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Section 1

METHODOLOGY

INTRODUCTION

One goal of this project is to examine various methods for analyzing
bioassay data to determine wh.ich methods produce results that correlate
well with the results obtained from epidemiological data and to
characterize the uncertainties involved. For this to be possible,
reasonable, alternotive methods of cnalysis need to be defined. Recall
that in the introductory section (in Volume 1 of this report) were
listed the components of risk assessment ond several approaches for each
component; that list is reproduced in Table 1-1. Consider Figure 1-1,
which depicts the process of risk assessment based on biocossay doto: for
several experiments in each of a few species, particular carcinogenic
responses yield estimates of RRDs that are combined in some way to yield
the finaol estimote. The components listed in Tabio 1~1 correspond to
the different levels in the tree shown in Figure 1-1 and the approaches
specify how to handle the corresponding level. The basic mathod for
defining analysis methods has been to select different combinations of

the approcches, as is descriped in this section.

Also in this section is o description of the mothods used to compare the
bioassay-based results to the epidemiologically derived estimates. A
nonparametric generalizea rank test is used to evaluate the correlation
between the two sets of estimates. When specific point estimates from
the biocassay onolyses are employed as predictors, their performance i~
compared on the basis of thte fit of o straight line with slope of one to
the data. Three approaches (loss functions) used to fit the line are

described.



ANALYSIS OF BIOASSAY DATA

For each chemical being analyzed, the procedure described here is
followed to derive the RRCs of interest. For each cercinogenic response
coded from a study testing the chemical of interest, the multistaoge
model that best describes the response rates from all dose groups is fit

tc the dose-response data. The multistage model has the form
P(d) = 1 - exp{-(qg + q1d + ... + qxd*)), (1-1)

where P(d) is the probability of cancer when exposed to average doily
dose d; Qg,q1.--.,9k 2 0 and k is equal to one less than the number of
dose groups. The model is fit by on updated version of GLOBAL82 (1)
that gives moximum likelihood, lower bound, and upper bound estimates

for the dose D such that

P(D) - P(0) = 0.25,
1 - P(0)

i.e. D is the dose corresponding to an extra risk of one in four. This
dose will be called a risk reloted dosa (RRD) corresponding to a risk of
one in four. Similar definitions of doses corresponding to the
particular levels of risk caon be found in the literature. Sawyer et ol.
(2), for example, discuss "TDSO", the daily dose required to halve the

probability of remoining tumorless.

Actually, the model is fit to each combination >f dose and response
values thoct might orise by combination of the approoches listed in Table
1-1. In particulor, the components that offect the fitting of the model
are numbered 4, 5, and 6 in thot table; 20 combinations of the

approoches to these components are possible. Hsnce, as many as 20



models hove been fit to eoch response. (Mony responses have been fit by
only 10 models since tne data needed to analyze only the effective
number of onimals, approach b to component 6, are not generally
available in the published litsrature.) The triple of ostimatesv
composed of the 95% lower bound, the MLE, ond the 95% upper bound for
the RRD corresponding to on extra risk of 0.25, which is labeled (D,

Om. Dy), is availoble for each of the models fit to each response.

Definition of Analysis Methods

Each cnalysis mathod specifies which species of animal to consider, what
criteria the experiments on those species must sotisfy, wt .ch responses
within those experiments to consider, ond which of the 20 mcdel results
to use. (Throughout this report, "experiment” denctes the dota from oll
dose groups in a single biéassuy of one species and one sex of test
onimal, except when results for two sexes aore reported together and
cannot be separated.) In every case, the first step is to assign one
triple to each experiment, selecting the triple from the responses that
are eligible for that method (componen*s 7 ond 8). The tr ple that is
selected is the one that hos the smallest Dy, lower limit on RRD. This
procedure is acdopted because we are interested in the eviderce for
carcinogenicity and the manipulation of that evidence. The eligible
response with the smallest D_ is the one that is consistent with tra
highest caorcinogenic potential and may, therefore, provide the best

evidence of carcinogenicity from the experiment. uncer consideragtion.

Given this method of assignment of RRD triples to experiments, ond given
the approaches listed in Table 1-1, 88320 possible anaiysis methods
could be defined. Thirty-eight analyses were run os the first set
(Table 1-2). The thirty-eight aonolysis methods fuzll into vTive
categories that are defined by the manner in which the data from

individuol experiments ore combined to yield tre twelve values that are
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of interest in this investigation. Those twelve values are the minimum,
the first quortile, the median, and the third quartile of the lower

bounds, MLEs and upper bounds. The five categories are described below.

No Avergging. The first category of cnalyses includes those that treat
each species, each study within species, and each sex within study
separately (approach a for component 9, a for 10, and d for 11; see
Table 1-1). Let Yki be the ith lower bound for RRD in species k, and
assume that the YK; volues ore ordered with YK, the smallest and YK (i)
the largest; n{k) is the number of experiments in species k. Define the

species-specific quartile values as follows:

Ykq1q = YKy for n(k) £ & (1-2)
Y | n(k)/a] for n(k) 2 s

Ykaq = YKy for n(k) £ 2
Y* (n{k)+1)/2] for n(k) 23

vhgq = YRp(k) for n(k) £ &

an(k)-[(n(k)/uj for n(k) 2 5 .

Then the minimum and quartile volues of the lower bounds for the

cnalysis aore defined by

Ymin m.i(n (Yk«') (1-3)
Yiq = m‘.':n (Vk1Q)
Yq - mo:ian tvkaq)

Yzg = m:x (YK3g).

The minimum and maximum over species ore adequate to deine the first

ond third quartiles, respectively, because rarely are there more than
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four species tested for ony chemical. The MLE ond upper bound values
are defined in exactly tnhs same manner. Analyses 0 through 8¢, 11c,

11d, and 25 ore in this category.

Averaging Over Sex. The second category of analyses is represented by
gnalysis 9, where the results from different sexcs tested in the same
study are combined. A study may include as many as two experiments.
Two experiments are considered to be from the some study only if thay
were carried out in the same laboratory by the same experimentors, the
same moiety of chemical was used, the same strain of animal was tested,
the numbgrt of animals initiclly on test were nearly identical, and the
study protocols were nearly identical. If thot is the case, this
onalysis methods colls for hormonicelly averaging the values from the
two experiments, lower bound with lower bound, MLE with MLE, and upper
bound with upper bound. The weights for the average are equal to the
initial numbers of onimals on test in each experiment. After the
averaging, one triple is associacted with each study. These can be
ordered, the species-specific quortiles defined, and the minimum ond

quartile values for the analysis defined in exactly the same manner as

the first category.

Averaging Over Study. The chird category entails combining studies

within species (Anclysis 10). Note that different experiments folling
under the same study ore not overaged, s0 each study may contain more
than one triple of estimotes. Once again, let YX; be the ith ordered
lower bound from an experiment testing species k (the same procedure is
followed for MLEs and upper bounds). Species-specific minimum volues
ore obtained by harmonically cveraging the ’mollost Yki values from each
study. Species-specific quartiies are obtained by randomly sompling o
single Yki value from eoch study and then harmonically overaging the
values selected. A total of 100 sampgles is taken for each species so

that when the averages are ordered, the 25th, 50th, and 75th estimate
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the first, second, and third quartiles, respectively. The weight
attached to each study for the harmonic averages is the total number of
cnimals initiolly on test from all experiments under thaot study. The
minimum value associated with the anaolysis is the smallest of the
spacies-specific minimums ond the quartiles ossocioted with the anolysis

are defined from the species-specific quartiles os shown in Eg. 1-3.

Averaging Over Speciss. Exomples of the fourth category of onclyses are

provided by Analyses 11a and 11b, in which results from different
species are aoveraged. Once again, species-specific results are averaged
harmonically; in this case on unweighted average .s used. To obtain the
minimum average lower bound, one selects the smallest lower bound found
among experimonts in each species, then these species minimums are
averaged. The lower bound quartile values associoted with the anclysis
are estimated by random sompling: 100 times, o lower bound is rancomly
selecied from eoch species and the average compued. When ordered, the
25th, S0th, and 75th averrge represent the first, second, and third
quartile, respectively. The some procedure is followed for MLEs and

upper bounds.

Averoging Over Sex, Study, and Species. The final category of anclyses

includes Analyses 12 through 24d. In this category, results cre
sequentiolly averaged over experiment within study, over study within
species, and finally, over species. Note that ot each step, one triple
(averaged) is associated with each study, species, and analysis,
respectively. Consequently, only one average lower bound, one average
MLE, ond one average upper bound is associaoted with such on analysis.

As a result, the minimum and all gquartiles of the lower bounds are the
some, i.e. the one overall averaoge of lower tounds. Ths saome is true of
the MLEs ond upper bouncs. All overaging is accomplished by o harmonic
averoge with weights aqual to the initial number of onimals on test when

averaging over experiment within study, the total number of animals from
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all experiments contained within a study when averaging over study

within gpecies, and the constant 1 when averaging over species.

Description of Approaches to Components

The previous discussion has described the manner in which the different
analysis methods are definnd. In so doing, it has described the
approaches to several of the components of risk assessment. In
particular, it has been shown how the approaches to components &, 5, and
6 combine to yield 20 possible sets of input for the multistage model
for each carcinogenic response. In addition, the approaches to
components 9, 10, and 11 combine to define the five categories of
analyses presented above. Some of the approaches to these and other

components may require further explanation. This is provided below.

Length of Observation. For component 1, the length of observation

criterion, when ony experiment is considered (approach a) o correction

factor of the form

(Te/T)3

is multiplied by the RRD estimotes to odjust the latter for experiments
of length Te. T is the length of the standard experiment for the animal
on test (Table 1-3)., If Ty is greater than T, no correction is applied.
When using approach b, i.e. when including only those experiments for
which Teq is 90% or more of T, no correction faoctor is applied to any

experiment.

Units of Humon-Animal Equivolence. The approaches to component 4

specify the urnits assumed to yield equivolsnce between humans and

animals with respect to carcinogenic potency of the test chemical. When
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possible, experiment-specific, indeed dose-group-specific, body weights
and food intaokes have bessa used to convert among the units. Standaord

values (Table 1-3) have been used when necessary.

Calculation of Averuge Dosse. Component 5 relates to the calculation of

average doses for each dose group. Either all dosing is considered
(approach a), in which cose the average is calculated over the entire
experiment, or only dosing over the first 80% of the experiment is
considered (approach b), in which case average daily dose is based on
that time period as well. The 80% figure is predicated on the
assumption that exposures during the last 20% of the life of an animal
are unlikely to affect concer incidence due to the latency period.
Crump and Howe (&%) obco;Qo that “"chemically induced tumors are apt to
have a laotent period of about 1/5 of the life span of the species.”
(The sume aossumption is used when specifying cpproach b to component 2,
i.e., when restricting experiments to those with "long™ dosing of 80% or
more.) As an example of the difference between the approaches to
component 5, consider a 100.-week study with o dose group rwuceiving 1

mg/kg/day for 90 weeks. In approach q, average daily dose is calculated

as
(90-1 + 10:0)/100 = 0.9 mg/kg.
For approach b, the average daily dose is

(80:1)/80 = 1 mg/kg.

Tumor Type to Use. As discussed in Volume 2 of this report, special

codes have been designated for two types of response, all tumors and the
combination of all significontly increased tumors. The codes used, in

general, are based on the Internutional Classification of Diseases for
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Oncology (5). The tcpoiogy-mor sholegy code applied for all tumors is
1000-8000; for the combinatior of significantly increased tumors it is
1000-7000. These are ihs responses included in opproaches b and a,

respectively, to component B,

Definition of Staondard Methods

Anclysis O resembles the procedurs emplcved by EPA's Carcinogenic
Assessment Group in many respects: mg/mzlday are the units assumed to
yield human and animol equivolence; species, studies, ond experiments
are not combined so thot the minimum lower bound comes from the most
sensitive species cnd sex and from the experiment yieiding the smallest
RRD lower bound (largest upper bound on risk); and route of exposure is
limited to the more common routes, inhalation, gavags, and oral, unless
humans are exposed by some other route. Of course, no sutomatic
procedure can exactly duplicaote the decision-laden process of risk
assessment. Nevertheless Analysis O is one reosoncble procedure ond,
more importantly for this project, is the one that serves as a templute

for defining other aonclyses.

Another standord method has been defined. It is colled Anciysis 30 and
has been used as a tempi.ate to define an acdditional set of twenty
onalysis methods (Toble 1-4), Analyzis 30 differs from Anolysis 0 in
that mg/kg/day rather than mg/mzlday are the units assumed to yield
equivalence between humans and animals for extrapolation of RRD
estimates. Moreover, the route of administration of the test chemicols
is not limited to any particular route; injection and instillation
studies ore included nlong with gavoge, oral, or inhalation experiments.
The eighteen methods thot are single-component viriotions of

Analysis 30, i.e. Analysea 31 through 50 (Analyses 39 and 40 were not

performed), are not duplicated in Analyses 1 through 25, except for
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Analysis 31 which is the some os Analysis 3b and Analysis 38 which is

the same 0s aqa.

This alternctive standard and its single-component variants are not used
in the majority of the onalyses performed for this project. That set of
methods wcs defined only after the bulk of the anolysis was completed.
Its purpose is to provide information on the uncertainty associated with
single components of the risk cssessment process. It is used to
investigote component-specific uncertainty or variability in the manner
described later in this section. However, information on the
predictivoness of the estimates from the supplemental anclyses is

considered when the best mathod(s) ore identified.

Table 1-5 gives a verbal description of the 38 initial analyses and the

19 supplementol analyses.

Sieve
In addition to criteric restricting the type of experiments that ore
used in some analyses, another procedure hor been set up to salect
subsets of the data for onalysis. This procedure is colled a sieve and
operates as follows. Criteric ore defined that raonk experiments in
terms of preference for anolysis. Soy o rank of 1 is preferred over 2,
2 over 3, etc. The experimenty and responses thot are used in any
specific analysis ore those that have the lowest rank; if there cre any
rank 1 doto sets those and cnly thosa are used, if no rank 1 daota sets
are avcilable oll the rank 2 dato sets are usod.lotc. This procedure is
an attempt to use the best doto that ore ovailable but vec to do

something when the best type of dota is unavailable.

The sieve may have more thon one level. That ie, a selectior from among

the experiments may bz made on the basis of one criterion and then the



selected bioassays may be subjected to further screening on the basis of
another criterion. 1In each cose, the best, the lowest rank, data tets
survive the screening and become available for analysis. If one
criterion is based on proportio:Aof the carcinogenic responses (e.g.,
rank 1 is given to responses that show o4signif1cunt relationship to
dosing) as opposed to another criierion thot is bosed on features of

the entire experiment (e.g., rank 1 is given to experiments that have at
least 50 dosed animals) the former screening is opplied first. 1In thot
way, the greatest amount of dota passes from one level of the sieve to
the other; individuol responses, not entire oxporimonts..oro eliminated
at the first stoge. Also, for the sxample given above, o significont
response (i.e. evidence of coréinogonicity) is to be preferred, no
matter how many onimals ore teuted. This is not guaronteed to happen if

the firsi screening is based on number of dosed unimols.

The sieve technique is designed to work with any of the onclyses defined
in terms of the components of risk assessment o3 described above. The
sieve is applied only ofter aony inclusion criterio specific to on
analysis. For exomple, in Analysis 1, only experiments that losted ot
least 0% of the standard experiment length are included; the sieve is
opplied after that selection is made. Note ulso that the selections
thct define the cnalyses are unlike the selection procedure for the
siove. The analysis-defining soloétionn do not raonk studies. If there
ore not experiments that laosted at least 90% of the standard experiment
length for a chemical, that chemical is not included in Anolysis 1. The
sieve technique does ronk experiments so that the best cen be used; o
chemical connot be axcluded from an analysis because of the action of

the sieve.

The sets of analyses that employ a sieve use ona or both of two screens.
The first exomines eoch response to see if o significont dose-related

effect on response rates is evident. Priority (i.e.. the lowest rank)



is given to those responses that do show such a significant
relotionship. The second screen is based on o combination of two
features of each experiment, the length of observaticn and the number of

dosed animals.

Significance of a relaotionship between dose dnd response rotes is
ossetted by use of the Fisher's exact test (§) ond the Cochron-Armitaoge
trend test (7). If the response rate in any treated group is
significontly greater than that in the control group at the 0.05 level
as determined by Fisher's exact test or if the trend of response rotes
is significant at the 0.05 level as determined by the Cochran-~Armitage
trend test, then the response is ccnsidered significant and is given
lower rank. Otherwise, the higher ronk is assigned. This screening is

called the significance screening.

The ranking scheme based on experimental protocol, i.e. on length of
ogporimont ond number of treoted animals, is depicted in Table 1-6.
Note thaot this is just one of infinitely mony ronking schemes possible.
Of the two features (experiment length and number of dosed animals)
slightly more weight, in terms of the perceived quality of the study,
has been given to length of observation. This part of the sieve is

labeled the quality screen.

Given the two screens described above, four sets of anclyses haove been
defined, one® with no scresenings, one with the significonce screen alone,
one with the quality screen alone, and ons with both screens. As
described earlier, when both screens ore used, the significance screen
opplied to individual responses operates before the quolity screen. Of
course, the entire sieve procedure comes into play only after the

agpplication of the exclusion criteric that Jdefine each onalysis method.



COMPARISON WITH EPIDEMIOLOGICAL RESULTS

Once the bioassay data have been anolyzed by the mony mothods defined,
one wishes to use the results to compare and evaluate those methods.
The techniques that have been selected to do this use the RRD estimgtes
obtoinad from the epidemiologicol doto as the basis for comparison. A
method of bioassay anolysis thaot yields estimoctes "close to" the
epidemiologicolly derived estimotes is judged to be satisfactory. The
following describes the techniques for determining how close o set of

bionssoy-baoswd estimates is to the human-bosed estimates.

Correlotion Analysis

In the cnalysi= of the epidemiological datu, we have produced o "best"
estimote of the RRD corresponding to o one-in~-four risk, RRDy, ond upper
ond lower bounds on that dose, RRDuy and RRDy , respectively. The
interval [RRDy; , RRDyy) represents the raonge of estimotes that ore in
some sense consistent with the epidemiological data because of data

uncertaointy or stotistical voriability.

Because of the many bioossays for ony given chemicol ond because of
stotisticol voriobility within each bioasscy, the bioassay onalysis
results moy 0lso be recsonably choracterized by a ronge of RRD

estimates The interval selected in the correlation analysis to
represent that ronge is defined by the medion RRDs; it extends from the
median of the lower bour.d estimates to the median of the upper bound
estimutes. That choice of intervel considers statisticol variebility in
the sense that both lower and upper statistical confidence limits ore
used in its dofinition. Moreover, the use of medion values avoids some
difficulties with outliers ond behaves properly in an asymptotic sense.

Should anom>lous results appear in some biocassays, estimotors of the



oppropriote range such as that from the minimum lower bound to the
maximum upper bound ore adversely affected. Such "minimum-to-maximum®
ranges are highly sensitive to outliers and once outliers aoppear, those
estimators are not self-correcting. As more bioassoys of ¢ particular
chemical are performed (und so as the chance of outliers increases) the
minimum lower bound and maximum upper bound estimates can only get more
extreme. Medion values, on the other hand, should behave more properly
in the gense of discounting truly onomolous results and converging to
the "true™ vaolue. Let [ng. U2Q] be the interval from the medion
(second quartile) of the lower bound RRD estimaotes to the median of the

upper bound RRD esntimates obtoined for any given chemical.

We ore interested in the correlation between the epidemiologically based
estimates and the bioassay-bosed estimatea. That is, we wish to know if
chemicals with larger estimated humaon RRDs also tend to have larger
estimated animal RRDs. 1In the absence of known or suspected
distributicns for the RRD estimates, nonparametric tests of correlation
are appropriate. The standord nonparametric measures of correlation
(notably Spearman’s rho) use the ranks of point estimates without
consideration of variagbilities. When the variability or uncertainty
about point estimates is not the same for each observation, os is the
case with the data in the present analysis, such o method may be
inappropriate. Ng (8) has proposed a concept of generalized ranks that.
does consider variaobilities as reflected in the intervals surrounding a
point estimate. That concept is used to rank the human intervals,
(RRDY., RRDyy), ond, separately, %o rank the animol intervals, (Laq.
U2q), una to determine the degree of correlation between the two sets of

intarvals.

A portial ordering for the intervals is defined aos follows (the
definition is given in terms of the onimal intervals; exactly equivalent

definitions hcld for the human intervals). Let intervaol i,



corresponding to chemical i, be labelled (L;qj, Upqi) = Ij. Then I; is
less than I if Lpgj ¢ L2gj and Uzgj < U2qj (if Uzqi = U2qj = =, then Ij
is less than Ij if Lgj < L2qgj). Ij is greater than Ij if I; is less
than I;. Otherwise, Ij and I cannot be ordered (we will say they are
"tied™).

A ranking of the intervals can be defined on the basis of the partigl
ordering. Let nj be the number of intervals less than interval I and

let mj be the number of intervols tied with Ij. Define the rank of Ij,
Ry, to be

Ry = nj + mj/2 + 1.

We will use Ry to denote the ronk of the ith chemicol when based on the
animal intervals and S; to denote the rank of the ith chemical when
based on the human intervols. Ng (8) has shown that the ranks so

" defined have desirable properties including the fact that the sum of the
ronks, ZRj or ISj, is N-(N+1)/2 (i.e. the sum of the ordinary ranks of N
numbers) and that these generclized ranks reduce to ordinary ranks if
the partial ordering is also o total ordoring. The Ry ond S; volues are

used hsre to estimate correlations.

By onalogy to Spearman's rho, a correlotion coefficient, p, is defined

as follows:

(ZR1S3) - 1/4{N(N+1)2
pw i . (1-4)
S e e Sea DL
i i
Note thot R = S « (N+1)/2. The statistic » behaves oppropriately for
a meosure of correlation (-1 < p» < 1; lorger positive (negaotive) values

indicate more positive (negative) correlation: etc.).



The significance of , is ossesssd by sinulation. The Ri's aore held fixed
at their observeu values while the S;i’'s ore permuted over che set of
observed S;'s. That is, each permutation - ts p(i), 1 = 1,2,...,N,
from the set (1,2,...,N) such that p(i) # p(j) for i £« j. Let S;' =
Sp(i)- The correlation coefficient is evaluated for each permutdtion
(in the numerator of equation 1-4, Rj is paired with Si'). If among a
total of M permutctions, K of them yield coefficierts at least as large
as the observed p, then the probability of observing a coefficient as
large as or larger than p under the null hypothesis of no correlotion is
estimated to be K/M. The null hypothesis is rejected in favor of the
olternative, g > 0, for small values of K/M. In the present analysis,

10,000 permutctions were creoted (M = 10,000).

Prediction Analyses

The correlation analysis just discussed concentraotes on intervals of

RRD estimates to determine whether or not the human and animal estimotes
generally behave in the same woy (i.e., RRDs for chemical i are lower
when estimoted from the epidemioclogy when they are lower when based on
the bioasscy). If that correlation analysic is posnitive, then it is
reasonable to go on to ask if particular points ob:ained vio bioassay
analysis are good predictors of the results that are Jutained directly
from epidemiological investigation. At this stage also, one can examine
fﬁo magnitude of errors, i.e. the uncertainty that results from the use
of any predictor. The following is a description of the methods

employed to compare and evaluate various predictors.

Unlike the correlation analysis, the prediction analy.is selects a
single point from the bioassay cnalysis results as tiie estimate of RRD
for each chemical. Each of the 38 analyses descrioced in Table 1-2 could
supply any number of predictors. The four that have been investigated

are the minimum of the lower bound estimates, Ly. the medion of the



lower bound estimates, Lzg, and the minimum and median of the maximum
likelihood estimates, MLEy and MLEsq, respectively. These values are

available for each chemicol analyzed by each of the thirty-eight

methods.

The behavior and properties of the predictors are assessed, agoin, by
comparison with the epidemiologically derived estimates. Those human
estimates ore not distilled to o single point. 1Instead the best
estirate, RRDy, and/or the interval from RRDy_ to RRDyy form the bosis
for evaluating the predictors. In particular, o straight line with
slope of 1 is fit to the base ten logarithmic transform of predictor
values and the logarithmic tronsform of the human estimates. That is,
the bioossay-based estimate of the human RRD corresponding to o risk of

one in four, H,, is given by

logig{Ha) = logtg(Pi) + C.

where P; is the predictor from the analysis (either Ly, Laq, MLEM, or
MLE2q) for chemiccl i and C is the y-intercept to ve estimated. This

relationship implies thot
Hy = Pi'1°c,

i.e®. that a linear relationship exists between the untransformed
estimates. Consequently, the potency of chemicals as determined from
bioassay data relative to the estimates of human potency is not related

to their absolute potency, which seems reasonable.

Suppose that Aj; = logyg(Pj) + C, where P; is one of the predictors for
chemical i from the biocassay data as described above, for any given
value of C. The y-intercept, C", is determined (i.e. the line is Tit to

the data) by minimizin3 the sum of the losses for each chemical



associgted with the predicted RRD, A;, and the estimates derived from
the epidemiological data. Cleorly, a loss function must be defined in

order to carry out this procadure.

Three different forms of loss funct.on are considered. The first and
simplest, called DISTANCE2, defines tka loss associated with the
prediction for chemical i to be proportinnal to the sguore of the
distance from the predicted volue to the interval definec by the lower
and upper endpoints of the epidemiologicolly derived RRDz. Though this
formulation of loss is straightforward, it does have some disadvantages.
First, it does not consider the pest estimates of RRDs obtaoined from the
epidemiological analysis, the RRDys. Moreover, it cannot be applied
when the animal predictors con have infinite volues. Since MLEy and
MLEq can be infinite, but Ly and Lpg crinot, DISTANCE? can be used <o
evaluate only the lotter two predictors. This some difficulty with
infinite values arises when the lcss function utilizes the RROy
estimates, which may indeed be infinite. Because cof these limitations
of DISTANCEZ and because we wish to consider possibly infinite
estimates (particularly in RRDy since we made a point of including in
‘these onalyses chemicals that may not be carcinogenic as deturmined by
epidemiological investigation, i.e. for which RRDy is infinite) two
other loss functions have been developsd. These ure called CAUCHY ond

TANH. All three forms of loss function ore describsd in detail below.

DISTANCE? iLoss Function. Loss assnciated with chemicol i is defined

solely in terms of the interval (RROy_ i, RRDyy,6i). Thot loss is
given by

19,4 = O if log19(RRDYy, i) < Ay < logqp(RRDyY, i),
d2  if Aj; < logig(RRDuL.1),
~k+d? if Aj > 109q0(?RDuy, ).



Here d is the absolute distance between A; cnd the closest of

log1o(RRDy , i) and 1og1p{RRDyy ;). The constant k is the csymmetry

parameter .

If, >4 appears reasonable, it is worse to overpredict RRDs, then k > 1
can be used to reflect the belief about the degree of asymetry.
Nevertheless, this opproach to fitting the line is essentially
equivalent to determining the line thaot is closest to the intervuls
defined by the lower and upper endpoints of the human estimatss. The
total loss associated with a particulor analysis is the unweighted sum

of the losges associated with sach chemical in the analysis.

A simple extension of the reasoning presented in the discussion of the
loss function 147 allows definition of a fitting olgorithm for results
expressed as intervals in both the horizontal and vertical directions.
Such results are obta.ined in the correlotion analyses. The extended 14
routine has been run with the some intervals used to determine
correlations. Such a procedure allows us to identify individuol
chemicals whose intervals of RRD estimates are far from the fitted line
and, therefore, may be thought of as outliers and may, in fact, detract

from the correlotion.

CAUCHY and TANH Loss Functions. Suppose Hj =~ logqg (RRDy i), the

logarithmic transform of the bast estimate from the epidemiologicol
anclysis for chemical i. Then, recalling that Aj = logyg (Pj) + C, we
wish to find C that minimizes

TI(Ag, Hi) - Wi (1-6)
i
where 1{(-,-) is a nonnegative loss function, Wi is the weight attoched
to the loss for chomicol i, and the sum runs over all chemicals in the

cnalysis. Considering thaot Ay or H; may be infinite, these are

propsrties that we considered it desirable for 1 to have:
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P1: 1(A,H) « 0 if A =« H

P2a: 1(=, H) ¢ = and 1(A,®) ¢ =

P2b: 1l(=, ®) « 0

P3:  1(Aq, ®) > 1(Ag, =) if Aq < A

Py 1(A, H) ¢ 2(A, =) for A, H ¢ w

PS:  1(Aq, H) > 1(Ag, H) if Ay > A3 > Hor Ay ¢ A2 ¢ H
P6: 1(Aq, H) < I(A2, H) for H - A; = A3 - H > 0.

These groperties can be interpreted os stating that loss is minimized
only when the prediction maotches the observation (P1); that loss is
finite oven for infinite RRC estimates (P2a) and that predictions of
infinite RRDs are good (i.e., have zero loss) when the observed RRDs are
infinite (P2b); thot the loss is lecs if the prsdiction is larger when
the observed RRD is infinite (P3): thaot the loss is greater when the
observed RRD is infinite than when the observation is finite if the
prediction is finits (P4); thot the farther oway from the observed RRD
one goes in one direction the grecter is the loss (P5): ond that the
loss from underestimating an observed RRD by a certain amount is no
greater than the loss from overestimoting by that amount (P6). The lost
property allows one to choose an asymmetric loss function if one wants
to reflect the belief that it is worse to overestimate RRDs than to

underestimate them.

Unfortunctely, it is easy to show that the properties P1 through P6 are
mutually inconsistent. Two opproaches have been taken to get o set of
consistent properties to motivote vhe choice of loss function. The
first approach is to drop property 3. This is the only property that
prevents the loss function from being expruexsed as a function of the

distance (A-H). Consequently, we defined 15 av follows:
12(AH) « 1 = (1/(1+F(a(n-H))  (A-H)2)) (1-7)
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where o(-) is the sign function and f(-) is some positive function
allowing the introduction of asymmetry. It is clear that 1o sotisfies
P1, P2a, P2b, and P4 - P68, Moreover, once we are given o set of Hi's
und Py's, then we can approximate P3 bDut retain the other properties.

To do so, infinity must be approximated by some large number. That
number must be chosen large snough 80 taat P4 remdins true (for the
given set of Hi's and reascnabls lines, i.e. values of C) but not so
large that the inequality described in P3 gets washed out (i.e., appears
only ofter many decimal ploces). For “his project infinity is estimated
by 1015, i.e. on the logig scole ty 15. It can be noted in passing that
c symmetric verction of 13(A,H) behaves like sguared-error loss when A
and H are close together. This formulation of lass is colled the CAUCHY

loss function since it resembles the distribution function of the CAUCHY
probability distribution.

