling (e.g.,
see Oh and Scheuren (1983)). If probability sampling is not employed, the relationships of the
selected individuals for which data are sought and of the respondents for which data are actually
acquired to the population for which the study was designed to address are unclear.

There are cases where probability-based sampling is used and the study design allows
some model-based inferences. . For instance, food consumption data are often obtained using
surveys which ask respondents to recall food eaten over a period of few days. These data are

usually collected throughout a one-year period to account for some seasonal variation in food
consumption. Statistical inferences can then be made for the individuals surveyed within the time -
frame of study. For example, one can estimate the mean, the 90" percentile, etc. for the number
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of days during which individuals were surveyéd. ‘However, if at least some of the selected
individuals are surveyed multiple periods of time during that year, then a model-based strategy
might allow estimation of a distribution of long-term (e.g., annual) consumption patterns.

If probability-based sampling is not used, model-based rather than statistical inferences
are needed to extend the sample results to the population for which the study was designed.

In contrast to the inferences described above, which emanate from population differences
and the sampling designs used in the study, there are two additional inferential aspects that relate
to representativeness: :

. The degree to which the study design is followed during its implementation
. The degree to which a measured value represents the true value for the measured unit

Both of these are components of measurement error. The first relates to an implementation error
in which the unit selected for measurement is not precisely the one for which the measurement
actually is made. For instance, the study’s sampling design may call for people to record data for
24-hr periods starting at a given time of day, but there may be some departure from this ideal in
the actual implementation. The second has to do with the inaccuracy in the measurement itself,
such as recall difficulties for activities or imprecision in a personal air monitoring device.

4. COMPONENTS OF REPRESENTATIVENESS

As described above, the evaluation of how representative a data set is begins with a clear
definition of the population of concern (the population of interest for the given assessment), with
attention to all three fundamental characteristics of the population — individual, spacial, and
temporal characteristics. Potential inferential gaps between the data set and the population of
concern -- that is, potential sources of unrepresentativeness -- can then be partitioned both along
these population characteristics. Components of representativeness are illustrated in Tablel: the
rows correspond to the inferential steps and the columns correspond to the population
characteristics. The inferential steps are distinguished as being either internal or external to the
source study:

4.1 Internal Components - Surrogate Data Versus the Study Population

After determining that a study provides information on the exposures or exposure factors
of interest, it is important that the exposure assessor evaluate the representativeness of the
surrogate study (or studies). This entails gaining an understanding of both the individuals
sampled for the study and the degree to which the study achieved valid inferences to that
population. The assessor should consider the questions in Checklist I in the appendix to help
establish the degree of representativeness inherent to this internal component. In the context of
the Exposure Factors Handbook (EFH), the representativeness issues listed in this checklist are
presumably the types of considerations that led to selection of the source studies that appear in
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Table 1. Elements of Representativeness

} Component of Inference

Population Characteristics

. Individual Characteristics

Spacial Characteristics

Temporal Characteristics

EXTERNAL TO STUDY

How well does the
surrogate population
represent the population
of concern?

« Exclusion or limited
coverage of certain
segments of population of
concemn

¢ Exclusion or inadequate
coverage of certain regions
or types of areas (e.g., rural
areas) that make up the
population of concern

¢ Lack of currency
« Limited temporal
. coverage, including

exclusion or inadequate
coverage of seasons
Inappropriate duration for
observations (e.g., short-
term measurements where
concern is on chronic
exposures)

INTERNAL TO STUDY

How well do the
individuals sampled
represent the population
of concern for the study?

» Imposed constraints that
exclude certain segments
of study population
Frame inadequacy (e.g.,
due to lack of current
frame information)

Inadequate coverage (e.g.,
limited to single urban
area)

Limited temporal
coverage (e.g., limited
study duration)
Inappropriate duration for
observations

How well do the actual
number of respondents
represent the sampled
population?

How well does the
measured value represent
the true value for the
measured unit?

Non-probability sample of
persons
Excessive nonresponse
Inadequate sample size
Behavior changes
resulting from
participation in study
(Hawthorne effect)
Measurement errors
associated with people’s
ability/desire to respond
accurately to
questionnaire items
Measurement error
associated with within-
specimen heterogeneity
Inability to acquire
physical specimen with
exact size or shape or
volume desired

« Non-probability sample of
spatial units (e.g.,
convenience or judgmental
siting of ambient monitors)

Inaccurate identification of
sampled location

|« Non-probability sample of

observation times
Deviation in times
selected vs. those
measured or reported
(e.g., due to schedule
slippage, or incomplete
response)
Measurement errors
related to time (e.g., recall
difficuities for foods
consumed or times in
microenvironments)




the EFH. As indicated'previous;ly, the focus for addressing representativeness in that context was
national and long-term, which may or may not be consistent with the assessment of current
interest.

4.2 External Components - Population of Concern Versus Surrogate Population
In many cases, the aSsessor will be faced with a situation in which the population of

concern and surrogate population do not coincide in one or more aspects. To address this
external factor of representativeness, the assessor needs to:

. - determine the relationship between the two populations
. judge the importance of any discrepancies between the two populations
. assess whether adjustments can be made to reconcile or reduce differences.

To address these, the assessor needs to consider all characteristics of the populations. Relevant
questions to consider are listed in Checklists II, III, and IV in the appendix for the individual,
spacial, and temporal characteristics, respectively.

Each checklist contains several questions related to each of the above bullets. For
example, the first few items of each checklist relate to the first item above (relationship of the
two populations). There are several possible ways in which the two populations may relate to
each other; these cases are listed below and can be addressed for each population dimension:

. Case 1: The population of concern and surrogate population are (essentially) the same
. Case 2: The population of concern is a subset of the surrogate population
Case 2a: The subset is a large and identifiable subset.
Case 2b: The subset is a small and/or unidentifiable subset.
. Case 3: The surrogate population is a subset of the population of concern.
. Case 4: The population of concern and surrogate population are disjoint.

Note that Case 2a implies that adequate data are available from the surrogate study to generate
separate summary statistics (e.g., means, percentiles) for the population of concern. For
example, if the population of concern was focused on children and the surrogate population was
a census or large probability study of all U.S. residents, then children-specific summaries would
be possible. In such a situation, Case 2a reverts to back to Case 1.

Case 2b will be typical of situations in which large-scale (e.g., national or regional) data
are available but assessments are needed for local areas (or for acute exposures). As an example,
suppose raw data from the National Food Consumption Survey (NFCS) can be used to form
meaningful demographic subgroups and to estimate average tapwater consumption for such
subgroups (e.g., see Section 5.1). If a risk assessment involving exposure from copper smelters
is to be conducted for the southwestern U.S., for instance, tapwater consumption would probably
be considered to be different for that area than for the U.S. as a whole, but the NFCS data for that
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area might be adequate. If so, this would be considered Case 2a. But if the risk assessment
concerned workers at copper smelters, then an even greater discrepancy between the population
of concern and the surrogate data might be expected, and the NFCS data would likely be |
regarded as inadequate, and more speculative estimates would be needed.

In contrast to Case 2, Case 3 will be typical of assessments that must use local and/or
short-term data to extrapolate to regional or national scales and/or to long-term (chronic)
exposures. Table 2 presents some hypothetical exaniples for each case. Note that, as illustrated
here and as implied by the bulleted items in Checklist IV, the temporal characteristics has two
series of issues: one that relates to the currency and the tempotral coverage (study duration) of the
source study relative to the population of concern time frame, and one that relates to the tifne unit
of observation associated with the study. o | |

% Since most published references to the NFCS rely on the 1977-78 survey, expostire factor
data based on that survey might well be considered as Case 4 with respect to temiporal coverage,
as trends such as consumption of bottled water and orgaric foods may tiot be well represented by
20 year-old data. A possible approach i this situation would be to obtain data from several
NFCSs, to compate or test for a difference between them, and to use theth to extrapolate to the
present or future, The NFCS also illustrates the other temporal aspeet ~— dealing with a tine-
uhit mismatch of the data and the population of conicern — sihce the survey involves three
consecutive days for each person, while typically a longer-term estimate would be desited; e.g., a
person-year estimate (e.g., see Section 5.2). | S |

‘ While determining the relationship of the two populatiotis will generally be
straightforward (first bullet), detetmining the importance of discrepancies and makitg
adjustments (the second atd third bullets) thay be highly subjective and require an undetstanding
of what factors contribute to heterogeneity in exposure factot values and speculation as to their
influence on the exposure factor distribution. Cases 1 and 2a are the easiest, of coutse. In the
other cases, it will generally be easier to speculate about how the mearn and variability (pethaps
expressed as a coefficient of variation (CV)) of the two populations may differ than to speculate
on changes in a given petcentile. Considerations of unaffected portions of the population must
also be factored into the risk assessot’s speculation. The difficulty in such speculation obviously
increases dramatically when two or miore factors affect heterogeneity, especially if the factors are
anticipated to have opposite or dependent effects on the exposure factor values. Regardless of
how such speculation is ultimately reflected in the assessment (either through ignoring the
population differences or by adjusting estimated parameters of the study population), recognition
of the increased uncertainty should be incorporated into sensitivity analyses. As a part of such an
analysis, it would be instructive to detetmine risks, when, for each relevant factor (e.g., age
category), several assessors independently speculate on the mean (e.g., a low, best guess, and
high) and on the CV.




BIEp

osiy1oads-[eatu :uonjerndod
sAep-uosiod | ejep Aep-¢-uosiod + skep-uosiod sAep-uosiad o1e301ng
(oruoxyo) " (emoe) , UIROU0D I UONBAISqQO
VN SOWIINI] SUOISB200 Funes | suorseooo Junes sAep-uosied | 0 uomendog [elodura,
8661 ‘Syoam BIRP (J] UOSEaS :uonendod
9661 QUILLISWIUNS 0M] 8661 ‘12K dU0 | + 8661 ‘xeak ouo 8661 ‘T4 ouo sreSormg
Aouarmn))
Sows 1UISOU0D PUE SONISLISIORIRTD
SI1BOA aImny QWIAJI] yum skep 8661 8661 “Towrums 8661 “eakouo | Jo uonendog Terodwagf,
BIRp :uonendod
SpUBIaION ogeory) ‘S'n | auoSer+-gn 'S'N oeSormg
SAIIS 9)SBM , Hiatclali (s SONSLIOIOBIRY))
‘SN ‘SN SnopIezey JeoN "S°() ISBOYLON ‘S| Jo uonemdog Teroedg
, Byep a8e :uopendod
s)npe ‘g n synpe ‘S’ sjuepisel 'S’ | + swweprsar ‘g SJUAPISaT 'S (] sreformg
: UaIP[IYD Hinelali (o) SofISLIe0RIRY))
URIPIIYD SN SJuSpIsal "S'(] S dnewIysy USIP[IY "'} sjuopisar’g'() | o uonendod [enpIAIpU]
J[qe[reAe jou o[qe[ieAe a1 ,
arofsip ore UISOU0O | QI 19SqNS UO BlRp 195qns UO BiEp aues
uone[ndod Jo uonerndod pue voyendod | pue ‘vonerndod | sy a1e uopendod
s1eSo1ms 37} JO J954NS ojeSorms ajeZoxms ae8osms
puE UISdU0D e st uone[ndod Jo josqns oy} Jo 19sqns PUB WI9009 uonendog SOISLISORIRY))
Jo vonendog o1eSoxmg 8 ST UI9OU0D ® S| WI9oU0D- Jo uonemdog uonendog
i} ose) g 9se) Jo uopendod Jo uoneindog 11 958D
:qz 9se) :BZ 958D

uonendod 9je3oring 93 pue wIdouo)) Jo uonemdod oy; usampeyg sdiysuoneEy Jo sopdarexy 7 S[qeL




5. ATTEMPTING TO IMPROVE REPRESENTATIVENESS
5.1 Adjustments to Account for Differences in Population Characteristics or Coverage.

If there is some overlap ih information available for the population of concern and the
surrogate population (e.g., age distributions), then adjustments to the sample data can be made
that attempt to reduce the bias that would result from directly applying the study results to the
population of concern. Such methods of adjustment can all be generally characterized as “direct
standardization” techniques, but the specific methodology to use depends on whether one has
access to the raw data or only to summary statistics, as is often the case when using data from the
Exposure Factors Handbook. With access to the raw data, the applicable techniques also depend

“on whether one wants to standardize to a single known population of concern distribution (e.g.,

age categories), to two or more marginal distributions known for the population of concern, or
even to population of concern totals for continuous variables.

*'  Summary Statistics Available. Suppose that the available data are summary statistics
suich as the mean},jgtandard deyiati{)n, and various perceitiles for an exposure factor of interest
(.g., daily consumption of tap water). Furthermore, suppose that these statistics are available for
subgroups based on age, say age groups g =1, 2, ..., G. Furthermore, suppose¢ we know that the
. ape distribution of the population of conceri differs from that represented by the satiiple data.
We can then estimate lincqr charaqte‘ristics of the population of concern, such as the mean or the
proportion exceeding a fixed threshold, using a simple weighted average. For exatple, the mean
of the population of concern can be estimated as

Xarp = Eg” Pg Xg
where %, represents summation Ewe'r the population of concern groups indexed by g, P, is the
proportion of the population of concetn that belongs to group g, and X, is the sample mean for
group g. o T o

Unfortunately, if one is interested in estimating a non-linear statistic for the population of
concern, $tich as the variance or a percentile, this technique is not algebraically cottect.
However, lacking any other information from the sample, calculating this type of weighted
average to estimate a non-linear population of concern characteristic is better than making no
ddjustment at all for known population differences. In the case of the population variance, we
tecomnmend calculating the weighted average of the group standard deviations, rather than their
variances, and then squaring the estimated population of concern standard deviation to get the
estimated population of concern variance.

Raw Data Available. If one has access to the raw data, not just summary statistics,
options for standardization are more numerous and can be made more rigorously. The options
depend, in part, on whether or not the data already have statistical analysis weights, such as those
- apptopriate for analysis of data from a probability-based sample survey.

A0




Suppose that one has access to the raw data from a census or from a sample in which all
units can be regarded as having been selected with equal probabilities (e.g., a simple random
sample). In this case, if one knows the number, N,, of population of concern members in group
8, then the statistical analysis weight to associate with the i-th member of the g-th group is

N
w,@) = £
g
where the sample contains 7, members of group g. Alternatively, if one knows only the
proportion of the population and sample that belong to each group, one can calculate the weights
as :

W) = £
g , ,
where p, is the proportion of the sample in group g. The latter weights differ from those above
only by a constant, the reciprocal of the sampling fraction, and will produce equivalent results for
means and proportions. However, the former weights must be used to estimate population totals.
In either case, the population of concern mean can be estimated as

. 2, %, W 0)x ()
e n 40

where x,(i) is the Value of the characteristic of interest (e.g., daily tap water consumptlon) for the
i~th sample member in group g.

2

In general, one may have access to weighted survey data, such as results from a
probability-based sample of the surrogate population. In this case, the survey analysis weight,
w(i), for the i-th sample member is the reciprocal of that person’s probability of selection with
appropriate adjustments to reduce nonreponse bias and other potential sources of bias with
respect to the surrogate population. Further adjustments for making inferences to the population
of concern are considered below. These results can also be applied to the case of equally
weighted survey data, considered above, by cons1der1ng the survey analysis weight, w(i), to be
unity (1.00) for each sample member.

If one knows the distribution of the population of concern with respect to a given
characteristic (e.g., the age/race/gender distribution), then one can use the statistical technique of
poststratification to adjust the survey data to provide estimates adjusted to that same population
distribution (see, e.g., Holt and Smith, 1979).! In this case, the weight adjustment factor for each
member of poststratum g is calculated as

! Sampling variances are computed differently for standardized and poststratified estimates, but these
details are suppressed in the present discussion (see, e.g., Shah er al., 1993).
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N

= __g____
'on is oyer all sample members belongmg to poststratum g. The poststratlﬁed

es mates to the populatlon of concem

If one I\nows multlple marglnal dlstrlbutlons for the populatlon of concern but not their
joint distribution (e.g., marglnal age, race, and gender distributions), one can apply a statistical
weight adjustment procedure known as raking, or iterative proportional fitting, to standardize the
© survey werghts (see, e.g., Oh and Scheuren, 1983). Raking is an iterative procedure for scaling
the survey we1ghts to known margmal totals

If one I\nows populatron of concern subgroup totals for contmuous varlables a
generalized raking procedure can be used to standardize the survey weig
distributions of categoncal variables as well as known totals for continnous var;ables The
generalized raking procedures utilize non—hnear exponenual modehng (see, e.g., Folsom, 1991
and Deville et al., 1993)

of course, none of these standardrzatlon procedures results in 1nferences to the populatlon
of concern that are as defensible as those from a well- designed sample survey selected froma
sampling frame that completely and adequately covers the population of concern.

5.2 Adjustments to Account for Time-Unit Differences.

A common way in which the surrogate population and population of concern may differ
is in the time unit of (desired) observation. Probably the most common situyation occurs when the
study data represent short-ferm measurements but where chronic exposures are of interest. In
this case, some type of model is needed to make the time-umit inference (e.g., from the
distribution of person—day or person—week exposures to the distribution of annual or lifetime

exposures). In general, it is convenient to break down the overall inference into two components:

from the time unit of measurement to the time duration of the study (data to the surrogate
populatlon) and from the time duration of the surrogate populatron to the time unit of the
populatron of concern. For spemﬁclty, let t denote the observation time (e.g., a day or a week);
le 2t T denpte the tion of the study (e, T is the time duration assocrated wnh the surrogate
populatlon), and let T denote the time umt of the populatlon of concern (e. g alifetime). In the
case of chronic exposule concerns, t<1:<1‘

) Suppose t that N denotes the number of persons in the surrogate populatron and assume
there are (c onceptually) K disjoint time 1ntervals of length t that surrogate population T (i.e.,
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Kt=t). Thus a census of the surrogate population would involve NK short-term measurements
(of exposures or of exposure factors). This can be viewed as a two-way array with N rows
(persons) and K columns (time periods). Clearly, the distribution of these NK measurements,
whose mean is the grand total over the NK cells divided by NK, encompasses both variability
among people and variability among time periods within people (and in practice, measurement
error also). The average across the columns for a given row (the marginal mean) is the average
exposure for the given person over a period of length t. Since the mean of these T-period
“measurements” over the N rows leads to the same mean as before, it is clear that the mean of the
t-time measurements and the mean of the t-time measurements is the same. ‘However, unless
there is no within-person variability, the variability of the longer t-period measurements will be
smaller than the variability of the shorter t-period measurements. If the distribution of the shorter
term measurements is right-skewed, as is common, then one would expect the longer term
distribution to exhibit less skewness. Note that the degree to which the variability shrinks
depends on the relation between the within-person and between-person components of variance,
which is related to the temporal correlation. For example, if there is little within-person
variability, then people with high (low) values will remain high (low) over time, implying that
the autocorrelation is high and that the shrinkage in variability in going from days to years (say)
will be minimal. If there is substantial within-person variation, then the autocorrelations will be
low and substantial shrinkage in the within-person variance (on the order of a t/t decrease) will
occur.

To make this t-to-t portion of the inference, we therefore would ideally have a valid
probability-based sample of the NK person-periods, and data on the t-period exposures or
exposure factors would be available for each of these sampling units. As a part of this study
design, we would also want to ensure that at least some of persons have measurements for more
than one time period, since models that allow the time extrapolation will need data that, in
essence, will support the estimation of within-person components of variability. There are
several examples of models of this sort, some of which are described below.

Wallace et al. (1994) describe a model, which we refer to as the Duan-Wallace (DW)
model, in which data over periods of length t, 2t, 3t, etc. (i.e., over any averaging period of length
mt) are all conceptually regarded to be approximated by lognormal distributions, with parameters
that depend on a “lifetime” variance component and a short term variance component. While -
such an assumption is theoretically inconsistent if exact lognormality is required, it may
nevertheless serve well as an approximation. The basic notion of the DW method is that, while
the mean of the exposures stays constant, the variability decreases as the number of periods
averaged together increases. Hence it is assumed that the total variability for a distribution that
averages over M periods (M=1,2,...) can be expressed in terms of a long-term component and a
short-term component. Let y; and -y denote, respectively, the log-scale variances for these two
components. Under the lognormal model, Wallace ef al. show that the log-scale variance for the
M-period distribution (i.e., the distribution that averages over M periods) is given by

exp(yg) -1
M

Vi =7v, + log[l + 1.
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Note that an implication of the DW model is that the geometric means for the Varidus
distributions will increase as M increases. In fact, the geometric mean (gm) associated with the
avérage of M short-term measurements will be

 gm(M) = ¥ exp[-V, /2]

Y

where Fis the QV‘mall}”mpompul‘ation mean of the exposures. As a consequence, if data are adequate
for estimating the variance components (and the mean of the exposures), then an estimated
distribution for any averaging time can be inferred. In particular, the DW method can be applied
- for estimating V,, for (atleast) two values of M, since one is then able to
determine values of the two variance components. For instance, if two observations per person
ar an estimate Pc“i;‘;‘iuiaﬁoﬂ‘, mean and the population log-scale variance (V) for
single measurements (M=1), and by averaging the two short-term measurements and then taking
logs, one can estimate the population log-scale variance, V,. (Sampling weights should be used
when applicable.). By substituting into the above V equation for T=1 and T=2, the following
for estimating the variance components can be determined:

-10%@2@@(17% - ?A) = 1] H

=P, - 9.

The distribution for any averaging time can then be estimated by choosing the appropriate M

(e.g., M=365 if the measurement time is one day) and substituting estimates into the V; equation
above. Similarly, a “lifetime” distribution (also assumed to be lognormal) is then estimated by
letting M go to infinity (i.e., the influence of the short term component vanishes). Wallace et
al.(1994) caution that the data collection period should encompass all major long-term trends
such as seasonality. ” ‘

Clayton ef al. (1998) describe a study of personal exposures fo airborne contaminants that
more sophisticated study design and model (that requires more data); the goal was to
estimate distributions of annual exposures from 3-day exposure measurements collected
throughout a 12-month period. Two measurements per person (in different months) were
ble for some of the study participants. A multivariate lognormal distribution was assumed;
the lognormal parameters for each month’s data were estimated, along with the correlations for
10nthly lag {(assumed to depend only on the length of the lag). Simulated data were
generated from this multivariate distribution for a large number of “people;” ¢ach “person’s”
¢ﬁp03urés were then averaged over the 12 months. This approach assumes that the an average
er 12 observations, one per month, produces an adequate approximation to the annual
listribution of exposures. The model results were compared to those obtained via a modification

Qf the DW model,




Buck ef al. (1995, 1997) describe some general models (e.g., lognormally is not
assumed); these, too, require multiple observations per person, and if the within-person variance .
is presumed to vary by person, then a fairly large number of observations per person may be
needed. These papers give some insight into how estimated distributional parameters based on
the short-term data relate to the long-term parameters. Reports by Carriquiry et al. (1995, 1996),
Carriquiry (1996), and a paper by Nusser et al. (1996) deal with the some of the same issues in
the context of estimating distributions of “usual” food intake and nutrition from short-term
dietary data.

The second part of the inference — extrapolation from study time period (of duration t)
to the longer time T — is likely to be much less defensible than the first part, if T and T are very
different. This part of the inference is really an issue of temporal coverage. If the study involves
person-day measurements conducted over a two-month period in the summer, and annual or
lifetime inferences are desired, then little can be said regarding the relative variability or mean
levels of the short-term and T-term data, basically because of uncertainty regarding the
stationarity of the exposure factor over seasons and years. The above-described approach of
Wallace ef al., for instance, includes statements that recognize the need for a population
stationarity assumption that essentially requires that the processes underlying the exposure factor
data that occur outside the time period of the surrogate population be like those that occur within
the surrogate population. Applying some of the above methods on an age-cohort-specific basis,
and then combining the results over cohorts, offers one possible way of improving the inference
(e.g., see Hartwell et al., 1992).

6. SUMMARY AND CONCLUSIONS

Representativeness is concerned with the degree to which “good” inferences can made
from a set of exposure factor data to the population of concern. Thus evaluating
representativeness of exposure factor data involves achieving an understanding of the source
study, making an appraisal of the appropriateness of its internal inferences, assessing how and
how much the surrogate population and population of concern differ, and evaluating the
importance of the differences. Clearly, this can be an extremely difficult and subjective task. It
is, however, very important, and sensitivity analyses should be included in the risk assessment
that reflect the uncertainties of the process.

In an attempt to ensure that all aspects of representativeness are considered by analysts,
we have partitioned the overall inferential process into components, some of which are
concerned with design and measurement features of the source study that affect the internal
inferences, and some of which are concerned with the differences between the surrogate
population and the population of concern, which affect the external portion of the inference. We
also partition the inferential process along the lines of the population characteristics —
individual, spacial, and temporal — in an attempt to assess where overlaps and gaps exist
between the data and the population of concern. In the individual and spatial characteristics,
representativeness involves consideration of bounds and coverage issues. In the temporal
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characteristic, these same issues (i.e., study duration and currency) are important, but the time
unit associated w1th the measurements or observations is also important, since time unit

d1fferences often occur between the data and the popula‘uon of concern. Checklists are provided

to md in assessmg the various components of representauveness

‘When some aspect of representatlveness is Jacking in the avallable data assessors are
faced with the task of trying to make the data “more representative.” We describe several |
techniques (and cite some others) for accomphshlng these types of tasks; generally making such
adjustments for known differences will reduce bias. However, it should be emphasized that these
adjustment techniques cannot guarantee representativeness in the resultant statistics. For
supportmg future large-scale (e.g., regional or nat1onal) risk assessments, one of the best avenues
for unprovmg the exposure factors data would be to get assessors involved in the des1gn process

-'s0 that appropriate modifications to the survey designs of future source studies can be
considered. For example, the desxgn might be altered to provide better coverage of certain
. segments of the populatmn that may be the focus of risk assessments (e.g., more data on children
could be sought) The use of multlple observations per person also could lead to 1mprovement 1n
those assessments concerned with chronic exposures. ‘
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CHECKLIST 1. ASSESSING INTERNAL REPRESENTATIVENESS: POPULATION SAMPLED VS.
POPULATION OF CONCERN FOR THE SURROGATE STUDY

* What is the study populatlon?

* . What are the individual characterlstlcs (i.e., defined by demographic, socioeconomic
factors, human behavior and other study demgn factors)?

. What are the spatial characteristics?

. What are the temporal characteristics?

e . What are units of observation (e.g., person-days or person-weeks)? .

. What, if any, are the population subgroups for which inferences were especially
desired?

* Are valid statistical inferences to the study population possible?

. Was the whole population sampled (i.e., a census was conducted) used?
. If not was the sample design appropriate and adequate?
. Was a probability sample used? If not, how reasonable does the method of
sample selection appear to be?
. Was the response rate satisfactory?
. Was the sample size adequate for estimating central tendency measures?
. Was the sample size adequate for estimating other types of parameters (e.g.,
upper percentiles)?
. For what population or subpopulation size was the sample size adequate for
estimating measures of central tendency?
. For what population or subpopulation size was the sample size adequate for
estimating other types of parameters (e.g., upper percentiles)?
. What biases are known or suspected as a result of the design or

implementation or the study? What is the direction of the bias?

* Does the study appear to have and use a valid measurement protocol?

. What is the likelihood of Hawthorne effects? What impact might this have on
bias or variability?
. What are other sources of measurement errors (e.g., recall difficulties)? What

impact might they have on bias or variability?

* Does the study design allow (model-based) inferences to other time units?
. What model is most appropriate?
. What assumptions are inherent to the model?
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| CHECKLIST II. ASSESSING EXTERNAL REPRESENTATIVENESS: SURROGATE POPULATION
VS. EXPOSURE ASSESSOR’S POPULATION OF CONCERN ~ INDIVIDUAL CHARACTERISTICS

« How does the population of concern relate to surrogate study population in terms, of the individuals’
~ characteristics?

. Case 1: Are the individuals in the two populations essentially the same?

- Case 2: Are the individuals in the population of concern a subset of those in the study
population? If so, is there adequate information available to allow for tlie analysis of
the population of concern? (Note: If so [Case 2a], we can redefine the surrogate data
to include only persons in the population of concern and:then treat; this case as Case
L)

Case 3: Are the individuals in the surrogate study population a subset of those in the
population of concern?
Case 4: Are two populations disjoint -- in-terms of individual characteristics?

'« How important is the difference in the two populations (population of concern and surrogate
i population) with regard to the individuals” characteristics? To what extent is the difference between:
the individuals of the two populations expected: to.affect the population parameters?

- With respect to central tendency of the two: populations?

“ With respect to the variability of the two: populations?

. With respect to.the shape and/or upper percentiles of the two populations?

 « [s there a reasonable way of adjusting, or extrapolating from: the surrogate population to:the:
population of concern -- in terms of the individuals’ characteristics?
- What method(s): should be used?

* Is there adequate information.available to.implement it?




CHECKLIST 1II. ASSESSING EXTERNAL REPRESENTATIVENESS: SURROGATE
POPULATION VS. EXPOSURE ASSESSOR’S POPULATION OF CONCERN -- SPATIAL
CHARACTERISTICS

» How does the population of concern relate to surrogate population in the spatial characterlstlcs‘7

. Case 1: Do they cover the same geographic area?

. Case 2:. Is the geographic area of the population of concern a subset of the area of
surrogate population? If so, is there adequate information available to allow the
analysis of the population of concern? (Note: If so [Case 2a], we can redefine the
surrogate population to include only regions or types of geographic areas in the
population of concern and then treat this case as Case 1.)

. Case 3: Is the geographic area covered by the surrogate population a subset of that
covered by the population of concern?
. Case 4: Are two populations disjoint -- in the spatial characteristics?

* How important is the difference in the two target populations with regard to the spatial
characteristics? To what extent is the difference in the spatial characteristics of the two populations
expected to affect the population parameters?

. With respect to central tendency of the two populations?
. With respect to the variability of the two populations?
. With respect to the shape and/or upper percentiles of the two populations?

» Is there a reasonable way of adjusting or extrapolating from the surrogate population to the
population of concern -- in terms of the spatial characterlstlcs? ‘
. What method(s) should be used?
. Is there adequate information available to implement it?
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CHECKLIST IV. ASSESSING EXTERNAL REPRESENTATIVENESS: SURROGATE
POPULATION VS. EXPOSURE ASSESSOR’S POPULATION OF CONCERN -- TEMPORAL
CHARACTERISTICS

| * How does the population of concern relate to surrogate population in terms of currency and temporal
coverage (study duration)?

. Case 1: Are the duration and currency of the surrogate data compatible with the
population of concern needs?
. Case 2: Is the temporal coverage of the population of concern a subset of the

surrogate population? If so, is there adequate information available to allow the
analysis of the population of concern? (Note: If so [Case 2a], we can redefine the
surrogate population to include only time periods (e.g., seasons) of interest to the
assessor and then treat this case as Case 1.)

] Case 3: Is the temporal coverage of the surrogate population a subset of that covered
by the population of concern?
. Case 4: Are the two populations disjoint — in terms of study duration and currency?

| * How does the population of concern relate to surrogate population in terms of the time unit (either
the observed time unit or, if appropriate, a modeled time unit)?
. Case 1: Are the time units compatible?
. Case 2: Is the time unit for the population of concern shorter than that of the surrogate
population? If so, are data available for the shorter time unit associated with the
population of concern. (If so [Case 2a], this can be treated as Case 1.)
. Case 3: Is the time unit for the population of concern longer than that of the surrogate
population?

| » How important is the difference in the two populations (i.e., population of concern and surrogate
population) with regard to the temporal coverage and currency? To what extent is the difference in
the temporal coverage and currency of the two populations expected to affect the population

parameters?
. With respect to central tendency of the two populations?
. With respect to the variability of the two populations?
. With respect to the shape and/or upper percentiles of the two populations?

| « Is there a reasonable way of adjusting or extrapolating from the surrogate population to the
population of concern -- to account for differences in temporal coverage or currency?

. What method(s) should be used?

. Is there adequate information available to implement it?

« How important is the difference in the two populations (i.e., population of concern and surrogate
population) with regard to the time unit of observation? To what extent is the difference in the
observation time unit of the two populations expected to affect the population parameters?

. With respect to central tendency of the two populations?
. With respect to the variability of the two populations?
. With respect to the shape and/or upper percentiles of the two populations?

« Is there a reasonable way of adjusting or extrapolating from the surrogate population to the
population of concern -- to account for differences in observation time units?
. What method(s) should be used?

. Is there adequate information available to implement it?
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Issue Paper on Empirical Distribution Functmns and
Non-parametric Slmulatmn

Introduction

One of the issues facing risk assessors relates to the best use of empirical distribution
functions (EDFs) to represent stochastic variability intrinsic to an exposure factor. Generally,
one of two situations occurs. In the first situation, the risk assessor is reviewing an assessment in
which an EDF has been used. The risk assessor needs to make a judgement whether or not the
use of the EDF is appropriate for this particular analysis. In the second situation, the risk
assessor is conducting his/her own assessment and must decide whether a parametric
representation or non-parametric representation is best suited to the assessment. The objective of
this issue paper is to help focus discussion on the key issues and choices facing the assessor
under these circumstances.

We make the initial assumption that the data are sufficiently representative of the
exposure factor in question. Here, representative is taken to mean that the data were obtained as
a simple random sample of the relevant characteristic of the correct population, that the data were
measured in the proper scale (time and space), and that the data are of acceptable quality
(accuracy and precision). :

We also make the assumption that the analysis involves an exposure/risk model which
includes additional exposure factors, some of which also exhibit natural variation. Ultimately,
we are interested in estimating some key aspects of the variation in predicted exposure/risk. As a
minimum, we are interested in statistical measures of central tendency (e.g., median), the mean,
and some measure of plausible upper bound or high-end exposure (e.g., 95th, 97.5th, or 99th
percentiles of exposure). Thus, how variable factors algebraically and statistically interact is
important.

Further, we assume that Monte Carlo methods will be used investigate the variation in )
exposure/risk. Obviously, other methods can be used, but it is clear from experience that '
simulation-based techniques will be used in the vast majority of applications.

Conventional wisdom advises that when there is an underlying theory supporting the use.
of a particular theoretical distribution function (TDF) then the data should be used to fit the
distribution and that distribution should be used in the analysis. For example, it has been argued
that repeated dilution and mixing of an environmental pollutant should eventually result in a
lognormal distribution of concentrations. While this is an agreeable concept in principle, it is
rare situation when a theory-based TDFs are available for particular exposure factors.
Furthermore, theory-based TDFs are often only- valid in the asymptotic sense. -Convergence is
may be very slow, and, in the early stages, the data may be very poorly modeled by the
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asymptotic form of the TDF. For this issue paper we assurrte that no theory-based TDFs are
available.

The issue paper is wntten in two parts Patt i addresses the strengths and weakness of
empmcal distribution functions; Part IT addresses issues related to judging quality of fit for
theoretical distributions.

Part . Empirical Distribution Functions

Defimtlons Given representattve data, X {xl, Xy s Xn b5 the r1sk assessor has tWo basic
: techmques for representmg an eXposure factor ina Monte Carlo ana1y31s

parametnc methods which attempt to charactenze the exposure fa‘ctor using a TDF. For
example, a lognormal gamma or Weibull distribution is used to represent the exposure factor,
and the data are sed to estlmate values for its 1ntr1n51c parameters

non-parametric methods Whlch use the sample data to deﬁne an emplrlcal dlstrlbuuon function
EDF) or modlﬁed version of the EDF

EDF Sorted from smallest to lafgest X S Xy € Xy, the EDF is the cumulatlve dlstrlbutlon
function defined by

L numb g o ‘
Fx) = rumber of ¥ £ % or  Fx) = l

' . ,‘1““ . [ i i nk

H(x - x,)

where H(u) is the unit step function which jumps from 0 to 1 when u > 0. The values of the EDF ” |
are the discrete set of cumulative
probabilities (0, 1/n, 2/n, -, n/n). Figure 1
illustrates a basic EDF for 50 samples

Figure 1. Example of EDF
drawn from lognormal distribution witha 1.00 - ———

geometric mean of 100 and a geometric z o7
standard dev1atlop of 3,ie., X~ B o
LNUOO 3) - | “ g B 080 |
- ) ‘ . ' g ><' 0.50 4.
In a Monte Carlo simulation, an \EDFis  §3 ool
generated by randomly sampling the raw g & oz

O ool

data with replacement (simple
bootstrapping) so that each observation in
the data set, x;, has an equal probability of
selection, i.e., prob(x) = 1/n.

0.00

0 100 200 300 400 500 600 700 800
Random Variate
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Properties of the EDF. The following summarizes some of the basic properties of the EDF:

1. Values between any two consecutive samples, x, and x,.,; cannot be simulated, nor can

values smaller than the sample minimum, x,, or larger than the sample maximum, x,, be
generated, i.e., x > x; and x <x,

2. The mean of the EDF is equal to the sample mean. The variance of the EDF mean is
always smaller than the variance of the sample mean; it is equal to (#- 1)/ times the
variance of the sample mean.

3. The variance of the EDF is equal to (n—-1)/n times the sample variance.
4. Expected values of the EDF percentiles are equal to the sample percentiles.

5. If the underlying distribution is skewed to the right (as are many environmental
quantities), the EDF will tend to under-estimate the true mean and variance.

Figures 2 and 3 below illustrate typical Monte Carlo behavior of the EDF in reproducing the
sample mean, variance, and 95th percentile of the underlying sample. Here X ~ LN(100,3) with
a sample size of N = 100 and the relative error is defined as 100x [simulated-sample]/sample.
The oscillatory nature of the simulated 95th percentile reflects the normalized magnitude of the
difference between adjacent order statistics in the sample, xs5), and x5 and shows the Monte
Carlo estimate flip-flopping between these two ranks

Figure 2. Convergence of the Mean and Varianc: Figure 3. Convergence of the 95th Percentile
15.0

20 4
& 9
£ 10 { pean < 100
e
S o1/ I A g 2
) v/ oY V\__/ ~ ]
g -0 1 02) 5.0
w =
s AN M A AN
['4 o 00 zem] :

30 | Variance

40 + + t -5.0 + 4 +——

100 1000 10000 100000 1000000 ) 100 1000 10000 100000 1000000
Numer of Monte Carlo Simulations Number of Monte Carlo Simulations -

Linearly Interpolated EDF (Linearized EDF). For continuous random variables, it may be
troubling to define the EDF as a step function and so extrapolation is often used to estimate the
probabilities of values in between sample values. Generally, for values between observations,
linear interpolation is favored, although higher order interpolation is sometimes used. Figure 4
compares a linearly interpolated EDF with the basic EDF. The linearly interpolated EDF will
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ﬁeud to. underestlmate the sample mean and variance. It w111 converge to the approprlate sample

percennle but take longer to do so when compared to the s1mp1e EDF. These differences tend to

diminish as the ple size increases. Table 1 illustrates differences between the EDF,

hneanzed EDF and best fit TDF for residential room air exchange rates. The EDF statistics are

based ona Monte Carlo simulation with 25,000 repllcanons Clearly the simple EDF is best at
“ reproduemg samQIe moments and sample percentiles.

ACH Best Fit Figure 4. Comparison of Basic EDF and
Statistic Sample 'Linearized Weibull Linearly Interpolated EDF

N=90 EDF EDF PDF : 0:950
mean 0.6822 0.6821 0.6747 0.6782
variance 0.2387 02358  0.2089 0.2479
skewness 1.4638 1.4890 1.2426 1.2329
kurtosis 6.6290 67845  5.6966 4.9668
5% 0.1334 0.1320 0.1307 0.0881
10% 0.1839 0.1840 0.1840 0.1452
50% 0.6020 0.6160  0.6032 0.5691
90% 1.2423 1.2390 1.2398 1.3592 , P
95% 1.3556 13820 1.3600 1.6450 ; 300

e ——————— Random Variate
Table 1 Comparison of key summary statistics ‘ ‘

0.800 -

" 0.850 -1

0.800 -

F‘rob(X.LE x)

Cumulative Probability
g
8

Extended EDF. Neither the simple EDF nor the interpolated EDF can produce values beyond
the sample minimum or maximum. This may be an unreasonable restriction in many cases. For
example, the probability that a previously observed largest value in a sample based on »
observations will be exceeded in a sample of N future observations may be estimated using the
relationship prob =1 - n/(N + n) If the next sample size is the same as the original sample size,
there is a 50% likelihood that the new sample will have a largest value greater than the original
sample’s largest value. Restricting the EDF to the smallest and largest sample values will
produce distributional tails that are too short. In order to get around this problem, one may
extend the EDF by adding pIau31ble lower and upper bound values to the data. The actual values
are usually based on theoret1ca1 considerations or on expert Judgement For right skewed data,
adding a new minimum and maximum would tend to increase the mean and variance of the EDF.
This same sort or rational is used when continuous, unbounded TDFs are truncated at the low
and hlgh end to av01d generatmg unrealistic values durlng Monte Carlo simulation (e.g., 15kg
adult males, females over 2.5m tall, etc.)

Mixed Empirioz;l-Exponeutial Distribution. An alternative approach to extending the upper
tail of an empirical distribution beyond the sample data has been suggested by Bratley e al. In
their method, an exponential tail is fit to the last five or ten percent of the data. This method is
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based on extreme value theory and the observation that extreme values for many cont'muoﬁs,
unbounded distributions follow an exponential distribution.

Starting Points

The following table summarizes the results of an informal survey.of experts who were asked to
contribute their observations and thoughts on the strengths and weaknesses of EDFs by
addressing a list of questions and issues. Based on this survey:

1. The World seems to be divided into TDF’ers and EDF’ers.

2. There are no clear-cut, unambiguous statistical reasons for choosing EDFs over TDFs or
vice versa.

3. Many of'the criticisms leveled at EDFs also apply to TDFs (e.g., the data must be simple
random samples)..

4. One aspect of which may have important implications for our discussion is the nature of
the decision and how sensitive an outcome is to the choice of an EDF.

5. Generally, contributors did not express much support for either the linearized EDF or the

extended EDF. Why they seem to be comfortable with TDFs, which essentially
interpolate between data points as well as extrapolated beyond the data, is unclear.
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Part II. Issues Related to Fitting Theoretical Distributions
§“‘PI‘3‘DS‘C the follo%ing set of circumstances: |

(I) that we have a random sample of an exposure parameter whlch exhlbrts natural varratlon

B (2) that th lected data are representatrve of the exposure parameter of 1nterest (1 e., the ‘
f data measure e right populatmn in the nght time and spatral scales etc ) ‘

b (3) that estlmates of measurement error are avaﬂable

| B (4) that there is no avallable physrcal model to deserlbe the dlstrlbutlon of the data (i.e., there
IS no theoretlcal basis to say that the data are lognormal gamma We1bu11 etc)

(5) that we wish to characterize and account for the variation in the parameter in an analysis
of env:ronmental exposures.

(6) we run the data through our favorite d1str1but10n—ﬁtt1ng software and get goodness of ﬁt
~ statistics (e.g., chi-square, Kolmogorov-Smirnov, Cramer-von Mises, Anderson—Darhng,
‘ Watson ete. ) and therr statistical srgmﬁcance

(7) rankings based on the goodness of fit results are leCd dependmg on the stat1st10 and p-
values.

(8) graphical examination of the quahty of fit (QQ plots, PP plots histogram overlays,
. residual plots, etc) presents a rmxed picture, remforcmg the dlfferences observed in the
goodness of ﬁt statistics.

Questions

1) A statistician mlght say that one should pick the simplest distribution not rejected by the
data. But what does that mean when rejection is dependent on the statistic chosen and an
arbltrary level of statlstlcal srgmﬁcance’P

2). On what basrs should it be decrded whether or nota data set is adequately represented by a R
fitted analytic distribution?

3). Specifically, what role should the p-value of the goodness of fit statistic play in that
judgment?

4), What role should graphical examination of fit play?

oA




Respondent #1 7
All distributions are, in fact empirical. Parametric distributions are merely theoretical constructs.
There is no reason to believe that any given distribution is, in fact, log-normal (or any other
specific parametric type). That we agree to. call a distribution log-normal is (or at least should
be) merely a shorthand by which we mean that it looks sufficiently like a theoretical log-normal
distribution to save ourselves the extra work involved in specifying the empirical distribution.
Other than analyses where we are dealing strictly with hypothetical constructs (e.g, what if we
say that such-and-such distribution is lognormal and such and such distribution is normal....), I
can see no theoretical justification for a parametric distribution other than the convenience
gained. When the empirical data are sparse in the tails, we, of course, run into trouble in needing
to specify an arbitrary maximum and minimum to the empirical distribution. While this may 7
introduce considerable uncertainty, it is not necessarily a more uncertain practice than allowing
the parametric construct to dictate the shape of the tails, or for that matter arbitrarily truncating
the upper tail of a parametric distribution. This becomes less of a problem if the analysts goal in
constructing an input distribution is to describe the existing data with as little extrapolation as
necessary rather than to predict the "theoretical" underlying distribution. This distinction gets us

close to the frequentist/subjectivist schism where many, 1f not all MC roads eventually seem to
lead.