As an alteinative appruvach, we can retain P3 but weaken P4 slightly to
get

P4': 1(A, Hq) ¢ 1(A, =) for A ¢ Hy ¢ =,

The set of properties obtained by reaplocing P4 with P4' precludes the
use of o loss function expre=ied aos a simple function of distance,

(A-H), olone. The next best (ecsiest) opproach would be to try
1(AH) = | g(A) - g(H) |.

However, since P2a implies that g{(H) goes to a limit as H = = and P1
implies that g(H) is monotone, then g(H) must "flotten out® ot some
point, i.e. for H large enough. Hence it will be possible to find A4,
H, and Az such that I(Aj,H) > 1(A2, K) even though H - Aq = A3 - H > 0
(in violation of P6).
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Consequently, we are led to try a slightly different loss:

m{g(H) - g(2H-A)], A > H,

where g is some monotone increasing function and m > 1. Wwhen this is
the case, I(Aq, H) = g(H) - g(Ay) and 1(A2, H) = m{g(H) - g(2H - A2)] =
m{g{H) - g(Ay)] when H-Ay = Ap-H > 0, ond so P6 is not vioclated.

If we adopt this form of the loss function, then both lim g(x) and "’
X -0

lim g(x) must te finite (by P2a). A monotone increasing function that
X =0

has oll these nice properties is
g(x) = tanh (cyx) = (9C1X - @~CX)/(eC1X + @-CyX).

The constant ¢4 > O can be thought of as a scaling factor. The
resulting loss function (called TANH) is

15(A.H) = tonh(cqH) - tanh(cqA), A<H (1-8)

mltanh(cqH) - tonh(cq(2H-A))], A > H.

The factor m is chosen to reflect the desired degree of asymmetry. For
this investigotion, asymmetry considerotions haove been examined by
setting m equal to 1.5, 2, S5, 10, S50, ond 100. Larger values of m
reflect stronger deliefs about the undesirobility of overestimaoting
RRDs. Small c4 shrinks everything (except infinity) toward zero where
tonh is more necrly "inear, so that loss when on infinite value is
observed or predicted is exoggerated compared to the lass when both
observed aond predicted are finite. Small enough ¢y muy also moke P&
true for any given set of observations and reasonable values of C. A

value of 0.1 hos been assigned to ¢y throughout these analyses.



Given the olternotives 1 ond I3, we can colculate the loss contributed
by any given chemicol. Whot remains is to specify the weights, Wi, that
allow nccumulation of the individual lossss into an overall loss value
as shown in Eq. {1-6). It seems clecr thot less weight should be given
to chemicoals who;o human RRD estimates are less certain, i.e. to those
whose intervals surrounding Hy are loager. Once again, the problem of
infinite volues exists, in this cose infinite interval lengths.
Consequently one shouid consider positive, monotone decroasing functions

that go to 0 positive limit os the representation for the Wi's.

Let Dy = log10(RRDyy, 1) - 20910(RRDY  4). Ve wish to have
Wy = n(Dy),

where lim h(x) = r > 0. The function selected is
)

n(x) = coth2(x) = ((e* + e=X)/(e* - #-X))2,

Note that lim coth2(:) « 1. Also consider the following. If we were
) & -

doing ordinory waighted leost squares, we would want the weights
proportional to the inverses of the voriances. In our case, we have
quosi-voriance represented by the intervals from RRDy to RRDyy. In the
ordinary situotion, the intervals would de proportional to the stondord
deviations and so woights could be formulated in terms of the inverses
of the intervol lengths squared. Note that coth(x) behaves like 1/x for
x close Lo zero, so that cothz(x) would behove like 1/x2. That is, if
wo choot s to use cothz(Di). we have o function that mimics ordinary
leost scuares for small Dy but thot cllows us to consider infinite-

valued Dj.

For eoch anolysis method and for eazh predictor, lines have been fit to

the results using Doth loss functions 1 ond l3. In both coses
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Wy - cothz(Dii is the weighting scheme employed. For those predictors
that are guaranteed to be finite (Ly ond L3g) the loss defined by 1,
(distonce to the interval) with W 's set equal to 1 have clso provided
estimates of the best fitting lines. Average loss for any analysis and
for any loss function is the total loss (weighted sum of the chemicaol-

specific losses) divided by the sum of the weights.

Uncertointy

Two types of uncertainty are invest.gated in this project, what we have
called residuocl uncertaointy and component-specific uncertainty. The

methods for quantifying these uncertaointies ore des~ribed below.

Residual Uncertointy. The lines fit to the dota using ony of the loss
functions described above will not eliminate oll uncertain‘y. That is,
there will remain differences botween the values predicted on the basis
of the best-fitting line ord the observed epidemiologicolly derived
estimates. The DISTANCEZ loss furction is used to quantify those

differences.

Let Ay be the prediction (in this case from the DISTANCEZ-fitted line)
for chemical i in ony particular anolysis. Let G§ be defined as

follows:

Gy = 1 if 1°910(RRDHL,i) < Af < log1o(RRD"u‘1),
10A1/RROYy, ¢ if Aj > logyp(RRONy, )
RROWL ,1/10A1 4f A4 ¢ 1og10{RRONL ,§).

Then the averoge of the Gi's ovar all the chemicols in the analysis
yields o result cailed the residuol uncertainty factor. It is the
uvofugo factor by which the predicted volues must be multiplied or

divided in order tu y..id predictions that lie within the intervols
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defined by the RRDy_  j's and the RRDyy i's.

Alternatively, one caon excmine sepcrately those chemicals for which the
human RRDs ore over astimoted by the best-fitting line

Ay > 10910{RROyy, 1)) and those for which they are underestimated

(A4 < log1g(RRDYL 31)]. These cre the two groups of chemicols fcr which
the best-fitting line does not intersect the intervol of humon RRD
estimates. Factors anologous to the uncertainty foctor defined obovs,
but pertinent to one or the other of these two groups, are defined in o

slightly different manner.

For those chemicals whose human intervals lie completely below the line

{Ag > log-o(RRDyy, 1)), recall that their contribution to the symmetric
DISTANCEZ loss is of the form

02 « (Ag - 10910(RRDHU'1))2.

Let D2 be the average value of these 92 values, i.e. D2 is on average
squared distance on the log scales. Then an average factor by which the
natural-rcole predictions (10A{) must be multiplied in order to get

predictions within the human intervals is 10-D, where D is the positive

square root of D2,

Similar results hold for those chemicols with intervals that lie above

the line. In that cose, the contribution to the DISTANCEZ loss is
d2 « (10g9y0(RROK_ §) - Ay)2.

Let E2 be the average of these squored distances. Then 1¢E is the
average factor by which the nctural-scole predictions must be multiplied
to give values with the human intervals. E is the positive squore root

of E2. Both 100 anc¢ 10E are presented.
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Component-Specific Uncertointy. A histogram approach hos been ussd to

investigote the uncertainty cssocioted with ony one component of risk
isssssment. Only the aupplemental anaclyses (Anclyses 30 through £0) are
us>d in this investigation. However, all chemicals with relevant animol

bioassay Jvta can de used since epidemiological data is not required.

For any given predictor (e .g., the medion lower bound RRD estimate) eoch
anolysis results in a single result for each chemical, Pj;. Let us
denote the dependence of the results on the anolysis by letting Py, i be
the result for chemicol i in Analysis X. Component-specific uncertainty
aoddresses the issue of how the Py j valuss chonge with the analyses, X.
The investigction of this uncertainty is limited to onalyses that differ
from a standord analvais (Analysis 30) in only one component. Anclyses
31 through 50 are such single-component varionts of Analysis 30. The
rotios Ry, 4 = Px, 6 i/P30, i, where X = 31,32,...,50, aore the row datoc for

this component-specific uncertointy investigation.

For each Analysis, X, for X between 31 ond 50, inclusive, there is a
corresponding histogrom of the ratios, Ry j. The cut points of the
histogrom ore 0, 0.0%, 0.02, 0.05, 0.10, 0.20, 0.50, 0.80, 1.2%, 2.0,
5.6, 10.0, 20.0, 50.0, 100.0, onc w. Eoch rotio is locoted in one of
the subintervals defined Bv the ;e cut points. Its locotion indicotes
how the results for the corresponding chemicol chonge when the component
cssocicted with the analysis (the one thot differs from the standord

choice, that in Analysis 30) is changed.

For each histogram, the mode is determined. Mor'eover, a dispersion
factor (> 1) is defined that indicotes how spread out the ratiocs are.
Let I be the subinterval contoining the mode of the distribution and let
Gy be the geometric mean of the encpoints of interval I. For example,

i 1 - [0.8, 1.25], then Gy = /(0.08):(1.25))'/2 « 1. Generally, let J
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be any subinterval with geometric mean G;. For the intervals on the

ends of the histogromr, [0, 0.01] and {100, =], the geometric means are
determined from the ratios that fall within them. If, for instonce, two
rotios are greater than 100, say 400 and 1000, then the gwimetric mean
for the interval [100, =] in the histograom in question is
((400)-(1000)1/2 = §32. This procedure is followed since the entries in
the intervaols on the ends of the histograms may vary over many orders of
mognitude, unlike the entries in any other intervol. It does not cppear

reasonable or consistent to fix means in these cases.

The dispersion factor for ony histogrom is defined as

£y(Ny-6,/61)
TNy

where N3 is the number of raotios (chemicols) in anterval J and the sums

run over all intervols.

The dispersion factor indicctes the average factor by which the ratios
differ from the mode. A dispersion factor of 1 corresponds to a
histugram with oll the ratios in one subinterval. Since the moue can be
construed aos on indication of the direction and magnitude of the change
in RRD estimaotes when the aprroaoch to a single component is changed, the
dispersion faoctor indicates Frow consistent that change in estimates is.
It is the averoge factor by which the RRD estimates from the altered
(nonstandard) analysis must be multiplied or divided to yield ratios in
the interval of the mode. Since the altered onalyses differ from the
standard in only one component and a histogram corresponds to one
oltered anuivsis, a dispersion foctor is ossociated with one component
and indicotes how well-determined are the changes that result fror a

change in approach to that component.
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Table 1-1

APPROACHES TO RISK ASSESSMENT COMPONENTS

Length of the experiment

Use data from any experiment but correct for short observation
periods.

Use data from experiments which last no less thcn 90% of the
standard experiment length of the test onimacl.

Length of dosing

a.
b.

Use data from any experiment, regardless of exposure duration.
Use data from expeiiments that exposa animols to the test
chemical no less than 80% of the standarc experiment lengih.

Route of exposure

a.

0

Use data from experiments for which route of exposure is most
similar to that encountered by humans.

Use data from any experiment, regardless of route of exposure.
Use data from experiments that exposed animals by gavage,
inhalation, any orol rcute, or by the route most similar to
hlat encountered by humans.

Units assumed to give humon-animal equivalence

i a0 oo

mZ /kg body wt/day.

ppm in diet.

ppm in air.

mg/kg body wt/lifetime.
mg/m2 surface aorea/day.

Calculation of average dose

Doses expressed as agverage dose up to termination of
experiment.

Doses expressed as overage dose over the first 80% of the
experiment.

Animals to use in analysis

a.
b.

Use all animals examined for the particular tumor type.
Use animals surviving just prior to discovery of the first
tumor of the type chosen.
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Table 1-1 (continued)

APPROACHES TQ RISK ASSESSMENT COMPONENTS

7. Malignancy status to consider

a. Consider molignant tumors only.
b. Consider both benign and muiignant tumors,

8. Particular tumor type to use

Use comtination of tumor types with significant dose-response.
Use totol tumor-bearing onimoals.

Use the response that occurs in hurians.

Use any individual response.

oo oo

9. Combining data from moles and females

a. Use data from each sex within o study seporately.
b. Avercge the results of different sexes within a study.

10. Combining data from different studies

a. Consider every study within o species seporately.
b. Average the results of different studies within @ species.

11. Combining data from different species

Average results from ocll available species.
Average results from mice ond rots.

Use data from a single, preselected species.
Use all species separately.

a0 oo

NOTE: Underlines indicate c,uroach used in Initial Standard
(Analysis 0).



Table 1-2

APPROACHES USED FOR INITIAL THIRTY-EIGHT ANALYSES

Component
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OThe letters in this toble correspond to the labeling of approaches in

Table 1-1.
Panclyses 11c ond 11d differ in that the single species considered in

1ic is rots ond for 11d it is mice.
"An osterisk morks those approaches that differ from those in

the first stondard.

Analysis O,
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Table 1-3

STANDARD VALUES USED IN ANALYSIS OF ANIMAL BIOASSAY DATA

Experi-
3ody Food Inhalation Orinking ment

Surface Area Weight Consumption Rate water Rote Length

Animal Coefficient®  (kg) {mg/day) (m3/day) (mg/day) (weeks)
Dog 10.1 12.7 508000 1.5 350000 312
Guinsa 9.5 0.43 12900 0.074 145000 104

pig

Homster 9.0 0.12 9600 0.037 30000 104
Monkey 11.8 3.8 140000 1.4 450000 364
Mouse 9.0 0.03 3800 0.05 8000 104
Robbit 10.0 1.18 33900 1.5 300000 156
Rat 9.0 0.35 17500 0.26 35000 104

Gsurface orea in m€ is colculaoted as Kwe/5/100 where W is weight in
kilogroms and K is the surfoce orea coefficient (2).
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Table 1-4

APPROACHES USED FOR SUPPLEMENTAL ANALYSES

Analysis

Component
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9The letters in this toble correspond to the labeling of opprooches in

Table 1-1.

Panalyses 49 and 50 differ in that the single species considered in 49

is rots and in 50 it is mice.

“An asterisk marks those opproaches thct differ from those in
Analysis O, the first stondord.



Table 1-5

DESCRIPTIONS OF ALL ANALY>:CS

Analysis Jewmplote? Differen os® .
0 Initiol Standord mg/mzlday. no averaging of results; orol, .
gavoge, inhalation or route like humans
1 e limited to experiments of long
observation
2 c limited to experiments of long dosing
3a 0 route like human route only
3b ¢ any route .
4a ¢ mg/kg/doy
hd ] ppm diet
4e 0 ppm air
4d 0 mg/kg/lifetime
5 0 doses averaged over first 80% of
experiment
6 0 early death3 eliminated
7 0 malignont responses only
8o 0 combination of significont responses only
8b 0 total tumor-bearing anomals only
8c 0 response that human get only
9 0 results averaged over sex within study
10 1] results averaged over study within
species
11a 0 results averoged over all species .
11d 0 results cveraged over rats ond mice only
11e 0 rot dota only
11d 0 mouse data only
12 0 results aver nged over sex, study, ond
species
13 12 limited to experiments of long dosing and
observation
14 12 malignant responses only
15 16 limited to experiments of long dosing ard
observation
16 12 combination of significaont responses only
17 18 limited to experiments of long dosing and
observation
18 12 combination of malignont significont ’
resporses only
19 18 limited to experiments of long dosing ond
observation .
20 12 total tumor-dbeoring animols only .
21 20 limited to experiments of long dosing and
observation
22 12 totol molignancy-bearing onimals only
23 22 limited to experiments of long dosing cond
observation
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Table 1-5 (continued)

DESCRIPTIONS OF ALL ANALYSES

Anclysis Template® Differences®

240 12 mg/kg/day

24b 12 ppm diet

24¢ 12 ppm air

24d 12 mg/ug/lifetime

25 o route and response that humans ge' only

30 Alternative mg/kg/day; no averaging; any route

swendord

31 30 mg/m2 /Gay

32 30 ppm diet

33 30 ppm oir

34 30 mg/kg/lifetime

35 30 limited to experiments of long
observation

38 30 limited to experiments of long dosing

37 30 route like humans only

38 30 orol, govoge, inholation, or route ! ke
humans

&1 30 malignant responses only

LY 30 combinotion of significant responses only

A3 30 total tumor-bearing animols only

ha 30 response that humans get only

4% 30 results avercged over sex within study

48 30 results averaged over study within
species

&7 30 results averaged over all species

48 30 results averged over rats and mics only

&9 30 rot data only

50 30 mouse data only

GThe templute is the onolysis which most closely resembles ond on which
is bosed the unclysis in gquestion. Analyses 0 oand 30 are the two
standords; they have no template but rathoer are the boses for defining
the other anclyses.

PThe differences listed ore the ways in which the analysit in question
differs from its templote. For Analyses G ond 30, for which there ore
no templates, no "differences” are defined. In these two coses the
approoches for several prominent components are listed.



Table 1-8

RANKS BASED ON LENGTH OF EXPERIMENT
AND NUMBER OF TREATED ANIMALS

Length of Number of Dosed Animols

ExperimentS 50+ 15-49 < 15
> 75% 1 2 -
50-75% 3 L 7
¢ 508 6 8 9

SThese valuss aore expressed as pesrcentages of the standord experiment

length of the test spbecies. Table 1-3 lists the standard experiment
lengths.
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Section 2
RESULTS

This section describes the results of the evoluation of the animal
bicassay dato and of its comparison with the epidemiologicolly derived
risk estimatec. The evoluation is logically divided into two staps.

The first is o corrolation analysis, the goal of which is to determine
whether or not the sstimates of risk-related doses odbtgined from
analysis of the bicassay dato (the animal estimates) are correlated with
the estimates obtained from epidemiology (the humon estimotes). If no
correlation is found, thon it may not be appropriote to attempt to
estimate human risx from animal data. 1If, on the other hand, a positive
correlation does exist, then it seems reasonable to assume that the
animal models are relevant to human risk estimation and to proceed to
the second step, that of identification of useful predictors. The goal
of thot process i3 to detarmine which porticular point estimotes
calculated from the biocassay dato can be sotisfactorily employed as
predictors of the human RRDs, and to evaluote the variability (the
remaining uncertainty) ossocioted with the identified predictors.

The correlotion anclysis reveals that there is, indeed, a significant
positive correlation between the human estimates ond most of the animol
estimotes. Those onalysis methods that demonstrate the best
correlotions provide vicble alternatives for the choice of the
predictors. Tho detailed results of the correlotion and prediction
anclyses ore described below.

CORRELATION ANALYSIS

Toble 2-1 pressnts the correlation coefficient estimotes (and their
ossocioted p-volues) corresponding to eoch method of cnalyzing the
biocassoy data. The four columns of thot table represent the four dato
sieves we havy defined. Grophs of animal RRDs vs. human "RUs for many
of the analysis methods are contained in Figure. 2-1 to 2-34.
(Abbreviations for all the chemicols considered in this project are
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given in Table 2-2).

Generolly speaking, the results in Table 2-1 show a strongly positive
relationship between animol ond humon RRDs. The number of analyses
resulting in correlotion coefficients greater than 0.6 rongoi from 26 to
29 out of 38, depending on the sieve used. When the full sieve is used,
26 anolyses yield results with » > 0.7. In no instance did a negotive
value for , obtaoin. Out of the 38 p-volues ossociated with the analyses
employing the full sieve, 28 were less than 0.01, and 35 less than 0.05.

Given these results, it is inconceivable thc.i these correlations are due
to chance. It is also highly unlikely that they are due to bias in the
methods employed. The coding of the onimol data into the computerized
dota base was made by individuals who were unowore of the results for
the RRD estimotes for the human dato. The colculations for the onimal
RRDs were made using inifoim approaches implemented by an impcrtiol
computer progrom. Although the calculations of the human RRDs were made
individually ond required judgements on the part of the analyst, they
clso wera made blindly without knowledge of animal RRDs for any of the
chemicals.

Thus, by any reasonable standard, the animal RRDs are substontiaily
correlated with the human RRDs. This correlation is very important
becouse it demonstrates thot it is both potsible ond scientifically
appropriate to estimate human risk from animol daoto. The range of
finite, best RRD estimates from human data represented by these 23
chemicals spans roughly six orders of magnitude (from 10-3-3 mg/kg/day
for melphalan to 102.6 mg/kg/day for saccharin). Human and animal RRD
estimaotes are fairly consistent over this range considering the

crudeness of much of the underlying dota (see, for example, Figure
2-12).

These onnlyses ore considered in greater detail below. Individual
analysis methods will be studied; methods thot yield the best
correlations are identified and discussed. Similorly, methods that

yield the poorest correlations will be discussed. We begin with an
evaluotion of the sieve.
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Evaluation e7 Sieve

The purpose of the sieve is 0 select only the better dota for analysis
whenever data of varying quality are available, while at the same time
not excluding aony chemicaols from analysis on the basis of the sieve.

The sieve <onsists of two ports: a quality screen that discriminotes
omong dato sets on the tasis of number Of onimols tested and length of
observotion, ond a significonce screen thaot selects only dato sets in
which o stotisticolly significont response was found, whenever such dcto
sets are ovailable for a chemical (cf. Section 1). The idea behind the
sieve is that use of better dato should ‘mprove the observed
correlations between the human and animal results. This desired result
is in fact achieved, since p is higher when the full sieve is used in 28
out of the 38 analyses (Table 2-1). The effect of the sieve can be
observed by comparing, for example, the grophs in Figures 2-1 through
2-4 or in Figures 2-9 through 2-12. The datac appear to be more closely
grouped about the best-fitting line when the screenings are applied
(especially when the full sieve is cogplied, Figures 2-4 and 2-12) than
when they are not applied (Figures 2-1 and 2-9). This improvement in
correlations when better data cre used is further svidesze thot the
observed correlaotions between the onimal and human RRDs are real.

Aside from Analyses 3b, B8a cnd 11a, aimost all of the benefit obtoined
from applying ¢ sieve is seen when the significance- screen is applied.
That screen limits attention to the corcinogenic responses that are
significantly dose-relaoted when such responses are avaoilable. The .
quality screen, which focuses on the number of onimals tested and the
length of the experiment, Joes not appear to provide much of an
improvement over ond cbove the significance screen for most onalysis
methods {compaore the third and fourth columns of Yable 2-1). Such o
result is expected for analyses, like number 1, that olready restr.ct
ottention to o subsdt of the experiments, in this case the "long"
experiments. It is somewhot surprising in other coses, especially since
the majority of the carcinogenic responses in the data base are there
becouse of their opporent dose-relatad action. It is possible that the
criterion limiting ottention to studies utilizing gavage, inhaclotion, or

oral routes of exposure (or the route most similar to human exposure), a
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criterion underlying svery cnalysis except 3b, also had the side effect
of eliminating mony of the studies that woul” receive lower ranks in the
quality screening. This is conceivable if, for example, otrer methods
of dosing involved fewer ciaimals (possibly because these routes are more
difficult to administer) or if other routes tend to involve bolus doses
that might cause early deaths (carcinogenic or non-carcinogenic) and
conseguently shorten the duraotion of observation. It is possible thot
experiments employing "nonstandord® routes of dosing were designed to
investigote special questions and so may not have been overly concerned
with number of animals or length of cbservation.

Also in relation to the action of the sieves, those analyses that
averoge RRD values ot each stage (over sex within study, over study
within species, and finclly ocross species; Anclyses 12 through 24d) are
relatively impervious to the application of any screenings. The
correlation coe’ icients within any 6! the rows in Toble 2-1
corresponding to those onalyses are very similar, no matter which sieve
is applied {cf. Figures 2-28 through 2-31). It seems likely that the
averaging that occurs in these annlycen octs in much the some way as the
screens are intended to work; much os o sieve acts to elimincte
outliers, so averaging works to pull outliers toward the "middle®” of the
results. This effect is enhanced by the use of harmonic averaging which
severely limits the influence of infinite volues. Since RRDs are
bounded below but not above, infinite-volued estimates ore obvious
candidates for outliers. Similorly, the oction of both the quality
screen and the significance screen would tend to eliminate infinite-
valued estimates since experiments that are too short or employ too few
animals would tend to find no corcinogenicity of a chemical (i.e., give
infinite RRD estimotes) aad responses not significontly related to dose
generolly also groduce infinite-valued RRDs.

Analyses nther than 12 through 24d employ averaging, but not at every
level. Analysis 9 averages only ocross sex within study; Analysis 10
only across study within species; Analysis 110 only ocross species; and
Analysis 11b only oacross the species rats and mice. Since the
experiments employing speqios other than rats ond mice do not oppear to
be 0s "clean™ as those using ruts and mice {compars the first columns in

the rows corresponding to Analyses 11a and 11b and note the sizable
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increase in p when a quality screen is applied to Analysis 11a), let us
concentrate on Anolyses 9, 10, ond 11d (cf. Figures 2-18 through 2-25).
In those cases, one notes a similar but slightly lessened independence
from the sieve. Especially when averaging across sex or across study,

an effect similar to that of the screenings may already be in ceperation.

In this connection note that Analysis 12, which averages at all levels
Q- Z thot uses the same dato aos Analysis 0, results in larger correlation
coefficients than does Analysis 0 when the significance screen is not
used (columns 1 and 2 of Table 2-1). Correlation coefficients
associaoted with Analysis 12 are somewhat smaller than those associated
with Analysis 0 when the significonce screen is employed (third and
fourth columns) ond, moreover, the copplication of the significonce
screen to Analysis 0 produces larger coefficients than the nonscreened
Analysis 12. This suggests thot applicction of on appropriate sieve may
be a better approach than merely nveroging at all levels. Since use of
a sisve appears to improve most analyses, and since use of the full
sieve is cbout as good or'better for most analyses than use of <ither
screen by itself, the remaining discussicn will emphasize arnlysss thot
employ the full sieve.

Analyses that Use Combination of All Significant Individual Responses

Two of the endpoints defined and included in the bioassay data base
whenever possible are the combination of oll individual carcinogenic
responses that are significantly dose-related and the combination of all
such responses that are malignant. Anclyses that use the first of
these, combination of significant responses, i.e. Anolyses 8a, 16, and
17, provide relatively poor correlations (p ¢ 0.6) no matter which dota
screening procedure is implemented (cf. Figures 2-14 and 2-32). The
p-volues associated with these correlations range between 0.02 and 0.05
which, given the number of comparisons performed, might reasonably be’
considered only marginally significant. The response, combination of
significant responses, could not be defined for every study or every
chemical; only 13 of the 23 chemicals had one or more experiments
presenting dato thot aollow calculotion of this endpoint. it is the case

that the experiments that do provide the necesscry informatios in this
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regord are generally more complete and better studies, notably the NTP
bioassays. This is indicated by the fact that rank 1 studies (those
observing over 50 dosed animals for at least 75% of the standard
observation period) are avaoilable for 12 of the 13 chemicals included in
Analyses 8a anc¢ 16. That being the case, it is less likely that the
relatively poor correlation is due to use of cdata of poorer gquolity.

Interestingly, the analyses using the combination of malignant
stotisticolly dose-related responses, Analyses 18 and 19, provide very
good {cnd in some cases, tha largest) correlation coeafficients, ranging
from 0.73 to 0.79. However, the difficulty of defining the response is
even more severe with this endpoint than with the previous one. No more
than 10 chemicals included studies with the necessary information. Note
that the p-values associoted with these chemicols range between 0.003
and 0.009; such p-values ore associated with y’'s on the order of 0.61
when more chemicaols are included (cf. Analysis 2, no screens). So,
while use of this endpoint may well be appropriate, more duta would have
to be made agvailoble before any stronger conclusion would be warranted.

Analyses That Utilize Mclignant Neoplasms Only

Analysis 7 is identical to Analysis 0 except that the former analysis
utilizes animal data on malignant neoplasms only, where the latter
onalysis permits data on benign neoplasms to be used as well: Analyses
12 and 14 have o similar relationship. Analyses 7 ond 14, utilizing
data on malignant neoplasms, yield results that are quite similor to
those obtained from Analyses 0 and 12, respectively, analyses that used
data on both benign ond malignont neoplasms. The graphs for Analyses 0
ond 7 (Figures 2-4 and 2-14) are very similar, the maojor difference
being that doto for benzidine are utilized in Anolysis 0 but not
Analysis 7. It is important to note that inclusion of both benign and
malignant tumors does not degrade the ccrrelations (in fact, it improves
them somewhat) despite the foct that the human results are for malignant
tumors excliusively.



epidemiologically derived estimates even when nc screening is used.

This may reflect an underlying difrerence in the overall quality of rat
and mouse axperiments.

One of the few analyses that derives some benafit from the quality
scrreening, over and ubove that obtained by significance screening, is
11la. The same is not true for Anclysis 11b. This suggests that the
improvement obtained by screening the quality of the datoc in Analysis
11a is derived primorily from elimination of experimonts in species
other than rots or mice thot were too short or thot tested too few
onimals. Indeed, the correlotion coefficients for Analyses 11a aond 11b
gre nearly identical when the quality screen is applied (columns 2 ond &
of Table 2-1; cf. Figures 2-23 and 2-25). With that screening, either
of these two analyses compares favorobly with the stondcrd analysis
(Analysis 0) and cre similor to the results obtoined from rots alone or
mice olone. This is perhaps not surpr.sing given the preponderance of
rat and mouse experiments in the data base and the previously noted
similarity of rot-alone and mouse-alone correlation coefficisnts when
the dota is appropriately scrsened.

Choice of Dose Units

Anolyses 0, 4a, 4b, 4c, ond 4d show corralotions obtaoined when five
different dose units are used for extrapoloting risk from onimals to
numans [nomely, mg/m?/day (Analysis 0), mg/kg/doy (Anaiysis 4a}, ppm in
diet (Analysis 4b), ppm in air (Analysis &4c), mg/kg/lifetime (Analysis
4d)]. The choice of dose units maokes little differencu in the
correlaotions. A similar phenomenon is observed for Analyses 12, 24a,
24b, 24c, and 24d. These onolyses overage over sex, study, and species
and, again, differ only in the choice of dose units used in onimal-to-
human extrapolotion. The similority of the correlotion coefficients is
expected because few data 3ets included study-specific doto (primarily
body weights and fooa consumption variobles) that affect the calculotion
of the dose measure. Chemicals for which such dota are not aovaoilable
would tend to maintain treir some relative positions in o0ll of these
gnalyses and so0 no change of ronks would be apparent. The merits of the
various dose units are considered further in the ovaluation of the
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prediction analyses.

Tdentificotion of Anolyses Yielding Higher Correlations

Analysic 3b yields the highest correlation; when the full sieve is
applied, p = 0.90 (cf. Figure 2-12). This analysis method qlso yields
correlation coefficients that are omong the best when less thon the full
sieve is used. Interestingly, Anolyeis 3b is the l~ast restrictive of
the methods examined. Whereas all other analyses are restricted to
experiments that expose nnimals by gavage, inhalation, orcl, or the
route of exposure that humans oncounter, 3b 2lso ailows instillation,
injection, and implantation experiments. These additional routes are
often not considered in quontitotive risk ossessment.