Respondent #2

...if you use p-bounds you don't have to choose a single distribution. You can use the entire
equivalence class of distributions (be it a large or small class). I mean, if you can't discriminate
between them on the basis of goodness of fit, maybe you do the problem a disservice to try. And
operationalizing the criterion for "simplest" distribution is no picnic either.

Respondent #3

Why not try the KISS method: Keep It Simple & Sound. The Ranked Order Data assuming
uniform probability intervals is a method that makes no assumptions as to the nature of the
distribution. I also tends to the true distribution function as the number of data points increases.

If you have replicate measurements (on each random sample) then the mean of these should be
used.

The method yields simple rapid random number generators and one can obtain and desired
statistical parameter of the distribution. However, use of the distribution function in any estimate
is advised. Given the high level of approximation and/or bias in most risk assessment data and
models, any approximation to the true PDF should be adequate.

There is one occasion when the theoretical PDF may be better than the empirical PDF. That is
when it comes from the solution of equations based on fundamental laws constraining the
solution to a specified form. Even in this case agreement with data is required. This in not
usually the case in risk assessment PDFs.
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‘Respondent #4 ~
Since I am blessed not to be a statistician, I have no problem disputing their "statement” about
the "simplest" distribution. T don't know what they mean either. What really matters physically
is picking a distribution that has the fewest variables and that is easy to apply, given the kind of

. analysis you want to do. You want one that does not make assumptions in its construction that

 contradict processes operating in your data. If your are generating equally bad fits with a variety
 of the usual distributions anyway, by all means chose the one that is easiest to use. For time

sliced exposure data, the "right" distribution almost always means a lognormal distribution. A

physical basis for the lognormal does exist for exposure data, and empirically, most exposure

data fit lognormals. [Your assumption "A" does not hold for typical exposure processes.]

- Wayne Ott, who probably does not even remember it, taught me this one afternoon in the back of

a meeting room. See "A Probabilistic methodology for analyzing water quality effects of urban

rurioff on rivers and streams," Office of Water, February 15, 1984. Just tell people that you have

used a lognormal disiribution for convenience, although it does not it particularly well, then

ptovide some summary statistics that describe the poorness of fit.

Problems begin when you get a poor fit to a lognormal distribution but a good fit with a different
. distribution. Say you get a better fit to the Cauchy distribution, because the tails of your pdf
have more density. Now things get more fun. Statisticians would say that you should use the
Cauchy distribution, because it is a better fit. I say that you should still use the lognormal,
becatise you can interpret manipulations of the data more easily, and just note that the lognormal
fit is poor. Problems will arise, however, if you want to reach conclusions that rely on the tails of
the distribution, and you use the lognormal pdf formulation, instead of your actual data. I
somewhat anticipated your dilemma in my previous E-mail to you. If you don't need to use a
continuous distribution, just go with the data!” B B | |

For time dependent exposure data, the situation gets much more complex. I prefer t6 work with
Weibull distributions, but I see lots of studies that use Box-Jenkins models.

Anq you élsq asked On Whatba313 do I decide whether my data are adequately represented by a
fitted analytic distribution? Specifically, what role should the p-value of the goodness of fit
statistic play in my choice? What role should graphical examination of fit play?

To me, the data are adequately represented, when the analytical distribution adequately fills the
role you intend it to have. In other words, if you substitute a lognormal distribution for your
data, as a surrogate, then carry out some operations and obtain a result, the lognormal is
adequate, unless it leads to a different conclusion than the actual data would support. The same
statement is true of any continuous distribution.

Similarly, as a Bayesian, I think that the proper role of a p-value is the role you believe it should
play. I don't think that p-values have much meaning in these kinds of analyses, but if you think
they should, you should state thé desired value before beginning to analyze the data, and not
proceed until yd{i‘j‘jobtain this degree of fittedness or better. If small differences in p-value make
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much difference in your analysis, your conclusions are probably too evanescent to have much
usefulness. The quantiles approach that I previously commended to you, is a graphical method.
[See J.W. Tukey, Exploratory Data Analysis. Addison-Wesley (1977)]. In it, you would display
the distribution of your data, mapped against the prediction from the continuous distribution you
have chosen, with both displayed as order statistics. If your data fit your distribution well, the
points (data quantiles versus distribution quantiles, will fall along a straight (x=y) line.
Systematic differences in location, spread, and/or shape will show up fairly dramatically. Such
visual inspection is much more informative than perusing summary statistics. No "statistical
fitting" is involved. [Also see J.M. Chambers et al., Graph1cal Methods for Data Analysis. Cole
Publishing (1983)].

Respondent #5

I have several thoughts on the goodness of fit question. First, visual examination of the data is
likely to yield more insight into the REASONS for the mixed behavior of the various statistics;
i.e., in what regions of the variable of interest does a particular theoretical distribution not fit
well, and in what direction is the error? Then choosing a particular parametric distribution can
be influenced by the purpose of the analysis. For example, if you are interested in tail
probabilities, then fitting well in the tails will be more important than fitting well in the central
region of the d1str1but10n and vice versa.

A good understanding of the theoretical properties of the various distributions is also handy. For
example, the heavy tails of the lognormal mean that the moments can be very strongly influenced
by relatively low-probability tails. If that seems appropriate fine; if not the analyst should be -
aware of that, etc. I don't think there is a simple answer; it all depends on what you are trying to
do and why!

Respondent #6
In broad overview, I have these suggestions -- all of which are subject to modification,
depending on the situation.

1. Professional judgment is **unavoidable** and is **always** a major part of every statistical
analysis and/or risk assessment. Even a (dumb) decision to rely **exclusively** on one
particular GOF statistic is an act of professional judgment. There is no way to make any decision
based exclusively on "objective information" because the decision on what is considered
objective contains unavoidable subjective components. There is no way out of any problem
except to use and to celebrate professional judgment. As a profession, we risk assessors need to
get over this hang up and move ahead.

2. It is **always** necessary and appropriate to fit several different pafametric distributions to a
data set. We make choices on the adequacy of a fit by comparison to alternatives. Sometimes we
decide that one 2-parameter distribution fits well enough (and better than the reasonable
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alternatives) so that we will use this distribution. Sometimes we decide that it is necessary touse
a fore complicated parametric distribution (e.g., a 5-parameter "mixture” distribution) to fit the

data well (and better than the reasonable alternatives). And sometimes, we decide that no

parametric distribution can do the job adequately welt, hence the need for bootstrapping and

other methods. - - . . R

3. The human eye is far, far better at **judging** the overall match (or lack thereof) between a
fitted distribution and the data under analysis than any statistical test ever devised. GOF tests are
“blind" to the data! We need to visualize, visualize, and visualize the data -- as compared to the
alternative fitted distributions -- to **see** how the various fits compare to the data. Mosteller,

- Tukey, and Cleveland, three of the most distinguished statisticians of the last 50 years, have all
stressed the **esgential** nature of visualization and human judgment relying thereon (in lieu of

. GOF tests). BTW, these graphs and visualizations *must* be published for alt to seeand

understand. 0T

4, In situations where no single parametric distribution provides an **adequate** fit to the data,
there are several possible approaches to keep moving ahead. Here are my favorites.

A. (standard approach) Fit a "mixture" distribution to the data.

_ B. Use the two or three or four parame;tric distributions that offer the most appealing fitin a
.. sensitivity analysis to see if the differences among the candidate distributions really make a
- difference in the decision at hand. Get the computer to simulate the results of choosing

«. among the different candidate distributions. This leads to keen insights as to the "value of

. information".

" C. (see refererices below, and references cited therein) By extension of the previous idea,
" analysts can fit and use "second-order" distributions that contain both **Variability** and
| #¥Uncertainty**. These second-order distributions have many appealing properties,
especially the property that they allow the analyst to propagate Variability and Uncertainty
*¥geparately** so the tisk assessor, the risk manager, and the public can all see how the Var
% and Unc combine throughout the computation / simulation into the final answer.

Respondent #7
[RE comments #1, #3, respondent #6]. ... the motivation behind having standardized methods:
Professional judgment does not always produce the samie result. Your professional judgment
does not necessarily coincide with someone else's professional judgment. Surely, you've noticed
this. The problem isn't that no one is celebrating their professional judgement - the problem is
that we have more than otte party. |

1
|

The bigger and more unique the problem, the less standardization matters. But if you are tryiﬁg -
to compare, say%h‘t‘he risk from thousands of superfund sites, you can't very well reinvent risk
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analysis for every one and expect to get comparable results - whatever you do for one you must
do for all.

Have you tried to produce a GOF statistic that matches your visual preference? I have. For
instance, I think fitting predicted percentiles produces better looking fits than fitting observed
values (e.g., maximum likelihood) - because this naturally gives deviations at extreme values less
weight - where 'extreme value' is model dependent.
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Workshop on Selecting Input Distributions for
Probabilistic Assessment

U S. Environmental Protection Agency
New York, NY
April 21-22, 1998

Charge to Experts/Discussion Issues

This workshop is being held to discuss issues associated with the selection of probability
distributions to represent exposure factors in a probabilistic risk assessment. The workshop
discussions will focus on generic technical issues applicable to any exposure data. It is not the
intent of this workshop to formulate decisions specific to any particular exposure factors. Rather
the goal of the workshop is to capture a discussion of generic issues that will be informative to
Agency assessors working with a variety of exposure data.

4

On May 15, 1997, the U.S. Environmental Protection Agency (EPA) Deputy
Administrator signed the Agency’s “Policy for Use of Probabilistic Analysis in Risk
Assessment.” This policy establishes the Agency’s position that “such probabilistic analysis
techniques as Monte Carlo Analysis, given adequate supporting data and credible assumptions,
can be viable statistical tools for analyzing variability and uncertainty in risk assessments.” The
policy also identifies several implementation activities designed to assist Agency assessors with
their review and preparation of probabilistic assessments. These activities include a commitment
by the EPA Risk Assessment Forum (RAF) to organize workshops or colloquia to facilitate the
development of distributions for exposure factors.

In the summer of 1997, a technical panel, convened under the auspices of the RAF, began
work on a framework for selecting input distributions for use in Monte Carlo analyses. The
framework emphasized parametric methods and was organized around three fundamental
activities: selecting candidate theoretical distributions, estimating the parameters of the
candidate distributions, and evaluating the quality of the fit of the candidate distributions. In
September of 1997, input on the framework was sought from a 12 member panel of experts from
outside of the EPA. ‘The recommendations of this panel include:

. expanding the framework’s discussion of exploratory data analysis and graphical methods
for assessing the quality of fit,
. discussing distinctions between variability and uncertainty and their 1mp11cat1ons
. discussing empirical distributions and bootstrapping, :
. discussing correlation and its implications,
. making the framework available to the risk assessment community as soon as possible.
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‘ Subsequent to receiving this input, some changes were made to the framework and it was |
applxed to selecting distributions for three exposure factors: water intake per body weight,
inhalation rate, and residence time. The results of this work are presented in the attached report
entitled “Development of Statistical Distributions for Exposure Factors.”

Applying the framework to the three exposure factors highlighted several issues. These
issues resolved in to two broad categones issues associated with the representativeness of the
data, and i 1ssues 1ssociated with using the emplncal distribution function (or resamplmg
techmques) versus using a theoretical parametrrc distribution function. Summaries for these
issues are presented in the attached issue papers These i issues will be the focal point for
discussions during this workshop. The following questions are intended to help structure and
guide these discussions. In addressing these questions, workshop participants are asked to
consider: what do we know today that can be applied to answering the question or providing
addltlonal gmdan e on the toplc ‘what short term studies (e.g., numerical experlments) could be
conducted to answer the question or provide additional guidance; and what longer term research

nay ded to answer the questron or prov1de add1t10na1 guldance

Renresentatlveness (Issues Paper # )

| ‘1) The Issue Pap -

Checkllsts I‘thr hIVin the 1ssue paper present a framework for characterlzmg and evaluatmg o

the representatlveness of exposure data. Th1s framework is orgamzed into three broad sets of
questions: questions related to differences in populations, questions related to differences in
spatial coverage and scale, and questions related to differences in temporal scale. Do these issues
cover the most important considerations for representativeness? Are the lists of questions
associated with each issue complete? If not, what questions should be added?

In a tiered approach to risk assessment (e.g., a progression from 51mpler screening level
assessments to more complex assessments) how m1ght the framework be tallored to each tier?
For example is there a subset of questions that adequately addresses our concerns about
representativeness for a screening level risk assessment?

2) Sensitivity

- The framework asks how important are (or how sensitive is the analysis to) population, spatial,
and temporal differences between the sample (for which you have the data) and the population of
interest. For example to what extent do these differences affect our estimates of the mean and
variance of the populatlon and what is the magnitude and direction of these effects?

What guldance can be provrded to help answer these quest10ns‘7 What sources of 1nformat10n
exlst to help w1th these quest10ns‘7 Having answered these questlons what are the 1mp11cat10ns
for the use of the data (e. g use of the data may be restncted to screenmg level assessments m
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certain circumstances)? What differences could be considered critical (i.e., what differences
could lead to the conclusion that the assessment can’t be done without the collection of
additional information)?

3) Adjustments

The framework asks, is there a reasonable way of adjusting or extrapolating from the sample (for
which you have data) to the population of interest in terms of the population, spatial, and
temporal characteristics? If so, what methods should be used? Is there adequate information
available to implement these methods? ‘

What guidance can be provided to help answer these questions? Can exemplary methods for
making adjustments be proposed? What sources of information exist to help with these
questions? What research could address some of these issues?

Section 5 of the issue paper on representativeness describes methods for adjustments to account
for differences in population and temporal scales. What other methods exist? What methods are
available for spatial scales? Are there short-term studies that can be done to develop these
methods further? Are there data available to develop these methods further? Are there
numerical experiments (e.g., simulations) that can be done to explore these methods further?

Empirical Distribution Functions and Resampling Versus Parametric Distributions

(Issues Paper #2)

1) Selecting the EDF or PDF

What are the primary considerations for assessors in choosing between the use of theoretical
parametric distribution functions (PDFs) and empirical distribution functions (EDFs) to represent
an exposure factor? Do the advantages of one method significantly outweigh the advantages of
the other? Is the choice inherently one of preference? Are there situations in which one method
is clearly preferred over the other? Are there circumstances in which either method of
representation should not be used?

2) Goodness of Fit

On what basis should it be decided whether or not a data set is adequately represented by a fitted
analytic distribution? What role should the goodness-of-fit test statistic play (e.g., chi-square,
Kolmogorov-Smirnov, Anderson-Darling, Cramer-von Mises, etc.)? How should the level of
significance, i.e., p-value, of the goodness of fit statistic be chosen? What are the implications or
consequences for exposure assessors when acceptance/rejection is dependent on the goodness of
fit statistic chosen and an arbitrary level of statistical significance? What role should graphical
examination of the quality of fit play in the decision as to whether a fit is acceptable or not?
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When the only data readlly available are summary statistics (e.g., selected percen’ules mean, and

o vamance) are fits to analytic distributions based on those summary statls’ucs acceptable‘7 Should

any hmltatlons or restnctlons be placed in these situations?

en the better kn‘ wn theore’ucal dlstnbutlons (e.g., lognormal gamma Weibull, log—logls’uc
eté.) cmnot prov1de an acceptable fitto a partlcular set of data, is there value in testing the fit of
the more flex1b1e generallzed dlstnbutlons (e.g., the generahzed gamma and generalized F
dxstrlbutlons) even though they are cons1derably more comphcated and d1fﬁcult to work with?

3) Uncertamty

Are there preferred methods for assessmg uncertamty in the ﬁtted parameters (e.g., methods
based on maximum likelihood and asymptotlc normahty, bootstrappmg, etc.)?
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APPENDIX E

SMALL GROUP DISCUSSIONS/BRAINWRITING SESSIONS

During the workshop, the experts worked at times in smaller groups to discuss specific technical
questions. Some of these sessions involved open discussions. Other sessions involved “brainwriting,”
during which individuals captured their thoughts on paper, in sequence, and then discussed similar and/or
opposing views within each group.- The outcomes of these sessions were captured by group rapporteurs
and individual group members and are summarized below. This summary represents a transcription of
handwritten notes and are, as such, considered rough working notes. Information from these smaller
group discussions was presented and deliberated in the plenary session, and partially forms the basis of

‘the points presented in the main text of this report.

What information is required to fully specify a problem definition?

Population at risk
Sample under study (include biases)
Spatial extent of exposure—micro, meso, macro scale
Exposure-dose relationship
Dose-response-risk relationship
Temporal extent (hours, days, months, years)
Temporal variability about trend
What is the “acceptable error”?
— - yes/no
— categorization
— continuous
— quantitative
L] Variability/uncertainty partitioning
— not needed
— desirable
— - mandatory
| User of output
— scientific community
— regulatory community-
—  general public

‘One expert néted that the “previous problem definition” forces the blurring of the boundaries between

modeling and problem description—for example, many may not consider the dose-exposure—risk
relationship to be part of the problem deﬁnltlon :

Another expert asked, “How much information do we have to translate from measured value to
population of concern?” He described the population of concern, surrogate population, individuals
sampled from the surrogate population, and how well measured value represents true value. Another
agreed, emphasizing the importance of temporal, spatial, and temporal- spat1al representativeness (e.g.,
Idaho potatoes versus Maine potatoes).




Other issues in prob

i Several alternatwe scenarros of future land use, populatlon etc mrght be deﬁned and analyzed
X Problem e;
this mlght drctate llmlts on future land use and the need for evaluat1on

A problem needs to be specrﬁed in space (locat1on), tlme (OVer what duratron), and whom

' Define the target risk level; this will dictate what kind of data will be necessary.

‘Specrfy the populatlon of concern (who they are, where they llve what kmds of act1v1t1es they

m definition lnclude:

In the context of env1ronmental remedrat1on a problem is deﬁned in terms of what level of
residual risk can be left on the site. The degree of representativeness needed is dependent on the
land use scenario.

1tron mrght 1nclude estabhshmg budget limits (for assessment and remedlatron),

(person or unit). Some of these definitions may be concrete (e.g., in terms of spatial locations
around a site) while some may be more vague, such as persons who live on a brownfield site

! (whrch may change over time with mobility, new land use, etc.). The problem addresses a future
; context and must therefore be linked to observable data by a model/set of assumptlons The

} problem definition should include these models (no populatlon change over time) or assumptions
“ (exposure calculated over 50- year durat1on/t1me frame)

One must define the health outcome bemg targeted (e g acute vs. cancer vs. developmental)

Def ine how you will link the exposure measure toa model for hazard and/or l‘lSk (margm of

exposure has different data needs from an estimate of population risk). Also, one should
consider the type of observation being evaluated (blood measurements vs. dietary vs. ecological).

* This is more likely to have an impact on the representativeness of the data sample than anything
- else.

Another panelist agreed these are important points but questi‘oned,m however, whether these
factors were part of problem definition.

Speclfy thescope and purpose of the ‘assessment‘(e.g.,‘ regulatory decision, set cleanup standards, -
etc.) ‘

Determining how much error we are willing to live with will determine how representative the
data are. ) - | | I

are mvolved with).

Problemm deﬁnition is the most critical part of the prdcess and all stakeholders should be
involved as much as possible. If the stakeholders come to a common understanding of the

“ objectrves of the process the situation becomes focused

Although EPA“ has provrded much guldance for problem defmrﬁon (DQOs DQAs etc. ), what
data are necessary (and to what extent it must be representative) is a function of each individual

problem. Certain basic questions are common to all problem definitions (who, what, when,
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how); the degree to which each basic question is important is a function of the actual
problem/situation. :

Decision performance requirements: What is acceptable at a specific site for a specific problem
(i-e., what is the degree of decision error)? An answer to this question should be decided up
front as much as possible to alleviate “bias” concerns.

Attributes of the exposed population are key issues:

— Who are they?

— What are their activities/behaviors?

— Where are they?

— When do they engage in activities and for how long?
— Why are certain activities performed?

The potential imprecision of “national” populations seems significant. Scale is important; maybe
regional is as large as it gets.

If representativeness is a property of the population, then we should focus on methods for
collecting more specific data.

Variability within a super-population (e.g., a national study) provides useful, quantifiable bounds
to potential bias and gives an upper bound on the variability that could be found in a
subpopulation. This suggests that there are quantitative ways to guide the use “reduce
sparingly.”

The assessor needs to ask the following questions: Is a risk assessment necessary? What is the
level of detail needed for the decision at hand? What is the scope of the problem? For example,

- ‘Who is at risk?

— Who has standing [e.g., stakeholders]?

— Who has special concerns?

— - What is of concern? ;

— When are people exposed? (timeframe [frequency and duration], chronic vs. acute, level -
of time steps needed) - : '

— Where are people exposed—spatial considerations; scope of the problem (national,
regional, site?) :

— How are people exposed?

The time step used in the model must be specified. The assessor must distinguish between
distribution needed for a one-day time step as compared to a one-year time step. Some models
may run at different time steps (e.g., drinking water at a one-week time step to include seasonal
variation; body weight at a one-year time step to include growth of a child.)

Consideration of a tiered approach is important in problem formulation. How are data to be

used? If data are to be used in a screening manner, then conservativeness is even more important
than representativeness. If more than a screening assessment is proposed, the assessor should
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consider what is the value added from more complex analyses (site-specific data collection,
modeling, etc.). “ - S >

" As probabilistic methods continue to be deveioped; it will become increasingly important to
specify constraints in distribution. Boundaries exist. For example, no person can eat multiple
food groups at the 95th percentile.

Two panelists noted that tiered approachgs would not change the problem definition. Generally,
the problem is: Under an agreed set of exposure conditions, will the population of concern
experience unacceptable risks? This question would not change with a more or less sophisticated
(tiered) assessment. “ ‘ ‘ : ‘ B
When evaluating unkﬁmﬁvn future population characteristics, we are dealing with essentially

- unknown conditions. It is not feasible, therefore, to have as a criterion that additional

" information will not significantly change the outcome of the analysis. Instead, the problem needs

1o be defined in terms of a precise definition of population (in time and space) which is to be

protedted. Fo the extent that this is uncertain, it needs to be defined in a generalized, generic
manner.

Considerations of the “external” representativeness of the data to the population of concern is
" absolutely critical for “on the ground” risk assessments. The “internal” validity of the data is
.\ often a statistical question. It seems more important to ensure that the outcome of the assessment
" ' will not change based on the consideration of «“gxternal” representativeness of the data set to the

population of concern.

What constitutes (lack of) representativeness?

General ‘ : : ‘
The issue of data representativeness begs the question “representative of what?” In many (most?) cases,
¢ are working backwards, using data in hand for purposes that may or may not be directly related to the
on the data were collected in the first place. Ideally, we would have a well-posed assessment
stoblem with well-defined assessment endpoints. From that starting point, we would collect the relevant
data necessary for good statistical characterization of the key exposure factors.

- More generally, we are faced with the question, “Can I use these data in my analysis?” To make that
judgment fairly, we would have to go through a series of questions related to the data itself and to the use
we intend to make of the data. We usually ignore many of these questions, either explicitly or implicitly.
The following is an attempt at listing the issues that ought to affect our judgment of data relevance.
S;“(;u‘rcegu‘“of Variability and Uncertainty Related to the Assessment of Data Representativeness
EPA policy sets the standard that risk assessors should seek to characterize central tendency and
plausible upper bounds on both individual risk and population risk for the overall target population as
well as for sensitive subpopulations. To this extent, data representativeness cannot be separated from the
assessment endpoint(s). The following outlines some of the key elements affecting data
represéntativeness. The elements are not mutually exclusive.




Exposed Population
general target population
particular ethnic group
known sensitive subgroup (children, elderly, asthmatics, etc.)
occupational group (applicators, etc.)
age group (infant, child, teen, adult, whole life)
sex
activity group (sport fishermen, subsistence fishermen, etc.)

Geographic Scale, Location
trends (stationary, non-stationary behaviors)
past, present, future exposures
lifetime exposures
less-than-lifetime exposures (hourly, daily, weekly, annually, etc.)
temporal characteristics of source(s), continuous, intermittent, periodic, concentrated (spike)
random

2

Exposure Route
inhalation
ingestion (direct, indirect)
dermal (direct) contact (by activity, e.g., swimming)
multiple pathways

Exposure/Risk Assessment Endpoint
cancer risk
non-cancer risk (margin of exposure, hazard index)
potential dose, applied dose internal dose, biologically effective dose -
risk statistic
mean, uncertainty percentile of mean
percentile of a distribution (e.g., 95th percentile risk)
uncertainty percentile of variability percentile (upper credibility limit on 95th percentile risk)
plausible worst case, uncertainty percentile of plausible worst case

Data Quality Issues
direct measurement, indirect measurement (surrogates)
modeling uncertainties
measurement error (accuracy, precision, bias)
sampling error (sample size, non-randomness, independence)
monitoring issues (short-term, long-term, stationary, mobile)

= ~Almost all data used in risk assessment is not representative in one or more ways. What is
important is the effect the lack of representativeness has on the risk assessment in question. If
the water pathway, for example, is of minor concern, it will not matter if the water-consumption
rate distribution is not representative.

A lack of representativeness could mean the risk assessment results fail to be protective of public
health or grossly overestimate risks.




The Issue ] aper is helpful in descr1b1ng the ways in whlch d1str1but1ons can be nonrepresentatrve.

Tt can gurde the selectlon of the 1nput drstrrbutrons

Representativeness needs to be considered in the context of the dec1s10n performance
requlrements Factors that could have a major impact in terms of one problem/site need not have
the same impact across all problems/sites. Decision performance requirements should therefore
be con51dered wrth problem s1te-specrﬁc goals and objectrves factored into the process

The deﬁmtrpn of representativeness depends on how much error we are w1llmg to live w1th
What is “good enough” will be case specific. Going through some case studies using
assessments done for different purposes can shed some light on defining representativeness.
“With regard to exposure factors, we [EPA] need to do a better job at specifying or providing
better guidance on how to use the data that are available.” For example, the soil ingestion data
for children are limited, but may be good enough to provide an estimate of a mean. The data are
not good enough to support a distribution or a good estlmate of a hlgh-end value.

l Hl v
Representatlveness measures the degree to whlch a sample of Values for a given endpomt
accurately ‘and precisely (adequately) descrrbes the value(s) of that endpoint hkely to be seen in a
target populatlon

A number of issues relate to the lack of representatlveness Wthh one can use to decrde upon use

‘of a sample in a given case: The context of the observation is important. In addition to those

~ mentioned in the Issues Paper (demographic, technical, social), other concerns include what is

 being measured environmental sample (water, air, soil) versus human recall (diet) versus tissue

‘samples in humans (e.g., blood) In most cases, provided good demographlc and social

mformatlo”‘ is available on key issues associated with the exposure adjustment can be made to

make a sar ple representatrve for a new populatlon ‘Technical issues sometimes must be
guessed" from one sample to another (key issues 11ke dlfferent or poor analytlc techmques

altered consumptron rates, etc.).

A s&mple should not be used ifitis ﬂawed due to one of the followmg factors

1) 1nappropr1ate methods (sample de31gn and techmcal methods)
2) lack of descrrptors (demographic, technical, s001al) to make adjustments
3) madequate size for target measure

bove ¢ pplles to the 1nternal analys1s of a sample Human recall 1ncludes behav1oral
activities (e g., time spent outdoors or indoors, number of days away from site).

Identifying differences (as defined by the final ‘object‘ive)‘between characteristics of the subject
population and the surrogate population will generally be subjective because there is usually no
. data for the subJect populatlon Differences might be due to socioeconomic differences, race, or
climate. Lack of representatlveness should not be “too rigid” partly due to uncertainties and

“ partly because the sub_]ect population usually includes a future populatlon that is even less well

def' ned than the current populatlon




The surrogate population may overlap (as in age/sex distribution) with the target population. A
context is needed to determine what constitutes “lack of representativeness.” For example, if soil
ingestion is not related to gender, then while the surrogate population may be all female, it may
not imply that the estimates from the surrogate population cannot be used for a target population
(including males and females). Bottom line: the factor being represented (such as gender) needs
to be related to the outcome (soil ingestion) before the non-representativeness is important. Lack
of representativeness “depends™ in this sense on the association.

Another panelist expanded on the above, noting that the outcome determines the
representativeness of the surrogate data set. If in the eyes of the “beholder” the data are
“equivalent” they represent the actual population well. Defining representativeness is like
defining art. One cannot describe it well; it is easily recognized but recognition is observer-
dependent. We should strive to remove subjectivity as best as possible without making inflexible
choices.

Representativeness suggests that our exposure/risk model results are a reasonable approximation
of reality. At minimum, they pass a straight-face test. Representativeness could therefore be
assessed via model calibrations and validation.

Representativeness often cannot be addressed unless an expert-judgment-based approach is used.
It requires brainstorming based upon some knowledge of how the target population may differ
from the surrogate one. In the long run, collection of more data is needed to reduce the non-
representativeness of those distributions upon which decisions are based.

Define the characteristics to be examined, define the population to be evaluated, select a
statistically significant sample that reflects defined characteristics of the population (another
expert noted that statistical significance has little relevance to the problem of °
representativeness—the issue is the degree of uncertainty or bias). Ensure randomness of a
sample to capture the entire range of population characteristics. (Another noted that the problem
is that we usually don’t have such a sample but have to make a decision or take action now. If we
can quantitatively evaluate representativeness, then we can at least make objective
determinations of whether this lack of representativeness will materially affect the decisions.)

The degree of bias that exists between a data set or sample and the problem at hand—is the
sample even relevant to the problem? Types:

Scenario: Is a “future residential” scenario appropriate to the problem at hand?
Model: Is a multiplicative, independent-variable model appropriate?
Variables: Isa particﬁlar study appropriate to the problem? Is it biased? Uncertain?

Two experts agreed that statistical significance has little relevance to the problem of
representativeness. A well-designed controlled randomized study yielding two results can be
“representative” of the mean and dispersion, albeit highly imprecise.
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Representativeness exists when the data sample is drawn at random from the populatlon

(mcludmg temporal and spatlal characterlstrcs) of concern or is a census in the absence of

of populatron characterrstlcs over the trme frame needed i in the study
measurement errors

Non-representatrveness poses a problem if we have brases in any statlstrcal 1nterest (ie., lack of
representativeness can lead to biases in the mean, standard deviation, 95th percentile, etc)

Bias, or lack of accuracy, is typically more important than lack of precision. F or example, we
can expect Some imprecision in our estimate of the 95th percentile of a population characteristic
(e.g., intake rate) due to lack of relevant “census” data, but we hope that on average our
assessment methods do not produce a bias or systematic error.

! Conversely, if we have a large amount of uncertamty in our estrmates for a sample distribution,
then it is harder to claim non-representativeness than when a particular distribution for a
surrogate 1s estlmated.

In the followvmg example the distribution for the surrogate populatron is non- representatwe of
the target populatron since it has too wide a variance. However, the uncertainty in the surrogate
- encompasses outcomes which could include the target population. Thus, in this case it may be
difficult t conclude, based upon the w1de range of uncertainty, that the surrogate is non-

representatrve

Distribution for Nominal Distribution for

Target Population AN / - Surrogate Population

Range of Uncertainty on
Surrogate Population Distributio
Due to Measurement Error,
Small Sample Size, etc.




Representativeness in a given exposure variable is determined by how well a given data set
reflects the characteristics of the population of concern. Known characteristics of the data that
distinguish the data set from the population of concern may indicate a need for adjustment.
Areas of ignorance regarding the data set and the population of concern should be considered
uncertainties. Representativeness or lack thereof should be determined in a brainstorming
session among stakeholders. Toxicologists, statisticians, engineers, and others may all have
information that bears on the representativeness of the data. Known or suspected difference
between the data set and the population of concern diminish representativeness.

The question as to what constitutes representativeness is contingent on the problem
definition—that is, who is to be represented, at what point in time, etc. If the goal is to represent
a well-characterized population in the present, representativeness for a given parameter (e.g.,
drinking water consumption) should be evaluated based on the match of the surrogate data to the
data for the population of concern relative to key correlates of the parameter (e.g., for drinking
water volume, age, average ambient temperature, etc.). If, on the other hand, the population of
concern is not well characterized in the present, or if the intent of the risk assessment is to
address risk into the indefinite future, representativeness does not appear to have a clear
meaning. The goal in such cases should be to define reasonable screening characteristics of a
population at an indefinite point in time (e.g., maximum value, minimum value, estimated 10th
percentile, estimated 90th percentile) and select such values from a semi-quantitative analysis of
the available surrogate data.

A representative surrogate sample is one that adds information to the assessment beyond the
current state of knowledge. However, both the degree to which it adds information and the
remaining uncertainty in the risk characterization must be identified.

Suggestion: Replace the word representative with “useful and informative.”

A data set is representative of a characteristic of the population if it can be shown that
differences between the data set and the population of concern will not change the outcome of
the assessment. In practice, a data set should be considered in terms of its similarity and
difference to the population of concern and expectations as to how the differences might change
the outcome. Of course, these expectations may lead to adjustments in the data set which would
make it potentially more representative of the population.

In part, what degree of comfort the risk assessor/reviewer needs to have for the population under
consideration determines how representative data have to be. Also of concern is where in the
-population of concern observations will take place. Are we comparing data mean or tails
(outliers)? What degree of uncertainty and variability between the population of concern and the
surrogate data is the assessor willing to live with?

We may be using the term “representativeness” too broadly. Many of the issues seem to address
the “validity” of the study being evaluated. However, keeping with the broad definition, the
following apply to internal representativeness: S -




urement relzabzlnjy Measurement rehab1llty refers whether the study correctly
““s what 1t set out to measure and prov1des some bas1s for evaluatmg the error 1n o

The followmg issues apply to extemal representatlveness

Dld the smdy measur e What we need tO know (e g Short-term vS. long-term SmleS) If
e there is a statistical procedure for translatmg measurements into an estlmate of the

‘ needed values, lldlty and errors mvolved must be onsrdered

“Representatlveness” implres that the sample data 1s approprrate to another populatlon in

an assessment

Expand to mclude other populatlons of concern (e g, ecologlcal produce) The issue paper and
checklrst m presuppose that the populatron of concern 1s the human populatron

Include more discussion on criteria for determining if questron is adequately and approprrately
qpswered.

Clanfy def mtlons (e g 1nternal versus external) -

‘Include ¢ worked” examples:

Superfund-type risk assessment
Source-exposure-dose-effect-risk example
Include effect of bias, mrsclassrﬁcatron and other problems

" Ask if factors are known or suspected of bemg assocrated with the outcome measured? Was the
dlstrlbutron of factors known or suspected to be associated with the outcome spanned by the
a" Focus on outcome of rrsk assessments (1f populatrons are drfferent does 1t make

AT LR 3 '
How will the exposures be used in rrsk assessment" For example is the sample representat1ve
enough to bound the risk?

" In judging the quality of a sample, especially with questionnaire-based data, determine whether a

 consistency check was put in the forms and the degree to- which individual samples are
con81stent Rlsk assessors must be able to revrew the survey mstrument




Internal and external lists may each need some reorganization (for example, measurement issues
vs. statistical bias and sampling issues for “internal;” extrapolation to a different population vs.
reanalysis/reinterpretation of measurement data for “external”).

Is a good set of subject descriptors (covariates such as age, ethnicity, income, education, or other
factors that can affect behavior or response) available for both the population sampled and
population of concern to allow for correlations and adjustments based on these?

How valuable would some new or additional data collection be for the population of concern to
confirm the degree of representativeness of the surrogate population and better identify and
estimate the adjustment procedure? -

What is the endpoint of concern and what decision will be based on the information that is
gathered? Since risk assessment involves a tiered approach, checklist should focus around the
following type of question: Do I have enough information about population (type, space, time)
that allow answering the questions at this tier and is my information complete-enough that I can
make a management decision? Do I need to go through all of the checkhsts before I can stop?
(Questioning application/implementation)

The checklists should address how much is known about the population of concern relative to the
adaptation of the surrogate data. If the population of concern is inadequately characterized, then
the ability to consider the representativeness of the surrogate data is limited, and meaningless
adjustment will result.

One consideration that is missing from the checklists is the fact that risk assessments are done for
a variety of purposes. A screening level assessment may not need the level of detail that the
checklists include. The checklists should be kept as simple and short as possible, trying to avoid
redundancy.

The checklist should be flexible enough to cover a variety of different problems and should be
only a guide on how to approach the problem. The more considerations included the better.

Guidance is needed on how to address overlap of the checklists. For example, when overlap
exists (e.g., in some spatial and temporal characteristics), which questions in the checklist are
critical? The guidance could use real life case studies to help focus the risk assessor on the
issues that are critical to representativeness. -

Move from a linear checklist format to a flowchart/framework centered around the “critical”
elements of representativeness.

Fold in nature of tiered analysis. The reqﬁirements of a screening level assessment must be
different from those of a full-blown risk assessment.

Identify threshold (make or break) issues to the extent possible (i.e., minimum requirements). -

When biases due to lack of representativeness are suspected, how can we judge which direction
those biases take (high or low?).
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‘ Include a‘ ‘box” descrrbmg cases when nomepresentatrve and madequate wrll need to be

Define ambrguous terms such as reasonable and “important.” |

“ ‘Make checkhst more than bmary (yes no)—allow for quahtatlve evaluatlon of data o

Key questions Can data be used at all? If so, do we . have great deal of confidence in it or not?
Is data biased high or low? Can data be used in a quantitative, semi-quantitative, or only a

‘ quahtatlve manner? Standards according to which checklist items are evaluated should be
consistent with stated objective (e.g., a screening assessment will require less strmgent
evaluatlon of data set than a srte assessment where communlty concerns or economlc costs are

‘ crltrcal iss es)

Allow for professronal Judgement and expert elrcrtatron
W . Lo [ . . _: o iy “_ " h SR e, vy L
What are the “representatrveness decrs1on crrterra‘7 Data only have to be good enough for the

- problem at hand; there are no perfect data. List some consrderatrons pertalmng to the

acceptance/rejectlon crrterla

'I'he 95th p rcentrle of each mput drstrrbutlon is not needed to forecast rlsk at the 95th percent11
wnth hxgh accuracy and low uncertamty

: study populatlon doing? (i.e.,  were e the sample populatron and study populatlon
srmrlar actrvrt1es‘7) Consrder how thelr behavror affects ablhty to represent

Dlstmgulsh varlablhty from uncertamty Add a crrsp deﬁmtlon of each (e g Burmaster s
premeetmg comments) ‘

| ~Add an exphcrt statement that the agency encourages the deve opment and use of new methods
and that nothing in this guidance should be interpreted as blocking the use of alternative or new
methods.

Add an explicit statement that it is always appropriate to combine information from several
- studies to develop a distribution for an exposure factor. (This also applies to toxicology and the
_ development of distributions for reference doses and cancer slope factors.)

How can one perform a sensztzvzty analyszs to evaluate the tmplzcattons of non-representatzveness’
How (Io we assess tlze zmpartance of non—representattveness9




The assessor should ask, “under a range of plausible adjustments from the surrogate population
to the population of concern, does (or can) the risk management decision change?” That is, do
these particular assumptions and their uncertainty matter? (among all others)

Representativeness is often not that important, because risk management decisions are usually
not designed to protect just the current population at a particular location, but a range of possible
target populations (e.g., future site or product users) under different possible scenarios.

Theoretically, we can come up with a “perfect” risk assessment in terms of representativeness,
but if the factor(s) being evaluated is not important, then the utility of this perfectly
representative data is limited. The important question to ask is: If one is wrong, what are the
consequences, and what difference do the decision errors make in the estimate of the parameter
being evaluated?

The question of data representativeness can be asked absent the context/model/parameter or it
can be asked in the context of a decision or analysis (are the data adequate?).

The key is placing bounds on the use of the data. Assessments should be put in context and the
level at which surrogate data may be representative. It should be defined in the context of the

-purpose of the original study. Two other factors are critical: sensitivity and cost/resource

allocation. The question, therefore, is situation-specific.

A sensitivity analysis can be conducted in the context of the following tiered approach. The
importance of a parameter (as evidenced by a sensitivity analysis) is determined first, making the
representativeness or non-representativeness of the non-sensitive parameters unimportant.

Representatlveness isnota standard statistical term. Statls’ucal terms that may be preferable
include bias and consistency.

When evaluating the importance of non-representativeness, one needs to evaluate the uncertainty
on the data set and on the individual. At the first level the assessor may choose a value biased
high (could be a point value or a distribution that is shifted up). At the second level, can use an
average, but must still be sensitive to whether acute or chronic effects are being evaluated. When
looking at the individual sample it is more important to have a representative sample because the
relevant data are in the tails (more important for acute toxicity). When using a mixture,
representativeness is less of a problem.

- Adjustments

Take more human tissue samples to back calculate—this makes local population happler
Determine the need for cleanup based on tissue sample findings.

Re-do large samples (e.g., food consumptions, tapwater consumption).

Look at demographics, etc. and determine the most sensitive factor(s).
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Given:
Model, Parameters

.

Enough Data to Bound > Collect More Data
Parameter Estimate? If Possible

e =

Bounding
Estimate

Y

Enough Data for
Sensitivity Analysis?

. o *YES

Sensitivity
Analysis

Y

Enough Data to NO
Characterize Paramete
Variability?

R * YES
— NO

Representative of .
Population? — > Adjustment

R * YES

chy Risk
‘ Analysis?

NO

Use a general model. Discuss with stakeholders the degree of inclusion in general. Adjust the
model with survey data if it is not applicable to stakeholder. Use a special model for
subpopulations if necessary.

“Changeof ‘sﬂl‘lpp‘ort"" analysis; time-series analysis — non-CERCLA, important to the Food
Quality Protection Act/’ . T o ‘

Conduct three-day surveys with year-long adjustments.
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Hypothesis methods will work, but need to be tested.

The group recommended holding a workshop for experts in related fields to share existing theory
and methods on adjustment (across fields).

General guidelines for adjustments will be acceptable, but often site-specific needs dictate what
adjustments must be made.

Example adjustment:

Fish consumption: If you collect data 3 days per week, you may miss those who might eat
less—a case of inter- versus intra-individual variability.

~ Adjustment is often difficult because of site specifics and evaluator bias or professional
judgement.

Sometimes it is not possible to adjust. Using an alternate surrogate data set makes it possible to
set some plausible bounds to perform a screening risk assessment.

Stratify data to see if any correlation exists.

Start with brainstorming,

Regression relationship versus threshold.

Covariance; good: statistical power to sample population.

Correlation is equivalent to regression analysis as long as you keep the residual (Bayesian
presentation).

Instead of looking at the population, look at the individual (e.g., breathing rates or body weight
for individuals from ages 0 to 30) to establish correlations. '

What if the population was misrepresented? For example, population of concern is sport
fishermen but the national data represent other types of fishermen.

Set up a hierarchy:
— do nothing (may fall out when bounded)
— conservative/plausible upper bound :
— use simple model to adjust the data (may be worth the effort if credibility issues
are dealt with)
— resample/collect more data

Before considering a bounding approach (model development), consider if refining is necessary
or cost/beneficial. -

Are there situations in which “g-estimates” are worthwhile?
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‘What is gamed by makmg ad_]ustments‘7

‘Short-term studles overestlmate varlablhty because they do not account for mtermdwldual
varxablhty (upper tail is overstated) ‘

tion of blases when populatlons are mlsmatched‘7

“ If the bras conservatlve then we are bemg protective. But what if the b1as is nonconservative
(e.g., drmkmg water in the MOJave Desert or by constructlon workers)‘7

o Appropnate models

wSmehstrc

How speculat1ve‘7 Identlfy potentlal damage due to cre b111ty 1ssues |
-Complex:

Identrfy the bias: hrgh (conservatlve), or low (different scenario used than plau31ble
boundmg analy51s)‘7

Unless one hasa sense of the hkehhood of the scenano, what does one do‘7 |

Risk management*can address it.
Present qualitative statements.about uncertainty.
Value of information approaches (e.g., does weather change drinking water data?).

Short-term ResearEhf

‘Evalua‘t‘e short-te data set: make assumptlons devise models on populatlon var1ab111ty (Ryan paper)
(Wallace and Buck).‘ Look at behavior patterns, information biases. Flesh out Chris Portier’s suggestion
on extrapolatmg 3-day data to 6 months, years. This would g1ve the assessor some conﬁdence in

; polatmg for mtermdrvrdual varrablhty

Long—term Research'

~ Collect more data. Possxble ORD funding? Look at breathing rates, s01l ingestion, 1nfrequent1y
consumed 1tems Hrequently consumed 1tems
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Sheila Abraham
EPA Probability Workshop

COMMENTS ON THE ISSUE PAPERS / DISCUSSION ISSUES FOR THE EPA
WORKSHOP ON SELECTING INPUT DISTRIBUTIONS FOR PROBABILISTIC
ASSESSMENT

Probabilistic analysis techniques are, as stated in EPA’s May 1997 “Guiding Principles
for Monte Carlo Analysis”, viable tools in the risk assessment process pfdvided they are
supported by adequate data and credible assumptions. In this context, the risk
assessor (or risk assessment reviewer) needs to be sensitive to the real-life implications
on the receptors of site-specific decisions based on the analysis of variability and
uncertainty. The focus should be on the site, in a holistic manner, and all components
of the risk assessment should be re_cognized as tools and techniques used to arrive at
appropriate site-specific decisions. '

Preliminary (generalized) comments from a risk assessment perspective on the issue
papers are provided below, as requested.