This discussioun of Analysis 3b provides an opportunity to consider the
affect that changes in the data have on the correlation coefficients.
Some changes in dato are the result of changing the criteria used to
pick experiments ond carcinogenic responses for particular analysis
methods. In this case, allowing all routes of exposure odds threo
chemicals that only have studies thot expose animals by "nonstandard”®
means, chlorambucil, chromium, ond melphalan. Moreover, RRD estimates
for certoin other chemizaols change dromatically when all routes cre
allowed. Arsenic is o prime cxample; note the change in location of the
animal lower bound for this chemicol (compare Figure 2-4 to Figure 2-12).
The animal lower bound RRD for arsenic in Anolysis 3b is derived from an
experiment in which exposure was accomplished via intratracheal
instillotion and for which @ dose-related increase in lung tumors was
found. Note that the animal upper limit RRD is infinite whether or not
all routes of exposure ore included in the analysis, a foct consistent
with the commonly held view that orsenic hos not been shown conclusively
to be carcinogenic in animals.

The correlation coefficient, p, is derived from the ronks determined by
the relative positions of the intervals. 1In Analysis 0, the human ronk
of arsenic is 6 and its animal ronk is 15, o major discreponcy. In
Anolysis 3b, with the addition of the three chemicols, arsenic's human
rank increases to 9 but its onimal ronk, due to the reduction in the
lower bound discussed above, rises to only 16.5, So, while the values
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of the RRDs caon and do change substontially, the ranks based on the RRDs
may be relaotively insensitive to those changes.

Nevertheless, ranks con be greotly ¢ tered. Comparing the scme two
Analyses, 0 and 3b, one notes a great change in the lower aond upper
bounds cssocioted with estrogan. This rosults in o chonge of ronk, from
11.5in Anclysis 0 to 6 in Anolysis 3b, despite the addition of three
more chemicols in the lotter anaolysis. Estrogen has only two bioassays,
one on implontotion study ond the othor a feeding study. The feeding
study which wos the only onimol estrogen study utilized in Analysis 0,
foiled to find any significantly dose-related responses (hencs the
infinite MLE for esatrogen in Anclysis 0); however, the implantation
study entered Analysis 3b and included on increosed incidence of kidney
tumors. So, while we are interested in changes in the underlying base
of data and their effect on risk estimates, one must be oware that other
changes may be confounded with the chonges in which we aore interested.
Thus, with estrogen. including other routes (the implantation study)
actually eliminotes the feeding study (becauss of the action of the
sieve), on unforeseen chonge in the underlying¢ data. Another
manifestation of this is the fact that certoin chemicols ore eliminoted
from some analyses because they lack the data to support those methods.

One can attempt to minimize such confounding dota dependency. It is of
interest, for exomple, whather the high correlation obtoined in Analysis
3b is due to the addition of the three chemicols mentioned ecrlier,
chlorambucil, chromium, ond melphalaon. The humaon and animal ronks of
chromium and melphalan are weil matched, but those for chloraombucil are
7.% and 3, respectively, showing moderate discrepancy. If these three
chemicols ore not included in Anolysis 3b, so that the only differences
betweer Analyses 0 and 3b are dus to inclusion of additionol routes of
exposure, then p = 0.88 when the full sieve is opplied. This is very
close to the original 5, 0.90, ond is still notaobly better than the
correlotion obtained from ony other analysis.

Nevertheless, it is not possible to conclude unequivocaolly from these
anolyses that the improved correlation dus tn inclusion of odditional
routes of exposure will hold generally and is not simply o feature of
the particulor doto ovoiloble for analysis. A substontiol part of the
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improved correlation is due to o data-dependent charge in one chemical
(estrogen). This moy, however, be an indication thot inclusion of
additional routes may ollow improved estimates for some human
carcinogens that, for some reason, are not easily shown to be
carcinogenic in onimals via routes through which humons are normally
exposed. Further investigation of this issue may be warranted.

Aside from Anolysis 3b, no other anolysis stonds out as being superior
to the others based on the correlation onalysis. The largest of the
remaining correlotion coefficients is 0.81 (Analysis 25, full sieve) ond
another 16 of the 38 cnalyses performed with the full sieve yield ,'s
between 0.78 and 0.81. Those ond serhaps mony of the other ancolyses
provide omple indication that animal-based estimates of RRDs are
opplicoble to estimotion of humon RRDs and caon be considered viable
alternative procedures for use in humon risk ossussment.

PREDICTION ANALYSIS

The three loss functions described in the discussion of methodology
(Section 1 of this volume) have been used to determine the lines of best
fit for 304 sets of predictions (the four predictors, Ly, L2q, MLEm, ond
MLE2q. obtained from the initial 38 analyses performed with and without
the sieve; see Tables 2-3, 2-4, and 2-5). 'In the caose of the DISTANCE?
loss function (Table 2-3) there are only 152 (= 304/2) analyses. This
is because this loss cannot e applied to the predictors, Mity and
MLEpqg., that can azsume infinite volues.

The prediction investigaotion has been limited to the analyses performed
without any doto screening or with the full sieve, i.e. both the
significonce ond quality screens. The other sieves exaomined in tne
correlation anolyses, those with either the significance screen or thu
quality screen alone, are not employed here. The quality screen alone
did not oppear to provide substantiol improvement over nc sieve in the
correlation analysis. The significance screen accounted for the
majority of the benefit obtoined by screening the dota, but odding the
quality screen did not undercut the benefit seen and, for certain
anaolyses (including one of the most promising ones, Analysis 3b)
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provided notable additional improvement in the correlation. Addition of
the quality screen ensureC that possibly questionable experirents of
short duration or empioying few *ast animals do not compromise the
results obtained from the lower ranked studies (the "better®™ studies).
This may be particularly important when extreme volues, such as the
minimum lower bound or minimum MLE, ore used as predictors.

Sieve

Exomination of Tables 2-3 through 2-5 reveals that use of the sieve
generally does improve the predictive ability of the biuvassay results.
No matter which loss function is used, the predictive power of those
analyses employing the minimum values (Ly or MLEM) is improved (in the
sense of yielding smaller average loss) 74% to 82f% of the time when the
sieve is applied. This offect is seen slightly more often omong the
analyses thaot do not average over sex, study, and species (Anaolyses 0
through 11d and 25) than among those that do averoge over sex, study,
and species {Analyses 12 through 24d). In the first set, improvement
with application of the sieve is noted 77% to 91% of the time, depending
on the loss function chosen. Improvement occurs in 56% to 75% of the
onalyses in the second set. As was noted in the correlation onalysis,
the effect of averaging in some sense mimics the desired effect of o
sieve by eliminoting outliers.

One wnuld expect the effect of the sieve to be less pronounced when
median values are used os predictors. While this is true for the median
lnwer Bbound predictor, Lyg (the sieve improves no more than 50% of the
analyses), the sieve roduces loss using MLE2q in almost 80% of the
analyses. The benefit obtoined by using medians is offset, in the case
of the maximum likelihood sstimates, by at leost two foctors. First, “t
is known that the maximum likelihood estimates from the multistoge model
are much more sensitive to small changes in the data then are the lower
bound estimates. Such sensitivity might entail more outliers in those
coses in which few onimols were tested or the length of observotion was
short. Moreover, for those some types of experiments (few onimals or
thort duration) and for those corcinogenic responses that are not
significontly reloted to dose, infinite RRD estimates are possible.
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when the epidemioclogically derived RRD estimates acre finite, the loss is
exacerbated. The sieve eliminates such dotao sets from consideration
when hetter ones ore available.

The results for the medion lower bound predictor, Lzq, are opporently
the most stable, 03 reflected in the foct thot the action of the sieve
is neutrol in o gencrol sense. Note, however, that certain analyses
demonstrate definite improvement when the sieve is applied, even with
L2q as the predictor.

Predictors

The four prodictors thot have been selected, Ly, Lag, MLEM, MLEpqg, can
be compared on the basis of the averoge loss suffered when each
predictor is used in any particular analysis. Tables 2-3 through 2-5
clearly indicate that, no matter which loss function is employed, Lzg is
the best predictor to use. 1In only 2 to 6 (depending on the loss )
function) of the 76 anolyses (38 poirs, with ond without the sieve) does
that predictor fail to yield smoller loss than does Ly. Anolysis 2,

for example, uppears to yield better prediction whoﬁ Lm is used instead
of Loy, Comparison of the _uss volues among the inalyses, however,
reveals that Analysis 2 is not one of the better methods of calculating
RRD estimates, so this observation has little bearing on the noted
superiority of Lag. In three to five instonces (ogain depending on the
choiue of loss function) L2g does not provide loss smaller than results
from using MLEzq. Analyses 8 and 18 account for most of these
sxceptions. Rocall that these cnalyses could Le performed on only six
ond ten chomicols, respectively, $0 ogain, the fuct thot MLEpq yields
the smaller loss should not be given too much weight.

The superiority of Lyq is independent of the choice of loss function.
Also incdependent of loss function is the fact that MLE2q is superior to
MLEm aomong those analyses employing a sieve; the MLEzq losses ore
smaller in 17 or 18 ¢f the 22 such onalyses for which MLEw and MLEpq
differ. (Note that the =nolyses thot averoge over sex, Sstudy, ond
species, Analyses 12 through 24d, provide a single lower bound estimate
and a single maximum likelihood estimate. Consequently, Ly = Laq and
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MLEM = MLE;q for those analyses aond the losses associated with use of Lp
are identical to those associoted with use of Lyp and similarly for MiLEm
and MLEzq.) Included in the set of 17 or 18 analyses are those that
vyield the smallect losses when a maximum likelihood predictor is used so
the superiority of MLEjq over MLEw is cleor when the sieve is applied.

The case is not so obvious when no sieve is applied. In this instaonce,
the results do depend on the choice of loss function. Wwhen fit is
megsured by the CAUCHY loss function (Table 2-4) MLEyq is superior to
MLEm in 15 of the 22 no-sisve cnalyses. When the TANH loss function is
used (Table 2-5), MLE;q is tuperior in only 10 of 22 no-sieve anolyses.
Howeveor, with both loss functions, MLEjq is better than MLEym for most of
those analyses that yield the smollest losses (Anclyses 2 and 11c being
the oxceptions). [hus, unless one wishes to analyze biocassays by methed
2 (using only those eyperiments that dosed trected aonimaols for at least
80% of the standard experiment length) or by 11¢ {(use rat experiments
only) without o sieve, one must conclude that in the cose of the maximum
likelihood estimates, as well as in the case of the lower bounds, a
medion predictor i3 o beiter choice thon a minimum predictor.
Interestingly, Analysis 2 (though not 11¢c) is also the method
consistently yielding smaller losses with Ly than with L2q.

One final observation will conclude this camparison of the predictors.
Since Lpq is better thon Ly and MLEjq is better than Mley, it is of
interest to determine whether Ly is better than MLEjq. The answer
depends to some extent on the choice of the two lozsz functions thot can
be used to compare these predictors, CAUCHY ond TANH (Tablee T-&4 and
2-5, respectively). Among the 22 pairs of onclysis ., vthods that do not
average over sex, study, ond species the CAUCHY loss tunction indicates
that Ly produces smaller average loss than does MLEnq in 21 coses, i.e.
less than hol? the time. Among those some analyses, Ly outperforms
MLEgq for 40 anolyses when measured by TANH loss. B8oth loss functiors
indicate that MLE3q is superior for Analyses 3b with ond without the
sieve (anclyses providing some of tho pest correlations in tne
correlation onolysit) and for Anolysis 6 with or without the sieve (tne
method applicable to only six chemicals). For those 32 analyses that do
average over sex, study, ond species (Anaclyses 12 through 24d, with and

without the sieve), Ly is better in every cozrs but two (Analysis 18 with
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and withou€ the sieve) no mo’.ter which loss function is used. Thus, Lpm
Sutperforms MLEzq in the majority of cases, especially when assessed by
the TANH loss function, but uny conclusion about the superiority of Lp

may depend strongly on the analysis methods that ore of interest.

Comparison of Anqlysis Methods

The comparison of the ancolyses and the identificotion of the best ones
are complicated becaouse four separate predictors have been used and
three different loss functions have been defined. 1If the different
predictors or different loss functions result in distinct orderings of
the methods, interpretation is more difficult. Table 2-6 presents the
five best cnalyses (those giving the smallest averoge losses) by
predictor and loss function.

Analyses 6, 18, and 19 dominate the list of methods giving smallest
losses. This is true no matter which predictor or /hich loss function

is used. (Anolysis 18 does not cppear in any TANH list, liowever.)

Recall thot these are the anclyses cited in the discussion of correlation
analysis results gs those thot yield relaotively large correlotion
coefficients but thot are opplicable to few chemicols (six, ten, and
nine chemicals for ‘2alyses 8, 18, and 19, respectively). So, os with
the correlation results, the prediction results are suggestive for these
unalysis methods, but no firm conclusions are warranted.

Table 2-7 lists the onalyses that yield the smallest averoge losses
after eliminating Analyses 8, i3, and 19, which ore based on relotively
few chemicals. Analysis 7 appeors on the list fregquently. That method
uses the response that is the combinotion of significont individuol
responses and is limited to experiments that dosed and observed the test
animols for a suitably long period. Furthermore, RRD estimates are
cveroged over sex, study, ond species. That this method should appear
to provide good fit to the data is somewhot surprising since the
correlaotion coefficinnts ussocioted with it are on the order of 0.58,
not among ths better co-relation results. Once again, however, the
number of chemicals that con supply dctao meeting the requirements of

this approach is 1limited: only 11 chamicals had studies that dosed ond
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observed ariimals long enough and for which the combinotion of
significant responses could be definad.

Analysis 16 is similar to Analysis 17 in that the endpoint chosen is the
combination of significant responses and the estimctes are uveraged over
sex, study and species. It does not, however, exclude axperinents on
the baosis of their length of observation and dosing, so that thirtsen
chemicals can be anclyzed by this method. Analysis 1€ clso oppears in
the list given in Table 2-7, predominantly when the CAUCHY loss function
is used. The analysis that does not average over sex, study, and
species but that does use the combinotion of significant responses
(Analysis 8a) does not yield avercge losses thaot cre omong the smollest,
for anylloss function or predictor. Thus, it cppeors that overaying at
each level may be the most useful method when the combination of oll
significant responses is the endpoint used.

Analysis 20 is identified as o method yielding small losses, but only
when a lower bound predictor is used. That method is best when loss is
measured by the TANH function. This analysis method selects as the
endpoint of interest totml tumor-bearing onimols and aoverages estimates
over sax, study, and speciea. The corresponding urieaveraged method
(Analysis 8b) does yield losses not much larger than those associated
with Analysis 20, 0.127 vs. 0.121 and 0.125 vs 0.121 for Ly ond L2q.
respectively (measured by TANH). Consequently, use of total tumor-
bearing animals in conjunction with a lower bound estimate appears to be
an appropriate technique, if TANH is o suitoble measure of loss.

Note that, of the twenty analyses listed as providing the smallest
average losses determined by CAUCHY ond TANH (the two functions that
consider the best epidemiologicol estimates of RRD) for the lower bound
predictors (im and qu). all but four use an endpoint thot is o
combination of individual respcnses, either totol tumor-bearing animols
or the combination of significont risponses. Due to limitations in the
dota availaoble for analysis, not inherent limitations of the methods
themselves, some of these analyses were applicable to relatively few
chemicals. Nevertheless, the consistency with which these endpoints
yield small average locs indicates that they should be considered viable
candidates for estimation of human risk.
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The DISTANCE2 loss function identifies a set of good methods that
intersects with the sets identified by CAUCHY and TANH infrequently.
All but one of the ten analyses listed in Table 2-7 under DIST_ANCE2 use
individuel carcinogenic responses rothér than o combined response. In
two cuses (Anolysis 25, the best when Ly is the predictor, ond '
Analysis 8¢, also associcted with the Ly predictor) the response is
limited to those that are associoted with human exposure. This response
may be identifioble when human data exist, but when such data are
absent, as would be the case for a new chemicnl, then the appropriote
choice of endpoint is unknown and application of these methods
problematical.

The DISTANCEZ loss function identified Analysis 3b with the sieve as the
best method (in terms of averuge loss) when L2q is the predictor. This
analysis was also clearly superior in the correlaotion analysis

(s = 0.90). It is not surprising that DISTANCEZ would tend to match the
results of the correlation analysis, especiolly when Lygq is the
predictor. First, Lpg was one end of the interval of animal RRDs used
in the correlation analysis. Second, DISTANCEZ does not consider the
location of the best estimate of RRD derived from the epidemiological
data and so is concerned only with the position of the human interval.
In any case, Analysis 3b yields the smallest loss with the DISTANCE2
function and reasonably small losses with CAUCHY aond TANH, 0.413 ond
0.140, respectively. (Note: it is not appropriate to compare the loss
values obtained using diff&ront loss functions. The fact that different
formulations of loss are used entails that the volues in the Jdifferent
columns of Table 2-7, for exomple, are not comparabie.)

Since Lyq is the predictor thot produces the best fit of the animal
results to the human results {a foct that is rei~forced by examination
of Table 2-7), we concentrote on those analyses that perform best with
thot predictor. Table 2-7 shows that Analyses 3b, 17, and 20 are the
anclyses yielding the smollest average losses for one of the three loss
functions. One would like to have results that are independent of the
choice of loss function. That is, a good onulysis method should be
robust with respect to differences in losf functions. To investigate
the analyses in this mannar, we have defined what is called "total

2-1i8



incremental normalized loss™ as follows. For ecch loss function, the
difference between the smallest average loss and tne largest average
loss among the analyses (still ignoring Anolyses 6, 18, and 19) when Log
is used is known. For each anolysis the difference between tre avercge
loss for thot analysis o.d the minimum average loss, divided by the
difference between the minimum and maximum averoge losses, is defined os
the "incremental normalized loss®. The sum of these ocross all three
loss functions givas the total incremental normalized loss (Table 2-8).
Normolizotion eliminates the difference in scale of the three loss
functions ond should allow an overall uppraisal of the analyses.

Table 2-8 reveals that Analysis 17 (with the sieve) obviously adds least
to the average loss incurred. Anolysis 17 without the sieve is nearly
os good. Analyses 3b with the sieve and 20 without the sieve, the other
two ognalyses picked as best by one of the three loss functions, yield
totol incrementul losses that are about the some, 0.555 ond 0.5%58,
respectively, and follow the pair of Anclysis 17 results, as the next
best methods of analysis.

Figures 2-35 through 2-38 display the plots of those four analysis
methoads. One thing that is clear from these figures is that Analysis 17
derives wmuch of its good performance from the specific subset of
chemicals to which it con be opplied. For only three of those eleven
chemicols does tho best fitting line fail to pass through the interval
of human RRD estimates, for ony loss function. However, even when
Analyses 3b with the sieve and 20 without the sieve are limited to the
same eleven chemicals (Tabla 2-9), Anolysis 17 with the sieve is better
when measured by CAUCHY ard TANH. On the other hand, Analysis 3b with
the sieve, restricted to the sevonteen chemicals tc which Analysis 20
can be applied, yields smaller losses than does Analysis 20 as measured
by all three loss function.

Other analyses thot yieldlralatively good, robust results can be
identified from Toble 2-8. Those for which the total incremental
normalized losses are less than 1.0, for example, for at least one
member of the pair of results (with or without the sieve) include
Analyses 4a through 4d (analyses that differ from the standard only with
respect to the Jose units used to extropolote from animals to humans };
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8b, utiiizing totol tumor-bearing cnimols as the endpoint (as does
Analysis 20 discussed cbove); 8¢, which is limited to carcinogenic
responses that humans got; 9, which averoges results over sex within a
study; 11b, o method that cverageaz the results from raots and mice; and
11¢ which uses rat data only. The best total incremental normalized
losses among these analyses ronge from 0.698 to 0.963.

Note, in passing, that on alternotive ranking procedure that can be
applied is o minimax scheme. That is, for any anolysis, the maximol
loss over the three lnss function can be determined. The analyses thaot
have the smallest maximums are best in o minimax fromework. Since thea
loss functions have different scoles, this upprooch should also be based
on the incremental normalized losses. If this is done, then

Analyses 17, 3b, and 20 remain the best three, in order, and several of
the others just cited, notably 8¢ and 8b, remain in the list of good
analyses. Analysis 22 also sotisfies the minimax criterion well.

Asymmetric Loss

The discussion up to this point has concerned observotions reiating to
loss that is symmetric. That is, the loss functions employed reflected
the assumption that it is no worse to overestimate RRDs by a given
amount than to undersestimate them by the same amount. In fact, it is
reasonable to think otherwise, i.e. to think and bese our decisions on
the premise that overestimation is worse than underestimation. The
health considerations involved in cancer risk assessment make this a
prudent approach.

The effect of incorporating asymmetry into the loss calculations is
investigated in the following manner. The TANH loss function has been
used to fit o line to the results of each analysis method. In the
definition of TANH is a factor, m, called the asymmetry constant, thot
reflects the degree of asymmetry thought to be pertinent. The symmetric
version has m = 1. The fitting is performed now with m equal to 1.5, 2.
S, 10, S0, and 100. Larger volues of m reflect stronger beliefs obout
the inadvisability of overestimating RRD3. Tables 2-10 and 2-11 display
the results for the lower bound predictors.
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Note trat the losses incurred when m = 50 and m = 100 are identical (to
three cdecimal places) for every analysis. Any high degree of asymmetry
grivee the line toward the chemicals in the lower right-hand corner of
the plots. Figure 2-39 displays this phenomenon for Analysis 3b, the
method applicable to the most chemicols. '

As with the symmetric ve,sion of the TANH loss function (c¢f. Table 2-5),
Anglyses 6 and 19 perform well with moderate degrees of asymmetry.
Anclysis 6 continues to be among the five best for larger degrees of
asymmetry whiles 19 does not. Wwhen the minimum lower bound is the
predictor, Analyses 20 (for moderate degrees of asymmev.cv) and Analysis
17 (for all degrees, with the interesting exception of m = 5) perform
well, as they did with symmetric loss. When the predictor is Ljyq,
Analysis 17 is again good for o0ll degrees of asvmmetry, but Analysis 8b,
not Analysis 20, moves to the top five for modercte asymmetry constants.
For both predictors, Analysis 8¢ (which uses an endpoint thot humans
get) produces smoil losses for m > 5. Most notable, however, is the
fact that Analysis 22 (using total malignancy-bearing animals ond
averaging over sex, study, and species), o method moderately good with
no asymmetry, is second only to Analysis 6 (which is applicable to only
six chemicals) for high degrees of asymmetry. This implies thot, if it
is deemed necessary or desirable not to overestimate any RRD, method 22

is the best analysis to use (once agcin ignoring the suggestive results
of Anolysis 6).

It 1s possible to characterize those analyses that will provide the
smallest losses with an asymmetric loss function. If those chemicals
that fall below the line fit with the symmetric function are nearly
colinear with slope equal to one, then a great reduction in asymmetric
loss can be achieved by moving the line to the right (decreasing the
y-intercept). Of course, if those chemicols that lie above the
symmetrically fit line also have this colinear relationship, then the
increagse in loss for those chemicals when the line moves to the right
(as it alwoys‘will with the introduction of osymmetry) can be minimized.
Hence, those analyses that do not produce outliers falling in the upper
left corner or, especially, in the lower right corner of the plots will

suffer relotively less loss thon onclyses thot do produce such outliers.
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In this regard, compore Analyses 20 and 22 (Figures 2-40 ond 2-41). Witn
no asymmetry, Analysis 20 is superior. Any degree of asymmetry greater
than 1.5 makes Analysis 22 prsferoble, sincs osbestos con be accounted
for without hoving to move the line too far to the right.

An asymmetric approach td the prediction problem can be viewed as a
meaons to find the conversion between onimal and humon ~isk estimates
thot is more apt to underestimate human RRDs but is not ovorly
protective, given a specified desgree of belief about the undesirability
of overestimating RRDs. At one extreme are those conversions obtained
when m > 50. In these cosss the conversion is driven by the chemicals
tha: overestimate the most (cf. asbestos in Figures 2-40 and 2-41). 1If
one believes that it is not 50 times worse to overestimate than to
underestimate RRDs, then conversions that are still protective (what s
been cclled "conservative™) can be obtained. These correspond to
smaller volues of m and tend to include more, though not necessarily
oll, chemicals obove the fitted line, the region where biocassays predict
larger risks thon ore obtained from the epidemiology for the given
conversion.

Since the questior of asymmetric loss is closely linked to degrees of
belief about the relative desiradbility of underestimotion ond
overestimation of RRDs, no further investigation of this issue is
undertaken. It should be borne in mind, however, thot all of the
analyses reported in this document can be undertaken using csymmetric
loss. The remainder of the results and the discussion focus solely on
symmetric loss.

Animal-to-Human Conversién

In the previous discussior of gsymmetry, conversion of animal RRD
estimotes to human RRD estimates was mentioned. This conversion 1s
baosed on the best-fitting line that relotes the two sets of RRD
estimgtes. Specifically, it depends on the y-intercept, c, that defines
the line

Log1y(RRDY) = Logyg(RRD,) + ¢, ‘ (2-1)
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or

RRDy = 10€-RRD, (2-2)
which of course depends on the analysis method and predictor. This
conversion is over and above those that are used to equote the units
between humans ond animals: recall that, for eoch of the possible
choices of units used to exiropolote dosas from animals to humans,
species- and chemical-specific dose conversions were used to arrive at

the units mg/kg/day in humaons, the units in which 8ll RRD estimates are
expressed.

The conversion that is discussed here is a multiplicative factor ihnt s
the empiricol result of fitting Egq. 2-1 to the ensemble of bioassay
data. The fitted line will raorely poss through o doto point. Thot is,
for any given chemicul used to fit the line, the conversion determined
by Eq. 2-1 rarely describes the exact relationship between RRDy and RRD,
for thot chemical alone. Rather, all the study chemicals together
determine ¢, and this factor moy then be applied to estimate RRDy for
any other chemical without direct epidemiologicaol estimotes. Tables

2-12 through 2-15 display the y-intercept volues for each onalysis and
each predictor.

It is of some interest to determine the conversion fgctor suggested by
the dota ihct opplies to the standard onalysis, which is modelled after
the Carcinogen Assessment Group's (CAG's) usual procedure. That group
uses the minimum lower bound as its predictor. Table 2-12 shows that
Analysis 0 with Ly yields y-intercepts between 0.51 and 1.71 when no
sieve is aopplied and between 0.83 and 1.07 when the full sieve is used.
The ratios, RRDy/RRD, (which we will call conversion foctors), with
these intercepts range between 3.24 (= 100.51) and 51.7 or 6.71 and 11.7
without or with the sieve, respectively. These figur9es are uniform in
suggesting that CAG's procedure is conservative, in the sense of
underestimating RROs or overestimating risk and so being protective of
human health. Given that CAG screens its dnto to select the best
available studies, a process that may oct like our sieve, the degree of
underestimotion is likely to be about an order of magnitude for the
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level of risk of interest here.

Since Lpg was found to be the best predictor regordless of loss
function, the remainder of the discussion of conversion factors focuses
on thet predictor {Table 2-13). Over all analyses and loss functions,
the ratio, RRDY/RRD,, determined by Eq. 2-2 raonges from 0.184 to 151.
Among those analyses that are based on extrapolation assuming mg/mzldoy
human-and-onimal equivalence {which include almost all of the aonolyses
since the standard onolysi. Ossumes such egquivolence) the ~aotio ronges
from 0.184 (from the CAUCHY loss function opplied to Analysis 21 with
the siovo) to 74.6 (from the TANH loss function line fit to Anclysis 6
with or without the sieve). Since Analysis § results ore based on only
six chemicols, on a.ternative upper value that is more firmly supported
can be obtained from the CAUCHY line fit to Analysis 3q without the
sieve, 28.4. On the other hand, if we limit attention to those anolyses
thot oppear to yield the smollest average losses with the Lag predictor
and the loss functions for which they cre best (cf. Toble 2-7) thaen the
range is from 1.29 (Analysis 20 without the sieve, TANH loss function)
to 16.7 (Anolysis 3b with the sieve, DISTANCEZ loss function).

At this point one can compare and contrast the results of the analyses
thot ore identical except for choice of the dose units cssumed to yield
animal and human equivalence with respect to carcinogenic response
(component 4, cf. Table 1-1). To focilitate this comparison, the
supplemental analyses discussed in Section 1 are examined as well. The
results for these anclyses are presented in Tables 2-1€ and 2-1i7.

It is poscible to identify three sets of five analyses each such thot the
onalysis within a set differ only with respect to the dose units assumed
to yield equivalence. These sets ore {0, 4o, 4b, &4c, 4d), (12, 24aq,

24b, 24c, 24d), and (31, 30, 32, 33, 34). 1In eoch set the ordering of
units is mg/m2/day. mg/kg/day, ppm diet, ppm air, and mg/kg/lifetime.
Tables 2-18 and 2-19 present the loss and intercept results for each of

. these onclyses,.

when the sieve is opplied to these analyses, it is nearly uniformly the
case that mg/kg/day ore the units yielding smallest loss within each

set. The exceptions are in the first set, (0, 4o-4d), with the
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DISTANCE? loss function and in the second set, (12, 26a-24d), with the
DISTANCEZ and TANH loss functions. In oil these instances, )
mg/kg/lifetime are the units producing the smallest average losses. The
units mg/kg/lifetime ore linear tronsformatiuns of mg/kg/day dependent
only on the length of experiment, so a weight-based extrcpolation
appears goid when the sieve is used. For Anolysis 30 with the sieve,
the analysis trot yields the smallest loss of any in Table 2-18, the
y-intercepts (Table 2-19) indicate the ratio RRD,/RRD, is between 1.079
and 2.438, depsnding on which of the loss functions is used. If
attention is restricted to the loss functions that base the fit of the
lines on the location of the bast epidemiological RRD estimates (i.e.
CAUCHY and TANH) the range is narrowsd to between 1.079 ond 1.6€98.

Thus, these calculctions indicate that RKOs obtained from Anolysis 30,
the least restrictive analysis using mg/kg/doy; very slightly
underestimate human RRDs. This is interesting in light of the faoct that
Analysis 4a, which is like Analysis 30 in every way except that routes
of exposure are limited to inhalation, gavage, oral, ond the route that
humons encounter, overestimates RRDs on average (note the negative
intercepts in Toble 2-19). This is an instonce of o general phenomenon:
no matter what units are used for extropolation, the analysis that is
less rezirictive with respect to routes of exposure yields larger
y-intercepts than the more ~estrictive analysis. The effect of
including oll routes of exposure appears generally to be to decrease the
median lower bound. Using the restricted sot of exposure routes but
averaging results over sex, study, ond species hcs the same effect.

Convarsion foctors (ratios) ror oll units of extrapolation are given in
Table 2-20. ’

To close out this discussion of conversion foctors, it is of some
interest to compare conversion from rots to humans and from mice to
humans. The comparison can be made using Analyses 11¢ and 11d (rats
alone ond mice olone, respectively, restricted routes of exposure. with
extrapolation bassd on mg/mzldcv) and Analyses 49 and S0 (rots olone and
mice alone, respectively, any route of exposure, with extropolatiou

based on mg/g/day). For the first pair of anolyses, the rat bioassay
conversion factor ranges from 0.81 to 1.85 with no sieve and from 1.43 to
1.92 with the sieve wherseas the mouse bioassay conversion factor may

vary between 1.78 and 11.67 without the sieve and between 3.72 and 4.30
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with the sieve. These results indicate that, unodjusted, the rat
results come closer to the direct epidemiological results. (Averoge
losses are generally smaller with rat dato also.) For the supplementol
pair, Analyses 49 and 50, rot dota fits better only whcr the sieve is
not applied (Table 2-16) but tend to overestimote human RRDS whereas the
mouse data underestimate (Table 2-17). Wwhen no sieve is applied, the
degree of underestimation with mouse data is comporable to the degree of
overestimation with rot dotao. Howovor.'whon the sisve is applied, the
underestimotion with mouse data {conversion foctors between 1.31 and
1.53) is less extreme than the overestimation with rat daota (conversion
factors between 0.32 and 0.58). [All conversion factors ore based on
the CAUCHY ond TANH loss function, not DISTANCEZ.]

Uncertaointy

It is important to characterize the sources and amount of uncertainty
associated with any method of estimating human risks from animal data.
As described in Section 1, two approaches are token to investigate
uncertainty. The first, which is referred to os residual uncertainty,
is the analog »f the residual error aspect of statistical analyses. It
applies to each analysis method as a whole and delineates the dogroQ of
uncertainty that remains even when the best unit-slope line describes
the data. The other uncertointy investigation ottempts to say something
about the uncertainty associoted with each of the components of risk
assessment. This investigation is more qualitative, but aids in
identification of major sources of uncertaointy and in the degree of
variotion attributable to those sources.

Residuol Uncertointy. The DISTANCEZ loss function is ideolly suited to
an investigation of residuol uncertainty. This function finds the line

thot minimizes the squared distances to the intervals defining the range
of epidemiologicolly derived RRD estimotes. That being the case, the
contribution to the total loss of ony individual chemical indicotes how
for that line is from the chemicol's interval ond thus indicotes
uncertainty over and above that agssociated with the epidemiologically
derived estimates. 1In this sense it is colled residual uncertointy: it
is uncertainty remoining after the epidemiologicol uncertainty is
considered.
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For any onalysis method, the DISTANCEZ-fitted line determines a
predicted dose, RRD,, for each chemicol. If RRDp for ony chemical lies
between the upper and lower bounds of the epidemiologicolly derived
estimates, RRDy yy and RRDy (, respactively, then no residual uncertointy
exists for thot chemical. Otherwise, resicual uncertainty remains. Tre
residuol uncertaointies ore aggrenated in two ways so as tn indicate
something about the uncertaincy in terms of multiplicative factors that
may be opplied to the predictions to give o range of estimotes about the
predicted valuee which aore consistent with the data (cf. the description
of the methods in Section 1 of this volume). Of course, larger foctors
(wider ronges) indicote greater residucl uncertainty.

wren all the chemicals included in any anolysis method, even those with
no residual uncertainty, ore used to characterize uncertainty, o single
factor is estimated. This factor is the average amount by which the
predicted RRDOs must be multiplied or divided so as to eliminote residual
uncertointy. Alternotively, two sets of chemicols, those whose
epidemiologicol estimates lie completely above the line of predicted
values and those whose epidemiologically derived estimotes lie
completely below thot line, con be used sepcrately to determine two
multiplicotive factors, one to occommodate underprediction and one to
accommodate overprediction. Tables 2-21 and 2-22 present these factors

for all cnolyses (including the supplemental analyses) using the Laq
predictor.

Arolyses 6, 18, aond 19 ore the onalyses yielding the smallest foctors.
T.iese are the anaclyses with ths fswest numbers of cnemicals. As in
previous discussions, no more will e said obout thess onalyses.

The only other analyses for which overall uncertainty factors (the
factors bosed on all chemicals included in an onalysis) are less than
2.0 are Analyses 45 and 47, with the sieve. These supplemental anolyses
average either over sex (45) or over all species (47). As can be seen
from Table 2-12, these two cnalyse. ore two of the best of the
supplementbl. indeed of all, onalyses. Of course, the overall
uncertainty factors ore closely tied to loss as determined by the
DISTANCE? function. Consequently, those producing small average loss
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(e.g. those in Table 2-6) olso yield relaotively small uncartoiaty
factors.

The factors estimated using only those chemicals with positive residual
uncertainty (those for which the line does not intersect their verticol
interval) generally follow the some pattern as the overall uncertainty
factors. Since fewer chemicals are used to estimote these vglues, they
may be less stable thon the overall factors, however. The usefulness of
separate "above the line" aond "below the line" estimates caon be
visualized if one considers that the chemicals completely below the line
are the ones of primary concern. They aure the chemicals for which
biogssay dota overestimate RRDs (even given the conversion factor
suggested by the best-fitting line). As long as one accepts that the
health implications are worse when RRDs are 2verestimated than when they
are underestimated, it may be reasonable to want to eliminate residual
uncertainty with respect to the former but not with respect to the
lotter. One approach mentioned earlier is to use asymmetric loss
functions: high degrees of osymmetry do oct to eliminate the residual
uncertainty of concern. Another approach, embodied here, is to estimate
an uncertainty foctor tailored to those chemicals below the line.

That uncertainty foctor con be seen to vory between 0.009 (Analysis 21
without the sieve) and 0.363 (Analysis 45 with the sieve), still
ignoring Analyses 6, 18, ond 19. Generally, omong the better analyses,
the volues indicote thaot predictions would neud to be divided by a
factor of 3 to 5 to occount for the chemicals that overpredict RRDs.

Component-Specific Uncertainty. The suzplemental analyses consist of an

Qlternative standard (Analysis 30) and 18 vaeriations of the standard.
Each variant differs from the standard in only one respect, i.e. in the
approach taken to one of the components defining the analyses. This
supplemental set is used to investigate the uncertainty associated with
each of those components.

The alternative standard occepts any experiment ond assumes a mg/kg/day
equivalence between humans and onimals. This glternative is used in
place of Analysis 0 becouse the correlation analysis and certain of the
prediction analysis results suggest that allowing all routes of exposure
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(Analyeis 3b) is preferable to restricting the routes to those that
humons encounter, govoge, inhalation, or oral. Moreover, mg/kg/day
rather than m/mzlday may be the preferred units for extrapolation when

L2q is the precictor. All component-specific uncertainty investigations
are limited to this predictor.

In such investigations, one is interested in how the RRC estimates
change when a component is changed. Consequently, it is not necessary
that there be epidemiologically derived estimates to use for comparison

ond 80 all 44 chemicaols (not only the 23 with human data) can be used to
address this question.

It is usuclly the cose that any change in an csisumption underlying o
quantitotive risk ossessment will result in a change in the risk
estimates. A component-specific uncertainty investigation should then
tell us two things: how the risk estimates change and how consistently

they change. A histogram approaoch has been used to address these
issues.

Figures 2-42 through 2-59 display the histogroms resulting from this
investigaotion. Euch histogrom corresponds to one of the variations of
the alternative standord cnalysis. The entry for a chemicaol in any
histogrom indicotes the magnitude of the ratio of the RRD estimates
(L2q) from the variaont to that from the clternative standard. In this
way, the distribution of the changes among the chemicals can be
visualized.

Table 2-23 displays the mode of the distribution of sach histogram.

Aleo presented in that toble is o dispersion factor that is analogous to
the uncertainty factor used in the residucl uncertainty anolysis and
specifies the average factor by which the ensemble of chemicals differs
from the mode (cf. the Section 1 description of the methodology). This
tactor is dependent on the specific cut points choser for the
histogroms, but because those cut points ore the same for each analysis
method, it is a valid means of comparing the components with respect to
uncertainty. The greater the faoctor, the less consistent is the change
in RRD estimates that results from the component change corresponding to
the histogram. Less consistency {more chemical dependency) indicotes
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more uncertainty is cssociated with the corresponding component.

Figures 2-42 through 2-4% gartoin to tho choico of dose units used for
animal-to-human extrapolaticn. Thuse figures show relotively little
dispersicn of the chemicois and heice indicote little uncertcinty
associoted with thae choics of dorfe unitg. That is not to say that the
resulting RRD estimates ure not dromoticolly affected by changes in
units. Thes# ore tha only aralyses for which th3 mode is not in the
interval frem 0.8 to 1.25 (Table 2-23). However, the dispersion factors
ond the figures indicate that changing units has o relctively
predictoble effect, one that is not chemical dependent. The plot in
Figure 2-42, for example, largely reflects the standord values (body
woight; surface area coefficient; cf. Taoble 1-3) used in the conve~sion
from mg/kg/day to mg/mzldoy in rats and mice. Wwhen those standords care
used, the rotio of the RRD estimates (in oll cases, the standard, using
mg/hg/day, is in the denominctor) ie obout 0.09 for mice and 0.21 for
rats. The chemicols falling between 0.1 and 0.2 in Figure 2-42 are the
result of using experiment-specific body weights or of cases .n which
changing units also changes the ordering of the experiments (due to
speciss-specific changes) and so changes the experiment yielding the
median estimate. Hence this figure, showing the greatest c¢ispersion of
the four because of the fairly even split between use of mice aond rats,
may even exaggarate the uncertainty here.

The next two histogroms (Figures 2-46 and 2-47) relate to criteria
ploced on the length of observation and length of dosing., respectively.
The relatively large dispersion noted is due to extrome changes in one
or two chemicals. Restriction to long experiments decreases the RRD
estimate for cigarette smoke by a factor over 1000. Similarly,
restriction to experiments that dosed the treated animals for ot least
80% of the standard experiment length increases RRD estimates for

asbestos and cadmium by over three orders of mognitude.

No extreme chonges are noted when experiments ore limited to those using
the route of exposure by which humans encounter the chemicals in
question (Figure 2-48). However, for only 24 of the 44 chemicals were
there studies employing that route. When o lesz restrictive criterion

is used (the route just menticned plus gavage, inhalation, and oral
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routes; Figure 2-49), moderately sxtreme values do cppear,
benzo(a)pyrene ond corsenic which change by factors of 847 and 410,
respectively. These chemicals were not included in Figure 2-48 but
account for the majority of the dispersion seen in Figure 2-49.
Otherwise Figure 2-49 is less disperse than Figure 2-48.

The next four histograoms (Figures 2-50 through 2-53) relate to the
choice of endpoints to be analyzed. These are among the most disperse
of the figures in the sense of including several extreme changes
(Figures 2-50 and 2-53) ond also in the sense of having less

dominant modes (Figures 2-51 through 2-53). If not for two extreme
changes (cigarette smcke and saccharin for which the ratios are
9.77x10-% and 8.69x10-8, respectively), Figure 2-50 (malignant tumors

¢nly) would display much less disgersion, being on the order of 13
raother thon 291.

All of the histograms discussed above, except for those that relate to
choice of dose units, depict changes that occur becauss a subset of the
doto ore used., They demonstrate the effect such selection; have on'the
location of the medion lower bound RRD. A chemicol with o ratio greoter
than 1 is one for which the selection tends to eliminate smaller
estimates. Componenti< such as the-e that relate to biogssay or response
inclusion criteric can be very sensitive to the data that are available,
certainly more so than those components that relate to manipulation of
whaotever data ore ovailable (such as the component reloted to the choice
of dose units). This sensitivity is reflected in the fact that for
these histogroms fewer thon the maximum nu”%er of chemicals (44) ore
addressable once the inclusion criteria are applied and moy contribute
strongly to the oppearance of the extreme changes that have been noted.
One must be aware that some confounding due to doto aoveoilobility may be
present in the histograoms of Figures 2-46 through 2-53.

On the other hond, those analyses that dictate how the experiment-
specific RRDs are averuged are all based on the same data. In the
standard analysie no averaging is {erformed. Analyses 45 through 47
(Figures 2-54 through 2-56) average results over sex alone, study alone,
and species alone, respectively. The uncertainty associoted with any of
these procedures is small, the dispersion factors indicote that the
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avercge chonge in the RRD estimates is less than a factor of 2.2.

liowever, if we limit attention to rats and mice (Figures 2-57 through
2-59) uncertainty is again great. This, too, may be in part o
reflection of dependence on data availability. Consicer the case of
saccharin which contains mouse and rat bioascays predominantly. The rat
studies are of better guality (they get rank 1 by the quality scraen)
than ore the mouse studies (rank 3) so that when both are consigered,
only the rot studies are onclyzed (the full sieve is used in the
analyses represented in the nistograms). Therefore, no change is seen
when rats clone or the average of rot and mouse dota are used (Figures
2-47 aond 2~46, respectively). The mouse results are over five orders of
magnitude smallar than the rat results.

Nevertheless, some species-specific changes can be discerned. Cigcrette
smoke is apparently more potent in rats thon in other species. Arsenic
is less potent in rots ane mice although this may also reflect some data
dependence. Overall, the choice of species appecrs to be a highly
uncertain component of risk assessment as indicated by the large
dispersion factors for Analyses 49 and 50, ond by the difference in
dispersion between Analyses 47 and 48 (Figures 2-56 and 2-57) which
differ only in that species other than rats and mice are included in
Analysis 47. It is easy to see how data availability can aoffect the
estimates from any given species, cbove and beyond the question of the
most appropriate species for any given chemical.
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Table 2-1

CORRELATION COEFFICIENTS AND ASSOCIATED
p-YALUES, BY ANALYSIS METHOD AND SIEVE

Quality and

Quolity Significance Significonce
# of No Screens Screen Screen Screen
Chemi- p- p- p- p~-
Anolysis cols p__volue Y volue ] volue o volue
¢ 20 .68 .0002 .73 .0001 .78 <¢.0001 .78 .0001
1 18 .55 .0085 .55 .,0083 .68 .0013 .68 .0015
2 19 .81 .0034 .55 .0075 .49  .0187 .49 .0153
3a 17 .62 .004 .64 .0026 .74 .0005 .73 .0007
3b 23 .80 <¢.0001 .77 <.0001 .78 <¢.0001 .90 <¢.0001
4a 20 .70 .0008 .76 ¢.0001 .77 <.0001 .78 .0001
4b 20 .67 .0004 .73 .0001 .76 ¢.0001 .76  .0001
4e 20 .67 .0008 .71 0004 .77  .0002 .78 ¢.0001
4d 20 .68 .0004 .76 0002 .77  .0001 .78 <.0001
5 20 .69 w003 .7 .0001 .78 .0001 .75 <.0001
6 6 .86 0028 .79 .0317 .93 .019¢ .79 .0342
7 19 .55 .0079 .64 ,0015 .72 .0003 .76 .0001
8a 13 .50 .0379 .56 .0207 .50 .0435 .56 .0214
8b 17 .60 .0050 .60 .0052 .66 .0013 .66 .0022
8c 18 ©.76 .0004 .71 .0009 .76 .00C2 .76  .0001
9 20 .69 .0004 .70 . 0007 .77 ¢.0001 .76 .0003
10 20 .71 .0004 .73 <.C001 .75 .0001 .77 .0002
11a 20 .60 .0025 .73 .0002 .69 .0011 .76 <.0001
11b 20 .66 .0009 .72 .0001 .73 .0003 .75 <.0001
11¢ 19 .77 .0002 .74 .0001 .79 .0001 .79 ¢.Co01
11d 13 .62 .01 .69 .0048 .80 .0006 .76 .0023
12 20 .7% .000S .75 .0001 .73  .0001 .7% ¢.000"
13 18 .48 .0240 .50 .0172 .43 .0368 .43 .0416
14 19 .71 .0005 .7% .0001 .70  .0007 .71 .0005
15 18 .48 .0267 .50 .0177 .45 .0321 .46 .0316
16 13 .48 .0489 .49 .0472 .49 .0470 .49 .0438
17 11 .57 .0358 .57 .03869 .58 .0280 .58 .0301
18 10 .79 .0036 .76 .0046 .74 ,0090 .73 .0090
19 9 .79  .0062 .79 .0057 .79 .0060 .79 .0058
20 17 .87 .0020 .64 .0035 .65 .,0024 .63  .0043
21 13 .43  .0715 .37 .1046 .43 .0698 .38 .1023
22 15 .34 .1078 .34 .1075 .35 .1001 .35 .1036
23 13 .18 .2832 .01 L4904 .18  .2744 .18 .2821
24a <0 .76 <.0001 .76 .0004 .72 .0006 .75 .0001
240 20 .73 .0004 .7% .0001 .71 .0003 .74 .00C1
24¢ 20 .76 .0001 .76 <¢.0001 .72 <.0001 .74 .0001
24d 20 .73 .0003 .76 .0002 .71 .0001 .75 <.0001
25 16 .69 .0023 .64 . 0042 .79  .0001 .81 .0002
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Table 2-2

L e s

ABBREVIATIONS FOR CHEMICALS INCLUDED IN THE STUDY

Those with Suitable

Epidemiolgicaol Dotao dthers
Abbrevigotion Chemical Abbrevigtion Chemical
AB Asbestos AC Acrylonitrile
AF Aflatoxin AL Allyl Chloride
AS Arsenic AM 4-Amincbiphenyl
BN Benzene 3A Benzo(a)pyrene
B2 Benzidine co Chlordane
cB Chlorambucil cT Carbon Tetrachloride
cD Cadmium D8 3,3-Dichloro-
CR Chromium benzidine
cs Cigarette Smoke DE 1,2-Dichloroethane
Ds DES DL Vinyiidene Chloride
EC Epichlorohydrin DP Diphenylhydrazine
EO Ethylene Oxide ED EDB
ES Estrogen FO Formaldehyde
IS Isoniazid HC Hexachlorobenzene
mc Methylens Chloride HY Hydrazine
ML Melphalan LE Lead
NC Nickel MU - Mustaord Gos
PC PCBs NA 2-Nophthylamine
PH Phenacetin NT . NTA
RS Reserpine T0 TCOD
sc Saccharin TE Tetracholorethylene
TC Trichloroethylene TP 2.4,6-Trichloro-
vC Vinyl Chloride phenol
TO ' Toxaphene
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Table 2-3

AVERAGE LOSS AS DETERMINED By THE SYMM:ZTRIC DISTANCE2

- Predictor
LM L2g

Analysis No Sieve Sieve No Sieve Sieve
0 .650 .570 . 146 .298
1 .7°A .630 .261 .377
3a .74 . 364 .215 .310
3b .779 .820 .266 .113
4a .701 .552 .124 .273
4b . 684 .599 . 166 .316
4c . 646 .578 . 157 .272
4d .767 .516 134 .267
S . 640 . 548 . 142 .285
6 ) .240 . 159 .001 .001
7 . 495 577 .200 .33
8a .514 .279 430 .224%
8b .550 1.088 .678 .597
8c .567 .246 .189 .243
9 . 845 . 529 Y .298
10 .541 412 .523 .268
11a .639 . 465 .272 .239
11b .659 .488 . 241 .274
11e .732 .577 .253 .277
11d . 480 .256 .280 .228
12 . 541 .310 .541 .310
13 .352 .459 .352 .459
14 .279 . 368 .279 .368
15 .368 . 430 . 368 .430
16 .352 .234 . . 352 . 234
17 . 289 .290 . 289 .290
18 .082 .064 .082 . 064
19 .090 .07% .090 .075%
20 Y'Y .7%2 L4411 . 752
21 1.100 . 964 1.100 .962
22 .530 .574 .530 .574
23 1.181 1.170 1.181 1.170
24q .608 .298 .605 .298
24b . 580 .318 .580 .319
24¢ .526 .296 .526 . 296
24d .630 .276 .630 .277
25 .278 .191 232 . 190




Table 2-4

AVERAGE LOTS AS DETERMINED BY THE SYMMETRIC CAUCHY
LOSS FUNCTION, BY ANALYSIS METHOD, PREDICTOR, AND SI1EtVE

Predicter
Lm Log MLEm MLE2oq
No No No No

Anolysis Sieve Sieve Sieve Sieve Sieve Sieve Sieve Sieve
0 .566 .509 . 440 .457 .586 .415 .507 . 482
1 .540 .508 .478 .506 .569 .513 .819 .428
30 . 547 . 464 .487 .467 .606 479 .551 . 492
b .551 477 453 413 .558 . 483 .520 423
4a .597 .492 . 423 . 437 .570 .502 .509 .463
4b .546 .528 420 .466 5385 .536 .492 . 495
4c .546 . 493 . 388 . 440 584 .502 471 .467
4d .605 . 485 .428 L6454 .573 . 492 .508 480
5 .560 .511 440 L4568 .591 .515% .500 .476
6 . 453 .359 .279 .309 .Lub . 360 .261 .287
7 . 496 .523 .521 .49 .559 .535 .B45 .510
8a .467. 441 . 430 .419 .478 463 . 453 444
8b . 459 L6442 . 439 447 .604 674 .685 .651
8¢ .511 .533 432 494 .604 .578 711 .599
9 .559 .516 633 .643 .589 .524 .535 .48¢C
10 .530 .482 . 499 .465 .563 . 495 .538 .485
11a .560 . 486 4786 448 .575 . 492 .57% .L488
11 477 L7 . 381 .08 .S00 . 466 .517 433
11e . 429 421 .378 .399 .Lus5 L4439 .527 .428
11d .528 .490 . 488 L6451 .529 . 458 .527 L4821
12 .524 .460 . 524 .460 .566 L&74 .566 474
13 . 490 .519 .490 .519 .572 .567 .572 .567
14 .,98 .L93 .498 .493 .564 .%10 .564 .579
15 .500 . 489 .500 .489 .618 .579 .81R .879
16 .63 .409 813 . 409 .437 L4831 437 431
17 .37% .333 . 375 .363 L6412 . 399 L8412 .399
18 .366 .377 . 366 .377 .366 .373% . 366 .573%
19 . 344 . 322 1Y . 322 . 354 . 327 . 354 .32
20 .410 L4586 .10 .456 .614 .664 .84 .664
21 .2u2 L4852 . 424 452 .817 .766 .817 .766
22 . 445 632 . 445 .432 .664 . 684 .684 . 694
23 . L60 Y% . 460 . 443 .665 . 680 .665 . 680
240 . 541 . 448 .541 . 448 .559 . 468 .559 . 468
240 . 522 477 . 922 677 R-Ya L4919 3N .49
24c¢ .916 .45 .516 451 .60 . 466 .560 . 466
24d .550 , %430 .550 L4%0 .570 .L68 .570 . 468
25 .L63 L4904 .70 .5086 .558 .530 L4946 .561

"
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Teble 2-5

AVERAGE LOSS AS DETERMINED BY THE SYMMETRIC TANH
LOSS FUNCTION, B8Y ANALYSIS METHOD, PREDICTOR, AND SIEVE

Precictor
Lm Lon MLEm MLE2g
No No No No
Analysis Sieve Sjieve Sieve Sieve Sieve Sieve Sieve Sieve
0 .193 .180 .159 .170 .232 .24 .226 .207
1 .198 .190 .183 .188 .237 .226 .330 .225
3a L1863 .179 172 .184 .21 .269 .315 .302
3b 191 .178 . 151 .16Q . 199 175 . 185 .14
4a .201 L1727 .156 .164 .237 .213 .224 .203
4b .197 .212 .157 .178% .240 .219 .223 .212
4e 194 .179 L1522 . 167 . 234 216 .216 .2086
4d .201 .17% .153 .1686 .237 .210 .223 .205
5 .193 .180 .159 .169 .23 214 .223 .206
6 . 149 134 .110 .120 142 134 111 .118
7 .183 .184 . 181 177 .226 221 .269 .216
8a .187 .178 L1798 .172 . 246 . 244 .246 .24
8b .127 L1386 125 .12% . 357 426 .466 44
8¢ . 169 .153 142 . 152 .301 L2946 .590 .296
9 .193 .18 .58 LN .234 .216 .248 .209
10 .181 .173 .176 .169 .224 ,209 234 .208
11a .190 .17% .167 L1862 .230 .210 .2486 L247
11b .192 AN .156 .160 .222 .208 .216 .199
11c .179 .172 .156 .162 214 .212 .268 .202
11d .197 L1173 L1746 .163 .235 .213 . 322 .205
12 .180 .169 .180 .169 .225% .204 .225 .204
13 L1727 .187 L1727 .187 ,236 .281 .236 .281
1% .175 .176 .17% L1786 .225 214 .22% .215
15 .178 176 .178 .176 .289 .280 . 289 .280
16 L1786 .172 .178 172 . 244 L 243 . 244 .2bL3
17 . 123 121 . 123 121 . 2086 .203 .2086 .203
18 .183 .185 . 183 .18% .181 . .185 .181 . 185
19 126 .120 L 124 .120 . 126 121 . 126 121
20 .121 . 130 L1121 . 130 . 368 R'Ya .365 421
21 161 . 149 L1411 . 149 L4586 .5186 .4586 .516
22 160 . 137 160 137 . 365 .398 . 385 . 398
23 .15% . 152 .153 .152 .375 . 379 .37% . 379
240 . 1886 .167 .186 167 . 227 . 204 .227 . 204
24b .184 L1733 . 184 .73 .229 208 .229 .208
2l .179 . 169 .179 . 168 . 223 . 205 . 223 .20%
24d .187 .166 .187 .166 .229 .209 . 229 .203
25 .159 182 . 154 .151 .252 Y4 . 252 .25t
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Tabie 2-§

COMPARISON OF ANALYSES; FIVE BEST ANALYSES,

BY PREDICTOR AND {0SS FUNCTION

Loss Function

DISTANCE? CAUCHY ‘ TANH
Predictor Analysis Avg.lLoss Analysis Avg.Loss Analysis Avg.loss
Lm 18 .052 (ns)@ 19 .322 (s) 19 .120 (s)
19 .075 (s) 6 .359 (s) 20 .121 (ns)

6 .159 (3) 17 .363 (s) 17 .121 (8)

25 .191 (s) 18 .366 (ns) 8b . 127 (ns)

2 .209 (ns) 16 .409 (s) 6 .134 (s)

Lag 6 .001 (s) 6 .270 (ns) 6 .710 (ns)
18 .052 (ns) 19 .302 (s) 19 .120 (s)

19 .075 (s8) 17 .363 (s) 20 .121 (ns)

3b .113 (s) 11c .378 (ns) 17 .121 (s)

4a .124 (ns) i1b .381 (ns) 8b .125 (s)

MLEM ~--b 19 .327 (s) 19 .121 (s8)
6 .360 (s) 6 134 (s)

18 .366 (ns) 3b .175 (8)

17 .399 (s) 24d .203 (s)

16 431 (s) 17 .203 (s)

MLE2q --b 6 .261 (ns) 6 .111 (ns)
. 19 .327 (s) 19 .121 (s)
18 .366 (ns) 3b .131 (s)

17 .399 (s) 11b .199 (s)

11d 421 (s) 11c .202 (s)

®%The loss given is the smaller of the two losses (with ond without the sieve)

The code in parentheses indicates whether it comes {iom
the anolysis without the sieve (ns) or with the sieve (s).

PThe DISTANCE? loss function is not used with MLE predictors.

for any onalysis.



6¢-2

Table 2-7

COMPARISON OF ANALYSES; FIVE BEST ANALYSES, EXCLUDING
ANALYSES 6, 18, AND 19, BY PREDICTOR AND LOSS FUNCTION

Loss Function

DISTANCEZ CAUCHY TANH
Predictor Analycis Avg.LoOsS Analysis Avg.Loss Anglysis Avg.Loss
Lm 25 .191 (s)° 17 .363 (s) 20 .121 (ns)
2 .209 (ns) 16 .409 (s) 17 .121 (s)
16 .234 (s) 20 .41C (ns) 8b .127 {ns)
8¢ 254 (s) 11¢c .421 (s) 22 .137 (s)
11d .256 (s) 21 .424 (ns) 21 L1417 (ns)
L2g 3b .113 (8) 17 .363 (s) 20 .121 (ns)
4a .124 (ns) 11¢c .3:8 (ns) 17 .121 (s)
3a .130 (s) 11d .381 (ns) 8b .125 (s)
4d .134 (ns) 16 .09 (s) 22 L1537 (s)
9 .141 (ns) 20 .410 (ns) 3b .140 (s)
MLEM --b : 17 .399 (s) 3b 175 (s)
16 431 (s) 24d .205 (s)
11¢ 445 (ns) 17a .203 (s)
11d .458 (s) 24a .204 (s)
11b 466 (s) 12 .204 (s)
MLE g --b 17 .399 (s) 3b 141 (s)
11d 421 (s) 11b .199 (s)
3b 423 (s) 11c .202 (s)
11¢c 428 (s) 24d .203 (s)
16 .631 (s) 17 .203 (s)

OThe loss given is the smaller of the two losses (with and without the sieve)
for ony onolysis. The code in parentheses indicates whether it comes from
the analysis without the sieve (ns) or with the sieve (s).

bYhe DISTANCEZ loss function is not used with MLE predictors.



Tabie 2-8

TOTAL INCREMENTAL NORMALIZED LOSSES,
3Y ANALYSIS AND SIEVEOC

Total Incremental Normalized Loss

Anglysis No Sieve Sieve
0 1.018 1.418
1 1.683 1.997
2 1.543 2.175
3a 1.719 1.390
3b 1.079 0.555
4a 0.920 1.198
4b 0.900 1.558
be 0.698 1.258
4d 0.853 1.313
5 1.01% 1.385
7 1.835 1.736
8a 1.534 1.176
8b 0.996 0.963
8c 0.758 1.239
9 0.961 1.4686

10 1.944 1.817
11a 1.450 -1.194
11b 0.746 0.983
11e¢ 0.741 ¢.968
11d 1.627 1.215
12 2.156 1.430
13 1.751 2.158
14 1.695 1.767
15 1.836 1.804
16 1.324 1.133
17 0.259 0.166
20 0.558 1.23
21 1.553 1.700
22 1.117 1.043
23 2.004 1.888
24a 2.398 1.325
24b 2.242 1.591
24¢ 2.084 1.369
24d 2.484 1.301
25 1.183 1.292

9Calculated using Lpg as the predictor.
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Toble 2-9

AVERAGE LOSS FOR RESTRICTED SETS OF CHEMICALS
FOR ANALYSES 3b, 17, and 20, BY LOSS FUNCTION®

Sets of Loss Function
Chemicals Anglysis DISTANCES CAUCHY TANH
11 to which 3b with sieve 0.053 0.44 - 0.131
Anclysis 17 17 with sieve 0.290 0.363 0.121
is applicabie 20 w/o sieve 0.1861 0.409 0.133
17 to which 3b with sieve 0.082 0.360 0.100
Analysis 20 20 w/o sieve 0.641 0.410 0.121

is applicable

9The Laq predictor is used.