Evaluating Representativeness of Exposure Factors Data (Issue Paper #1)
1) The Issue Paper (Framework/ Checklists):
Overall, the issue paper provides a structured framework for a systematic approach for
characterizing and evaluating the representativeness of exposure data. However, one
(of the clarifications that could be provided (in the narrative, checklists and figure) relates
to the explicit delineation of the objectives of the exercise of evaluating data
representativeness. The purpose of the original study should also be evaluated in the
context of the population of concern. In other words, factoring the Data Quality
Objectives (DQOs) and the Data Quality Assessment (DQA) premises into the process -
could help define decision performance requirements. It could also help to evaluate
sampling design performance over a wide range of possible outcomes, and address the
necessity for multi-staged assessment of representativeness. As stated in the DQA

F-3




R screenmgr k

v l‘a tlvrty m elern

o on thls in the c

S Sherla Abraham‘
EPA Probablllty Workshop ”

Gurdance (1997) data quallty (mcludmg representatrveness) |s meanmgful only when |t
relates to the mtended use of the data

o““h thequ‘ery r mted to the tlered approach to (“fonNard”) r|sk assessment S|te-speC|f|c

“ essments typlcally tend to be determmlstl - and have been conducted -

| usmg conserva ve default assumptlons the screenlng leve‘ltables prowded by certain
US. EPA reglons have to this pomt also been determm|st|c Therefore the ut|I|ty of the “

checkllsts at this type of screening level mrght be extremely Ilmrted As one progresses o

| through mcreasrng Ievels of analytlcal sophlstlcatlon the screenlng numbers generated‘“‘”‘"

from probablhstlc assessment may requrre a subset of the checkhsts to be developed
the specrt” crty of the checklists should be a functlon of the critical exposure parameters

ldentrf‘ ed throUgh a sensrtrvrty analysrs Such analyses mlght also help reflne the

‘ protocol (crltena and h|erarchy) for assessmg data set representatlveness in the event
B R SR s

of overlap of the mdrvrdual populatlon and temporal charactenshcs (example mhalatlon

wtary school students ln the Columbus are
Lo ‘ T ‘ 'y s

posed to contammants at
a school ballt" ield). LI ;

| 2) Sens:t/wty
| The utrhty ofa sensmwty anaIyS|s cannot be overemphasrzed Currently, there appears

to‘wbe a‘“tenden ' to use readlly avallable software to generate these analyses gwdance o

ytext of prOJectl srte-specmc nsk assessme s should be prowded

Provrdmg examples as done m the Reglon Vlll gwdance on Monte Carlo srmulatlons

| facrlrtates the process

On the i issue of representatlveness m maklng mferences from a sample to a populatlon

be appropnate for homogenous populatlons but for the risk assessor, samplmg that
captures the characterlstrcs of the populatlon mlght be more relevant in the context of
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the uée of the data. This issue appears to have been captured in the discussion on
attempting to improve representativeness.

Empirical Distribution Functions EDFs versus Parametric Distributions (PDFs

(lséue Paper #2)

1) Selection of the Empirical Distribution Functions (EDF) or Parametric Distribution
Function (PDF): 7
The focus of the issue paper is the Empirical Distribution Function (EDF), and a number

of assumptions have been made to focus the discussion on EDFs. However, for a
clearer understanding of the issues and to facilitate the appropriate choice of analytical
approaches, a discussion of the PDF, specifically the advantages/ disadvantages and
constraining situations would be beneficial. The rationale for this is that the decision on
whether to apply the EDF or the PDF should not be a question of choice or even mutual
exclusivity, but a sequential process that is flexible enough to evaluate the merits and
demerits of both approaches in the context of the data.

In general, from a 'site/ project perspective, there may be definite advantages to PDFs
when the data are limited, provided the fit of the theoretical distribution to the data is
good, and there is a theoretical or mechanistic basis supporting the chosen parametric
distribution. The advantages to the PDF approach are more fully discussed in several
references (Law and Kelton 1991).. These advantages need to be evaluated in a -
project-specific context; they could include the compact representation of observations/
data, and the capacity to extrapolate beyond the range of observed data, as well as the
“smoothing out” of data. (In contrast, the disadvantages imposed by the possible
distortion of information in the ﬁttiné process should not be overlooked. Further, the
(traditional use of ) EDFs that limit extrapolation beyond the extreme data points,
perhaps underestimating the probability of an extreme event, may need to be
considered. This is could be a handicap in certain situations, where the risk
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assessment demands an mterest in outller values In such S|tuat|ons a fuller
dlscussmn of altemate approaches such asa mlxed dlstnbutlon (Brately et al., 1987)

may be warrantew ) Flnally, the PDFs, given thelr already establlshed theoretlcal baS|s

may lend thems ves to more defensrble and credlble decmon-makmg, partlcularly at

contentrous sltes

This predisposition fo PDFs certainly does not preclude the evaluation of the EDF inmthe“
‘ process The advantage accrumg from havmg the data “speak” to the risk assessor/

revxewer should not be mmlmlzed Dependlng on the pro;ectl site involved, the benefits

on of data the dlrect lnformatlon prowded on the shape of

the underlying tnbutlon ard even on pecullantles such as ‘outlier values should be

d‘fscussed as well as relevant drawbacks (sensmvnty to random occurrences, potential

underestlmatr of the probablllty of extreme events perhaps cumbersome nature ifthe

data points are mdlwdually represented) In this context some of the comments in the
“Issue/ Comments” Table (“issues” presumably derlved from D’Agostmo and Stephens
1986) can serve as the ba5|s for add|t|onal dlscussmn .

2) Goodness of Flt
The decrsron whether the data are adequately represented by a fitted theoretical
istribution it gregatwe process and goodness-of—f it i IS part of the sequent|al ‘

‘ n}ar‘y assessments of the general famllles of dlstrlbut|ons that appear |
to best match th data (based on pnor knowledge and exploratory data anaIyS|s) are -
often conducted nltlally, the mechanlstlc process for chOIce of a dlstnbutlonal famlly,
the dlscrete/con“ nuous and bounded/ unbounded nature of the vanable are evaluated

Summary statlstlcs mcludmg measures of shape are evaluated and the parameters of =

the (candldate) famlly are estlmated The goodness _offit statistics should factor mto
the whole process, as should graphlcal comparisons of the fltted and emplrlcal
‘ d‘gstnbutlons. Goodness-of-fit tests can be an excellent confirmatory tool for verifying
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the chosen distribution, when used in conjunction with statistical measures and

probability plots.

However, caution should be exercised in situations where these tests could conceivably
lead an analyst to support a distribution that a visual inspection of the data does not

- support. Also, it should be emphasized that (for example for certain physiologicai
parameters), even if the distribution fits, maintaining the integrity of the (biological) data
should override goodness-of-fit considerations. Ultimately, the persuasive 'power of

graphical methods for assessing fit should not be underestimated.

On the question how the level of significance of the goodness-of-fit statistic should be
chosen, this is often a function of the data quality assessment (DQA) for that particular
site or situati'on; an idea of the consequences in terms of real-life examples can be
gathered from EPA’s Guidance for Data Quality Assessment (1997). On the whole, |
tend to agree with the respondent (#4) who states that the desired level of significance
should be determined prior to analyzing the data. Again, as the respondent states, if
minor differences in the p-value impinge substantially on the analysis, the “cdnclusions
are probably too evanescent to have much usefulness”.

Summary statistics are useful, particularly in the initial characterization of the data (as
previously mentioned). Given the constraints imposed by the project/ site logistics, all
too often these are the only data available, and they have been used as the basis for
analytical distribution fits (Ohio EPA, 1996). Caution should be exercised in implying a
level of accuracy based on limited knowledge. Sensitivity analyses might help clarify
the limitations that need to be placed in such situations particularly when dealing with
an exposure parameter of considerable impact; further, the utility of such an exercise -
for a parameter with minor impact (as revealed'by the sensitivity analysis) could be

gquestionable.
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] : EPA Probablllty Workshop .

l On the questlon of the value of testing the f t of the more generahzed distributions
(presumably in lleu of the EDF) thls could be an useful exermse but the prOJect
loglstlcs may factor into this, as also the DQA premlses PrOJect resources available

| and the defensk wlllty of the decrsmn makmg process need to be factored |nto the

sntuatlon ‘The Wsue of fi ttlng an artificial dlstnbutlon to a data set, and ultlmately

amvmg at a dlstrlbutlon removed from reallty also needs to be evaluated |n the pro;ect— R

| specnt” ic context

| 3) Uncertamty y

The dlscussmn 'n “Development of Statlstlcal Dlstrlbutlons for Exposure Factors
(Research Tnangle lnstltute) paper is mterestmg in terms of the approaches suggested
for evaluating parameter uncertamty Hattis and Burnmaster's comment cited in the |
paper that only a tnv:al proportlon of the overall uncertalnty may be revealed is
lmportant Certaln methods (example bootstrapplng) appear to have mtngumg

potential for accountmg for “hot spots

Flnally, the rlsk assessor/ reviewer needs to be aware that the analyS|s of varlablllty and
uncertamty isa snmulatlon based on hypothetlcal receptors However as stated
lnltlally, thns sommetlmes academlc exercise can have multi- mllllon dollar |mpI|cat|ons

‘ and mtlmately affect real-life human and ecological receptors the nsk assessor/

revtewer should always be cognlzant of this consequence

References: L
Brately, P., B. L Fox L. E Schrage (1 987) “A Gu1de to Slmulatlon Springer-Verlag,
New York.

D'Agostino, R.B. and M.B. Stevens (1?86) “Goodness of F|t Techniques”. Marcel
Deker.
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U.S. EPA (1994) “Guidance for the Data Quality Objectives Process” (EPA/QA/G4).
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A - Roberd. Blalsdell PhD

‘Comments on lssue Paper on Evaluatlng Representatlveness of Exposure

Factors bata "

The lssue Paper on Evaluatlng Representatlveness of Exposure Factors Data |s a weII

wntten clear d|scussmn of the theoretical |ssues of representatlveness t Was
par’ncularty mterested m the dlscussmn of time un|t dlfferences The dff ce of

Envxronmental Health Hazard Assessment (OEHHA) is grappllng WIth this issue W|th R

“}ral of the stnb‘utlons wh'ch we want to use for determmlng chromc exposure

The issue of rep‘resentatuven Wss of a sample |s often comphcated by Iack of knowledge

The lssue of representatlvene of the sample to the populatlon is an |mportant
qUestlon For example populatlons Wthh are exposed to Super Fund toxicants or
alrbome pollutlon from statlonary sources may be from lower socioeconomic groups.

Unfortunatety, rnost of the lnformatlon which is avallable on moblhty is from the generat

populatuon It may be that Iow lncome home owners have a much Ionger resndency tlme o

than people of medlan or h|gher mcome It may also be that Iow lncome non-home
owners m certaln age groups have a hlgher moblllty than the general populatlon We

therefore suspected that the available distributions were not representative. In addition,

the U.S. Census data the basis for the available restdency distributions are not

““‘w‘ngltudmal Another problem W|th the reS|dency data when evaluatlng statlonary

Mo < ) y
ources isthei lssue of wher the person moves to A person movmg may not

F-‘10“ B

essanly move out of the sopleth of the facmty The I|k : hood of movmg out of the‘ |




Robert J. Blaisdell, Ph.D.

In order to address this problem, O‘EHHA proposed not using a distribution for
residence time in our Public Review Draft Exposure Assessment and Stochastic
Analysis Technical Support Document (1996).. Instead we proposed doing a separate
stochastic analysis scenario for 9, 30 and 70 years. We did not think that the 9, 30 or
70 years time poihts evaluated were ‘necessarily representative of actual residence
times, but that these were uséful, reasonably spaéed intervals for résidents to compare

with their own known residency time.

Using three scenarios complicates the analysis,'\but we felt that the approach had sor.nev
advantages over using a distribution. The California *Hot Spots* program is a public
right to know act which assesses risks of airborhe pollutants from stationary sources.
Public notification is required above a certain level of risk. An individual resident who‘
has received notice is aware of the amount of the ﬁme'that he or shé has lived, or in
many cases plans to live, in vicinity of the facility. Therefore the ind‘ivildual could more
accurately assess his or her individual cancer risk. The relationship between the
residency time assumption and the resulting risk are clear, not buried in the OVérall

range of the uncertainty or variability of the risk estimate.

This apprdach might possibly be used in other cases where' representative data in not
available or where the représentativenéss is questionable. For examplé if the drinking
water pathway is of concern and representative infbrmation is not available for the |
population of a Mojave Desert town, the range or point estimate of cancer risk from .

drinking 1, 2, 4 and 8 liters of contaminated tap water per day could be presehted.

In some éases, each situation that a regulétory risk assessment program will be
evaIUating will be almost unique, and thereforé anything other than site—s‘pe'ciﬁc data will
‘not be representative. OEHHA characterized a fish consumption distribution for anglers
consuming'non-commercial fish using the Santa Monica Bay Seafood Consumption
Study Final Report (6/94) raw data. We compared the Santa Monica Bay distribution to
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! ies. Thus the as umptuon thata“saitWater‘ o
h consumption d‘lstnbutlon‘ Was ‘comparable to a fi sh‘ con8umpt|‘on dlstnbutldn t’or “ N

large fresh ‘Water body Was not mpiauaneﬁh However the data gathered ‘from Iarge

e probably not representatlve of small takes and pends W|th Ilmlted

cnose to recommen‘d usmg the Santa Mo cawB‘a
nsumptlon it COUH be mUlﬁpiled by a fractlon to be‘determmed by expei't jUdgment N

be the most practlcal optlon Itis clearly not temporally represehtatwe fof Chromc
cahcer nsk assessment “ ‘ ‘

fferent ot“m 1;‘”“bwe dlfferent by an unknown amount There are many questlons m nsk




Robert J. Blaisdell, Ph.D.

Comments on Temporal Issues

The methods discussed for estimating intraindividual variability from data collected over
varying short periods of time relative to the 'longer time period of interest are interesting
and would appear to be useful for the NFCS data. OEHHA. is giving some
consideration to using the techniques described by Nusser et al. 1996 to adjust the
distributions for food consumption that we have developed for food consumption using
the Continuing Survey for Food Intake for In'divi’duals 1989-91 raw data. | would be |
curious to know if these methods have been validated on any actual longitudinal data.
The assumption of the lognormal model needed by the method of Wallace et al. (1994)
may in some cases be limiting. We have discovered when we evaluated broad
categories of produce consumption using the CSFIl 89-91 data that some of the
distributions for certain age groups were closer to a normal model than a lognormal
model.

The Representativeness Issue péper discusses the importance of using current data.
The continued use of the 1977-78 NFCS study is cited as an example. The raw data
from the 1989-91 CSFII has been available for some time as an élternative fo the
1977-78 NFCS survey. Raw data from the 1992-93 CSFll survey is now available.
OEHHA has used that data to develop produce, meat and dairy products consumption
distributions for the California population. It is admittedly not é trivial exercise to extract
the relevant data from the huge raw CSFIl data sets but this alternative has existed for
several years. The 1989-91 CSFll data is clearly different in some cases from the
1977-78 NFCS. Beef consumption appears to have declined. As a matter of policy,
there should be a stated preferenée for using the available data over attempting to use
expert judgment to guess at the appropriate means, coefficients of variation and
paramétric model. In some of the Monte Carlo risk assessment literature, the
preference appears to be for expert judgment rather than data.

F-13




he use of relat d data may |n some cases be useful in glvmg some |n5|ght |nto the |

es‘entatrveness of data collected over the short term for chronlc scenarlosm ’ OEHHA

ergy expendlture as measured by the doubly Iabeled water o

d‘ay éﬁyhour ac'uvuty pattern survey
AN

‘ tlo that mtramdlvrdua wva b|||tﬂ

may not be Very grea el
| vanablllty for a srngle ltem less frequently consumed |tem such “ as strawberrles |s

” probably much ‘greater than for broad categones I‘Thus‘lm "short term ‘w‘survey data Whlch o

looks at broade “ategorres of produce are probably more appllcable to chronlc r|sk |
assessment than smgle |tem dlstnbutrons .

ﬁesearch Nee

The mforma “which ls needed to develop more ac‘ rate distributions for many‘if‘;‘not‘
most vanates ded for chronrc stochastlc human health rlsk assessment are srmply

“Hot avallable In partlcular there is a lack of longltudmal data for breathmg rates soﬂ

lngestlon water consumptlon rates produce |ngest|on non commerC|aI flSh

Oonsumptron dalry pTOdUCt Consumptlon and meat |ngest|on Some dlStrlbUtlonS m Yoot

common use as water consumptlon are based on out of date studles More

research is nee ed on bloconcentratlon and blotransfer factors Longﬂ;udma] data on B

nd mobllrty patterns would also be very us ul‘ There needs to be “ |

from adults.




i Robert J. Blaisdell, Ph.D.

Summary

The overall lack of data, particularly longitudinal data, for risk assessment variates is
probably the most important single factor limiting representativeness. If the purpose of
the risk assessment is to inform the exposed pubilic, it may be possible and even
preferable to use point estimates for multiple scenarios in the absence of some
representative data. The statistical methods for adopting short ferm data for use in
chronic risk assessment presented the Issue paper appear to be reasonable
approaches in instances where the required data is available. More longitudinal studies
would be valuable for validation of these methods as well as improving the temporal
representativeness of distributions used in risk assessment. Most of the data used in
stochastic risk assessment will probably be nonrepresentative in one or more of the
ways discussed in the Issues paper for a long time into the future. |
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David Burmaster

13 April 1998

Memorandum

To: | Participants, US EPA's Workshop on Selecting Input Distributions
for Probabilistic Analyses

Via: Beth A. O'Connor, ERG
From: David E. Burmaster
Subject: Initial Thoughts and Comments,

and Additional Topics for Discussion
Thank you for inviting me to participate in this Workshop in New York City.
Here are my initial thoughts and comments, along with suggestions for additional topics
for discussion. Since | have just returned from 3 weeks of travel overseas, | will keep -
these brief. '
1. Models and Data

In 1979, George Box wrote, "All models are wrong, but some are useful.”

May | propose a new corollary for discussion? "All data are wrong, but some are

useful.”

Alceon ® Corporation . PO Box 382669 e Harvard Square Station ‘@ Cambridge, MA 02238-2669 ® Tel: 617-864-4300
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v ‘ll s

he lssue Papers lack crlsp def n|t|ons for anablllty and un ertar ““y as welI as a

ations in rlsk ‘

. partlcular, P

| “body weight) or behavuor (e g. tlme spent showering) in a populat|on Wthh
‘cannot be reduced through further measurement or study (although such |
“heterogenelty may be dlsaggregated lnto dlfferent components assomated W|th
dlfferent subgroups in the populatlon) For example dlfferent chlldren ln a
‘ populatlon ingest dlfferent amounts of tap water each day Thus variabilityisa Y;“
‘fundamental gropeﬂy of the exposed populatlon and or the exposure scenarlo(s)
in the assessment Varlablllty ina populatlon is best analyzed and modeled in
terms of a full probability distribution, usually a first-order parametrlc distribution ”

with constant parameters.

: ‘Uncertalnty represents |gnorance - or lack of perfect knowledge -- about a
“"phenome“non for a populatlon as a whole or for an individual in a population
- ‘Wthh may sometlmes be reduced through further measurement or study. For
example although we may not know much about the issue now, we may Iearn R
: ‘ tcertam peoples lngestlon of whole flsh through swtable B I
measurements or questlonnalres In contrast, through measurements today, we

" ‘cannot now ellmmate our.uncert nty about the number of children who will play
m a new park scheduled for construction in 2001 Thus, uncertamty isa property

of the an“f lyst performlng the rlsk asséssment. Uncertalnty about the var|ab|I|ty in
'a populatlon can be well analyzed and modeled in terms of a full probablllty
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distribution, usually a second-order parametric distribution with nonconstant

(distributional) parameters.

Second-or'der random variables (Burmaster & Wilson, 1996; references therein) provide
a powerful method to quantify and propagate V and U separately. '

3. Positive Incentives to Collect New Data and Develop New Methods

| urge the Agency print this Notice inside the front cover and inside the rear cover of
each Issue Paper / Handbook / Guidance Manual, etc. related to probabilistic analyses
-- and on the first Web page housing the electronic version of the Issue Paper /
Handbook / Guidance Manual:

This Issue Paper / Handbook / Guidance Manual contains guidelines and
suggestions for use in probabilistic exposure assessments.

Given the breadth and depth of probabilistic methods and statistics, and given
the rapid development of new probabilistic methods, the Agency cannot list all
the possible techniques that a risk assessor may use for a particular
assessment. ‘

The US EPA emphatically encourages the development and application of new
methods in exposure assessments and the collection of new data for exposure
assessments, and nothing in this Issue Paper / Handbook / Guidance Manual
can or should be construed as limiting the development or application of new
methods and/or the collection of new data whose power and sophistication may
rival, improve, or exceed the guidelines contained in this Issue Paper /
Handbook / Guidance Manual .

Alceon ® Corporation ¢ PO Box 382669 e Harvard Square Station ® Cambridge, MA 02238-2669 ¢ Tel: 617-864-4300
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" i

wering tlme and others |t |s lmportant to truncate }he tall of these dlstrlbutlons For

: example no mdr‘vrdual has1 om? of skin area, no mdrwdual has 10 cm? of skm area,

and no mdryrduat can shower25 hr/d.

. SHERRHES, T Heow AATR ‘ Ly P
‘ probablhstrc technlques for exposure factors wh|Ie preventr e use of probablllstlc

technlques in dose-response assessment By domg so the Agency double counts the R

* effects of vanablhty and uncertamty, aII ona Iog10 scale - i.e., by several orders of
rnagmtude o a |

Report by RTI
‘EI dlsagree strongly w1th many of the approaches and conclusmns found in RTI s Flnal
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REPRESENTATIVENESS (Issue Paper #1)

1) The lssue Paper
We wo ild use probabrllstlc methods specnf cally for the purpose of assessmg
risks from the uncontrolled release of hazardous substances at a specrflc focation (srte)

" Our overall goal will be to feel confident that the entire risk assessment (and not justa U

few of its components) is representative of site-specific conditions. Our objective is

better risk management demsrons This requrres us to keep a few other consrderatlons

rn mlnd

i [l of representatlveness |n terms of a fit between avallable exposure |
fa tors data and resulting distributions is dealt with in the issue paper. However, a risk
ssessment cannot be performed wrth exposure factor dlstrlbutlons alone some type B

of exposure model is required. We should therefore also be concerned wrth the

‘ representatlveness of the exposure model within wh|ch the individual exposure factors

are used.