Table 2-10

AVERAGE LOSS AS DETERMINED BY THE ASYMMETRIC TANHM LOSS FUNCTION

FOR Lm.

BY ANALYSIS AND DEGREE OF ASYMMETRY

Asymmetry Constant {(m)

Analysisd 1.5 2 S 10 50 100
0 . 207 .224 .279 .312 .319 .318
1 .220 L_2hb .296 .328 . 332 .332
2 .204 .222 .264 .284 .290 .280
3a .200 .217 .260 .293 .321 321
3b .191 . 208 .247 .283 .336 .336
4a .201 .218 .272 .306 .312 .312
4b .21 .228 .282 .312 .319 .319
4e .205 .222 .275 .305 .312 .312
4d .199 .218 .270 .305 .310 .310
5 .207 .22% .276 .310 .316 .316
6 . 144 . 149 .161 .173 .173 .173
7 .213 .232 .281 .310 .313 .313
8a .200 .218 .282 .290 .296 .296
gb . 187 .170 .215 .276 .352 . 352
8¢ .177 .188 .21 .232 .280 .280
9 .208 .226 .278 .31 .314 .34

10 .197 .24 .268 .294 . 301 .301
11a .200 .218 .273 .305 .309 .309
11b .192 .209 .264 .296 .300 .300
11c . 181 .207 .260 .292 .297 .297
11d .20 .220 .27 .291 .291 .291
12 .192 .208 .260 .287 .288 .288
13 .21 . 224 .256 .267 . 267 .267
14 .199 .216 . 265 .292 .301 . 301
15 .200 .219 .263 .278 .285 .28%5
16 .189 .208 .275 .293 .312 312
17 . 140 . 157 .218 .23+ .250 .250
18 .198 .210 .279 .335 .383 .363
19 L1364 . 146 .215 .267 .288 .288
20 L1854 .169 L2170 .270 . 340 . 340
21 .168 177 .225 .293 . 340 .340
22 . 149 .160 .196 .225% .230 .230
23 .170 .187 .257 .342 .377 .377
240 .188 .204 .255 .283 .287 .287
24b . 185 211 .259 .288 .289 .289
24¢ .189 .205 .253 .28 .282 .282
24d .188 .204 .254 .282 .287 .287
25 77 .196 .228 .253 .305 . 3058

OAnalyses have been performed using the sieve.
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Table

2-11

AVERAGE LOSS AS DETERMINED BY THE ASYMMETRIC TANH LOSS FUNCTION
FOR L2q. BY ANALYSIS AND DEGREE OF ASYMMETRY

Asymmetry Constant (m)

Anglysis® 1.5 2 5 10 50 100
0 . 188 .203 .249 .283 .290 .290
1 .208 .220 . 267 .299 . 304 .304
2 .207 .223 . 264 279 .287 .287
3a . 195 . 207 237 . 264 .293 .293
3b .1586 . 169 210 .235 . 283 .285
4a . 184 .198 . 240 .275 .281 .281
4b .193 .205 . 250 . 281 .288 .288
4e .18% .199 .243 274 .281 .281
4d .186 .200 . 240 .275 .281 .281
5 .188 .202 .247 .282 .288 . 288
6 . 126 .130 144 149 L1489 149
7 .199 214 . 260 .90 .293 .293
8a . 189 . 204 . 269 .277 .283 . 283
8b . 148 .162 .201 .281 .339 .339
8c .170 .179 .205 . 227 .272 272
9 . 188 . 205 .257 . 290 .292 .292

10 .180 . 207 .<91 .279 .286 .286
11a . 184 .199 . 247 .270 . 284 . 284
11p . 181 .197 .246 .72 275 .27%
11¢ . 182 . 196 .236 . 269 .275 . 275
11d . 189 .207 .258 .279 .79 .279
12 .182 .208 . 260 . 287 . 288 .288
13 211 . 224 .256 . 267 .267 . 267
14 .199 .216 . 265 .292 . 301 . 301
15 .200 .219 .263 .278 . 285 . 285
16 . 189 .205 .275 .293 .312 . 312
17 . 140 . 157 .218 .23% .259 .2%0
18 .198 .210 .279 . 335 .363 . 363
19 134 L1486 .215 .287 .288 .283
20 . 154 .169 .210 .270 . 340 . 340
21 .168 .1727 . 225 . 293 . 340 .3%0
22 . 149 .160 .196 . 225 .230 .30
23 .170 . 187 .257 . 342 377 .377
240 . 188 .204 .25% .283 .287 . 287
24b .185% LN .259 .288 . 289 .28%
24¢ .189 .20% .253 .281 .282 .282
24d .188 .204 . 254 .282 .287 .287
25 176 .189 .220 L 244 .297 .297

OAnalyses have been performed using the sieve.
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Toble 2-12

Y-INTERCEPT VALUES FOR BEST-FITTING LINES,
Ly PREDICTOR, BY ANALYSIS, SIEVE, AND LOSS FUNCTION

No Sieve ] Sieve

Anolysis DISTANCEZ CAUCHY _ TANH DISTANCEZ CAUCHY  TANH
0 1.€87 0.510 1.714 0.827 1.066 1.0867
1 1.450 0.931 1.067 0.821 1.357  1.0867
2 0.927 0.824 1.067 0.404 0.537 0.665
3a 1.683 2.004 1,922 1.117 1 286  1.374
3b 1.528 1.820 2.164 1.976 0.530 1.260
4a 0.830 -0.462 1.517 0.087 -0.085 0.072
4b 1.352 0.308 1.032 0.609 0.546 0.742
4e 1.309 0.344 1.079 0.596 0.599 0.725
4d 2.563 1.230 2.919 1.582 1.621  1.817
5 1.546 0.440 1.610 0.765 1.084 1.071
6 2.453 1.519  2.086 2.300 1.488 2.086
7 1.151 1.723  1.417 0.730 0.960 1.067
8a 1.120 1.135  1.493 0.907 1.045  1.555
8b 0.869 0.071 0.302 0.455 -0.176 0.233
8c 0.860 1.732  1.391 0.583 1.247 0.813
9 1.56% 0.493 1.714 0.770 0.956 0.966
10 1.162 0.665 1.208 5.611 0.771 0.955
11a 1.370 0.340 1.439 0.734 0.839 0.874
11b 1.322 0.359  1.391 0.701 0.462 0.603
11¢ 1.235 0.361 0.519 0.748 0.291  0.447
11d 1.301 0.228 1.097 0.197 0.849 0.738
22 0.939 0.66n 0.939 0.444 0.540 0.749
13 0.319 0.709 0.727 0.168 -0.045 0.272
14 0.482 1.003  0.929 0.456 0.360 0.731
15 0.298 0.693 0.744 0.237 0.291 0.27:
16 0.905 6.613 0.710 0.749 0.679 0.€31
17 0.7¢9 0.443  0.467 6.772 0.451 0.447
18 1.274 0.518 0.634 1.308 0.616 0.988
19 1.188 0.376  0.447 1.254 0.450 0.447
20 0.450 -0.161 -0.110 0.159 0.038 0.233
21 0.106 -0.158 0.233 0.053 -0.736 0.233
22 0.2335 -0.679 -0.549 0.286 -0.857 -0.549
25 -0.073 -0.564 -0.058 -0.120 -0.715 -0.613
24a 0.245% 0.113  0.361 -0.305 -0.372 -0.212
24b 0.691 0.182 0.498 0.226 0.249 0.470
24¢ 0.634 0.328 0.545 0.209 0.261 0.471
24d 1.812 1.943  2.179 1.201 1.296 1.364
25 1.033 1.758  1.714 0.722 1.381 0.955
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Table 2-13

Y-INTERCEPT VALUES FOR BEST-FITTING LINES,
Log PREDICTOR, BY ANALYSIS, SIEVE, AND LOSS FUNCTION

No Sieve Sieve

Analysis DISTANCEY CAUCHY  TANH DISTANCEZ CAUCHY _ TANH
0 0.£28 0.380 0.532 0.474 0.189 0.315
1 0.416 -0.270 0.272 0.550 0.135 0,583
2 0.630 0.258 0.315 0.201 -0.067 0.272
*a 0.635 1.454  1.339 0.695 0.624 0.822
3b 1.31% 0.612 1.087 1.223 0.927 1.080
4a -0.257 -0.428 -0.143 -0.358 -0.566 -0.601
4 0.225 0.115 0.226 0.236 -0.230 0.069
4c 0.150 0.211 0.338 0.186 -0.079 0.024
4d 1.282 1.310 1.598 1.183 1.017 1.222
5 0.493 0.334  0.434 0.435 0.154 0.315
6 1.667 1.670 1.873 1.667 1.41%  1.873
7 0.370 0.872 0.977 0.428 0.210 0.555
8a 1.045 0.686 0.742 0.793 0.683  0.742
8b 0.145 -0.081 0.233 0.072 -0.036 0.233
8c 0.258 0.289 0.413 0.478 -0.357 0.654
9 0.607 0.433 0.532 0.494 0.278  0.449
10 0.925 0.292  1.065 0.356 0.467 0.458
11a 0.664 0.447  0.841 0.161 0.183  0.283
11b 0.515 -0.064 0.173 0.347 0.293  0.447
1ie 0.747 -0.093 0.267 0.297 0.155 0.283
11d 0.808 0.251 1.087 0.085 0.633 0.571
12 0.939 0.664 0.939 0.444 0.540 0.749
13 0.319 0.708 0.727 0.168 -0.045 0.272
14 0.482 "1.003  0.929 0.456 0.360 0.73
15 0.298 0.693 C.744 0.237 0.291 0.272
16 0.90% 0.613 0.710 0.749 0.679 0.631
17 0.769 0.443  0.447 0.772 0.451  0.447
18 1.274 0.518 0.634 1.308 0.616 0.988
19 1.188 0.374  0.447 1.254 0.450  0.447
20 0.450 -0.161 =-0.110 0.159 0.038 0.233
21 0.106 -0.159 0.233 0.053 -~0.736 0.233
22 0.233 -0.679 -0.549 0.286 -0.657 -0.549
23 -0.073 -0.564 -0.058 -0.120 -0.715 -0.613
24a 0.245 0.113  0.361 -0.305 -0.372 -0.212
24b 0.691 0.182 0.498 0.226 0.249 0.470
24¢ 9.634 0.328 0.545 0.209 0.261 0.471
24d 1.817 1.943  2.179 1.201 1.296 1.364
25 0.516 0.492 0.571 0.651 0.722 0.8i%
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Table 2-14

Y-INTERCEPT VALUES FOR BEST-FITTING LIMES,
MLEMm PREDICTOR, BY ANALYSIS, SIEVE, AND LOSS FUNCTION

No Gieve Sieve

Analysis DISTANCEZ CAUCHY TANH DISTANCEZ CAUCHY TANH
0 -1.481 0.327 1.366 -1.814 0.994 0.928
1 -1.617 1.0%9 1.3686 -1.895 1.186 1.200
2 -2.307 0.257 0.514 -4.060 0.567 0.514
3a -1.684 1.811 1.762 -2.009 1.159 1.201
3b 2.116 0.783 1.708 1.815 0.768 1.124
4a -2.192 -0.496 0.478 -2.556 -0.081 -0.069
4b -1.666 -0.065 1.487 ~2.020 0.624 0.610
he -1.685 -0.010 1.534 -2.014 0.487 0.592
4d -0.710 1.238 2.002 -1.117 1.557 1.476
5 -1.528 0.278 1.299 -1.860 0.994 0.933
6 2.129 1.470 1.946 2.129 1.319 1.946
7 -1.936 1.113 0.928 ~2.154 0.846 0.882
8a -2.600 1.026 1.366 -2.681 0.917 1.008
8b -4.428 0.444 0.352 -8.527 0.633 0.449
8c -4.,192 1.231% 0.882 -4.292 1.261 0.882
9 -1.522 0.292 1.366 -1.864 0.783 0.752
10 -1.903 0.338 0.759 -2.079 0.680 0.859
11a -1.689 0.519 0.894 -1.920 0.784 0.737
11b -1.713 0.294 0.505% -1.958 0.374 0.505
11c -1.852 0.162 0.365 -2.056 0.177 0.299
11d -2.861 0.663 .0.908 -3.358 0.75% 0.908
12 -2.150 0.132 0.480 -2.215% 0.423 0.555
13 -2.828 -0.768 -0.081 -4.380 0.200 0.299
14 -2.520 0.460 0.455 -2. 441 0.267 0.5%528
15 -4.601 0.372 0.514 -4.502 0.068 0.03
16 -2.932 0.466 0.471 -2.917 0.539 0.733
17 -3.238 0.308 0.299 -3.222 0.308 0.299
18 -1.098 0.343 0.387 1.178 0.446 0.739
19 1.027 0.210 0.299 1.094 0.276 0.299
20 ' -4.892 -0.3%2 -0.378 -6.720 0.744 0.3086
21 -6.07% -4.,276 0.023 -8.220 -1.706 0.549
22 -7.516 -0.969 -0.499 -7.438 -1.086 -0.192
23 -8,007 -0.300 -0.29% -8.063 -0.902 -0.255
240 -2.874 -0.670 -0.429 02.961 -0.482 -0.353
24b -2.348 -0.08% 0.209 -2.409 -0.183 -0.279
24¢c -2.381 -0.015% 0.210 -2.476 0.169 0.281
24d -1.37 0.980 T.411 -1.519 1.174% 1.178
25 -2.%02 1.341 0.882 -2.58 1.302 0.882




Table 2-~15

Y-INTERCEPT VALUES FOR BEST~FITTING LINES, MLEzq

PREDICTOR, BY ANALYSIS,

SIEVE, AND LOSS FUNCTION

No Sieve Sieve
Analysis DLSTANCEZ CAUCHY TANH DISTANCES CAUCHY TANH
0 -4.168 0.010 0.080 -2.253 0.074 0.372
1 -5.846 ~0.057 0.579 -2.302 0.154 5.793
2 -5.944 0.035 0.199 -5.788 0.0417 0.199
3a -6.189 1.016 0.643 -2.417 0.586 0.064
3b -1.873 -0.045 0.643 1.075 0.744 0.946
4o -4.,923 -0.785 -0.594 -2.999 -0.693 ~0.543
4b -4,358 ~-0.303 -0.226 -2.484 -0.324 0.115
] -4.365 -0.241 -0.179 ~2.488 -0.204 -0.065
4d -3.482 0.932 1.178 ~1.544 0.905 1.179
5 -4.203 -0.027 -0.029 -2.303 0.034 0.273
6 1.524 1.310 1.454 1.524 1.180 1.454
7 ~8.983 0.537 0.574 -2.444 0.114 0.372
8a -2.775% 0.563 0.604 -2.845 0.561 0.603
8b -8.556 1.2 0.14% -6.719 1.166 0.248
8¢ -15.3286 -0.697 -0.564 -4.436 0.463 0.574
g ~5.517 0.387 0.207 -2.218 0.147 0.372
10 -3.880 -0.048 0.500 -2.294 0.310 0.520
11a -4.041 0.240 0.363 -4.031 0.156 0.251
11b -2.631 -0.162 -0.095 -2.327 0.168 0.299
11¢ -4.437 -0.986 -0.465 -2.366 0.009 0.131
11d -5.660 0.451 0.643 -3.491 0.535 0.643
12 -2.150 0.132 0.480 -2.215 0.423 0.555
13 -2.828 -0.768 -0.087 4.380 0.200 0.299
14 2.%20 0.460 0.455 -2.440 0.267 0.528
15 -4.601 0.372 0.514 -4.502 0.068 0.031
16 -2.933 0.436 0.471 ~-2.917 0.539 0.733
17 -3.238 0.308 0.299 -3.222 0.308 0.299
18 1.098 0.343 0.387 1.176 0.446 0.739
19 1.027 0.210 0.299 1.094 0.276 0.299
20 -4.982 ~-0.352 -0.378 -6.720 0.764 0,306
21 -6.075 -4.264 0.022 -8.220 -1.706 G.548
22 -7.516 -0.969 -0.499 ~7.438 ~1.086 -0.192
23 -8.007 -0.300 -0.294 ~-8.063 -0.902 -0.255
240 -2.874 -0.679 -0.429 ~2.961 -0.482 -0.353
24b -2.349 ~-0.085 0.209 -2.408 0.183 0.279
24¢ -2.380 -0.015 o.o21 -2.416 0.169 0.281
24d -1.371 0.980 1.411 <1.518 1.174 1.178
25 ~-10.801 -0.227 -0.047 -2.735 0.644 0.602
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Table 2-16

AVERAGE LCSS FOR SUPPLEMENTAL ANALYSES WITH THE Log
PRECICTOR, BY ANALYSIS, SIEVE, AND LOSS FUNCTION

: No Sieve Sieve
Analysis DISTANCE2 CAUCHY TANH DISTANCE2 CAUCHY TANH
30 0.224 0.441 0.149 0.107 0.390 0.137
3 0.266 0.453 0.151 0.113 0.413 0.140
32 0.263 0.434 0.152 0.124 0.420 0.142
33 0.273 0.442 0.154 0.141 0.437 0.149
34 0.288 0.458 0.150 .13 0.400 0.138
35 0.213 0.468 0.176 0.738 0.511 0.198
36 0.370 0.457 0.173 0.549 0.502 0.182
37 0 195 0.489 0.181 0.129 0.445 0.174
38 0.124 0.434 0.156 0.273 0.437 0.164
41 0.330 0.555 0.183 1.303 0.535 0.223
42 0.622 0.462 0.174 0.567 0.461 0.172
43 0.18¢ 0.403 0.110 0.253 0.435 0.118
44 0.229 0.461 0.146 0.887 ¢.577 0.182
45 0.163 0.406 0.142 0.072 0.376 0.134
46 0.220 0.454 0.154 0.234 0.411 0.145
47 0.271 C.469 0.163 0.084 0.378 0.133
48 0.367 0.486 0.166 0.792 0.509 0.180
49 0.172 0.404 0.149 0.953 0.509 0.199
S0 0.496 0.538 0.168 0.711 0.448 0.154




Table 2-17

Y-INTERCEPT VALUES FOR BEST-FITTING LINES,
AMONG SUPPLEMENTAL ANALYSES,®
BY ANALYSIS, SIEVE, AND LOSS FUNCTION

No Sieve Sieve
Anolysis DISTANCEZ CAUCHY  TANH DISTANCEZ CAUCHY  TANH
30 0.431 -0.147 0.072 0.387 0.033 0.230
39 1.314 0.612 1.067 1.223 9.827 1.080
32 1.099 0.230 0.575 0.950 0.655 0.774
33 1.056 0.157 0.857 0.858 0.277 0.820
34 2.217 1.606 1.784 2.015 1.863 1.801
35 0.011 -1.063 -0.225 0.475 -0.362 -0.180
36 -0.177 -0.578 -0.402 -0.597 -0.910 -0.650
37 -0.113 0.673 0.550 -0.076 -0.308 -0.209
38 -0.257 -0.428 -0.143 -0.358 -0.566 -0.401
41 -0.021 0.921 0.072 0.549 -0.529 -0.180
42 0.803 0.034 0.476 0.689 0.0605 0.476
43 ~0.238 ~0.747 -0.545 -0.0'5 -0.338 -0.295
44 -0.437 -0.308 -0.217 0.475 -0.030 0.106
45 -0.561 -0.014  0.148 0.467 ).063 0.230
46 0.799 0.161  0.4€7 0.588 -0.028 0.148
47 0.531 -0.076 0.25%0 0.249 0.000 0.230
48 0.321 -0.363 -0.007 0.225 -0.120 ©0.230
49 -0.105 -0.516 -0.344 0.257 -0.490 -0.238
50 0.446 0.628 0.230 0.443 0.18s 0.117

O9The Lpq predictor is used.
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Table 2-18

AVERAGE LOSS, BY DOSE UNITS, SIEVE AND LOSS FUNCTION®

No Sieve Sieve

Units Analysis DISTANCEZ CAUCHY TANH DISTANCEZ CAUCHY TANH
mglmzldoy 0 0.146 0.440 0,159 0.298 0.457 0.170
12 0.541 0.5z4 0.180 0.310 0.460 0.169

n 0.266 0.453 0.151 0.113 0.413 0.140

mg/kg/day 4a 0.124 0.434 © 56 0.273 0.437 0.164
24a 0.605 0.541 J.186 0.298 0.448 0.167

30 0.224 0.441 0.149 0.107 0.390 0.137

ppm diet hb 0.166 0.420 0.157 0.316 0.466 0.175
24b 0.580 0.522 0.184 0.319 0.477 0.173

32 0.263 0.434 0.152 0.124 0.420 0.142

ppm air 4¢c 0.157 0.398 0.152 0.272 0.440 0.167
24¢C 0.526 0.516 0.179 0.296 0.451 0.169

33 0.273 0.442 0.154 0.141 0.437 0.149

mg/kg/life 4d 0 134 0.428 0.153 0.267 0.456  0.166
24d 0.630 0.550 0.187 0.277 0.450 0.166

34 0.288 0.458 0.150 0.1 p.QOO 0.138

OThe Lpq predictor is used.
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Table 2-19

Y-INTERCEPTS BY DOSE UNITS, SIEVE, AND LOSS FUNCTION?

No Sieve Sieve

Units _ Anolysis DISTANCEZ CAUCHY  TANH DISTANCEZ CAUCHY  TANH
mg/m?2 [day 0 6.528 0.380 0.532 0.474 0.199 0.315
12 0.933  0.664 0.939 0.444  0.540 0.749

31 1.314  0.612 1.067 1.223  0.927 1.080

mg/kg/day 4a -0.257 -0.428 -0.143 -0.358 -0.566 -0.401
24a 0.245  0.113  0.361 -0.305 -0.372 -0.212

30 0.431  -0.147 0.072 0.387 0.033 0.230
ppm diet 4b 0.225  0.115 0.226 0.236 -0.230 0.069
24b 0.691  0.182 0.498 0.226  0.249 0.470

32 1.088  0.250 0.575 0.950 0.655 0.774

ppm Qir 4c 0.150  0.211  0.338 0.186 -0.079 0.024
2uc 0.63%  0.328 0.545 0.209  0.261 0.471

33 1.056  0.157 0.557 9.868  0.277 0.820

mg/kg/life 4d 1.282  1.310 1.598 1.183  1.017 1.222
24d 1.817  1.843 2.179 1.201 1.293  1.364

34 2.217  1.606 1.784 2,015  1.863 1.901

OThe Lpq predictor is used.



Table 2-20

CONVERSION FACTORS® FOR ALL DOSE UNITS,
BY METHOD OF ANALYSIS AND SIEVED

Units Analysis Method No Sieve Sisve

mg/mzldcy Restricted routes, 2.40 - 3.40 1.58 - 2.07
unaveraged (0)
Restricted routes, 4.61 - 8.69 3.47 - 5.61
averoged® (12)
Unrestricted routes, 4.09 - 11.67 8.45 - 12.02
unaveraged (31)

mg/kg/doy Restricted routes, 0.37 - 0.72 0.28 - 0.40
unavercged (4a)
Restricted routes, 1.30 - 2.30 0.43 - 0.81
averaged® (24a)
Unrestricted routes, 0.72 - 1.18 1.08 - 1.70
unaveraged (30)

ppm diet Restricted routes, 1.30 - 1.68 0.59 - 1.17
unaveraged (4b)
Restricted routes, 1.52 - 3.15 1.77 - 2.95%
averaged® (24b)
Unrestricted routes, 3.76 - 8,91 4.52 - 5.94

unaveraged (32)

ppm air Restricted routes, 1.62 - 2.18 0.83 - 1.086
unaveraged (4c)
Restricted routes, 2.13 - 3.51 1.82 - 2.96
overaged® (24c¢)
Unrestricted routes, 1.43 - 3.61 1.89 - 6.61
unaveraged (33)
mg/kg/life Restricted routes, 20.42 - 39.63 10.40 - 16.867
unaveraged (4d)
Restricted routes, 87.70 - 151.01 19.63 - 23.12
overcged® (24d)
Unrestricted routes, 40.36 -~ 60.81 72.95 - 79.62

unaveraged (34)

9The factor by which a bicassay-bosed RRD estimate is multiplied to give
best fit, on overoge, to the human RRD estimaotes (RRDy/RRD,).

bThe range given is thot suggested by the CAUCHY and TANH loss
functions, the two thot use point estimotes of humon RRDs.

CAveraged analyses average over sex, study, and species, in that order.
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Table 2-21

UNCERTAINTY FACTORS FOR ANALYSES WITHOUT THE SIEVEOQ

All Chemicols Chemiccls Below LineP? Chemicals Above Line®

Analysis n¢ factor nd  Foctor n® Factor
o] 20 2.257 3 0.188 5 3.292
1 18 3.381 [ 0.185 S 5.194
2 19 6.852 3 0.068 4 8.248
3a 17 2.862 3 0.1486 -] 3.242
3b 23 4.216 8 0.270 4 8.251
4a 20 2.046 'S 0.29M 4 3.752
4b 20 2.488 3 0.171 6 3.228
he 20 2.504 3 0.155 6 2.735
4d 20 2.131 L'} 0.269 S 3.336
5 20 2.239 3 0.194 6 2.950
8 € 1.048 1 0.874 1 1.7484
7 19 2.800 4 0.204 6 3.642
8a 13 8.005 2 0.07M 2 16.426
8b 17 29.008 b 0.043 4 10.066
8¢ 18 2.936 4 0.252 5 4.2486
9 20 2.227 3 0.185 5 3.111

10 20 10.240 5 0.127 3 29.165
190 20 3.745 3 0.183 3 11.05%
11b 20 5.040 5 0.315 2 21.608
11e 19 4.530 4 0.137 3 6.038
11d 13 65.570 3 0.233 1 %6.415
12 20 10.065 5 0.119 3 29.894
13 18 .73 &4 0.159 S 7.409
14 19 3.918 &4 0.160 ) 5.541
15 18 §.018 4 0.150 S 7.688
16 13 5.871 2 0.082 2 12.588
17 1M §.174 1 0.047 2 6.95%9
18 10 1.467 2 0.4862 1 3.529
19 -] 1.790 2 0.428 1 5.442
20 ) 17 7.113 5 0.132 [ 8.968
21 13 62.713 2 0.009 3 24.689
22 15 8.561 5 0.141 5 8.539
23 13 89.156 3 0.017 4 16.448
24a 20 11.292 S 0.100 3 34.730
24b 20 9.954 S 0.107 3 32.819
24¢ 20 10.561 5 0.126 3 29.441
24d 20 10,455 s 0.067 4 21.383
2% 16 3.032 3 0.180 3 6.725
30 23 3.275 6 0.231 [ 6.391
31 23 4.2186 6 0.210 'Y 8.2%51
32 23 4.328 8 0.278 4 8.818
33 23 4.408 7 0.249 & 9.259
34 23 4.728 [ 0.190 4 8.649
35 20 2.85%8 8 0.255 4 5.403
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Table 2-21 (continued)

UNCERTAINTY FACTORS FOR ANALYSES WITHOUT THE SIEVEQ

et e ettt

All Chemicols Chemicols Below LineP Chemicals Above Line?

Anolysis n® Factor nd  Factor n® Factor
36 19 5.954 4 0.119 [ 8.894
37 17 2.662 3 0.161 [] 3.068
38 20 2.046 & 0.219 s 3.75%2
41 20 4,604 & 0.110 ) 7.1886
42 16 17.063 3 0.039 3 14.234
43 17 2.817 3 0.199 L} 4.562
44 19 3.164 3 0.148 & 5.718
45 23 2.557 S 0.264 & 5.261
46 23 3.104 6 0.235 5 5.397
47 23 3.856 7 0.211 5 6.016
48 23 4,623 8 0.190 6 6.973
49 21 2.657 & 0.239 3 6.728
SC 18 6.807 4 0.073 [ 6.186

9The Lyq predictor is used.

bThe line is the best-fitting line determined by the DISTANCE? loss
function.

CNumber of chemicals in analyses.
INumber of chemicals with human RRD intervals completely below line.
eNumber of chemicals with human RRD intervals completely above line.



Table 2-22

UNCERTAINTY FACTORS FOR ANALYSES WITH THE SIEVE®

All Chemicols Chemicols Below LineP Chemicols Above LineP

Anolysis n® Foctor nd  Factor n® Factor
0 20 5.300 3 0.076 5 4.623
1 18 6.676 3 0.066 4 6.407
2 19 10.029 [ 0.077 4 15.975
3a 17 2.119 &4 0.307 3 4.190
3b 23 2.008 4 0.249 4 3.342
&a 20 4.552 3 0.091 4 5.534
4b 20 5.454 3 0.072 S 4,968
Le 20 4.616 3 0.086 5 4.327
4d 20 4.448 3 0.092 4 5.322
S 20 5.060 3 0.081 5 4.462
6 6 1.048 1 0.874 1 1.144
7 19 5.422 3 0.078 S 5.275
8a 13 3.4086 1 0.044 2 5.471
8b 17 22.834 3 0.031 4 8.148
8c 18 3.235 3 0.149 & 5.786
9 20 5.4286 3 0.073 6 3.917

10 20 8,493 3 0.088 7 3.432
110 20 3.611 s 0.143 5 4.17%
11b 20 5.53% 3 0.094 4 $.777
11¢ 19 h.4844 3 0.099 [ 5.589
11d 13 3.0686 2 0.11% 3 h.282
12 20 5.393 3 0.079 4 6.250
13 18 8.254 5 0.145 [ 12.263
14 19 6.022 3 0.073 3 10.427
15 18 7.670 [ 0.117 4 10.793
16 13 5.508 1 0.049 2 6.523
17 11 5.181 1 0.047 2 6.931
18 10 1.560 2 0.433 1 4.128
19 9 1.67% 3 0.529 1 4.67%5
20 17 31.128 & 0.040 L'y 13.087
21 13 36.455 3 0.030 [y 22.798
22 15 9.01¢0 5 0.128 & 11.914
23 13 82.564 3 0.018 4 17.378
240 20 5.162 3 0.084 4 6.150
24b 20 5.%518 3 0.072 S $.054
24¢c 20 $.101 3 0.082 S 4.869
244d 20 4.718 3 0.090 [ 5.639
25 16 2.645 Y 0.250 3 5.322
30 23 2.026 $ 0.283 [ 3.097
31 23 2.008 4 0.249 3 3.432
32 23 2.216 4 0.231 [ 3.578
33 23 2.256 S 0.272 4 4.362
34 23 2.293 3 0.172 Y 3.647
35 20 78.202 ] 0.146 LY 42.184
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Table 2-22 (continued)

UNCERTAINTY FACTORS FOR ANALYSES WITH THE SIEVEQ

All Chemicols Chemicals Below LineP Chemicals Above LineP

Analysis n¢ Factor nd Factor n® Factor
38 19 10.196 13 0.111 4 16.301
37 17 2.076 3 0.247 4 3.319
38 20 4.552 3 0.191 [ 5.584
41 20 96.444 5 0.034 4 91.020
42 16 14.512 3 0.048 3 13.458
43 17 4.200 & 0.219 3 8.401
44 19 84.246 5 0.089 3 87.708
45 23 1.670 5 0.363 4 2.608
46 23 3.594 7 0.256 -3 7.166
47 23 1.770 'S 0.298 3 3.354
48 23 67.502 5 0.059 'S 42.975
49 21 129.229 6 0.074 4 57.072
50 18 23.545 &4 0.062 4 20.743

9The Lpq predictor is used.