- Correlatic
presentatlveness of the resultlng rlsk assessment lt appears possrble to have too

n between exposure factors could S|gn|f|cantly affect the

elatlon between factors In some cases ”e correlatlon is not

necessarlly wrt body welght and/or age but with an underlymg actlvrty pattern (human
behavror) that may not be fully known. This nature and extent of correlatlon should be

a factor in evaluating representativeness.
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the exposure factor distributions. How any such truncation of a distribution affects its
representativeness should also be discussed.

The suggestion that probabilistic methods could be used vin any form of
“screening-level” risk assessment is of concern. We view screening has a quick but
-highly conservative comparison of environmental media concentrations with published
toxicity data that occurs early in a remedial investigation (RI) for the sole purposes of
narrowing the focus of the baseline risk assessment. Under our current guidance, we

are preserving probabilistic methods for use only in a baseline assessment.

2) Sensitivity | -

When various exposure factors are combined within a given exbosure model, it
is typically the case that a few of them have a disproportionate influence on the
outcome. For example, soil ingestion rate, soil adherence factor, and exposure
duration are often primary drivers, as well as major sources of uncertainty. We should
broaden the discussion to consider whether all exposure factors are of equal
importance, in terms of their influence on the outcome of the risk assessment, so as to
better focus our distribution development efforts. ;

3) Adjustments

Concern has been expressed that any “default” exposure factor distributions
proposed by U. S. EPA will, perhaps unintentionally, will 'evollve‘into inflexible or
“standard” requirements. To counter this, as well as 'allow for inclusion of regional and
local influences, U. S. EPA should propose, in addition to any de facto “default”
distributions, an exemplary method(S) for establishing exposure factor distributions.
This exemplary method should be as straightforward, tra.nsparent, and explainable
(primarily to risk managers) as possible. It should also describe quality assurance (QA)
and quality control (QC) procedures to allow for the expedient and thorough review of
probabilistic risk assessments submitted to regulatory agencies by outside contractors.
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EMPIRICAL DISTRIBUTION FUNCTIONS (Issue Paper #2)

| {l dld not have tlme to fully revxew paper #2 SO onIy have mput on thls one ltem at thls

o 2) Goodnesso ‘Flt

We should also ask, |f the overall risk assessment is sensntlve to both the o
exposure modegwa}nd‘only a few Qf many exposure factots, qut how “good” does every
other distribution have to be in order to support credible ‘riskm‘r“‘nahageh:‘l‘e‘r‘fti decisions?
For‘exammple,n if a relati\}ely esoteric and hard to cone‘eptualiﬁe distribution best fits
available data, but a much more common and more easily understood distribution fits
‘almost as well {(say within 20%), would there not be some advantage in use of the

" on, lf toxmty data remaln as pomt estlmateswwnh uncertalnty |
‘ re ‘should be some Ieewayh




- William A. Huber

Representativeness (Issue Paper #1)

1) The Issue Paper

1.1 The checklists

Section 3 of the Issue Paper regards the inferential process as consisting of several
stages of inference and measurement: Po'pulationvof interest -> Population(s) actually
studied -> Set of individuals measured (the “sample”) -> The measurements. The three
stages are denoted “external” inference, “internal” inference, and m?aasurement',

respectively.

This appears to be a useful framework. However, the four checklists address the first
two stages only. Checklist | concerns the “internal” inference; Checklists Ii through IV
concern the “external” inference. No checklist specifically addresses measurement.
This approach is unbalanced. The obvious parallelism among Checklists |l through 1V
emphasizes the lack of balance. We should consider whether a better organization of
checklists might be achieved. One possible organization could be:

Checklist A: Assessing measurement representativeness -

Checklist B: Assessing internal representativeness

Checklist C: Assessing external representativeness

Checklist D: “Reality checks,” or overview. - -
Checklist B and checklist | would nearly coincide. Checklist C would incorporate the )

. (common) questions of checklists 1l through 1V. Checklists A and D are new. Checklist

A would incorporate certain questions sprinkled throughout.Checklists I-1V, such as:

». Does the study appear to have and use a valid measurement protocol?

. To what degree was the study design followed during its implementation?
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2  Sensitivity

. What are the precrsxon and accuracy of the measurements used m the study’? |

- Dld the study actually measure what |t clalmed to’?

The question in ChéCkii‘st“ D onid focus on the fundamental questions:

. Has the data set captured the variability W|th|n the populatron of mterest’P

o ‘|S lt Suff crent in size and quallty to support the estlmate deC|S|ons or actuons A

recommended in thls nsk assessment’?

Can we quantlfy potentral departures of our estrmates from thelr correct (but

the effort needed to estabhsh representatlveness Flrst matenally ummportant

ablrshed for example by a sensrtlvrty analysrs-—-—need not be fuIIy

addressed. Second, many of the checklist questions are relevant when variability and o
extreme percentrles must be characterized; they become less consequentral when only

a central tendency need be assessed. Finally, for a screening risk assessment, only
qualitative degrees of representativeness are needed. For“EXamﬂple if it is known only

that study resutts wrll conservatlvely overestlmate exposures then that study couldbe " "

pseful for a screening level risk assessment, but probably not for subsequent tiers.




William A. Huber

suppose that the calculation is a determined procedure F that processes a collection S
={p1, p2, .., pN} of “inputs,” each of which is a (possibly degenerate) probability
distribution, and outputs a single probability distribution F(S). If there is a material
change in inferences based on F(S) when one of the input distributions, say pl, is
collapsed to a point, then the calculation is sensitive to the variability in pl. Otherwise,
the distribution pl can, with some safety, be replaced by a singlelnumber (a degenerate
distribution). '

Uncertainty in the input pl can often be described as a collection of possible
distributions {pl’} that are “close” to p'l in éomé sense. A typical example is when plis
parametric and {pI’} is described by a set of alternate values of the parameters. There
may even be a probability distribution on {pI’} (a Béyésian “prior”). If, by replacing pl by
an arbitrary element of {pI'}, the inferences based on F(S) change in a material way,
then the calculation is sensitivé to the uncertainty in pl. A

The data must be sufficient to establish either that a variable is not a sensitive input or,
if it is, the data must be sufficient to characterize the variability or the uncertainty or
both, depending on which contribute to the sensitivity. This provides one basis for
deciding when data are adequate. However, it could be argued that any data
acceptable for use in a screening risk assessment are necessarily acceptable in

subsequent tiers—at a cost.

To be specific, for data to be acceptable at all they must provide some valid information
about the population of interest and some quantifiable level of uncertainty must be
eétablished (no matter how great that level is). This is true for any risk assessment at
any tier, not just for probabilistic risk assessments. For screening use, inputs would
have to be set at extreme (but realistic) levels consistent with thé data and their
uncertainty, in such a way as to ensure a “conservative” estimate of risk—that is, one

biased high. Once this is accomplished,'it would seem there is no obstacle to using the
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e data mt e same way msubsequenttlers with the price for doing so being

eetimates that a‘{e still b“iased high.

" have been developed to adjust for differences in spatial measurement scale (thishas

been termed the “change of support” problem) Thls is the spat|al analog of the DW

| ponnt o eparture for cons1dermg adjustments | g ‘de
capture the use of “representatlve” in EPA gu1dance (“Gwdlng Pnnc1ples for Monte

‘V‘Data are* representatlve when they admlt objectlve a}nd quantnflable B

statements concernmg the accuracy of the relevant mferences made from

| thenﬁ
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EDFs (Issue Paper #2)

1) Selecting an EDF or PDF

The primary consideration is the effect the choice will have on the risk assessment

results. Each choice has relative advantages and disadvantages. They come down to

this: using the EDF honors the data but subjects the calculation to the risk that the EDF |
poorly represents population variability and percentiles, a risk that can sometimes be :
decreased by using a well-chosen PDF. Using a PDF requires some theory and » |
professional judgment and subjects the calculation to the risk that either (or both) could

be wrong or inapplicable.

The choice is not inherently one of preference. With small data sets especially, an EDF
is unlikely to represent an upper percentile adequately and so is manifestly a bad
choice. (That’s not to say that any particular PDF fit to the data is necessarily better!)
When measurement error is large, the EDF will not appropriately separate variability
and uncertainty. On the other hand, when the data set is large and not fit well by any
theoretical distribution function, using the EDF is an excéilent approach.

So we come back to the basic point: what effect will choice of distribution function(s)
have on the risk assessment results? This is determined in part by sensitivity analysis.
For this, the exponential tail fitting approach is particularly intriguing, because it seems
to provide a robust opportunity to explore how relati\}ely more or less extrapolation
beyond the sample maximum (or minimum) will influence the results. |
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P-values are meamngful and useful provnded that one approprnate goodness of—t” t
(GOF) test is chosen before obtalnmg and testing the data.

Graphloal exammatlon of the dlstnbutlon IS crucnal All emplrlcal dlstrlbutlons will depart

‘ ‘ust be assessed It IS

fitted distributions that repr‘odhuce the means and variances of the data is likely to
produce adequate results So more than any P-value or selectlon of GOF test, these

| (The lmportant talls” are the talls most mﬂuencmg the upper percentlle nsk estlmates

‘me taﬁ—-—e g data beyond what peroentlle—wﬂl depend on WhICh o
ntiles are belng characterlzed in the‘hrlsk assessment. ) Note that EDFs WI“
| satlsfy the thir “f‘crlterlon only when data sets are Iarge enough to estlmate extreme
percentlles wnth confldence | ”
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When only summary statistics are available, there is an inherent probiem in fitting any
distribution: it is impossible to estimate uncertainty. Using additional information about
possible limits to the data (that is, what the most extreme values could be), one should
over-estimate the amount of uncertainty in the fit and use that in a sensitivity analysis.
Uncertainty in thé variance of the data is particularly important for probabilistic risk

assessments.

When the better known distributions do not fit the data, there is exceptionally little

advantage to resorting to someone’s system of distributions, such as the generalized F.
First, there is usually no theoretical basis for adopting any of these distributions.
" Second, there is little assurance that the best fitting distribution in a family will
adequately represent what is of importance, namely the \;ériance and tails‘. Third,
reproducing the calculations can be difficult if the family of distributions is not in general
use or is ad-hoc, like the five-parameter generalized F distribution is. Fourth, many of
these families of distributions include obscure members whose estimation theory might
not be well understood or even known. [t would be better for the risk assessor to work
with familiar constructs whose properties (especially with regard to influencing the risk
assessment outcome) are well known. '

3) Uncertainty

Evéry standard‘ method of assessing uncertainty has limitations. Maximum likelihood
methods often are based on asymptotic normality, which sometimes is not achieved

| even for impractically large data sets. There are applications where the bootstrap does

not work—it is not theoretically justified. Certain methods, such as pretending the |

likelihood function is a probability‘distribution,; simply ha;e no justification (based on the

theory of estimation). ' '

In general, uncertainty should be assessed as aggressively as possible. As ‘many ‘

possible contributors to uncertainty should be considered and as many of these as
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poss:ble should be mcorporated in the nsk assessment because thelr effects

accumulate

An excellent method for assessmg uncertalnty is to randomlymdlvrde datasets lnto parts

perform calculatlons (such as t" ttlng d|str|butlons estlmatlng statlstlcs and computmg T

risk) based on each part, and evaluate the dlfferences that arise. Certaln forms of the R

bootstrap and lts relatlves such as the jackkmfe automate parts of th|s procedure




-Robert C. Lee, Golder Associates Inc.

Comments Regarding "Issue Paper on Evaluating Represgntativeness of

Exposure Factors Data"

1. The issue of representativeness relates to how the risk assessor makes
judgments and corrections regarding uncertainty inherent in a nonrepresentative
sample. Discussion of the differences between uncertainty (bias and/or error) and
~_variability (heterogeneity) would be useful to avoid confusion. For example, Checklist |
misleadingly implies that measurement error can have an effect on variability, WhICI”i is

an inherent property of a population.

Uncertainty can either be characterized as systematic (bias) or nonsystematic (error).
Uncertainty in exposure assessment may stem from:

Model errors
Errcirs in the design of the assessment method (i.e. measure ofr'expcl)sure)
Errors in the use of the method
Subject limitations
Analytical errors

One way to represent bias and error is as follows. A measured or observed
value X; can be represented as a function of the true value T, bias b, and
nonsystematic error E, as:

X,= T, +Ei b

The population distribution of Ts represents variability. However, perfect
knowledge is rarely available. Therefore, £ can be represented, for example, as a

normal distribution with a mean of zero and variance as:

0%= 0%~ 0%
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wherel:r2 is the variance of the uncertain measureX and o2 is the true variance

(assumlng mdependence)

Bras (wh h can be posmve or negatlve) can be represented as a determrmstrc
shrft in the me ofX as compared o the mean of T as:

but not on the

.~ 3. " In many cases, an approach that uses “referencé individuals” or strata rather
- than attempting‘jmto evaluate or estimate variability in a broad population may be useful.

For instance fone |s concemed about chlldren s exposure to lead in a Western mlnlng

town it may be srmpler as a t" rst step to hypotheS|ze a few examples of chlldren W|th

determlnlstrc charactenstlcs W|th regard to SIte—speCIflc populatlon varrablllty, and then o

evaluate the un : rtamty associated with these reference mdrvrduals exposures Thrs
method can lat‘ryely mexpehswe and easy compared t opulatlon sampllng, and
could be used s a screenmg step in an rteratrve deC|S|on makmg framework

should be clanf atlon and dlscussmn regardlng the methodologrcal and mferentlal

W ) .
riate for all enwronmental exposure varrables f an exposure factor vanes
o AR “

geographlcally, then |t may be ‘more appropnate to spatlally stratlfy the populatlon and
- characterize the factor within each strata as accurately and precisely as possible.

en these methods For example S|mple random samplmg may not be



Robert C. Lee, Golder Associates Inc.

4.  As stated in the text (page 8, final paragraph), the process of determining the
"importance of discrepancies and making adjustments" may be highly "subjective”.
However, the remainder of the discussion focuses heavily on frequentist methods of
accounting for sources of uncertainty, which may not be the most appropriate
approach. There should be discussion regarding both empirical and nonémpjrical
Bayesian methods of population inference, since these methods are Very powerful and
are increasingly used in risk applications. A major advantage of Bayesian methods is
that they allow refinement or "updating" of a priori knowledge with additional data or
information.

5. More attention is devoted to "temporal” characteristics of a Eopulation than
"individual” or "spatial" characteristics in the text. The reason for this is unclear. There
should be discussion of how to determine the relative importance of these

characteristics in risk assessment.

6. Discussion of Bayesian techniques may be useful in Section 5 of the paper,

which covers issues involved with improving representativeness.

7. Discussion of the use of simulations for future scenarios would be useful. For
example, if a the characteristics of a population are changing over time, time trends
could be incorporated iﬁto a simulation to determine the parameters of an particular
exposure variable in, say, 20 years.

Comments Regarding "Issue Paper on Empirical Distribution Functions and

Nonparametric Simulation™

F-35




ctor in questlon‘

‘With‘representatlveﬁess is often consrderable The second assumptlon

BN v " R
‘ funct:ons are"’avallable" for exposure factors deserves dlscussmn For example under

 the maximum-e ropy criterion, theoretlcal PDFs may be ﬂt in a ngorous manner usmg R
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exposure distribution functions should be discussed. This could potentially avoid
inefficiency, and could be used to focus research dollars. If conducted within a
Bayesian framework, prior EDFs or PDFs can be refined given additional data.

4. Much discussion in the text centers on the apprdpriateness of particular
goodness-of-fit methods, visualization, etc. All of these methods are "blunt tools". Most
statisticians simply use a number of different methods simultaneously or iteratively. If
all the_ methods agree that a particular parametric distribution "fits" the data, then that
distribution is probably appropriate. If they disagree, then the mechanistic and
statistical justification for a particular distribution form and the sensitivity of the model
output to the distribution defined shodld be examined; an EDF “may bewmore
appropriate. If the model output is insensitive to the particular PDF defined for a
particular variable, thén it probably does not matter what shape it takes.
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y change In a brownf elds srtuatlon for exarnple the populatlon of concern T

7 ol
be peop e lNhO wrll work at the S|te years |nto the futur

n questlon that honewould like a clear deﬂmtlon of th populatlon of concern,

epresentatlye sampllng of the charactenstrcs of that populatron has not been

done that deﬁmtlon doesn’t exist lsn’t that why one uses mformatlon from a surrogate 7

populatton" That questlon then |s if one cannot characterlze the populatron of

‘ 4 1 lnternal comoonents surroqate data versus the studv Dopulation

Certalnly the representatlveness of the‘]‘surrogate study for |ts own study populatlon

ouid be evaluated. This paragraph seems o suggest that every assessor that makes
us of a surrogatestudy should make this evaluatlon Good surrogate studies are
generally used over and over again by rwnany assessors. Such an evaluation should
: only need fo be ‘made once, wrth the results made available to all assessors. Along

wrth this evaluatlon should be an evaluatlon of the character of the populatron for Wthh o




Samuel Morris

the particular surrogate study is useful.  This could go further to provide some limiting
population characteristics beyond which the surrogate would not be recommended.

4.2 External components - population of concern versus surrogate population

The suggestion of using several national Food Consumption Surveys as a basis to
extrapolate dietary habits into the present or future seems like a rather precarious thing
to do. It also is something that could only be done for an extremely large, important,
and well-furided assessment. It is another study that, if done at all, should only be done
once and results made available widely.

Regarding several assessors independently speculating on the mean and coefficient of
variation of a parameter (expert judgment?), to avoid the phenomenon of anchoring, a
useful protocol is to have the experts begin from the extremes and probabilities toward

the central point, rather than beginning with the mean.

Checklist |.

| don’t understand the questions, “For what population or subpopulation size was the
sample size adequate for estimating measures of central tendency . . .and other types
of parameters?” The previous questions ask if the sample size was adequate, etc.
Presumably this means it is adequate for the size of the population that was studied. |
am assuming that this checklist pertains to an internal analysis of the surrogate study
and has nothing at this point to do withra different population that is of ¢ont:ern to the
assessor. N

Checklist 1l.
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I suspest that in most situations, the answer to the first questlonwrll be that the two

| ;“Srepu‘!a“t‘tohs are disjoint.

@hese questi‘ohs concern whether the two “p‘opulatiohs‘ ih‘hag‘itthe same g“eedraphie

a. Presu able the mt rest is in s1m|Iar chmate actlwty pattems etc Spatlal

:ﬁw“w | i v R LRy
hvey a 3 oader—m fact ad ffere ‘ uggests how

the populatlon is distributed in space Isita hlgh densﬂy area or a Iow denslty area’?

Are thewre clwustﬁrs of housmg separated by open space? g

Responses to the Questions on Representativeness

ts stoshastlc “vanablllty really the rlght term here? Just to make sure I am mterpretmg
thls nght I take “vanablhty” to mean that, for example some people drink more tap
water than ‘others ahd thus have“ a“greater exposure The b|g dlfte nce“‘fbetween

trjentrfy Wthh mdrvrduals drmk 2 Ilters/day and WhICh drlnk 0 5 hters/day, or they can
*dentlfy themseres ThIS is lmportant because lt prowdes a tool for mterventlon For

Hlty thatl SO randomlzed that we—nor the mdwrduals mvolved—cannot determme .
i N :
| In that sense |t IS the same as




Samuel Morris

Why do we write-off the use of theoretically based distribution functions? Many
environmental variables do seem to be distributed lognormally. It isn’t just coincidence.
| believe that we are often better off fitting our data to a lognormal than trying to develop -
an empirical distribution based on what is typically a rather small data set. | once got
some good advice when | was arjunior engineer trying to figure out_how much water
was flowing in a pipe. My boss told me, “We have a good theory explaining the flow of
water in pipes, but our meters have a 5% error at best. If there is a difference between
the theory énd the data, assume the meters are wrong.” My bnly problem with
lognormals is how well they continue to map nature out in the extreme tails. Even
there, however, how much confidence do we have in the 99" percentile of an

‘empirically based distribution?

Part 1. Empirical Distribution Factors
Extended EDF

The EDF is extended by adding plausible lower and upper bounds, but the paper does
not mention how one extends the linearized curve to reach those bounds. Presumable
by using a curve-fitting routine of some kind. ‘

In many cases, there is no clearly obvious point for the upper or lower bound. We know
we do not have any one kg adult males, bUt how do we decide to stop at 15 kg and not
14?7 Expert judgment is used. Expert judgmenf rhay be all we have, but it is not.a great
~ justification, and it is important that we provide justification. | believe it is worthwhile to
do a sensitivity analysis to find the difference between using quasi-arbitrary bounds and
letting the curve run out to zero or infinity. It might also be worthwhile to check the
difference with stricter, but perhaps more reasonable bounds, say a 40 kg adult male.
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for using astandarddrstnbutron co

| Respondmg to‘#5 ‘people feel more comfortable wrth a theoretrcat‘dlstnbutlon because

"t has a theoretical basis that Supports mterpolatron between data pomts and extensron S R

yond the data although I was always told never to do the Iatter When plottmg
PlﬂCEﬂ data wrthout a theory, one never knows it there |s some blg drscontmurty I

: jbetween tWO C :mpletely mnocent 100klng data pomts T | b‘[em IS that the theory B e

hind the distribution is mathematical, not physical. To be comfortable wrth
interpolating or extrapolating in erther case, one must have a theory of the physrcal

process mvolved




P. Barry Ryan

Workshop on Selecting Input Distributions for Probabilistic Assessment

In the transmittal letter dated March 27, 1998, Beth O’Connor asked us as reviewers to
provide “... not... comprehensive comments, but rather your initial reaction and
feedback on the issues... .” Further, we have been asked to focus on the so-called
“Representativeness” Issue Paper. My discussion focuses on that manuscript to start.

First Reactions

My first thoughts on this paper center on the need for an “audience” to be selected.
Issue papers such és this one will lead, eventually, to guidance documentg’ similar fo
those lsupplied as background reading. But what is the audience of this document? Tb
a degree, the audience must be viewed as one and the same. This document will be
referenced in a guidance document. Assuming this, a diligent worker looking for more
information will seek out this manuscﬁpt. Hence it should be readable and accessible
to bractitioners of risk assessments and exposure assessment science. With this
as‘sumed audience in mind, | continue with my initial reaction to the Issue Paper.

The Introduction commences with a single sentence that concisely described the
purpose of the document. This is a good start; the reader is entitled to know what is
being discussed. Unfortunately, the next sentence is a parenthetical notation. Is this
statement unihponant, less important, to be ignored, or what? The third sentence has
a relative pronoun as the first word but the antecedent is unclear. To what does “This”
refer? Exposure factors? Representativeness? Whatever it may be, it is both

extremely brad and extremely important as the rest of the sentence tells us.

Before the above is dismissed as grammatical nitpicking consider the following. At this
point, we are only three sentences into the document and I, considered to be an expert
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reviewer, am uncertain as to what is being discussed. A gentle introduction to a difficult

ect goes a long way toward keeplng the reader ‘on Irne ? A I|ttle edrtlng for style up

tmuch more useful -

Let us contmue The next paragraph isa roadmap descnblng the way through the | |
“ remainder of the document These two paragraphs provrde the Introductlon More |s

needed Why is th's lmportant'? When ShoUld it be appl|ed’? What has been done in

e past? These‘are all re‘asonable questlons to ask “

Representativeness is a real mouthful of a t|tle The term “Notlons” has the |
" connotatron of Mncertarn knowledge Deflnltlons are qulte the opposrte W|l| we be |
treated to contra |ctory mformatron in this section? Apparently the answer is “Yes” o
because as pornted out the Issue Paper contmues a reference to Kruskal and

Mosteller indicates that the term on wh|ch we are seeklng gurdance has no *

amblguous def nltron i Why |s it necessary so early on |n the drscussron to confuse

e lssue in the mmd of the reader by saylng that no defrnrtron exrsts'7 Why would a

reader of this document contmue readrng rather than throwrng hrs or her hands up in B

- ‘despaw? t

| next para aph (and accompanylng table) adds further fuel to the flre What |s the

representatrveness'? There rs no dlscussron of the rmportance of the terms how they

might be used in assessrng representatlveness nor the purpose of the table
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So, again, we have a section that needs significant editing. It is not clear to me that this
section adds any insight into the notion (or definition) of representativeness. Th
elementary concept is not'difﬁcult. The attempt to be all-inclusive at the very beginning,
however, is doomed to failure. It is difficult to tell someone what works by telling him or
her all of the pfoblems with the system first. It would be better to adopt a working
definition, show how it can be applied to many situations, then list some problems with
the wofking definition. This allows the reader to géin some understanding of the

concepts, without having' to grasp the entire subject a priori.

"I have, until this point, spent a great deal of time discussing a very small part of the
Issue paper. In particular, | may have spent more space on the discussion than the
manuscript length to this point. However, the first page or two of any document sets the
tone for the whole piece. The tone for this manuscript ranges from one of despair-to
one of disorganization. There is very little room in that continuum for gaining new
insighf. | urge a re-write of these early sections.

Moving on to the next section, A General Framework for Making Inferences, begins
the “meat” of the mandscript. As a matter of style, | do not care for a series of
parenthetical notations in sentences. | believe that it obscures the meaning of the
prose. Shorter sentences fully describing each of the activities are better. This is a |
recurring style point throughout the document. | will not comment on it further.

Figure 1 represents a nice, concise “decision tree” approach to risk assessment data
collection. The discussion is muddied somewhat by the introduction of the (undeﬁned)
concept of surrogate data. Reordering of sentences in the paragraph to bring the
example closer to the first use of the word surrogate would clarify substantially. But we
quickly go far afield from our discussion of representativéness. The manuscript needs
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to focus on this concept Indeed, the entire section on Inferences seems mrsplaced
Should |t not be at the end of the document? On the other hand Frgure 1 is useful to

o representatlveness The branches in whrch one must assess thls

factor offer an excellent opportunlty to rntroduce technrques etc to assess o
representativeness For example the frgure rnstructs the reader to follow the

algonthms outllned in checkllsts I-IV. Why not discuss them now’? It would seem that a o

discussion of Flgure 1in lrght of representatrveness would be a more useful fi rst step .
than to develop concepts of rnference form it. The frgure is designed to result in an

: inference, granted but the pedagogrcal role of the frgure here is to help the reader
understand the concept of representativeness.

The next sectlon Components of Representatlveness begrns to drssect the concept

lnto pieces more manageable The table, Table 1, and the couplrng of the discussion to S

the Checklrsts in the appendrx are perhaps the strongest parts of the Issue Paper .
Wi L

Table 1 is especrally noteworthy t presents the fundamental questlons and parses
them out according to the populatron” characteristics under rnvestrgatlon

These inclu : |vrdual Characterrstrcs Spatral (here mrsspelled as “Spacral”)
Charactenstrcs ‘and Temporal characterrstlcs Further, the characterrstrcs are dlvrded
between exogenous and endogenous effects- a very useful drvrsmn The focus should
. remain on thls table Dlscussron should expand examples grven and understandrng
reached These are the essentlal concept of the Issue Paper




P. Barry Ryan

Unfortunately, the manuscript gets bogged down a bit at this point with the “Case”
scenarios. | kept getting confused between Case 2, Case 2a, etc. Also, the
introduction of the National Food Consumption Survey confused rather than helped. |
found myself wondering if this approach was only applicable to the NFCS or did it have
more general applicability. The topic ié very general and the specificity of the example
obscured that. Again, the tabular presentation is much more straightforward and
helpful. Table 2 could be discusséd without reference to the NFCS and the different
components of representativeness addressed much more clearly and generally.

With section 5, Attempting to Improve Representativeness, the tenor vof the Issue
Paper changes dramatically to become much more statistical in nature. It also
becomes more difficult to follow. At points in this section, the authors go off on'
tangents. See for example the discussion on raking techniques on page 12. A better
‘approach would include more on when such data are likely to be suspect and a better
description of thé weighting techniques that have been advocated.

In the sub-section Adjustments to Account for Time-Unit Differences, there is
considerable discussion of the Wallace, et al., approach to inferring temporal effects.
No mention is made, however, of the work of Slob (See Risk Anélysis 16, 195-200,
1996) who advocates a different technique and evaluates both. Regardless of this
missing reference, one questions why it is here at all. Itis very detailed and, in my
opinion, should be described briefly in terms of its logic, then detailed in an Appendix.
The brief reviews of the Clayton et al., paper, the two Buck, et al., papers, the work by
Carriquay and co-workers should receive the same treatment.
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paragraphs pe aps‘shoutd have come earller in the document rather than at the very
end. They express the philosophy of what needs to be done. This is a good thing- it

sets the stage for the Issue Paper.

r &)ontinued Thoum“ghts |

Aﬂer the above |mpressrons while reading the document | have come away with the
'mpress'O" of arfa'“y uneven presentatnon that may ot be sspeci "y valuable ether to CEi
nor to EPA The i ! | aper addressmg th
co e s“a QOOd one Daté ‘en used in a w|I|y-n||]y fashlon
W'th l'tﬂe régard ‘fOI’ the way ln WhICh they were coile ed not what the study d esr gn L
nte“ded to do. Because of thls erroneous conclus|ons can be drawn resultmg in much o

“ Wasted effort and sometlmes money

lthmkthe document as now presented does not presentt |ssues well However the |

st ng foundatlon for a

[ e
[

ata, surrog‘ates for data‘w and the pltfalls of rgnormg the problem"altogether -
ré not gi‘ven elr‘propera entlon mrnthe |ssue Paperr

ihtroduotory prose should be ptaced up front to set the stage- perhaps th‘e two
paragraphs (or modlf catlons thereof) found at the begmnmg of the Summary This

i tenal woul i be descnptlve of the problem at hand answenng questlons such as why
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is representativeness critical, how is it often lacking, and why attempts o improve the

representativeness of sample must be done carefully. This would then be followed by

" Figure 1 and its description, which leads further on to Table 1. The description of Table

1 and Figure 1 give the essentials of the representativeness argument.

The next section would use Table 2 as its focus. Table 2 expands on the ideas of
Table 1 and thus is an excellent follow on. The “examples” could be relegated to an
appendix with more complete examples chosen and more detailed calculations worked

out.

Finally, the Checklists should be given a more prominent placement, and a more

complete discussion.
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| Com‘rnents on P‘re””Works‘nOhh |s“«sue Pabers:

“;“r “Evaluatmg Representatlveness of Exposure Factors Pata,“ and "Empmcal

-parametrlc Sngulatlon" for us EPA Workshop on e

ng Input Dlstrlb“utlons for Probablllstlc As‘sessment N

- (New York, NY; April 21-22,1998)

e Papero Representatlveness

are add ssed in a cle : r and comprehensrve manner o

lty analysns is always most meanlngful in a deC|S|on analytlc framework can th o I
om the rlsk assessment change as a result of a change inthe S'mpllfylng ‘
assumption (in this case, the use of data or distributions derived from a sample of
questionable representativeness)? The only way to determine whether this is so is to

| repeat the analysns w1th the underlylng data or derlved dlstnbutlons modlf edi ina manner

consrstent w|th known or suspected dlfferences over the range of pIausane adjustments




Mitchell Small

If a plausible adjustment does lead to a change in the risk management decision, then the
analyst must first consider a more rigorous basis for determining the adjustment. If, with
a better basis for making the adjustment, the range of predicted exposure or risk still
"straddles” multiple decisions regimes (i.e., different management decisions are still
possible given the improved adjustment and the overall uncertainty from other
assumptions/parameters in the assessment), then this suggests the need to move to the
next level of sophistication in the tiered approach. This could include the use of a more
detailed and rigorous exposure and risk assessment model, as well as collection of a more
representative sample for the ta?gét population. ‘

Adjustment

The discussion of methods for modifying statistical estimates derived from a surrogate
population to obtain results applicable to a different target population is ‘thorough and
informative. | do have a few insights to add orn encouraging the use of hierarchical models
with covariates to derive more representative distributions for the target population; on
variance adjustment methods for spatial data; and on the use of Bayesian methods for
combining information from surrogate (e.g., national) and target (e.g., site-spécific)

samples.

Adjustments based on covariates: The discussion in Section 5.1 covers the usual methods

for weighting sample observations or sample statistics to adjust for stratification of the
target population in the sampled population (either intended, as is the case in a pre-
planhed survey of the target population, or unintended, as is case addressed in the issue
paper, when the stratification weights are a matter of happenstance). The discussion does
recognize the utility of covariates (either continuous or discrete) for determining sample
weights and mentions the method of "raking” for deriving these.
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- Mitchell Small |

| thlnk more could be done to encourage the collectlon and use of covarlate data |n
parttcular usrng these data to develop "derlved dlstrlbutlons" for the target populatron

' nS anse When a relatlonShlp between the Ya ameter Of lnterest and the

‘ covanates can He establlshed in a surrogate populatlon hIS relatlonshlp could be

| modn‘” ed for th target popul on based on a small sample d‘ Bayesnan methods (see‘

¥ dlscussmn elow for how thrs mlght be done) ] The rela shrp is comblned with the
drstnbutron of thle covanates m the target populatlon to derl\re the dlstrlbutlon of the
parammeter of interest in the target population. The relationship need not be deterministic

| -the method is qwte amenable to use wrth the usual regressmn relatronshlps (W|th exphmt

‘ dlstrrbutlons of resrduals) that are developed in exposure assessment

CN sld‘e hef ll wmg example w1th a srmple closed-form : olutlon For subgroup‘j |e

“lope and ek i the reS|duaI of th regresswn relatlonshlp, W|th

[ 2
lf mcome [ for subg

The dlStl"lbUtlon Of HDL fO[ the ent're ta!’get pOpulatlon Wl’[h subgroup pr0p0rt|ons Pp is the B

Prwelghted mixture of the lognormal dlstrlbutlons determined for each subgroup
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For more complig:ated relationships between the parameter of interest and the covariates,
or a more complicated distribution of covariates in fhe target population, Monte Carlo
simulation methods may be required to derive the distribution. An example of this (entitled,
"Bayesian Analysis of Variability and Uncertainty of Arsenic Concentrations in U.S. Public
Water Supplies,” by Lockwood, et. al.)is attached. It presents early resuits of a project for
the EPA Office of Ground Water and Drinking Water (OGWDW) to estimate a national
distribution of arsenic occurrence in source water used by drinking water utilities, based
on a stratified national survéy. The application is an example of Case 3 in Table 2, where
the surrogate population is a subset of the population of concern. The most pertinent part
of the attachment is highlighted, noting that the national distribution is synthesized' by
sampling the covariates of the target population.

The use of covariates for deriving distributions of exposure factors in a target population
is a powerful tool th'at should be encouraged in the issues paper with more examples and
methods. It would also encourage exposure assessors and analysts to be more careful
and thorough in their collection of covariate data as part of their monitoring programs.

Variance adjustment for spatial data: The repdrt does a good job covering the options for
adjusting bias and variance for time-unit differences; similar methods can be utilized for
differing scales of spatial representation. A good reference for this is Random Functions
and Hydrology (Bras, R.L. and |. Rodriguez-lturbe, Addison Wesley, Reading, PA, 1985),
especially Section 6.8, Sampling of Hydrologic Random Fields. Methods are presented
for accounting for spatial correlation when determining the variance of an area average.
(The other thing we should do is vote on the correct spelling of spatial/spacial.) Bayesian
methods for combining information from surrogate- and target-population samples: | have

- learned a lot recently about Bayesian methods for combining expert judgment and

observed data to estimate distributions. Some of these are discussed in the attached
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paper by Lockwood et al. The Bayesian method allows a prior judgment for distribution
. parameters to be updated based on an observed data set ”“ie‘i“ding a poste‘rior distribution

the mean ormm‘we of the postenor dlstrlbutlon) ye3|an estlmates converge to those of
classical methods when "vague" or "mformatlonless“ pnors are used so that the

information in the sample dominates that of the prior.

o TR g‘ ‘anab‘wty and Uhcéjrt nty Bayesran Approaches and
Insrghts" (we have been "about to flmsh th|s paper foir qurte a long tlme covering a fevv“” e
our recent mestings - hopefully | W|I| bring a copy to the ‘mesting in New York). o
partlcular, est| ates from surrogate popuiatlon samples can 'serve as priors for the target
poputatron, allowmg lnformat|on from (presumably smaII and Ilmlted) srte-specnflc studles o
 to be informed by, and, combmed with, the previous studres of the surrogate populatlon T
Res“'ts f“’m m P|é Surrogafe pOpuIatlons can also be uSed each g,ven a werght alon g e
wrth the mformatlonless prlor to detemrme how much the resultmg estimate will be based |
each of the surrogate populatlon studles vs. the mformatlon in the target populatlon o

su ] rvey ltself -

Co ” ment on the Representatlveness Paper

The dlscusswn on "Sumlmary Statistics AValiable'* in Section 5.1 (page 10) contams what
| believe to be an error, when suggesting that standard deviations be averaged across

subgroups When aPPfOleatmgaporJulatlon standard devratlon "Inthe case ofpopmat,on DIRTER
vanance, we recommend Ca|CU|atlng the welghted average of the group Standard
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deviations, rather than their variances, and then squaring the estimated population of
concern standard deviation to get the estimated population of concern variance.”
However, neither of these approaches properly accounts for possible differences in the
means across the subgroups, which also contribute to the population variance. The correct
approach-is to compute E[X2] for each subgroup:

E[ng] = E’[X] + Var[X,]
then E[X?] for the population:
EXare] = 5, PEIX,]
and finally, the variance of X for the population:
Var[Xure] = E[Xarp?] - E*[Xare]

where E[X,;p] is computed using the middle equation on page 10.

Issue Papér on Empirical Distribution Functions and Non-parametric Simulation

You appear to have already gathered a lot of thoughtful comments on the two topics
addressed in this issue paper. Will any of these respondents be at our meeting? Will they
be identified? | have given more thought to Part Il (Issues related to fitting theoretical
distributioné) than | have to Part| (Empirical distribution functions). | identified strongly with
the comments of Respondent #6 in Part Il. To add slightly to Respondent 6's.comments,
| note that parametric tests of significance for_{he fit of a TDF almost always reject a
particular parametric form as the sample size gets large - real populations invariably exhibit
some deviation from a theoretical model, which cannot capture all of the popuiation's
behavior and nuances. In these cases, visual comparisons of observed and fitted
Jdistributioris are essential for determining whether these deviations are in fact important

to the problem at hand.
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ln ;Review Comments on “Issue Paper on Evaluatmg Representativeness of

Exposure Factors Data

(March 4 1998 Report)

by Edward J. Stanek Il

The document d t“ ines a populatlon in terms of a set of unlts‘ (subjects) at a locatlon and o

tlme a defi nltlon that is a standard startmg pomt for tradltlonal survey sampllng The

def nltlon of the populatlon IS lmportant smce the term representatlveness” is belng used

to describe the r latlonshlp between estimates of exposure ‘and the true exposure of

subjects in the populatlon (or summary measures of these true exposures) An example |

of a typlcal popul tlon is (p3) “the populatlon surroundmg a Superfund S|te

The populatlon def' ned as a snapshot” of persons in t| n

det” mtlon ﬁts theltradutlonal survey samplmg paradlgm thls d ﬁnltlon

the stand pomt of defi nmg exposure in the context of the pUblIC S health The photographlc

ly be Iacklng from |

|fferences m Dopulatlons questlons rela d to dlfferences in spatlal SR
le. and questrons related to dlfferences |n temporal scale comr)lete? o
mymfﬁr_a_&ea_s_@e_a___w

and space Although thls

llke quallty of the defi nltron does not account for the fact that new people may moveinto

the p!cture and others may Ieave after a short tlme has passed Thus whlle“

representatlveness" may be assessed for the plcture the plcture ltself maybe llmlted As

: and ult!mately thepubllcs health Of course when one Iooks at the snapshot” close to

the tlme it waswtaken the dlfferences may be Sllght Aft o
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differences may be dramatic. This practical concern over defining the “population” is

ignored in the report.

Itis important to introduce a longer time frame and possible changes in exposure when
defining exposure in a population. Such definitions are important conceptually,
pragmatically, and politically since they define the target parameters for exposure. Such
definitions are accessible to a broad range of interested parties and not limited to statistical
or technical experts. They set the stage for decisions on additional data collection, and
technical choices for estimation and modeling. The current document limits the scope of
“representativeness” by defining it only in a context that has an established traditional

statistical literature.

In a simple sense, such a definition may be diagramed as in Table 1. The idea is that over
chrohologic time, there will be mobility and other physical changes. Thus, exposure for the
first subject (ID=1) may differ between 1998 (E,,) and 1999 (E,;). Similarly, ID=1 may
move in the year 2000, and hence no longer be exposed. Other subjects may move in the
area. Subjects will also age, and their exposure may change with age. Of course, the
exposure values ih Table 1, while potentially observable, are not known. Nevertheless, a
consensus on what will constitute such a potentially observable exposure table is the
starting point for discussion of “repfesentativeness”. This conceptual framework has arich
background (Little and Rubin (1987)). ' |

The present document defines the problem in terms of the shaded cells in Table 1. |
suggest that the starting point should more closely correspond to a population as defined
in Table 1. Establishing the goal first will help prioritize issues such as representativeness,
sensitivity, and adjustments. One might dispute this goal by arguing that the problem
definition is difficult, exceedingly complex, and since concepfual, detracts valuable time
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at data is known l would argue that es

Subject IDs (f)  Taverage

e thére wavs f formulatmq qu‘estlons that wzlt altaw atiered am)ro‘ach tor sk assessment

e
\‘ s i ‘ T ”
L [l

( a proqressi rom sxmpler screeni‘nq Ievet assessments to more comptex assessments)”
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a single subject will suffice. These assumptions are clearly too strong to be broadly
acceptable. Nevertheless,‘these assumptions represent an extreme which has as an
opposite extreme the target “potentially observable” population (which is exceedingly
complex). A gradation of assumptions can be formed between the two extremes, with such
a framework leading to a tiered approach.

The framework asks how important are (or sensitive is the analysis to) population, spatial.

and temporal differences between the sample (fof which you have data) and the gopulation

of interest. What guidance can be provided to help answer these questions?

The document addresses the way the “surrogéfe population” represents the population,
how the sample from the surrogate population relates to the surrogate population, and
finally, how the measured value relates to the true value for the measured unit. Assuming
that the population défined is the potentially observable population of interest, this is a
good framework for developing inference. Some guidanée can be provided to structurally
evaluate the sensitivity of the exposure estimates to analysis decisions. To do so, we build

estimates from the data to the surrogate population, and finally to the population.
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tion an may serve:as ﬁwe baSIs for lnference to thé fower sh ;ed} porﬁon of the

ate Populatlon Specuf“ caliy, the |nference consists of estimates of pobuiation

paran’ieters, and the accuracy (mean Squared error) of those estlmates Non response

‘mprovemen he accuraoy of estlmates for the surrogate popuiatlon may be pOSSIbIe

via modeling and/or post-stratification. The models developed on suifogats data may

provide suppo““‘” and serve as a strucfure for assumpw ns needed to pre dlct exposu 6 in

the surrogate populatlon not stemmmg from the probability sampie For example modeis e

af"‘ data may develo a s’crong de endenC' of exposure ori age and

oo b ot il

”the po won of the Surrogate Population

Mc“iata although R

ablished makfng used of modsi basedesﬁmafes when ex’éendmg mference fo ti'\e non-:“ o

sa bied surrogate popuiaﬁon

Models and assumptions most likely will be the primary source to generate estimates from
the surrogate popuiaﬁon to the populaﬁon of ln{erest As {he dlstance increases from the

actual data the role of the models and assumptions wm mcrease ThIS increased roie wrll S

result in the es’umafes bemg more seﬁstﬁve to the assumptlons Much progress is

Currenﬂy being ‘made in sfudying ISSUGS O“f sem'sltlvﬁy Simliar to fhese issues no
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epidemiology, where a similar situation occurs in observational epidemiologic studies (see
recent presentations by Wasserman, Rotnitzky et al. (1998)). Three-dimensional sensitivity
plots, such as those developed by Rotnitzky et al., provide a way of visually communicating
and identifying the relative importance of assumptions .

Table 2. Conceptual Steps in Developing Inference from Data to the Surrogate Population
to the Population of Interest.