DThe line is the best-fitting line determined by the DISTANCE2 loss
function.

CNumber of chemicals in analyses.

SNumber of chemicals with human RRD intervals completely below line.

eNumber of chemicals with human RRD intervals completely above line.



Table 2-23

COMPONENT-SPECIFIC UNCERTAINTY: MODES AND DISPERSION
BY SUPPLEMENTAL ANALYSISP

FACTORS FOR RATIOS OF RRDS9,

Numter of Mode of Dispersion Number of
Anglysis Chemicals Higtoqraom Factor® Extremesd
n 44 .05 A 2.3 0
32 44 .2 .5 1.7 0
33 bh .2 .5 1.8 0
34 L2 .02 .05 1.3 3
35 40 .8 1.25% 28.5 1
36 34 .8 1.25 86.0 4
37 24 .8 1.25 5.3 0
38 40 .8 1.25 33.7 2
41 39 .8 1.25 290.6 3
42 29 .8 1.25 75.6 1
43 31 .8 1.25 39.6 1
44 37 .8 1.25 54.1 4
45 44 .8 1.25 1.2 0
46 44 .8 1.25 1.7 0
47 [ .8 1.25 2.2 0
48 43 .8 1.25 23.2 2
49 39 .8 1.2% 39.6 3
5C 36 .8 1.25 335.6 3

9The rotios ors of the chemical-specific RRD estimates from the
indicated analysis to thcse of Analysis 30, the alternative stondord.
PThe analyses were performed with the L2q predictor and using the full

sieve.

CThe dispersion foctor is the avercge factor by which the chemicals

differ from the mode.

dThe number of chemiculs for which the ratios ore greater than 100 or

less than .01,
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Correlation Anslysle?
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Figure 2-32
Correlation Amiysls:
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Figure 2-33
Correlation Analyels:

Avarsge over All; Total Tumor-Beering Animale (20}
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Correlation Analyeles:
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Figure 2-35

Prediction Aralysle:
Amalysis 17, Medien Lower Bound Predictor
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Prediction Analysle:
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Prediction Amliysis:
Amlysls 3b, Median Lower Bound; Best-Fitting Lines with Inoreesing Degress of Asyssetry

Log of Anlsal RRO Estimates



L6-2

Log of Human RRD Estlimates

Amlysis 20, Medlen Lower Bound; Best-Fitting Linee with Innressing Degrese of Asymsetry

Figure 2-40
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Figure 2-43

Component-Specific Uncertainty: Rotios of RRDs for
Analysis 32 (ppm diet) to RRDs for Anolysis 30
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Figure 2-44
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Figure 2-45
Component-Specific Uncertainty; Rotios of RRDs for
Anglysis 34 (mg/kg/lifetime) to RRDs for Anolysis 30
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Figure 2-46

Component-Specific Uncertainty; Raotios of RRDs for

.00 —p— " Analysis 35 (Long Experiments Only) to RRDs for Anclysis 30
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Figure 2-47

Component-Spocific Uncertainty; Rotios of RRDs for
Analysis 36 {Long Dosing Only) to RROs for Analysis 30
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Figure 2-48

.00 —— Component-Speqific Uncertainty; Rotios of RRDs for
L_ Analysis 37 (Route Like Humans) to RRDs for Analysis 30
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Figure 2-49

Component-Specific Uncertainty:; Ratios of RRDs
for Analysis 38 (Inhalotion, Orol, Gavage,
Route Like Humans) to RRDs for Analysis 30
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Component-Specific Uncertainty; Ratios of RRDs for
rzszt Analysis 41 (Mclignant Tumors Only) to RRDs for Analysis 30
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Figure 2-51

Component-Specific Uncertainty; Ratios of RRDs
for Analysis 42 (Combination of Significant
Responses) to RROs for Analysis 30
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Figure 2-52

00 —r— Component-Specific Uncertointy; Rotios
) of RRDs for Anclysis 43 (Totol Tumor-Bwaring
L - Animals) to RRDs for Anolysis 30
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Component-Specific Uncertainty; Ratios of RRDs for
Anolysis 44 (Response Like Humons) to RRDs for Analysis 30
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Figure 2-54

00 ——y— Component-~Specific Uncertainty; Raotios of RRDs for
—T Analysis 45 (Averoge Over Sex) to RRDs for Analysis 30
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Figure 2-55

Component-Specific Uncertainty; Ratios of RRDs for
Anolysis 46 (Average Over Study) to RRDs for Anolysis 30
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Figure 2-56

'“"T" Component-Specific Uncertointy; Ratios of
DY —— RRDs for Analysis 47 (Averacge Quer All

Species) to RRDs for Analysis 30
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Figure 2-57

Component-Specific Uncertainty; Ratios of
00 ——— RRDs for Analysis 48 (Averoge Over Rats and Mice)
s to RRDs for Anclysis 30
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_ Component-Specific Uncertainty; Ratios of RRDs for
sos Analysis 49 (Rot Data Only) to RRDs for Analysis 30
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Figure 2-59

Component-Specific Uncertointy; Rotios of RRDs for
Anal/sis 50 (Mouse Data Only) to RRDs for Anoclysis 30
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Section 3
DISCUSSION

POSITIVE CORRELATION

The results presented in the previous section reveal that estimates of
risk-related doses from animol bioassay data are generally highly
correlated with the estimates derived directly from epidemiological
dota. Of the thirty-eight initial onolysis methods investigated, 35 had
p-values less than 0.05, when the full sieve was opplied, and with that
some sieve, 17 hod p-volues of 0.0001 or smaller. Even with no sieve,
s0 thaot dato from experiments of highly voriable quality are included,
thirty-five anolyses have p-values less than 0.05. Not only do most of
the analyses yield correlation coefficients that are stotistically
significantly positive, but the coefficients are large in un obsolute
sense as well. Twenty-six of the analyses have coefficients larger
than 0.7,

The strongly positive result of the correlaotion analysis was obtgoined
even though a number of uncertainties had to be cccounted for. First,
the uncertainty of the humon RRD estimotes is explicitly incorporated
since the ranking that underlies the correlotion onalysis is based on
the lengths ond positions of the intervals of RRD estimotes derived from
the epidemiology. Those intervals reflect the uncertainty in the
exposure estimates and statisticol variability. Anclysis of the
espidemiologicol doto, including the exposure uncertainty derivotion, was
conducted prior to the onalysis of the onimal dota and, therefore,
without knowledge of its outcome. Moreover, since the criterio used to
determine the exposure uncertainty values were consistent across all
chemicals, the subjective aspect of their derivation should not cffect
the correlotions. Thaot is, if the individuol subfactors corrasponding
to sources of uncertainty in exposure estimotion were to be altered, tLhe
bounds on exposure estimates would change in g predictable and lorgely
consistent manner for oll chemicols. The relative rankings of the

chemicals should be minimally affected. This is one advantoge of using
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a nonparametric (rank-baosed) approach in the correlation analysis.

The second uncertointy accounted for in the correlation analysis
pertains to the bioassay data. The intervals defined for the animal
results olso incorporaote stotisticaol voriability; stotistical lower
bound ond upper bound estimotes define the endpoints of the intervols.
In addition, the entire ensemble of data for o given chemicol is
considered in the sense that that ensemble defines the median lower
bound end the median upper bound. So, while discounting extreme volues,
the intervals defined take into consideration the RRD estimates thot caon
be obtained from each experiment in the data base.

These various uncertainties and the methods used to account for them
will tend to wosh ocut ony real correlctions that may exist, in the sense
of producing smoll corralation coefficients that may not be
significontly different from zero (no correlation). Despite this,
strong correlations cre obtecined. The positive correlctions exist for
chemicals whose RRD: (and, therefore, potencies) spon several orders of
magnitude. Indeed, the strong correlations obtained despite these
factors make it highly unlikely that the positive results are due to
chance or to other factors not incorporated in the analysis.

The foct thot these positive correlotions exist is very important. The
ossumption that risk estimotes derived from bicassay doto are relevant

to the estimation of humon risk is cruciocl to oll risk ossessments for
which epidemiological dato is limited. Heretofore, it has been o

laorgely untested assumption. The correlations determined in this
investigation strongly support that assumption ond thereby strengthan the
scientific support for quantitotive risk assessment.

The thirty-eight initial onclysis methods represent a wide voriety of
approaches to bioassay-based risk assessment. Although a few of them
appeor to be less-well correlaoted with the epidemiologiccl assessment
results, the foct that most are highly correloted makes it reasonable
to attempt to determine which methods are best when point estimates of
risk ore desired. The variety of methods ensures that o variety of
point estimotes will be avoiloble to discriminote between different
predictors and different occeptable analysis opprooches. This is the
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subject of the prediction analysis, the interpretation of which will
follow 0 discussion of doto quolity and the cata screenings.

DATA QUALITY AND DATA SCREENING

As discussed in the second volume of this report, the extent ond quality
of the bioassay dato varies greatly from chemicaol to chemical. Some
chemicals have few ccceptable experimants (e.g., estrogen has two),

some have experiments testing only one species (e.g.., chlorambucil with
mouse data only), ond some only have experiments of short duration or
dosing (e.g., benzidine and chromium). Still other limitations exist
that offect the calculation of RRDs, such os the number of animals on
test (which can greatly affect computotion of the statistical confidence
limits) as well as the actual conduct of the experiment (animal
husbandry and coare, adherence to protocol, etc., which we have not used
to rate experiments) ond, most importantly, dota reporting limitations.
Aside from reports like those produced by the Notional Toxicology
Program, rarely were full details of the bioossoy results available.

Even though correlation coefficierts were large and significont for many
of the unscreensd (no sieve) cnolysas, os mentioned cbove, it wos falt
that some attempt should be made to use the "best” data that was
avoilable. On the other hand, it would not be appropriaote to eliminote
chemicals from the analyses on the bosis of ®"quality” considerctions.
First, the maximum number of chemicols is 23, so thot esliminotion of
chemicals could lead to very small sample size. This is seen, for
instonce, when very restrictive criterio on carcinogenic endpoint and/or
experimental protocol define an cnolysis method (e.g., Anclysis 19 with
only nine chemicols) or when the doto requirements ore not sotisfied by
the published bioocssay results ovoilable to us (e.g., Analysis 6 with
only six chemicols). Second, in any future risk cssessment on a
particulor chemical, the dota will undoubtedly be limited in certoin
respects. Port of our tosk is to try to determine how best to proceed
even with those limitotions.

Consequently, the dato screening (sieve) selects the better dota
("better"™ being defined solely on the basis of the definition of the
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sieves) for use in the caolculation of RRD estimates. In the present
investigation, two screenings have been defined: a screening based on
the significance of the dose-dependency of the corcinogenic responses
and a screening based on the number of dosed animals and length of
observation. The use of these two screenings yields three possible
sieve approoches. Of course many reosorcble alternatives, whether
bosed on these criterio or others, are possible. No exomination of
other sieves hos been undertaken.

The goal of screening the data is to produce o data base that will
perform bstter when compared to the epidemiological estimates. The
sieves defined here appear generclly to ochieve thot goal. The
significance screen, in particular, worked to increase the correlation
coefficients for 25 of the 38 initiol anoclyses. Although the quality
screen does not provide substantiol improvement over the significance
screen in most cases, certain anglyses are much better correlated when
both screens (the full sieve) is opplied. Rarely does the addition of
the quaolity screen to the significonce screen decrecse the correlation.
Thus, we hove selected the full sieve to represent the action of dato
screening in the prediction ond uncertointy cnolyses.

However, in the prediction analysis, it itAfrequently the case that the
averaoge loss for on analysis method is greoter when the full sieve is
applied than when no sieve is applied (cf. Tobles 2-3 through 2-% and
Table 2-13), especially when the median lower bound estimate is the
predictor. One might be tempted to conclude that only those methods
yielding smoller loss when the sieve is opplied should be considered os
good risk assessment procedures. Conversaly, one might conclude that
either the sieve is not working correctly to select the better dato or
thot it is working but the dota it selocts are not, in octuality, better
for risk ossessment purposes. We argue that ony of these conclusions is
unworronted.

First, the results of the correlation analysis strongly indicote that
the better da%o ore being selected by the sieve and thot these data ore,
in actuolity, better for risk ossessment purposes. This i in
accordance with common sense: if too few onimals ore tested or if the
period of observation is too short, then it is difficult to elicit on
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observable (dose-re.oted) corcinogeric response. Similarly, those
responses thaot are significantly reloted to dosing tell us more about
the carcinogenicity of o chemical than the endpoints that lock a
significonc relationship with dose (unless all responsec lack a
significant relationship, but then the significaonce screen does not
eliminagte any of the responses from contideration)f Hod'tho results of
the correlotion onalysis been less consistent in indicoting the benefit
of the sieve, then one might have reacson to suspect that the “common
sense® reaction is not supported and may be in error.

Secondly, we prefer the correlotion analysis results over the prediction
analysis results as indicotors of the action of the sieve since the
former does not select o single estimate from each anolysis method ond
it is not dependent on the specification of loss. The correlation
analysis utilizes a raonge of estimates consistent with the ensemdble of
dato available for each chemicol and employs @ general measure of the
degree of similarity between the animal and human estimotes. This
fromework is less sensitive to variations in the dato ond results that
are due to unintentional changes (confounders) in the doto base. It is
entirely possible that applicotion of the sieve may tend to eliminate
certain routes of exposure, for example, although such o result is not
the intended result of the sieve. Unless the elimination entails
substantial chonge in the RRD estimates (as in the caose of arsenic or
estrogsen, os discussed in Section 2) the generalized ranking scheme is
not unduly offect.d.

Indeed, we feel that such confounding changes in the doto base ond
rondom variction may lorgely explain the occurrence of average losses
that ore greoter when tha sieve is opplied than when it is not. For any
experiment, randcm foctors affect the response rotes ond, consequently,
the estimation of RROs. For all the bioossays of o particuler chemicol,
then, the chonges seen when o sieve is opplied depend on these rondom
voriaotions. [Again, this is one reason for preferring the correlation
analysis over the prediction analysis as a test of the sieve: the
correlotion analysis accounts for the random vorigotion by using upper
ond lower confidence limits insteacd of o single point.]
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As a consequence of this observation, it is appropriate to compare the
onalysis methods in the prediction anolysis both with and without the
sieve. An anclysis that yiei s smcll average 10ss under either of these
conditions should bc considered a iable option in the sense o
determining the best risk assessment procedures. Thus, for example,
Analysis 20 without the sieve is the best approoch, as measured by the
TANH loss function, when Lyg is the predictor (cf. Toble 2-7). Average
loss for that onolysis is increcsed when the sieve is opplied so that,
even among the onalyses employing the sieve, Anolysis 20 is no longer
the best. We wish to continue to consider Anolysis 20 as o good
potential procedure since it is not known whether the increass in
averoge loss moy be due to random variation or to data base changes
confounded with the opplication of the sieve, though we suspect thot it
is. This procedire is followed throughout this discussion; tnose
onalyses cited as being good are those with small average losses for at
least one of the pair (with sieve aond without sieve). However, in the
suggested guidelines for presenting risk estimates, and in the sxamples
provided, screening of the datao is olways performed, no matter which
analysis method is applied.

APPLICATION OF ANALYSIS RESULTS IN EXTRAPOLATING FROM ANIMALS TO HUMANS

Heratofore, ocnimal-to-human extropolation hos generally been conducted
by assuming thot equal doses will produce the same lifetime risks in
onimals ond humoans, when both onimol and human doses are measi.red in the
some particulor units. Dose units thaot hove been opplied in the post
include mg/kg body weight/day, mq/mz surfaoce croo/doy.'ppm in diet or
oir, and mg/kg dbody weight/lifetime. Because of differences between
onimals ond humons in body weights, life spans, etc., use of different
units produce different estimates of human risk. There is limited
scientific support for use of ony particulor dose units (1). Results
from the present study can be used empirically to determine oppropriote
methods for onimal-to-human extropolotion. Specifically, multiplication
of the animol RRD by the 10€, where ¢ is the y-intercept from the best-
fitting line, provides an estimate of the human RRD in which the bios
due to systemotic differences in unimal ond human risk estimatss found
in this study haos been eliminoted. With this opproach, the dose units
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con be selected on the basis of those thaot, along with other facets of
on analysis, produced the best correlations between animals ond humans
(or smallest losses). The bias correction factor 10€ corrects for any
overestimation or underestimoi.on by the onolysis meihod used.

IDENTIFICATION OF GOOD METHODS

Predictors

Eoch onalysis method wos run v ith the four predictors exomined in

this investigation, the medior ond the minimum of the lower bound RRDs
and of the maximum-likelihood RRDs. Three loss functions were defined
that determine the lines of unit slope that minimize the total loss for
the collection of chemicals being onalyzed. Despite the fact that the
three loss functions colculote loss in different ways, 0ll three are
consistent in indicating thot the medion lower bound RRD predictor, Lag.
vyields the smallest average losses for most analysis methods. It should
be emphasized that this is o strong result not only because of the
consistency of the loss functions but primarily because it is not
dependent on the porticular data thaot were availaoble for analysis. For
any given analysis (with rore aicoptions) the lots when Log is used is
gmaller than losses with other predictors even though the very same dato
are used to calculate the estimates and, hence, the losses for each
predictor.

It is important to note that the predictor, L3g. which is derived from
lower bound RRDs, yielded smaller losses than ony of the predictors
bosed on moximum likelihood estimcted RRDs. This is probably relaoted to
the fact that small changes in the bioassay data cen result in sizable
changes in MLE estimates of RROs, which suggests thot the desirable
laorge-saomple theoreticol statistical properties possessed by MLE
estimates {such as consit:ency ond asymptotic efficiency) aore not
operotive to any practicol extent in tnhnis situation given the usuol
somple sizes encountered in bioossays. This lock of stability of the
MLE estimates is a much more severe problem when extraopolating to low
doses Regulotory agencies have in the past relied more on lower bound
RRDs “han moximum likelihood estimates, mainly in the interest of being
protictive of human health, This study shows that lower bound RRDs are,
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in fact, better predictors of the human dota thaon are the MLE estimates,
and thus provides additional rationale for smphasizing lower bound RRDs
in risk ossessment. This study nlso estimates the level of conservatism
(or anti-conservatism) that moy be inherent in specific onclyses that
use lower bound RRDs cnd estimates compensoting or bias-removing
foctors, i.e. the conversion foctors (10‘). This issue will be
discussed further lator.

One potential problem with use of lower bound RRDs is that they cre
olwoys finite, ever when the doto show no evidence of carcinogenicity
(consistent with infinite maximum likelihood RRDs). To some this might
imply that use of lower bound RRDs will lead a regulatory ogency to
treot every chemical os o carcinogen, irrespective of bioasscy results.
This need not be the cose. Ffor most purposes, there must be reasonably
convincing evidence of carcinogenicity from biocassay results before an
agency will undertcke the assessment of risk. Moreover, the problem moy
be further mitigated if we reccoll that the correlation anaolysis
demonstrated the strong positive correlation between ronges of human ond
ranges of animal RROs. This result does not depend on the position of
the best epidemiological or bioassay estimates, only on the bounds for
estimates. Consequently, we know that those chemicals that tend to hove
lorger RRD estimates {lower bounds) from epidemiological onaolyses clso
teand to hgve larger biocassay-based estimates (lower bounds) so that
chemicals with large Lyg's (in o relative sense, compared to other
chemicols) ure those that may be of less concern when it comes to
regulation and/or control. One corollary of th!. line of reasoning is
that the degree of correlation, in addition to the average losses
calculoted for specific predictors, is an important foctor in comporing
the analysis methods and deciding which are better.

At any rote, there will olwoys be the possibility thot o noncarcinogen
may be regulated os a carcinogen on the bosis of folse-positive data.
Use of MLEs would not remove this problem; MLE RROs from bioassoys of
noncarcinogens wi'l be finite about 50% of the time. In this regard, it
is ot interest to nots thot in this study chemicols with infinite RRD
astimates bosed on the epidemiological aonalyses did not in general have
infinite maximum likelinood RRD estimates bosed on the onimal data.
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However, this was to some extent prearranged becouse for o chemiccl to
be included in the cnalysis, positive evidence of carcinogenicity
{implying finite RRDs) had to exist for either onimols or humans.

Use of Log os the predictor iz in o sense less conservotive than use of
the minimum lower bound, Lm. The y-intercepts for the analyses are
almost always larger when Ly is used in place of Lyg (compare Tables
2-12 and 2~13). This means that Ly is more conservative, in foct,
generally overconservative. Of course, if one opplies the conversion
factors suggested by the y-intercepts, then no approoch is more or less
conservative than nnother; estimates obtocined by using the conversion
factors ore those that come closes: to the spidemiological! estimates.

In this sense, the remaining error, expressed as avercge loss, is the
primary determinont of good or bad anclyses or predictors. As
previously mentioned, Lyq is preferable to Lm in this regard. But it is
also the case thot the conversion factors are less extreme with Lpg than
with Ly.

Anglysis Methods

Given the superiority of L2g over the other predictors examined,

one can compare the aonalysis methods on the basis of how they perform
with Lag. This has been done for each loss function seporately (cf.
Table 2-7) and for the three functions combined (Taoble 2-8) for the
initial 38 analyses. The supplemental ocnolyses (Table 2-1€) srould olso
be considered, especially since their templote is Anolysis 3b which is a
metnod producing excellent correlotion ond which is olso identified os
resulting in small average loss.

Analyses 6, 18, ond 19, which ore aopplicoble to limited numbers of
chemicals (six, ten, ond nines, respectively), will not bie exomined in
dgetoil. Although both the correlotion ond prediction onclyses suggest
that these methods may be beneficicl, the dato ore not sufficient to
warrant detciled examination of these methods. In order to use the
methods routinely, data avoilability would have to be improved. Yo
perform Ar.ilysis 6, one must have available the number of animals alive
in eoch dose group at the time of first occurrence of each tumor type.
For Anolyses 18 and 19 (os well o8 uny other method thot uses on
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endpoint that is a combinaotion of individual corcinogeni: resporses) one
must know which onimals got which tumors in order to cunwin® responses.
Detailed reporting procedures like thcse in many Nationol Toxicology
Progrom reports ore ideally suited for thesv purposes. Bioossay results
published in peer-reviewec journols rarely contoin such detoil.
Nevertheless, some other means must be found to disseminate the full
results befcre onalyses like 6, 18 or 19 con be more thoroughly
investigated. The incomplete but suggestive results of Analyses 6, 18,
and 19 indicate that this may be worthwhile.

Comparing the results in Table 2-16 to those ir Table 2-7 reveals thot
several cnalysis methods from the supplemental list are os good as or
better than the best =¥ the initicl analyses. With the DISTANCE? 1loss
function, Analyses 30, 45, and 47 yield the smollest losses of any
aonolyses. Similorly, /fnolysis 43 results in the smallest loss os
measured by the TANH loss function; Analytes 45 ond 47, as well os 30,
also perform wgll. Only the CAUCHY function foiled to find o supple-
mentol analysis thot outperformed the vest of the initicl onalyses
(Anolysis 17, CAUCHY average loss 0.363). However, anolyses &5, 47, 30,
ond 43 (the latter without the sieve) yield CAUCHY losses comparadble to
the five best initial onolyses.

Using the criterion of totol incremental normclized loss, Anolyses 3b,
17, and 20 were determined to be the hest of the initial annlyses. Note
thaot these are the only analyses omong the best five for more thaon one
loss function. Analysis 3b is the same as Analysis 30 except for a
change of units (Mglmzldoy and mg/kyg/day, respectively: Analyt:. 3b is
the same as Analysis 31). Anolvses 17 and 20 have no counterpaorts among
the supplemental anolyses becaouse those two avercge over sex, study, and
species, differing from the initial standard ir morm thon one component.
However, the other supplementol onalyses mentioned in ths previous
paragraph in connection with small averoge loss (methods 43, 45, and 47)
nove onclogs in Analyses 8b, 9, ond 110, respectively (though the lotter
use mg/mz/dav, not mg/kc/day, ond are restricted to certain routes of
exposure). Anaclyses 8b ond 9 are omong the top five initial onolyres
for one of the loss functions ond were mentioned in the previous section
in connection with onalyses thot have relotively smoll totol incrementol

normalized loss. It appears, then, thot Analyses 17, 20, 30, 31 (= 3b),
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43, 45, and 47 yield good predictions, that encompass different
approaches to several of the compcnents, and therefore constitute prime

candidates for seiection of appropriote bioassay analysis methods.

These and other analyses of interest are compared in Table 3-1.

Anclyses 17 and 20 ore included because they appear to outperform oll
other initiol onglyses as askressed by one of the loss functions. Recgll
that Analyses 17 aond 20 are methods thot averoge RRD estimates cvaei- sex,
study, and species. The RRD estimotes thot ore averaged correspond to
spocific endpoints, the combinaction of significant responses and totaol
tumor-bearing animals for 17 and 20, respectively. Analysis 17, but not
20, is limited to experiments that dosed for at least 80% ond obserwved
for at least 80% of the stondord length of expesriment. In addition,
both Analyses 17 ond 20 consider only those experiments odministering
the test chemical orally or via gavage, inhalation, or the route by
which humons encounter the chemicol. Similorly, Analysis 31 (3b) wos
the best of the initiol onalyses wnen megsured by one of the loss
functions. Also like Analyses 17 and 20, Analysis 31 extraopolates
estimates to humons on o sur-face-area basis (i.e. using mg/mzldoy).
Anclyses 0, 7, 11¢, ond 11d, all presented in Table 3-1, aore surface-
arec-baosed extrapolative procedures os well, ond, like 17 ond'20.
consider only orol, gavoge, or inholotion studies unless another route
is commonly encocuntered by humans. They ore included in Table 3-1
because of their general interest. Analysis 0 is the one modeled after
the EPA Corcinogen Assossment Group's approach (although the median, not
minimum, lower bound is the predictor used here). Analysis 7 is the
same except thaot malignant carcinogenic responses are the only ones
considered. Similarly, Analyses 11c and 11d differ from Analysis 0 in
the species considered; Anclysis 1ic is limited to rat experimenty while
Anglysis 11d is limited to mouse tests.

The remcining onalyses preseanted in Table 3-1 (30, 43, 45, ond 47)
extrapolate 1 isks from animols to humans on o hody-weight bosis using
mg/kg/doy. In every other respect Analysis 30 i2 identical to
Analyzis 37: the RRD estimates ors not averaged and cll experiment and
all individual carcinogenic resporses found in those axperiments are
ollowed. Anolysis 43 differs from Anolysis 30 only in thot totol

tumor-bearing animols is the single endpoint evoluated in the former
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case. Similarly. Anolyses 45 and 47 differ from Anclysis 30 becaouse
some averaging of RRDs does take place; for Anaolysis 45, estimates are
averaged over bioossoy identical except for the sex of the test species
(i.e. over sex within study) ond for Analysis 47, results obtained for

each speciot are cveraged to yield the ultimate RRD estimates.

The Base Anblysis (Anclysis 0) emploving the minimal lower bound
estimator, Ly (second row of Table 3-1) has both the largest normalized
loss ond the laorgest residual error. Moreover, RRDs derived from this
onalysis underestimate the human PROs on average by a factor of 12. By
all standards, this method is the pcorest of those listed. However,
this method is perhapns mcst like that presently employed by EPA.
Modification of this method by using the median lower bound estimator,
L2q., rother than Lpm, O reﬁresentod in the first row of Toble 3-1,
provides on improvement in terms of normaclize? loss, residucl error, and
requiring o smoller conversion factor. These results illustrate further
the finding discussed eaorlier that analysis methods thut use median
lower bound RRDs as estimators provide smaller lofao: than use of
minimum estimates.

Although Analyses 0, 7, 11c, and 11d were cssocinted with generally good
cerirelation volues, their normo)ized loss values do not compare with the
best of the remoining methods (e.g. Analyses 43, 45, and 47). Moreover,
the residual uncertainty focters associoted with these analyses are
aomong the largest presented. Analyses G, 7, 11d, and 11d therefore are
not considered to be omong the better methods for predicting human risk
on the bosis of bioassay resul®s.

The case is somewhot more complex for Analyses 17 and 20. As previously
mentioned, Analysis 17 is the best method determined by the CAUCHY loss
function., In port beccouss of thot result, the total incrementol
normalized loss for Analysis 17 is necrly the smallest. Nevertheless,
its correlation coefficient is also the smallest of thcse presented.
Even if one notes thaot Analysis 17 is applicoble to only 11 chemicals
and that consaquently the coefficient would be less stcble, the
importance attached to the correlotion results when using the Log
predictor (os described obove) tends to mare the use of method 17 less
desirable than use of the othe- methods. In addition, the residual
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uncertointy factor is relotively large, in the range of those associated
with Anclyses 0, 7, 11¢, ond 11d.

Analysis 20 also haos o large uncertainty factor., Thot foct, plus the
large incremental loss value, mokes Analysis 20 less oppealing than the
remaining five analyses, 30, 31, 43, 45, and 47. Note also thot
Anclysis 43 is the only other method in Table 3-1 that uses the endpoint
used by Analysis 20, totol tumor-dearing animals. Analysis 43 is
superior in all respects to Analysis 20, This is one other reason why
Analysis 20 should not be considered omong the better methods for
extrapoloting human risk.

There is another reason not to recommend Analyses 17 and 20 for use in
extrapolating between humane and cnimels. Aside from Anclyses O, 7,
11¢, and 11d, which have olready been deemed inappropriate, only
Anclyses 17 ond 20 are restricted to specific routes of exposure. It is
likely, given the pcttern seen for other analysis methods, that methods
identical to 17 and 20 but without this restriction on route would do
even better. Th.s would seem to be the case becouse the supplemental
onalyses generally yield smoller losses than those cnolyses in the
initiol set thot differ only with respect to ollowable routes of

exposure ond units of extrapolaotion, the lotter having little sffect on
average loss.

Anolysis 20 ond the other method using total tumor-bearing animols as
the endpoint, Anolysis 43, ore the only two that overestimate RRDOs on
average. On the other hand, Anclysis 31, o method extrapoloting risk on
the bosis of mg/m?/daoy, underestimates RRDs by roughly an order of
magnitude. Analyses should not be compared on the basis of these
conversion factors, however. Wwhen the estimotes from any analysis
method are multiplied by the indicated conversion factors, a line fit to
the converted estimates (on the x-axis) and the epidemiological results
(on the y-aoxis) would pass through the origin. The conversion factor
represents o deqgree cf freedom in the prediction onolysis corresponding
to the estimation of the intercept. A conversion factor estimoted here
for any method con be used to odjust the results obtoined for a
porticulor risk ossessment on o single chemical when the bioossay data
is onolyzed by that method.



One might be tempted to conclude that Anolysis 45, which extraopolates
from animals to humaons on a mg/kg/doy basis, oczepts all routes of
exposure, and overoges results over pairs of experiments that differ
only with respect to the sex of the test onimals (i.e. the experi-
menters, protocol, and strain of the test animal are the same), is the
best of the onolyses presented in Taoble 3-1. 1Its correlotion
coefficient is as guod as any other, its incrocmontal loss is smollest,
and its residual uncertainty foctor is smollest (Figure 3-1). While
this onolysis is certainly a good one by oll these criteria, it is not
possible to conclude unequivocally that Analysis 45 is better than some
of the others listed. For one thing, the ronking of cnalyses differs
depending cn the choice of loss function. Analysis 45 is best with the
DISTANCEZ loss function, Anolysis 17 is best with CAUCHY ond Analysis 43
with TANH. A minimax criterio would select Anolysis 17, followed by
Analysis 43. Moreover, it is not cleor which of the loss functions is
most appropriaote for determining fits of RRDs and no statisticol
development that would allow us to test for lock of fit or to test
differences in values of average (or total) loss is ovailable. For
these reasons, the loss functions hove been used in this investigotion
as a method of ranking the onolyses. Since no one loss function is
obviously more approgriote, on ove~all measure such os total incrementcl
normaljized loss hos been employed to find cnalyses that are fairly
robust with respect to calculation of loss. The cnaolyses in Table 3-1
remaining after elimination from consideration of Analysen 0, 7, 11ic,

11d, 17, and 20 (i.e. Anclyses 30, 31, 43, 45, and #7) demonstrcte such
robustness.

Let us call these five onalvyses the set of recommendsd onalyses. RRD
estimates derived using tliese analyses for each of the chemicals
included in this investigation but lacking epidsmiologicol data
sufficient for quontitative cssessment ore presented in Table 3-2. The
values in Table 3--2 hove not been odjusteu by the conversion factors.
when this is done “he range of RRD estimates for eoch chemiccl appeors
os in Toble 3-3.

One final comment will conclude this discussion of recommended anolysis
methods. Four of the five members of the recommended set make no
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restrictions on the carcinogenic endpoints considered, and daotao are
generolly aovailable for conducting these anclyses. Analysis 43 utilizes
total tumor-bearing animals as an endpoint. While, in theory, this
should pose no restrictions on the aonalysis of bioassay data, in
practice these endpoints often cannot be defined. Availability of
needed daota ig an important consideration when assessing human risk and
expressing the results as a raonge of RRDs consistent with the doto but
quantitotively incorporating uncertainties.

COMPONENT-SPECIFIC UNCERTAINTY

The discussion to this point has not considered uncertointy ossociated
with any specific components of the risk assessment process. Rather K we
have emphasized the analysis methods os wholes and exomined the
uncertainty remaining aftsr the predictions have been obtoined ond
compared to the human RRDs (residuol uncertainty). This course has been
followed because of the opparent interoction of the components. This
interaoction tokes two forms. First, certaoin components are not mutually
independent. A component that defines approcches to length of dosing
obviously olso influences choices concerning length of observation; o
study connot dose animals for B0 weeks without clso observing the
animals for at least 80 weeks. Moreover, as discussed nbove, oltering
the approach to some components can 0lso, unintsntionally, offect the
moke-up of the underlying base of data and, hence, chonges attributed to
changing those components maoy be confounded by changes that may be
partially explicable by chonges in other components. If, for exomple,
limiting experiments to those thot last at leost 30 percent of the
stondord length also, unintentionglly, excludes routet of exposure
besides inholation, orol, or govoge, then the chonge :'n RRDs attributed
to changing requirements on the length of observation is confounded by
changes due to restricting routes of exposure.

It is olso the caose that a component-specific investigotion is not
sufficient to characterize the best opproaches because of the second
type of interaoction, the empirical interaction of ths components on the
results. Consider, for example, the components relcting to choice of
dose units (specificolly, the opproaches specifying use of mq/mzldav and
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mg/kg/lifetime) and allowable routes of exposure (unrestricted varsus
restriction to an oral route, gaovage, inholation, or the route thot
humons encounter). These two components cre not inherently
interrelated. Nevertheless, the effect on the RRD estimates and on the
estimotion of loss (i.e. the adequacy of the predictions) resulting from
selection of approaches to the indicoted components is not readily
attributable to one component or the other. Note that, when L2q is the
predictor, Anclysis 0 (mg/m?/day, restricted routes) yields average loss
of 0.298 as measured by the DISTANCE? function (sieve opplied). If the
units ore changed (Analysis 4d: mg/kg/lifetime, restricted routes) or if
the ollowable routes are cugmentad (Anclysis 31: mg/mzldoy. unrestricted
routes) the loss decreazes, to 0.267 or 0.113, respectively. When both
components are changed, howeve~ (Analysis 34: mg/kg/lifetime,
unrestricted routes), the decrease is intermediate between the two;
average loss in that cose is 0.131. Hence, the two components do rot
act independently on the estimotes for some or all of the chemicals. In
this sense, it is pointless to debate whether mg/me/day is an
appropriate dose measure for animal-to-human extrapolation without
toking into consideration the opprooches taken for other components.
Evoluation of risk ossessment methods should focus on the complete
process rather than on individual components.

Consequently, one must be cautious in interpreting results of component-
specific changes in analysis methods ond should not evaluote onolysis
methods solely on the basis of component-specific changes. Neverthe-
lees, such on examination may be useful in determining sources of
uncertainty in risk ossessment and in suggesting means of improving risk
estimation through cdditioncl reseorch or data ocquisition, The results
of our component-specific urcertainty investigation may also e useful
for presenting o range of human risk estimates aond so can be
incorporoted into the guidelines for determining thot raongs.

The components can be divided into two sets. First are those thot

do not change the data base underlying the assessment. Included in tiis
group ore the components dictoting the dose units used for extropolotion
ond those specifying the manner in which results ore overoged. Such
components are not susceptible to confounding due to unintentional

chonges in the doto base. These are the components thot show very
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consistent changes when approaches to them ore altered (cf. Table 2723).
The components relctsd to averaging results have relatively little
effect on the RRD estimates; the modes are in the interval 0.8 to 1.25
and the dispersion factors are between 1.2 and 2.2. 1Interestingly, two
of the analyses included in the recommended set (45 ond 47) differ from
the standard, Analysis 30 (olso in thi recommended set), only in the

way they average results. It eppears that Anolysis 30 is a sotisfactory
method of biocassay analysis and RRD predi<tion; the analyses that ciffer
from it only in the approach to a component that produces consistent
changes in RRDs olso tend to be sotisfactory. Changing dose units also
produces consistent chonges in RRD estimotes (dispersion foctors between
1.3 and 2.3) although the modes of the distributions are shifted, often
substantially. Again, the onolyses that differ from 30 cnly with
réspoct to dose units yield relotively good predictiors; Analysis 31 is
included in the recommended set.

The second category of compbnonts includes those thot change the dotao
base on which o risk atlistmont is bosed. These display the least
omount of consistency with respect to RRD chonges aond $o are the most
uncertoin aspects of guantitative risk cssessment. This conclusion is
not diminished by the fact that these components are subject to
confounding due to unintentional data changes. In any acssessment of a
particulor chemical, which moy have more limited dato than many of the
chemicols in our data base, such confounding remoins a potentiol
problem.

with one exception (Anolysis 43), the analyses thot incorporote
alternative aopproaches to these components are -elotively poor methods
of human risk prediction; the predictive power nnd good correlation
noted for Analysis 30 are diminished by altering one component. It
seems likely thot the high degree of chemicol-specific chonge (lock of
consistency) is responsidble. That is not to socy thot some degree of
chemicol-specificity is not desired. One would liie the RRDs thot are
too large (in Anolysis 30) to be reduced aond those thot are too small to
be increased. At this point, however, we haove not identified opproaches
(or combinations of approaches %o different components) thot do this.
Anolysis 43, which selects total tumor-bearing animals as its endpoint
is the exception; it is included in the recommended set drspite the

3-17



large dispersion foctor, 39.6, associoted with the change in choice of
endpoint.

A corollary of these observotions is that thess highly uncertain
components -- related to length of observotion and dosing, route of
exposure, carcinogenic responses to use, ond species to use -- deserve
much more investigation (certainly more than choice of dose units for
extrapolation). The goals of such an investigotion include elucidotion
of the reasons behind the observed changes in RRDs and identification of
new approaches \hat would produce the desired changes in RRDs, that is,
ones thot improve the predictiveness of the biocassay analyses.
Potentiolly useful studies of the high degree of chemical-specific
chonges moy stort with identificotion of groups of chemicals (e.g..
aromatic hydrocarbons, epigenetic caorcinogens, early-stoge carcinogens,
etc.) and examinotion of patterns within the groups. For some
components, notobly the one associated with choice of species, other
considerations, such as phormacokinetic or genetic differences, may need
to be e omined. The empirical approach adopted for the present
investigation moy not be sufficient to explicate all of the chaonges
seen. But.apove all else, ovailobility of good dota sets prosoﬁting
information sufficient for studying these components with ¢ minimum of
con‘ounding is essentiol.

OPTIONS FOR PRESENTING A RANGE OF RISK ESTIMATES

In this section we discuss three options for presenting a range of risk
estimates suggested by the dota. These options ore derived from the
five recommended analyses discussed in the previous section. Option 1
requires selection of o single cnalysis method from omong the five,
while Options 2 ond 3 involve combining results from more than one
analysis.

Regordless of the option selected, it seems reasonable to screen the
dotg that ore going to be used. The correlaotion onolysis indicotes thot
dato screening improves the correlations in general. Consequently, a
process okin to the sisve thaot hcs been defined here, ons thot selects
the best of the ovailable bioassays, is roco«nmﬁdod. In applicotions to
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a single chemicgl, a less cutomated, more customized procedure could be
applied. On the other hand, if a consistent and uniform opproach is

desired for many chemicols, some outomated sieve may be preferable.
Option 1

This option involves sealecting one from among the five analyses
discussed in the previous section. The selected onolysis method is
orplied to each of the eligidble data sets, tha median of the resulting
lower bound estimotes is used os the predictor, and the conversion
foctor, 10 (cf. Table 3-1), is applied to the predictor to correct for
bias. The resulting estimate is multiplied ond divided by the residucl
uncertainty factor (cf. Toble 3-1) and the resulting ronge of RRDs is
the cdesired raonge. Anclysis-specific results are shown in Table 3-4 for
the twenty-one chemicals in the doto base for which humen doto are not
ovailadble. Any one of the five intervals disployed for euch chemicol
can be used to represent the ronge of risk estimotes. Note that for
several chemicols, it wos not possible to opply Analysis 43.

Options 2 and 3

For thess options, oll “ive anolyses must be performed, using the
appropriote endpoints and dose units for extropolation. For sach
onolysis, select aos the predictor the mediaon of the lower bounds
resulting from the onalysis ond apply the corresponding conversion
faoctors. The values obtﬁinod in this manner represent the results of
the methods of bioossay analysis that appear to “e most appropriate for
estimating human risk and form the basis for determining the range of
those humaon estimotes consistent with the dato.

It is olways possible to determine estimotes vio Analyses 30, 31, 45,
ond 47. It moy, nowever, be the case that Anclysis 43 cannot be
completed given the daoto ovoilable (c¢f. Toble 3-2 in which severol
chemicals lack estimotes associoted with this oraoiysis). Wwhen this
occurs, odditionol uncertainty is associoted with the risk estimates:
the full charocterizotion of the ronge of estimates consistent with the
recommended analyses is not possible. To account for this, or2 may wish
to impute vclues for the missing estimates. The compunent-specific
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uncertainty aonolysis, with its dispersion foctor, provides the means to
do so.

Analysis 43 is a single-component variant of Analysis 30. The histogram
gssocioted with this voriotion (Figure 2-52) indicates the mode lies
between 0.8 and 1.25 (the geometric meon of the=~ values being 1.0).

The RROs for Anclysis 43 aore imputed by toking the RROs from Anolysis 30
ond multiplying them by o foctor indicoting the average ratio of the RRD
pairs. We have used the geometric mcan of the interval which contains
the mode, i.e. 1.0. (Another reacsoncble factor could be based on the
medion rctio.) 1In doing this, the uncertointy is increased (reflecting
the uncertainty due to lack of the complete ersemble of results) which
is estimated by the dispersion foctor. The imputed Analysis 43 results
ore multiplied and divided by the dispersion foctor (39.6) since that
foctor is the average omount by which the rotios d.ffer from the mode.
The imputation of predictions for Anclysis 43 is completed by opplying

the conversion factors for AnGlysis 43 just os if the estimates were not
imputed.

At this stoge, the ossessment (i.e. prediction) of risk is completed.
One has derived the best predictions of humaon RRDs that ore possible
from the data availadble: for an unalysis that cculd be performed, a
short interval (derived from the ronge of conversion factors pertinent
to that method) of predictions is available, wherecs for an analysis
whose results have had to be imputed a generally much wider interval of
predictions is trhe best thot can be obtained. However, because of the
variability charocterized by the residucl uncertainty foctor, these
intervals ore not sufficisnt indicators of the range of riskh estimates
consistent with the doto. The converted predictio s must be multiplied
ond divided by the residucl uncertointy foctors to derive upper and

lower uncertointy bounds for the risk estimotes from sach anolysis
method.

Since the rescommended set of onolyses contoins methods that are jood
with respect to prediction of human risk, the ranges of estimates
nassocigted with those analyses chararnterize the human RRDOs for the
chemical in question. Tre ronges extending from the lower to the upper
uncertointy bounds for sach individual method con be considered os self-
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contoined results (this is Option 1) or they may be considsred os o
whole to preiont overall ronges of risks. Two lines of reasoning
dictate how this might be accomplished. First (Option 2), one may
reason as follows: to be most certain of inclucing the true RRD in the
overall range, one must consider each onalysis (since the best one for
any given chemical is not known) and chorocterize the range of estimates
by the intervol from the smollest lower bound to the largest upper bound
(the "full range"). On the other haond (Option 3), one might orgue that
any of these methods is adequate and that the ronge of human estimates
is suitobly repressnted by the estimotes from the methoda(s) that are
most consistent with the entire ensemble of results. In this context,
consistency can only be determined moduloc the degree of uncertainty.
{This is analogous to o statistical orgument concerning the differe.nce
betwean point estimates, for exomple, which con only be resolved to the
extent that the stotistical voriobility ocllows.] Consequently, the
Option 3 characterization of the range of risk estimates is defined as
the union of the intervals from the lower to the upper bounds associated
with some subset of the anolyses such that the union contoins the
predictions from all the anclyses (i.e. the values, like those in Table
3-3, thot hove been adjusted by tho conversion foctors but have not had
the retidual uncertainty factors applied) and is the smollest union
sotisfying thot condition. This is o reasonoble representation of the
range of estimates consistent with the results from oll recommended

analyses, given our present degree of uncertainty. Wwo will caoll it the
smollest consistent range.

Comparison of Options

All three options presentasd define ronges of estimates by utilizing one
or more of the methods that have veen shown empiricaolly in this
investigation to do well with respect to prediction of humon risk.
Moreover, they all incorporote quantitotively those cspects of
uncertaointy thot ore summarized by the residual uncertainty foctor.
Severol of the odvantages ond discdvontoges of the options are discussed
below.

Option ! requires analysis of the bicassay datg by a single method only.
The selection of the single method may be somewhat problematical,
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however., It has been argued that the obility of the cnolyses in the
recommended set to predict human risk is not cleorly distinguishable by
the empirical approach odopted for the present investigation. Neverthe-
less, other foctors, based on toxicological considerations for exomple,
may dittate the choice of one of the analyses methods. In that case,
there is no question agbout the method thot should underlie Option 1.

It is hord to conceive of other factors thot could clearly dictaote the
choice of a single analysis method, however. Aside from Anolysis 43,
all the analyses in the recommended set use exactly the same experiments
and carcinogenic responses to estimate risk. If Analysis 43 is deemed
inoppropriote becouse it uses total tumor-becring animals, for instonce,
cne is left with four other methcds one of which must, o priori, supply
the ronge of risk estimates, if orne follows the procedure of Option 1.

A priori selection of a method may suit regulotory purposes very well.

Options 2 and 3, however, consider the intervols of estimates derived
from cll of the methods. No 0 priori decision is made about the
porticular method to use. Rather, the results of all the methods are
exumined for consistency and the summa.'y ! unge of estimates reflects
that consistency as well os the analysis-specific uncertointy. (In this
sense, these options reflect ocross-method uncertointy in oddition to
within-method uncertointies.) Grecter consistency ocross onolysis
methods yields smaller ranges. Of zourse, the overall range is no
smaller than the dmallest range associated with ony given method (which,
given the conversion ond residucl uncertointy faoctors, must be from
Anglysis 45); an overall ronge can reflect no more certainty thon the
method with least uncertointy.

‘It moy Le the case tnat the full range estimoted via Optiorn 2 over-
estimates uncertainty. It is true that inclusion of more analysis
methods in the prefarred set can never diminish the Option 2 range. So,
for example, shaiuld further investigotion reveal other ondlysis methods
warranting inclusion in the recommended set, their inclusion could not
shrink the range determined by Option 2 and the current sat of cnalyses.
Furthermora, no particulor use is mode of the analysés with least
residucl uncertointy. If oll onalyses predicted the sumo RMDs. the

method with the lorgest uncertointy foctor, not the ons with the
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sma.lest factor, determines the full range.

Option 3 does ~ot share these disaodvontoges with Option 2. Becouse thre
third option sslects the smallest range that is consistent with all the
predictions, priority is given to the methods with lerast uncertainty.
Moreover, it is entirely possible thot additionol mathods could rsduce
the smollest consistent range, even if they have larger uncertainty
factors, if the added methods "cover®™ more of ths originol predictions.
In this manner, odditional information of cumparable quality (i.e. os
good in terms of predicting human risk) can refine our estimates of
human health effects.

At first glance, it oppeors that the necessity ¢f imputing volues when
particulaor analyses cannot be performed is o mojor disadvortage of
Options 2 and 3. 1Indeed, the need to impute adds greaotly to tre
uncertainily and may provide some justification for dropping from the
recommended set those cnalyses for which imputotion may be required.
(Note that Options 2 and 3 are equolly applicoble no matter how mony
analysis methods are considered.) It must be emphasized, however, thot
the problem with imputation is not a methodological one, i.e. there is
nothing inrerent ir Options 2 or 3 that maokes them suffe- from this
difficulty. (In foct, Option 1 would have the scme difficulty if the
single method selected by that option was 43.) The i .creosed
uncertainty that results from imputation is coused by inadequacies in
catg reporting or datn disseminution. If complete results, especially
those allowing definition of the responses need, totol tumor-bearing
onirals or the combination of significont responses, were availabdble,
then no imputation would be required and uncertointy caoused by lock of
doto considerobly reduced. The need to impute values is not o
legiiimate criticism of Option 2 or Option 3.

In closing this comgorison, it should be noted that the uncertointies
disLussed in connection with oll three of the opticns may not completely
characterize uncertointy. In particular. there is uncertaointy obout the
shape of the dose-retponse curve thot is not quantitatively estimotea.
Moreover, the residual uncertointy factors represent only that port of
the urtertainty thet is not explainahle by uncertainty in the human

estimates. The uncertointies not quantified foll outside the definition
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of thote thot ore porticulorly ossocioted with ony given anolysis
method, but they should be borne in mind when considering the ranges of
estimates of human risk derived from ony option.

Examples

The chemicals included in this investigotion but lacking epidemiologicol
doto sufficient for quantitotive risk ossecsment (Table 2-2) con serve
cs exomples of the copplicotion of the three options. Tables 3-2 through
3-4 present the medion lower bound RRDs, the Lonverted predictions, and
intervols of estimates derived by appiicaticn of the analysis-specific
residual uncertainty factors, respectively, that underiie the
application of these options. As mentioned earlier, any one coulumn of
Toble 3-4 representg the output from Option 1. Taoble 3-5 contoins the
two overcll ranges from Options 2 ond 3.

Several interesting fectures ore illustroted by the ranges in Toble 3}-5.
First, as an excmple of the procedure for determining the smallest
consistent ronge (Option 3), consider ocrylonitrile. The intervol
(Table 3-4) cssocioted with Anclysis 43 does not intersect with the
intervols derived for the other onalyses. Consequently, the smollest
consistant range is the union of the Analysis 43 interval aond the
smallest interval (from Analysis 47) thot contains all the other
predictions, as shown. For other chemicals (EDB. hexachlorobencene),
the intervols aore not disjoint so thot o more stondord-loocking intervol
of volues is obtoined. In ony cose, it is opporent thot the smollest
consistent ronge can provide improvement (in terms of o norrower ronge
of estimates) over the full range {(Option 2).

Second, imputation of values for Analysis 43 has been necessary 1in
severacl instaonces. Wwhen this is 80, the uncertainty bounds for the
imputed volues completely determine both ranges of estimates. It 13 easy
to understond why this is the cose with the Option 2 ronge: the
uncertointy of the imputotion corrjes with it o multiplicotive factor of
39.6 that is used to Cetermine thae range of imputed values ond which is
much larger than any of the residual uncertaointy factors. The reason

why the imputed Anglysis 43 uncertainty bounds determine the smallest
cons‘stent ronge is 0lso linked to the imputotion uncertainty, but
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of those that are porticulaorly ossocioted with any given anolysis
method, but they should be borne in mind when considering the ranges of
estimates of human risk derived from ony option.

Examples

The chemicaols included in this investigotion but lacking epidemiological
data sufficient for guantitotive risk assessment (Table 2-2) con serve
as examples of the application of the three coptions. Tobles 3-2 through
3-4 present the medicn lower bound RRDs, the converted prcuictyons, ond
intervals of estimates derived by application of the onalysis-specific
res8ic .a)l uncertainty fortors, respectively, thaot under‘ie the
ofplication of these options. As mentioned earlier, any one cclumn of
Table 3-4 reprbsents the output from Option 1. Tadble 3-5 contoins the
two overall ranges from Options 2 and 3.

Several interesting feotures cre illustrated by the ronges in Toble 3-5.
First, os on exomple of the procedure for determining the smallest
consistent range (Cption 3), consider acrylonitrile. The interval
(Toble 3-4) ossocioted with Anolysis 43 does not inte.sect with the
intervols derived for the other analyses. Consequently, the smallest
consistent range is the union of the Anolysis 43 intervol ond the
smallest interval (from Anaolysis 47) thot contoins all the other
predictions, as shcwn. For other chemicals (EDB, hexochlorobenzene),
the intervals cre not disjoint so that a more standard-locking interval
of values is obtcined. In ony case, it is appaorent thot the smollest
consistent ronge con provide improvement (in terms of o norrower range
of estimates) over the full ronge (Opntion 2).

Second, imputotion of voluas for Anolysis 43 hos been necessory in
severol instonces. When this is so, the uncertointy bounds for the
imputed values completsly determinre both raonges of estimotes. It is masy
to uncerstand why this is the case with the Option 2 ronge: the
uncertainty of the imputation carries with it a multiplicotive tactor of
39.6 thot is used to determine the ronge of imputed volues and which is
much larger thon ony of the residuul uncertointy factors. The reason

why the imputed Analysis 43 uncertainty nounds determine the smailest
consistent ronge is olsoc linked to the jimputation uncertainty, but
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involves other features of the dotu as well. In particular, note in
Table 3-2 that the median lower bound estimates from Analysis 43 are
generally smaller than those from the other anoiyses. Moreover, the
conversion foctors for Analysis 43 are 0.18 and 0.29; i.e. the converted
values are even smaller thon the raow volues, whereas the foctors for
other anclyses in the restricted recommended set aore greater than or
equal to one. (This olso explains why, even when no imputation is.
necessary, Analysis 43 uncertointy bounds olwoys determine the lower end
of the smallest consistent range.) The difference in conversion factors
and the reason why they tend to separate the predictions of Analysis 43
from those of the other onalyses con be explcined by reference to Figure
2-52. This histogram depicts the chemicol-specific rotios of RRD
estimates derived from Analysis 43 to those derived from Anclysis 30.
The six chemicols whose ratios are greoter than 1.25 ore only from the
set that havs epidemiologicol data suitoble for estimoting the
conversion factors. Given that the conversion foctor fcr Anglysis 30 is
roughly unity, these six chemicals, especiolly, have shifted the best
fitting line to the right, decreasing the y-intercept, aond entailing
conversion factors substanticlly less thnn one. But, as clready notad,
the chemicaols represented in Taoble 3-2 generally haove ratios in Figure
2-52 that ore less than 0.80. Hence the divergence of the RRD
predictions. The dichotomy disployed in Figure 2-52 between those
chemicols with suitaoble epidemiologicol dato ond trhose without is
undoubtedly fortuitous. Nevertheless, it does show that a dispersion
foctor os large as 39.6 used in the context of the imputotion of values
is necessary to cover such occurrences. It is importont to note thaot
this ocdded uncertainty is unnocos:ary{ imputaotion i{s dictated solely by
data availability (having the ability to define the total tumor-bearing
animal response). Better doto reporting procedures caon substontiolly
reduce the ronges of risk estimates.

For purposes of comparison, Table 3-6 presents the ranges of estimates
.hat aore obtoined from Options 2 ond 3 when Anolysas 43 is not
considered. This eliminotes the wide ronges produced os o results of
imputation. However, by simply ignoring o method of extrapolation thot
haos been deemed to be of G value comparable to those of the Ather
methods in the recommended set, these ronges may be too norrow to the
exient tnot across-method uncertainty is underestimoted. Certainly, the

3-2%



ranges presented in Table 3-5 cre to be preferred ovar those in Table
3-6 when no imputaotion is necessary. When Anolysis 43 connot be

per formed and imputotion is necessary, it is not cleor which ronge is
more appropriote; those bosed on fewer analyses (Tcble 3-6) may be too
narrow while those rasec =n an od hoc imputation procedure may be too
wide. It bears repeoting tha! this dilemma could be avoided entirely if
some better meons of dota dissemination were to be found.

At present, there ore no quontitative estimotes of RRDs derived from the
epidemiologicnl literature to which these predictions can be compared.
It might be possible to quolitotively compore the predictions to the
epidemiology in o couple of woys. The predictions could be used to rank
the chemicols in order of their RRDs {reverse order of their
carcinogrnic potencies). Another ordering could be based on a
comparative examination of the epidemiology. The degree of
correspondence of the two orders might provide information about the
predictions. Of course, without quantitotive estimates, the
epicemiologically bosed ordering would be subject to considerable
uncertainty in and of itself. A chemicol-specific examination of the
epidemiology might be useful in uncovering predictions thot core waoy off
the mark. Such o comparison would probobly be quite crude ond may be
limited to identifying those chemicals fo~ which the predictions (being
finite) indicate corcinogenicity but “he epidemiology indicaotes no
carcinogenicity. Neither type of comporison haos been undertoken for
this project.

GENERAL CONSIDERATIONS AND MAJOR CONCLUSIONS

It is apporent thot the animal data base and the methods used in this
study provide o useful basis for evoluoting quontitotive rishk
asnsessment. Their use in the present context has demonstroted the
relevance of onimul corcinogenicity experimeni. to human risk
estimotion. Moreover, it has been possible to identify metnods of
onalysis of the bioassay dota, including the choice of the median lower
bound predictor, that satisfactorily predict risk-reloted doses in
humans. Application of these methods has led to suggested guidelines

concerning the prediction of humon risks and the presentation of ronges
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of estimates incorporating the relevant uncertointies.

Coertoin features of this investigation must be borne in mind. Primory
omong these is the fact that the level of risk for which RRDs have Etnen
determined is 0.25. This value is a compromise between the need to use
o value high enough to be foirly independent of the choice of dose-
response model in the bioassoy onalyses ond the desire not to greatly
exceed the risk found in most epidemiologicolly studied cohorts. A risk
level of 0.25 is higher than thaot which exists in most human exposure
situations. While we would not expect some of the results to be oltered
if the investigotion haod utilized o different risk level (e.g. 10-6), it
is not certain that all the conclusions would remain the some. In
particulor, the evaoluction of uncertaointy in this report does not encom-
pass that reloted to the shape of the dose-response curve. It may be
worthwhile to check some of the results ot lower levels of risk,
although it must be noted that the increased uncertainty ossociated with
the shope of the dose-response curve at low doses may moke interpreta-
tion of results concerning other components of risk ossessment
difficule.

Also recall that the biocossoy data, though extensive, is rather crude in
many respects. We haove olready noted the problems associoted with dato
deficiancies, mostly coused by incomplete reporting of results. Over
and above that, however, the onalyses pe-formed did not use time-to-
tumor dota, i.e. o quontal model hos been used to estimate RRDs. Time
‘and dota constraints dictated thot choice, but it is of interest to
determine if time-to-tumor onalyses, which utilize more of the

information obtcined from o bioassay, could refine our results aond
conclusions.