Population of Interest

(Assumptions Required)

Surrogate population
(Assumptions Required)

Data From Surrogate
Population

Adjustments

The description of adjustments focus on adjustments due to time unit differences. There
are empirical ways of dampening short time variation when estimating longer time interval
distributions that do not require parametric assumptions (such as the log-normal
assumptions illustrated by Wallace et al (1994). Such methods (such as empirical Bayes
methods) require some assumptions, but the assumptions may be minimal and subject to
verification. More research is clearly needed in these areas. This is however an active
research area that is close to providing answers to practical concerns.
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Alan Stern

Response to Questions on Issues Paper #1 (Representativeness)

Alan Stern, Dr.P.H., DABT
Div. of Science and Research
New Jersey Dept. of Environmental Protection

| believe that the “checklists” are a conceptually sound and thorough guide to
approaching the issues of representativeness. The major problem with the issue of
representati\/eness is not what criteria should be evaluated, but what remedies are
available. In my experience, the majority of cases where probabilistic analysis is
considered in environmental regulation/standard setting involve choosing a generic
distribution to represent an essentially unknown population. That is, default distribution
assumptions which can be employed in much the same way that standard :point
estimates are currently employed in (e.g.) the Superfund Program. Efforts such as the
NHANES 1| projeét and other data gathering efforts on national and regional scales
often provide data of excellent quality foe large scale populations, Notwithstanding that
such data are often structured in a way which can pefmit information on specific
subpopulations to be extracted in a representative fashion, we are rarely in a position to
know who those subgroups should be in any given instance. While probabilistic
analysis holds out the potential for realistic descriptions of the characteristics of real
populations and their exposures, it has been, and, | believe, will continue to be rare for
specific populations exposed ata given location to be characterized (othér than
possibly by their geographic location) in a way which will allow appropriate
subpopulation data to be extracted from national/regional databases. If such
populationé were characterized and/or population-specific exposure data were collected
in a focused study, then the issue of representativeness would become a more practical
consideration. On the other hand, if such focused studies are not done, then there is
little or no quantitative basis for consideﬁng whether national/regional population data

are specific to the given population. Thus, in most cases the external data are likely to
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be “dlsjomt” wrth respect to the populatlon of concern In the absence of populatron- |
: specrﬁc characte“rrzatron (elther wrth respect to demographlcs OF, preferably with

respect to specrﬁc exposure) there does not appear to be an‘objectrve way of even h
rdentrfymg how the natlonal/regronal surrogate data may be blased wrth respect to the

populatlon of concern.

ng acknowledged thrs practlcal problem with derrvmg representatrve data exposure

ans, l” am not sure that, from the standpomt of publlc health and rrsk—based
regulatron, lt is necessarrly wrse that the populatlon of concern be precrsely
charactenzed The reason for thls is that precrse characterlzatlons of populatlons are

e may n be representatlve%for the

the glven Iocat n ‘“Such conS|derat|ons seem to argue for more generlc‘tallorlng of
input exposure dlstrlbutlons to mclude an mtentlonal component of true uncertamty to
address the pOSSIb|e but unknown values Wthh mlght apply to future populatlons and

range of values hrch could reasonably be antlmpated to apply to a generlc populat|on S

~ata snte To thewextent that such. descriptions are biased with respect to the current

pulatron and/or land uses, that bias should (as appropnate) be toward mcludmg more S

“ of the hlgh risk populatlon than |s already present at the snte For example If the

clemographlc make up of the potentlally exposed populatlon ata glven SIte were such B
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that there were few young children, the generic input distributions should assume that
at some future time, the population could have a larger proportion of yoﬁng children. It
may not be necessary to assume that the national or regional demographics shift in a
radical féshion (although over time such shifts, do, indeed, occur), but rather to assume
that local demographic idiosyncracies are short-lived. Thus, if a specific locality or
neighborhood is demographically skeWed toward families with older children, or without
children, it should be assumed that in the future, the demographics may shift such that
the proportion of young children at the local level of a site reflects the overall state, or
county proportfbn. Such assumptions should be based preferentially on analysis of -
regional population data, and, if such data are not available, on analysis of national
data. One obvious problem with such an approach is that adjustments of current local
demographics to current regionél demographics fo account for future local demographic
shifts assumes that regional demographic patterns are more stable than.local patterns.
This may be true in general, but will not necessarily be true in any given instance.

Tiered Approach

The usual rationale for a tiered approach is that it saves the time and effort which would
be needed to conduct population and/or site-specific analyses. Computational time per
se, however, is not usually a limiting factor in such analyses. Site-specific data
collection, on the other hand, is a major undertaking and is generally a limiting factor.
Thus, if population-specific data are available and (as above) it is appropriate to base a
risk-based regulatory decision on such data, there is no reason to employ a tiered
approach to site-specific distributional descriptions. If, as above, regional-specific
distributions are more appropriate fdr risk-based determinations, and such data are
available, then, likewise, a tiered approach is not necessary. If, as is usually the case,
population site, or region-specific data are not available, and national population-based
data are available, such data rhay be appropriate as the basis for a screening

approach. In considering the use of such data in a non-population-specific context,
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me talls appropnate even for screenmg purposes for a -

ven SprOpulatlon'? leen the SCl'eenII’lg nature O% Such an “a‘ssessment It may be ‘ | m o
iate to generate and employ generic screening distributions which usé

CoalE e i il L I ¥ il o

uantitative approxnmatlons specﬁ" cally mtended for screemng suoh as trlanguiar

nd generallzed dlstr utlons Such dlstnbut
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David E. Burmaster

27 April 1998

Memorandum

To: Moderator, Participants, and Attendees -- 7 -
- Workshop on Selecting Input Distributions for Probabilistic Analyses

Via: A Kate Schalk, ERG
From: David E. Burmaster
Subject: Thoughts and Comments After the Workshop in NYC

After much more reading and thinking, | remain staunchly opposed to letting the US EPA and its
attorneys set a minimum value for any or all goodness-of-fit (GoF) tests such that an analyst
may hot use a fitted parametric distribution unless it achieves some minimum value for the GoF
test.

In honesty, | must agree that GoF tests are useful in some circumstances, but they are not
panaceas, they do have perverse properties, and they will slow or stop continued innovation in
probabilistic risk assessment. The US EPA must NOT issue guidance, even though it is
supposedly not binding, that sets a minimum value for a GoF statistic below which an analyst
may not use a fitted parametric distribution in a simulation.

Here are my thoughts:
1. Re Data

For physiological data, many of the key data sets (e.g., height and weight) usually come from
NHANES or related studies in which trained professionals use calibrated instruments to
measure key variables (i.e., height and weight) in a clinic or a laboratory under standard
conditions for a carefully chosen sample (i.e., adjusted for no shows) from a large population.
These studies yield "blue-chip" data at a single point in time. These data, | believe, contain
small but known measurement errors across the entire range of variability. At the extreme tails
of the distributions for variability, the data do contain relatively large amounts of sampling error.
Even with a sample of n = 1,000 people, any value above, say, the 95th percentile contains
large amounts of sampling uncertainty. In general, the greater the percentile for variability and
the smaller the sample size, the greater the (sampling) uncertainty in the extreme percentiles.

For behavioral and/or dietary data, many key data sets (e.g., drinking water ingestion, diet,
and/or activity patterns) often come from 3-day studies in which the human subject recalls
events during the previous days without the benefit of using calibrated instruments in a clinic or
laboratory and not under standard conditions. Even though the researchers may have carefuily
selected a statistical sample from a large population, no one can know the accuracy or
precision of the "measurements” reported by the subjects. These studies yield data of much
less than "blue-chip” quality for a 3-day interval. These data, | believe, contain large and
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“ unknown measurement errors across the entlre range of varlablllty At the extreme talls ofthe
“ for va jability, the data also contain large amounts of sampling error. For a sample

" " with n = 1,000, any value above, say, the 95th percentile contains large amounts of sampling

uncertalnty above and beyond the large amounts of measurement uncertainty. Again, the

.. greater the percentile for variability and the smaller the sample size, the greater the (sampling)

uncertainty in the extreme percentiles.

My conclusion from this? With all sample sizes, certainly with n < 1,000, | think the data are
.. highly uncertain at high percentiles. | think it is inappropriate to eliminate a parametric model

that captures the broad central range of the data (say, the central 90 percentiles of the data)

- Just because a GoF test has a low result due to sampling error in the tails of the data. (This
observatlon supports the idea that fitted parametrlc dlstnbutlons may outperform EDFs at the

data ) AS Dale Haﬁls haS erttel’] use the prOCGSS tO Inform the Cho|ce of parametnc s

models -- not a mindless GoF test.

2 Re Eltted“ﬁérémetjt Distributions

g As is well known

a 6-parameter model will always fit data better than a 5- parameter model

a 5-parameter model will always fit data better than a 4-parameter model,

a 4-parameter model! will always fit data better than a 3-parameter model, and
" '@ 3-parameter model| will always fit data better than a 2—parameter model

Thus GoF tests always select models wrth more parameters than models wrth fewer
parameters.

- This perverse behavior contradicts Occam's Razor, a bedrock of quantitative science since the
13 h century

The venerable Method of I\/laXImum leellhood Estimation (MLE) offers an approach - not the
_only approach -- o this problem. First, the analyst posits a set of nested models in Wthh for
ple, a n-parameter model is a special case of an (n+1)-parameter model -- and the (n+1)-
“ meter model is a special case of an (n+2) parameter model. Using standard MLE
techniques involving ratios of the likelihood functions for the nested models, the analyst can
tify whether the extra parameter(s) provide a sufficiently better fit to the data than does

the perverse effect of stoppmg research and blocklng mnovatlon - all in the name of
TS lsﬁé‘lﬂcy "

. Inmy oplnion, our professron of risk assessment stands ata c cros
spemfy, for exar )
the contlnued d elopment of new |deas and methods ‘espemally e theory and practlce of )
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"second-order" parametric distributions and the theory and practice of "two-dimensional"
simulations, and (ii) the use of expert elicitation and expert judgment.

I again urge the Agency print this Notice inside the front cover and inside the rear cover of each
Issue Paper / Handbook / Guidance Manual, etc. related to probabilistic analyses -- and on the
first Web page housing the electronic version of the Issue Paper / Handbook / Guidance
Manual:

This Issue Paper / Handbook / Guidance Manual contains guidelines and
suggestions for use in probabilistic exposure assessments.

Given the breadth and depth of probabilistic methods and statistics, and given the
rapid development of new probabilistic methods, the Agency cannot list all the
possible techniques that a risk assessor may use for a particular assessment.

The US EPA emphatically encourages the development and application of new
methods in exposure assessments and the collection of new data for exposure
assessments, and nothing in this Issue Paper / Handbook / Guidance Manual can
or should be construed as limiting the development or application of new methods
and/or the collection of new data whose power and sophistication may rival,
improve, or exceed the guidelines contained in this Issue Paper / Handbook /
Guidance Manual.
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GOF teets by thelr neture are very restrictive in affordmg accepta‘nce of a distribution. For
sxarmple, the Kolm rgorov—Smlrnoff test chooses the largesf difference between the observed

Unfortunately, EDFs are not ‘readliy amenable to analyees that lend a lot of insight (cf., Wallace, =~
Duan, and Ziegenfus, 1994). If EPA codifies a fixed value, even in the guise of "guidance"
preﬁy soon no pdf Wl|| be safe from Iegal wrangllng -

ions of representaflveness sensmwty, I
may well be in the difficult position of -

om a legal perspéctive. However, the pr eccupatlon with numbers often
e exp se of insig The role of probablhstlc as essments is the latter. Our goal is
hders and exposure and its influence on health, not to focus oh a specific value of a GOF
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Discuss how to address
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How well do actual number of respondents

How well do individuals sampled represent
represent the sampled population?
How well does the measured value

population of concern for the study?
represent the true value for the measured
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OBJECTIVES

 Illustrate use of Bayesian statzstzcal
" methods
- variability in an exposure factor
(arsenic concentration) is represented
by a probability distribution model
- uncertainty is characterized by the
probability distribution function of the
model parameters

e Illustrate use of probability dlStI’lbllthIl
model with covariates
(explanatory variables) |
- allowing extrapolation to different
target populations

- H-45




" Methodology

Probability model with covariates
— lognormal distribution with mean of
- 1n’s a fupction of e
SR reg1on .
« source type (SW vs. gw) and
'« size'of Utﬂlty (populatlon served)

_ constant variance of In’s

| aYSSIan methodology o -
. P1‘10r dlStrlbtitlon for model parameters S

— posterlor dlstrlbutlon computed usmg
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MODEL SPECIFICATION

Yij = pi + Bzij + v9i5 + €5

Y;; is the natural logarithm of arsenic
concentration in pg/L at j** source in i*" region

4; is a constant for it region, where ¢ ranges over

the seven geographical regions specified in NAOS

z;; is the natural logarithm of the population

th

served by j%* source in i*" region (an indicator of

the size and flow rate of the utility source)

9i; is 0 if jtP source in it" region is a surface water

source and 1 if it is a ground water source

€;; represents those sources of random variation
present at the j** source in it" region but not
captured by the covariates in the model.




BeaaT Rt

e

Source: Frey and Edwards, 1997
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DISTRIBUTIONAL ASSUMPTIONS.
In the model
Yij = pi+ Bzij +79i5 + €5
it is assumed that
€i; ~ N(0,02) Vi, j
i~ N@, %) i=1,...,7

That is, p; are sampled from a parent normal
distribution (hierarchical model).

The normality assumption of ¢;; implies that
conditional on all parameters, |

Yij ~ N(pi + Bzij + 7945, 02)




BAYESIAN METHODOLOGY
e Probability model:

X ~ fxje(z|0)
where © are parameters © ~ fgo(6)
e Begin with prior distribution f2(6)
e Observe sample X = Z,

e Compute posterior distribution

forx(6]%) = Fxje(@10) £ (6)

Jo Fx10@0)f3(0)d8
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PRIOR DISTRIBUTIONS

Without substéntive prior knowledge about parameters
of hierarchical model, our priors were diffuse:

¥ ~ N(0,3%)
B ~ N(0,10%)
v ~ N(0,10%)
log(c?) ~ N(0,10°)
log(1?) ~ N(0,10%)

These parameters are assumed independent a priori,
but are dependent in the posterior.
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POSTERIOR ESTIMATES

Parameter | P.M. | P.S.D.
i 3.13 | 0.65
pe | -350| o061
13 -3.62 | 0.61
pa | <176 057
us | -1.84 | 059
L6 -1.04 | 0.66
L7 2141 | 0.62
o? 223 021
W 2.27 | 0.74
72 | 176 | 1.76
B | 021! o005
9 0.14 0.19
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Figure 3: Scatterplot of 7 versus § ffom a sample of size 30000 from the joint posterior

- distribution.




| NATIONAL DISTRIBUTION & UNCERTAINTY |

The national distribution of arsenic conCentration
measurements is the mixture of all the distributions
from the individual sites:

o 1
FNationa,l - N Z F;,
All sites ¢

where IV is the total number of sites in the nation.

Similarly for our estimates:

FNational = Z - w; kg,
All sampled sites ¢

where w; is a weight indicating how much of the nation
is represented by site 3.

However, F; is uncertain due to uncertainty in model
parameters. The posterior uncertainty in ﬁ’i 1S
“characterized by the many (equally likely) ﬁ’,;, j obtained
by evaluating F; with the parameters in MCMC sample
;. |
We can then compute the mean, cdf, median, 5t
| percentile, 95" percentile, etc. of the distribution of F;
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‘th 90% credlble‘ bounds and uncensored NAOS data. overlayed
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. Figure 4: Posterior cumulatlve distribution functlon of the proportion of national arsenic
occurrence less than 5 ug/L.

H-57




POSTERIOR ESTIMATES: Alternative Model |

Supposing the v should be positive, we kept all priors
the same as before except took the prior for log(y) to
be N(0,10%). |

Parameter

241
H2
M3
Ha




0.6
|

0.5

Gamma
0:3 0;4

0.2

0.1

0.0

Beta

Figure 7: Scatterplot of v versus § from a sample of size 30000 from the joint posterlor
“distribution when + is forced to be postive.
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SUMMARY

* Bayesian methodology provides a
powerful method for characterizing
~variability and uncertainty in
exposure factors

— effect of alternative priors can be
investigated in a diagnostic manner

- — though don’t try this at home alone
- (without a competent statistician)

* Probability distribution model with
“covariates provides insights, and a
‘basis for extrapolation to other

targeted populations or
~ subpopulations.

- H-61
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Bayesian Analysis of Variability and Uncertainty of
Arsenic Concentrations in U.S. Public Water Supplies

John R. Lockwood?,

Mark J. Schervish?,

Patrick L. Gurian?
and Mitchell J. Small®

The risk of skin and other possible cancers associated with arsenic in drinking water has
made this problem a top priority for research and regulation for the U.S. EPA, as part of
implementation of the Safe Drinking Water Act amendments of 1986 and 1996. To assess
the costs, benefits and residual risks of alternative maximum contaminant levels (MCL’s) for
arsenic, it is important to characterize the current national distribution of arsenic concentra-
tions in the U.S. water supply. This paper describes a Bayesian methodology for estimating
this distribution and its dependence on covariates, including the source region, type (surface
vs. ground water) and size of the source. The uncertainty of the fitted distribution is also
described, thereby depicting the uncertainty in the proportion of utilities with concentrations
above a given MCL. This paper describes the first stage of this assessment, based on a sample
of concentrations from source water drawn by utilities. Subsequent analyses will incorporate
the distribution and effectiveness of current treatment practices for reducing arsenic, and
include available data sets of finished water quality to estimate the arsenic concentration
distribution in water supplied to consumers.

Using arsenic concentration data for source (raw) water reported by 441 utilities from the
National Arsenic Occurrence Survey (NAOS) (Frey and Edwards, 1997), we fit a Bayesian
model to describe arsenic concentrations based on source characteristics. The model allows
for both the formation of a national estimate of arsenic occurrence and the quantification of
the uncertainty associated with this estimate. The specification of the model is

Yij = pti + BTs; + 7935 + €5
where

e Y;; is the natural logarithm of arsenic concentration in ug/L at 5% source in #** region

® u; is a constant for i region, where i ranges over the seven geographical regions

specified in NAOS

e z;; is the natural logarithm of the population served by j™ source in i region (an
indicator of the size and flow rate of the utility source)

e g;; is 0 if 7® source in i region is a surface water source and 1 if it is a ground water
source : :

!Department of Statistics, Carnegie Mellon University.

2Department of Engineering and Public Policy, Carnegie Mellon University. )

3Departments of Engineering and Public Policy and Civil and Environmental Engineering, Carnegie
Mellon' University- '
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;j represent; those sources of random var1at10n present at the j
ut not captured by the covanates 1n the model

lognorl als with the mean of the log-concentration equal to ui+ Bz +gi; and the Com

rd deviation of the log-concentratmn equal to 0. The resulting distribution depends
the number of ut111t1es in each of the seven regions (z) ‘their service populations z and
‘ ) g water from surface (‘gZJ = 0) vs. ground (g = 1) water
‘(for now, the‘sam‘ple is assumed ‘to be representative of the national distribution, though
edlcted dlstributlon can be readily modified to reflect a different_distribution of the

ibutions for the parameters 'gb T, B, Y, O and employ the Markov Chain Monte Carlo
) dology (Gﬂks et al. “ 1996) to compute and simulate realizations from the posterior
tri ters. Posterior uncertamty drstrlbutlons of all quantltres of 1nterest ‘
an be calculated from these realizations.

‘Table 1 lists the posterior means and posterlor standard deviations for the ﬁtted model

par'uneters The mean values md1cate that

, generally hlgher in the west than in the east (the posterior |
means of ,u4 Us, Mo ‘and pr are greater than the posterlor eans of ul, ,uz and ug)

mean of Bi is p031t1ve)

arsemc concentrations are higher in ground water than in surface water. (the posterror ,
; v is positive, though there is significant uncertalnty in this result since the‘f S

gjpost rior Standard dev1at10n of 'y is greater than the posterror mean)

e tribution | is S ch acu rlzed by the ‘standard de-ww‘
vratlons of the parameters shown in Table 1 and by the covariance of the parameters in the
jor J‘om‘t distribution. Figures 1 and 2 illustrate this covariance for two of the param-
palrs”“‘:m}‘(ﬂ, ‘ )an (ﬂ, 'y) respectwely These covariances are of the type that commonly
arise 1‘11 paramete estimation; for example, the posmve association between higher 8 (which

: results in h1g11er ‘edlcted arsemc concentratrons) and lower 7/1 (whrch corresponds to lower
lues of the i

stnbutron 1s synthesrzed by samphng the jot
and & e‘ assoc1at‘ed pomts for the other model parameters) to
- gen
at a partrcular value of the arsenic concentratlon (exp(Y)) is computed as the average of
the predicted cdf’s for each measurement in the original sample of 441, based on its model
covariates (or, the covariates for each utility in the target population, if these differ from the
sample). The multiple cdf’s generated from the parameter space describe the uncertainty

of the national variability distribution. The median of the uncertainty distribution is one = .. .




Table 1: Posterior means and standard devirations of pa,rameters The regions (subscripts)
are 1=New England, 2=Mid-Atlantic, 3=Southeast, 4=Midwest Central 5=South Central,
6=North Central, 7=West.

Parameter | Posterior Mean | Posterior Standard Deviation
i -3.18 - 0.67
Lo -3.51 0.62
U3 -3.66 ‘ 7 0.63
m -1.78 0.59
s --1.89 0.62
g -1.10 0.67
7 -1.47 0.64
o? 2.17 0.20
P -2.30 0.76
T2 1.74 1.77
I} 0.21 0.05
04 0.14 . -~ 0.19

choice for a single estimate of the national distribution. This median distribution is shown
in Figure 3, along with corresponding 5th and 95th percentiles and the observed distribution
of the original data set. The fitted distribution closely matches the observed distribution,
including the result that 37% of the sample is at or below the arsenic detection limit of
0.5 ug/L. The full uncertainty distribution for the proportion of the national population
below one particular value of the arsenic concentration (5 ug/L) is shown in Figure 4, where
this proportion is indicated to range from about 0.79 — 0.87, with a median of 0.83. This
characterizes the uncertainty in the proportion of utilities requiring treatment of their source
water to meet an MCL of 5 ug/L.

Acknowledgment: This work is sponsored by the U.S. EPA Office of Ground Water
and Drinking Water, Standards and Risk Management Division. The paper has not been
subject to EPA peer review, and the views expressed are solely those of the authors.
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Figure 1: Scatterplot of ¢ versus B from a saniple ‘ e 5000 from the Jomt posterior
distribution '

LU A A I, T e . o g g

e g !

‘2“:‘: Scdt{}g;ploh ‘Qf‘ fyversus B from a sample of

tion

size 5000 from the ‘joint poStEﬂbf
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Figure 3: Posterior cumulative distribution function of national arsenic occurrence in source
water with 90% credible bounds and uncensored NAOS data overlayed.

1.0

0.8

06

Cumulative Distribution
0.4

0.2

0.0

0.75 0.80 0.85 0.90
Proportion of Samples Less Than 5 Micrograms per Liter

Figure 4: Posterior cumulative distribution function of the proportion of national arsenic
occurrence less than 5 ug/L
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