It must be recolled thot when several forms of o suspected carcinogen
hove been tested in animal bicossays, the results for oll forms hove
been grouped together. This primarily 1n!iuoncon the doto and res.lts
for the metols. Since oll forms ore individually identified, it is
possible to perform the onclyses on each form separately. Of course,
the number of experiments for the offected chemicaols would be reducod.
Morecver, it is often not known, even for substontioted human carcino-

gens, which particulor moieties couse concer or which are most potent.
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Other reasonable approaches to the components of risk ossessment could
have been defined. Thus, for exomple, the component related to length
of dosing did not have to include only two approoches, one including all
experiments ond the other including only those experiments lasting ot
least 90 percent of the staondard length. Short experiments by
themselves could haove been studied. This moy hove led to an examinotion
of the correction factor that has been used to adjust for short
observation periods.

As discussed in Volume 1 of this report, the epidemioclogical data used
in this study ore of varioble quality. The bounds cetermining ranges of
exposure ore somewhaot arbitrary ond, for each chemicaol, one caoncer
endpoint from a single study wos selacted to reprecent the range of RRD
estimotes ond to be the target of the biocastoy onclyses. It would be
interest to determine how robust our findings ore with respect to these
choices. Moreover, the pattern of exposure for which RRDs have been
estimoted (45 years of constant exposure starting ot oge 20) is not
realistic for some of the study chemicols (sucwh as DES ( -~ estrogen).
This choice, too, is a compromise between the usual lifetime exposure
odministered in bioccssays (thot is, lifetime after stort of exposure
which may be several weeks ofter the birth of the test animocls) ond the
less consistent exposures which humans encounter.

In the prediction onalysis, three loss functions have been defined.

None of thom is the stondard squored-error loss routinely applied, since
the latter is clearly not oppropriaote for the estimates derived here.

No stctisticol development of thess loss functions exists to inform us
cbout lock of fit, significance of differences in loss, etc. If o
stotistical underpinning did exist, it would be possible to use the loss
functions in some capacity besides a8 ronking procedures and, thereby,
to be able to better differentiots between tne onalysis methods ondg
refine the conclusions.

Finally, only 55 distinct biocassay onolysis methods have been defined.

This is only o small fraction of those that could be considered, even
fixing tho opproaoches to the components at those defined here.
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Despite

emerged

the caveats just presentasd, the following maojor conclusions have
from the present investigation.

Animal ond human RRDs ore strongly correlated. The knowledge
thot this correlotion exists should strengthen the scientific
baosis for cancer risk ossessment ond cause increased confidence

to be placed in estimates of human cancer risk mode from cnimal
data.

In the majority of coses considered, analysis methods for
bicossay dato that utilize lower stotistical confir- .e limits
as predictors yield better predictions of human risx thon do the
some methods using moximum likelihood estimotes.

Analysis methods for F.oossoy dota that utilize medicn lower
bound RRDs determined from che ensemble of doio for o chemical
generally yield better predictions of human results thaon
analyses that utilize minimum lower bound RRDs (assuming
approaches to other risk assessment components are chosen
appropriotely.

Use of the "mg intoke/kg body weight/day” (body weight) method
for onimagl-to-humon extropolation generolly couses RRDs
estimated from onimol and humon dato to correspond more closely
than the other methods evoluoted, including the ®mg intake/m?
surface area/day” (surface area) method.

The risk ossessment opproach for animal data that wos intondod»
Lo mimic thaot used by the EPA underestimates the RROs
(equivalent to overestimating human risk) obtained from the
human doto in this study by obout on order of mognitude, on
overaoge. However, it should be understood that the risk
ossessment appronches implemented in this study are computer
outomated cﬁd do not olwoys utilize the some data or provide the
sore result os the EPA approach.

Reasorioble risk onalysis methods can be defined for the
chemicals in this study thot reduce the residuol loss (roughly
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the overage multiplicotive factor by which the RRD predictors
obtained from the animal data ore inconsistent with the ranges
of hum.: RRDs consistent with the human data) to 1.7. This is
not the sume 0s saying that the predictors are accurcte to
within a foctor-of 1.7, becouse the estimated ranges of human
RRDs thot are consistent with the human data cover an order of
mognitude or more for most chemicols.

e It has been possible to identify o set of analvsis methods using
the medion lower bound estimates that ore most appropriate for
extrapoiating risk from uciimols to humans, given the current
state of knowledge and daota onclysis. It is possibie to use the
information and results presented in this investigotion to
calculote ronges of risk estimates that are consistent with the
dota ond also incorporate many anortaintion associoted with the
extraopolation procedure.

e Evoluotion of risk cssessment methods should focus on the

complete risk ossessment process rother than on individual
components.

e The dotc base ond methods used in this study can provide o
useful basis for the evo'uation of various risk cssessment
methcods.

DIRECTIONS FOR FUTURE RESEARCH

In the course of the previsus discussion, severol proposed extlensions of
- .8 project have been mentioned. Several fall under the heading of
aunsitivity onolyses of the results olreody obtoined. f{hese include
investigation of the robustness of the results to reacsonable alternctive
choices for the ep.Jo iologicnl ewtimate.. examination of ather means to
gnolyze bioassay dota, including time-to-tumor onalyses; ¢ °d
investigot.on of the effect of using lower levels of risk say 10-6,
which ore of direct regulotory concern. A detailed stotisticol
devolopment of the loss functions used here (or o general development

for certain closses of loss functions) might be of general interest.

3-30



The data thot is available from this project could provide an

interesting and pertinent exomple to which that development could opply.

Also discussed in conneciion with component-specific uncertainty are
efforts directed at reducing or explcining that uncertainty. The
greatest uncertainties are relaoted to the components specifying how to
hondle experiments of different lengths of dosing, routes of exgosure,
or test species and specifying the corcinogenic responses to use. Many
ospects of these components and their uncertaointies can be addressed in
an investigstion of pharmacokinetics. The dato base contoins detailed
data on the timing and intensity of exposure for each bioassay, so0 a
pharmacokinetic study, which requires such information, is entirely

feasible with the currently collected data. Two specific proposocls aore
discussed here.

Risk estimotes incorporating pharmacokinetic data cruld be used to
determine appropriote surrogote doses. It is sometimes assumed that o
given dose mecsured os average concentraotion of the octive metobolite ot
the target tissue will produce the some risk in animals ond humans.
However, given the mony differences between animals and humo.s (size,
1life spaon, ond metabolic raotes, to mention o few), it is ncc cleor
which, if ony, surrogate dose is the most oppropriate. This issue is
similor to thot of choice of the most appropriate surrogate dose measure
for animal to humon ex‘ropolation (e.g. mg/kg/doy versus mq/nzldcv)
considered in this study ond can be studied in o similar manner. Risk
estimates using phormacokinetic dato could be used to determine
empirically the most appropriate surrogate dose. Even though the range
of RRDs consistent with the humon dato gohcrally cover a ronge of on
order of magnitude or greater, the potential surrogate doses cover an
even widar ronge. Just us the present 3tudy indicotes that certain dose
maQsures cppear to predict human results well in conjunction with
appropriate choices for cther risk ossessment components, Q study using
pharmacokinetic dato should ollow similaor conclusions regarding the
turrogut‘ dose. A prelirinary investigotion indicotes thot possibly 16
of the 23 chemicals with suitcble human doto used in this study might
also have data that would support o risk ossessment thaot incorporotes
phormacokinetic dato.



A second potentiolly useful investigation incorporoting pharmacokinetic
data involves using the data in the dato base on different routes of
exposure to study the best means of extropolating from route to route in
onimal studies. Risk ossessment methuds, including the ones examined in
this study, often cssume & given dose rate involves the saome risk,
regardless of route. This clearly is a gross oversimplification. The
aonimal dato collected for this study contoins numerous exomples of
carcinogenicity studies on the some chemical ond animal species, but for
which exposure is through diffarent routes. Those studies could be used
to determine how pharmacokinetic datag could best be applied to perform
route-to-route extropolotion. Since human data would not be essentiol
in these investigotions, our total dotec bose that encompasses &b
chemicols could be used.

The quostion of different cnemicol closses ond the consistency thot may
be apporent within ony uf the closses is deserving of further study. It
would be recsonable Lo couple this work with pharmocokinetic methods.

In the present dota base, severacl closses cre represented. However, the
number within any porticular closs is somewhot limited. An expanded
dota base may dbe recessary for o thorough investigotion.

In foct, one desiraoble gool in and of itself, but one that would enhance
the prospects for successful completion of these other proposals, is the
maintenonce aond updating of the bioassay doto base. All ospects of
this, including occumulotion of more doto sets for the chemicols already
included and addition of more substances, maoy be necassory. Some
revomping o the data coding format mcy 0lso moke future aonalysee easie-
and more occurate. Especially for pharmacokinetic studies, for

instonce., dose potterns could be recorded on o daily rather thon weekly
bosis.

As O counterpart to the bicossay dota base enhancement, updcting ond
cugmenting tha'opidomxologxcox dato is essential. Since the
epidemjological dota (in porticular, data on exposuro) is the single
most limiting foctor preventing use of human dota, ony hope of
increasing the size of the sample of chemicols uteful in estimating
conversion factors and residual uncortoxhty must be based on an effort

to ocqQuire such data. For those chemicals olready onalyzed, more
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specific exposure doto would reduce the uncertointy bounds surrounding
epidemiological RRD estimotes ond refine our estimates. As is the case
with the bioassay dota, much of the limitation or uncertainty is sclely

o matter of inadequate reporting of data.

It shuuld be noted in passing that the methods and portions of the
computer progroms developed and opplied in this project moy be useful in
other contexts. Of particulor intersst is o study of other types of
health effects, ¢.g. reproductive effects. The investigation of these
issues could include determinotions of uncertointy as well as
identification of the most oppropriate methods. Other projects,
including investigation of other types of extrapolations, e.g. from one
temporal dosing pattern to another or from rata to mice, could olso be

facilitoted by use of the doto baose, met..ocds, and programs developed in
the present work.

Finally., one would like to investigate cancer risk assessment methods
appropriote when dato ovoiloble to o particulor cssessment are limited.
We hove mentioned this problem in connection with component specific
uncertainty (i.e. noting thot confounding like that affecting those
uncertointy colculations will often be present in any given risk
anolysis setting) and in connection with the set of recommended bicassay
anolysis methods. In the lotter instance, it wos pointed ou* that each
onolysis in the recommended set, sove for Anolysis 17, is copable of
being opplied to any doto bose but that doto limitotions due to
incomplete dato presentotion may entail thot Anclyses 20 ond &3 ore not
possible. The remaining onolyses (30, 31, 485, and A7) con be performed
no motter whot the data set contains, but they may be seriously aoffected
by th§ extent ond nature of the contents.

Consequuntly, the following investigotion is proposed os 0 means of
studying the effects of the limitotions on the data for any chemical of
interes® and of determining how best to extropolaote risks to humans.
Pick the doto in the dota base that most nearly matches the dato for the
chemical in question. The motching may be based on specier, routes of
axposure, and quality of the adata. Moreovaer, one may wish to restricet
ottention to chemicals that ore in the some closs of the substance of

interest. Suppose, for example, o volotile organic chemical is under
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investigation ond that the only dota avoiloble are from rat inhaolation
studies. Then, the pr-oposed procedure would first select rot inhalation
bioassoys conducted using oppropriote chemicals (i.e., perhops limited
to volotile orgaonics). The components of risk assessme:.t not fixed by
the selection could be varied ond the mathod thot works best with the
selected dota would be the basis for extropolating to humans risks due
to.tho chemical in gquestion. Since we 0150 have Q@ recommended set
consisting of methods thot appear to perform well for the data ond
chemicols considered os o whole, the risks estimated on that basis (i.e.
using the recommerdied 2et) would be ovoilaoble for comparison. These
sstimates revecl whot would hcoppen if other species, other routes, ond
other chenicals ore ircluded. The relotionship between the estimates
obtainen by the tlwo approaches would suggest o generol type of
uncertainty attributoble to use of o limited dato base (in this example,
rot inhalotion studies). A pilot study could investigote the
feasibility of such ¢ chemicol-specific approoch to risk ossessment.
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Table 3-1

COMPARISON OF RESULTS FOR SELECTED ANALYSES®

Bios-
Corrscting Residual
Number of Correlation Total Incrementgl Conversion Uncertointy

Anolysis Chemicals Coefficient Normolized LossP Fac*ors® factord
0 20 0.78 1.15 1.6 - 2.1 5.3
o® 20 0.78 1.7 12 - 12 16.2
7 19 J.76 1.40 1.6 - 3.6 5.4

1i¢ 19 0.77 0.62 0.81 - 1.9 4.5
11¢ 13 0.76 1.07 3.7 - A3 3.1
17 1" 0.58 0.27 2.8 - 2.8 4.2
20 17 0.67 0.62 0.69 - 0.8 7.1
30 23 0.9 0.39 1.7 - 1.7 2.0
31 23 0.90 0.%3 8. - 12 2.0
43 17 0.76 0.28 0.18 - 0.29 2.8
4 23 0.91 0.27 1.2 -~ 1.7 1.7
47 23 0.89 0.28 1.0 -« 1.7 1.8

OTre results correspond to the member of the pair (with sieve, without
sieve) that gives best results. For Analyses 11c, 20, and A3 this is
without the sieve; for other onolyses this is with the sieve. The
medion lower bound predictor, Lpg. is used in oll onolyses except for
the exception noted.

PThis value is not the soma os thot in Toble 2-8 becouse ths inclusion
of the supplemental onolyses reduced the minimum overgge loss for two
of the three loss functions and increosed the moximum loss for oll
three of the functions.

CThese volues are the foctors, 10%, bosed on the y-intercepts from the -
CAUCHY and TAWNH loss functions (cf. Tables 2-13 ong 2-17) and represent
the averoge ratio of humon RROs to onimal RRDs.
dRresidual uncertainty is from Toble 2-21 or 2-22. It {s the factor
computed for all chemicals and represents the averoje factor by which n
prediction must be multiplied or divided in order to eliminote
uncertointy not due to uncertainty in the humar estimates.
®Using minimal lower bound estimator Lp.



Toble 3-2

MEDIAN LOWER BOUND RRD ESTIMATES, BY CHEMICAL AND ANALYSIS METHOO®

Analysis

Chemiccl 30 31 43 us 47
Acrylonitrile 4.39 9.29€-1 1.01 3.57 4 .39
Allyl Chlcride 6.82E+1 1.02E+1 6.71E+1 7.27E+1  1.11E+2
4-Aminobiphenyl 2.17E+1 2.03 --P 2.428+17 2.17€E41
Benzo(a)pyrene 5.21E-1 7.02E-2 &.80E-2 S.87E-7 5.21E-1
Carbon tetrochloride 3.10E+1 2.89 -- 3.57E+1 3.10E#
Chlordane 2.36 1.96E-1 1.56 1.99 H.43
3,3-Dichlorobenzidine 1.24E+1 2.62 $5.59E-1 1.971E+1  1.24E+1
1,2-Dichloroethone 2.79E+1 &.62 1.28E+1 3.34E+1 & .31E41
EDB 3.77 2.94E-1 2.96 3.29 4.82
Formaldehyde 1.88 3.09€-1 - 1.15 3.186
Hexachlorobenzene 1.30 2.00E-1 2.84E-1 1.30 2.48
Hydrazine 1.87 1.74E-1 - 1.87 9.15
Mustarr Cas 1.40E-7 1.31E-8 - 1.40E-7 1.4L0E-7
Lead 6.14 1.30 §.09 6.14 6.14
2-Nopthylomine 1.20E+1  2.5a -- 1.20E+1  1.20E+1
NTA 6.24E+2 5.68E+1 2.23E+1 6.26E+2 6.97E+2
2,4,8-Trichlorophenol 1.73E+2 1.61E+1 , == 2.11E+42 1.90E+2
TCOO 7.32E-% 1.55C-% 2.56€E-3% 6.B7E-5 9.05E-5
Tetrochloroethylene 9.22E+1 B8.2% 8.06E+1 8.70E+1 1.13E+2
Toxaphene 2.58 1.8%9€-1 1.37 4.23 h.746
Vinylidene chlorias 1. 34 2.45E-1 7. 26E-1 S.5%6E-1 2.3

OThe full sieve wos used to screen the dato: the estimotet have not been
odjusted by the oppropriaote conversion foctors.

Da "._* jnoicotes that the dato were not avoilable to opply thes method
to the chemical.
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o Anglysis —_—
_Lremical S 1 . L 43 . 43 47

Acrylomitrile {«.764. 7.46]® [7.85, V.126+1) (1.82€-1, 2.93E-1] (4.14, 6.07) [4.39, 7.46)
Allyl Cnloride [7.376e1, 1.18E+42) [B.62E+1, 1.23E+42] {1.21E+1, 1.95€+1) [B.43E+1, 1.24c¢+2) [1.11E+2, 1.89E+2]
4-Aminobiphenyl [2 3uEe1, 3.69E€¢1] [1.72E¢1, 2. &4E4Y]} --c [2.81E+1, 4. 11€41) [2.17E+1, 3.69E+1]
Benzo{a)pyrens [9 63£-1, B B6E-1] [5.93E-1, 8.&44E-1] [B 64E-3, 1.39E-2) [6.81E-1, 9.98¢-1] (5.21E-1, 8.86€-1)
Corbon Tetrochloride [3 35€+1, 5.27E+1) [2. 44Eel, 3 47E41]) -- [6.164E+1, 6.07E+1) [3.10E+1, 5.27E+1])
Chlorcane [2 99. 4.01] [v.66, 2.36]) [2.81€-1, 4.52E-1] (2.31, 3.38] [6.45, 7.53)
3 3-Dichlerobenzicdine {1 . 36Eel, 2 11E«1) (2. 2i6et, 3. 15E¢1) [1.01€-1, 1.620-1) [2.22E+1, 3.25E+1) [1.24E4+1, 2.11F+1)
1.2-Dichloroethone {3 01E+1, & 76E¢1] [3.90E+1, . 35Ee1) [2.30, 5.71] [3.B7E+1, 5.68E+1) [6.31E+1, 7.33E 1]
£08 {6 07. 6.41]} [2.4B. 3.53) [5.33£-1, 8.%8E-1) [3.82, 5.59] i4.82, 8.19}
formclcenyde {2 03, 5 20]) (2.61. 3.7} -- [1.3., 1.96] {5.16, 5.37]
Herochlorcbenzens [v &0, 2 21) [1.63, 2.40} [5.11€E-2, 8.24€-1] {[1.51, 2.21) [2.48, 4.22)
w,drnzine {2.02. 5 *8) {1.847, 2.09) -- (2.17, 3.18] [9.15, 1.56E+1]
m stard Gos {V.51€-7, 2.380-7) [V.11€-7, 1.57€-7) - [1.626-7, 2.38E-7)] [V.40E-7, 2.38E-7]
Lead {6 63, 1.04Ee1] [1.10€+1. 5.56E¢1) [1.10, 1 .77) (7.12, 1.04E+1] [6.14, 1.04E+1)
2-Nsgthylomine (1 3£+, 2. 04E+1) [2.15E+1. 3.G5E+1) -- [1.39€+1, 2.04E+1) [1.20E+1, 2.04E4+1])
NTA {6 74E+2, 1 O6E+3] [&4.7CE+2, 6.80E+2) [4.01, 6.47] [7.24E+2, 1.06E+3] [6.97E+2, 1.18t+3])
2. 6. 6-Trichlorophenol [1 B7E+2, 2 94E+2} [V.36E€+2, 1.94E+2) -- [2.645E+2, 3.59E+2] [1.90£+2, 3.23£+2])
1CO0 [7 91E-5, 1. 26E-4) [1.3Vk-&, 1.86E-4) [4.61E-6, 7 42€E-6] [7.976-5, 1.18E-4) [9-056-5, 1.54E-4]
Tatrochloroethylene {9 96E+1, 1 57E+2) (6.97E+1, 9.92C+1) [1.4%E+Y, 2. 34E+1) [1.01E+2, 1.4BE+2) [VY.13E+2, 1.92E+2]
Toxophene {2 79, & 39) [V 60, 2.27) (2.47€-1, 3.97€E-1} 14.91, 7.19) (.74, B.06]}
Vinylidene Crlcride 45, 2.:8) [2.07, 2.94]) [1.%1E-1, 2.11E-1) [6.645E-1, 9.45E-1) {2.34, 3.99])

RRO PREDICTIONSO, BY

Table 5-3

T

Oing uredictiuns ore derived from the values in Yoble 3-2 vy cpplicaticr of the appropriqte conversion factors.
Line intervals ore the -esclt of oLplying the two conversion factors giver in YTable 3-1 for each analysis method.
Ca *--®" Indicotes “hat tX cote werse no* uvallable to opply “he method to the chemical.
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Table 3-4

UNCERTAINTY INTERVALS FOR RRD PREDICTIONS?, BY CHEMICAL AND ANALYSIS METHOD

Analysis
. Chemical 30 3 43 45 47
Acrylonitrile [2.37, 1.59E+1] [35.93, 2.24E+1]} [6.50E-2, 8.20E-1] [2.44, 1.03E+1) [2.684, 1.34E+1)
Allyl Chloride [3.764E+1, 2.36E+2] [6.31E+1, 2.46E+2] [4.32, 5.46E+1]) [4.96E+1, 2.11E4+2] [6.17E+1, 3.40E+2]
&-Aminobiphenyl [1.17€41, 7.386+1] [B.60, 4.88E+1] -- {1.65E+1, 6.99E+1] [1.21E+1, 6.64E+1]
Benzo(a)pyrene [2.82e-1, 1.77] [2.96E-1, 1.69] [3.09e-3, 3.89E-2] [4.01E-1, 1.70] [2.89E-1, 1.59)]
Carbon Tetrachloride [1.68E+1, 1.05+2] [1.22E+1, 6.94E+1] - [2.44E+1, 1.03E+42] [1.72E+1, 9.49E+1]
Chlordane (1.28, 8'02] (8.30E-1, 4.72] [1.00E-1, 1.27) {1.36, 5.75) [2.46, 1.36E+1)
3,3-Dichlorobenzidine [6.70, &.22€+1] [1.10€+1, 6.30E+1]) [3.61E-2, 4#.54E-1] [1.31E+1, 5.53E+1) [6.89, 3.80E+1)
1,2-Dichloroethane [1.51E+1, 9.4BE+1) [1.95E+1, 1.11E+2] [B8.21E-1, 1.04E+1] [2.28E+1, 9.66E+1]) [2.39E+1, 1.32€+2]
EDB [2.04, 1.28E+1]) [1.24, 7.06]) {1.90E-1, 2.40) [2.25, 9.50] [2.68, 1.47€+1]
Formaldehyde [1.02, 6.40] [1.30, 7.42)] - [7.82E~1, 3.33] [1.76, 9.67]
Hexachlorobenzene [7.G0E-1, &.42) (8.45€E-1, 4.80] [1.82E-2, 2.31] [8.88e-1, 3.76] [:.38, 7.60]
Hydrazine [1.01, 6.36] [7.55€E-1, 4.18] - {1.28, 5.41] [5.08, 2.81E+1)
Mustord Gas (7.55€-8, 4.76E-7] [5.55E-8, 3.14E-7] - [9.53E~-8, 4.05€E-7] ([7.78€E-8, 4.28E-7]
Lead [3.32, 2.08E+1) [5.50, 3.12E+1] [3.93E-1, 4.96] [4.19, 1.77E+1] [3.41, 1.875+1)
2-Nopthylamine [6.50, 4.08E+1] [1.08E+1, 6.10E+1] - [8.18, 3.47E+1] [6.67, 3.67E+1]
NTA [3.376+2, 2.12643] [2.39E+2, 1.36E+3] [1.43, 1.81E+1] [4.26E+2, 1.80E+3] [3.87E+2, 2.12E+3)
2,4,6-Trichlorophenol [9.35E+1, 5.88e+2] [6.80E+1, 3.88E+2] - [1.44E+2, 6.10E+2] [1.06E+2, 5.81E+2]
TCDO {3.96E-5, 2.486-4) [6.55E-5, 3.72E-4) [1.65E-6, 2.08E-5) [4.69E~5, 2.01E-4] [5.03E-5, 2.77E-4]]
Tetrachloroethylene [4.98E+1, 3.14E+2] [3.485+1, 1.98E+2) [5.18, 6.55E+1) [5.94E+1, 2.52C+2] [6.28E+1, 3.46E+2)]
Toxaphene (1.40, 8.78) {8.00E-1, & 54) (8.82€-2, 1.11] [2.89, 1.22E+1] (2.63, 1.45E+1]
Vinylidene Chloride [7.25E-1, 2.58) [1.04, 5.88] [4.686-2, 5.91E-1] (3.79E-1, 1.61] {1.30, 7.16]

9The intervals are derived from the values in Table 3-3 by application of the residual uncertainty factors (cf.

Table 3-1).

DA »--* indicates that the data were not available to apply the method to the chemical.



Table 3-5

RANGES OF HUMAN RRDS DERIVED FROM THE RECOMMENDED SET OF ANALYSESQ

6€-¢

—Ontion 2: Qotion J3:

Chemicol Full Range® Smollest Consistent Range®
Acrylonitrile {6.50E-2, 2.24E+1]} [6.50E-2, 8.20E-1]) U [2.44, 1.34E+1] (hS.k7)d
Allyl Chloride (6.32, 3.40E+2] [4.32, 2.11E+2] (43, 45)
4-Aminobiphenyl [3.526-2, 6.98E+2]}" [3.52E-2, 6.98E+2] {43)

Benzo(a)pyrene (3.09e-3, 1.77] [3.09€-3, 3.89E-2]) U [4.01E-1, 1.70] (43, 45)
Carbon Tetrachloride [5.03E-2, 9.97£+2]" [5.03E-2, 9.97€+2] (43)

Chlordane [1.00E-1, 1.36E+1] [1.00E-1, 1.27] u [1.28, 8.02] (43, 30)
3,3-Dichlorobenzidine [3.61E-2, 6.30E+1) [3.61E-2, 4.54E-1] U [6.89, 3 BOE+1]) (43, 47)
1,2-Dichloroethane [8.21E~1, 1.32E+2] [8.21€-1, 1.04E+1]) U [2.28E+., 9.66E+1] (43, 45)
£EDB {1.90E~-1, 1.47E+1]" [1.90E-1, 9.50] (43, 45}

Formaldehyde . [3.05E~3, 6.056+1]" [3.056E-3, 6.05E+1] (43)

Hexachlorobenzene [1.82€-2, 7.60) [1.826-2, 4.42] (43, 30)

Hydrazine [5.04E-3, 6.01E+1]" [3.04E-3, 6.01E+1] (43)

Mustard Gas (2.27€~10, &.S0E-6]" [2.27E-10, &4.50E-6] (43)

Lead [3.93E-1, 3.12E+1] [3.93€E-1, 1.77E+1] (43, &5)

2-Napthylaomine [1.956-2, 3.86E+2]" [1.95E-2, 3.86E+2] (43)

NTA {1.43, 2.12E43) [1.43, 1.81E+1] U [4.26€+2, 1.80E+3] (43, AS)
2,4,6-Trichlorophenol [2.B1E-1, 5.56E+3)" [2.B1E-1, 5.56E+3] (43) :

TCDD [1.65E-6, 3.72E-4) [1.65E-6, 2.08E-5] U [4.69E-5, 2.01E-4] (43, 45)
Tetrachloroethylene [5.18, 3.46E+2) [5.18, 1.98E+2] (43, 31)

Toxaphene [8.82E-2, 1.45E+1] [(8.82E-2, 1.11] U [1.40, 8.78] (43, 30)
Yinylidene Chloride {4.68€-2, 7.16] {4.68€-2, 5.88] (43, 45, 31)

Qvalues of RRDs are in mg/kg/day.

byhe full range extends from the smallest lowcr bound to the lorgest upper bound among
analyses in the recommended set.

CThe smallest consistent range is the union of intervals from analyses in the recommended
set such that the union includes all predictions (from Table 3-3) and is the smallest union
that does so.

Owhen the union is of disjoint parts, both parts are shown, connected by the union symbol,
*"uU®. In parentheses Gre the analyses whose union defines the smallest consistent range.

"An asterisk marks those intervals that are the result of imputing values for Analysis 43.



Table 3-8

RANGES OF HUMAN RRDS DERIVED FROM THE RECOMMENDED
SET OF ANALYSES IGNORING ANALYSIS 439

Chemical

Ootion 2:

Qotiun 3.

Full Rangeb

Smallest Consistent Ronge®

Acrylonitrile

Allyl Chloride
4-Aminobiphenyl
Benzo(a)pyrene
Carbon Tetrachloride
Chlordane
3,3-Dichlorobenzidine
1,2-Dichloroethane
EDB

Formaldehyde
Hexachlorobenzene
Hydrazine

Mustard Gas

Lead

2-Napthylemine

NTA
2,4,8-7-ichlorophenocl
TCDD
Tetrachloroethylene
Toxaphene

Vinylidene Chloride

[2.37, 2.24E+1]
[3.74E+1, 3.40E+2]
[8.60, 7.38E+1]
[2.82E-1, 1.77]
[1.22E+1, 1.05E+2]
[8.30E-1, 1.36E+1)
[6.70, 6.30E+1]
[1.51E+1, 1.32E+2]
[1.26, 1.47E+1]
[7.82E-1, 9.67]
[7.00E-1, 7.60]
[7.35E-1, 2.81E+1]
[5.55E-8, 4.76E-7]
[3.32, 3.12E+1]
[6.50, 6.10E+1]
[2.39E+2, 2.12E+3]
[6.80E+1, 6.10E+2]
[3.96E-5, 3.72E-4]
[3.48E+1, 3.46E+2]
{8.00E-1, 1.45E+1]
[3.79€E-1, 7.16]

[2.
[&.
[1.
{&.
[2.
[1.
(6.
[2.
[2.
[1.
.38, 7.60] (47)

.28, 2.81E+1] (45, 47)
[9.
[4.
[8.
[&.
.06E+2, 5.81E+2] (&7)
[&.
[5.
.40, 8.78] (30)
(3.

{1
[

[1

(1

44, 1.34E+1] (47)
86E+1, 2.11E+2] (45)
65E+1, 6.99E+1] (45)
01E-1, 1.70] (45)
44E+1, 1.03E+2] (45)
28, 8.02] (30)

89, 3.80E+1] (47)
28E+1, 9.66E+1] (45)
25, 9.50] (45)

30, 7.42] (31)

53E-8, 4.05E-7] (645)
19, 1.77E+1] (45)
18, 3.47E+1] (45)
26E+2, 1.80E+3] (45)

69E-5, 2.01E-4] (45)
94E+1, 2.52E+2] (45)

79E-1, 5.88] (31, 45)

Ovolues of RRDs are in mg/kg/day.
bThe full range extends from the smollest lower bound to the largest

upper bound among analyses in the recommended set.

CThe smallest consistent range is the union of intervals from analyses
in the recommenced set such that the union includes all predictions
(from Table 3-3) aond is the smallest union thot does so.
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